
Improvements for Extended Morton Codes
for Bounding Volume Hierarchy

Construction on GPUs in Problematicly
Large Scenes

Author:
Sietze N. Riemersma

Supervisors:
Prof. dr. Alexandru C. Telea

Dr. Frank Staals

A thesis submitted in fulfillment of the requirements for the
degree of Master of Science

in the

Department of Information and Computing Sciences

November 2024

Utrecht University

Abstract
Department of Information and Computing Sciences

Master of Science

Improvements for Extended Morton Codes for Bounding
Volume Hierarchy Construction on GPUs in Problematicly

Large Scenes

by Sietze N. Riemersma

We present three new methods to enhance the positional accuracy of Morton
Codes in large scenes that have distant or large primitives, which is an
essential aspect of many Bounding Volume Hierarchy (BVH) construction
algorithms on the GPU. Two methods will use an additional occupation grid
to remove unnecessary bits and move splits if considered more beneficial
to combat the issue of distant primitives. The other method updates the
computation of the scene bounds for scenes with large primitives at the edge
of the scene. We show by building linear BVHs on the GPU for different
scenes with the improved Morton Codes that there is room for improvement
for both distant and large primitives in a scene. The new scene bounds
computation shows a performance improvement of 0.41% - 0.93% in two
games, a small but significant improvement according to the stakeholder
(AMD). However, the other two methods show a potential increase in tracing
performance in cases with distant primitives, but it takes too much time to
create the occupation grid.

Contents

1 Introduction . 2
2 Background and Related Work . 5

2.1 The Bounding Volume Hierarchy (BVH) 6
2.2 Quality Metrics for BVHs . 6
2.3 BVH Construction . 8
2.4 Morton Codes . 10
2.5 Further Extensions for BVHs . 14
2.6 Conclusion from Literature Review . 16

3 Proposed Methods . 17
3.1 Requirements . 17
3.2 Improvements for Distant Primitives . 18
3.3 Improvements for Large Primitives at the Scene’s Extent 25

4 Results . 26
4.1 Added Construction Time . 28
4.2 Different Parameters Binned Splitter . 30
4.3 Growing Scene Bounds . 34
4.4 Smaller Scene Bounds . 38
4.5 Game Benchmarks . 39

5 Conclusion and Discussion . 40
6 Acknowledgements . 42
7 References . 43
8 Appendix . 45

8.1 Pseudocode Mipping . 45
8.2 Pseudocode Binning . 46
8.3 Additional Graphs over a Single Axis . 48
8.4 Additional Graphs over Three Axes . 51

1

1. INTRODUCTION

1 Introduction
Simulating light realistically in artificial 3D scenes is a crucial problem, as realistic lighting enhances
the immersion of the viewer watching the artificial content. Ray tracing has been a method at the
forefront of this problem, as this method traces light rays through a scene to simulate shadows,
reflections, and refractions, which similar to how light works in the real world. Until recently, ray
tracing seemed impossible in real-time applications and was only feasible for offline applications
with more time to render a frame. However, with improvements to ray tracing due to research and
more specialized hardware from GPU vendors, ray tracing is now possible in real-time applications
such as games.

Ray tracing is a technique that involves tracing rays from a camera through a scene, with the rays
querying the scene to identify the nearest intersections with the scene’s primitives, such as triangles,
quads, or full objects, to determine a color for each pixel in an image. Extending the camera rays
with additional rays, such as shadow rays, can further enhance the scene’s realism. Figure 1 shows
a visualization of this process, and Figure 2 shows a visual comparison of Cyberpunk [1] with ray
tracing enabled/disabled.

Figure 1: Visualization of a camera tracing rays through a simple scene, creating
rays that intersect the sphere primitive and creating shadows by casting rays to

the light source.

Figure 2: Comparison of ray tracing vs the standard lighting implementation in Cyberpunk
[1]. In the right image, we can see much better shadows and reflections on the floor and

walls.

2

1. INTRODUCTION

However, ray tracing requires many rays per pixel to obtain an accurate color; otherwise, the final
image might be noisy or miss essential details in the lighting. Due to the inherent parallelism on
GPUs, they make it trivial to trace rays in parallel as every ray does not rely on any other rays in the
frame unless it is an extension of a previous ray. Even with the GPU and specialized hardware, it is
still crucial to minimize the time it takes to find an intersection, or the query time of the scene. This is
because a large number of rays are required to produce an accurate image. Therefore, a single frame
of ray tracing consists of two phases: the build phase and the tracing phase.

In the build phase, the ray tracer builds an acceleration structure to reduce the query time of the
scene significantly. The industry standard acceleration structure is the Bounding Volume Hierarchy
(BVH), which organizes primitives in hierarchical bounding volumes, which are usually axis-aligned
bounding boxes or oriented bounding boxes [2] [3]. A ray then traverses the hierarchy of the BVH
when intersecting an object, removing the need to test for intersection with part of the hierarchy
if the ray misses a bounding box. Spending more time during the build phase to create a higher
quality BVH can significantly benefit the tracing phase, as this could greatly reduce the query time.
However, spending too much time on the build phase could reduce the total framerate if many builds
are required.

Because static scenes do not deform or change, we require only a single build phase for these
scenes at the start of a program. However, games and movies use dynamic scenes with many moving
and animating objects. Due to the change in the position of the primitives, many BVHs either
need to be (partially) rebuilt or refit every frame to accommodate the underlying deformation of
geometry [4][5]. A fast operation for this is called Refitting [5], which changes the existing hierarchy
to accommodate the change in the existing hierarchy. However, Refitting can significantly worsen
the overall performance of a BVH because the refitted hierarchy could have unconsidered overlap
between branches of the hierarchy, which results in poor query times. Therefore, many applications
build full BVHs after a certain amount of deformation to achieve a faster tracing phase [5]. However,
because players want their games to run at 30+ fps (and higher is better), there is only a limited
amount of time available to build BVHs. Therefore, we need to have low build times for BVHs,
potentially at the cost of quality. So, many studies investigate how to build a ’good’ quality BVH
every frame in parallel on the GPU. We prefer construction on the GPU over the CPU as the GPU
can handle more primitives in parallel, and construction on the CPU requires uploading the BVH to
the GPU, adding further overhead to the total rendering pass. Many of these fast GPU construction
algorithms require the use of Morton Codes [6] [7] [8] [9] [10], as these make the parallelization of
the construction easier.

Morton Codes [11] describe a curve (called the Morton Curve) created by spatial median splits,
where an b-bit integer value maps to a point along the curve. Two b-bit integer values close to each
other in value will also be close in 3D space, so an array of primitives sorted along this curve is
helpful for many algorithms. Sorting is a well-known problem with many algorithms available for the
GPU [12] [13], so this is a fast operation. Examples of construction methods that use sorted Morton
Codes are Parallel Locally-Ordered Clustering (PLOC) [8], Approximate Agglomerative Clustering
(AAC) [14], and LBVH [6]. PLOC and AAC use this sorted array to quickly search for the nearest

3

1. INTRODUCTION

neighbor. LBVH exploits the fact that sorting the primitives along the Morton Curve and looking at
their b-bit values implicitly describes a BVH that uses spatial median splits. The LBVH is today’s
fastest construction algorithm and one of the most prominent BVHs in real-time applications that use
many moving and animating objects.

Although there has been much research in improving the quality of these LBVHs [7] [10] or
improving the construction time [15], there is not much research in improving the accuracy and
quality of the Morton Codes, such as positional accuracy and splitting along better planes than the
spatial median plane. One paper describes Extended Morton Codes (EMC) [16], which improves
the accuracy for irregularly shaped scenes by assigning more accuracy to longer axes and encoding
primitive size. However, both Morton Codes and Extended Morton Codes have one fatal flaw: they are
directly related to the scene’s bounds. One possible situation that a programmer could find himself in
is that he wishes to ’hide’ some primitives from the player’s view by moving the primitives far away,
such as projectiles, or an artist uses large primitives far away from the player to create a background
for the scene, both creating a larger scene size. The larger scene size deteriorates the accuracy of the
Morton Code and the Extended Morton Code, which leads to poorly constructed BVHS and increased
rendering times.

Therefore, we ask the following research question:

Can we improve the Extended Morton Codes further to construct BVHs of equal
or higher quality in real-time applications? In particular in situations where the
scene’s bounds grow out of proportion due to distant or large primitives at the

extent of the scene?

We will achieve this improvement for distant primitives by creating an occupancy grid containing
information about specific sections of the scene, potentially moving splits or changing parts of the
code to enhance the accuracy of the Extended Morton Code. Furthermore, we propose minor changes
to the Extended Morton Code’s computation to handle large primitives at the extent of the scene to
enhance the positional accuracy that can be implemented immediately in any existing computation of
the codes.

This thesis starts with a literature review in Section 2 of the current research of construction
methods with BVHs, including Morton Codes, Extended Morton Codes, and some extensions for
BVHs. Section 3 describes our newly proposed methods of this thesis in more detail. Section 4 shows
how we set up the experiment, gives some information on the hardware used, and shows the results for
the given methods, followed by Section 5, which will conclude and discuss the results of this thesis.

4

2. BACKGROUND AND RELATED WORK

2 Background and Related Work
This Section will discuss the field of BVH construction. In Section 2.1, we will explain a Bounding
Volume Hierarchy (BVH) and its benefit over other acceleration structures. Then, we describe some
quality metrics for the BVH in Section 2.2. After that, we show some existing construction methods
and discuss their way of solving our problem in Section 2.3. Then, we introduce Morton Codes in
Section 2.4 along with some fast construction methods that use Morton Codes in Sections 2.4.1 and
2.4.2, followed by an extension to the Morton Code in Section 2.4.3. We then list some extensions
for BVHs used in this research in Section 2.5. Lastly, in Section 2.6, we will conclude the currently
available methods to deal with distant or large primitives at the edges of the scene.

Furthermore, Table 1 shows the definitions used throughout the thesis.

Definition Meaning Abbreviation
Scene A set of 2D or 3D primitives
Real-time Applications Applications that require high framerates such as games
Offline Applications Applications with more render time available per frame, such as

movies
Static scenes Scenes where all objects are static and do not animate
Dynamic scenes Scenes where objects can move and have animation
GPU Graphics Processing Unit GPU
Morton Codes A Bitvector describing a d-dimensional position MC
Morton Curve Z-Curve created by Morton Codes
Extended Morton
Codes

An extension to Morton Codes with more information in the
bitvector

EMC

Scene’s bounds / Scene
size

The bounding box of all primitives in a scene

Bounding Volume
Hierarchy

A hierarchy consisting of bounding volumes that encapsulate
primitives

BVH

Bounding Box An Axis Aligned or Oriented Bounding Box that can be used as
a Bounding Volume in a BVH

AABB or OBB

BVH cost The expected cost of tracing a given BVH
Surface Area Heuristic A heuristic specifying the geometric cost of a BVH SAH
End-Point-Overlap Additional cost for SAH to penalize surfaces that are in

multiple Bounding Volumes
EPO

Linear BVH A BVH that only uses Morton Codes for construction LBVH
Hierarchical LBVH An addition to LBVH by using a SAH top-down builder at the

top-most levels of the tree
HLBVH

TLAS/BLAS Top- and Bottom-Level Acceleration structures TLAS/BLAS
Teapot in a stadium Problem where a teapot is in a stadium, requiring high accuracy

at certain sections in a large scene
Dword A 32-bit unsigned integer

Table 1: Definitions used throughout this thesis.

5

2. BACKGROUND AND RELATED WORK

2.1 The Bounding Volume Hierarchy (BVH)
The BVH, first described by Clark et al. [17], is a hierarchy that does not split space but rather splits a
set of primitives into subsets with a bounding volume around each subset. The bounding volumes can
be any volume, but these are usually Axis-Aligned Bounding Boxes (AABB) or Oriented Bounding
Boxes (OBB) [2] [3], as boxes are fast to compute, fit inside of each other well, and are memory
efficient (AABBs only require 6 floats per box, 3 for the minimum bounds and 3 for the maximum
bounds). In the BVH, subtrees are allowed to overlap, and primitives are stored once in a single leaf.
This object-splitting hierarchy differs from spatial-splitting hierarchies like KD-Trees, which can
have multiple objects in the leaves, but nodes cannot overlap [18]. BVHs are the industry standard
acceleration structure nowadays due to the following reasons:

• Fast query times: For a set of random rays that want to intersect a set of non-overlapping
primitives, the BVH has an average O(logn) query time, where n is the number of primitives,
as we can efficiently prune branches that do not intersect a given ray. Furthermore, BVH
traversal algorithms typically have a small memory footprint and a compact traversal state,
which makes them well-suited for GPU traversal. Compared to a kD-Tree, another acceleration
structure with an average O(logn) query time, where n is the number of primitives, the BVH
is at least comparable to or even better than the kD-Tree in traversing the acceleration structure
and pruning branches [18].

• Predictable memory footprint: The memory footprint of a BVH is bounded by the number of
primitives since each primitive is referenced only once in a leaf. The BVH contains v ≤ 2n−1
nodes, where n is the number of primitives and v is the number of nodes, which can be the
case for a binary BVH (a BVH with two children per node) [19]. The kD-tree does not have a
predictable memory footprint, making it hard to use on GPUs.

• Generality: The BVH can be constructed for any scene due to its hierarchical nature. For
instance, the BVH can handle the teapot in a stadium problem, where a high-resolution version
of the Utah teapot is at the center of a large, low-resolution stadium. The teapot in a stadium
was a complex problem for acceleration structures that use uniform grids, as this scene would
have a considerable bounding box requiring large grid cells. However, for the teapot, smaller
grid cells would be beneficial. Although the kD-Tree can also handle the teapot in a stadium
problem, the BVH can solve this by separating the teapot from the stadium at the first split,
which would require six planes in a kD-Tree.

2.2 Quality Metrics for BVHs
Quality metrics describe how well a BVH for a scene will perform for a given set of rays. A higher
quality BVH usually also indicates better rendering performance than a BVH with lower quality, as
higher quality BVHs tend to have less overlap and smaller boxes for many primitives, which allows
them to prune more primitives efficiently.

6

2. BACKGROUND AND RELATED WORK

2.2.1 Cost of a BVH

The cost of a particular BVH is an estimation of the expected number of operations needed to find the
nearest intersection [20]. The cost of a BVH from subtree x is the following recurrence equation:

COST (x) =


cI + ∑

y∈Yx

P(y|x)COST (y) if x is interior node

cE |x| otherwise
(1)

where COST (x) is the cost of a subtree with root node x, y is a child subtree of the set of children Yx
of node x, P(y|x) is the conditional probability of traversing a node y when intersecting node x, and
|x| is the number of primitives in a subtree with root x. The recurrence also contains two constants, cI
and cE , which express the average cost of a traversing an internal node and intersecting a leaf node,
respectively. Finding the optimal lowest possible cost c(x) of a root node x of a BVH is believed to
be an NP-Hard problem [21].

2.2.2 Surface Area Heuristic (SAH)

SAH expresses the conditional probabilities of the recurrence in Equation 1 as a geometric probability
[22]. This geometric probability is the surface area of the bounding box (AABB or OBB) of a node
x, as intuitively, if we have a smaller surface area, there is a smaller chance that a random ray will
intersect the bounding box. Therefore, we can write the probability relation of the formula 1 as
follows:

P(y|x)SAH =
SA(y)
SA(x)

(2)

Where SA(x) is the surface area of the bounding box of node x. We substitute this probability into
formula 1:

SAH(x) =


cI + ∑

y∈Yx

SA(y)
SA(x)

SAH(y) if x is interior node,

cE |x| otherwise

(3)

Unrolling removes the recurrence:

SAH(x) =
1

SA(x)

(
cI ∑

yi∈Ix

SA(yi)+ cE ∑
ye∈Ex

SA(ye)|ye|

)
= ∑

y∈Yx

cy
SA(y)
SA(x)

(4)

Where Ix and Ex are the set of interior and leaf subtrees with root x, respectively, with Ix ∪Ex = Yx
is the set of children of node x. Next, cI and cE are constants of the average cost of a traversing
an internal node and intersecting a leaf node, respectively, and cy is the cost of traversing node y.
Formulas 3 and 4 show that we prefer small boxes for as many primitives as possible.

7

2. BACKGROUND AND RELATED WORK

2.2.3 End-Point-Overlap (EPO)

SAH assumes a uniform distribution of ray origins and directions in an n-dimensional space and that
rays originate outside the scene bounds. However, many types of rays, such as shadow and reflection
rays, originate from the surfaces of primitives. Therefore, EPO aims to penalize overlapping surfaces
between two bounding boxes that are not in the same subtree, as a ray originating from a point within
the overlap has to test for intersection in both subtrees [23]. EPO assumes the uniform distribution
of ray origins and hit points on surfaces. The probability of having a hit point inside a node is
proportional to the surface area of the primitives inside that node’s volume. The expected cost of
searching for a ray’s origin or end point from the tree is:

EPOcost(x) = ∑
y∈Yx

cy
A(F ∩ y)

A(F)
(5)

Where F is the set of all surfaces in the scene, y is a child subtree of the set of children Yx of node
x, A(F ∩ y) is the total area of surfaces inside the bounding volume of child subtree y, normalized to
the probability that the query point resides inside y, and cy is the cost of traversing node y. We then
define EPO as:

EPO(x) = ∑
y∈Yx

cy
A((F \Q(y))∩ y

A(F)
(6)

Where y is a child subtree of the set of children Yx of node x, Q(y) is the set of surfaces that belong
to the child subtree y, (A \Q(y))∩ y is the geometry that does not belong to the subtree of y but lies
within the volume of y, and cy is the cost of traversing the child subtree y. The authors designed EPO
to be zero if there is no overlap between subtrees, so it is usable as an addition to SAH [23]. EPO
shows a good correlation between actual cost and render times. However, we cannot use EPO during
construction because the entire BVH tree is necessary for EPO evaluation. Popov. et al. did come
up with another heuristic that penalizes the overlap of child-bounding boxes, which is less descriptive
and has a weaker correlation with rendering times than EPO but can be evaluated at construction time
[24]. Nevertheless, the heuristic shows a significant reduction in the cost of a ray when restricting the
amount of overlap between child-bounding boxes.

2.3 BVH Construction
There are many different algorithms to construct BVHs. However, we will only cover some of the
construction algorithms relevant to this research and the domain here. To learn about the other
methods and a more complete survey of the whole ray tracing research, we refer to the survey of
Meister et al. [20].

2.3.1 Top-Down Construction

Top-down construction starts with a set of all primitives in the root node. It iteratively splits the set
of primitives until a node meets some termination criteria to become a leaf or when reaching a depth

8

2. BACKGROUND AND RELATED WORK

bound. There are exponentially many ways to split the set of primitives. Popov et al. showed that
O(n6) partitionings exist for axis-aligned bounding boxes [24], where n is the number of primitives.
In practice, none of the top-down approaches check all of the O(n6) different partitionings, as the
runtime of such an algorithm would be infeasible. In practice, we split the set of primitives by axis-
aligned planes, similar to how kD-tree construction works. The position of a primitive relative to
the splitting plane is determined based on its centroid point. A fast Top-Down approach, running in
expected O(n logn) time where n is the number of primitives, splits the set of primitives based on
the spatial or object median, as the primitives only have to be compared to a single splitting plane.
However, median splits can only generate mediocre BVHs at best, so some Top-Down approaches
opted to approximate the SAH score at each level for k splitting planes. We cannot use the cost model
directly as the cost of the children is unknown; therefore, this is a greedy approach. The greedy
approximation of the SAH score at the current level is as follows [25]:

SAHgreedy(x) = min
L⊂Nx,R=Nx\L

(
SA(L)
SA(x)

∗ |L|+ SA(R)
SA(x)

∗ |R|
)

(7)

Where Nx is the set of primitives of node x, L and R are subsets of Nx and the splitting plane’s left and
right sides, respectively. SA(X) is the surface area of the set X and |X | is the number of primitives
in the set X . From this score, we can also derive a termination criterium: when the cost of the
node being a leaf outweighs the cost of splitting this node, the node is considered a leaf and thus
will not split further. Aila et al. showed that Top-Down builders are better in terms of EPO than
Bottom-Up builders, as they implicitly reduce EPO [23]. The runtime of this approach is O(kn logn)
expected time, where k represents the number of splitting planes, and n is the number of primitives.
Along a single axis, there are at most n− 1 possible splitting planes, as there are n primitives in a
scene; therefore, k = n− 1 if we want to compare all splitting planes along an axis, which gives a
runtime of O(n2 logn). However, Wald et al. showed that even with a limited number k of equally
spaced bins, it is possible to construct high-quality BVHs [25]. They further worked out this idea
by proposing a parallelized approach that utilized SIMD instructions and multithreading on a CPU.
Top-down SAH builders would handle the case of distant or large primitives well, as they would
immediately recognize a significant drop in SAH cost if they first split off the problematic primitives;
however, for animating scenes, the construction time of these builders is too high.

2.3.2 Bottom-Up Construction

Bottom-up construction starts from the leaves and eventually reaches the root node through multiple
merging steps. Walter et al. [9] proposed using agglomerative clustering, which merges pairs of sets
based on a distance function at each iteration step. The distance function for two sets of primitives
is the surface area of a bounding box that encloses both sets, so smaller parent boxes indicate a low
distance. This process repeats until there is only one cluster left. There are two issues with this
approach:

1. This iteration step works very well for lower levels, but top levels can be poorly optimized.

9

2. BACKGROUND AND RELATED WORK

2. The construction time is slow, as in the best case with a standard distance function, there are
O(α2) nearest neighbor searches at each iteration step, where α is the number of clusters.

Walter et al. [9] proposed accelerating the nearest neighbor search with a heap data structure and a
kD-Tree, which would be difficult to parallelize. Therefore, Gu et al. [14] proposed approximate
agglomerative clustering (AAC), which uses the Morton Curve (see Section 2.4) to make initial
partitions of the primitives until a subtree contains less than a predefined number of clusters. To
reduce the number of clusters in a subtree, AAC merges the clusters until a small number of clusters
remains, which are, in turn, merged using agglomerative clustering. To accelerate the nearest neighbor
search, the authors proposed using a distance matrix with a quadratic number of entries based on the
number of clusters. This distance matrix requires a large stack state, which is not GPU-friendly.

Meister et al. [8] came up with a more parallelizable approach for AAC, called Parallel Locally-
Ordered Clustering (PLOC). They used an observation that the distance function follows the non-
decreasing property, which says that if two nearest neighbors mutually correspond, then there will
be no better neighbor. PLOC then merges all mutually corresponding nearest neighbors in parallel.
PLOC also uses the Morton Curve, but instead of reducing the number of clusters, it uses the curve
to accelerate the nearest neighbor search. Each cluster is sorted along the Morton Curve and finds its
nearest neighbor by looking in both directions along the curve for γ steps.

PLOC can run entirely on the GPU in three steps. Each cluster finds its nearest neighbor in the
first step by looking along the Morton Curve. Then, we merge mutually corresponding pairs and
assign their new point along the Morton Curve to be the point of the first cluster. Finally, a parallel
prefix scan removes the holes created by merging. In the worst case, the algorithm may only merge
a single cluster at each iteration step, making the worst-case runtime on the GPU of this algorithm
O(γn), where n is the number of merges, and γ is the number of nearest neighbor searches at each
level. In the best case, every cluster has a mutually exclusive neighbor, which makes the best-case
runtime Ω(γ logn). In practice, the algorithm comes closer to the best-case runtime than the worst-
case runtime.

Bottom-up builders would handle the case of distant or large primitives well, as they would not
merge distant or large primitives early. However, most Bottom-up builders use Morton Codes, so
these methods also suffer from large scene bounds, and the methods that do not use Morton Codes
have high construction times.

2.4 Morton Codes
As we already read in Section 2.3.2, some algorithms use the Morton Curve. The Morton Curve is
a space-filling curve described by Morton Codes (MCs) [11], which provides a coherent ordering of
quantized vectors, meaning that vectors with subsequent MCs are spatially close to each other [16].
This curve is also called the Z-curve because of the shape of the curve in the 2D case (see Figure 3).

10

2. BACKGROUND AND RELATED WORK

Figure 3: Visualization of the MC-based space-filling curve in 2D. Image is
from the paper by Bittner et al. [16]

For a given point p in a scene, we find a point along the curve p′ closest to p, or in other words,
for a given point p, find out in which cell the point p lies. More formally, finding this point along the
curve is a function f (p) : Rd → Bb, where d is the number of dimensions of a point, b the length of
the vector, and B = {0,1}, such that f (p) is a bit vector that encodes the point along the curve. A
larger b gives us a more accurate bit vector, as every increase in b will increase the number of points
along the curve by 2b. We generally define this bit vector as an b-bit Morton Code, which maps to the
closest point along the curve for the point p.

We can obtain the b-bit Morton Code of a normalized two-dimensional vector ⟨⃗v⟩ = (⃗vx, v⃗y) ∈
[0,1) by calculating which bin the vector lies in along each axis and interleaving the bits of the index
of the different bins. For example, if there is a vector v⃗ = (12,4) in a scene with bounds (0,0) and
(18,18) then the normalized vector ⟨⃗v⟩= (2/3,2/9). Using an 8-bit MC, the value of the axes can be
calculated by multiplying by a factor of 2(b/2) = 2(8/2) = 24 to get the bin along each axis, in this case,
(x,y) = (2/3∗24,2/9∗24) = (10,3) (rounded down for integers). In 4-bit binary representation, this
is (x,y) = (1010,0011), and interleaving these bits in the following fashion: x0y0x1y1x2y2x3y3 gives
us the final 8-bit MC for this vector 10001101. This example also shows that the accuracy increases
if we increase the number of bits used in the MC as the number 2(b/2) increases, creating more bins
along each axis. In 3D, we include an additional axis in the interleavement and change the factor to
2(b/3).

2.4.1 Linear BVH (LBVH)

Another BVH construction method, created by Lauterbach et al. [6], uses MCs to construct a BVH.
The algorithm assigns an MC to each primitive in the scene. The algorithm continues construction
in a Top-Down fashion, looking at the most significant bit of the MC for each primitive and placing

11

2. BACKGROUND AND RELATED WORK

those with 0 and 1 bits in child buckets 1 and 2. We apply this procedure recursively to each child
until the algorithm has consumed all of the bits of the Morton Code. The authors note that this is
equivalent to the steps of a most significant-bit radix-2 sort using the Morton Codes as keys, allowing
us to use a higher branching factor i using a radix-i algorithm instead.

The main advantage of LBVH is that it is inherently parallel, as we can quickly make a correct
ordering of the primitives using a parallel radix-sort algorithm. Next, the MCs already encode all the
necessary information about where in the tree a particular primitive will go, which means that MCs
already encode a BVH based on spatial median splits. Therefore, Lautherbach et al. proposed to
create split lists, where a thread for each sorted primitive determines where in the tree it splits with
its right neighbor. This split list is then sorted based on depth, so they obtain a list of all splits that
should occur on each level. This method does come with one unwanted side effect: it can create
chains of singleton nodes in the tree, which are nodes that only have a single child, which requires
an additional post-process step to roll up singleton chains. Finally, the bounding boxes must be
processed, a procedure similar to a refit pass (see Section 2.5.1). The time complexity of such a BVH
is O(n), where n is the number of primitives, which makes them fast to construct.

Karras later improved the LBVH algorithm [15] and constructed the whole LBVH tree in a single
GPU kernel. Karras used a different node layout, where primitives and internal nodes exist in a
separate array, and constructed a binary radix tree. The construction works by determining the
direction of an internal node’s range and finding the start/end of that range and the split position
using a binary search to construct an ordered binary radix tree, which runs in O(n logh) time, where
n is the number of primitives and h is the height of the radix tree. One issue with this approach is that
it requires another pass over the nodes to compute the bounding boxes for each internal node. Apetrei
solved this issue by proposing constructing the binary radix tree and the bounding boxes in one pass
[26]. These improvements, combined with the low runtime, make LBVH the fastest construction
algorithm to date.

However, in cases where there are distant primitives, LBVH starts to perform significantly worse,
as the Morton Codes heavily rely on the scene bounds. In those cases, LBVH will group many
primitives into the same boxes, which reduces the overall quality of the BVH.

2.4.2 Hierarchical Linear BVH (HLBVH)

The main disadvantage of LBVH is that it does not consider quality metrics, such as SAH or EPO
(See Section 2.2); instead, it just splits primitives based on spatial median splits. Therefore, the quality
of the LBVH is medium at best, and its query time is worse than most other construction methods.
Lauterbach et al. suggested using a top-down SAH builder for small subtrees close to the leaves in
the original paper. However, Granzha et al. [7] tried to improve upon LBVH by using a SAH builder
at the topmost part of the tree, stating that this is superior in the context of ray tracing, as the essential
part of the hierarchy where spatial overlap needs to be minimal is the top of the tree. They called
this new method HLBVH and used LBVH as a compression step to run a Top-Down SAH builder at
the top of the tree, resulting in a 3-19% reduction in the overall cost of the BVH. HLBVH was later
improved with work queues to improve the construction speed [10].

12

2. BACKGROUND AND RELATED WORK

Although HLBVH improves upon LBVH, the computation of the Morton Codes happens before
using the Top-Down SAH builder. Therefore, the part of the BVH that LBVH builds could be
significantly worse if there are distant primitives in the scene.

2.4.3 Extended Morton Codes

Extended Morton Codes (EMC) extends MC by additionally encoding object size, using a variable bit
count for longer axes and an adaptive axis order [16]. EMC adds object size to the code by checking
if the diagonal of the bounding box of the primitive is larger than the diagonal of the current bit in the
EMC. The bounding box corresponding to a particular MC prefix follows an implicitly known regular
subdivision of the scene volume. Figure 4 shows an example of splitting with EMC.

Figure 4: Example of how EMC splits primitives with Size bits on a simple
scene. Illustration is from the paper by Bittner et al. [16]

To encode a variable bit count for each axis and an adaptive axis order, the EMC computes the
order and the multiplication factor for each axis based on the size of the scene bounds. From these
bounds, we can determine the longest axis for which we must do the first split at the first bit in the
code. Then, we cut the longest axis in half and repeat this process for the subsequent splits in the code.
After that, we count the number of bits for each axis and calculate their multiplication factor to obtain
the final EMC. Note that this code is no longer the traditional MC that uses regular bit interleaving,
but we can still compute the code quickly using loops and arrays.

These new codes for LBVH showed a 0 - 52% SAH cost reduction, with an average of 20%
over well-known default scenes such as Sponza [27] and San Miguel [28]. EMC also shows a
SAH cost reduction for other methods that rely on MCs, such as HLBVH [7] (16%), Approximate

13

2. BACKGROUND AND RELATED WORK

Agglomerative Clustering [14] (11%), and Agglomerative Treelet Restructuring BVH (ATRBVH)
[29] (7%).

EMC helps with distant primitives in a scene, as this computation will give more bits to larger
axes. However, EMC still heavily relies on the scene bound, and if the scene bound grows too much
out of proportion, many bits will be wasted on these large axes, deteriorating the final BVH.

2.5 Further Extensions for BVHs
Next to the different construction algorithms, BVHs also have some extensions to handle animated
scenes, improve the quality further, or improve the render performance. Therefore, this Section will
list some of the extensions used in this research.

2.5.1 Refitting

BVHs can handle animated objects in two ways:

1. Either rebuild the BVH every frame using a fast BVH construction algorithm or

2. Refit the existing BVH to reflect the deformation in geometry

Refitting is an operation whose time complexity is O(v) on the CPU, where v represents the number
of BVH nodes. On the GPU, the nodes on the same level can run in parallel, achieving a time
complexity of O(h), where h is the height of the tree. This low runtime makes refitting a good option
for animating scenes. However, refitting does not consider the quality of the resulting BVH and can
arbitrarily degrade the BVH. Therefore, Lauterbach et al. [5] proposed a degradation heuristic to
show how much a BVH has degraded and determine whether the BVH should be reconstructed or
refitted in a particular frame.

2.5.2 Subtree collapsing

Some construction algorithms, such as LBVH, create leaves with a single primitive, which could
cause an increase in tracing cost as defined in Section 2.2.1. Therefore, subtree collapsing [21] starts
from the leaves and goes up to the root to compare the cost of a node being an internal node or a
leaf. If a leaf’s cost is lower than an internal node’s, we collapse the internal node to make it a leaf.
Meister and Bittner [8] proposed a GPU-based version of subtree collapsing that uses several passes
of the parallel bottom-up traversal for refitting proposed by Karras [15].

2.5.3 Wide BVH

An w-wide BVH contains a branching factor of w, so a binary BVH with branching factor 2 is a
2-wide BVH. These wide BVHs allow more efficient utilization of SIMD/SIMT units by testing a
single ray against multiple bounding boxes during traversal [30]. Furthermore, wide BVHs have a

14

2. BACKGROUND AND RELATED WORK

lower depth and require less memory and fewer interior nodes than binary BVHs. However, only
some internal nodes will have exactly w children; usually, this number is lower around the leaves, and
therefore, it causes more algorithmic complexity to handle the additional cases.

There are two ways of building a wide BVH: constructing a binary BVH and collapsing internal
nodes bottom-up or constructing a wide BVH from scratch. Wald et al. [30] proposed a collapsing
fashion using three operators to minimize the cost function: merging a child node into a parent node,
two leaf nodes, or two interior nodes. The other way is to construct a wide BVH during construction,
such as using a radix-i algorithm for sorting and building an LBVH [6].

2.5.4 Top- and Bottom Level Acceleration Structures (TLAS/BLAS)

TLAS/BLAS is an idea introduced by Wald et al. [31]. The idea is to build a Bottom-level acceleration
structure (BLAS) for every object and use a Top-level Acceleration structure (TLAS) to enclose all
BLASes. For a BVH, this means that the root node of the BLASes can be the leaves of the TLAS.
This two-level hierarchy has some advantages:

• Different builders: The objects in a scene can now use an optimal builder for that specific
object. A static object can use a high-quality builder, while dynamic objects can use faster
builders.

• Smaller updates for Rigid Body Animation: If an object has some Rigid Body Animation
(animation where the object rotates or moves but does not deform), then only the TLAS requires
an update to accommodate the animation.

• Smaller updates for Animation: If a dynamic object is animated and deforms, only the BLAS
for that object and the TLAS require an update to accommodate the animation, while other
BLASes in the scene can remain untouched.

The TLAS also ensures that in cases with distant primitives, the BLASes of the other objects can still
be of high quality, and only the quality of the TLAS decreases. However, distant or large objects will
still make for a low-quality TLAS, which is undesirable for performance.

2.5.5 Re-braiding

The TLAS has one flaw: highly overlapping objects in the world can significantly reduce the quality
of the TLAS, which is not uncommon in real-world scenarios. Benethin et al. proposed a partial
re-braiding scheme to ’open and merge’ BLASes during the TLAS build to reduce this issue [32],
which reduces overlap and improves SAH cost. The method avoids excessive re-braiding of BLASes
by only applying this step where it would provide the most gain in terms of the SAH quality. One
consequence of this method is that the TLAS now contains multiple openings to the same object.

15

2. BACKGROUND AND RELATED WORK

2.6 Conclusion from Literature Review
From this literature review, we can conclude that builders exist who can handle large and distant
primitives in the scene. When using high-quality builders, such as the binned top-down builder from
Bittner et al. [25] from Section 2.3.1 or the agglomerative clustering method from Walter et al. [9]
from Section 2.3.2, the builders can handle scenes with distant primitives. The binned top-down
builder can do this by recognizing a significant decrease in the heuristic score when splitting the
distant primitives from the other primitives in the scene, and the agglomerative clustering method
has a distance function that will be large when trying to merge the distant primitives. However, both
methods require unfeasible construction times for interactive applications that require many rebuilds
because of animations due to the number of splitting planes or nearest neighbor searches required to
get a good result. Therefore, for interactive applications, we require the construction times to be low.

The fast construction algorithms use Morton Codes as a speedup for nearest neighbor searches
(AAC [14]) or as a layout of a spatially split BVH (LBVH [6]). However, Morton Codes suffer from
increased scene bounds size when distant or large primitives exist. So, methods such as AAC [14]
and PLOC [8] from Section 2.3.2, LBVH [6] and HLBVH [7] from sections 2.4.1 and 2.4.2 all suffer
from the same issue when the scene bounds grow. EMC [16] from Section 2.4.3 does help with these
instances by assigning more bits to larger axes, but if the scene’s bounds grow out of proportion, it
still suffers.

Extending our BVH with a hierarchical TLAS/BLAS structure helps mitigate the issues of large
and distant primitives at the object level, allowing for high-quality BVHs for every object in the
scene. However, the quality of the TLAS still deteriorates with distant or large objects at the edge of
the scene, and a bad TLAS could still be a bottleneck for an interactive application.

Therefore, from all of this evidence, we conclude that a new method is required to build a better-
quality BVH quickly in scenes with large or distant primitives. As all fast builders use Morton
Codes, the best location to increase the quality of these builders is by improving the Morton Code.
Furthermore, improving these new Morton Codes will also improve all construction methods that
require these codes.

A full comparison of all discussed builders in this Section is visualized in Table 2.

Name GPU Speed Quality Uses MC Can Handle Large Scenes
Binned Top-Down Yes Very Slow Very Good No Yes
Agglomerative Clustering No Very Slow Good No Yes
AAC No Slow Good Yes No
PLOC Yes Fast Good Yes No
LBVH Yes Very Fast Medium Yes No
HLBVH Yes Medium Good Yes No

Table 2: Contains a comparison of all discussed builders

16

3. PROPOSED METHODS

3 Proposed Methods
This chapter will explain our new proposed methods to overcome the issues with the current EMC
implementation [16]. Section 3.1 will list the requirements for our new methods. Then, Section
3.2 explains our novel occupation grid, followed by our two new methods that use our occupation
grid to optimize scenes with distant primitives, mipping and binning, described in Section 3.2.2 and
3.2.3 respectively. Lastly, Section 3.3 will explain our minor changes to scene bounds computation to
enhance the positional accuracy for scenes with large primitives at the edge of the scene, which can
be implemented immediately in any existing computation of the codes.

3.1 Requirements
As we saw in Section 2, a fast builder does not handle scenes with distant or large primitives well,
as many fast builders [6] [7] [8] [14] rely on Morton Codes [11], which suffer from the teapot in
a stadium problem, while builders that can handle scenes with distant or large primitives have high
construction times. Therefore, we propose improving Extended Morton Codes [16] for distant or
large primitives so that fast builders can create BVHs of higher quality in these cases. Our new codes
must fulfill the following criteria:

• Efficiently Handling Distant Primitives: Our method should perform equal or better than
EMC in cases where the scene bounds stretch into one or more directions. The easiest way to
asses this is by adding distant primitives to existing scenes and using both EMC and our new
method to compare their respective LBVHs in terms of rendering performance.

• Efficiently Handling Large Primitives: Our method should perform equal or better than EMC
in cases where the scene bounds stretch because of large primitives at the edge of the scene.
The easiest way to assess this is to use a large scene with large objects and use both EMC and
our new method to compare their respective LBVHs regarding rendering performance.

• Generality: Our method should work for any scene or object.

• Low Total Build Times: The overall build time compared to LBVH should not increase
significantly, making our method feasible for real-time applications such as games.

• Black Box Behaviour: Our new codes must be directly usable for existing construction
algorithms that rely on Morton Codes without changing the construction algorithms.

• Low Global Memory Requirement: As games use many objects in their scenes, we want to
use as little global memory as possible so that the data necessary for constructing a BVH stays
as low as possible.

• Simplicity of Use: Our new codes should be easy to use without tuning many complex
parameters per scene.

17

3. PROPOSED METHODS

3.2 Improvements for Distant Primitives
3.2.1 Occupation grid

While investigating low-bit EMCs of 3D objects, we found that many objects use less than 50% of
the possible codes. For instance, a 9-bit MC has 287 cells that do not contain any primitives from the
512 available cells for the Stanford bunny. The Stanford bunny is a relatively dense object, so many
objects will have more empty cells, mainly because primitives are rarely evenly distributed over a
scene, as that would look like noise or the inside of an object contains unnecessary primitives. Also,
many objects are concave in shape (they curve inwards, like spoons, bowls, or starfish) instead of
convex (curve outwards, like spheres, dice, or capsules), reducing the occupied space. Furthermore,
some objects inherently create many empty cells, especially when an object has an L- or T-shape
somewhere in its design, such as the objects in Figure 5.

Figure 5: Visualization of the Stanford Bunny’s L-shape and a lamp’s T-shape.

In the case of a TLAS with re-braid enabled, objects could be very dense at one point in the scene
but distant at another due to the ’opening’ of BLASes from re-braid. Therefore, re-braid requires
more accuracy in parts of the scene where many BLASes overlap.

Therefore, considering that the low-bit EMCs (without size bits) make up a grid and the low-bit
EMCs are indexes of different cells, we can store information about the scene in the cells. The low-bit
EMC can then serve as an index to the cell of a primitive, which can be a single-bit boolean (true or
false) that indicates that a primitive occupies the cell or a 32-bit dword, where a dword is a 32-bit
unsigned integer, containing the number of primitives in the current cell. We can use this information
to enhance the code by removing or moving splits. Examples of these different occupation grids are
given in Figure 6.

18

3. PROPOSED METHODS

Figure 6: Shows the two different types of occupation grids. The left Figure is a binary
bitmap containing black cells that show occupied cells, while the right Figure counts the

number of primitives in a cell.

The global memory requirement for such a grid will scale exponentially by the number of bits
used in our occupation grid. We will describe the memory in bits β and dwords u.

For an occupation grid that uses a boolean bit to indicate the occupation of a cell (1 for occupied,
0 for empty), the memory requirement is β = Θ(2b), where b equals the number of bits used for the
grid. For single bits, u = ⌈ β

32⌉, as every bit fits into a dword. For an occupation grid that stores a
count of the number of primitives in a cell, u = Θ(2b) and β = u∗32. Table 3 shows the analysis for
low-bit occupation grids.

Bits for Occupation Grid 3 4 5 6 7 8 9
1-bit boolean (β) 8 16 32 64 128 256 512
1-bit boolean (u) 1 1 1 2 4 8 16
32-bit counters (β) 256 512 1024 2048 4096 8192 16384
32-bit counters (u) 8 16 32 64 128 256 512

Table 3: Shows the global memory requirement for using a specific type of occupation
grid.

As bits and counts can come from any primitive scene, our occupation grid will use atomics for
its construction. Per primitive, the work required is Ω(1). However, atomics could increase the build
time as writing to the same memory requires serializing access to the memory address, which could
be O(g) time, where g is the number of workgroups.

3.2.2 Mipping

With Mipping, we create different layers of our occupation grid to compute which bits we need from
the code quickly, similar to mipmaps used in games to create different levels of details of textures.
Our method starts by assigning a cell to each primitive and flipping a corresponding bit to the cell in
our occupation grid to a 1 with atomic operations to indicate a primitive in that cell. We then create
mip layers in parallel by merging 8 bits of the previous layer into 1 bit in the next layer. If any of the
previous 8 bits are on, the bit of the next layer will also be on. The outcome of this process would be
the occupation grid if we used 3m−3 bits, where m is the number of mip layers. We do this process

19

3. PROPOSED METHODS

m times, one time for each layer in shared memory. If we let every thread read eight 32-bit dwords,
then every thread can construct one dword for the next layer, which prevents the necessity of atomic
operations in higher layers. We show a 2D visualization of this process in Figure 7.

Figure 7: Shows the different layers of an occupation grid, where black means occupied
and white means empty. At the top, we have a 2D visualization of the occupied cells, and
below, we have a representation of the 2D map in memory. Every layer merges 4 bits of
the previous layer, which increases the size of blocks in the previous layer by 4. The cell
indicated by red has a Morton Code value of 57, which is 111001 in binary. We will use

this red cell as an example to reduce the bits necessary for all primitives in this cell.

When we want to compute the code for a primitive, we move through the mips to figure out which
bits are necessary. We start at the topmost layer and consider the 8 bits that a primitive is in, which
can be figured out from its cell code. We can then check which bits were necessary by looking at a
lookup table that encodes the possible bit maps shown in Figure 8.

Figure 8: Shows the different possible 2D bit maps. Some of these bit maps have multiple
rotations, and there are 16 possible bit maps, one of which is empty. For 3D, there are 256
possible bitmaps.

With these lookup tables, we can quickly find the necessary bits for a cell (An example is the red cell
of Figure 7), as shown in Figure 9.

20

3. PROPOSED METHODS

Figure 9: Shows the reduction in necessary bits for the red cell in Figure 7.

After figuring out the concise cell index containing only the necessary splits, we can compute the
rest of the code within the cell. We then concatenate the cell index and the code within the cell to
obtain the final code.

Our method’s benefit is removing all unnecessary splits in the topmost part of the code and adding
bits to specific sections. Furthermore, because the cells’ bounds are smaller than the bounds of the
scene, the final float calculation of the code within the cell will be more accurate. One disadvantage
of our method is that it will give many bits to some parts of the scene, which might differ from the
parts that require more accuracy.

Analysis: For generating the mip occupation grid, every thread in a workgroup handles a single
primitive. Every thread then finds the cell for each primitive in O(1) time and, in the best case, merges
the occupied cells locally using an atomic bitwise or in shared memory in Ω(1) time. Then, every
bit in shared memory merges with the global memory using an atomic bitwise or in Ω(1) time. So,
the grid generation is in the best-case Ω(1) time, but the hardware will serialize accesses to the same
memory addresses. Therefore, a more precise worst-case estimation is O(t) time for the merge in
shared memory and O(g) time for the merge in global memory, where t is the number of threads in
a workgroup and g is the number of workgroups. Alternatively, as a 32-bit dword describes 32 = 25

cells and a grid has 2b cells, where b is the number of bits used for the grid, we can have a complexity
of O(2b−5) time for grids that have t > 2b−5 by assigning every thread with its piece of shared memory
and merging the cells with a for loop and wave intrinsics. Therefore, the worst-case time complexity
for generating the grid is O(g+ t) or O(g+2b−5) based on the size of the grid.

Next, every thread finds the concise index of a primitive by finding its grid cell in O(1) time and
traversing the different mip layers, checking 3 bits per layer, in Θ(b/3) = O(b) time, where b is the
number of bits used in the grid. Therefore, the total added complexity in the worst-case is O(g+t+b)
or O(g+2b−5+b) time, based on the size of the grid. We added the pseudocode of the whole method
in Appendix 8.1.

3.2.3 Binning

Binning is similar to the binning method described by Bittner et al. [25], which used a fixed number
of bins for faster top-down construction with SAH, with one key difference. We describe our binary

21

3. PROPOSED METHODS

binning method, where we use the occupation information from the scene and the surface area of the
cells as an approximation of the surface area.

With Binning, we create a 7-bit occupation grid with one 32-bit integer for every cell, which keeps
count of the number of primitives in that cell using atomic increments. We then create bit maps of
the grid that describe the occupation with less accuracy but with better storage and efficiency of the
computation.

To create these bit maps, we first convert our occupation numbers as if one would generate an axis
code in an MC. We find the maximum and (non-zero) minimum occupation cell, and we convert our
occupation to a a-bit value, where a is the desired accuracy of the occupation.

We use the a-bit value in a+ 1 bitmaps that describe the scene’s occupation. We prepend one
bitmap similar to the occupation grid of Mipping, where the bit is set to one if there is at least one
primitive in the cell, making the search for the minimum and maximum occupied cell easier. The
remaining bit maps will store every cell’s different a-bit values. We visualize this process in Figure
10.

Figure 10: Figure showing the split of a counted occupation grid to a binary occupation
grid with two layers for a 2-bit occupation value. The blue cells are the densest, followed
by green and red.

A critical part of our method is finding the mask of the current split. We suggest changing the bit
layout of the cell code to follow a different layout instead of the standard MC or EMC layout. First,
find out the order of the different axes and sort them; we call the longest axis l, the middle m, and
the smallest axis s. Instead of interleaving the bits, we start with all of the s bits, followed by all of
the m bits, and lastly, the l bits. We use 7 bits, as this reduces the number of cases of different bits
used within a single 32-bit dword. For 7 bits, the number of cases comes down to mmlll, mllll, and
lllll. For 6 bits, we would also have the smmll case when all axes are approximately the same length.
Having an s bit in the 32-bit dword in the 7-bit case is impossible as we would need more than two
bits for s, which would mean that s has more bits than m, contradicting that it is the smallest axis. As
we know the number of bits l uses, we can create the mask and the minimum and maximum occupied
cell of the current split with bitwise operations in O(1) time.

To compute the approximate occupation o can then be computed from the a bit maps in the
following fashion:

22

3. PROPOSED METHODS

1: a = #bits used for bitmaps
2: bitmaps = bitmaps containing the occupation
3: mask = mask of current split
4: count = 0
5: for layer = 0; layer < m; layer=layer+1 do
6: bitmap = bitmaps[layer] & mask
7: count = count + countbits(bitmap) * (2layer)
8: end for

Where countbits() counts the number of non-zero bits in a bitmap, or in our case, the number of
occupied cells in the current layer.

To compute the approximate SAH value of a split, we create a left and right mask for the split and
calculate the value of the following function:

SAHcell(x, l,r) = countl
SA(minl,maxl)

SA(minx,maxx)
+ countr

SA(minr,maxr)

SA(minx,maxx)
(8)

Where x is the parent node, l, r is the left and right split, respectively, and the function SA computes
the surface area of the cells between a min and max value.

While evaluating the above cost function, we noticed that the cost function could make more
rectangle-like boxes, which is undesirable for MCs or EMCs. Therefore, we decided to add a
squareness factor called the ’Stretch factor,’ which is the difference between the length of the smallest
and largest axes. We define the cost of having a more rectangle-like box as follows:

SF(min,max) =
maxd((max−min)d)−mind((max−min)d)

maxd((max−min)d)
(9)

Where maxd , mind returns the maximum and minimum length of an axis inside a vector v⃗. By
normalizing the scene extent by the largest axis, this function will return a value between 0 and 1.

To add the Stretch Factor to the SAHcell score, we normalize the SAHcell score to become:

SAH ′
cell(x, l,r) =

countl ∗SA(minl,maxl)+ countr ∗SA(minr,maxr)

(countl + countr)∗SA(minx,maxx)
(10)

Which also accounts for normalization. We can then combine the scores with a parameter λ that
determines the importance of the Stretch Factor:

Score(x, l,r) = (λ −1)∗SAH ′
cell(x, l,r)+λ ∗ (SF(minl,maxl)+SF(minr,maxr)) (11)

We implemented binning by using a queue to efficiently and evenly distribute the workload of a
single level over the different threads in a thread group.

Queue design: At any point, the maximum number of possible splits for a 7-bit grid is 127,
which happens when the bit layout only consists of bits from the largest axis, which follows from
the observation that the grid contains only 128 cells and, therefore, having more than 128 bins is

23

3. PROPOSED METHODS

impossible. This observation limits the complexity of the queue that we have to use. Therefore, we
will only use a single wave (64 threads) to handle the queue, where each thread processes a maximum
of 2 tasks, and no atomic increments are needed to track which task needs to be processed.

We have a queue containing tasks that are related to the splitting of a section. Each task contains
z subtasks: z = (binsl − 1)+ (binsm − 1)+ (binss − 1) Where z can be 0 if the split reaches a single
cell, this single cell will also be a single subtask that pushes this cell and an empty cell to the next
queue. Every thread finds subtasks in the queue and pushes them on its local stack. Every thread then
works on the tasks to compute the score and performs a min operation if two subtasks have the same
parent task. Then, an atomic min in shared memory finds the lowest scoring subtask for each parent
task. The thread with the lowest scoring task enqueues the next sub-tasks. We perform q passes to
create 2q different splits, and we store the split that contains the current cell in the location that stored
the occupancy of each cell to reuse and save memory. We added some pseudocode in Appendix 8.2.

Analysis: For generating the counting occupation grid, every thread in a workgroup handles a
single primitive. Every thread then finds the cell for each primitive in O(1) time and, in the best case,
merges the occupied cells locally using an atomic increment in shared memory in Ω(1) time. Then,
every bit in shared memory merges with the global memory using an atomic add in Ω(1) time. So,
the grid generation is in the best-case Ω(1) time, but the hardware will serialize accesses to the same
memory addresses. Therefore, a more precise worst-case estimation is O(t) time for the merge in
shared memory and O(g) time for the merge in global memory, where t is the number of threads in a
workgroup and g is the number of workgroups. We can use the same process as mipping, where we
assign shared memory per thread, but as we use a 7-bit grid here, we will not cover the complexity
for that version. The total time complexity for generating the grid is O(g+ t) time.

Then, we have to generate the s = 2d splits, where s is the total number of splits and q is the split
depth. The number of processed tasks is O(2q+1 − 1) = O(2q+1) time. The subtasks subdivide over
the different threads in a for loop over all tasks per level in O(sl) time, where sl = 2ql is the number
of splits at the current level l. Every thread can find the min and max in O(1) time and compute the
count of the primitives in O(m) time of a subtask, where a is the number of bits for the approximated
count. The number of subtasks a thread needs to process is at most 2 per level, so every thread needs
to perform O(2a) = O(a) work per level. The subtasks merge with an atomic in O(t/sl) time, and
the threads write the new tasks in O(1) time. So, for a specific level l, the complexity of that level
is O(t/sl + sl +m) time for q levels so a final complexity of O(∑

q
l=0 t/sl + sl + a) time. We can

approximate O(∑a
l=0 t/sl) to O(2t) = O(t) as the sum unrolls to t + t/2+ t/4+ ...t/2q ≤ 2t for a final

complexity of processing the queue of O(t +2q+1 +qa) time.
Lastly, to find the split that the current primitive lies in, we can read the split stored in the

occupancy counter of the current cell in O(1) time. Therefore, the total time complexity of our
method is

O(g+ t)+O(t +2q+1 +qa) = O(g+ t +2q+1 +qa) (12)

g is the number of workgroups, t is the number of threads in a workgroup, q is the split depth, and a
is the number of bits used for the approximated count. Following this analysis, we want to keep the
depth q low.

24

3. PROPOSED METHODS

3.2.4 Expected Benefit Mipping and Binning

We expect that the occupation grid, combined with our Mipping and Binning strategies, will be able to
delay a performance drop in large scenes when we grow the scene bounds by multiplying the bounds
by 2e, where e is the extension value. We expect our methods to delay the performance drop by the
following equation:

moved(f) = log2(f)/d (13)

Where d ∈ {1,2,3} is the number of dimensions the scene bounds grow and f is the number of grid
cells in our occupation grid from Section 3.2.1. Then, if a performance drop happens at a specific e
value, Mipping and Binning will have the performance drop at the following equation:

dropd(f) = e+moved(f) (14)

Where e is the extension value, where the bounds is extended by 2e, d ∈ {1,2,3} is the number of
dimensions the scene bounds grow and f is the number of grid cells in our occupation grid.

3.3 Improvements for Large Primitives at the Scene’s Extent
Lastly, we propose a slight change to how to compute the scene’s bounds. Usually, this is done by
taking the bounding boxes of all primitives and computing the max and min of all bounding boxes.
One could consider using the centroids as new bounds. However, we tested this strategy, and it came
back with mixed results, likely due to a significant shift in splits for objects with large primitives,
which might be bad for LBVH, which highly benefits from having the first split in the middle of the
scene. Therefore, we calculate the max and min of all bounding boxes and the max and min of the
centroids and then calculate the minimum difference of these bounds for each axis, which makes the
bounds of the scene more concise while keeping the first splits in the center of the scene. We show
the calculation of the concise bounds in Equation 15, and a visualization of the calculation in Figure
11.

di f f erence = vmin(centroidmin −boundsmin,boundsmax − centroidmax)

concisemin = boundsmin +di f f erence
consisemax = boundsmax −di f f erence

(15)

Where vmin computes the minimum value of each dimension given two vectors, bounds are the
standard scene bounds and centroid are the centroid bounds.

Figure 11: Shows the location of our concise scene bounds in 2D. The blue box is the normal scene
bounds, the red box is the centroid bounds, and the green box is our new concise bounds.

25

4. RESULTS

4 Results
In this Section, we will look at the results of our new strategy of generating codes and other
improvements presented in Chapter 3 for the fast construction and querying of ray tracing in real-
world scenarios. To test these scenarios, we implemented our methods of Section 3 within the AMD
DirectX 12 driver, which allows us to run the experiment on existing games and applications that use
the DXR API [33] and use AMD tooling to generate results. Furthermore, we can lock the core clock
speed of the GPU in the driver to create minimal variance in the results.

For this experiment, and with the requirements listed in Section 3.1, we are interested in the
following:

1. Efficiently Handling Distant Primitives: How well do our Mipping and Binning strategies
perform in large scenes with distant primitives? And what about regular scenes that do not
contain distant primitives?

2. Efficiently Handling Large Primitives: How well do our new scene bounds perform in large
scenes with distant primitives? And what about regular scenes that do not contain distant
primitives?

3. Low Total Build Times: How much extra build time do our Mipping and Binning strategies
require?

4. Simplicity of Use: Is there an optimal Stretch Factor parameter for our Binning strategy?

We do not require more experiments for the other requirements as they are fixed or based on a
parameter of the strategy:

1. Generality: All of the strategies work for any scene or object

2. Black Box Behaviour: Our new strategies are all immediately usable for all existing builders
that rely on Morton Codes

3. Low global memory requirement: For our new scene bounds, this is 6 ∗ 4 = 24 bytes; for
Binning, this is 128 ∗ 4 = 512 bytes, and for Mipping, we set the number of grid bits b ≤ 12,
which is at most 4,096 bits 512 bytes.

We will measure these metrics by building a 4-Wide LBVH with subtree collapsing for all
TLAS/BLAS in the scene that uses our new codes to describe the hierarchy. Furthermore, the
TLAS uses Re-braid, which creates extra dense regions in the TLAS due to the opening up of
BLASes. Because we use AMD hardware, we can measure build times from the Radeon Developer
Panel™[34], combined with the Radeon GPU Profiler™[35]. Furthermore, AMD provided us with
an internal tool that captures game scenes and allows us to test the rendering performance of different
BVHs for different ray types. The ray types that we are interested in, and that are most of the rays in
a raytracer, are:

26

4. RESULTS

1. Primary Rays, which originate from the camera

2. Global Illumination Rays, which originate from surfaces, lighting up the environment

3. Ambient Occlusion Rays, short rays from surfaces adding more shadow due to closely
positioned objects

4. Soft Shadow Rays, extra shadow rays sent to light sources to capture partially occluded light
sources more accurately

There are other ray types, such as Reflection and Refraction rays, but these are more special ray types
similar to Global Illumination Rays, originating from surfaces.

To measure build times, we will run the strategies 100 times over various scenes that differ in the
number of primitives. These scenes will consist of a single BVH that encapsulates all of the primitives
in the scene. This way, we can see how Mipping and Binning compare to the construction time of
LBVH with EMC. We do not measure the increased construction time of the scene bounds strategy as
it only updates the scene bounds, which is a negligible increase in the construction time. The scenes
used are listed in Table 4

Teapot White Oak Bunny Sponza Chestnut Conference
#Primitives 16k 37k 144k 262k 317k 330k

In EMC [16] No No No Yes No Yes
Dragon Buddha Levi Hairball San Miguel Powerplant

#Primitives 871k 1,087k 1,710k 2,880k 9,981k 12,759k
In EMC [16] No No No Yes Yes Yes

Table 4: List of all standard scenes used to measure build times, with the number of primitives per
scene, and whether the scene was also in the EMC paper [16]

To find the optimal importance value λ of the Stretch Factor for Binning, we will run Binning
3 times over the different scenes with different values for the importance of the Stretch Factor. We
will measure the change in tracing performance for 7 seconds over the different ray types in different
game scenes listed in Table 5. To measure how well Mipping and Binning from Sections 3.2.2 and
3.2.3 respectively deal with large scenes that either do or do not contain distant primitives, we will
inject a distant triangle into game scenes to grow the scene bounds, which creates a worse TLAS. We
will multiply the scene’s size by a factor of 2e, where e is the extension value, along a single axis and
all three axes, which essentially removes e-bits of precision along an axis for EMC but should be less
for Mipping and Binning. We will compare our codes with the 64-bit versions of EMC, but we will
not use size bits for EMC as we are only interested in improving the code for the position. Mipping
will use an occupation grid of 9 bits (512 cells), and Binning will use 7 bits (128 cells). The game
scenes used for this raw tracing performance data are listed in Table 5.

27

4. RESULTS

Game Game Studio Publisher
Cyberpunk 2077 [1] CD Project Red CD Project Red
Control [36] Remedy Entertainment Remedy Entertainment
Deathloop [37] Arkane Studios Bethesda
Dying Light 2 [38] Techland Techland
Plague Tail Requiem [39] Asobo Studio Focus Entertainment
Port Royal (3D Mark) [40] UL Solutions UL Solutions
Resident Evil [41] Capcom Capcom

Table 5: List of all scenes used for raw tracing performance data.

As a frame in a game consists of both a construction phase and a tracing phase, we will also
measure the performance within some games that support ray tracing and have a benchmark. Table 6
lists the games used for this data.

Game Game Studio Publisher
Cyberpunk 2077 [1] CD Project Red CD Project Red
Forza Horizon 5 [42] Playground Games Xbox Game Studios
Port Royal (3D Mark) [40] UL Solutions UL Solutions

Table 6: List of all real-time applications used for full frame performance data.

For this experiment, we will run our tests on a single test machine with the following hardware:

• CPU: AMD Ryzen 7 7700

• GPU: AMD RX 7800XT (Navi 3)

• RAM: 32 GB DDR5

• OS: Windows 11

However, we can only provide numbers that are relative to existing methods. Due to an NDA
signed between the author and AMD, these can be differences in build or render times in percentages,
not absolute time or frames per second.

4.1 Added Construction Time
From Table 7, we can see that both Mipping and Binning create some overhead in the construction
time. For both Mipping and binning, the relative construction time decreases when the number of
primitives in the scene increases because the relative size of the Morton Code generation phase
compared to the LBVH construction phase becomes smaller for larger scenes. Interestingly, both

28

4. RESULTS

scenes seem to struggle more with the White Oak and Bunny scenes. The compactness of both scenes
is likely a factor for this result, but we are unsure what the root cause is.

For Mipping, the construction time logically increases when b increases. We also see a significant
increase in construction time when using b = 12, likely because the memory significantly increased
and more random accesses are necessary, which is terrible for caching. A good balance between
information and construction time seems to be b = 9, as you have eight times more cells than b = 6
but only 4-6% more construction time.

For Binning, the construction time is significantly higher when using a larger q, which also follows
from the analysis in Section 3.2.3, which stated that the runtime complexity is O(g+ t +2q+1 +qa).
We see that the difference in relative construction time between q= 2 and q= 4 is roughly 25%, while
between q = 4 and q = 6 this is roughly 40%. Therefore, q = 4 should be a good balance between
better splitting and construction time. We also see that the build time linearly increases as a increases,
which also follows from the analysis, but in some cases, it only increases after a = 4 (such as for
teapot BIN(q = 4)). The reason for this could be that the differences in information create a different
splitting in which more threads can exit earlier, but we are unsure whether this is the root cause.

Teapot White Oak Bunny Sponza Chestnut Conference Dragon Buddha Levi Hairball San Miguel Powerplant
MIP (b=6) 17.63 22.1 24.54 18.14 18.66 17.87 12.1 10.52 11.44 11.46 11.06 11.16
MIP (b=9) 21.42 26.37 28.83 23.41 24.34 23.7 16.67 15.22 16.84 16.72 16.04 16.39
MIP (b=12) 50.73 56.44 65.47 61.25 61.25 60.67 49.38 45.38 47.36 43.67 42.04 43.51
BIN (q=2) (a=0) 38.89 41.72 43.36 38.64 38.95 37.89 30.26 26.97 27.98 25.51 24.08 25.84
BIN (q=2) (a=1) 39.72 42.7 44.52 39.39 40.06 39.67 30.31 27.71 28.8 26.29 24.79 26.72
BIN (q=2) (a=2) 40.04 43.39 45.64 40.37 41.54 40.92 31.25 28.63 29.67 27.24 25.63 27.57
BIN (q=2) (a=3) 40.38 44.08 45.99 41.92 42.32 41.51 32.22 29.5 30.46 27.5 26.38 28.37
BIN (q=2) (a=4) 41.54 45.16 47.01 42.46 43.47 42.69 33.16 30.38 31.38 28.36 27.46 28.87
BIN (q=2) (a=5) 42.36 45.81 47.83 43.79 44.59 44.25 33.93 31.17 32.21 29.74 28.24 29.63
BIN (q=2) (a=6) 43.18 46.45 48.91 44.78 45.47 44.99 34.91 32.03 32.97 30.55 28.95 30.41
BIN (q=2) (a=7) 43.6 47.32 49.74 45.78 46.62 45.9 35.88 32.94 33.92 31.75 29.75 31.25
BIN (q=2) (a=8) 44.04 48.22 50.9 46.81 47.66 46.71 36.76 33.77 34.78 32.59 30.52 31.99
BIN (q=2) (a=9) 44.84 48.85 51.83 47.9 48.91 47.82 37.73 34.67 35.66 33.45 31.3 32.78
BIN (q=4) (a=0) 59.03 61.11 71.68 70.0 70.19 69.33 57.37 51.95 52.96 49.63 45.53 48.7
BIN (q=4) (a=1) 58.35 61.7 72.11 70.76 71.2 70.27 57.39 52.91 53.8 49.89 46.4 49.38
BIN (q=4) (a=2) 60.25 63.83 73.41 72.03 72.47 71.38 58.58 54.2 55.12 51.13 47.56 50.54
BIN (q=4) (a=3) 59.95 64.8 75.78 73.55 74.78 72.25 59.84 55.21 55.9 52.17 48.48 51.52
BIN (q=4) (a=4) 61.07 65.68 76.79 75.02 75.28 73.43 60.99 56.33 56.96 53.18 49.51 52.62
BIN (q=4) (a=5) 62.08 66.73 78.07 76.66 76.77 74.98 62.39 57.38 58.14 54.34 50.48 53.54
BIN (q=4) (a=6) 63.56 67.95 79.22 77.84 78.04 75.54 63.5 58.47 59.14 55.34 51.38 54.55
BIN (q=4) (a=7) 63.87 68.44 80.63 78.12 79.39 77.35 64.61 59.55 60.13 56.37 52.37 55.47
BIN (q=4) (a=8) 65.7 69.85 81.88 79.95 81.0 78.67 65.8 60.63 61.34 57.42 53.37 56.52
BIN (q=4) (a=9) 66.73 71.06 83.28 81.48 82.59 79.84 66.96 61.71 62.49 58.53 54.35 57.56
BIN (q=6) (a=0) 92.9 99.95 120.79 120.62 122.35 116.38 101.65 92.59 94.6 89.57 77.79 82.87
BIN (q=6) (a=1) 95.42 101.36 121.87 122.95 124.27 118.48 102.46 95.03 95.97 90.84 79.57 84.03
BIN (q=6) (a=2) 95.44 103.2 124.32 124.11 126.93 121.5 104.26 96.32 97.63 92.41 80.86 85.3
BIN (q=6) (a=3) 95.26 104.41 127.15 126.53 128.3 123.17 105.65 97.53 99.06 93.92 82.13 87.07
BIN (q=6) (a=4) 96.66 105.77 128.87 127.39 130.38 120.78 107.49 99.09 100.49 95.2 83.15 88.12
BIN (q=6) (a=5) 97.84 106.57 130.78 129.75 131.62 125.96 109.25 100.56 101.96 96.53 84.42 89.39
BIN (q=6) (a=6) 100.41 108.04 132.01 130.77 133.31 127.68 110.79 101.84 103.52 98.02 85.65 90.61
BIN (q=6) (a=7) 101.74 109.27 134.25 132.42 135.65 125.65 112.34 103.31 104.98 99.41 86.73 91.76
BIN (q=6) (a=8) 100.76 110.63 135.5 135.09 137.5 126.99 113.98 104.73 106.29 100.82 88.06 93.11
BIN (q=6) (a=9) 101.67 111.98 137.35 136.35 139.37 128.31 115.65 106.36 107.93 102.36 89.31 94.9

Table 7: Shows relative construction times to LBVH with EMC when using our new Mipping (MIP)
and Binning (BIN) strategies from Section 3.2.2 and 3.2.3 respectively. The left column shows the
different parameters for our methods. b is the number of bits used for the occupation grid in Mipping.
q is the split depth, and a is the number of bits used for the approximate count in Binning.

29

4. RESULTS

4.2 Different Parameters Binned Splitter
4.2.1 Visualization of Binned Splitter

From Figure 12, we can see that the Binned splitter can significantly reduce the amount of space in
the initial splits of LBVH with EMC in cases where objects have an L- or T-shape. In the case of
the Bunny, it correctly recognizes that the top-right is empty and, therefore, can reduce the size by
splitting the ears and the head instead of having a small piece of the right ear with a small piece of
the main body. For the Lamp, we see that Binning splits the head and the base of the Lamp first, and
then both sections are divided further without much overlap, which is much better than the initial four
splits of LBVH with EMC.

Figure 12: Shows the difference in splits when using standard LBVH with EMC (top) and
the Binned Splitter (bottom) for the Stanford Bunny scene and a Lamp.

4.2.2 Performance Data of Binning

From the Tables 8, 9, and 10, we see that the Binned SAH splitter has a mostly positive effect on the
rendering performance of almost all ray types except for Soft Shadow Rays, shown in Table 11 in
Cyberpunk, Plague Tail Requiem, and Port Royal. Control and Deathloop show mixed results, while
Dying Light and Resident Evil show a drop in relative performance.

However, the data does not reveal an optimal value for all games. For instance, for Cyberpunk,
Plague Tail Requiem, and Port Royal, we can see that an importance value for the Stretch Factor of

30

4. RESULTS

λ = 1/8 shows a good improvement for all different ray types. However, Control benefits more from
λ = 1/2 in its views, showing that Control benefits more from more square boxes than Cyberpunk,
Plague Tail Requiem, and Port Royal, which might also be related to the fact that Control benefits less
from our method. Therefore, if a developer wants to use our method inside their game, they should
adequately investigate what value of λ works for their game by testing many different views inside a
scene. This result differed from what we hoped for, but we will use the value of λ = 1/8 for the other
experiments.

As the data in the Tables 8, 9, 10, and 11 does not include build times, and the additional build
times from Table 7 in Section 4.1 shows that the relative build time is worse for smaller objects, we
think that these gains will not hold up against the loses in additional build times. If this is the case,
this will be shown in Section 4.5.

1 1/2 1/4 1/8 1/16 1/32 1/64 1/128 1/256 1/512 1/1024 1/2048
Cyberpunk V0 9.47 4.16 4.66 6.8 15.12 15.06 14.93 14.99 14.99 15.0 14.91 14.93

V1 7.08 3.04 2.85 2.46 6.27 6.28 6.16 6.1 6.36 5.61 5.67 5.69
V2 0.3 3.24 3.03 4.24 4.25 4.47 4.35 4.34 4.22 4.27 4.29 4.21
V3 13.07 5.18 5.33 6.69 13.16 13.05 12.95 12.96 12.67 11.43 11.34 11.34
V4 2.13 4.53 4.88 6.62 4.46 4.26 4.26 4.14 4.21 3.54 3.44 3.49

Control V0 12.46 11.98 -1.98 -1.84 -1.92 -0.72 0.04 -0.01 0.07 -0.01 0.06 0.04
V1 13.82 10.18 2.68 3.73 3.82 2.07 1.96 1.21 1.26 1.31 1.18 1.33
V2 -3.24 -2.78 3.66 5.84 6.07 8.57 8.78 8.53 8.71 8.73 8.7 8.61
V3 -7.05 -10.89 -8.79 -7.67 -7.82 -7.79 -7.66 -7.71 -7.71 -7.73 -7.81 -7.67
V4 -12.71 -7.4 -12.63 -12.18 -12.11 -9.49 -9.34 -9.45 -9.38 -9.41 -9.42 -9.42

Deathloop V0 -1.05 2.41 1.29 3.79 0.18 1.45 2.61 3.5 3.63 2.44 2.31 2.36
V1 -2.19 2.49 1.95 -1.05 -3.4 -3.79 -4.79 -4.83 -4.89 -4.72 -4.79 -4.84
V2 -1.42 -0.81 2.37 14.57 6.46 6.32 6.37 3.71 3.75 3.7 3.96 3.66
V3 -1.74 3.24 3.9 -2.45 -2.39 -3.07 -3.08 -2.96 -2.67 -2.75 -2.96 -2.94
V4 2.21 -3.71 -8.84 7.83 7.22 7.16 7.19 6.55 6.46 6.55 6.47 6.58
V5 -4.94 0.96 5.8 6.32 5.1 4.22 2.86 1.85 1.71 1.9 1.82 1.82
V6 -1.12 -0.91 2.36 -3.88 0.15 0.1 -0.11 -0.12 -0.08 -0.04 -0.13 -0.17
V7 1.98 -5.92 -8.29 2.55 -3.13 -3.24 -3.15 -3.25 -3.22 -3.18 -3.25 -3.31

Dying Light V0 -0.46 -0.32 -0.65 -1.0 -2.54 -2.51 -2.53 -2.57 -2.83 -2.76 -2.62 -2.59
V1 -7.87 -5.34 -5.38 -5.4 -3.71 -3.76 -3.88 -3.84 -4.88 -5.07 -5.11 -5.19
V2 2.92 3.88 4.05 4.12 4.02 -0.01 0.04 0.06 -1.02 -0.87 -0.79 -0.82
V3 -8.43 -9.01 -8.69 -9.78 -8.73 -7.18 -7.35 -7.23 -8.43 -8.69 -8.64 -8.69

Plague Tail V0 2.04 1.98 -2.95 -1.11 -1.14 -0.66 -0.45 -1.18 -1.21 -1.14 -1.42 -1.35
V1 -0.46 -1.0 -6.84 -2.69 -2.57 -2.73 -2.5 -4.45 -4.45 -4.38 -5.26 -5.18
V2 -0.35 -0.38 0.05 3.21 3.4 3.0 2.84 -0.38 -0.33 -0.42 -0.52 -0.38
V3 6.19 5.83 -0.93 1.61 1.64 1.55 1.45 -0.29 -0.19 -0.32 -0.35 -0.52
V4 2.44 2.19 -5.68 0.52 0.46 -0.29 0.56 -1.25 -1.23 -1.27 -1.33 -1.25
V5 -2.06 -2.24 -8.43 4.36 4.39 3.82 3.93 -2.02 -1.65 -1.58 -1.71 -1.62

Port Royal V0 -0.01 2.05 2.35 5.28 6.61 7.44 7.0 6.98 6.79 6.91 6.68 6.84
V1 1.64 0.99 1.4 6.07 4.48 4.55 4.03 2.31 1.57 1.7 1.46 1.62
V2 -1.05 6.69 5.93 3.71 4.02 2.5 1.86 1.95 1.87 2.07 1.7 1.89
V3 2.83 2.94 1.32 3.0 3.78 2.89 2.85 1.78 1.18 1.06 1.08 1.09
V4 6.33 6.36 5.79 9.12 8.33 8.47 9.12 8.58 8.43 8.18 8.38 8.27
V5 0.41 1.4 3.15 4.46 4.14 3.28 2.25 1.58 1.62 1.65 1.57 1.67

Resident Evil V0 0.7 0.48 -2.04 1.93 -2.56 -5.99 -5.81 -4.62 -4.89 -4.86 -4.98 -4.9
V1 -7.91 -7.31 -5.05 -2.05 -3.98 -6.75 -6.63 -6.94 -7.2 -7.11 -7.2 -7.07
V2 25.23 21.94 25.46 9.65 17.03 7.02 6.71 8.59 8.5 8.58 8.49 8.64
V3 1.17 4.28 5.96 4.79 -1.7 -4.57 -4.39 -4.65 -4.61 -4.62 -4.71 -4.67

Table 8: Shows the relative performance improvement/decrease of Primary Rays when using the
Binned SAH splitter for different values of the importance of the Stretch Factor. The top row shows
the importance factor λ . For many games and scenes, the rendering performance increases when using
Binning (highlighted in green), while some scenes also show a performance decrease (highlighted in
red). See Section 4.2.2.

31

4. RESULTS

1 1/2 1/4 1/8 1/16 1/32 1/64 1/128 1/256 1/512 1/1024 1/2048
Cyberpunk V0 5.37 10.34 10.67 10.91 8.84 9.11 9.9 5.98 7.37 7.46 7.59 7.15

V1 4.51 8.63 8.19 10.54 5.31 7.09 8.42 7.21 5.8 5.08 5.54 4.91
V2 8.65 9.88 9.39 11.3 11.91 12.42 12.2 9.99 11.06 11.06 9.85 10.2
V3 9.01 10.35 10.96 11.13 12.51 12.9 11.05 13.17 11.77 12.05 11.34 11.47
V4 9.64 8.5 7.58 11.31 9.5 8.3 9.73 8.95 8.69 8.5 7.56 9.16

Control V0 7.53 8.87 3.46 3.55 3.45 4.13 4.38 4.32 4.37 4.35 4.37 4.43
V1 8.42 12.2 8.03 8.75 8.71 7.85 7.79 7.67 7.67 7.78 7.74 7.73
V2 -1.8 -0.89 2.59 3.23 3.7 4.3 4.64 4.47 4.66 4.59 4.58 4.55
V3 -2.89 -3.73 0.09 0.22 0.13 -1.57 -1.54 -1.35 -1.48 -1.52 -1.55 -1.47
V4 -6.11 -2.59 -7.26 -6.8 -6.55 -1.0 -0.86 -0.79 -0.78 -0.63 -0.57 -0.6

Deathloop V0 3.74 6.24 7.03 7.03 8.04 7.07 7.89 4.52 4.9 5.46 4.04 3.29
V1 -0.02 2.82 2.89 0.42 0.99 0.3 0.57 0.02 0.57 0.67 0.35 0.42
V2 2.82 2.62 2.06 6.28 0.74 0.12 0.66 -1.4 -0.07 -1.03 -0.59 1.81
V3 6.5 11.14 3.24 13.88 -1.46 -6.41 -2.97 -4.58 -5.39 -4.55 -5.98 -5.36
V4 -8.94 -2.67 -3.95 3.08 -3.91 -3.26 -4.95 -5.99 -4.95 -8.11 -3.33 -4.47
V5 8.86 4.74 5.96 6.61 8.89 8.57 9.54 5.16 7.35 5.61 6.41 3.54
V6 13.41 5.11 3.08 2.98 11.58 6.91 7.38 7.89 6.4 7.18 7.96 8.06
V7 7.39 5.04 0.43 -6.33 0.98 7.27 4.89 3.52 4.93 1.45 0.16 1.88

Dying Light V0 -0.71 -0.55 -0.32 -1.0 -0.62 -1.46 -1.42 -1.52 -2.27 -1.75 -1.55 -1.52
V1 2.9 3.13 2.63 2.32 3.67 4.02 3.75 4.1 2.47 2.67 2.86 3.17
V2 4.29 4.77 4.92 1.29 4.53 6.08 5.37 5.19 3.24 5.61 5.11 5.29
V3 -1.55 -0.84 -0.71 -1.31 -1.48 0.37 0.94 0.81 0.0 0.2 0.3 -0.47

Plague Tail V0 -2.94 -2.58 -3.13 1.17 1.96 0.8 1.35 -4.6 -3.25 -3.56 -3.74 -2.88
V1 -3.84 -3.84 -4.28 2.77 1.83 1.89 2.83 -1.7 -2.96 -3.72 -3.15 -3.09
V2 0.79 0.04 -11.41 -4.45 -2.07 -3.83 -2.86 -6.43 -6.52 -7.84 -4.89 -5.55
V3 -1.59 -3.23 -6.68 3.34 3.72 0.82 0.11 -3.45 -2.9 -3.61 -0.38 -3.34
V4 -2.72 -3.7 -6.23 1.18 0.49 -1.57 -0.92 -3.05 -2.72 -4.59 -3.67 -3.51
V5 0.1 0.03 -2.55 -1.38 -1.1 -0.92 -0.79 -0.99 -0.84 -0.87 -0.87 -1.02

Port Royal V0 6.09 6.96 6.85 7.26 7.57 7.6 8.3 6.76 6.15 6.93 5.9 7.24
V1 1.1 1.46 2.69 4.73 4.48 3.68 3.94 1.82 2.99 3.07 3.05 3.1
V2 2.18 4.26 3.36 4.14 2.77 4.11 4.14 2.96 4.17 2.55 4.01 3.55
V3 4.43 5.89 5.77 7.44 7.08 6.15 6.35 6.5 5.46 6.53 6.2 5.49
V4 5.71 6.47 4.78 6.11 6.17 6.17 6.93 6.2 5.71 7.2 6.88 6.39
V5 -1.75 -1.77 -0.63 0.5 0.46 -0.13 -0.57 -1.61 -1.43 -1.38 -1.43 -1.39

Resident Evil V0 -0.66 -1.27 -2.61 -4.62 -5.36 -7.1 -7.72 -6.51 -7.08 -6.64 -6.85 -7.04
V1 1.35 2.94 3.98 3.88 2.1 -0.18 0.06 -0.37 -0.16 -0.06 -0.14 -0.45
V2 3.24 3.21 7.11 4.43 5.42 4.55 4.66 6.29 6.61 6.51 6.56 6.62
V3 0.43 2.07 3.25 2.7 1.62 -0.63 -0.81 -0.79 -0.81 -0.71 -0.57 -0.75

Table 9: Shows the relative performance improvement/decrease of Global Illumination Rays when
using the Binned SAH splitter for different values of the importance of the Stretch Factor. The top
row shows the importance factor λ . For many games and scenes, the rendering performance increases
when using Binning (highlighted in green), while some scenes also show a performance decrease
(highlighted in red). See Section 4.2.2.

32

4. RESULTS

1 1/2 1/4 1/8 1/16 1/32 1/64 1/128 1/256 1/512 1/1024 1/2048
Cyberpunk V0 0.53 1.55 2.05 3.58 2.07 1.76 2.16 1.77 2.12 1.12 1.3 1.1

V1 1.49 2.86 3.02 3.36 1.56 1.45 1.92 1.57 2.27 0.96 0.44 0.83
V2 1.75 1.78 1.83 3.75 3.68 3.93 3.58 3.59 3.65 2.2 2.77 2.34
V3 4.93 1.97 2.38 3.03 6.54 6.54 5.94 6.74 6.1 5.09 4.66 5.47
V4 2.62 3.24 3.75 5.76 2.79 2.9 3.05 3.11 2.98 1.99 1.99 2.13

Control V0 6.67 7.32 3.22 3.34 3.21 3.13 3.25 3.05 3.13 3.16 3.44 3.38
V1 6.48 6.97 5.61 5.77 5.98 4.51 4.36 4.26 4.17 4.21 4.28 4.33
V2 -5.08 -4.91 -0.57 -0.93 -0.42 -0.5 0.09 -0.03 0.13 0.11 0.05 0.08
V3 -10.38 -12.18 -10.56 -11.0 -11.0 -11.92 -11.83 -11.85 -11.91 -11.94 -11.94 -11.87
V4 -8.15 -3.63 -5.45 -5.37 -5.37 -5.83 -5.98 -5.79 -5.64 -5.69 -5.74 -5.85

Deathloop V0 5.75 4.32 4.73 4.08 5.22 3.06 4.62 1.41 1.63 2.8 0.53 0.92
V1 -1.26 1.41 1.77 0.62 -2.71 -2.97 -3.04 -3.31 -3.04 -2.98 -3.17 -3.1
V2 -0.03 0.46 0.52 0.32 -1.4 -1.8 -1.54 -2.54 -1.32 -2.91 -2.21 -1.16
V3 4.94 5.66 2.72 -1.54 1.39 -0.69 0.89 -0.14 -1.42 0.03 -0.69 -0.3
V4 -4.69 -4.42 -4.63 -1.75 -2.39 -1.1 -3.27 -3.7 -3.31 -5.7 -1.24 -2.42
V5 1.98 0.16 1.13 0.25 2.19 2.0 2.23 0.21 1.22 -0.25 0.35 -1.34
V6 2.0 -0.92 -3.44 -2.6 1.26 -2.31 -1.79 -2.23 -3.32 -1.98 -1.84 -0.49
V7 7.5 -0.67 -2.62 0.38 0.24 3.79 1.51 0.82 2.83 0.07 -0.81 0.14

Dying Light V0 -2.58 -1.73 -1.69 -2.37 -1.73 -2.67 -2.58 -2.54 -3.19 -2.97 -2.88 -2.84
V1 -1.89 -1.12 -1.32 -1.3 -0.83 -1.38 -1.47 -1.34 -2.42 -2.2 -2.16 -1.93
V2 -2.51 -2.51 -1.95 -2.15 -1.79 -2.83 -2.68 -2.83 -3.75 -3.36 -3.29 -3.24
V3 -2.54 -1.58 -1.48 -1.42 -1.46 -2.42 -2.32 -2.3 -2.54 -2.54 -2.44 -2.62

Plague Tail V0 3.75 3.72 3.98 5.31 5.2 5.26 5.74 5.34 5.43 5.31 5.06 5.26
V1 4.52 4.24 3.68 5.05 4.85 5.35 5.49 6.64 6.58 6.64 5.83 5.77
V2 1.55 1.29 1.38 2.11 1.89 2.9 2.84 3.18 3.26 3.26 3.18 3.07
V3 2.7 2.59 2.7 3.31 3.37 3.87 3.87 4.09 4.03 3.78 3.95 3.84
V4 -1.24 -0.95 0.19 1.0 1.05 0.9 1.31 0.95 1.12 1.0 0.69 1.02
V5 -0.81 -1.1 -1.1 1.6 1.71 1.02 1.3 1.42 1.6 1.75 1.42 1.52

Port Royal V0 0.57 1.78 2.94 3.18 3.41 3.45 3.72 3.74 3.15 3.51 3.72 3.45
V1 2.64 2.42 3.7 6.9 6.76 5.92 6.48 4.55 5.24 5.36 5.45 5.31
V2 -1.0 0.85 -0.49 0.2 0.12 0.94 0.43 0.09 0.84 0.06 0.71 0.52
V3 0.25 1.3 2.04 4.42 4.25 2.83 3.9 3.21 3.0 3.02 3.31 2.8
V4 -1.1 1.23 2.36 2.55 2.45 2.21 3.03 2.94 2.58 2.51 2.54 2.07
V5 -1.89 -1.94 -4.03 -2.87 -3.18 -3.4 -3.6 -4.35 -4.32 -4.32 -4.36 -4.29

Resident Evil V0 -5.7 -7.69 -6.46 -7.45 -7.93 -9.53 -9.7 -7.83 -8.19 -8.04 -8.07 -8.39
V1 -2.58 -1.85 -0.5 0.56 -1.33 -3.42 -3.14 -3.14 -3.13 -3.64 -3.25 -3.59
V2 1.81 1.76 3.47 1.99 1.44 0.34 0.46 1.67 1.03 1.87 1.83 1.64
V3 -2.86 -2.35 -0.55 -0.31 -2.07 -3.98 -3.69 -3.62 -3.75 -3.77 -3.69 -3.62

Table 10: Shows the relative performance improvement/decrease of Ambient Occlusion Rays when
using the Binned SAH splitter for different values of the importance of the Stretch Factor. The top
row shows the importance factor λ . For many games and scenes, the rendering performance increases
when using Binning (highlighted in green), while some scenes also show a performance decrease
(highlighted in red). See Section 4.2.2.

33

4. RESULTS

1 1/2 1/4 1/8 1/16 1/32 1/64 1/128 1/256 1/512 1/1024 1/2048
Cyberpunk V0 -7.59 13.96 13.88 13.16 -10.17 -10.32 -10.27 -10.31 -10.2 -10.32 -10.22 -10.31

V1 -4.04 13.52 13.46 13.14 -6.26 -6.34 -6.43 -6.79 -6.49 -6.75 -6.71 -6.73
V2 -4.69 14.93 14.98 14.6 -7.75 -7.87 -7.85 -7.87 -7.82 -7.87 -7.84 -7.89
V3 -5.06 14.84 14.84 14.71 -8.99 -9.13 -9.22 -9.21 -9.2 -9.16 -9.14 -9.19
V4 -5.72 15.05 15.14 14.96 -8.98 -9.07 -9.13 -9.13 -8.97 -9.09 -9.1 -9.13

Control V0 -23.93 -23.56 -27.02 -26.91 -26.81 -3.18 -3.23 -3.14 -3.16 -3.1 -3.18 -3.22
V1 -20.16 -20.2 -17.72 -17.04 -17.1 -12.7 -12.76 -12.86 -12.83 -12.79 -12.85 -12.82
V2 40.83 40.37 26.03 28.64 28.6 19.54 19.6 19.51 19.65 19.67 19.54 19.64
V3 -6.61 -7.86 2.06 1.76 1.77 2.08 2.14 2.01 2.1 2.06 2.11 2.03
V4 9.66 5.97 17.43 19.44 19.53 0.7 0.78 0.62 0.83 0.66 0.66 0.66

Deathloop V0 -1.38 1.25 1.71 -3.62 -2.11 -1.05 -0.03 -0.13 -0.59 -0.4 -0.66 -0.99
V1 1.13 -2.61 -3.83 -0.55 -18.69 -19.2 -19.45 -19.34 -19.37 -19.23 -19.32 -19.29
V2 2.26 2.89 2.66 0.26 -2.84 -2.56 -3.05 -3.05 -3.64 -3.29 -3.08 -3.1
V3 0.26 1.11 1.81 0.37 -5.01 -4.64 -4.37 -5.3 -4.73 -5.65 -5.12 -4.9
V4 -2.38 -1.5 0.36 7.8 -3.57 -3.82 -3.64 -4.08 -4.19 -4.24 -4.24 -4.44
V5 2.78 3.1 2.78 0.37 1.89 1.98 1.38 1.38 0.95 1.66 1.23 0.98
V6 1.66 0.21 0.86 -0.62 0.43 -0.05 -0.32 -0.48 0.11 0.0 -0.67 -0.43
V7 -1.01 -3.84 -16.55 -1.77 -6.11 -6.27 -5.99 -6.35 -6.05 -6.37 -6.09 -6.31

Dying Light V0 3.04 3.74 3.97 4.34 3.92 3.78 3.55 3.5 3.88 3.97 3.88 3.97
V1 25.26 26.29 27.28 27.84 27.96 12.59 12.5 12.37 23.8 23.93 23.71 23.67
V2 2.14 2.77 2.77 2.17 2.87 3.89 4.18 4.13 4.52 4.57 4.41 4.7
V3 6.09 6.24 6.96 7.59 7.25 6.09 6.19 6.14 10.35 10.25 10.3 10.35

Plague Tail V0 -2.09 -2.46 1.96 2.37 2.14 0.68 1.14 4.05 4.05 4.0 3.69 3.87
V1 1.91 1.37 0.82 0.27 0.23 -0.64 -0.73 1.41 1.41 1.46 0.59 0.68
V2 1.76 1.65 -0.96 -2.1 -2.26 -2.03 -2.07 0.77 0.61 0.54 0.38 0.38
V3 -0.86 -1.29 -0.67 -0.82 -0.94 -1.69 -1.49 1.8 1.61 1.84 1.53 1.73
V4 -1.19 -0.97 -3.46 -2.95 -3.31 -3.6 -3.21 0.36 0.4 0.29 0.36 0.32
V5 -0.78 -0.57 -3.28 -6.63 -6.66 -7.13 -7.06 0.18 0.71 0.75 0.82 0.78

Port Royal V0 -0.02 -0.61 0.88 1.15 2.06 2.11 2.18 1.99 1.4 1.25 1.45 1.62
V1 -0.85 0.17 -1.07 0.11 -0.56 -0.64 -0.89 -1.42 -1.59 -1.56 -1.62 -1.59
V2 4.52 -13.51 -14.34 -10.72 -13.46 -13.67 -15.36 -15.7 -15.95 -15.03 -16.03 -15.15
V3 1.51 1.73 2.64 3.73 4.07 4.54 3.54 3.28 3.11 3.05 3.09 3.11
V4 -0.06 -0.15 2.13 2.64 3.21 3.18 3.69 3.0 2.7 2.73 2.64 2.82
V5 5.7 6.08 -0.62 0.35 0.25 0.34 0.07 -0.37 -0.24 -0.31 -0.35 -0.27

Resident Evil V0 -26.52 -21.62 -25.73 -26.4 -16.57 -11.36 -11.24 -12.75 -15.34 -15.24 -15.19 -15.13
V1 -12.71 2.65 1.22 3.2 4.02 -1.9 -1.75 -0.58 -0.78 -0.87 -0.87 -0.89
V2 -9.91 -19.54 -18.43 -16.89 -16.55 -17.56 -17.33 -17.96 -17.97 -17.9 -18.0 -17.9
V3 -16.35 2.89 0.12 1.11 3.44 -3.08 -3.02 -2.17 -2.2 -2.3 -2.37 -2.33

Table 11: Shows the relative performance improvement/decrease of Soft Shadow Rays when using
the Binned SAH splitter for different values of the importance of the Stretch Factor. The top row
shows the importance factor λ . For many games and scenes, the rendering performance increases
when using Binning (highlighted in green), while some scenes also show a performance decrease
(highlighted in red). See Section 4.2.2.

4.3 Growing Scene Bounds
In this Section, we will show some Figures of performance degradation when the scene bounds grow.
We will only show the Figures for Cyberpunk [1] and Control [36] here, as all Figures follow the
same trend. The other games’ Figures can be viewed in Appendix 8.3 and 8.4.

When looking at Figure 13, 14, and all Figures in the Appendix 8.3, when growing the scene
bounds over a single axis, we see a significant performance drop between 20 ≤ e ≤ 30 in the standard
base case, where e is the extension value. We also see that both Mipping and Binning move this

34

4. RESULTS

performance drop by the same value as the outcome of the Equations 13 and 14 from Section 3.2.4.
For Mipping, we used b = 9 and therefore has move1 = log2(2

b)/1 = b, so the drop moved by 9; for
Binning, we used 7 bits (128 cells), so the drop moved by 7. Furthermore, in Figure 14, we see that
Control has a baseline at roughly 40% of the base performance. We think this is due to the smaller
size of the TLAS in Control, so even if the TLAS is as bad as it can be, looping over all the different
BLASes in random order is only 60% worse than using a TLAS. We also see some drops and bumps
in performance from the Soft Shadow Rays, likely due to more beneficial splits in certain growing
cases.

When looking at Figure 15, and all Figures in the Appendix 8.4, we see a significant performance
drop between 10 ≤ e ≤ 20, where e is the extension value, which is later than we expected. We still
see that Mipping and Binning move the performance drop by the same value as the outcome of the
Equation 13 from Section 3.2.4, but the benefit is three times lesser than when the bounds increase
over a single axis. This is an expected outcome as move3 is three times smaller than move1, or more
formally move3 =

1
3move1.

Growth over a single axis

Figure 13: Graphs showing the relative performance in Cyberpunk [1] of our strategies compared to
LBVH with EMC without any scene bound growth of the different methods when the scene bounds

grow by 2e in a single axis, where e is the extension value represented on the x-axis. See Section 4.3.

35

4. RESULTS

Figure 14: Graphs showing the relative performance in Control [36] of our strategies compared to
LBVH with EMC without any scene bound growth of the different methods when the scene bounds

grow by 2e in a single axis, where e is the extension value represented on the x-axis. See Section 4.3.

36

4. RESULTS

Growth over three axes

Figure 15: Graphs showing the relative performance in Cyberpunk [1] and Control [36] of our
strategies compared to LBVH with EMC without any scene bound growth of the different methods
when the scene bounds grow by 2e in all three axes, where e is the extension value represented on

the x-axis. See Section 4.3.

37

4. RESULTS

4.4 Smaller Scene Bounds
Table 12 shows an excellent general improvement for many scenes and all ray types. Port Royal
and Dying Light were the only games that did not benefit from our method because these scenes do
not have large objects in the game’s background. However, seeing a 2-10% drop in performance in
Global Illumination Rays in Port Royal was unexpected but might be related to a change in the EMC
bit order when the scene bounds change. We will see if this drop in performance propagates to the
Game Benchmarks in Section 4.5. All the other games seem to benefit from using these more concise
scene bounds, which is a good result as the change proposed in Section 3.3 does not change the
existing code much. We, therefore, suggest any game developer try this solution out for their game if
they are running a ray tracer.

PR GI AO SSR
Cyberpunk V0 19.99 1.26 2.87 -4.42

V1 16.54 6.9 9.26 0.44
V2 0.89 5.81 4.72 -6.71
V3 27.94 9.09 7.16 -11.3
V4 6.86 11.25 7.39 -14.16

Control V0 3.11 3.76 4.47 1.86
V1 15.86 9.11 6.64 -3.81
V2 11.62 3.53 4.59 9.08
V3 -6.58 3.96 2.08 21.04
V4 5.15 9.7 9.92 12.16

Deathloop V0 6.58 1.64 -1.01 -2.32
V1 2.86 -0.48 -0.75 31.54
V2 -6.03 3.42 0.64 2.01
V3 -4.74 18.29 2.07 -0.02
V4 -4.3 17.04 4.13 3.18
V5 8.63 0.18 3.16 4.04
V6 -3.15 5.47 -3.56 -2.11
V7 6.76 0.96 4.19 -5.59

Dying Light V0 2.38 -1.75 -0.84 -0.46
V1 0.79 -0.6 0.48 -0.59
V2 -0.01 -4.73 0.64 -0.43
V3 -2.29 -1.43 0.38 -0.38

Plague Tail V0 -1.03 2.46 2.95 1.5
V1 -0.96 3.19 2.51 0.31
V2 -0.83 2.06 0.88 1.01
V3 1.44 3.88 2.3 0.08
V4 0.34 0.21 1.37 -0.41
V5 2.14 0.59 3.53 -2.97

Port Royal V0 2.22 -5.69 -0.1 -1.12
V1 -2.74 -3.41 0.13 -3.43
V2 -9.57 -3.91 2.21 7.22
V3 -3.98 -5.2 0.66 -2.13
V4 4.35 -1.53 -0.68 -1.51
V5 -16.8 -9.59 -3.09 29.79

Resident Evil V0 -1.06 -0.27 0.41 7.06
V1 1.79 0.04 0.05 20.22
V2 3.65 0.15 0.45 2.89
V3 -0.88 0.29 0.06 19.92

Table 12: Shows the rendering improvement of using smaller scene bounds as discussed in Section
3.3.

38

4. RESULTS

4.5 Game Benchmarks
First, we want to clarify the results in the Port Royal column in Tables 13 and 14. The benchmark
provided by 3D Mark has a single build phase at the start of the benchmark, which is why it shows
similar values for the different methods, as the benchmark does not consider the build times of the
various techniques. Therefore, Binning shows a slight improvement in this benchmark.

Next, from Tables 13 and 14, we see a drop in performance for both Mipping and Binning. We
expected this result as we are preventing a case that is not happening in these benchmarks, and if
we were to grow the scene bounds significantly, our new codes would outperform the LBVH with
EMC. However, Binning decreases the framerate of Cyberpunk [1] by a considerable margin, which
we think is due to the numerous small objects in the scene, and from Section 4.1, we know that the
construction time is worse for small objects. Therefore, the increase in raw tracing performance of
Section 4.2.2 does not outweigh the added construction time of the method. We see a similar trend
for Mipping and Binning Forza Horizon 5 [42] to a lesser degree because Forza Horizon 5 only uses
ray-traced reflections on the racer’s car [43].

For our scene bounds from Section 3.3, we see a good improvement of 0.4 - 0.5% on average
in Cyberpunk [1] and 0.9% in Forza Horizon 5, showing that these scene bounds also work well in
real-world applications.

Cyberpunk Forza Port Royal
avg min max avg min max avg

MIP (b = 9) -3.13 -2.59 -3.14 -0.31 -1.18 0.0 0.0
BIN (q = 4) (a = 4) -19.54 -18.43 -19.46 -0.73 -0.53 -0.83 0.33
Scene Bounds 0.41 1.57 1.3 0.92 0.73 0.92 0.22

Table 13: Shows the improvement in the Cyberpunk [1] and Forza Horizon 5 [42] games when using
Mipping, Binning, and the more concise Scene Bounds from Sections 3.2.2, 3.2.3, and 3.3

respectively, with a screen size of 1920x1080.

Cyberpunk Forza Port Royal
avg min max avg min max avg

MIP (b = 9) -3.22 -3.09 -4.11 -0.23 -0.29 -0.57 0.0
BIN (q = 4) (a = 4) -17.36 -15.97 -17.35 -0.35 -0.43 -0.29 0.3
Scene Bounds 0.48 1.88 0.96 0.93 0.81 0.65 -0.03

Table 14: Shows the improvement in the Cyberpunk [1] and Forza Horizon 5 [42] games when using
Mipping, Binning, and the more concise Scene Bounds from Sections 3.2.2, 3.2.3, and 3.3

respectively, with a screen size of 2560x1440.

39

5. CONCLUSION AND DISCUSSION

5 Conclusion and Discussion
Let’s restate the research question we had in Chapter 1 of the thesis:

Can we improve the Extended Morton Codes further to construct BVHs of equal
or higher quality in real-time applications? In particular in situations where the
scene’s bounds grow out of proportion due to distant or large primitives at the

extent of the scene?

We then listed a set of requirements in Chapter 3, which we repeat and discuss here for the sake
of exposition:

• Efficiently Handling Distant Primitives: Our method should perform equal or better than
Extended Morton Codes in cases where the scene bounds stretch into one or more directions.
We assessed this by adding distant primitives to existing scenes and using both EMC and our
new method to compare their respective LBVHs in terms of rendering performance.
Mipping and Binning from Sections 3.2.2 and 3.2.3, respectively, can help in cases where
the scene’s bounds grow out of proportion due to distant primitives by keeping the tracing
performance high for a longer time than standard LBVH with EMC.

• Efficiently Handling Large Primitives: The method should perform equal or better than
Extended Morton Codes in cases where the scene bounds stretch because of large primitives
at the edge of the scene.
We assessed this using a large scene with large objects and with EMC and our new method to
compare their respective LBVHs regarding rendering performance.
Our new concise scene bounds from Section 3.3 can adequately improve the performance in
these cases. It even shows a good improvement in Cyberpunk [1], a real-world game, where the
performance increased by 0.41%. Although this improvement appears to be small, it correlates
with a couple of extra frames per second in a game, which is significant according to the key
stakeholder (AMD). Furthermore, developing efficient ray query implementations has been a
topic of study for many years, hence it is impressive that our methods improve the state of the
art.

• Generality: Our method should work for any scene or object, which is satisfied as all of the
strategies presented work for any scene or object.

• Low Total Build Times: The overall build time compared to LBVH should not increase
significantly, making our method feasible for real-time applications such as games.
Our new concise scene bounds only increase the build time negligibly, as it only has a different
computation for the scene bounds. Mipping increases the build times slightly when using a
low b value, but it could be improved if it was possible to have bitmaps in which programmers
can turn on bits without atomics. This change is possible on current day hardware if we had
used a single 32-bit dword per cell instead of a single bit. However, we did not test this as this

40

5. CONCLUSION AND DISCUSSION

would significantly increase the global memory requirement for the method. On the other hand,
Binning significantly increases the build times of the BVH and, therefore, does not meet this
requirement.

• Black Box Behaviour: Our new codes must be directly usable for existing construction
algorithms that rely on Morton Codes without changing the construction algorithms, which
we showed by using LBVH for all tests.

• Low Global Memory Requirement: As games use many objects in their scenes, we want to
use as little global memory as possible so that the data necessary for constructing a BVH stays
as low as possible.
For the new scene bounds, this is 6∗4 = 24 bytes; for Binning, this is 128∗4 = 512 bytes, and
for Mipping, we set the number of grid bits b ≤ 12, which is at most 4,096 bits 512 bytes.

• Simplicity of Use: Our new codes should be easy to use without tuning many complex
parameters per scene.
Mipping and our new scene bounds satisfy this requirement, as Mipping only requires a single
parameter (b, the number of bits for the grid), and our new scene bounds don’t have a parameter.
However, Binning also requires tuning the importance factor λ of the stretch factor, which can
differ for every game and scene. Therefore, this requirement is not satisfied for Mipping.

So, from these results, we can conclude that there is room for improvement regarding large
primitives at the scene bounds, which is not uncommon in games. Using our new concise scene
bounds, we can handle such cases better without significantly increasing the build times of existing
methods.

However, these results conclude that Mipping and Binning might not be the best methods to
optimize distant primitives. This conclusion mostly comes from the significant overhead required to
generate these new codes. Therefore, we suggest only using these methods in contexts with so much
space between two sections that the methods could make a difference. However, developers should
realize that the two sections are so far apart that they could also consider building two BVHs for the
different sections, rendering these methods obsolete.

In the future, we could investigate whether we might be able to catch multiple distant sections
automatically during primitive encoding, such that we can decide to build various BVHs automatically
for the different sections with their scene bounds. We can efficiently encode the split for these BVHs
at the start of the EMC, so we would need to find a heuristic that can filter primitives into different
sections during encoding.

Next, we could investigate adding other heuristics to the EMC code. The authors of EMC already
mention this in their paper [16], but they do not hint at any possible heuristics. Possible heuristics as
additions could be the distance a primitive extends into a direction (and might leave its cell) instead of
a fixed one-dimensional value for the size and merge primitives in cells that overlap the same planes.

41

6. ACKNOWLEDGEMENTS

6 Acknowledgements
First and foremost, I want to thank Jacco Bikker for seeing my potential and inviting me to a meeting
with AMD to see if we could work out a master’s thesis. Then, I want to thank Nathan McDaniel
and Sinha Pranabesh for also seeing my potential and hiring me to work at AMD. Furthermore, I
want to thank John Tsakok and Jalil Ameer from AMD for helping me with all my driver and code
issues, introducing me to the infrastructure of AMD, and helping me think of solutions to problems I
encountered.

Next, I want to thank some people who helped by listening to my rambles about difficulties with
my thesis, may it be legal or unfortunate setbacks of results. So, big thanks to Sanne de Baar, Tom
Simmelink, Lisa Kwast, Nadie Smit, Iddo Riemersma, Sonja Riemerma, Michel Riemersma, Sjoerd
Riemersma, Julio Rosua, and Lars de Kwant.

Lastly, I want to thank my current primary supervisor, Alexandru Telea, for pushing me to create
a master’s thesis that I am proud of.

42

7. REFERENCES

7 References
[1] CD Project Red. Cyberpunk. Accessed in 2024. URL: https://www.cyberpunk.net/nl/en/.

[2] S. Woop, C. Benethin, I. Wald. “Exploiting Local Orientation Similarity for Efficient Ray Traversal of Hair and
Fur”. In: Proceedings of High-Performance Graphics. 2014, pp. 41–49.

[3] I. Wald et al. “Using Hardware Ray Transforms to Accelerate Ray/Primitive Intersections for Long, Thin Primitive
Types”. In: Proceedings of the ACM on Computer Graphics and Interactive Techniques 3, 2. 2020.

[4] I. Wald et al. “State of the Art in Ray Tracing Animated Scenes”. In: Computer graphics forum 28, 6. 2007,
pp. 1691–1722.

[5] C. Lauterbach et al. “Interactive Ray Tracing of Dynamic Scenes using BVHs”. In: Proceedings of Symposium on
Interactive Ray Tracing. 2006, pp. 39–46.

[6] C. Lauterbach et al. “Fast BVH Construction on GPUs”. In: Computer Graphics Forum 28, 2 (2009), pp. 375–384.

[7] J. Pantaleoni, D. Luebke. “HLBVH: Hierarchical LBVH Construction for Real-time Ray Tracing of Dynamic
Geometry”. In: Proceedings of High-Performance Graphics. 2010, pp. 87–95.

[8] D. Meister, J. Bittner. “Parallel Locally-Ordered Clustering for Bounding Volume Hierarchy Construction”. In:
IEEE Transactions on Visualization and Computer Graphics 23, 3 (2017), pp. 1345–1353.

[9] B. Walter et al. “Fast Agglomerative Clustering for Rendering”. In: Proceedings of Symposium on Interactive Ray
Tracing. 2008, pp. 81–86.

[10] K. Graranzha, J. Pantaleoni, D. McAllister. “Simpler and Faster HLBVH with Work Queues”. In: Proceedings of
High-Performance Graphics. 2011, pp. 59–64.

[11] G. M. Morton. A Computer Oriented Geodetic Database and a New Technique in File Sequencing. Tech. rep. 1966.

[12] N.K. Govindaraju et al. “GPUTeraSort: High Performance Graphics Co-processor Sorting for Large Database
Management”. In: Proceedings of the 2006 ACM SIGMOD International Conference on Management of Data.
2006, pp. 325–336.

[13] A. Adinets, D. Merril. “Onesweep: A Faster Least Significant Digit Radix Sort for GPUs”. In: ArXiv (2022).

[14] Y. Gu et al. “Efficient BVH Construction via Approximate Agglomerative Clustering”. In: Proceedings of High-
Performance Graphics. 2013, pp. 81–88.

[15] T. Kerras. “Maximizing Parallelism in the Construction of BVHs, Octrees, and Kd-Trees”. In: Proceedings of
High-Performance Graphics. 2012, pp. 33–37.

[16] M. Vinkler, J. Bittner, V. Havran. “Extended Morton Codes for High Performance Bounding Volume Hierarchy
Construction”. In: Proceedings of High-Performance Graphics. 2017.

[17] J.H. Clark. “Hierarchical Geometric Models for Visible Surface Algorithms”. In: Communications of the ACM 19,
10. 1976, pp. 547–554.

[18] M. Vinkler, V. Havran, J. Bittner. “Performance Comparison of Bounding Volume Hierarchies and Kd-Trees for
GPU Ray Tracing”. In: Computer Graphics Forum. 2016.

[19] J. Bikker. How to build a BVH – Part 1: Basics. Accessed in 2024. URL: https://jacco.ompf2.com/2022/
04/13/how-to-build-a-bvh-part-1-basics/.

[20] D. Meister et al. “A Survey on Bounding Volume Hierarchies for Ray Tracing”. In: Computer Graphics Forum 40,
2. 2021, pp. 683–712.

[21] T. Karras, T. Aila. “Fast Parallel Construction of High-Quality Bounding Volume Hierarchies”. In: Proceedings of
HighPerformance Graphics. 2013, pp. 89–100.

43

https://www.cyberpunk.net/nl/en/
https://www.embree.org/papers/2014-HPG-hair.pdf
https://www.embree.org/papers/2014-HPG-hair.pdf
http://www.sci.utah.edu/~wald/Publications/2020/tubes/tubes.pdf
http://www.sci.utah.edu/~wald/Publications/2020/tubes/tubes.pdf
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=65eb0fde2cc93fce0f500ae0e19b8e5be8598551
https://graphics.stanford.edu/~boulos/papers/togbvh.pdf
https://luebke.us/publications/eg09.pdf
https://research.nvidia.com/sites/default/files/pubs/2010-06_HLBVH-Hierarchical-LBVH/HLBVH-final.pdf
https://research.nvidia.com/sites/default/files/pubs/2010-06_HLBVH-Hierarchical-LBVH/HLBVH-final.pdf
https://meistdan.github.io/publications/ploc/paper.pdf
https://www.graphics.cornell.edu/~bjw/IRT08Agglomerative.pdf
https://research.nvidia.com/sites/default/files/pubs/2010-06_HLBVH-Hierarchical-LBVH/HLBVH-final.pdf
https://dominoweb.draco.res.ibm.com/reports/Morton1966.pdf
https://gamma.cs.unc.edu/GPUTERASORT/gputerasort_sigmod06.pdf
https://gamma.cs.unc.edu/GPUTERASORT/gputerasort_sigmod06.pdf
https://arxiv.org/ftp/arxiv/papers/2206/2206.01784.pdf
http://graphics.cs.cmu.edu/projects/aac/aac_build.pdf
https://research.nvidia.com/sites/default/files/publications/karras2012hpg_paper.pdf
https://www.dcgi.fel.cvut.cz/projects/emc/emc2017.pdf
https://www.dcgi.fel.cvut.cz/projects/emc/emc2017.pdf
https://dl.acm.org/doi/pdf/10.1145/360349.360354
https://jcgt.org/published/0011/04/01/paper.pdf
https://jcgt.org/published/0011/04/01/paper.pdf
https://jacco.ompf2.com/2022/04/13/how-to-build-a-bvh-part-1-basics/
https://jacco.ompf2.com/2022/04/13/how-to-build-a-bvh-part-1-basics/
https://meistdan.github.io/publications/bvh_star/paper.pdf
https://research.nvidia.com/sites/default/files/pubs/2013-07_Fast-Parallel-Construction/karras2013hpg_paper.pdf

7. REFERENCES

[22] J.D. MacDonald, K.S. Booth. “Heuristics for Ray Tracing Using Space Subdivision ”. In: The Visual Computer 6,
3 (1989), pp. 153–165.

[23] T. Aila, T. Karras, S. Laine. “On Quality Metrics of Bounding Volume Hierarchies”. In: Proceedings of High-
Performance Graphics. 2013, pp. 101–108.

[24] S. Popov et al. “Object Partitioning Considered Harmful: Space Subdivision for BVHs”. In: Proceedings of High-
Performance Graphics. 2009, pp. 15–22.

[25] I. Wald. “On Fast Construction of SAH based Bounding Volume Hierarchies”. In: Proceedings of Symposium on
Interactive Ray Tracing. 2007, pp. 33–40.

[26] C. Apertrei. “Fast and Simple Agglomerative LBVH Construction”. In: Proceedings of Computer Graphics and
Visual Computing. 2014.

[27] Crytek. Crytek Sponza. Accessed in 2024. URL: https://apartridge.github.io/OppositeRenderer/
images/sponza.html.

[28] Frank Genarri. San Miguel. Accessed in 2024. URL: https://3dworldgen.blogspot.com/2017/01/san-
miguel-scene.html.

[29] L. Domigues, H. Pedrini. “Bounding Volume Hierarchy Optimization through Agglomerative Treelet
Restructuring”. In: Proceedings of High-Performance Graphics. 2015, pp. 13–20.

[30] I. Wald, C. Benthin, S. Boulos. “Getting Rid of Packets Efficient SIMD Single-Ray Traversal using Multi-
Branching BVHs”. In: Symposium on Interactive Ray Tracing. 2008, pp. 49–57.

[31] I. Wald, C. Benthin, P. Slusallek. “Distributed Interactive Ray Tracing of Dynamic Scenes”. In: Proceedings of
Symposium on Parallel and Large-Data Visualization and Graphics. 2003, pp. 77–86.

[32] C. Benethin, S. Woop, I. Wald. “Improved Two-Level BVHs using Partial Re-Braiding”. In: Proceedings of High
Performance Graphics. 2017.

[33] Microsoft. DirectX Raytracing (DXR) Functional Spec. Accessed in 2024. URL: https://microsoft.github.
io/DirectX-Specs/d3d/Raytracing.html.

[34] Inc. Advanced Micro Devices. Radeon Developer Panel. Accessed in 2024. URL: https://radeon-developer-
panel.readthedocs.io/en/latest/.

[35] Inc. Advanced Micro Devices. Radeon GPU Profiler. Accessed in 2024. URL: https://gpuopen.com/manuals/
rgp_manual/rgp_manual-index/.

[36] Remedy games. Control. Accessed in 2024. URL: https://www.remedygames.com/games/control.

[37] Bethesda. Deathloop. Accessed in 2024. URL: https://bethesda.net/en/game/deathloop.

[38] Techland. Dying Light. Accessed in 2024. URL: https://dyinglightgame.com/.

[39] Focus Entertainment. A Plague Tale Requiem. Accessed in 2024. URL: https://www.focus-entmt.com/en/
games/a-plague-tale-requiem.

[40] UL Benchmarks. Port Royal Benchmark. Accessed in 2024. URL: https://support.benchmarks.ul.com/
support/solutions/articles/44002135553-overview-of-3dmark-port-royal-benchmark.

[41] Capcom. Resident Evil. Accessed in 2024. URL: https://www.residentevil.com/re4/en-asia/.

[42] Microsoft. Accessed in 2024. URL: https://forza.net/horizon.

[43] Forza Support Team. NVIDIA DLSS, AMD FSR and DirectX Ray Tracing Improvements in Forza Horizon
5. Accessed in 2024. URL: https : / / support . forzamotorsport . net / hc / en - us / articles /
10944080013843-NVIDIA-DLSS-AMD-FSR-and-DirectX-Ray-Tracing-Improvements-in-Forza-
Horizon-5.

44

https://graphicsinterface.org/wp-content/uploads/gi1989-22.pdf
https://users.aalto.fi/~laines9/publications/aila2013hpg_paper.pdf
https://publikationen.sulb.uni-saarland.de/bitstream/20.500.11880/26033/1/Popov_et_al._Object_Partitioning_Considered_Harmful.pdf
https://www.sci.utah.edu/~wald/Publications/2007/ParallelBVHBuild/fastbuild.pdf
https://diglib.eg.org/bitstream/handle/10.2312/cgvc.20141206.041-044/041-044.pdf?sequence=1
https://apartridge.github.io/OppositeRenderer/images/sponza.html
https://apartridge.github.io/OppositeRenderer/images/sponza.html
https://3dworldgen.blogspot.com/2017/01/san-miguel-scene.html
https://3dworldgen.blogspot.com/2017/01/san-miguel-scene.html
https://dl-acm-org.utrechtuniversity.idm.oclc.org/doi/pdf/10.1145/2790060.2790065
https://dl-acm-org.utrechtuniversity.idm.oclc.org/doi/pdf/10.1145/2790060.2790065
https://ieeexplore-ieee-org.utrechtuniversity.idm.oclc.org/stamp/stamp.jsp?tp=&arnumber=4634620
https://ieeexplore-ieee-org.utrechtuniversity.idm.oclc.org/stamp/stamp.jsp?tp=&arnumber=4634620
https://www.sci.utah.edu/~wald/Publications/2003/Dynamic/dynamic.pdf
https://www.embree.org/papers/2017-HPG-openmerge.pdf
https://microsoft.github.io/DirectX-Specs/d3d/Raytracing.html
https://microsoft.github.io/DirectX-Specs/d3d/Raytracing.html
https://radeon-developer-panel.readthedocs.io/en/latest/
https://radeon-developer-panel.readthedocs.io/en/latest/
https://gpuopen.com/manuals/rgp_manual/rgp_manual-index/
https://gpuopen.com/manuals/rgp_manual/rgp_manual-index/
https://www.remedygames.com/games/control
https://bethesda.net/en/game/deathloop
https://dyinglightgame.com/
https://www.focus-entmt.com/en/games/a-plague-tale-requiem
https://www.focus-entmt.com/en/games/a-plague-tale-requiem
https://support.benchmarks.ul.com/support/solutions/articles/44002135553-overview-of-3dmark-port-royal-benchmark
https://support.benchmarks.ul.com/support/solutions/articles/44002135553-overview-of-3dmark-port-royal-benchmark
https://www.residentevil.com/re4/en-asia/
https://forza.net/horizon
https://support.forzamotorsport.net/hc/en-us/articles/10944080013843-NVIDIA-DLSS-AMD-FSR-and-DirectX-Ray-Tracing-Improvements-in-Forza-Horizon-5
https://support.forzamotorsport.net/hc/en-us/articles/10944080013843-NVIDIA-DLSS-AMD-FSR-and-DirectX-Ray-Tracing-Improvements-in-Forza-Horizon-5
https://support.forzamotorsport.net/hc/en-us/articles/10944080013843-NVIDIA-DLSS-AMD-FSR-and-DirectX-Ray-Tracing-Improvements-in-Forza-Horizon-5

8. APPENDIX

8 Appendix

8.1 Pseudocode Mipping
8.1.1 Pseudocode Generating Occupation Grid

Creating the occupation grid starts by setting the base layer of the grid:
1: primitive = Primitive for this thread
2: b = #bits for the occupation grid
3: cellCode = EMC(primitive, b)
4: AtomicSetBit(cellCode)

Where AtomicSetBit() atomically sets a bit in the base layer. EMC() computes an EMC code for a
primitive with a given length.

The base layer is extended by more layers:
1: threadIndex = Index of current thread
2: layers = b / 3
3: for layer = 1; layer ≤ layers; layer=layer+1 do
4: dwordIndex = threadIndex
5: if dwordIndex < LayerDwordCount(layer) then
6: prevDwords = FetchDwords(8 * dwordIndex, layer - 1)
7: newDword = MergeDwords(prevDwords)
8: WriteDword(newDword, layer)
9: end if

10: end for
Where LayerDwordCount() holds the number of dwords in the current layer. FetchDwords() fetches
eight dwords from a given layer. MergeDwords() merges eight bits of a single dword into one bit;
therefore, merging eight dwords creates a new dword. WriteDword() Writes a dword in a given layer.

8.1.2 Pseudocode Creating Concise Cell Index

1: primitive = Primitive for this thread
2: b = #bits for the occupation grid
3: cellCode = EMC(primitive, b)
4: conciseCellCode = 0
5: layers = b / 3
6: for layer = 1; layer ≤ layers; layer=layer+1 do
7: currentByte = FetchByteInLayer(cellCode, layer)
8: AppendNecessarySplits(conciseCellCode, cellCode, currentByte, layer)
9: end for

45

8. APPENDIX

10: return conciseCellCode
Where EMC() computes an EMC code for a primitive with a given length. FetchByteInLayer()
Fetches the byte in a layer the cellCode is in. AppendNecessarySplits() appends the necessary splits
to a code.

8.2 Pseudocode Binning
8.2.1 Pseudocode Queue

1: splitDepth = The depth of the current splits
2: queue = The queue containing tasks, starts with a single task
3: scores = Array of scores for all current tasks
4: for depth = 0; depth < splitDepth; depth=depth+1 do
5: ClearScores()
6: localQueue = SubdivideTasks(queue)
7: for subTask in localQueue do
8: ComputeScore(subTask)
9: end for

10: for subTask in localQueue do
11: AtomicMin(scores[subTask.index], subTask.score)
12: end for
13: for subTask in localQueue do
14: if scores[subTask.index] == subTask.score then
15: WriteNewTasks(subTask)
16: end if
17: end for
18: end for
Where ClearScores() removes the values from the old scores. SubdivideTasks() evenly subdivides
the tasks into subtasks for all threads. ComputeScore() is described in 8.2.2 and computes
the score of the current subtask. AtomicMin() applies an atomic min over a memory location.
WriteNewTasks() Writes out the left and right split of the current task.

8.2.2 Pseudocode for Computing Scores

1: scene = Binary occupation grid of the scene
2: le f tBounds, rightBounds = Left and right bounds of the current split, respectively
3: m = #Bits used for bitmaps
4: w = weight of Stretch Factor
5: bitmaps = bitmaps containing the occupation
6: le f tMask = CreateMask(le f tBounds)
7: rightMask = CreateMask(rightBounds)

46

8. APPENDIX

8: le f tScene = le f tMask & scene
9: rightScene = rightMask & scene

10: le f tMinMax = FindMinMax(le f tScene)
11: rightMinMax = FindMinMax(rightScene)
12: for layer = 0; layer < m; layer=layer+1 do
13: le f tBitmap = bitmaps[layer] & le f tMask
14: rightBitmap = bitmaps[layer] & rightMask
15: le f tCount = le f tCount + countbits(le f tBitmap) * (2layer)
16: rightCount = rightCount + countbits(rightBitmap) * (2layer)
17: end for
18: le f tSA = SurfaceArea(le f tMinMax)
19: rightSA = SurfaceArea(rightMinMax)
20: le f tSAH = Normalize(le f tCount * le f tSA)
21: rightSAH = Normalize(rightCount * rightSA)
22: le f tSF = StretchFactor(le f tMinMax)
23: rightSF = StretchFactor(rightMinMax)
24: le f tScore = (w−1) * le f tSAH + w * le f tSF
25: rigthScore = (w−1) * rightSAH + w * rightSF
26: return le f tScore + rightScore, le f tMinMax, rightMinMax

Where CreateMask() and FindMinMax() Create the mask and find the Min Max of the current
split, respectively. countbits() counts the number of non-zero bits in a bitmap, or in this case, the
number of occupied cells in the current layer. SurfaceArea() Computes the bounds between a min
and max value. Normalize() normalizes the SAH score. StretchFactor() Computes the stretchfactor
between a min and max value.

47

8. APPENDIX

8.3 Additional Graphs over a Single Axis

Figure 16: Graphs showing the relative performance in Deathloop [37] and Dying Light [38] of our
strategies compared to LBVH with EMC without any scene bound growth of the different methods
when the scene bounds grow by 2e in a single axis, where e is the number on the x-axis. See Section
See Section 4.3.

48

8. APPENDIX

Figure 17: Graphs showing the relative performance in Plague Tail Requiem [39] and Port Royal
[40] of our strategies compared to LBVH with EMC without any scene bound growth of the different
methods when the scene bounds grow by 2e in a single axis, where e is the number on the x-axis. See
Section See Section 4.3.

49

8. APPENDIX

Figure 18: Graphs showing the relative performance in Resident Evil [41] of our strategies compared
to LBVH with EMC without any scene bound growth of the different methods when the scene bounds
grow by 2e in a single axis, where e is the number on the x-axis. See Section See Section 4.3.

50

8. APPENDIX

8.4 Additional Graphs over Three Axes

Figure 19: Graphs showing the relative performance in Deathloop [37] and Dying Light [38] of our
strategies compared to LBVH with EMC without any scene bound growth of the different methods
when the scene bounds grow by 2e in all three axes, where e is the number on the x-axis.

51

8. APPENDIX

Figure 20: Graphs showing the relative performance in Plague Tail Requiem [39] and Port Royal
[40] of our strategies compared to LBVH with EMC without any scene bound growth of the different
methods when the scene bounds grow by 2e in all three axes, where e is the number on the x-axis.
See Section See Section 4.3.

52

8. APPENDIX

Figure 21: Graphs showing the relative performance in Resident Evil [41] of our strategies compared
to LBVH with EMC without any scene bound growth of the different methods when the scene bounds
grow by 2e in all three axes, where e is the number on the x-axis. See Section See Section 4.3.

53

	Introduction
	Background and Related Work
	The Bounding Volume Hierarchy (BVH)
	Quality Metrics for BVHs
	BVH Construction
	Morton Codes
	Further Extensions for BVHs
	Conclusion from Literature Review

	Proposed Methods
	Requirements
	Improvements for Distant Primitives
	Improvements for Large Primitives at the Scene's Extent

	Results
	Added Construction Time
	Different Parameters Binned Splitter
	Growing Scene Bounds
	Smaller Scene Bounds
	Game Benchmarks

	Conclusion and Discussion
	Acknowledgements
	References
	Appendix
	Pseudocode Mipping
	Pseudocode Binning
	Additional Graphs over a Single Axis
	Additional Graphs over Three Axes

