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Abstract

Depression is a global health issue affecting individuals coming from all age groups, with
the prevalence in children rising. The early detection of depression in young ages is crucial,
yet several obstacles hinder the accurate assessment of depressive symptoms in young
populations. This study proposes a multimodal deep learning framework for the automated
assessment of depressive symptoms in children. We extracted audio and text features from
videos of parent-child interaction, to train and evaluate deep learning models. Our method-
ology involved the use of advanced feature extraction techniques, including Wav2Vec2.0
and CLAP for audio features, and RobBERT and SBERT for text features. In addition
to examining each modality independently, we explored how multimodal fusion could
enhance the accuracy of detecting depressive symptoms in children. This study indicates
that multimodal deep representations can effectively identify depressive symptoms in chil-
dren, particularly in contexts involving cooperative tasks. The combination of SBERT and
CLAP feature representations yielded an AUC score of 0.810 in the cooperative scenario.
This result serves as a strong foundation for exploring the complex process of assessing
depressive symptoms as more data becomes available.
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1. Introduction

Depression has emerged a global health problem, affecting a great percentage of the global
population, estimated at 280 million people1. This demographic includes people of all ages,
from young children to old adults. However, there is a concerning trend of an increasing
prevalence of depression in children, especially young girls [109].

Prevalence of depression in children presents a wide range of difficulties, significantly
impacting their lives at an essential point in the development of their mental health. During
this time, the human brain is developing and becoming more complex, and it is also the
time when social, emotional, and cognitive skills are developing. These changes may
create a basis for later in adulthood the emergence of probable psychopathologies [59].
Mental health and psychosocial development is of high importance especially for young
people and neglecting it is not only limited to discomfort during childhood, but may also
lead to limited opportunities during adulthood.

WHO estimates that 10% of children and adolescents globally suffer from mental problems,
with many of them not seeking help or receiving proper care, despite the need for early
detection and intervention. It is also reported that suicide ranks as the fourth leading cause
of death for adolescents aged from 15 to 19 years old. Thus, assessing child depression is
an emerging issue and may prevent many problems both for individuals and society.

Despite the pressing need for assessment, numerous obstacles block successful detection
of depressive symptoms in children. These barriers include a financial burden, unreliable
parental reporting, a shortage of qualified staff and screening tools, among many others
[63]. In addition, detecting discomfort and irritated mood in children is challenging, even
though it is reported that almost 1 out of 5 children experience a disorder during childhood.
Hence, it is crucial to develop screening tools that can detect depressive symptoms and
lessen the burden faced by public health providers, at least regarding the initial assessment.

This task has become popular in the machine learning community; many researchers have
already explored adult depression assessment based on visual, audio and linguistic cues.
However, there remains a gap in research concerning child depression and the detection of
its symptoms, presenting an opportunity for further advancement.

1World Health Organization, https://www.who.int/news-room/fact-sheets/detail/
depression
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This study aims to address this gap by leveraging multimodal features extracted from
parent-child interaction videos and deep learning models to detect depressive symptoms
in children. The main research question this study poses and attempts to answer is the
following: “To what extent can multimodal embeddings obtained from large audio and
language models detect depressive symptoms in children from parent-child interaction
videos?”
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2. Research questions

The automated evaluation of depressed symptoms in children is essential in several domains,
including the psychological, social and financial. As a result, this study’s research and sub-
research questions, as outlined below, will attempt to assess this need. More information on
the subjects of depression, depression in children, and the evaluation of its symptoms using
both conventional and machine learning techniques can be found in Section 3. Section 5
of this proposal will cover the strategies and tactics for answering the questions.

Research question: To what extent can multimodal embeddings obtained from large audio
and language models detect depressive symptoms in children from parent-child interaction
videos?

The main research question outlined above provides a broad foundation for this study and
will be further expanded upon in the experimental phase. The primary objective of this
study is to leverage valuable embeddings extracted from large audio and language models
to evaluate depressive symptoms in children. Specifically, these foundation models will be
supplied with audio and language data taken from the parent-child videos dataset.

Sub-research question 1: To what extent can depressive symptoms in children be assessed
separately in both cooperative and conflicting scenarios?

This sub-research question aims to investigate the degree to which depressive symptoms
can be identified during interactions between a parent and a child in cooperative and
conflicting situations separately. In this case, the assessment will rely on embeddings
extracted from data related to each scenario independently, trying to determine whether
depressive symptoms differentiate depending on the nature of the task.

Sub-research question 2: To what extent can depressive symptoms in children be accu-
rately assessed using solely the audio and text embeddings?

While the main research interest of this study is based on multimodal embeddings, it is
interesting to examine the individual efficacy of audio embeddings and text embeddings
in the assessment of depressive symptoms. To address the aforementioned question,
predictions regarding depressive symptoms will be made based on unimodal embeddings
only, entailing that predictions will be made by exclusively audio embedding and separately
from text ones.
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Sub-research question 3: How does examining only the parent’s segment impact the
assessment of depressive symptoms in children?

Another intriguing topic that the sub-research question above examines is the impact of
parent segments. Orvaschel et al. [75] was one of the first studies associating the depressive
symptoms in children with depressive parents. The children of depressives are at a higher
risk of developing psychopathology, while getting exposed to a vulnerable environment.
Therefore, embeddings extracted from the parent segments will be compared with those
extracted from child’s segment exclusively.
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3. Literature review

3.1 Depression
Commonly referred to as major depressive disorder, depression is a common mental
disorder. It is estimated that this mental illness affects 5% of people worldwide [98].
According to Kessler et al. [51], this condition is popular throughout all nations where
epidemiological surveys have been conducted, with a higher prevalence in countries with
higher incomes. Thus, treating depression is extremely difficult, especially in low- and
middle-income nations where 75% of people with mental diseases do not receive treatment,
according to the World Health Organization (WHO)1 [98].

Depression has a profound effect on people’s lives that goes beyond mental health. These
aspects include relationships with relatives and friends, community involvement, academic
performance, and productivity at work. Furthermore, there is a connection between
physical health issues like cardiovascular disease and depression. According to estimates,
depression costs the US economy $43 billion annually as it causes higher medical expenses,
early deaths, and lower productivity at work [37].

The depression construct can be approached from different perspectives. Since it offers
a framework for the diagnosis of mental disorders, including depression, the Diagnostic
and Statistical Manual of Mental Disorders [6], Fifth Edition, also known as DSM-5, is
regarded as a major foundational work in the field of mental health. According to the
DSM-5, depression is a unidimensional construct, with the presence of a depressed episode
being determined by the combination of symptoms. According to DSM-5, one of the
indicators for a Major Depressive Episode (MDE) expects the presence of at least five
from the subsequent symptoms for a timeframe of minimum of two weeks. Among the
symptoms should be a depressed mood, which is characterised by a pervasive feeling
of sadness, emptiness, or hopelessness that is noted not only by the patient but also by
others. Anhedonia, another potential symptom, is characterised by a decreased interest or
pleasure in nearly every aspect of life. Both disruptions in the sleep-wake cycle, which may
lead to insomnia or hypersomnia and changes in one’s appetite and weight are potentially
symptoms of the depressive disorder, as well. Additional symptoms include fatigue or
low energy, psychomotor agitation or retardation, and these may significantly impact day-
to-day functioning. Moreover, individuals may experience poor concentration, difficulty

1World Health Organization, https://www.who.int/news-room/fact-sheets/detail/
depression
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making decisions and feelings of worthlessness, or excessive guilt. Last but not least,
suicidal ideation—whether planned or not—as well as actual suicide attempts may serve as
early warning signs of a depressive episode. According to this manual, the symptoms that
have been recorded earlier indicate a major depressive episode, if they cannot be attributed
to any substance or medical condition.

While alternative perspectives question the unidimensional model, one such approach
claims that depression is better characterized by a two-factor model [28], where symptoms
can be classified as somatic and non-somatic. In this framework, somatic symptoms
encompass issues like sleep disturbances, changes in appetite, and fatigue, among others.
Conversely, non-somatic symptoms, as noted by Elhai et al. [28], include depressed mood,
feelings of worthlessness, and suicidal ideation.

In conclusion, depression is characterised by enduring melancholy and a loss of interest
in or enjoyment from previously enjoyed activities. In addition, it can cause fatigue and
interfere with eating and sleep cycles. The World Health Organization [98] lists excessive
guilt, hopelessness, poor focus, and suicidal thoughts as additional symptoms. Numerous
social, psychological, and biological factors, such as loss experiences, unemployment, or
childhood adversity, might contribute to these symptoms.

In addition to the symptoms previously discussed, individuals with depression often present
observable symptoms. According to Sobin et al. [105], psychomotor symptoms, though
significant indicators of depression, can be challenging to identify. Depressed subjects
usually exhibit lower activity than healthy groups of people, with the level of activity
varying depending on the subtype of depression. Interviews have revealed specific patterns
in behaviours such as direct eye contact, self-touching levels, and eyebrow movement
among depressed subjects. These groups tend to make less direct eye contact with the
interviewer, exhibit reduced eye and eyebrow movement in comparison to healthy ones.
When it comes to self-touching, it was observed more in depressed patients, while their
motor speed when they had to respond in a simple task was slow. Caligiuri et al. [15]
underline the significance of motor retardation as a depression symptom. An interesting
finding presented in the study was the inability of depressed subjects to increase movement
velocity in a specific task even when the target distance was decreased. To conclude, these
observable symptoms highlight the complexity of the condition and the significance of
thorough diagnostic and treatment approaches, offering insightful information about how
depression emerges itself.
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3.2 Depression assessment
Given the increasing prevalence and varied impact of depression on individuals and society,
there arises a critical need for assessment methods to effectively address this widespread
mental health condition. Several methods are used to evaluate depression, particularly
in primary care, where general practitioners and primary care providers deliver most of
the treatment for depression [115; 66]. A standardized evaluation tool for mood, anxiety,
somatoform, alcohol-related, and eating disorders is the Patient Health Questionnaire-9
(PHQ-9). It consists of nine questions that are based on the previously described DSM-5
symptom criteria. The scoring method used to determine the findings ranges from 5 to
20; 5, 10, 15, and 20, with each score denoting a different level of severity—"mild,"
"moderate," "moderately severe," or "severe." The Hospital Anxiety and Depression Scale
for Depression (HADS-D) is an additional evaluation tool that is used only when the
subjects are medically unwell patients; as a result, somatic aspects are not measured. The
updated Beck Depression Inventory (BDI-II) is an alternative assessment instrument that is
more appropriate based on the most recent definition of major depressive disorder. Subjects
respond to BDI-II based on their last-two-weeks’ symptoms.

Although questionnaires and self-assessment tools are the main techniques used to identify
depression, they do not take into account observable symptoms. These techniques produce
subjective results that could be misinterpreted because they only take into account the
symptoms that patients, family members, and carers describe. Despite its importance
in detecting depression in people, measures including movement of the body, gaze, and
facial expression are not included in self-assessment tools [60]. A multimodal approach to
depression assessment is becoming more and more necessary, as the majority of current
techniques concentrate only on clinical symptoms. Including a behavioural viewpoint in
the evaluation of depression might improve overall diagnosis accuracy and provide a new
understanding of the condition.

3.3 Depression in children and adolescents
Depression is a common disease among children and adolescents as well. In children
between the ages of 10 and 19, mental disorders affect about 1 in 7 of them. Twenty
percent of teenagers may suffer from a mental health issue, according to Mental Health
Foundation [64]; depression and anxiety account for half of these cases, according to
UNICEF 2. According to Moreau [67], it was acknowledged as a clinical and diagnostic
entity as early as the 1990s.

2United Nations Children’s Fund (UNICEF), https://www.unicef.org/eu/
press-releases/worsening-mental-health-situation-europes-children
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The DSM-5 [6] criteria for major depressive disorder state that symptoms can differ in
children and adolescents. The DSM-5 lists sadness as the initial symptom in case of adult
depression, which in case of children may show as irritable mood. It is sometimes regarded
as an indication of children depression when a child fails to gain the anticipated amount of
weight for their age and developmental stage. In addition to irritation, children may also
be more prone to physical symptoms and social disengagement, according to the study
by Korczak et al. [56]. This demonstrates the advancements made in the last many years
in the study of childhood depression. A few decades ago, experts [67] said that children
were evaluated for depression using the same standards as adults. There are still some
who support this view. Bernaras et al. [10], for example, believe that the construction of
childhood depression is the same as that of adult depression. Conversely, Neto et al. [92]
assert that depression in childhood is a separate illness from that of adults.

According to a study by Chen et al. [16], parent-child and family relationships are crucial in
the development of depressive episodes. Living in an unfavourable environment can cause
family members to experience melancholy, particularly when it comes to the family, which
is seen to be one of a child’s most significant influencers [104; 107]. Living and developing
inside a system, particularly the family, can cause people to experience problems that
mirror those that are already present in the family system. Given that many children view
their parents as their significant others [62], parenting styles and the messages parents
pass to their kids have a big impact on how they develop now and in the future. The
relationship between parenting styles—those of both mothers and fathers—and how they
affect children’s symptoms of depression is the main focus of the study conducted by
Chen et al. An intriguing discovery is that girls are more impacted by messages from their
mothers and males by words from their fathers.

After reviewing over the various viewpoints on childhood depression, it is clear that treating
this mental condition is of vital importance given the possible effects it may have on kids’
growth. Childhood depression is extremely important since it is a condition that can harm
a child’s development as they grow older [92]. It may interfere with their long-term,
persistent symptoms, which can impair their social, emotional, and cognitive development.
Deep alterations in the child’s brain area are part of cognitive growth, so early trauma may
cause insufficient brain development. Furthermore, according to WHO 3, childhood and
adolescent development of cognitive and social-emotional skills is crucial for eventual
maturity and societal duties. Korczak et al. [56] point out that depression is a common
adolescent disorder in Canada, which has a long-term negative impact on life quality.
Additionally, they note that the majority of depressed teenagers do not receive treatment,

3World Health Organization, https://www.who.int/activities/
improving-the-mental-and-brain-health-of-children-and-adolescents
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which highlights how difficult it is to identify depression in these vulnerable age groups.

3.4 Assessment of depression in children and adolescents
Following the recognition of childhood depression as a separate illness and the increase
in the prevalence of depressive symptoms in youth, concerted efforts have been made to
create a variety of evaluation tools that are geared towards this population. A common
measuring instrument for evaluating depression in children is the Children’s Depression
Inventory (CDI) [29]. It was developed using the BDI, a measure for evaluating adult
depression. In addition, a number of other instruments have been developed with only
the intent of assessing childhood depression. These include the Rating Scale for Children
(DSRS) [12] and the Children’s Depression Scale (CDS) [57], the latter of which is also
capable of measuring the disorder’s severity. However, these child depression assessment
questionnaires frequently ignore visible cues such changes in body language or facial
expression, much like adult assessment tools.
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4. Literature Review: Automated depression
detection

Several works on automatic depression recognition and assessment have been presented
in the literature. This field has evolved significantly since 2011, particularly with the
introduction and successive editions of the Audio/Visual Emotion Challenge AVEC [96].

Typically, depressed individuals tend to change their expressions at a very slow rate and
deliver flat sentences with stretched pauses. Similarly, their language usage gets affected,
characterized by specific linguistic patterns. Therefore, for detecting depression, audio and
linguistic features are frequently leveraged due to their ability and consistency to reveal
signs of depression. Numerous proposed approaches follow a similar workflow, including
four main processing steps: preprocessing, feature extraction, dimension reduction, and
classification.

Sections 4.1 and 4.2 review papers that use acoustic and linguistic features for assessing
depression. Combining more than one modality and its significance for resolving the task
of automatic depression assessment are discussed along with the corresponding research in
section 4.3. The works under review cover a wide range of methods and models, including
hand-crafted feature extraction and the latest advancements in deep learning technology,
with foundation models included.

4.1 Acoustic modality
Speech communication is widely considered as the cornerstone of human interactions
[55]. Robust speech representations are useful for addressing a range of paralinguistic
tasks, which are connected to non-linguistic occurrences [91]. Therefore, acoustic features
are a great base for analyzing human behavior and earning valuable information from
non-linguistic occurrences. Features extracted from audio can be important indicators
of the absence or not of a mental health condition [52]. Since speech is linked to such
conditions and the quality of speech can be affected by them. Research has explored the
differences in speech patterns between individuals with depression and those mentally
healthy, with those who have depression exhibiting monotonous, dull, and lifeless speech
[34; 22]. Since these changes have been quantified, it is now possible to identify depressed
speech by taking into account particular speech characteristics like loudness, pitch, and
harshness [34; 22]. Therefore, in the topic of depression assessment, the extraction and
analysis of audio features are essential.
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The first part of the research explored acoustic modality using hand-crafted features.
Hand-crafted feature extraction mainly involves extracting fundamental audio features
such as frequency, jitter, shimmer, loudness often achieved with the use of tools such as
openSMILE [32]. These features have also been extracted in the study by Smith et al. [103]
from interviews, in which 65-year-old or older aged participants engaged in two specific
tasks. Predictions regarding whether a participant was depressed or not were created using
an SVM fitted with repeated 10-fold-cross-validation. This approach’s accuracy showed
that the machine learning models leveraged, were able to distinguish between depressed
and non-depressed older adults.

Similarly, Pan et al. [76] have extracted several hand-crafted features from audio interviews.
They used 26 physical features commonly used in emotion recognition; including loudness,
F0, intensity, zero-crossing rate. They have shown that voice features are crucial indicators
of depression prediction. However, it is important to note that their study was limited to
female participants, making it difficult to generalize without further research.

Another intriguing study was conducted by Pessanha et al. [82], in which breathing
patterns serve as the features. The features, extracted from audio sequences, are utilized
to predict depression severity. The corpuses used were UCL Speech Breath Monitoring
[97] – including spontaneous speech instances, along with the Distress Analysis Interview
Corpus-Wizard-of-Oz (DAIC-WOZ) [38] - consisting of interviews aiding in the diagnostic
procedure of mental disorders. Both linear and non-linear models have been trained trained
in the AVEC 2017 challenge, with random forests demonstrated superior performance.

Seneviratne et al. [99] directed their focus towards articulation and how this may lead to
conclusions for depression prediction. It is worth mentioning their use of Mel Frequency
Cepstral Coefficients (MFCCs), which are low-level audio descriptors commonly used in
various audio processing tasks, as they imitate how speech signal is perceived by human
brain. A model was trained using coordination features extracted from MFCCs and vocal
tract variables and then were classified using a Support Vector Machine classifier. This
study has reported the highest accuracy, when glottal tract variable is also included along
with articulatory coordination features.

While deep learning models are increasingly dominating machine learning tasks, many
applications have been proposed to automatically assess depression. Although numerous
features can be extracted from audio, not all are equally significant for depression assess-
ment. An effort to reduce high dimensionality and avoid overfitting caused by extraction
of many speech features was made by Sardari et al. [95]. They proposed an adaptation of a
CNN AE (auto encoder), which reconstructs the input signal in a way that dimensionality is
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effectively reduced. The full proposed model can be seen in 1. Then an SVM classifier - the
best performing among four classifiers – was employed to distinguish between depressed
and non-depressed subjects.

Figure 1. Framework for assessing depression with audio features by [95]

Rejaibi et al. [88] used LSTM [42] in their study, a recurrent neural network good at
capturing long-term dependencies in sequential data, thus ideal for solving audio processing
tasks. Following data preprocessing and extraction of MFCC from the audio interviews,
they extracted high-level audio features by feeding the LSTM with depression data. Finally,
features from the LSTM layers were passed through two fully connected layers and
a sigmoid function, which predicted the depression severity. As an extension to their
experiment and due to scarcity of depression-related data, they used transfer learning
strategy. The network was initially trained in a similar task, that of emotion recognition,
with the weights obtained after the emotion recognition task served as the initial point for
fine-tuning the model on the depression recognition task. The accuracy achieved by the
transfer learning strategy surpassed the accuracy of the model when not pretrained on the
emotion recognition task.

Zhao et al. [124] have introduced a hybrid network, comprising two different deep learning
mechanisms: self-attention networks and deep convolutional neural networks (DCNNs),
both trained on related tasks. The feature representations obtained from these models are
concatenated and average pooling is applied. The final layer consists of a support vector
regression, which produces a score in the range of Beck Depression Inventory-II score.
Remarkably, the combination of the two models performs better compared to each model
individually. Evaluation and testing of the models were conducted in AVEC 2013 [112]
and AVEC 2014 [111] datasets.
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4.2 Linguistic modality
This section focuses on linguistic modality, as language is a significant factor in depression
assessment. Language can serve as a valid marker for psychopathology and a useful tool for
depression diagnosis; both language and verbalism are important for depression diagnosis
[110]. Clinical psychologists have conducted research revealing specific linguistic patterns
observed in the speech or writing of depressed individuals [93]. Examples of such patterns
include the use of first-person singular pronouns and a lack of positive words, particularly
when referring to depressed children [18]. As a result, studying linguistic features, such
as words, parts of speech, n-grams, negation, as well as syntactic and grammatic choices
would contribute to the automatic assessment of depression.

Natural Language Processing (NLP) is a machine learning technique which utilizes al-
gorithms for analyzing textual data, thus it offers the ability to computers to understand
natural language. Common NLP tasks are machine translation, language generation, clas-
sification and prediction based on specific tasks and concepts. In the case of depression
assessment, the extraction of text features and evaluation of them could add value in auto-
mated assessment of depression. The studies addressed in the following section are using
only text data for assessing the depression detection task combined with both baseline
classifiers, such as SVM and deep learning models, like GPT-4 [72].

Recently, there has been an increase in the platforms where people can share their thoughts,
chat with people, seek for emotional attention and express their feelings online offers
an enormous amount of text data and a great opportunity to explore the assessment of
depression through text. Hence, there have been already works on automatic depression
assessment in the direction of text modality that use mainly social media extracted data.
A very recent work by Tejaswini et al. [108] have used data extracted from Reddit and
Twitter; sources extremely popular for depression assessment tasks. 6.164 records are
preprocessed by tokenizing, lower casing, removing stop words, performing stemming and
lemmatizing. After that fastText [49] embeddings are created and are fed to the model.
This study proposes a model consisting of an LSTM [42] and a CNN that outperformed
other works in the same dataset.

Another study by Singh et al. [2] utilized a similar dataset extracted from Twitter, employ-
ing preprocessing techniques such as removing the punctuation and data normalization.
After that feature extraction techniques were applied to the preprocessed dataset, such as
Bags-of-n-grams and glove embedding-based feature extraction. The features extracted in
the previous step were considered for a weighted feature selection and were fed into the
proposed CNN-Ensemble learning. This model consisted of a CNN that its last classifica-
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tion layer was replaced by different classifiers, such as Support Vector Machine, Random
Forest, Long Short Term Memory Network and Artificial Neural Network, achieved greater
results in the three datasets tested when compared with existing models.

Figure 2. Framework for assessing depression with textual features. Figure by [2].

Additionally, there has been an increase in the use of large language models (LLMs),
especially since the introduction of models such as ChatGPT. Agrawal’s [102] work
combines both conventional machine learning and large language models (LLMs) for
depression detection and provides the users with personal explanations, as well. This study
leveraged both clinical interviews and Reddit forums for feeding various conventional
machine learning models including SVM and deep learning models including CNN,
BERT-CNN, and LSTM to detect depression. The next step in the workflow included
some preprocessing steps, such as tokenization, stopword removing and transforming
the text to word embeddings. Two explainability methods, namely SHAP (SHapley
Additive exPlanations) and LIME have been employed for presenting the result in a human-
interpretable way. The second part of the study utilizes the integration of three advanced
LLMs; specifically GPT-4 [72], Llama 2 [31] and Gemini [35]. The main goal of this
approach is to provide users with similar to human explanations regarding the diagnosis
produced by the AI tool. A prompt interface which asks questions, tries to understand
the user, and detects depression symptoms in accordance with the DSM-5 [6] was used to
interact with the user.

Using data from Twitter, Chiong et al. [19] trained several classifiers, such as Logistic
Regression, Support Vector Machine, Multilayer Perceptron, Decision Tree, Random
Forest, Adaptive Boosting, Bagging Predictors, and Gradient Boosting and evaluated their
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performance using data retrieved from other online platforms. Preprocessing was carried
out in the same manner as in previous studies, including Bag-of-Words feature extraction
combined with count vectorization and n-gram words as input features for the machine
learning models. The primary objective of this research was to identify depression in
participants who might not be aware of or deny their depressive state, with the best results
achieved by Logistic Regression classifier.

In addition to social media posts, content of speech from patient-therapist interactions
has been used to assess depression. Milintsevich et al. [65] provided an alternative
viewpoint on the research on depression detection by attempting to predict depression
severity scores for each symptom in a way that offers a more thorough understanding of
the mental health state. In this case, the dataset consists of the interviews between patients
and Ellie [120];Ellie serves as the interviewer and was a virtual assistant functioning as a
therapist, who asks questions in a non-judgmental manner to encourage subjects to respond.
Therefore, the dataset used was DAIC-WOZ [38], containing clinical interviews between
Ellie and the subjects. In order to predict the scores of individual symptoms, utterances
were encoded both per dialogue turn and per dialogue level. These encoded transcripts
were then fed into a multi-target regression model. For encoding, deep learning models
like Bidirectional LSTM (BiLSTM) [47] and S-RoBERTa [86] were used. Although its
limitations, the present study is consistent with the latest methodologies suggested by
psychiatrists and could serve as a basis for future research along these lines.

In the study conducted by Havigerova et al. [40], the dataset is different than what has been
discussed so far. It consists of fictive letters of 180-200 words that participants wrote using
predefined scenarios, such as a cover letter, a letter from holidays, a letter of complaint, and
a letter of apology. Various morphological features were detected through lemmatization
and morphological tagging of the 688 texts. Following a filtering step and two steps of
variable reduction, eight logistic regression models were created corresponding to different
text genres and genders. The prediction primarily relied on the linguistic properties of the
subjects’ written text, focusing on quantitative linguistic syntactical and morphological
variables rather than content and semantics, as commonly seen in similar studies. Several
patterns in the usage of morpho-syntactic elements in the texts were observed among
women and men, explaining the differences found between the two groups. Notably,
informal letters discussing holidays were found to be of high value in depression detection.

4.3 Multimodality
The preceding sections discussed the use of unimodal models based on either speech or text
for depression assessment and their performance in depression detection tasks. However,
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there are advancements in the field, involving the combination of different modalities, so a
multimodal model is formed combining all the different modalities. Integrating various
modalities has shown promising results in research and especially in depression detection,
as explored in the following section.

The world is multimodal as well, meaning that there are several ways to experience and
perceive one’s surroundings. For instance, anxiety can be expressed by a trembling voice,
a high heartbeat, sweat or even difficulty in sleeping. All these and even more independent
pieces construct only one feeling and capturing them offers a better understanding of how
humans experience not only their environment, but also themselves. Similarly, depression
is multi-faceted disease that has many different symptoms and studying different modalities
would give great value to the depression assessment task.

4.3.1 Multimodal fusion
The procedure that two or more modalities are combined and return one unified prediction
is called fusion. There are a number of ways to combine two modalities, the first one
is called early fusion [118]. When features are concatenated immediately after they are
extracted from each modality it is known as early fusion. It is considered an attempt to
make the model learn in a multimodal way, as finally only one single model is trained, in
which several modalities are embedded.

An alternative approach known as late fusion unifies the independent predictions made by
each modality. The fusion of the separate decision values from the unimodal models can
be achieved in multiple way, namely by averaging, applying weighting voting schemes or
weighting based on channel noise. Late fusion provides flexibility, as each decision may
come from a different predictor even in the absence of a modality.

Early and late fusion components are combined in a third strategy called the hybrid fusion
method. This method tries to combine the advantages of both approaches by merging
the output from early fusion with separate unimodal predictors, producing an enriched
multimodal model.

Related work on Multimodal assessment of depression

As mentioned earlier, there has been some advancement in multimodal architectures
for depression detection. Some recent research that achieves impressive results will be
examined, along with details about the feature extraction, training of the deep learning
models and the type of fusion performed. In a very recent study by Aloshban et al.
[5], interviews of both depressed and non-depressed subjects are utilized for training
and evaluating BLSTMs [47] both in a unimodal and a multimodal approach. In the
multimodal approach, there are three different ways that the modalities are combined in
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this study; namely late fusion, early fusion and feeding the unimodal representations to
a gated multimodal unit. The multimodal approach performed significantly better than
unimodal ones, achieving an accuracy equal to 84.7%. In addition, an interesting finding
occurred, when compared acoustic and linguistic modalities individually, acoustic features
are more valuable for depression specific information.

In their study, Shen et al. [100] developed EATD-Corpus dataset, which was the first
one existing Chinese depression dataset, containing text and audio data extracted from
interviews where participants respond to three questions. A GRU [20] model and a
BiLSTM [47] with attention were trained on audio and text data, respectively. The last
layer representations of the two models are horizontally concatenated, and the next step
includes the calculation of the dot product between the concatenation and the specially
trained weight vector on the different modalities. The final prediction was made using a
fully connected layer, taking the dot product as input. Again, the multimodal approach
achieves a better F1 score than single-modal methods. Also, the proposed fusion method
outperformed the one proposed by Alhanai et al. [3], which utilized a multimodal LSTM
model that took both modalities as an input to the two-branched model.

Taking advantage of the progress made in multimodal approaches to depression detection,
Ya et al. [52] investigated the use of audio and text features to detect depression in a reading
experiment with 160 participants. This experiment was called Segmental Emotional Speech
Experiment (SESE) and examines audio features, text features and how these perform
when fused. A big number of audio frames were produced during the DeepSpectrum audio
feature extraction process, which got eliminated by averaging the features extracted per
second; therefore there was a dimensionality reduction. In order to capture emotional
information, DeepSpectrum features were fed into a Temporal Convolution Network with
attention layers (Att-TCN) [44], after being passed through an AutoEncoder. Trying to
extract information to the greatest extent, an “one-hot Transformer”, able to catch long-
term dependencies was utilized and model’s input was the combination of text features
and the corresponding location of the words. This model was proved to be by 0.7% more
efficient than the original Transformer model. The fusion of the models occurs at decision
level, as the features of the two models are concatenated and passed through dense layers,
with softmax producing the final result, as this can be seen in Figure3. The accuracy of
the fusion model is higher than the results obtained by employing each of the modalities
independently.

Makiuchi et al. [91] have trained their model on data sourced from the AVEC 2019 DDS
Challenge database, particularly the DAIC-WOZ dataset [38]. This research focuses on
two modalities: audio and text, each leveraging different architectures. For the audio
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Figure 3. Fusion model of audio and text features. Figure by [121].

modality, raw audio was being preprocessed and was transformed into spectrogram images,
serving as input for a pretrained VGG-16 network [101]. Since the raw audio files varied in
duration, zero padding was applied to standardize the input features’ lengths. As far as the
linguistic modality is concerned, features are extracted from the last layer of a pretrained
BERT-large model [25]. Each word token is represented by a feature array of size 1024,
resulting in a transcript of K words being represented as K x 1024. These features served
as the input into two different models: an LSTM-based model and a CNN-LSTM-based
model. Visual features are taken from a ResNet-50 model [41] and used as input in a model
like the GCNN-LSTM model in order to investigate the visual modality as well. Not only
are all the fused models examined for the three distinct modalities, but also for pairs of
modalities. Combining text and audio yields the best results, with a CCC score of 0.403 in
the test set and 0.696 in the development set. It’s interesting to note that combining all three
modalities results in a lower score than combining text and audio, which illustrates the
worth of the latter two combined. The modalities are fused at a feature level, meaning that
extracted features from each modality independently are fed into the multimodal network,
after being concatenated.

The study by Bilalpur et al. [11] examines how depression in mothers may affect the
occurrence of depressive symptoms in adolescents. Except for manual data annotation
of both verbal and nonverbal behavior, multimodal cues were extracted from the video-
audio recordings. Multimodal cues, namely measures of facial expression, face and head
dynamics, prosody, speech behavior and linguistics, were extracted from the adolescents in
the audio-video recordings, where mothers had a fifteen-minute problem-solving session
with their child. In addition, data was annotated manually by expert coders examining both
verbal and nonverbal behavior. Mother-child dyads were chosen based on the mothers’
depressive state and the dataset consisted of balanced depressive and nondepressive dyads,
thus features are extracted only by the adolescents. For the classification, SVMs were
leveraged and fed with either the concatenation of the unimodal features or combining the
decision of the trained classifiers with the weighted sum criterion for early and late fusion,
respectively. Given the plethora of features, SHAP was introduced for feature selection
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and presented different results depending on the modality, e.g. a four-fold decrease in
the number of features for prosody. Computational measures outperformed the manual
annotations not only, in terms of accuracy, but also in interpretability by providing insight
about the features. They concluded that maternal depression had an impact in adolescent
behavior, with prosody and multimodal features presenting superior predictions.

One of the earliest and most significant works in the multimodal assessment of depression
was conducted by Dibeklioğlu et al. [26]. Depressed participants were interviewed at
four specific time intervals following their diagnosis, during which three separate cameras
were employed: two recorded the participant’s face and body, while the third captured
the interviewer. This study examined visual and auditory features, particularly examining
facial and head movements visually, as well as vocal fundamental frequency and pauses in
voice. Facial and head movements were analyzed and encoded per frame, thus emerged the
need of combining them; they were combined by training Stacked Denoising Autoencoders
(SDAE) [113]. In terms of the audio analysis, preprocessing was carried out prior to
feature extraction and the final features were selected using the Min-Redundancy Mac-
Relevance (mRMR) [85] algorithm. For both the single modality and the multimodal cases,
logistic regression classifiers were used to classify the severity of depression. The three
modalities—voice, face, and head—had their feature sets fused together at the feature
level, leading to a higher level of accuracy than when the modalities were used separately
or when combined by two. This study moved one step further, as it did not just predict
the presence of depression or not, but predicted depression severity, resulting in three
depression classes; moderate to severe depression, mild depression and lower indicate
remission for cases that recover from depression.

This study discusses and mainly focuses on the fusion of audio and text modalities and the
outcomes that can be obtained by this approach. However, numerous works go beyond this
fusion and combine various modalities such as image, text, audio, sentiment analysis and
combinations among them.

4.3.2 Foundation models
Foundation models, with their large scale and extensive pretraining on a variety of datasets,
signify a paradigm shift in artificial intelligence. These models, which include GPT [72],
BERT [25], CLIP [83], and more, have proven to be quite good in creating, understanding,
and adjusting to diverse kinds of content in a variety of domains. Their training process is
based on scaling, which boosts their performance in several tasks, not limited to the ones
they were trained on. Scaling and training in large datasets are used to train pre-existing
deep neural networks to discover broad patterns and meanings. Furthermore, these models
perform exceptionally well on activities that they were not explicitly pretrained for as well
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as new tasks, demonstrating their adaptability and relevance in a variety of contexts.

Figure 4. Multimodality in foundation models. Figure by [13].

The development of foundation models has greatly advanced a number of fields, including
linguistics, vision, thinking, and human interaction. They possess remarkable abilities in
language understanding, visual comprehension, reasoning, and even influencing physical
environments. Foundation models have advanced to the forefront of AI research and
application thanks to their excellent skills in creating, understanding, and modifying a
wide range of content as well as creating new ones across a wide range of fields.

Related work on Foundation Models

Building upon the progress of foundation models, Kim et al. [54] propose an automated
audio captioning (AAC) framework that combines EnCodec and CLAP for acoustic
processing and utilizes the pretrained BART model [58] for language comprehension.
Depending on the BART model version used, this model is available in two versions:
enCLAP-large and enCLAP-base. It has been tested on both the AudioCaps and Clotho
datasets. Significantly, enCLAP-large outperforms previous benchmarks in AudioCaps,
setting a new state-of-the-art; on the Clotho dataset, its performance varies based on the
training data sources, exhibiting better results in terms of AAC when trained on both
Clotho and AudioCaps than when trained only on Clotho.

A multimodal study in progress for prompt-based speech generation and comprehension
was proposed by Huang et al. [45]. A distinctive architecture is created by fusing audio
processing models with Large Language Models (LLMs) to combine text and audio
modalities. Using already existing models of the audio foundation, LLMs serve as the
interface, allowing input and output to be seamlessly integrated. Figure5 illustrates the
four steps of the AudioGPT pipeline, which provide a variety of transformations, such as
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Audio-to-Text, Audio-to-Audio, and Audio-to-Video. Of special relevance to this study is
the "Audio Caption" function from Audio-to-Text.

Figure 5. AudioGPT pipeline. Figure by [45].

Deshmukh et al. [24] created Pengi, which is a cutting-edge audio language model that
approaches all audio issues as problems involving text. Pengi operates on text and audio
instructions and outputs free-form text. Four separate steps make up its architecture,
as shown in Figure 6. Pengi’s training data is built using a predefined template, which
makes use of numerous audio datasets. Examples of this template include Task: "speech
emotion recognition," Input prompt: "this emotion is," and Output format: "emotion." This
template-driven technique enhances the results obtained for both closed- and open-ended
assignments. The audio encoder-audio transformer component from CLAP [30], which
translates audio input into an audio embedding, is the first step in the model pipeline. The
text prompt is simultaneously converted into an embedding by a text encoder; different
text encoders are available for this purpose. The two input embeddings are then mapped,
resulting in the construction of two mapping networks that translate each input into a series
of k embeddings. The autoregressive causal language model receives these sequences as
input when they are concatenated to create a fixed-length prefix. Both closed-ended tasks
that produce specified values, classification results, or input retrieval, and open-ended tasks
that generate text output are handled by the model during training. Pengi outperforms
supervised learning methods in terms of CIDEr and SPICE when it comes to open-ended
tasks like audio captioning, exhibiting state-of-the-art performance.

In their research, Xu et al. [119] proposed a framework for speech emotion captioning
(SECap), in which they employed two significant models one for each modality, LLaMA
[31] for text and HuBERT [43] for speech, respectively. HuBERT [43] served as the
encoder in SECap, and was used for speech feature extraction. Speech features extracted
from HuBERT [43] were then compressed by Querying Transformer(Q-Former) that was
standing as a Bridge-Net. Bridge-Net aimed to eliminate the features extracted only to
the ones that were related to speech emotion and excluded those relevant to content, the
latter could be extracted by the transcript. At the same time, LLaMA [31] was introduced
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Figure 6. Pengi architecture. Figure by [24].

in the training process of Q-Former, trying to enhance emotion projection in terms of
text. Q-Former aimed to extract the emotion-related features from the speech features
extracted from HuBERT [43], by utilizing an attention mechanism resulting to a fixed-
length representation regardless of the input length. The training process consisted of
two stages, one included the compression of the HuBERT’s features, so they obtained
relevance to emotion, followed by their alignment with LLaMA’s representation space.
Results were evaluated to both objective and subjective metrics introduced in this work,
as Speech Emotion Caption task was a novel task. SeCap not only outperformed earlier
works when objectively compared with them, but it also produced emotion captions of
comparable quality with those created by human annotators.
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5. Methodology

5.1 Dataset
The data used in this research originated from a larger dataset consisting of recorded
parent-child interaction videos. This dataset was part of YOUth study [71], an accelerated
population-based longitudinal cohort study that aimed to predict and gain insight into the
factors explaining individual variability in the development of self-regulation and social
competence. In an accelerated longitudinal design, researchers follow several groups
of people, each group starting at different ages. Among the other tasks of the study,
there was also the parent-child interaction (PCI) session, which aimed to assess how the
development of social competence and self-regulation of children was shaped in the context
of interaction with the social environment, particularly with parents. The children and
parents who participated in these interaction sessions gave their permission and accepted
to be recorded for the study’s purposes.

This study utilized only data from the YOUth Child & Adolescent wave, more specifically
‘Around 9’ wave – containing video recordings and questionnaire data from 100 Dutch
participants in age around 9 years old (8 to 10 years old), of which 52% was female.
During each PCI session, parent and child were asked to discuss based on a pleasant and a
difficult topic, such as, make some plans for a break or holiday and talk about a conflict
they had earlier in the month. Therefore, the dataset consisted of 200 videos in total, each
lasting approximately 15 minutes. Every video began with the instructor explaining the
task to both parent and child and the main part depicted the parent and child alone in a
room, seated on chairs while discussing. The language spoken in this dataset is Dutch.
Section 5.2.2 discusses and explains the formation of the final dataset used by this study.

Along with the video recordings of the sessions, corresponding data in which parents report
information about their child is available, as well. Parents were requested to complete
the Child Behavior Checklist questionnaire (CBCL) [1], which consists of questions
that assess behavioral and emotional problems. Questions included in CBCL related to
depressive symptoms can be found in the following Table 1. Even though the dataset
includes extensive information about the subjects, this study will utilize only specific
details such as subject ID, gender, and CBCL scores.

Each question item can be responded to according to the following 3-point scale.
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Questions related to depressive symptoms

Question
nr.

Question

5. There is very little he/she enjoys
42. Would rather be alone than with others
65. Refuses to talk
69. Secretive, keeps things to self
75. Too shy or timid
102. Underactive, slow moving, or lacks energy
103. Unhappy, sad, or depressed
111. Withdrawn, doesn’t get involved with others

Table 1. Questions of the CBCL Scale related to depressive symptoms

0 - Not True (as far as you know)

1 – Somewhat or Sometimes True

2 - Very True or Often True

Thus, the depressive symptom score in accordance to 3-point scale and the aforementioned
questions ranged from a minimum of 0 to a maximum of 16. In the database utilized in
this study, values ranged between 0 and 14, and the distribution of these values is depicted
in Figure 7. These values were later used as labels in the study to facilitate the analysis
and research of depressive symptoms from the PCI videos. It is essential to clarify that
this score is intended to reflect only the severity of withdrawn/depressive symptoms and
cannot be considered a clinical diagnosis.

Figure 7. Distribution of the depressive symptom severity values.

Transformation of PCI Interaction Scores for Binary Classification of Depressive
Symptoms The focus of the study was to determine whether or not audio and text features
extracted from PCI could indicate whether a child exhibits depressive symptoms. To suit
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the classification task, the original labels, which were scores ranging from 0 to 16, were
converted into binary labels: True and False. “True” represents subjects considered to have
depressive symptoms, while “False” denotes all subjects without depressive symptoms.

The methodology for this transformation relied on cut-off points. Initially, the scores were
converted to Z-scores and following to T-scores using the formulas 5.1, 5.2. In Z-score’s
formula, µ indicated the population mean and σ the standard deviation of the population.
Z-score and therefore T-scores as well, varied according to the subject’s gender, as the
mean and standard deviation differ for boys and girls in the US population. The specific
values used in each case can be found in Table 2. After obtaining the T-scores for each
subject, the next step was to convert these scores into labels.

Z =
X − µ

σ
(5.1) T = 50 + 10× Z (5.2)

Mean Standard Deviation

Boys 1.1 1.6
Girls 1.4 1.7

Table 2. US population mean and std values

As given in the CBCL manual, two different thresholds can be applied on T-scores to
determine the labels. The first threshold, set at 70, identifies clinical depression—subjects
with scores of 70 or higher are classified as clinically depressed, while those below this
threshold are not. The second threshold, set at 65, identifies cases where subjects exhibit
borderline depressive symptoms.

Figure 8 and Figure 9 show the label distribution for both thresholds in the dataset. The
dataset used for the classification tasks discussed later contains labels extracted with a
threshold of 65. This threshold, as shown in the figures, results in a quite smaller imbalance
between the two classes. Furthermore, this approach relaxes the task, allowing the model
to identify cases in which subjects exhibit borderline symptoms, potentially preventing the
development of more severe depressive symptoms.

5.2 Data preprocessing
Applying preprocessing techniques to the video data was an essential first step towards
preparing for feature extraction and analysis of the language and audio modalities for
depressive symptoms in children. Initially, video files, which were in mp4 format, were
converted into audio files because this study focuses exclusively on language and audio
modalities.
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Figure 8. Label distribution for cut-off equal to
65.

Figure 9. Label distribution for cut-off equal to
70.

MoviePy, a Python library for video editing that provides easy-to-use and high-level
functions, was used to convert video files to audio. This library was used to extract audio
clips from videos in mp3 format.

Later in the preprocessing, audio is required to be in wav form, so as to be diarized
and transcribed and later proceeding with the feature extraction. Consequently, the next
preprocessing step was converting the audio from mp3 to wav format, which served as the
final audio format. For this conversion, the AudioSegment module from the pydub library
[90] —a library designed for manipulating wav files was utilized.

Following the conversion of the participants’ videos into a suitable audio format (wav),
each modality’s next steps can be performed. These processes, which will be explained
below, are speaker diarization (see Section 5.2.1) and transcription (see Section 5.2.3).

Since this data is considered sensitive, all the operations described below were conducted
exclusively on the Snellius server, where the data was initially located.

5.2.1 Speaker Diarization
After ensuring the audio is in the correct wav format, the next essential step is speaker
diarization. Speaker diarization is the process of segmenting and grouping audio segments
by speaker and determining the number of different speakers [106]. This procedure results
in a record of events that provides information on "who spoke when" for an audio file [79].
This process does not require prior knowledge of the speakers’ number or identity [79].

As this study explores scenarios, in which only children’s or parents’ segments are essential
to be studied 2, it is crucial to eliminate these segments and exclude the other speakers,
regarding the scenario. To achieve this isolation, speaker diarization techniques were

29



necessary to be applied and is discussed below.

For the speaker diarization task, the PyAnnote [14] speaker diarization model was chosen.
Although there are various systems capable of performing this task, PyAnnote has been
proven to perform better in similar tasks compared to GMM, Word Online, and the Google
model in terms of Diarization Error Rate [114]. Thus, the audio files were diarized using
the pyannote/speaker-diarization-3.1 function from the PyAnnote library.

Figure 10. Pyannote pipeline of diarization. Figure by [79]

The pyannote pipeline, as illustrated in Figure 10, is composed by 3 main components:
segmentation, speaker embedding and clustering. Initially, the audio is fed to the segmen-
tation module, in which timestamps are created by detecting voice activity, speaker change
and overlapped speech. The latter happens when two or more speakers talk simultaneously.
This mechanism creates segments of audio that ensure that different speakers are separated
from one another and overlapping parts are identified.

Next module in the diarization pipeline is the speaker embedding, which creates a vector
representing the speaker’s voice characteristics in a vector space containing all the speakers.
In this vector space, a speaker’s vector phrase is located closer to other vectors of the same
speaker than to those of different speakers.

Finally, the clustering module groups the segments of the same speaker according to their
embeddings, clustering similar speech characteristics in order to identify the speakers
throughout the audio.

The output of this pipeline is a collection of timestamps and speaker IDs. Therefore, the
child, the parent, and, in some instances, the instructor are the possible speakers. This
information was also used in the pipeline’s hyperparameter tuning, by setting the parameter
num_of_speakers equal to 3. Each audio file was processed through the PyAnnote
pipeline, which returned a list of IDs and their corresponding timestamps. In this study, the
resulted files from the diarization belonged to either the child, the parent, or the instructor.
For the next steps of the research, it was necessary to merge the diarization segments
according to the IDs. This means that segments belonging to the child were combined into
one audio file, and similarly for the parent.
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5.2.2 Speaker identification
We need to identify the speakers in the audio after the speaker diarization process. Audio
segments of the children are needed to answer Research Question 1 2 and Research
Question 2, whereas audio segments of the parents are needed to answer Research Question
3. Audio segments of the instructor are not used. Even though the splitting of the speakers
offered by the diarization pipeline is valuable, it does not provide any information about
the speaker’s identity - whether the audio corresponds to a child, parent, or instructor. In
order to determine which diarised bits belong to the child and which ones to the parents or
instructors, we carried out an inquiry into possible methods of doing so was carried out.

This task can be completed manually or automatically, with each having its own set
of benefits and drawbacks. This task could have been completed with existing models
(wav2vec-adult-child-cls) that detect age and classify audios as adult or child. Although
these and other machine learning-based automatic age detection models have the potential
to be extremely efficient and scalable, manual identification was deemed the best option
based on the task’s requirements.

Manual identification ensures that speakers are correctly identified when creating the
final dataset, which only contains audio recordings of children and parents. It offers
greater accuracy and interpretability than machine learning models, which may not provide
exceptional accuracy.

Final dataset

During the manual identification process, various flaws were observed in the dataset.
Since the study focuses on the Dutch language, audio recordings taken from an interview
in which a mother and kid were speaking in German were removed from the dataset.
Additionally, for some instances, diarization step did not yield good performance. Even
though these segments are reprocessed, results were still unsatisfactory. Therefore, we
decided to remove these instances from our dataset.

We noticed that several audio recordings had been improperly categorised or lacked a
speaker throughout the detection procedure. Additionally, some recordings had parasitic
noise and very poor sound quality, making it impossible to understand the speaker. Due to
these issues, we excluded a total of 9 problematic audio recordings from the final dataset.

The final dataset contains 191 data points when it comes to the children dataset, which
are represented by raw WAV audio files. In accordance to the children dataset, for the
parents’ dataset, the corresponding 191 datapoints were kept and only those were taken
into account in the classification tasks.
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5.2.3 Transcription
The second modality examined in this research is the text modality. First step to process this
modality is to extract text of each session, the task known as transcription. Transcription
is the process of converting spoken language into text, and there are a plethora of tools
available, such as WhisperX [9], Word Online, and Google. According to [114], the
WhisperX pipeline outperforms all three transcription metrics—word error rate (WER),
match error rate (MER), and word insertion likelihood (WIL).

WhisperX utilizes Whisper as the primary transcription tool in its pipeline, as shown in
Figure 11. Whisper [84] is an automatic speech recognition system that allows for accurate
transcriptions in multiple languages, accents, and background noises. Whisper’s success
in transcription tasks is attributed to its training on 97 languages, including Dutch, with a
total of 680,000 hours of multilingual noisy data (excluding English).

In terms of architecture, Whisper is an encoder-decoder Transformer. It takes 30-second
audio segments as input, resamples them to 16,000 Hz, and converts them into a log-Mel
spectrogram, which is then passed into the encoder. The decoder generates the text caption,
including language identification and timestamps per phrase. Whisper was trained on large
and diverse datasets, making it more robust and less error-prone than other transcription
models.

Figure 11. WhisperX transcription pipeline. Figure by [9]

WhisperX Architecture

The WhisperX model comprises several modules, as shown in Figure 11. The Voice
Activity Detection (VAD) module detects parts of the audio containing speech, trimming
parts with no speech to reduce errors and hallucinations. VAD is a sequence labeling task
in which the input audio is represented by a vector of labels that indicate the presence or
absence of speech.

The next step in the WhisperX pipeline is the cut and merge process. Segments with
detected speech are evaluated based on their length. Segments longer than 30 seconds (the
maximum duration for Whisper’s training) are shortened. Similarly, very short sentences
are merged until they are close to 30 seconds in duration, providing more contextual
information for transcription.
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Following preprocessing, each audio segment is independently fed into the Whisper model
for transcription. This study used the large-v1 version of the Whisper model with a batch
size of 16. There is no learning effect in the procedure to avoid hallucination.

After transcription, forced alignment is applied to the segments generated by Whisper.
This task involves a phoneme recognition model that identifies the position of phonemes
(any small unit of speech) within words. The model matches the words in the transcription
to the exact parts of the audio segment.

The final output of the transcription task processed with WhisperX is a list of transcriptions
with word-level timestamps. In this study, the pipeline was applied to audio segments
created after diarization and merging of the children and parents’ audios, as described in
Section 5.2.2.

5.3 Audio feature extraction
Audio features were extracted using both the wav2vec2.0 [8] and CLAP [117] models.
For wav2vec2.0, the facebook/wav2vec2-large-xlsr-53-dutch model [39] from Hugging
Face was used for feature extraction. This model has been fine-tuned on Dutch language
data using the validation splits of Common Voice 6.1 [7] and CSS10 [78]. The CLAP
implementation used in this study is laion/larger_clap_general [117] from Hugging Face
and will be further described in Section 5.3.3.

The following sections discuss the data preprocessing for the audio models and the models’
architectures.

5.3.1 Audio Input setup
For children’s audio recordings, the length ranged from 30 seconds to nearly 5 minutes,
while for parents’ audio recordings, it was between 1 minute and 7 minutes.

Regarding the embeddings extracted from the audio, two different approaches were ex-
plored in this research. The first approach utilized the entire audio of each session,
regardless of its length. This resulted in vectors of varying sizes, with longer audios
producing longer vectors and shorter audios producing shorter vectors.

The second approach, was the chunk approach. The rationale behind this experiment was
that both Wav2Vec2.0 and CLAP were trained on smaller, fixed-size chunks, in contrast
to our dataset. Various studies, as the one from Pepino et al. [81] that explored the task
of emotion recognition with features extracted from Wav2Vec2.0 using these models for
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feature extraction have similarly used smaller chunks as input. As a result, the models in
this study employed smaller chunks as input, as a secondary experiment.

When chunk approach is followed, the number of samples extracted from a single audio
increases. Huang et al. [46] performed a similar experiment, in which features extracted
from Wav2Vec2.0 were utilised for depression detection with data extracted from DAIC-
WOZ dataset [38]. The strategy followed in this thesis involved extracting five chunks of
12.5 seconds from each audio. The starting point of each window was randomly selected,
with a check to ensure enough audio remained to cover the full 12.5 seconds. This resulted
in a final dataset of 955 items, including audios for all subjects and different scenarios.

As the number of data points increased to 955, corresponding to chunks from the initial
audios, a method to map the chunks’ predictions to the actual audio was needed. For this
reason, we followed two different strategies for calculating the final label: the primary and
the at-least-1. The primary strategy selects the most common label out of the five predicted
labels. The at-least-1 strategy requires at least one chunk to be predicted as True to label a
subject as True. The randomness of the chunks was the main rationale behind the latter
strategy. For example, it could be a case where the 12.5-second chunks are not informative
enough regarding the depressive symptoms’ detection task; thus, even if only one chunk
was labeled as True, it would be sufficient.

Audios segments that are input into Wav2Vec2.0 had a sample rate of 16 kHz, while those
given to CLAP had a sample rate of 48 kHz. The following sections detail the architectures
and feature extraction processes of these models, starting with Wav2Vec2.0.

5.3.2 Wav2Vec2.0
Regardless of the length of the audio, the transformer-based Wav2Vec2.0 model [8] can
create vector representations from raw audio files. A feature encoder, a contextualised
transformer network, and a quantisation module compose its three primary phases (see
Figure 12).

Feature encoder The feature encoder is the first component of Wav2Vec2.0’s design,
and its primary goal is to obtain low-dimensional representation of audio signal. It
receives the 16 kHz sample-rate raw waveform as input and outputs a range of latent
representations including the primary features of the audio input (shown as Z in
Figure 12).

Normalising the waveform to have a zero mean and unit variance is the first step.
Next, a 7-layer convolutional network with 512 channels in each layer receives
this normalised waveform as input. Notably, as we move through the network, the
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Figure 12. Illustration of the Wav2Vec2.0 architecture. Figure by [8]

kernel’s size and width drop. The Gaussian Error Linear Unit (GELU) activation
function, which comes after the convolution layers, generates the final output. The
salient features of the input audio are captured in these representations.

Contextualized transformer The latent representations created by the encoder are pro-
cessed by 24 Transformer blocks in the LARGE version of the model (12 blocks in
the BASE version). The input sequence first goes through a feature projection layer,
whose dimension is increased to 1024 for LARGE and 512 for BASE to match the
size of the convolutional layers.

The transformer modules have two functions: a feed-forward neural network and
an attention mechanism. The model is able to compute a sequence’s representa-
tion while taking into account various positions within the sequence thanks to the
self-attention mechanism. This allows attention to catch relationships from begin-
ning to end across the whole series of latent representations. The feed-forward
networks are responsible for managing the local representations of each latent repre-
sentation, while the attention mechanism takes care of the global links between the
representations.

In summary, the transformer’s role in Wav2Vec2.0 is to construct a contextualized
representation from the latent representations extracted by the feature encoder.

Quantization module The quantisation module completes the Wav2Vec2.0 architecture.
Discrete unit representation of the data is necessary for self-supervised training. For
instance, text is inherently discrete since it can be divided into individual words,
sentences, and characters. The main job of the quantization module is to convert the
latent representations into quantised discrete speech units, yet speech is continuous
by nature.

These distinct units are taken out of codebooks, which have a predetermined list
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of speech sounds in them. A speech unit is made up of these sounds combined.
For Wav2Vec2.0, two codebooks having 320 potential sounds each yielded 102,400
possible speech units. In the figure 12, Q represents the final quantised latent
representations.

Training and Finetuning Pre-training of the Wav2Vec2.0 model was conducted using
53.2k hours of unlabelled data with spoken English audios, from Libri-light dataset
(LV-60k) [50] and and LibriVoice dataset (LS-960) [77]. This pre-training procedure
is comparable to the method used to train the language model BERT - a language
model discussed later in this thesis 5.4. The model aims to recreate the quantised
encoder representations for the masked frames as the output of the contextualised
encoder, where a number of timesteps from the latent representations of the fea-
ture encoder are masked. Equation 5.3 illustrates how contrastive loss is used to
measure this portion of the training goal, where sim represents the cosine similarity
between context ct and quantized representations qt. Specifically, given the context
representations ct. This set includes the true representations, which are the outputs
of the context network, centered over the masked time step t, the model needs to
identify the true quantized representations qt from a set of K + 1 quantized can-
didate representations q̃ ∈ Qt. This set includes the true representation qt and K

distractors, which are uniformly sampled from other masked time steps within the
same utterance.

In addition to contrastive loss, diversity loss, as this is depicted in Equation 5.4
assesses whether the model favours all of the words in the codebook equally. Specif-
ically, this loss encourages the equal use of the V entries in each of the G codebooks
by maximizing the entropy of the averaged softmax distribution over the codebook
entries for each codebook p̄g across a batch of utterances. Notably, the softmax
distribution does not include the Gumbel noise or a temperature parameter. The
model’s training objective is made up of the total of these losses, the summation of
contrastive and diversity loss.

Lc = − log
exp(sim(ct,qt)/k)∑
q̃∈Q exp(sim(ct, q̃)/k)

(5.3)

Ld = − 1

GV

G∑
g=1

V∑
v=1

p̄g,v log p̄g,v (5.4)

Feature extraction from Wav2Vec2.0

After explaining how the architecture and training of Wav2Vec2.0 model, it is time to
describe how the embeddings were extracted. The audio was fed in the model, either
as a whole or in chunks. The embeddings, extracted from the transformer’s final layer,
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served as the feature representation for the classification task. The large-v2 version of the
multilingual Wav2Vec2.0 is used in this study, thus the last layer size is equal to 1024.

As far as the first experiment is concerned, the varied length of the audio resulted in
matrices of different size. By taking the mean representation over all segments, each audio
recording was represented by a 1024 vector, regardless of its initial size.

For the chunked audio approach, each 12.5-second chunk produced a vector of the same
size. The same procedure was followed, therefore each chunk was represented by one 1024-
sized vector. In this case each subject was represented by 5 different feature representations,
with the main goal of this approach is to provide more and smaller input data for the
classifier.

In both cases described above, the feature vectors served as the input in the classification
task explained later.

5.3.3 CLAP
The second model used in the audio modality for feature extraction is CLAP (Contrastive
Language Audio Pretraining) [117]. CLAP, as its name suggests, is an audio-language
foundation model that aligns text and audio modalities through contrastive learning. In
other words, it maps similar instances together in a latent space and determines how similar
or dissimilar they are in order to extract meaningful representations from unlabelled data.

CLAP is comparable to CLIP [83], which fulfills the same purpose for language and vision
modalities. There are two primary encoders in the CLAP model, one for each modality.
Two more modules are included in CLAP besides the encoders: the supervised audio
classification module and the zero-shot audio classification module. This set of modules is
shown in Figure 13. The audio encoder, which is the component of the architecture used in
this study, is further discussed in the following section.

Encoders The audio encoder includes PANN, a CNN-based audio classification model
with 14 blocks (7 downsampling and 7 upsampling), and HTSTAT, a transformer-
based model with 4 swin-transformer blocks. The audio input, denoted as Xa in the
figure 13, triggers the appropriate procedure based on its duration. If the audio is
shorter than a fixed chunk duration d, it is padded with zeros. This padded audio is
then stacked four times in order to serve as the input. In case that the audio is longer
than d seconds, three d-second clips are extracted from the original audio: one from
the beginning, one from the middle, and one from the end. These three clips, along
with the entire audio downsampled to d seconds, are combined. In both cases, the
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Figure 13. Audio and text encoders of CLAP architecture. Figure by [117].

input will be four stacked segments lasting d seconds each.

The text encoder consists of the CLIP text encoder, BERT [25], and RoBERTa [61].
The results of the three encoders are combined with a multilayer perceptron(MLP)
head to produce a 512-dimensional output, which is the same size as the text and
audio representation embeddings obtained through contrastive learning.

The embeddings obtained from the audio and text encoders are fed into a MLP
with a ReLU activation function, which maps the encoder outputs to the appropriate
dimension.

Training and Finetuning CLAP was trained using three different datasets: AudioCaps
[53] + Clotho [27], LAION-Audio-630K [117], and Audioset [36]. The LAION-
Audio-630K dataset [], which is composed of 633,526 text/audio pairs. It contains
4,325.39 hours of human activity, natural sounds, and audio effects. CLAP was
trained with 10-second inputs.

The model was trained using the contrastive learning paradigm between the audio Ea

and text Et embeddings resulted by the MLP layer from audio waveforms and text
data (see Figure 13), with the following contrastive loss function 5.5. Specifically,
τ is a learnable temperature parameter for scaling the loss. Two logarithmic terms
account for either audio-to-text logits or text-to-audio logits. During training, N
represents the batch size instead of the total number of data points, as we update the
model using batch gradient descent rather than computing the entire data matrix at
once.

L =
1

2N

N∑
i=1

(
log

exp(Ea
i · Et

i/τ)∑N
j=1 exp(E

i
a · Et

j/τ)
+ log

exp(Ei
t · Ea

i /τ)∑N
j=1 exp(E

i
t · Ea

j /τ)

)
(5.5)
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Feature extraction from CLAP

For embedding extraction with CLAP, we use the representation produced by the MLP
head. This representation has a size of 512, as we are using the large model. The audio
was again fed in the model and multidimensional vectors were created, containing features
the model deemed more representative.

Similar to Wav2Vec2.0, the duration of the audio affects the feature vector size. To produce
vectors of consistent size from different-sized audio representations, the mean is calculated
per feature over all segments. Zhao et al. [123] performed a similar procedure to their
work, where they used CLAP for both text and audio modality. What they did was to
integrate the sequence of features into a single vector for each modality by taking the
mean along the sequence dimension. In case of the whole audio, each subject’s audio
is represented by a single vector fo size equal to 512. In the augmented approach, with
chunks of audio, each subject is represented by five 512-dimensional feature vectors.

The feature vectors from the two previously mentioned cases were used as input for the
classification task to evaluate whether a child exhibits depressive symptoms.

5.4 Text feature extraction
Similarly to the audio modality, feature extraction from the sessions’ transcripts was
performed using large language models. The features extracted from these models served
as input to the classification tasks and were vectors representing each transcript. The
features from the transcripts were extracted based on the tasks this study explored. Thus,
transcripts from children-only and parent-only segments were necessary to address the
research questions set in Chapter 2.

This approach was also essential for the multimodal part of the research. The textual
features were combined with the audio features extracted as described earlier to determine
whether this fusion improved predictions in the assessment of depressive symptoms in
children.

Two models were leveraged for feature extraction from the sessions’ transcripts: Sentence-
Bert (SBERT) [87] and RobBERT [23]. For SBERT, the NetherlandsForensicInstitute/robbert-

2022-dutch-sentence-transformers model [69] from Hugging Face was used — a finetuned
Dutch-translated version of the Paraphrase dataset [33; 70], as it was the most appropriate
implementation of SBERT.

The RobBERT implementation DTAI-KULeuven/robbert-2023-dutch-large [23], also from
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Hugging Face, is a Dutch version of the BERT model [25], pretrained on the OSCAR2023
dataset [73; 74] and using a novel tokenizer [89].

The following paragraphs describe the architectures of SBERT and RobBERT, as well as
the feature extraction procedure. A summary of BERT’s architecture is provided first, as
both SBERT and RobBERT are based on the BERT language model.

BERT Architecture BERT [25] is a language model which achieves state-of-the-art
performance in numerous natural language processing tasks. Its architecture is based on
transformers architecture and maintains bidirectional representations from unlabelled text
by jointly combining both left and right context in all layers. The bidirectionality enables
BERT to read both right to left and left to right context simultaneously allowing it to learn
the context of each word and how it relates to other words in a sentence.

What makes BERT powerful is its ability to be trained on unlabelled data. During its
pretraining BERT was trained on unlabelled data across different tasks, providing a
significant advantage because labelled data is limited, whereas unlabelled data is vast.
BERT got trained in BookCorpus [125] and English Wikipedia with 800M and 2500M
words correspondingly. This resulted to the 350 million parameter large model and the
110 million parameter base model.

Training and Finetuning The first part of BERT’s framework is pretraining, where the
model is trained on unlabelled data over different pre-training tasks. This is followed by the
fine-tuning in which the pre-trained parameters serve as initial, which are then fine-tuned
based on the downstream task.

BERT’s pre-training consists of two unsupervised tasks: the masked Language Model
(MLM) and the next sentence prediction(NSP). For MLM, parts of the input are masked
and the model has to predict what should be filled in the blank spots. Bidirectionality lets
the network predict 15% of the target tokens that are masked. For NSP, the model’s goal
is to determine whether two input sentences belong together or not. This task involves
training the model to understand the relationship between sentences, which is crucial for
tasks like Question Answering and Natural Language Inference.

BERT accepts a text sequence as input, which can be a single sentence or two sentences
packed together. A particular characteristic of BERT is that the first token of each se-
quence is [CLS], a special classification token that also provides an aggregated sequence
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representation of the whole sentence. The latter one is located in final hidden state of CLS
and is very useful in case of classification tasks. Another special characteristic of BERT’s
encoding is the [SEP] token, which is used to differentiate the sentences, along with a
token indicating if it belongs to sentence A or sentence B. Figure 14 depicts how the input
representations were constructed with BERT.

Figure 14. BERT input representations formation. Figure by [25]

BERT can perform very well in various downstream language tasks with minor hyperpa-
rameter tuning. The fine-tuning of BERT model can be achieved by only adding a layer
on the main model, depending on the task. Thus, fine-tuning is straightforward, since the
BERT’s self-attention mechanism allows the model to adapt to the downstream tasks by
swapping the corresponding inputs and outputs.

The original implementation of BERT was in English in two sizes: base and large. The base
model has 12 hidden layers, each with a size of 768 and 12 self-attention heads. The large
model, on the other hand, has 24 hidden layers with a size of 1024 and 16 self-attention
heads. Due to BERT’s success in various tasks, many language models based on BERT
have been created, including RoBERTa [61], HubBERT [43], and RobBERT [23].

With an understanding of BERT’s architecture, the subsequent sections delve into Rob-
BERT and SBERT architectures and describe how the deep features were extracted using
these models.

5.4.1 RobBERT Architecture
RobBERT [23] is the Dutch version of the RoBERTa model. Before delving into the
RobBERT architecture it is important to understand how RoBERTa [61] improved BERT’s
performance through adaptations in the training procedure.

Liu et al. [61] replicated BERT’s pretraining and adapted parts of the architecture. This
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led to a better performing model, thus they proposed several changes that achieved state-
of-the-art results. These changes, which comprise RoBERTa (Robustly optimised BERT
approach), included longer training with bigger batches over more data, training on longer
sequences, as well as excluding the NSP part from the training. Additionally, a dynamically
changing masking technique was applied, where not just a single token but consecutive
tokens were masked, forcing the model to rely more on the context to predict the blanks.
RoBERTa was trained on three additional datasets, resulting in training on ten times more
data than BERT without any signs of overfitting.

RobBERT is a model based on the RoBERTa architecture and training procedure, but
trained with a Dutch corpus. There are two different version of the RobBERT model: the
first version (v1) was pretrained on a Dutch corpus, while the second version (v2) used
both a Dutch corpus and a Dutch tokenizer. This study utilised the first Dutch large model
of 355 million parameters, trained on the OSCAR dataset with a novel Dutch tokenizer.
OSCAR is a large multilingual corpus, with a Dutch corpus comprising 39GB of data,
containing 6.6 billion words. Both versions of RobBERT outperforms the other Dutch
BERT models, with v2 showing significantly better performance.

Feature extraction from RobBERT

For deep feature extraction with RobBERT, the procedure described below was followed.
The entire transcript was used with the maximum sequence length for the model’s input set
to 512, which was consistent with BERT’s pretraining procedure. Each group of tokens,
with a maximum of 512 tokens,served as the input of the model. A tensor of size 1024,
representing the hidden states for the last layer in the transformer, was extracted as the
deep features of the corresponding group of tokens.

Since each transcript had different length, the number of vector representations also
varied. Similar to the approach followed in the audio modality, the mean per feature was
calculated, resulting in a 1024-dimensional vector per transcript. This vector contained the
deep features derived from the model.

This feature vector was later utilised as the input of the classifier that was trained on the
task studied in this thesis - predicting depressive symptoms in children.

5.4.2 SBERT Architecture
Similar to RoBERTa, and as the name implies, SBERT [87] is another variant of the
BERT model. SBERT employs siamese and triplet network architectures, enabling it to
produce sentence embeddings that can be compared using cosine similarity. This reduced
computational time while maintaining accuracy. For instance, the most similar pair of
sentences could be found in 5 seconds, whereas BERT or RoBERTa might need around
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60 hours. SBERT addressed the need for using BERT at the sentence level by accepting
sentences as input and creating fixed-sized vectors as output.

Figure 15. SBERT architecture for a classification task. Figure by [87]

Regarding SBERT’s architecture (see Figure 15, a pooling operation was added to the
output of BERT. This pooling layer allows us to create a fixed-size representation for the
variable-length input phrases. Experiments with three pooling strategies were performed,
using only the CLS token output, MEAN-strategy - calculating the mean of all vectors,
MAX-strategy – computing a max-over-time of the output vectors. By default, MEAN-
strategy was used.

Training and Finetuning For finetuning, Siamese and triplet networks were employed.
The weights were updated to ensure sentence embeddings were meaningful, allowing
similarity to be calculated using cosine similarity. The network structure varied based on
the training data, and the following objective functions were utilized.

■ Classification Objective Function: The embeddings of u and v are concatenated
with the element-wise difference |u − v|. This value is then multiplied with a
trainable weight and fed into a softmax layer to generate probabilities for each class.

■ Regression Objective Function: This involves calculating the cosine similarity of
two sentence embeddings and using mean-squared error as the objective function.

■ Triplet Objective Function: A triplet loss tunes the network so that the distance
between an anchor sentence a and a positive sentence p is smaller than the distance
between a and a negative sentence n.

SBERT was trained on the SNLI [94] and multi-genre NLI [116] datasets, which contain
collections of sentence pairs. In total, 1 million pairs composed SBERT’s training data,
covering a wide variety of genres of spoken and written text. Its performance was evaluated
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on common Semantic Textual Similarity (STS) tasks. The goals behind training SBERT
were to enable its use in various applications such as STS, Semantic Search, clustering,
and Natural Language Inference (NLI).

Feature extraction from SBERT

For feature extraction from a sentence transformer from Hugging Face finetuned in Dutch
laguage, each transcript was transformed into a list of sentences using the ‘sent_tokenize‘
function from the NLTK library. This list of sentences was then fed to the sentence
transformer model, and embeddings of size 768 were extracted. Each transcript was thus
represented by a 768-dimensional representation, which served as the transformer input.

5.5 Multimodal feature fusion
In addition to working with audio and text features individually, it is interesting to explore
how the fusion of these two modalities affect the performance of the model in the task of
assessing depressive symptoms in children. The framework used for the multimodal fusion
of the two modalities is as follows: Initially, two branches are used to extract features from
audio and text, as discussed in the sections above. Feature vectors for each modality are
then created, and their concatenation forms the multimodal fusion feature, which serves as
the final feature representation of each subject in the classification task.

The proposed framework (see Figure 16) has been applied with all possible fusion combina-
tions. We fused features from SBERT and RobBERT with features from both Wav2Vec2.0
and CLAP. The multimodal fusion was tested on the entire dataset as well as for each
scenario explicitly. In Table 3, we present a summary of the feature vectors per model, the
fused feature vectors, and their corresponding dimensions.

Figure 16. Fusion framework of the audio and text modality.

The following abbreviations will be used in this report to represent the fusion of the models:
SBERT + Wav2Vec2.0 (S + W), RobBERT + Wav2Vec2.0 (R + W), SBERT + CLAP (S +
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C), RobBERT + CLAP (R + C).

Model Feature Vector Dimension

Audio Models
Wav2Vec2.0 1024
CLAP 512

Language Models
SBERT 768
RobBERT 1024

Fused Features
(S + W) 1792
(R + W) 2048
(S + C) 1280
(R + C) 1536

Table 3. Feature vector dimensions for audio and language models and their fusion.

5.6 Models and parameters
This section discusses the model used for the classification of depressive symptoms utilizing
the features extracted as outlined in the earlier sections. XGBoost classifier [17] was used
in this research, as it is effective in case of smaller datasets, as the one used here for the
automated assessment of depressive symptoms in children. Next to model fitting and
prediction functions, it provides model instantiation with several hyperparameter options.
In every setup discussed below, the data split followed 70/30 split, with 70% of the data
utilised for training and 30% for testing.

The most crucial hyperparameters for each approach that are relevant to the experiment are
briefly discussed below:
XGBoost classifier:

■ Maximum depth (default =6): This variable max_depth represents the maximum
depth of the tree. A larger number could result to more complex model prone to
overfitting.

■ Number of estimators: The variable n_estimators represent the number of
trees to fit in a random forest.

■ Class weight: This variable scale_pos_weight serves a balancing variable for
positive and negative weights in case of imbalanced datasets.

■ Gamma: Gamma variable gamma represents the minimum loss reduction required
in order to make a further partition on a leaf node of a tree.
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5.6.1 Hyperparameter tuning
The optimization of hyperparameters was necessary to produce the optimal model from
XGBoost classifier. The performance of a model can be improved by selecting the optimal
set of hyperparameters through hyperparameter tuning. Cross-validation was performed
in this experiment to fine-tune the model hyperparameters. Specifically, the grid search
method, which creates a grid of predetermined values for hyperparameters, was applied.
In each iteration, a different set of defined hyperparameter values was tested in a particular
order. The model was fitted using every conceivable set of hyperparameters. To obtain
more informative results, each combination was repeated several times, depending on the
number of folds, and the performance of the splits was averaged for each combination.
The combination that performed best was selected after this process.

On the implementation level, the function GridSearchCV, which is part of the model_selection
package of scikit-learn [80], was used. The number of folds for each combination and
the values of the hyperparameters that needed to be assessed were passed to this function.
Consequently, to perform cross-validation, the tested hyperparameters and their exact
values were defined for each model.

Table 4 list each algorithm’s hyperparameters along with the defined values considered
during the initial cross-validation run. A 5-fold cross-validation was carried out for the
GridSearchCV run.

Hyperparameter Values

max_depth [3, 4, 5, 6, 8, 10, 12, 15]
n_estimators [10, 20, 30]
gamma [0.0, 0.1, 0.2, 0.3, 0.4]

Table 4. Hyperparameters and defined values for the classification task.

The variable scale_pos_weight was intentionally excluded from the grid search, as it
was explicitly calculated based on the number of positives and negatives in the dataset. The
proportions of positives and negatives varied depending on the research scenario. When
the entire dataset was used to address the main research question, which considered both
scenarios, scale_pos_weight was set to 1.42. When the study focused specifically
on the vacation scenario or the conflict scenario, scale_pos_weight was set to 1.59
and 0.83, respectively.

5.6.2 Cross validation techniques
This study explored the results produced using two different cross-validation algorithms,
considering the special features of the dataset. Since each subject may appear twice in the
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dataset—once in the vacation scenario and once in the conflict scenario—special treatment
in the data splitting was required. It was essential to ensure that both occurrences of the
same subject ID remained in the same split. Therefore, three methods that satisfied this
condition were explored: GroupShuffleSplit, Group K-Folds, and StratifiedGroupKFold,
all from the scikit-learn library [80], with the number of folds set to 5.

GroupShuffleSplit This method provides a randomized train/test split according to the
provided group.

Group K-Folds This method splits the data according to individual groups, ensuring no
overlap among groups. In this case, data points from the same subject, whether in
the form of audio or transcripts, remained in the same split. Additionally, each test
fold contained almost the same number of samples, indicating that the folds were
roughly balanced.

StratifiedGroupKFold This method returns stratified folds with non-overlapping groups.
It is similar to the Group K-Folds method, but it adds the functionality of attempting
to create balanced folds, where the class distribution is preserved as much as possible.

5.6.3 Model evaluation
For the evaluation of the model’s results, various evaluation methods were utilized. The
F1-score, accuracy, precision, and recall were calculated. Additionally, the Area Under the
Curve (AUC) score, which represents the area under the Receiver Operating Characteristic
(ROC) curve, was calculated. The ROC curve The ROC curve is plotted with True Positive
Rate (TPR), in other words Recall 5.8 or Sensitivity, against the False Positive Rate (FPR)
5.11 where TPR is on the y-axis and FPR is on the x-axis. As demonstrated by Laszlo
et al. [48], the AUC score is the only metric unaffected by skewed data distribution.
This characteristic made it particularly suitable for this thesis, given the imbalanced class
distribution.

Accuracy =
TP + TN

TP + TN + FP + FN
(5.6)

Precision =
TP

TP + FP
(5.7)

Recall/TPR =
TP

TP + FN
(5.8)

F1-Score =
2 · Precision · Recall
Precision + Recall

(5.9)

Specificity =
TN

TN + FP
(5.10) FPR = 1− Specificity (5.11)
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The AUC score reflects the model’s performance, with a perfect model achieving an AUC
of 1 and a random model achieving an AUC of 0.5. As every other metric, it indicates
how well the classifier can distinguish between positive and negative classes. But more
specifically, AUC of a classifier is equivalent to the probability that the classifier will rank
a randomly chosen positive instance higher than a randomly chosen negative instance
[68]. All the metrics described above were calculated using functions from the scikit-learn
library [80] and were computed for all the different scenarios to address the research
questions.
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6. Results

This chapter presents the results of all the experiments described in the methodology
section, organized according to the research questions.

First, the results of the classification task related to the main research question are presented.
Section 6.1 evaluates how the multimodal features – text and audio – detect depressive
symptoms in children. The dataset offers a thorough examination of the multimodal
method since it contains both scenarios for each subject.

Second, the classification results are presented for each scenario separately. Section 6.2
investigates how the performance of both text and audio modalities individually changes
per scenario – cooperative and conflicting. Experiments related to the second sub-research
question focused on the unimodal approach. Section 6.3 presents the performance of audio
and text features independently, without fusion, in assessing depressive symptoms.

Last but not least, the study extends beyond the child’s data, exploring also how features
extracted from parents’ audios and transcripts relate to depressive symptoms in children.
Section 6.4 evaluates the classification performance of deep features derived from the
parents’ segments, as part of the exploration of which indicators could be valuable for the
prediction task.

All results presented in this chapter represent the best outcomes obtained using the optimal
parameters and cross-validation algorithms for the deep features. Detailed results from all
runs are provided in the Appendix (see Section 10).

6.1 Results of multimodal fusion
This section describes the best results the combined features produced in terms of AUC
scores. The fusion of the results performed has been discussed in Section 5.5. The
features per modality have been extracted from two separate models, thus in this part of
the experiment, all the possible four combinations have been tried for the fusion of the
features. Besides using different models for feature extraction, various dataset splits have
been explored.

Tables 5 and 6 present the AUC scores achieved for each fusion combination with random
split and k-fold split, accordingly.
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Model AUC (Default Weight) AUC (Class Weight)

(C + S) 0.612 0.584

(W + S) 0.550 0.593

(C + R) 0.568 0.528

(W + R) 0.571 0.567

Table 5. Comparison of AUC scores of each fusion combination using random split with default
and class weights.

Model AUC (Default Weight) AUC (Class Weight)

(C + S) 0.632 0.680

(W + S) 0.582 0.554

(C + R) 0.561 0.587

(W + R) 0.447 0.489

Table 6. Comparison of AUC scores of each fusion combination using k-fold split with default and
class weights.

Figure 17 shows the overall predictive performance of random and k-fold splits for all
possible fusion combinations, namely SBERT and CLAP (S + C), SBERT and Wav2Vec2.0
(S + W), RobBERT and CLAP (R + C) and RobBERT and Wav2Vec2.0 (R + W).

Figure 17. AUC scores obtained from fusion of all models with a random split (left Figure). AUC
scores obtained from fusion of all models with a k-fold split (right Figure).

6.2 Results per scenario
In this section, we present the results of the classification tasks, when the features were
separated by scenario. Specifically, the extracted features related to the cooperative
scenario, in which parent and child were asked to plan a vacation, fed to a classifier
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separate from those obtained from the session where the parent and child discussed about
a conflict they had.

The results are presented below, categorized by modality. First, the AUC scores from the
classification of the audio features –extracted from Wav2Vec2.0 and CLAP – can be seen
in Table 7 and Table 8. A notable difference in performance across each model’s features
per scenario is observed. In both splits, CLAP features perform significantly better in the
cooperative scenario, specifically in case of random split CLAP reaches an AUC score
equal to 0.746, while in case of Wav2Vec2.0, AUC score is only 0.393.

An opposite trend can be observed in case of the conflicting scenario, in which Wav2Vec2.0
embeddings resulted to higher AUC scores. For instance, when we performed a random
split, Wav2Vec2.0 features achieved AUC score equal to 0.611, while CLAP’s score was
only 0.483. Similar behaviour is noticed in the k-fold split case, with 0.610 and 0.386
being the AUC scores Wav2Vec2.0 and CLAP features produced, respectively.

Model Scenario AUC (Default Weight) AUC (Class Weight)

Wav2Vec2.0 Vacation 0.367 0.393
Conflict 0.611 0.597

CLAP Vacation 0.713 0.746
Conflict 0.483 0.427

Table 7. AUC scores from feature selection per scenario using random split in audio modality.

Model Scenario AUC (Default Weight) AUC (Class Weight)

Wav2Vec2.0 Vacation 0.461 0.460
Conflict 0.610 0.599

CLAP Vacation 0.568 0.601
Conflict 0.386 415

Table 8. AUC scores from feature selection per scenario using k-fold split in audio modality.

The AUC scores for the text modality are shown in Tables 9 and 10, based on the features
extracted from SBERT and RobBERT models. A similar pattern to the one observed in the
audio modality is seen in the text modality as well. In the cooperative scenario, SBERT
features specifically obtained a high AUC score of 0.755, and in the conflict task, 0.552.
However, RobBERT features achieved an AUC value of 0.592 in the vacation task and
outperformed in the conflict task with an AUC score of 0.720.

The overall performance of the two modalities per scenario when data split in a random
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Model Scenario AUC (Default Weight) AUC (Class Weight)

SBERT Vacation 0.644 0.670
Conflict 0.495 0.479

RobBERT Vacation 0.490 0.592
Conflict 0.551 0.506

Table 9. AUC scores from feature selection per scenario using random split in text modality.

Model Scenario AUC (Default Weight) AUC (Class Weight)

SBERT Vacation 0.676 0.680
Conflict 0.552 0.494

RobBERT Vacation 0.481 0.424
Conflict 0.720 0.672

Table 10. AUC scores from feature selection per scenario using k-fold split in text modality.

way is shown in Figure 18. The highest AUC score is obtained by CLAP features in the
cooperative scenario and it is followed by the one obtained by RobBERT features in text
modality.

Except of the unimodal features, also the multimodal fusion features were used as the
features fed in the classification task of assessing depressive symptoms. The performance
of the fused features per scenario is shown in Tables 11 and 12. We also present the overall
performance of the combined features in Figure 19. The bar plot highlights the superior
performance of the (S + C) fusion, which achieves an AUC score at least 10 points higher
than other combined models in the cooperative scenario. It is also noticeable that the fusion
models perform better in the cooperative scenario compared to the conflicting one.

6.3 Unimodal results
The unimodal results for the audio models, when the scenarios were not taken into account
can be found in Table 13 and Table 14. In the main experiment, the deep features correspond
to the whole audio, CLAP features perform slightly better with AUC equal to 0.597 while
Wav2Vec2.0 reached a AUC score equal to 0.570.

In the secondary experiment, which utilized features extracted from the audio chunks, the
model performance was marginally better (see Figure 20). For example, in case we apply
a random split with class weight, the chunked segments result to an AUC score equal to
0.620 for Wav2Vec2.0 and 0.668 for CLAP features, with CLAP again outperforming
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Figure 18. AUC scores produced by each model per scenario in case of a random split.

Figure 19. AUC scores from the fused features per scenario in case of a random split.
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Model Scenario AUC (Default Weight) AUC (Class Weight)

C + S Vacation 0.810 0.778
Conflict 0.478 0.523

W + S Vacation 0.619 0.648
Conflict 0.513 0.525

C + R Vacation 0.675 0.560
Conflict 0.408 0.449

W + R Vacation 0.552 0.558
Conflict 0.508 0.575

Table 11. AUC scores from feature selection per scenario using random split in multimodal fusion.

Model Scenario AUC (Default Weight) AUC (Class Weight)

C + S Vacation 0.648 0.632
Conflict 0.480 0.481

W + S Vacation 0.493 0.465
Conflict 0.490 0.518

C + R Vacation 0.508 0.531
Conflict 0.324 0.451

W + R Vacation 0.426 0.438
Conflict 0.456 0.468

Table 12. AUC scores from feature selection per scenario using k-fold split in multimodal fusion.

Wav2Vec2.0.

Tables 15 and 16 provide information about the results for the text modality, showing
the classification performance of deep features from SBERT and RobBERT. The highest
AUC scores in this case are 0.681 from SBERT features, while AUC score from RobBERT
features is significantly lower equal to 0.404 in case of a k-fold split is applied. As Figure
21 shows, across scores obtained by different splits, SBERT outperforms RobBERT.

Figure 21 represents the performance of the unimodal features, for text and audio in
this case. Each bar corresponds to the highest performance per modality and feature
representations. The comparison is crucial for understanding how the modalities perform
individually and understanding the strengths and limitations of each modality.
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Figure 20. AUC scores from different feature extraction strategy from audio models.

Figure 21. AUC scores from features per modality across all scenarios.
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Model Audio AUC (Default Weight) AUC (Class Weight)

Wav2Vec2.0 whole 0.569 0.570
chunked 0.609 0.629

CLAP whole 0.562 0.597
chunked 0.651 0.668

Table 13. Comparison of AUC scores of audio features using random split with default and class
weights.

Model Audio AUC (Default Weight) AUC (Class Weight)

Wav2Vec2.0 whole 0.510 0.504
chunked 0.551 0.581

CLAP whole 0.398 0.404
chunked 0.447 0.553

Table 14. Comparison of AUC scores of each fusion combination using k-fold split with default
and class weights.

6.4 Results of using parent segments
The parent segments did not perform as well as the child segments. The labels in this
task are still the same as the ones before, namely the presence or absence of children’s
depressive symptoms. while the features were extracted from the parents’ segments.
Regarding the audio modality, the features extracted from the models produced AUC
scores of 0.603 and 0.589 for Wav2Vec2.0 and CLAP, respectively. For the text modality,
the scores were marginally lower than those from the audio modality. SBERT features
resulted in an AUC score of 0.528, while RobBERT achieved 0.550.

Tables 37 and 38 present parents’ segments performance in audio modality and Tables 35
and 36 the performance as this resulted from the text modality.

The overall image of the parents’ segments results can be seen in Figure 22.
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Model AUC (Default Weight) AUC (Class Weight)

SBERT 0.647 0.649

RobBERT 0.551 0.584

Table 15. Comparison of AUC scores of text features using random split with default and class
weights.

Model AUC (Default Weight) AUC (Class Weight)

SBERT 0.681 0.649

RobBERT 0.404 0.554

Table 16. Comparison of AUC scores of text features using k-fold split with default and class
weights.

Model AUC (Default Weight) AUC (Class Weight)

Wav2Vec2.0 0.575 0.548

CLAP 0.571 0.554

Table 17. Comparison of AUC scores of audio features extracted from parents’ segments using
random split with default and class weights.

Model AUC (Default Weight) AUC (Class Weight)

Wav2Vec2.0 0.603 0.582

CLAP 0.589 0.572

Table 18. Comparison of AUC scores of audio features extracted from parents’ segments using
k-fold split with default and class weights.

Model AUC (Default Weight) AUC (Class Weight)

SBERT 0.418 0.418

RobBERT 0.469 0.415

Table 19. Comparison of AUC scores of text features extracted from parents’ segments using
random split with default and class weights.

Model AUC (Default Weight) AUC (Class Weight)

SBERT 0.505 0.528

RobBERT 0.550 0.568

Table 20. Comparison of AUC scores of text features extracted from parents’ segments using
k-fold split with default and class weights.
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Figure 22. AUC scores from features of the best performing models from parents’ segments
features.
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7. Discussion

The main goal of this research was to find an objective way to assess depression symptoms
in young children. Two modalities were explored as indicators of this research, namely
deep embeddings from audio segments and text transcripts were used as features in the
classification task . Assessing depressive symptoms in children is a quite challenging task
and this research contributes in the effort of early assessment of depressive symptoms. As
Allgaier et al. [4] mentioned, depression in children is rarely studied despite the importance
of early detection.

Identifying the first depressive symptoms in young children is particularly challenging
due to the heterogeneity of the disease—there is no single symptomatology associated
with depression. Rather than that, depression could be overshadowed by comorbid mental
disorders, leading to it being undetected and untreated. In this study, detecting depressive
symptoms can significantly improve the early assessment of the disease by specialists and
potentially reduce the number of undetected cases.

Accurately assessing depressive symptoms could serve as a referral for a specialist, who
can then confirm or refute the suspicion of depression. It is interesting to see how the
deep features from large language and audio models can contribute to this field and how
effectively deep learning can identify patterns of depression. The results of this study show
that some specific scenarios could offer an AUC score greater than 0.7. Interesting findings
derived from the results will be explained in the following sections, where each research
question will be explored in detail.

7.1 Addressing the research questions
Research question: To what extent can multimodal embeddings obtained from large audio
and language models detect depressive symptoms in children from parent-child interaction
videos?

We found that embeddings obtained from large language and large audio models can
moderately predict the depressive symptoms in children. No certain conclusion can be
drawn, as most of the results are slightly better than predicting by chance. A main reason
for this is the size of the dataset. The best results were obtained when the fusion of
deep representations from the CLAP and SBERT were fed in the XGBoost classifier in
the cooperative scenario. These embeddings reached a significant AUC score of 0.810.
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Similarly to the study of Shen et al. [100], combining the features of the audio and text
modality performed with slightly higher AUC scores than the individual modalities.

The combination of models (S + C) performed better in both splits, as shown in the Figure
19. This combination results in a fused feature vector with 1280 dimension, the smallest
among the other fused feature vectors. Additionally, the chunked approach performed with
higher AUC scores, implying that the model learns better when the features were extracted
from smaller parts of audio. Further discussion of these points follows later along with the
addressing of the sub-research questions.

Sub-research question 1: To what extent can depressive symptoms in children be assessed
separately in both cooperative and conflicting scenarios?

As mentioned earlier, we achieved the highest AUC scores when both cooperative and
conflicting scenarios were studied independently. The fusion of SBERT and CLAP
reached an AUC score equal to 0.810. In the audio modality, the classification task with
CLAP embeddings in the cooperative scenario reached an AUC score equal to 0.746.
Both scores imply that the model does not predict by chance and the performance is
considerable, according to Çorbacıoğlu et al. [21]. In their work they set some thresholds
in the interpretation of AUC score, with AUC scores greater or equal to 80 till 90 to be
characterized as considerable.

Each scenario was explored independently in this task, yielding the best and most interest-
ing results. In the audio modality, CLAP features overperformed Wav2Vec2.0 features with
more than double AUC score. Specifically, in the cooperative scenario, CLAP embeddings
reached AUC score equal to 0.746, while Wav2Vec2.0 scored 0.393 in the random split
and class weight setup. Similar scores and differences were observed in the default weight
(see Table 7). In the k-fold split setup, the differences in AUC scores were smoother, but
CLAP still outperformed Wav2Vec2.0 in the cooperative scenario.

In the conflicting scenario, the opposite trend was observed, with Wav2Vec2.0 embeddings
resulting in higher AUC scores than CLAP features. In a random split setup with default
weight, Wav2Vec2.0 features achieved an AUC score of 0.612, while CLAP reached 0.483.
This trend was consistent in the conflicting scenario.

For the text modality, the highest score in a k-fold setup was obtained by SBERT in the
cooperative scenario, with an AUC of 0.680, outperforming RobBERT by more than 0.20
(AUC equal to 0.424). SBERT outperformed RobBERT in the cooperating scenario, while
RobBERT performed better in the conflicting scenario. For instance, in the k-fold setup,
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RobBERT features achieved an AUC score of 0.720 in the conflicting scenario, compared
to SBERT’s 0.552 (see Table 10).

Lastly, multimodal fusion vectors performed exceptionally well, reaching an AUC score
of 0.810 in the cooperative scenario. This score was obtained using a random split setup,
which utilizes only a part of the dataset for testing. In contrast, a k-fold setup would
provide a better indication of the model’s generalization ability, as it evaluates the model
across multiple subsets of the data. Models with an AUC score above 0.8 are very good
at distinguishing the positive class from the negative. Overall, fusion performed better
when the PCI task was related to planning a vacation in a random split setup, with its
performance varying in AUC score terms from 0.810 to 0.551. The poorest performance
was achieved by (W + R). An opposite pattern was observed in the conflict-related PCI
task, with (W + S) and (W + R) performing better than (S + C).

The patterns suggest that depressive symptoms can better be predicted from the cooperative
scenario with smaller feature vectors, while they can be better predicted with large feature
vectors from conflict scenario. Models with smaller feature vectors, such CLAP and
SBERT, were better at predicting depressed symptoms than RobBERT and Wav2Vec2.0 in
both modalities. In addition to achieving an outstanding score of 0.810, the combination of
CLAP and SBERT was the best in predicting the cooperative task. With 1280 dimensions,
the combined feature vector of (S + C) is the smallest.

For the conflict task, the opposite trend has been observed. Larger feature vectors resulted
in higher AUC scores. (R + W), with 2048 dimensions, achieved the best AUC score
for the conflict scenario in both random split and k-fold split setups. RobBERT features
obtained a high AUC score of 0.720 in the conflicting scenario, the highest score achieved
by RobBERT features in a k-fold split.

In the audio modality, Wav2Vec2.0 embeddings achieved better scores in the conflicting
scenario than the cooperative one, and the Wav2Vec2.0 feature vector is larger than the
CLAP one. After considering all the results above and comparing them among modalities
and splits, it is noticeable that depressive symptoms can better be predicted from the
cooperative scenario with smaller feature vectors, while the prediction of depressive
symptoms can better be predicted with large feature vectors from conflict scenario.

Sub-research question 2: To what extent can depressive symptoms in children be accu-
rately assessed using solely the audio and text embeddings?

This task explores each modality separately. Regarding the audio modality, CLAP is
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performing better in tasks across all the scenarios. Although it achieved an AUC score of
0.597 in a random split, this is much lower than the performance CLAP features achieved
per scenario. Similarly, in a random split setup, SBERT performed better than RobBERT
features, with the first one reaching an AUC of 0.649 and RobBERT achieving 0.584.
When comparing the results in the same split setup between the combined features and
the unimodal features, the combined features performed better. Both modalities combined
proved to be more effective in assessing depressive symptoms in children.

This part of the results yields another interesting finding in audio modality only. As shown
in Tables 13 and 14, the performance of features extracted from the whole audio versus
the chunked audio was compared. In both splits, the chunked version of the features
outperformed the whole audio.

Sub-research question 3: How does examining only the parent’s segment impact the
assessment of depressive symptoms in children?

Apart from the segments extracted from the child, the parent’s segment and transcript were
explored as well. As Allgaier et al. [4] indicated, children of depressive are exposed to a
vulnerable environment and thus are at a higher risk of developing psychopathology. That
was the motivation behind this last part of the thesis. In this task, the features extracted from
parents’ segments were utilised and the ground truth labels remained the same as before,
coming from the symptoms parents reported for their children. The overall performance
of audio modality was higher than the one achieved by text modality in both random and
k-fold split setups. For instance, Wav2Vec2.0 and SBERT features reached AUC scores of
0.603 and 0.589 respectively, in comparison to SBERT and RobBERT, which achieved
0.505 and 0.550. No special patterns noticed in this group of results, thus exploring the
parents’ segments did not add any significant value in the exploration of the task.

7.2 General observations and implications
The overall performance of CLAP embeddings compared to Wav2Vec2.0 ones is very
impressive and surprising, as CLAP has not been trained on dataset containing human
speech, it mostly contained pairs of text and audio with human activity among natural
sounds and audio effects. Also, the CLAP model used as a feature extractor in this thesis
was not finetuned in Dutch, while the Wav2Vec2.0 version was finetuned in Dutch, which
should have given it an advantage in performance. This is an interesting finding, as studies
in similar tasks have never utilised CLAP embeddings. On the other hand, there are studies
which utilise Wav2Vec2.0 features for depression assessment task and other tasks like this
thesis.
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Returning to the main research topic, our study shows that it is quite feasible to evaluate
children’s depressive symptoms using multimodal embeddings from large audio and
language models, particularly when the cooperative and conflicting scenarios are analysed
separately. While our dataset was limited to 191 data points, the multimodal fusion of
characteristics generated a significant AUC score of 0.81 in a default split setup. Thus,
in that case the model was able to distinguish between different levels of depression
symptoms with a reasonable accuracy, but only in a part of the database.

This shows that multimodal techniques combining both audio and text deep representations
hold significant promise for diagnosing depression symptoms in children. Importantly, our
findings suggest that given a larger and more balanced dataset, these models may recognize
even more intricate patterns, resulting in more accurate and robust predictions.

Future research should focus on increasing the dataset and fine-tuning these multimodal
models to improve their prediction ability. Furthermore, combining additional modalities
like video or image, may provide deeper insights and improve the assessment of depressed
symptoms in children. This work demonstrates the potential of multimodal embeddings in
mental health evaluation and emphasises the need for additional research in this promising
area.

7.3 Limitations & Future Work
There were several limiting factors in this research. First and most important limitation
was the limited dataset size. Machine learning models require substantial amounts of data
to effectively learn and recognize patterns. As a result, having more data to train the model
would greatly enhance the performance of the proposed framework.

Another limitation relating to the dataset, was the quality of the recordings. As the study
has followed different generations of children, the recordings were made using different
setups and technologies over time. Some recordings are of poor quality, missing subtle
changes in voice, tone or volume, details that could contribute to the results.

Focusing now on another part of the dataset, the annotations, which are made by the
parents’ perception of their children’s behavior. A more accurate ground truth might be
obtained if children reported the answers for themselves. In such cases, the ground truth
labels would reflect the children’s self-perceptions.

Another limitation occurs also in case of the mean values used for the label transformation
(see Section 5.1). The dataset transformation to binary labels based on cut-off points
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used mean values from the US population. However, this research focuses on the Dutch
population and mean values for the Dutch population were not available to us. Cultural
differences imply that cut-off points for the Dutch population would likely differ, potentially
impacting the results.

Last but not least, regarding the models used, many models were not finetuned in the Dutch
language. Features extracted could be more accurate with a Dutch-specific fine-tuned
model, such as a Dutch-fine-tuned CLAP. Additionally, the popular Dutch language model
Fietje from HuggingFace was not used as it did not provide any feature extraction module.
It would be interesting to utilize a model finetuned in such a big amount of Dutch data and
compare the results.

An interesting addition for future work could be the inclusion of the video modality. Ex-
amining how video data contributes to the overall performance of the model could provide
valuable insights and potentially improve the accuracy of detecting depressive symptoms
in children. For example, in their recent work, Zhang et al. [122] utilized the fusion of
three modalities: video, audio, and text. The video modality offered valuable informa-
tion related to facial expressions, which contributed to better performance compared to
unimodal features or other combinations. This was particularly evident in their interview
process when participants were asked, “Can you evaluate yourself?”. Similarly, the videos
available in this dataset could be utilized to enhance the task.

Another task to consider as part of future work is to integrate explainability mechanisms
to better understand the meaning of the deep representations. Since these features were
extracted by the large language and audio models for each audio and transcript, there is
no clear meaning behind them in human terms. Therefore, it would be valuable to have
an interpretation behind these numerical vectors, in a way similar to how handcrafted
features can be interpreted, providing more transparency and insight into the models’
learned representations.
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8. Conclusion

To conclude, this thesis has studied the assessment of depressive symptoms in children
through PCI interaction. Deep features were extracted from large audio and language
models and combined across two modalities for different scenarios: cooperative and
conflicting. The predictions were performed with an XGBoost classifier model, which
served the different tasks explored, such as feature fusion, scenario- specific predictions,
or modality-specific predictions.

We observed various interesting patterns in both the cooperative and conflicting scenarios.
Notably, in the cooperative scenario, the fusion model performed well, regardless the
limited data available. Additionally, an improvement in performance was noticed when the
features were combined. However, we were not able to answer the research question “To
what extent can multimodal embeddings obtained from large audio and language models
detect depressive symptoms in children from parent-child interaction videos?” posed in the
beginning of this study with great certainty, due to the limited data, especially for training
models with deep features. Nevertheless, our findings contribute to the research in this
area and may improve with more data.

In conclusion, our study suggests that depressive symptoms are better assessed when there
is a specific task behind the PCI, either conflicting or cooperative. Better results were
obtained with the cooperative scenario, but both scenarios provided valuable information
for the final prediction. Moreover, given the multi-faceted nature of depressive symptoms,
multimodal fusion enhances the accuracy of depressive symptom detection. The findings
are promising, indicating that with more data, there could be a great contribution in the
assessment of depressive symptoms in children.
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10. Appendix: Additional results

In the following section, Random Split refers to GroupShuffleSplit method, k-fold Split
refers to GroupKFold method and Stratified Split refers to StratifiedGroupKFold.

10.1 Results of multimodal fusion
Tables 21 and 22 shows the results from the fusion of all the models for all the different
splits performed in this thesis. Table 21 shows the results when the default weight was
used in the XGBoost classifier, while Table 22 shows the results when the class weight
was set depending on the task.

10.2 Results per scenario
This section presents the results from the experiments ran for each scenario independently,
highlighting the performance metrics of various classifiers utilized in the analysis. In the
tables below, we present the results from both the modalities explicitly and the multimodal
fusion.

Tables 23 and 24 shows the results of the classification tasks per scenario when it trained
on SBERT and RobBERT features for all the different splits performed in this thesis. 23
shows the results when the default weight was used in the XGBoost classifier, while the 24
shows the results when the class weight was set depending on the task.

In the following part of the section, results from the audio modality for the scenario study
case are presented. Tables 25 and 26 show the results from the classification tasks, when
the model trained on Wav2Vec2.0 and CLAP features, for each scenario explicitly.

Last but not least, the results of the multimodal fusion for the scenario study case are
presented in Table 27 for different split and default weights, while in Table 28 we present
the results different splits produced with the class weights.

10.3 Unimodal results
This section presents the comprehensive results of all classification tasks conducted utiliz-
ing unimodal features, specifically focusing on audio-only and language-only data. The
outcomes are organized in a series of tables.
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Tables 29 and 30 present the results of the classification tasks trained on RobBERT and
SBERT features on various splits conducted in this thesis, across all scenarios. Same
convention as before with Table 29 displays the outcomes when the default weight was
applied in the XGBoost classifier, while Table 30 illustrates the results when class weights
were adjusted according to the specific tasks.

Similarly, to the results presented from the language features, results from classification of
audio features are presented below. Tables below show the performance of Wav2Vec2.0
and CLAP features when these were input to XGBoost classifier in both cases of default
weights 31 and class weights 32.

For the audio modality, a second experiment has been conducted with chunked audio.
Results from the second experiment can be seen in the Tables 33 and 34

10.4 Results of using parent segments
This section presents the comprehensive results of all classification tasks conducted utiliz-
ing features extracted from the parents’ audios and transcripts.

Tables 35 and 36 present the results of the classification tasks trained on SBERT and
RobBERT features across various splits conducted for transcripts extracted from parents’
segments with default and class weights.

The classification results of the audio features extracted from Wav2Vec2.0 and CLAP for
the parents’ audio segments can be found in the tables below. Table 37 contains the results
when default weight was utilised, while Table 38 shows the results of the task with the
corresponding class weight.
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