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Abstract

A longstanding debate surrounds modelling English past tense inflection. In this thesis, we
investigated neural models, specifically Encoder-Decoders, as cognitive models of English
past tense inflection. While recent studies showed that Encoder-Decoders achieve strong
improvements over the initial connectionist model of Rumelhart and McClelland (1986), it
has also been reported that they still failed to accurately capture human speaker inflections
of novel forms. Our results reveal that data representativeness and model configuration
choices influence model performance on real and nonce verbs. Importantly, we found
improved correlations with human nonce verb inflections when the problem of overfitting on
training data was mitigated, for instance, by using fewer training epochs. However, this also
resulted in lower accuracies on real irregular verbs. A key finding is that this problem could
be overcome by augmenting the training data with token frequency. This led to near-perfect
performance on training verbs, including high accuracies on the irregular class, while
obtaining almost equally strong correlations with human data. This highlights the relevance
of token frequency, challenging previous assumptions. Additionally, we investigated a multi-
task training setup, wherein the model also classifies verbs as regular or irregular. This
task aligns with the dual-route view of Pinker and Prince (1988). However, this setup
led to similar or slightly worse performance, leaving the cognitive validity of the discrete
distinction between regular and irregular verbs open to further investigation. We emphasise
the value of future research on using neural models to investigate cognitive processes such
as morphological inflection.
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Chapter 1

Introduction

Morphology, the study of word formation, offers insight into the underlying mechanisms of
our language abilities and therefore human cognition. A prominent area of focus in the study
of morphology is the past tense inflection of verbs in English. It is an intriguing example
because of its complex system that challenges our understanding of how the brain handles
regular patterns like adding -ed (e.g. walk–walked) as well as less frequent exceptions to
this rule (irregular verbs such as do–did and see–saw). Different approaches and models of
the English past tense inflection have been proposed throughout the past decades, with the
goal of obtaining a better understanding of the cognitive processes that underlie this case
of morphological inflection.
With the developments of neural networks in the 1980s, Rumelhart and McClelland

(1986) (R&M) introduced a connectionist model for the English past tense inflection. This
model consisted of one input and one output layer of neural units, mapping both regular and
irregular verbs to past tense forms. Such a model learns distributed representations based
on patterns that the model finds in a dataset of verbs. This way of modelling morphological
inflection therefore suggests that it is not necessary to explicitly define a set of rules, but
that the language mechanisms can be characterised by rules that it finds as patterns in a
dataset.
At the time, this rather controversial approach of R&M led to an extensive rebuttal

by Pinker and Prince (1988) (P&P). According to P&P, defining explicit rules is essential
in modelling the English past tense inflection. Moreover, they argued that the past tense
inflection is governed by two systems. The regular inflection of verbs relies on a rule-based
system, requiring only thememorisation of the verb stem and the regular transformation. The
other system is responsible for the irregular inflection, relying on memory (and sometimes
through gradient analogical processing, Prasada and Pinker, 1993). P&P showed that this
dual-route view better accounts for human behaviour concerning irregular and regular
inflections, and they emphasized the weak empirical performance of the R&M model.
P&P ascribed the poor performance of R&M’s model to the lack of a symbolic processing
component representing explicitly defined rules for the regular inflection. Therefore, they
claimed that this issue would arise with any connectionist model. This rebuttal by P&P had
a significant influence on the field of linguistics, causing a broad dismissal of connectionist
modelling.
Now, over 35 years later, incredible progress has been made in the field of Artificial

Intelligence with deep learning developments. This led to far more sophisticated neural
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network models than those in 1986. One important development in the field of natural
language processing (NLP) was Elman’s (1990) introduction of Recurrent Neural Networks
(RNNs). Building on these vanilla RNNs, further advances have been made, including Gated
Recurrent Units (GRU, Cho et al., 2014) and Long Short-Term Memory (LSTM, Hochreiter
and Schmidhuber, 1997). In addition, the introduction of sequence-to-sequence frameworks
and attention mechanisms (Bahdanau et al., 2014; Sutskever et al., 2014; Vaswani, 2017)
marked significant progress in the field of NLP. These developments offer advantages such
as sequential processing and variable length inputs, which are especially beneficial for
language modelling.
This progress inspired studies to revisit the English past tense modelling debate. Kirov

and Cotterell (2018) (K&C) implemented a character-level Encoder-Decoder (ED) architec-
ture to inflect English verbs to their past tense forms. Their model achieved near-perfect
accuracy on all verbs encountered during the training phase, as well as on regular verbs
from a held-out test set. The vast majority of the errors the model made consisted of over-
regularisations of held-out irregular verbs. These errors, however, align with the human
inclination to treat new verbs as regular forms (Albright and Hayes, 2003; henceforth A&H).
Compared to the relatively poor empirical performance and less plausible errors of the R&M
model, the K&C model showed a large improvement. Based on these results, K&C concluded
that it is possible to model past tense inflections without defining explicit rules in a model
and emphasise the importance of focusing on whether the model mimics human behaviour
around novel input. This reveals whether the model generalises to a system of inflection
that is similar to that of human speakers.
However, comparing a model’s inflections of real verbs from a held-out set poses the

challenge that we compare model inflections on verbs that it has not seen during training,
while it is uncertain how these verbs would exactly have been inflected by human speakers
at the first time encountering them. Instead, a golden test for evaluating a model’s generali-
sations to novel inputs is considered the Wug Test (Berko, 1958). During this test, human
speakers are prompted to produce inflections of nonce words, plausible word forms that
do not really exist, such as spling (a nonce verb to be inflected to a past tense form such
as splinged or splang). A&H conducted such a Wug Test for English past tense inflection,
by eliciting past tense forms of 58 monosyllabic nonce verbs from 42 human speakers.
The forms produced by human speakers on the Wug Test reveal which inflection patterns
are preferred to apply to unseen forms, reflecting their productivity. Comparing human
speaker nonce verb inflections to those of a model allows us to appropriately evaluate how
human-like a model’s generalisations are.
Following K&C in implementing the Wug Test to evaluate the model’s generalisations,

Corkery et al. (2019) presented a more comprehensive comparison between the nonce verb
inflections of a similar ED model and human speakers from the A&H experiment. They
found that the model and human subjects showed a similar general tendency to inflect novel
verbs regularly. Also, if the nonce verb resembles a cohort of phonetically similar irregular
verbs, both human speakers and the model were more likely to produce an irregular past
tense form. However, the model inflected these nonce verbs more often irregularly than the
human subjects. For example, the model inflected spling almost always to splung, following
the irregular pattern of sting–stung, while the majority of human subjects inflected this
nonce verb to splinged. This failure to precisely mimic human behaviour on novel input
suggests that these ED models cannot yet be considered appropriate models of human
morphological processing.
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1.1 Research Questions

The results of Corkery et al. (2019) and K&C demonstrate that, contrary to what has been
widely believed for decades, neural models may have potential as a cognitive model of
inflection. However, Corkery et al.’s (2019) more complete evaluation of their ED model’s
inflections indicates that there are tense inflection? still challenges faced, as they did not
closely match those of human speakers on nonce verbs. The challenge remains to fully
understand the potential of these neural models as a cognitive model of morphological
inflection. The primary objective of this thesis is therefore to explore whether—and in
which ways— ED models can be enhanced as a more accurate cognitive model of English
past tense inflection. Addressing this inquiry will lead to a deeper understanding of the
intricacies of morphological inflection within the context of human language acquisition.
The central research question guiding this research is therefore as follows:

What is the potential of ED models as a cognitive model of English past

To address this main question, this thesis focuses on four sub-questions. These do not only
investigate whether an ED model’s fit with human behaviour on both real and nonce verbs
can be improved, but also provide insights into the role of different aspects in past tense
inflection.

1.1.1 Token Frequency

In all of the above-mentioned studies, the training data of the model consists of a list where
each verb appears with equal frequency. This approach is based on prior research suggesting
that type frequency—the number of verb types following a given inflection pattern—is an
important feature in past tense acquisition (e.g., Albright and Hayes, 2003; Baayen, 2009;
Bybee, 1995; Pierrehumbert, 2001). On the other hand, in language learning, verbs are
encountered in a specific token frequency distribution, where token frequency refers to the
number of verb tokens that follow a given inflection pattern. First of all, it could therefore
be argued that a realistic cognitive model should be able to encounter verbs in their token
frequency distribution and still generalise to past tense forms in a similar way to humans.
Furthermore, as elaborated in Sections 2.3.2 and 3.4.1, the token frequency distribution

of verbs may even carry useful information about the productivity of past tense inflection
rules (Baayen, 2009), potentially leading to improved model performance (Ma & Gao,
2022). Investigating this aspect provides further insight into the role of token frequency in
the acquisition of English past tense rules and its implications for cognitive modelling.

I. Does training an ED model on token frequency instead of type frequency lead to more
similar real and nonce verbs inflections to those of human speakers?

We investigated this question by comparing two different kind of ED models, where one kind
is trained on data where verbs are equally distributed (i.e. type frequency) and the the other
kind of ED models is trained on dataset in which verb examples are added proportional
to their token frequency distribution. These models are compared to each other on their
performance on real verbs and their correlation with nonce verb inflections from human
Wug Test data.
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1.1.2 Dual-Route Multi-task Training

The second sub-question of this thesis explores the effect of an auxiliary task that predicts
whether the verb in question is regular or irregular. This auxiliary task compels the model to
categorise each verb into one of two distinct classes. According to the dual-route approach
of P&P, this discrete differentiation between regular and irregular verbs is essential in
modelling English past tense inflection. Adding such an auxiliary task to the main task of
predicting verb inflections allows to investigate whether this discrete classification between
regular and irregular verbs enhances the model’s alignment with human behaviour. This, in
turn, could provide more insight into the credibility of the dual-route approach proposed by
P&P. The second sub-question is therefore as follows:

II. Does training an ED model on an auxiliary task of distinguishing regular and irregular
verbs lead to more similar inflections of real and nonce verbs to those of human speakers?

We investigated this by comparing models that are only trained on the main task of predicting
the correct verb inflection to those that are trained on the main task as well as the auxiliary
task of predicting the verb class. Again, we compared these different models on their
performance on real verbs as well as their fit with nonce verb inflections from human Wug
Test data.

1.1.3 Model Configuration Choices

While the previous two sub-questions touch on aspects that may also shed light on the
underlying cognitive mechanisms of inflection, the third sub-question focuses on exploring
the effect of different model configuration choices on the performance of the ED models.
In the studies of Corkery et al. (2019) and K&C, there is no report of exploring different
options for the data, training and architecture of their ED models for this specific task. Their
settings led to a near-perfect performance on real verbs. However, a cognitive model should
also capture human behaviour on novel inputs. Moreover, Corkery et al. (2019) results
suggest that their model may overfit on real verbs from the training set. It is therefore
relevant to explore the effect of different model configurations on both real and nonce verb
inflections. Moreover, how performance is affected may also differ per model type: with or
without token frequency represented in the data and with or without multi-task training.
Therefore, our third sub-question is as follows:

III. Which data and model configuration choices affect an ED model’s ability to predict more
similar inflections of real and nonce verbs to those of human speakers

To answer this question, we conducted one experiment that explores different versions of
our ED models (Experiment 1, Section 5.1). We subsequently compared model performance
on real and nonce verbs when including a set of verbs that we have found to be missing in
the dataset of previous studies (A&H, Corkery et al., 2019, K&C), with or without allowing
verbs to have more than one correct inflection, the use of an early stopping mechanism with
different settings, and other hyperparameters that influence a model’s learning capacities but
also the potential tendency to overfit on real verbs: number of layers, layer sizes, dropout,
batch size, learning rate. The aim of this experiment is (1) to provide insight into the impact
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of different data, model, and training settings on modelling English past tense inflection;
and (2) to finally select models that most accurately capture human behaviour on novel
inputs.

1.1.4 Impact of the Verb Distribution

Finally, the fourth and final sub-question focuses on investigating the influence of the
distribution of real verbs over a training and development set. Although in Corkery et al.
(2019) all real verbs were utilised as training data, we follow K&C in splitting the set of
real verbs into multiple sets. Our main reason for this is to prevent overfitting by tracking
development set accuracy during training. Although it is a valid and common approach in
machine learning to use a random division and training-development split of the data, we
argue that it should be taken into account with this type of verb data whether different
splits lead to different results. When it comes to the task of past tense inflection, selecting
20% of the verbs as development set could potentially affect representativeness of both the
training and the development set, which is mainly with regard to irregular verbs (further
elaborated in Section 5.2). This could also influence a model’s fit with human behaviour.
This is not taken into account by K&C. Our fourth and final sub-question is therefore as
follows:

IV. Does the distribution of real verbs over a training and development set influence an ED
model’s fit with human behaviour on real and nonce verb inflections?

To answer this question, we conducted a second experiment, where we evaluated and com-
pared our ED models’ performance using different training-development splits. (Experiment
2, Section 5.2).
Finally, the results of the two experiments are aggregated to gain insight into the

overall performance of the models trained on type versus token frequency, and single versus
multi-task training.

1.2 Outline

In order to find answers to the posed research questions, the outline of this thesis is as
follows. In the Theoretical Background in Chapter 2, we explain key concepts and theories
that are relevant to this thesis. In Chapter 3, we offer a brief summary of the related
literature that preceded this thesis. Chapter 4 provides an overview of the methods. Chapter
5 presents both Experiment 1 (Section 5.1) and Experiment 2 (Section 5.2). In Chapter 6 we
present the final overall results, aggregating the results from both Experiment 1 and 2. We
discuss the implications of these results in light of the research questions in the Discussion
in Chapter 7, along with suggestions for future research. Finally, in Chapter 8 we draw the
main conclusions from this thesis.
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Chapter 2

Theoretical Background of Modelling
Past Tense Inflection

2.1 English Past Tense Inflection

Since it is essential to understand the case of inflection before modelling it, this section
offers a brief overview of English past tense inflection. In English past tense inflection, we
generally make a distinction between regular and irregular verbs. These two classes are
discussed in the section below.

2.1.1 Regular Verbs

The vast majority of English verbs belong to the regular class, approximately 97%. They are
inflected by taking the stem of the verb and then adding the suffix -ed, e.g., walk–walked.
The pronunciation of this suffix depends on the phonetic context. The suffix -ed can be
pronounced as [-@d] or [-Id], if the verb stem ends in the sounds /t/ or /d/, such as the verb
[’stA:rtId] (started). Otherwise, if the verb base ends in a voiceless consonant (e.g., /p/,
/k/, /f/, /s/, /S/) a /t/ is pronounced, for example in [læft] (laughed). Finally, an /d/ is
pronounced if the verb stem ends in a voiced consonant (e.g., /b/, /v/, /z/, /n/, /ŋ/, /l/,
/r/) or a vowel, for instance [l2vd] (loved) and [pleId] (played).

2.1.2 Irregular Verbs

Although the irregular class is much smaller than the regular class (the remaining 3%
of the verbs), the top most frequently used verbs are irregular. Irregular verb inflection
includes any other pattern than the regular inflection. Irregular inflection patterns can
involve transformations like vowel changes (also known as ablauts, for instance, sing–sang),
consonant changes (make–made), a combination of the two (teach–taught), or no change at
all (hit–hit). Some irregular inflections are highly irregular such that the pattern is entirely
unique (like the inflection is–was). However, there are also irregular verbs that can be
considered semi-regular. These verbs follow similar inflection patterns and can therefore be
generalized to some extent. For instance, the set {wring–wrung, swing–swung, sting–stung,
string–strung, ...} includes verbs that all share the same irregular inflection pattern, where
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the vowel /I/ changes to /2/. Another clear example is the set of verbs where the vowel /I/
changes to /æ/: { sing–sang, spring–sprang, ring–rang, drink–drank, sink–sank, ...}.

2.2 Theories of English Past tense Inflection

As mentioned in the introduction, it has been debated for decades how these English past
tense rules are cognitively processed and should be modelled. The topic gained a lot
of attention since the 1980s, when R&M introduced their connectionist model and P&P
contradicted this type of modelling with their dual-route approach. Below, we give a brief
description the dual-route and single-route views, as well as some views that fall outside or
in between the two.

2.2.1 Dual-Route View

In the dual-route view, as proposed by P&P, the cognitive process underlying English past
tense inflection is described by two distinct pathways. At encountering a verb, a speaker
first determines whether the verb is regular or irregular, after which the appropriate route
is activated.
One of these two routes accounts for rule-based transformations of verbs, specifically

for the process of inflecting regular verbs. This is based on the fact that regular inflection
consists of the deterministic morphological rule where the suffix -ed is added to the base
form of the verb. Therefore, only the stem of regular verbs need to be memorised, together
with the general transformation rule for all these verbs. According to P&P, a model of
inflection therefore needs a component with explicitly defined rules to represent this part of
the inflection process.
The other route describes a memory-based process of retrieving past tense forms of

irregular verbs. The past tense forms of the irregular verbs are stored in a mental lexicon, and
are retrieved during the past tense inflection process when needed. Instead of remembering
the base of the verb and applying a general rule, the irregular verbs are stored as whole
forms. For this route, the process relies on past exposure and memorising the irregular past
tense forms, and sometimes generalising them by relying on gradient analogical processing
(P&P; Prasada and Pinker, 1993).

2.2.2 Single-Route View

In contrast, the single-route view posits a unified mechanism for both regular and irregular
verbs. This view suggests that both regular and irregular past tense forms are generated
through a single pathway rather than of two distinct routes. Under this framework, inflection
patterns are learned through a common process, such as relying on the analogical similarity
between stored exemplars (Blything et al., 2018; Bybee, 1995; Seidenberg & McClelland,
1989)
A key example of a single-route model is also the connectionist model proposed by

R&M. In such a model, a single network learns both regular and irregular inflections with-
out relying on explicitly defined rules. Instead, this type of processing involves pattern
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recognition, which is done by adjusting the network weights based on the frequency of
encountering inflection patterns, which can be considered implicit rule learning.

2.2.3 In-Between the Two Views

From a different perspective, modern neural networks could also be considered to not
strictly adhere to either the single or dual-route view. Today, deep neural networks have a
large capacity, which makes them able to obtain complex abstract representations. Although
both regular and irregular verbs are still being processed within one network, the network
representations could theoretically be complex enough to mimic both single-route aspects
as well as dual-route aspects.
Another example of a model that can be considered to fall in between the two views is

the minimal generalisation learner (MGL) of A&H. This non-neural model discovers multiple
rules of English past tense inflection by inductive learning, to which it assigns confidence
scores (i.e., stochastic rules). Such a model is in line with the single-route view, given
that regular and irregular inflections are handled within one mechanism. It does not only
define regular inflection rules, but also irregular inflection rules: think of the described
semi-regular patterns like {sing–sang, ring–rang, ...}. Simultaneously, their findings align
with P&P’s perspective that past tense inflection is most accurately described by explicit
rules, as their model outperformed a single-route analogical model relying on phonological
similarity.
Finally, another modelling approach that falls in between the two approaches is neural

models implementing a symbolic component. According to Marcus (1998, 2020) connec-
tionist models have important limitations with regard to their potential to capture human
cognition. Distributed representations might not be fully able to capture structured or
rule-based cognitive processing. Therefore, Marcus advocates for an approach combining
neural modelling and symbolic reasoning (or, more precisely, variables that facilitate gener-
alisation), where the two work together in a complementary way rather than being mutually
exclusive.

2.3 Morphological Productivity

For a model to accurately apply past tense inflection, it should capture the morphological
productivity of inflection rules. Morphological productivity generally refers to the potential
of a morphological pattern to be applied to novel forms (Bauer, 1983; Plag, 2003; Schultink,
1961). Accurately capturing the productivity of rules enables the model to generalise these
rules to new words in a similar manner to human speakers, thus simulating the cognitive
mechanisms underlying linguistic patterns observed in natural language use.

2.3.1 Wug Test as Test of Productivity

One way to investigate the productivity of morphological patterns is the Wug Test (Berko,
1958). As explained in the introduction, this test reveals how human speakers inflect unseen
forms, which reflects productive patterns. In the original test of Berko (1958), participants
were prompted to make plural inflections of nonce nouns: one wug, two wugs (hence the
name wug test).
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A&H conducted such a Wug Test with the goal of testing how similar their model’s
verb inflections were to those of human speakers. In two experiments, they elicited from
42 human speakers 58 past tense inflections of monosyllabic nonce verbs. In the second
experiment, the participants were also asked to rate suggested inflections of the nonce
verbs. Based on the produced inflections of the participants, A&H computed for each nonce
verb inflection a production probability. With these production probabilities, A&H evaluated
the predicted confidence scores for nonce verb inflections by their MGL model (as briefly
mentioned in Section 2.2.3). They did this by computing the correlation between their
model’s confidence scores and the human speaker production probabilities. This results in a
single measure indicating the similarity between a model’s and humans’ generalisations to
novel verbs.

2.3.2 Determiners of Morphological Productivity

2.3.2.1 Form Similarity and Type Frequency

Comparing model nonce verb inflections to those of humans, Corkery et al. (2019) found that
their ED model failed at accurately capturing human behaviour. Therefore, it is interesting
to consider what kind of linguistic information in the training input could contribute to
generalising rules that lead to a stronger fit with human behaviour on nonce verbs.
For English past tense inflection, it is generally assumed that productivity mainly depends

on the phonological form and the number of verb types belonging to the morphological
class, i.e., type frequency (Bybee, 1995; Pierrehumbert, 2001; Skousen, 1989). Type
frequency as a measure of productivity makes sense, given that around 97% of the English
verb types belong to the regular class, the highly productive rule in English past tense
inflection. Modelling evidence from A&H’s study further showed that type frequency led to
accurate predictions of novel verb inflections. Thus, the previous studies (Corkery et al.,
2019; K&C) also trained their models based on a dataset in which each verb occurs once,
hence type frequency.

2.3.2.2 Token Frequency

However, another option is to train the models on data that represents the token frequency of
verbs. Such a decision would decrease the proportion of regular examples in the data; only
∼ 70% of the verb tokens belong to the regular class, in contrast to∼ 97% regular verb types.
As also visualised in Section 4.1.4 from our dataset, in the distribution of token frequency,
the most common verbs appear significantly more frequently than the less common ones
and they are often irregular. The regular class, on the other hand, contains relatively many
verb types that occur less frequently. It might be seen as a potential drawback of token
frequency that it represents less directly the high productivity of the regular inflection.
However, representing token frequency in the data may still be an interesting option

when modelling past tense inflection. First of all, token frequency makes the model’s input
more similar to the input of human language learners. Humans acquire the past tense
inflection by encountering verbs in their token frequency distribution, and not by hearing
each verb equally often. It may be expected from a plausible cognitive model that it is able
to learn from a similar input to that of human language learners. That is, the relevance of
type and token frequency information should be learned by the model itself, like humans
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do. Thus, including token frequencies in the training input would contribute to a more
representative cognitive model.
Moreover, token frequency may even offer information that is useful for the acquisition

of the productivity of inflection rules. Baayen (2009) describes two measurements of
morphological productivity in addition to realized productivity (based on type frequency):
expanding productivity and potential productivity. Both these measurements are based on
token frequency. To compute these measurements, Baayen (2009) uses the number of the
words that occur once in the corpus per morphological class, hapax legomena. The more
hapax legomena belong to a class, the higher the expanding and potential productivity
of the class. These measurements are indicators of productivity of a morphological class,
because a productive class is still expanding and applied to novel words Baayen (2009),
which is indeed the case for the regular past tense rule. Following this rationale, we consider
it interesting to investigate the effect of including token frequency on the model’s ability to
generalise in a human-like manner.

2.4 Encoder-Decoders as Models of Morphological Inflection

This final section of the Theoretical Background offers a brief description of character-level
ED models, as implemented by this thesis, as well as by Corkery et al. (2019) and K&C.
K&C implemented an architecture similar to that of Bahdanau et al. (2014) which Corkery
et al. (2019) followed. EDs are relevant and successful models in the field of sequence-to-
sequence tasks, especially in the field of NLP. The ED architecture is designed to process
input sequences and generate corresponding output sequences, both of varying lengths. This
makes these models highly suitable for natural language tasks such as machine translation
(Bahdanau et al., 2014; Cho et al., 2014; Sutskever et al., 2014) but also morphological
inflection (e.g., McCurdy et al., 2020; Corkery et al., 2019; Cotterell et al., 2016; K&C)
In the context of morphological inflection, the ED model processes inputs—in our case

verb forms—as sequences of integers, where each integer represents a phonetic character.
The encoder components process the input sequences by encoding them into fixed-length
vectors. By passing the encoder states onto the decoder, the decoder will generate the
output sequence, which is the past tense form of the verb.
In this architecture, both the encoder and decoder consist of an embedding layer. The

embedding layers allow the model to build a more detailed representation of phonetic
characters. Both the encoder and decoder contain two stacked LSTM layers. The input
embeddings are fed into the first LSTM layer, which passes its output to the top LSTM layer.
In the encoder, the LSTM layers are bidirectional, meaning that information is processed
in both a forward and backward direction, instead of only forward (Schuster & Paliwal,
1997). The output vector of the encoder and the outputs of the decoder are passed onto
the attention layer. From the attention layer outputs a context vector. Finally, a dense layer
receives the output of the decoder together with the context vector. This dense layer predicts
the next character in the output sequence. Both processing (encoder) and generating
(decoder) verbs are done one character at a time. A schematic overview of the architecture
is shown in Figure 2.1. Below, we also describe the main components of this ED architecture
in more detail, along with their formal definitions.
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Figure 2.1: Schematic overview of the described encoder-decoder model.

2.4.1 Encoder

The input sequence x is fed into an embedding layer which converts each integer into a
vector. Below a formal description of this is given, where x1 is an integer representing one
character of the phonetic form, and T is the length of this input sequence.

x = (x1, x2, . . . , xT )

ei = Embed(xi)

The first bidirectional LSTM layer processes the embedded input and generates an output
based on its input at each time step. As the LSTM layer contains forward and backward
hidden and cell states, h and c, these are updated at each time step.

−→
h i,
−→c i = LSTMfwd(ei,

−→
h i−1,

−→c i−1)

←−
h i,
←−c i = LSTMbwd(ei,

←−
h i+1,

←−c i+1)

The forward and backward hidden and cell states together encapsulate information from
both directions of the input sequence.
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hi = [
−→
h i;
←−
h i]

The output of the first LSTM layer is fed into the second bidirectional LSTM layer, resulting
in the final encoder states and an output vector—the encoding—which abstractly represents
relevant information from the input sequence.

h′
i = LSTM2nd(hi)

2.4.2 Decoder

Based on the encoder’s final states, the decoder generates the past tense verb sequence.
As mentioned, this is done character by character, as the decoder predicts the next char-
acter based on the previous character of the output sequence. The states of the decoder
LSTM layers are initialised to the final hidden and cell states from the encoder, preserving
information obtained by the encoder based on the input sequence.

hdec0 = henc, cdec0 = cenc

The first input the decoder receives is a start sign < s >. Next, each previously generated
output character yi−1 is first passed onto the decoder’s embedding layer, resulting in an
embedding vector for that character.

edeci = Embed(yi−1)

As with the encoder, this embedding output is passed onto the first LSTM layer of the
decoder. However, unidirectional LSTM layers are used in the decoder. Again, the hidden
and cell states of the LSTM are updated at each time step.

hdeci , cdeci = LSTMdec(edeci ,hdeci−1, c
dec
i−1)

The first decoder LSTM layer passes its output onto the second decoder LSTM layer.

hdec-2i = LSTMdec2nd(h
dec
i )

2.4.3 Attention Layer

The output of both the encoder and decoder is passed onto an attention layer. The attention
mechanism enables the model to concentrate on the most relevant parts of the encoder’s
output for the prediction of the next character. It does this by creating a context vector that
indicates where information of the encoded input sequence is emphasised.

ci =
T∑

j=1

αijh
enc
j
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Each annotation henc
j encapsulates information from the input, with most focus on the area

of the j-th character of the input. The context vector is also computed based on an attention
score αij (where i is the current time step of the decoder and j is the given time step of the
annotations from the encoder output).
Depending on the type of attention that is used, the attention scores are computed

differently. In the case of Luong attention (Luong et al., 2015), which is the mechanism we
implemented in this thesis, the attention scores are based on the dot-product of the current
decoder state and the encoder output states, after which Softmax is applied to normalise
the weights.

αij =
exp(hdeci ⊤ · hencj )∑T
k=1 exp(h

dec
i ⊤ · henck )

where hdeci is the hidden state of the decoder at time step i, hencj is the hidden state of the
encoder at time step j, and T is the length of the input sequence.

2.4.4 Dense Layer

Together with the decoder LSTM output hdec-2i , the context vector ci is fed into a dense
layer at each timestep i. This dense layer predicts the next character of the output sequence
yi by using a Softmax activation. The process of predicting output characters is repeated
until the stop sign is predict or when a defined maximum length of the output is reached.

P (yi|hdec-2i , ci) = softmax(W · [hdec-2i ; ci] + b)

WhereW and b are the weights and biases of the dense layer respectively.
In line with our second research question, concerning multi-task training, we experiment

with an augmentation of this model where an auxiliary task is incorporated. This auxiliary
task implies the addition of another dense layer. We describe the details of this layer in the
Methods chapter (4.2.2).
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Chapter 3

Related Literature on Modelling Past
Tense Inflection

3.1 The Decades-Old Debate

Although the connectionist model of R&M was strongly countered by P&P with their dual-
route approach, the work of R&M is still relevant and is part of a shift in cognitive modelling
linguistic behaviour and how neural models could be used to do this. The results of this initial
neural model of past tense inflection may not seem very convincing today, but considering
the worse computational power and capacity compared to more contemporary neural
models, it could be considered a decent achievement. Nonetheless, the shortcomings of
the R&M model pointed out by P&P provided grounds for the wide rejection of neural
networks in similar modelling tasks. Although P&P addressed many different theoretical
and practical aspects of the R&M model to argue against neural modelling, central were the
empirical limitations of the R&M model (such as an estimated 67% accuracy) that could not
be overcome without a component in the model that represents the presence of explicit rule
learning. Therefore, P&P argued that it was not just R&M’s model, but neural models in
general, that are not suited to model past tense inflection.

3.2 Neural Model Advancements since the Debate

Although the P&P arguments against connectionist modelling were highly influential in
linguistics, many of these critiques may no longer hold up against today’s neural networks.
The improvements with deep neural networks in the past decades have been significant,
making the capacities of neural models in the 1980s far behind that of contemporary
models. This is not only thanks to the larger architecture and capacity of neural models, but
also to developments such as the mentioned RNNs (Elman, 1990) and more sophisticated
architectures—such as LSTMs (Hochreiter & Schmidhuber, 1997), GRUs (Cho et al., 2014),
Transformers (Vaswani, 2017)—that are suitable for processing and generating linguistic
data. As mentioned in the Theoretical Background (2), ED models and mechanisms like
attention were introduced and further developed to address sequence-to-sequence tasks in
NLP such as machine translation (Bahdanau et al., 2014; Luong et al., 2015; Sutskever et al.,
2014). The main theoretical improvements of using EDs as models of inflection are that
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they can preserve the identity and order of the phonemes by processing them sequentially,
learning embeddings for each phoneme, and allowing inputs and outputs of arbitrary length,
whereas the R&M connectionist model lacked this capacity and flexibility.

3.3 Revisiting the Debate with Deep Neural Networks

Thanks to the above-described advancements, deep learning models have become a more
popular approach in cognitive modelling. Specifically, with the impressive progress in NLP,
modelling tasks such as morphological inflection have also been approached with deep neural
models. Multiple studies have focused on reinflection tasks (transforming one inflected form
into another inflection of that same form, Cotterell et al., 2016) and morphological paradigm
completions (mapping lemma’s to forms in a paradigm, e.g., work–works/worked/working),
which are generalisations of the inflection task described by R&M (Ahlberg et al., 2015;
Durrett & DeNero, 2013; Faruqui et al., 2015; Nicolai et al., 2015).

3.3.1 Introducing Encoder-Decoders as Models of Past Tense Inflection

As the next step, K&C implemented an ED model to revisit the R&M and P&P debate on
modelling past tense inflection. They demonstrate that their model overcomes multiple
limitations of R&M’s connectionist model. They investigated to what extent these ED models
are able to learn correct and human-like generalisations to inflect verb stems to their past
tense forms on both training and test of real verbs.
To do this, they implemented an ED model, as globally described in Section 2.4, and

trained their model on CELEX verb data (Baayen et al., 1995) containing around 4000
examples1. Their model obtained near-perfect accuracy on all verbs in the training set, as
well as on regular verbs from a test set. This is indeed a large improvement on the estimated
67% performance of the R&M model. On the test set of irregular verbs, however, it still
struggled to generalise. This makes sense, given that irregular verbs can contain little to no
similar patterns to generalise. Nonetheless, the model still obtained almost 30% accuracy on
these test irregulars, which implies that the model can generalise irregular forms to some
extent. Moreover, its errors on the irregular test verbs are mainly due to over-regularisations.
They argued that these over-regularisation errors are desirable since human speakers have
the tendency to produce regular inflections of novel forms as well (A&H). The errors of the
model contained no blend errors, where the regular and an irregular inflection are blended
(like see–sawed) while this was another limitation of the R&M model2. In conclusion, K&C’s
study demonstrates that contemporary neural models overcome multiple limitations of
the initial model by R&M, and they suggested focusing on whether the model behaves in
human-like manner on novel inputs.

1Which is another improvement on the R&M model. At the time, less data was available, so R&M used only
506 examples, of which 98 irregular (Kucera & Francis, 1967), as was also pointed out by P&P.

2According to Pinker (1999), blend errors are only a human-like error in the case of children learning the
irregular past tense as the present tense of that word.
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3.3.2 Capturing Human Behaviour with Encoder-Decoder Models

K&C further investigated their model’s fit with human behaviour using A&H’s Wug Test data.
As explained in Section 2.3.1, the Wug Test offers an appropriate test of generalisation.
They found a moderate correlation between the human nonce verb inflections and their
ED model’s predictions. As a follow-up, Corkery et al. (2019) further investigated the
predictions of a similar ED model on the Wug Test. Their more comprehensive comparison
between nonce verb inflections of human speakers and those of their ED model showed that
human behaviour is not appropriately being captured.
Corkery et al. (2019) implemented a completely similar ED model to that of K&C.

Alternatively, Corkery et al. (2019) used all real verb data as training data and used only
the Wug Test as final test of the model’s generalisations. They could indeed mimic K&C’s
results in obtaining near-perfect accuracy on the training set of real verbs. However, they
also found that models with different random initialisations exhibited varying levels of
correlation strength with A&H human data of nonce verb inflections. They argued that the
instability in inflection behaviour of their model can be compared to variation between
human speakers.
For this reason, in a second experiment, they aggregated the results of multiple random

initialisations of the same model, considering each simulation of the model an individual
speaker. They mimicked the computation of A&H’s production probabilities of human
speakers by aggregating the nonce verb inflections of 50 simulations. Their results revealed
that the ED model generally followed a similar pattern to that of the human speakers,
applying most often the regular inflection on nonce verbs. On a more detailed level, however,
they observed that the ED model is more likely to apply the irregular inflection, compared
to human speakers. When a nonce verb resembles a cohort of phonetically similar irregular
verbs (also referred to as an Island of Reliability by A&H), both the human subjects and
the model were more likely to treat the nonce verb as irregular, compared to when this is
not the case. However, this effect was stronger for the model than for the human speakers.
The computed correlations between the aggregate model predictions and human data were
moderate for the regular inflection and weak for the irregular inflection of nonce verbs.
Moreover, correlations following from the rule-based model by A&H were stronger. In
conclusion, taking a closer look at the ED model’s generalisations, significant shortcomings
of ED models were still found when it comes to mimicking human speakers on the Wug
Test.

3.4 Improving Encoder-Decoders as Models of Inflection

It follows from Corkery et al. (2019) that the question remains whether ED models can
be appropriate cognitive models of past tense inflection. In this section we discuss related
literature in light of the four research questions (posed in Section 1.1). For each, we point
out how the previously discussed and related literature leads to these questions.

3.4.1 Augmenting Data with Token Frequency of Verbs

As mentioned in the Theoretical Background (2), we consider integrating token frequency
in the data more appropriate for a cognitive model of past tense inflection, as opposed to
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type frequency, because this is more similar to the linguistic input of humans. In addition to
this, we explained that the token frequency distribution of verbs might even contain useful
information with regard to the productivity of the inflection rules, which is essential in
modelling morphological inflection (Baayen, 2009).
Although most studies do not include token frequency in any way, a recent study by

Ma and Gao (2022) investigated the effect of different verb frequency and resampling
methods in training Transformer models on English past tense inflection. One of their
findings indicated that the best accuracy on irregular verbs was obtained when the model
was trained on a dataset where irregular verbs occur more often and each regular verb
once. Vice-versa, regular verb performance was more affected by type frequency. They
concluded that performance is influenced by both token frequency and type frequency, but
these influenced performance on irregular and regular verbs, respectively. According to
Ma and Gao (2022), this indicates that their model obtained abstract representations that
distinguish regular verbs from irregular verbs.
These results show that augmenting the data with token frequency can influence model

performance. Therefore, we investigated the effect of token frequency on the performance
of ED models like the ones used in Corkery et al. (2019) and K&C. Contrary to Ma and Gao
(2022), however, we augmented our training data with the token frequency of all verbs
(i.e., both regular and irregular), which mimics how verbs are encountered during human
language learning. In the Methods chapter (4), we explain this in more detail.

3.4.2 Multi-task Training the Dual-Route

Our second research question relates to Ma and Gao (2022), who stated that their Trans-
former model seemed to learn an abstract distinction between regular and irregular verbs.
Contrary to the classic view that neural models oppose the dual-route approach, deep learn-
ing models could theoretically learn abstract representations that align with the dual-route
perspective, if such representations help the model identify inflection patterns in the data.
K&C also pointed out that they wanted to bypass the original question from the P&P and
R&M debate “whether or not neural models learn and use “rules.” From our perspective,
any system that picks up systematic, predictable patterns in data may be referred to as
rule-governed.” (K&C, pp. 651–652). In fact, as mentioned, Marcus (1998, 2020) proposed
representing explicit rules within a neural model. The integration of these—originally
opposing—theoretical concepts in deep neural networks highlights the capacity of neural
models to function as a means to investigate ongoing questions in psycholinguistics and
cognition, such as past tense inflection.
To our knowledge, integrating a dual-route approach into a deep learning model has

not been explored. One way to investigate the effect of integrating a dual-route approach
within neural models is to facilitate the model in making a binary distinction between
regular and irregular verbs. As mentioned in the introduction and further explained in the
Methods chapter (4), we added an auxiliary task where the ED model predicts whether
verbs are regular or irregular, in addition to the main task of predicting the past tense form.
Investigating the effect of adding such an auxiliary task reveals whether or not the imposed
emphasis on a binary distinction between regular and irregular improves the model’s fit
with human data. This, in turn, gives more insight into the plausibility of the dual-route
view, which argues that a discrete distinction between regular and irregular verbs is in line
with how humans process English past tense inflection.
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3.4.3 Model Configuration Choices

For the third sub-question of this thesis, we investigated the effect of different model
configuration choices for EDs as models of inflection. We consider this relevant, as it is
known that aspects such as data, duration of training, architecture and the complexity of a
neural model can heavily influence performance.
An initial consideration could perhaps be to explore more state-of-the-art (SOTA) neural

architectures, like Beser (2021) and Ma and Gao (2022), who implemented transformer
models instead of the ED architectures with LSTM-based mechanisms as implemented by
Corkery et al. (2019) and K&C. However, the goal of this thesis is to follow up on the studies
of Corkery et al. (2019) and K&C and to investigate whether performance improvement
can be found as a result of the discussed research questions so that we improve our ability
to model and understand past tense inflection. Therefore, SOTA performance is less of
interest here, and we followed the previous studies of Corkery et al. (2019) and K&C by
implementing a globally similar model.
However, Corkery et al. (2019) and K&C do not report to have explored alternative

settings to the ones they used. To begin with, Corkery et al. (2019) adopted both A&H’s
and K&C’s verb data, noting that K&C’s set includes fewer examples. Nonetheless, even the
A&H data excludes a significant set of mainly irregular verbs with a high token frequency.
We provide more information about this omitted verb set in the Methods (Section 4.1.2.2).
We investigated the effect of this omission of verbs and experimented with making the data
more complete. We also investigated the effect of including and excluding examples of verbs
if they have more than one correct inflection.
Furthermore, both Corkery et al. (2019) and K&C trained their models until near-perfect

performance on training verbs using a fixed number of training epochs (100). However,
Corkery et al. (2019) noted that the beam probabilities were heavily skewed, meaning
that the top prediction in the beam has a very high probability, while the other predictions
have very low probabilities. With fewer training epochs, Corkery et al. (2019) attempted
to achieve more stable beam rankings and potentially better correlations. After every 10
training epochs, they computed the correlation between their model’s nonce verb inflections
and those of human speakers. Surprisingly, the highest correlation was obtained after just
10 training epochs with indeed more stable beam rankings. However, due to the low number
of training epochs, the accuracy on real verbs was much worse. This was especially true for
the set of irregular verbs, on which only 6.5% training accuracy was obtained instead of
near-perfect accuracy. According to Corkery et al. (2019), these results imply a disparity in
capturing human behaviour accurately on real verbs versus on nonce verbs.
From these results, one could suspect that a too-high number of training epochs leads to

overfitting on real verbs and prevents human-like behaviour on the Wug Test. Additionally,
the extent to which this is true may differ for each model (i.e., type frequency versus token
frequency, single task versus multi-task training). As a potential solution to this problem, we
explored the use of an early stopping mechanism to investigate how the number of training
epochs influences performance on real and nonce verbs for each model.
Finally, we explored various model versions with different hyperparameter settings. K&C

adopted hyperparameter settings from (Kann & Schütze, 2016), which Corkery et al. (2019)
followed. However, Kann and Schütze (2016) focused on a morphological reinflection task.
Since our exact task differs from theirs and hyperparameter settings can influence a model’s
learning capacity, complexity and the amount of regularisation, we experimented with
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various settings for the number of LSTM layers, layer sizes, dropout rate, batch size, and
learning rate.
In Experiment 1 (Section 5.1), we elaborate on the procedure and results of the above-

described model configuration experiments.

3.4.4 Distribution of Verbs

A final remark that we make on both Corkery et al. (2019) and K&C’s studies is that they
relied on either one random data split to divide their data into a training, development, and
test set (K&C) or no split of real verb data at all (Corkery et al., 2019). Using all real verbs
as training data eliminates the problem of omitting a significant subset of verbs from the
learning data for the model. This is more representative of human linguistic input since the
training data is as complete as possible. Omitting a set of verbs from the training set makes
the training set less representative. Additionally, it is difficult to determine which set of
irregular verbs would make a representative development or test set, given the remaining
training data. In other words, which irregular verbs would optimally measure the model’s
ability to generalise? Verbs like is–was are nearly impossible to generalise to, but semi-
regular verbs potentially make a more representative set of generalisations. However, it is
uncertain which exact selection would be most representative.
On the other hand, dividing the real verbs into a training and development set allows

for the use of preventive methods to mitigate overfitting on the training data. Even though
we follow Corkery et al. (2019) in using the Wug Test as the ultimate final measure of
generalisation, a development set allows for the use of an early stopping mechanism to
monitor during training when the model begins to overfit on the training verbs.
As a solution to this dilemma, we followed K&C in making a random division of the data

to be able to develop the model and look out for overfitting on real verbs in the training set.
In a subsequent experiment (Experiment 2, Section 5.2), we investigated the effect of using
different distributions of real verbs over the training and development set by training and
evaluating our models on four alternative training-development set divisions.
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Chapter 4

Methods

4.1 Data

4.1.1 Data Acquisition

4.1.1.1 Real Verbs

For this thesis, we adopted the set of CELEX verb lemmas used by A&H, K&C, and Corkery
et al. (2019). We retrieved this set from Kirov (2023). The CELEX database is a lexical
database for English, Dutch and German, containing detailed information such as lemma
morphology, frequency, phonology, orthography and syntax (Baayen et al., 1995). From
this CELEX database, A&H selected 4253 verbs, all with a lemma frequency of at least 10.
For each lemma, the set contains its associated present and past tense forms and its lemma
frequency. It is also indicated whether the past tense inflection is regular or irregular.
For the purpose of this thesis, we obtained the token frequency of the past tense forms

from the CELEX database. Note that the lemma frequencies from the adopted A&H verb set
represent the sum of the token frequencies of all forms of the lemma. The token frequency
of the past tense forms, however, represents best how often the inflected form itself occurs.
Finally, we adopted K&C’s American English phonetic representation of the verbs. Like

A&H, Corkery et al. (2019), and K&C, we use phonetic representations instead of ortho-
graphic ones, as A&H’s experiment was conducted in spoken form, and the mapping between
phonology and orthography in English is not always direct. We use the American English
phonetic transcriptions because this aligns with the language variety used in the A&H
experiments, which were conducted with American English speakers.

4.1.1.2 Nonce Verbs

For this thesis, we follow Corkery et al. (2019) and K&C in adopting the Wug Test stimuli
from A&H. This set consists of 58 nonce verbs. As for the real verb data, we relied on
American English phonetic transcription of the nonce verbs (K&C) and retrieved this set
from Kirov (2023). The Wug Test stimuli consist of present tense forms and multiple past
tense forms for each nonce verb. These past tense forms always contain the regular past
tense inflection and one or—occasionally—two possible irregular past tense inflections.
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A&H based these past tense forms on their experimental production data. We used the past
tense forms to classify the nonce verb inflections produced by our models. For the evaluation
of our models, we compare our models’ predictions to the production probabilities (n= 44)
and inflection acceptability ratings from the A&H experiments (n= 24). This will be further
explained in Section 4.4.2.

4.1.2 Data Preprocessing

4.1.2.1 CELEX Verb Selection

We took a subset of the original A&H real verb dataset consisting of verbs with a lemma
frequency of 10 or higher. From this set, we excluded all verbs that have a past tense token
frequency of 0. This eliminated 159 verbs from the A&H dataset. A few examples of these
verbs are: volleyed, dieted, gardened, gamed, caroused, mouldered, blubbered, clowned, fudged,
quibbled, outran.

4.1.2.2 Missing Verbs and Doubles

Furthermore, conducting a comprehensive examination, we found that a set of 25 verbs is
actually missing from the A&H dataset. Table 4.1 shows 9 of the omitted verbs with the
highest past tense form token frequencies. Though A&H do not give their reasoning behind
the exclusion of these verbs, most of the verbs from Table 4.1 can be used as auxiliaries
and are highly irregular past tense forms. Nevertheless, since the goal is to investigate
the influence of token frequency and these forms are also highly frequent, we consider it
essential to include them in the dataset. Moreover, because of their highly irregular form,
these verbs could be expected to be memorised in human language learning, so it is valuable
to see how the model handles such verbs.

Present tense Past tense Token frequency past tense Class
is was 97.174 irregular
have had 22.393 irregular
are were 8609 irregular
will would 8609 irregular
can could 8415 irregular
make made 3572 irregular
may might 1909 irregular
ought ought 205 irregular
strike struck 202 irregular

Table 4.1: Missing verbs from the A&H dataset.

Subsequently, we consolidated identical examples1 from the dataset into a single example
and summed their token frequencies. Further inspection of the dataset revealed that there
are 61 past tense forms which share their present tense form with at least one other past
tense form. This includes examples like {ring–rang, wring–wrung, ring–ringed}, as they
have an identical (pronunciation of the) present tense form but a different past tense form.

1Two examples with the exact same present tense form and past tense form, meaning that they are duplicates.
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These examples can differ in meaning and orthography, like ring and wring. It also includes
examples with identical present tense forms, having two ways to be inflected, such as
{dive–dove, dive–dived}. These 61 examples are referred to as doubles hereafter.
Previous studies have retained all past tense forms of these doubles in the dataset. This

means that a model is confronted with the task of learning multiple inflections for the same
input. Though it is most complete to include all forms in the dataset, it is worth noting that
humans are confronted with these doubles in a semantic context that likely disambiguates
these doubles (such as ring from wring). Nevertheless, like K&C, we consider the task of
lexical disambiguation beyond the scope of this thesis.
To gain insight into the impact of including or excluding these missing verbs and

doubles, this is the first element that is investigated in Experiment 1 (Section 5.1.2). These
experimental results indicated that the set including all doubles and missing verbs is not
only the most comprehensive and human-like version of the dataset, but also results in the
best fit to human data. For this reason, all doubles and missing verbs were included in the
dataset.

4.1.3 Character and Class Representation

As input, a character-level ED model needs float tensors of equal length. To do this, each
phonetic character that occurs in the dataset was indexed with an integer. Each verb form
was converted into a sequence of integers representing its phonetic representation. They
were also zero-padded to the longest sequence in the dataset. Below an example of this is
given.

pay peI [21 3 9 0 0 0 0 0 0 0 0 0 0 0 0]
paid peId [21 3 9 12 0 0 0 0 0 0 0 0 0 0 0]

For the auxiliary task, the verb class labels (regular/irregular) are indicated with binary
labelling.

4.1.4 Data Augmentation with Token Frequency

The token frequency that we obtained is a count of how often the verbs occur in the corpora
of the CELEX database. The total sum of token frequencies of all verbs in the dataset is
340.391. As can be seen from Figure 4.1, the token frequency distribution of verbs is heavily
skewed. Normalising these raw token frequencies by taking their square root (Osborne,
2002) results in a less skewed distribution of the verb token frequencies. We show this
distribution in Figure 4.2. As a result of the normalisation, the overall token count of all
verbs was reduced to a total sum of 16.263 tokens. This smaller size of the dataset makes it
more efficient to train the token frequency model while maintaining a similar shape of the
frequency distribution.
To investigate the effect of token frequency, we augmented the training set using the

normalised token frequencies. We achieved this by duplicating each verb in the dataset until
its occurrence matched the indicated normalised token frequency. This augmentation of the
dataset with normalised token frequency was done after dividing the data into a training
and development set, and only the training set was augmented with token frequency. The
development set was not augmented with the token frequency, because we evaluate real
verb performance based on accuracy on verb types, which will be further explained in
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Section 4.4.1. Before training any model, the training set was always randomly shuffled
again.

Figure 4.1: Top 50 most frequent verbs in the final dataset ordered on the raw token
frequency of the past tense form. Note that the first verb was is spread out over two bars.

Figure 4.2: Top 50 most frequent verbs in the final dataset ordered on the square-root
normalised token frequency of the past tense form.

4.1.5 Data Division

To train and evaluate the models based on the verb data, 80% of the real verbs were randomly
selected as the training set, while the remaining 20% was allocated to the development set.
As explained in Section 2.3.1, we follow the approach of Corkery et al. (2019) in considering
the Wug Test the test of generalisation. Consequently, we divided the entire dataset of real
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verbs into a training set and a development set, without creating a separate test set. As
mentioned in Section 3.4.4, the main reason for splitting the real verbs into training and
development sets is to allow the use of an early stopping criterion that tracks the loss on
the development set, helping to mitigate the potential problem of overfitting.

4.1.6 Data Statistics

The described data modifications result in a dataset that contains 4117 verb types in total.
In this set, ∼5% of the types are labelled as irregular. As mentioned above, this set of verb
types is divided into 80% training set (3292) and 20% development set (824). As explained,
to take token frequency into account, the training set is augmented with the normalised
token frequency distribution. The total sum of all verb token frequencies in the training set
is 12.895, of which ∼20% is labelled as irregular. The difference in the size of the training
set is given in Figure 4.3 and Table 4.2.

Figure 4.3: Size of the regular and irregular class in the training set based on type frequency
and token frequency.

Total Irregular Regular
Type frequency 3292 3118 (95%) 174 (5%)
Token frequency 12.895 10.360 (80%) 2535 (20%)

Table 4.2: Size of the regular and irregular class in the training set containing type frequency
and token frequency.
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4.2 Models

4.2.1 Model Description

To find answers to the first two research questions posed in Section 1.1, we compared four
different models that differ in the following two aspects:

1. Type frequency vs Token frequency models:
• Type frequency models are trained on a dataset in which each verb occurs once,
representing type frequency (like previous studies).

• Token frequency models are trained on a dataset that is augmented with the
token frequency distribution (as described above in Section 4.1.4).

2. Single Task vs. Multi-task models:
• The single task trained models only predict past tense forms.
• The multi-task models have an auxiliary task in addition to the main task of
predicting the past tense form: predicting whether verbs are regular or irregular.
The implementation is further explained in the next section.

This results in four models:

1. TYPESGT: Type frequency model, single task training
2. TOKENSGT: Token frequency model, single task training
3. TYPEMTSK: Type frequency model, multi-task training
4. TOKENMTSK: Token frequency model, multi-task training

As explained in the Theoretical Background (2) and Related Literature (3), the rationale
for using token frequency is that it represents the linguistic input of humans more, and
it may carry additional information to learn the productivity of the past tense inflection
rules. The rationale for the multi-task training setup is to compel the model towards
distinguishing between regular and irregular verbs. Since the dual-route view of P&P argues
that regular and irregular verbs are handled separately, this comparison provides insight
into the plausibility of this theory.
Two experiments were conducted with these four models to answer the third and fourth

research questions. Therefore, this section and the next section first give a global overview
of the implementation, training, and evaluation of these models.

4.2.2 Model Implementation and Architecture

To implement the models, Keras Tensor Flow (version 2.10.0) was used (Abadi et al., 2015).
The four models have the same overall architecture, for which we refer to Section 2.4. At
the end of Experiment 1, final model configuration choices are presented for each model
type individually (Section 5.1.7).
Since we added an auxiliary task in the multi-task training setup, an additional dense

layer predicts the verb class based on the context vector (the output of the attention
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mechanism) and decoder output. We give the formal definition of this binary classification
layer below:

P (y|hdec-2, c) = sigmoid(W · [hdec-2; c] + b)

Where P (y|hdec-2, c) is the probability of the label y given the decoder’s final hidden state
hdec-2 and the context vector c from the attention mechanism. W is the weight matrix of
the dense layer, b is the bias term, and [hdec-2; c] represents the concatenated vector formed
by the context vector and the decoder output at the final time step.

4.3 Model Training

To make training efficient, teacher forcing was used; the decoder predicts the next charac-
ters based on the correct previous character instead of the previously predicted character
(Sutskever et al., 2014). We used the Adam optimizer (Kingma & Ba, 2014). The learning
rate, dropout rate, and batch size are selected in Section 5.1.7, based on the results of
Experiment 1.
An early stopping criterion was used to prevent long training times and overfitting. The

patience parameter of this early stopping criterion is selected and presented in Section
5.1.7 as well. As mentioned in the Related Literature (3), the previous studies Corkery et al.
(2019) and K&C trained their models for a fixed number of epochs that led to near-perfect
training accuracies. As will be further explained, the results of Experiment 1 revealed that
the model tends to overfit on real verbs from the training data when too many training
epochs were used as a result of a higher patience value. This problem of overfitting was
mitigated by choosing the appropriate settings for the early stopping criterion.
In the single task training setting, the sparse categorical cross-entropy loss was computed

based on the predicted sequence of characters. The formal definition of this is given below,
where N is the number of predicted characters in the sequence, pi is the predicted chance
of the correct character in position i, and yi is the true character in that position:

Lseq = −
1

N

N∑
i=1

log(pi[yi])

For the auxiliary task in the multi-task training setup, the binary cross-entropy loss was
computed. The formal definition of this is given below, where yclass is the correct class of
the sequence and pclass is the prediction chance of the correct class.

Lclass = − (yclass · log(pclass) + (1− yclass) · log(1− pclass))

In this multi-task training setup, the overall loss is a weighted sum of the loss on the character
predictions and the label class prediction. Since the character prediction is the main task,
the weight of the loss on this task is larger than that of the auxiliary task. In Section 5.1, we
show our investigation of three options for this weighted sum. Below this weighted sum
is given, where W1 is the weight for the main task (character prediction), and W2 is the
weight for the auxiliary task (class prediction):
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Ltotal = W1 · Lseq +W2 · Lclass

4.4 Model Evaluation

4.4.1 Real Verb Accuracy

We evaluated the models’ performance on real verbs by computing the accuracy of inflection
predictions. This was done by taking the number of completely correctly predicted verb
inflections divided by the total number of verbs of the set. For both the type and token
frequency models, the accuracy is always based on the number of verb types. This is because,
for evaluation, we consider each verb equally important, whereas basing accuracy on token
frequency would give more weight to frequently occurring verbs and less to those that appear
less often. We also computed the accuracy for the regular and irregular class individually. In
the exact same way, we computed the accuracy of the class label predictions of the multi-task
training models.

4.4.2 Nonce Verb Correlation

As explained in Section 2.3.1, we utilised Wug Test nonce verbs as test set, which allows
to evaluate to what extent model generalisations are human-like. To evaluate model
performance on these nonce verbs, we followed Corkery et al. (2019) and K&C by taking the
correlation between the model predictions and those of A&H’s human Wug experiments.
For the prediction of nonce verb inflections, we applied a beam search algorithm that

predicts the top 12 outputs of the model. Subsequently, each prediction from the beam
was categorised into one of the four nonce verb inflection classes as indicated by A&H:
Regular, Irregular 1, Irregular 22 or Other. We assigned these categories the associated beam
probability. We normalised these probabilities such that the total sum of probabilities for
each nonce verb is always 100%. The result for one nonce verb may look like the example
in Table 4.3.

Regular Irregular 1 Irregular 2 Other
spliN spluN splæN ...

Beam 2% 94% 3% 1%

Table 4.3: Example of beam probability predictions for one run and one nonce verb spling.

Finally, we computed the correlation between these model probabilities and the human
production probabilities from the A&H experiment. In line with previous studies (A&H;
Corkery et al., 2019; K&C) and for completeness, we always computed both the Spearman
(monotonic) and Pearson (linear) correlation coefficients.

2A&H only provided an Irregular 2 form for 11 of the 58 nonce verbs.
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4.4.3 Aggregate Results

Corkery et al. (2019) observed variation in results when running the exact same model
multiple times. Therefore, they proposed aggregating the predictions from multiple runs
of the same model. In this approach, each individual model run is seen as an individual
speaker performing the Wug Test. We followed Corkery et al. (2019) in this. We aggregated
the beam probability results over multiple runs per model3. This means that the sum of all
beam probabilities per class per nonce verb was taken and then divided by the number of
runs of the model again. As indicated in Experiments 1 and 2, we present aggregate results
based on five runs per model. In our Chapter of Final Results (6), we present aggregate
results from the two experiments.

3Where each run means that all settings are the same, except for random weight initialization and random
shuffle of training data.
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Chapter 5

Experiments

5.1 Experiment 1: Model Selection

5.1.1 Objective and Procedure

To find an answer to our third research question, we investigated the effect of different
model configuration choices on the performance of the four models on real and nonce verbs.
So far, previous studies have only worked with models similar to our TYPESGT model. As
mentioned, these studies do not report any exploration of data and model settings for this
exact task. Moreover, since our four models differ from each other in training data and/or
task setting, each model may require different training and architecture settings for optimal
performance.
We used a set of default settings, given in Table 5.1 unless indicated otherwise in the

steps of this experiment. Like Corkery et al. (2019), we adopted the LSTM layer number
and size, embedding layer size, and dropout rate from K&C. We set the default batch size
to 32. The default learning rate is 0.001, which is the default learning rate of the Adam
optimizer in Keras Tensor Flow (Abadi et al., 2015; Kingma & Ba, 2014).

Hyperparameter Setting
Number of LSTM layers 2
LSTM size 100
Embedding size 300
Dropout rate 0.3
Batch size 32
Learning rate 0.001
Patience 15

Table 5.1: Default settings for both the encoder and decoder components of the models.

In this experiment we investigated the effect of the following five categories sequentially:

• 5.1.2 Data modifications
• 5.1.3 Number of Layers
• 5.1.4 Weighted sum for the overall loss in the multi-task training setup
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• 5.1.5 Early stopping criterion
• 5.1.6 Hyperparameter settings: layer sizes, dropout, learning rate, batch size

In this experiment, we trained each model five times, after which average accuracies and
aggregate Wug Test correlations were computed for evaluation (as explained in more detail
in Section 4.4). By iteratively selecting the best model after each step, we finally obtained a
selection of the best model for each of the four models (Section 5.1.7). Because we consider
the correlation with human results the indicator of how well a model generalises and fits
with human behaviour on novel input, we consistently relied on these scores for our model
selection.

5.1.2 Data Modifications

As described in Section 4.1.2.2, it is unknown what the effect is of including the set of verbs
that were omitted from A&H’s verb data, which is the dataset that was used by Corkery
et al. (2019) and K&C as well. We also do not know the effect of excluding doubles for the
verbs that have more than one correct inflection. Therefore, the first step of this experiment
is to explore model performance on real and nonce verbs when including and excluding
these verbs.
In Table 5.2, the average accuracy on real verbs and the correlation between the aggregate

model predictions and human Wug Test data are presented for each of the four models.
From these results, we can conclude that all four models have the best fit with human data
when both the missing verbs and doubles are included in the data. However, this did not
yield optimal training and development accuracies. In fact, it led to the lowest accuracy on
irregular verbs from the training set for both type frequency models.
Excluding doubles by only keeping the form with the highest token frequency generally

results in lower accuracies on the irregular verbs from the development set. However, when
the doubles are included, the chances of predicting the correct verb inflection are bigger,
as there is more than one correct inflection for the doubles. This flexibility in correctness
explains the difference in accuracy, as we found that the accuracy on all other verbs that
have only one inflection did not drastically differ.
Both the missing verbs and the doubles were included in the final dataset because their

inclusion yielded the highest correlation with the A&H human data. This is also in line
with the fact that the inclusion of both also makes the input data most complete, compared
to the input of human language learners. Though this makes sense, it should be noted
that: (1) The set of missing verbs contains highly frequent highly irregular verbs (see Table
4.1, Section 5.1.2). Even though this can pose a challenge for the model’s performance on
real verbs, assuming that these forms are rather memorised than generalised by humans,
their inclusion led to a stronger fit with human speaker inflections of nonce forms. (2)
The linguistic context of humans allows for lexical disambiguation between doubles such
as ring and wring, which could be considered an advantage that our models do not have.
Nevertheless, representing the phenomenon of occasionally having more than one correct
past tense form for the same present tense form still led to a stronger fit with human spekaer
inflections of nonce forms.
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Training Development
Missing Doubles Overall Irregular Regular Overall Irregular Regular r ρ

TYPESGT
incl. incl. 98.75 81.12 99.75 95.56 43.18 98.29 .56 .51
incl. excl. 99.41 92.66 99.76 95.55 30.86 98.23 .54 .49
excl. incl. 99.30 89.82 99.80 95.99 43.68 98.49 .48 .50
excl. excl. 99.14 85.03 99.86 96.00 30.63 98.71 .52 .52
TOKENSGT
incl. incl. 99.31 93.60 99.64 95.44 48.18 97.94 .55 .48
incl. excl. 99.66 96.57 99.83 95.26 28.00 98.08 .52 .48
excl. incl. 99.06 92.72 99.41 95.01 43.16 97.58 .49 .47
excl. excl. 99.72 98.36 99.79 95.78 37.50 98.18 .48 .42
TYPEMTSK
incl. incl. 96.76 45.96 99.62 95.41 37.27 98.42 .62 .60
incl. excl. 98.00 67.22 99.67 95.56 24.57 98.51 .57 .55
excl. incl. 98.77 82.91 99.60 94.91 37.89 97.60 .49 .48
excl. excl. 98.54 74.34 99.79 95.73 31.88 98.33 .53 .55
TOKENMTSK
incl. incl. 99.26 94.16 99.55 94.42 45.00 96.98 .47 .42
incl. excl. 99.07 92.07 99.46 94.91 32.00 97.60 .44 .41
excl. incl. 99.16 92.00 99.53 94.77 37.37 97.43 .31 .39
excl. excl. 99.46 93.21 99.78 95.46 37.50 97.80 .28 .40

Table 5.2: Average accuracy on real verb data and Pearson’s r and Spearman’s ρ with human
Wug Test data: with and without missing verbs and doubles.

5.1.3 Number of Layers

In addition to our architecture with two stacked LSTM layers in both the encoder and
decoder, we explored a simpler architecture with a single LSTM layer in each. Using a single
LSTM layer instead of multiple layers reduces the model’s computational complexity and
can help mitigate overfitting risks. As can be seen from Table 5.3, the average accuracy on
the training and development sets are relatively consistent for both settings. We only note
small differences in accuracy on the irregular class for all models, except TOKENSGT. The
correlations between the model and human nonce verb inflections are higher or similar for
each model when using two LSTM layers instead of one. Therefore, we maintained the
architecture with two LSTM layers for each of the four models.

5.1.4 Multi-task Training Weighted Sum Overall Loss

In this third step, we investigated different settings of the weighted sum of the loss for the
multi-task training models. In addition to a weighted sum of (0.7, 0.3) for the main and
auxiliary loss, respectively, we explored two other options: (0.8, 0.2) and (0.6, 0.4). In all
three options, the model’s loss on the main task has the largest weight since this task should
remain the main focus of the model during training.
The different weightings shift the model’s focus between two tasks: accurately inflecting

verbs and correctly classifying them as regular or irregular. Assigning a higher weight to
the auxiliary classification task puts more emphasis on the distinction between regular and
irregular verbs. If this auxiliary task carries potential benefits for the main task of verb
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Training Development
Num layers Overall Irregular Regular Overall Irregular Regular r ρ

TYPESGT
1 98.52 76.18 99.80 95.78 45.46 98.39 .53 .48
2 98.75 81.12 99.75 95.56 43.18 98.29 .56 .51

TOKENSGT
1 99.22 93.48 99.56 95.07 48.64 97.66 .46 .42
2 99.31 93.60 99.64 95.44 48.18 97.94 .55 .48

TYPEMTSK
1 96.89 51.46 99.43 95.15 41.82 97.99 .60 .53
2 96.76 45.96 99.62 95.41 37.27 98.42 .62 .60

TOKENMTSK
1 98.20 81.91 99.13 93.69 47.72 96.18 .47 .42
2 99.26 94.16 99.55 94.42 45.00 96.98 .47 .42

Table 5.3: Average accuracy on real verb data and Pearson’s r and Spearman’s ρ with human
Wug Test data: using different numbers of LSTM layers.

inflection, but too little weight is assigned to the auxiliary task loss, the model may not
focus enough on the auxiliary task to benefit from auxiliary task. Conversely, assigning the
auxiliary loss a too-heavy weight could generally detract from the model’s ability to perform
the primary task of verb inflection, leading to poorer inflections. If the auxiliary task is not
beneficial for the model’s performance on the main task at all, it is also expected that more
weight to the auxiliary task loss leads to a decrease in main task performance. Therefore,
we aim to strike the right balance between the weights of the main and auxiliary task loss.
As can be seen from Table 5.4, both models obtained the highest correlation with human

Wug Test data with a weighted sum of (0.7, 0.3) for the main and auxiliary task loss,
respectively. For TOKENMTSK, this is also the model that obtained the highest main task
accuracy on the training set. This is not the case for TYPEMTSK, which obtained a lower
accuracy on the training verbs, which is due to poorer performance on the irregular class.
For both models, the main task accuracy on the development set is relatively similar across
the three settings.
Furthermore, we see for both models that the weakest performance on the auxiliary

task is obtained when the Wug Test correlations are the strongest. This suggests an inverse
relationship: models that better align with human nonce verb inflections tend to show
lower accuracy in verb class prediction. This could imply that the model achieves better
generalisation when it prioritises less its performance on the auxiliary task. However, if this
were the case, we would expect that the model would have obtained the best generalisations
and the weakest auxiliary task accuracies when the auxiliary task is given the lowest weight
(i.e., 0.2). However, this is not the case.
In Chapters 6 and 7, we discuss in more detail the effect of the auxiliary task by comparing

their overall performance to those of the models without auxiliary task and the implications
of these results. For our model selection, we still prioritised performance on the main
task, since it is the objective to select models with nonce verb generalisations that are most
similar to those of humans. Therefore, we maintained the weighted sum of (0.7, 0.3) for
the computation of the models’ overall loss during training.
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Weighted sum Training Development Auxiliary
Main/Aux Overall Irregular Regular Overall Irregular Regular r ρ Train Dev
TYPEMTSK
0.6/0.4 97.12 52.36 99.64 95.59 37.73 98.56 .41 .46 82.43 81.77
0.7/0.3 96.76 45.96 99.62 95.41 37.27 98.42 .62 .60 27.23 27.08
0.8/0.2 98.21 74.04 99.57 95.07 43.64 97.76 .38 .43 89.31 88.20
TOKENMTSK
0.6/0.4 97.75 85.28 98.39 93.20 46.36 95.63 .29 .37 94.05 91.36
0.7/0.3 99.26 94.16 99.55 94.42 45.00 96.98 .47 .42 72.30 70.66
0.8/0.2 99.06 91.34 99.50 95.15 47.73 97.61 .40 .40 85.83 84.90

Table 5.4: Average accuracy on real verb data and Pearson’s r and Spearman’s ρ with human
Wug Test data, as well as average accuracy on the auxiliary task class predictions.

5.1.5 Early Stopping Criterion

For the fourth step of this experiment, we explored using an early stopping criterion.
An early stopping criterion monitors the overall loss during training and halts training
if no improvement is observed after a predefined number of epochs, referred to as the
patience threshold. The previous studies of Corkery et al. (2019) and K&C used a fixed
number of training epochs (100) to train their models, leading to almost perfect training
accuracy. Though the expectation of a model performing well on training verbs is sensible—
given that humans also perform well on their acquired verbs—overfitting may have been
a problem in the previous studies. As mentioned in the Related Literature Chapter (3),
further investigation by Corkery et al. (2019) showed that optimal correlations with human
nonce verb inflections were obtained after only 10 training epochs instead of 100. An early
stopping criterion can prevent training on too many epochs, making training times more
efficient and potentially improving generalisation to nonce verbs by preventing the potential
overfitting.
To explore this option, we not only considered using different patience values but also

investigated the difference between tracking loss on the training set and the development
set. Although tracking training loss is not a commonly used method, we consider striving
for optimal performance on the training set reasonable, because cognitive models may be
expected to mimic human behaviour on real verbs as well, which would be a nearly-perfect
performance. Unlike previous studies, we ensure not to train longer than necessary to
achieve the desired results by implementing an early stopping criterion instead of relying
on a fixed number of epochs.
Another reason to explore tracking training loss with an early stopping criterion is

that this allows the use of all real verbs as training data (cf. Corkery et al., 2019). Not
leaving out 20% of the data is more representative of the task of human language learning.
However, we argue that we must also consider tracking loss on a development set, regardless
of the downside of some real verbs being omitted from the training data. This is for the
conventional reason that the loss on a development set indicates when training no longer
improves the generalisation of examples that are not seen during training, which is the
actual goal and cannot be tracked based on training loss.
In Table 5.5, we present for each of the four models the results of tracking training and

development loss with an early stopping criterion using different patience threshold values.
The epoch number shown indicates the epoch to which network weights were restored due
to no further improvement within the specified patience period. The results show that a
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Training Development Num
Patience Overall Irregular Regular Overall Irregular Regular r ρ Epochs
TYPESGT
10 Dev 98.10 68.88 99.74 95.88 40.91 98.72 .47 .48 49
15 Dev 98.75 81.12 99.75 95.56 43.18 98.29 .56 .51 54
20 Dev 99.42 91.91 99.86 96.10 47.72 98.62 .48 .45 68
25 Dev 99.60 94.27 99.89 95.90 48.18 98.42 .49 .50 67
10 Train 99.91 99.44 99.93 95.95 49.09 98.34 .46 .48 103
15 Train 99.95 100.0 99.94 95.75 44.55 98.44 .40 .42 109
20 Train 100.0 100.0 100.0 96.07 51.18 98.39 .41 .32 131
25 train 100.0 100.0 100.0 95.94 49.18 98.42 .39 .37 156
TOKENSGT
10 Dev 99.41 96.07 99.59 94.66 46.82 97.19 .50 .45 18
15 Dev 99.31 93.60 99.64 95.44 48.18 97.94 .55 .48 17
20 Dev 99.36 93.82 99.68 95.21 48.18 97.74 .61 .53 22
25 Dev 99.53 95.51 99.75 95.32 47.27 97.89 .53 .50 30
10 Train 99.93 99.21 99.97 96.17 51.36 98.57 .50 .47 48
15 Train 99.98 99.89 99.99 95.85 45.91 98.49 .51 .48 83
20 Train 100.0 100.0 100.0 95.87 49.43 98.34 .55 .44 96
25 train 99.99 100.0 99.99 95.72 47.27 98.24 .52 .42 97
TYPEMTSK
10 Dev 96.96 52.81 99.44 95.22 37.27 98.22 .48 .48 32
15 Dev 96.76 45.96 99.62 95.41 37.27 98.42 .62 .60 40
20 Dev 97.96 68.54 99.61 95.66 43.64 98.37 .52 .50 49
25 Dev 98.06 74.04 99.40 95.07 43.64 97.79 .42 .45 77
10 Train 95.66 92.25 99.87 95.66 45.91 98.29 .41 .47 80
15 Train 99.94 99.10 99.99 95.73 46.36 98.31 .42 .41 102
20 Train 99.99 99.89 100.0 95.80 44.55 98.49 .40 .37 147
25 Train 99.99 99.89 100.0 95.51 45.45 98.14 .48 .39 196
TOKENMTSK
10 Dev 99.21 92.47 99.60 95.05 44.54 97.81 .46 .47 23
15 Dev 99.26 94.16 99.55 94.42 45.00 96.98 .47 .42 19
20 Dev 99.12 93.25 99.43 94.64 45.91 97.24 .54 .47 23
25 Dev 99.10 94.27 99.38 94.54 47.27 97.09 .53 .44 22
10 Train 99.98 100.0 99.98 95.24 46.82 97.76 .45 .43 61
15 Train 99.99 99.89 99.99 95.73 46.81 98.27 .46 .40 115
20 Train 99.99 100.0 99.99 95.85 51.36 98.22 .46 .39 113
25 Train 99.99 99.89 99.99 95.92 46.82 98.54 .46 .45 140

Table 5.5: Average accuracy on real verb data and Pearson’s r and Spearman’s ρ with human
Wug Test data and average number of epochs: early stopping criterion tracking training or
development set loss with different patience parameters.

patience value of 20 while tracking development loss led to the highest correlations with
human Wug Test data for TOKENSGT and TOKENMTSK, and a patience of 15 while tracking
development loss for TYPESGT and TYPEMTSK. For this reason, we selected the models’ early
stopping criterion settings leading to optimal correlations.
As evident from the results, tracking the training loss results in a nearly perfect accuracy

on the training data for all four models, which aligns with findings from previous studies.
However, when the development loss is tracked instead of the training loss, the model’s
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accuracy on the training data notably drops across all cases, particularly for both type
frequency models on the irregular class. This is because minimal loss on the development
set is reached much earlier on the training set. Consequently, the models train for a
smaller number of epochs when development loss is tracked. On the other hand, tracking
development loss generally does not appear to affect overall accuracies on the development
set. Most importantly, it even results in notably stronger correlations with the human Wug
Test nonce verb inflections. These results suggest that tracking development loss mitigates
the problem of overfitting on the training set.
For the type frequency models, a significantly smaller number of training epochs—hence

generally less exposure to irregular forms—resulted in lower performance on the irregular
forms of the training set. Token frequency models, on the other hand, have proportionally
more exposure to irregular forms during training. This could explain their more robust
performance on irregular training verbs, regardless of shorter training times. This suggests
that for type frequency models, there may be a trade-off between capturing human behaviour
on real verbs and capturing human behaviour on nonce verbs, whereas this is not the case
for token frequency models. We discuss this finding further in the Results and Discussion
chapters (6, 7).

5.1.6 Hyperparameter Settings

In this final part of the first experiment, we explored different combinations of hyperpa-
rameters. In the first step, we look at the effect of the size of the network in combination
with the dropout rate. In addition to the described default size settings of 300 units per the
embedding layer and 100 units per the LSTM layer, we explored layer size combinations of
400 and 200 units for the embedding and LSTM layers, respectively. These two options are
combined with dropout rates of 0.1 and 0.5, in addition to 0.3. By exploring options for the
dropout rate and layer sizes at the same time, we attempt to capture the nuanced interplay
between regularization strength and the model’s representational capacity.
In the next step, we explored two other batch sizes in addition to the default of 32: 16

and 64. The models differ from each other in training set size and frequency distributions;
therefore, they might benefit differently from different batch sizes. We did this by selecting
the two best models so far and testing the two alternative batch sizes with the selected
models. Finally, we investigated the performance of models with a larger (0.01) and smaller
(0.001) learning rate compared to the models with the default learning rate (0.0001).
Again, we did this by testing these alternative settings on the two best models so far.
In Appendix A, all results of this final step of Experiment 1 are presented. In Tables 5.6

and 5.7, we show the final selection of models and their results. As can be seen from these
tables, the optimally performing models on the Wug Test correlations differ from each other
in hyperparameter settings. As observed before in this experiment, we saw a further drop
in the performance of the type frequency models on the irregular verbs from the training
set as a result of using settings that led to the strongest Wug Test correlations.

5.1.7 Model Selection Conclusion

In this first experiment we investigated the effect of different data, training and architecture
configurations for each of the four models, TYPESGT, TOKENSGT, TYPEMTSK, TOKENMTSK and
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Patience Embedding/LSTM size Dropout Batch size Learning rate
TYPESGT 15 400/200 0.5 64 0.01
TOKENSGT 20 300/100 0.3 32 0.001
TYPEMTSK 15 300/100 0.3 32 0.01
TOKENMTSK 20 300/100 0.5 16 0.001

Table 5.6: Settings of the finally selected models for each model type.

Training Development
Overall Irregular Regular Overall Irregular Regular r ρ

TYPESGT 97.05 57.53 99.24 95.44 41.36 98.24 .61 .59
TOKENSGT 99.36 93.82 99.68 95.21 48.18 97.74 .61 .53
TYPEMTSK 97.13 53.26 99.58 95.32 36.82 98.27 .66 .61
TOKENMTSK 99.00 92.25 99.39 95.39 50.00 97.86 .58 .48

Table 5.7: Results of the finally selected models for each model type. Average accuracies on
real verbs and aggregate correlations on nonce verbs (Pearson’s r and Spearman’s ρ).

selected for each model the version with the highest correlation with the A&H human data
on the Wug Test.
All four models have in common that the highest correlations were obtained when we

included all verbs in the dataset: both the doubles and missing verbs. As mentioned, this
is also the most human-like input. It is also true for all four models that two layers of
LSTM yielded the strongest correlations compared to only one LSTM layer. The results
of this experiment also showed that tracking the development loss with an early stopping
criterion is effective in helping prevent overfitting on the training set and yielded the highest
correlations with human nonce verb inflections. This is why we split the real verb data into
a training and development set. For both multi-task models, a weighted sum of (0.7,0.3)
worked best for the main and auxiliary tasks, respectively. Table 5.6 and 5.7 summarise the
other settings that were finally selected and the obtained results.
In conclusion, the results of this experiment indicate that the type frequency models

obtained the highest correlations with human Wug Test data, especially TYPEMTSK with
correlations of .66 and .61 (Pearson and Spearman). TYPESGT, TOKENSGT, and TOKENMTSK
obtained similar Pearson correlations of around .60, but differ in strength of the Spearman
correlation, with TOKENMTSK performing worst. However, as mentioned throughout this
experiment, the type frequency models with the highest Wug Test correlations obtained
significantly worse accuracies on irregular verbs from the training set. A further comparison
between the four models and discussion of our observations in this Experiment are given in
the Results and Discussion chapters (6, 7).
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5.2 Experiment 2: Impact of Verb Distribution

5.2.1 Description of the Experiment

In this second experiment, we explored the effect of verb distribution across the training and
development sets. As previously explained, 20% of the real verbs served as development sets,
so overfitting can be prevented by using an early stopping criterion that tracks development
loss. While the results from the first experiment (5.1.5) indicate that this method effectively
improves the models’ alignment with human behaviour on nonce verbs, it can be questioned
whether the distribution of real verbs between the training and development sets influences
model performance.
Though it is a common approach in the field of machine learning to randomly select one

development set, it is for the task at hand not as straightforward. In order to appropriately
measure the ability of the model to generalise to novel forms, the development set must be
representative of the training data. However, in English past tense inflection, it is complex
to determine which set of forms suits best as development set to form a representative set
of generalisation. When it comes to highly or completely idiosyncratic past tense forms, it
is nearly impossible to predict the correct inflection without prior exposure to the correct
inflection, because there is no pattern in the training data from which it could generalise to
these forms. Additionally, for the irregular verbs that can also be considered semi-regular, it
is a challenging task to determine which set is a representative development set containing
examples of verbs from cohorts of similarly inflected verbs (e.g., {sing—sang, ring—rang,
. . . }).
Moreover, it is also relevant that the training set contains sufficient information to

generalise appropriately to our test set, the Wug Test nonce verbs. One random distribution
of training-development data may be more suitable for human-like generalisations to the
nonce verbs than another. It may also vary across the four models what works best, given
the differences in task and data. For the token frequency models, different splits could
lead to more pronounced changes in the models’ learning outcomes. This is because there
is a set of irregular verbs that occur very frequently, hence different splits lead to bigger
differences in the verb frequency distribution than when all verbs occur equally frequently
in the training set. At the same time, token frequency models always have proportionally
more exposure to the irregular forms during training compared to type frequency models,
which could also make them more resilient to the omission of a few verb types.
To investigate whether the distribution of verbs over the training and development sets

has an effect on the performance on real verbs and nonce verbs, we trained and tested our
selectedmodels from the previous experiment on four alternative training-development splits.
We distributed the real verb data such that each verb type is once part of the development set
and four times part of the training set, as visualised in Figure 5.1. Like before, the training
data of the token frequency models is augmented with the token frequency distribution after
splitting the data into a training and development set. On each of the four additional splits,
we executed the same procedure as on the split used in Experiment 1: we ran all models five
times, meaning that each model is trained and evaluated five times, after which the average
accuracy on real verbs and aggregated correlation with human nonce verb inflections were
computed.
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Figure 5.1: Five splits of real verb data split into a training set (orange) and a development
(blue) set.

5.2.2 Influence of Distribution on Real Verb Accuracy

In Table 5.8, we show the average accuracy on the training and development verbs of the
four models on each split. The results on Split 1 are the results from Experiment 1. In
Table 5.9, the standard deviation of the average accuracy on each split is shown for the
four models. This gives insight into how much each model varied in performance between
the five splits. We focus in this section on model performance per split; for further overall
comparison between the four models we refer to Chapter 6.
The first thing that can be noted from Table 5.9 is that the performance of TOKENSGT is

most stable throughout the five different splits on all categories. Secondly, TOKENMTSK has
a higher overall accuracy standard deviation on the training and development set than
the other models, followed by TYPEMTSK. TOKENMTSK is also the only model that shows much
higher variation between splits on the regular class accuracy on both the training and
development set. These higher standard deviations of TOKENMTSK seem to mainly come from
its poor performance on one of the splits: Split 3 (Table 5.8).
Furthermore, the standard deviations presented in Table 5.9 demonstrate that the

performance of the type frequency models on the irregular training verbs is less stable across
splits compared to the token frequency models. However, the type frequency models have
high standard deviations on the training irregular accuracy within most splits as well, as
can be seen in Table 5.8. Hence, they seem to obtain less stable accuracies on this class in
general. Nonetheless, the standard deviation on irregular training verb accuracy massively
differs between splits for the type frequency models. For instance, on the irregular training
verbs, TYPESGT has a standard deviation of only 0.99 (with an accuracy of 95.15%) using
Split 3, while the standard deviation is 12.87 (with an accuracy of 61.38%) using Split 4.
This suggests that a different distribution of verbs can heavily influence the type frequency
models’ behaviour on the irregular training verbs. This is in line with the type frequency
models’ usually lower performance on the irregular training verbs. This weakness of the
type frequency model can be explained by their proportionally lower exposure to irregular
verbs during training compared to the token frequency models.
In conclusion, the overall effect of using a different distribution of verbs over the training

and development set is weak for most models’ overall accuracies on real verbs, except for
TOKENMTSK, which mostly had exceptionally lower accuracies on one of the splits. The type

Page 46 of 75



Training Development
Overall Irregular Regular Overall Irregular Regular

TYPESGT
Split 1 97.05% (0.51) 57.53% (9.82) 99.24% (0.27) 95.44% (0.43) 41.36% (4.37) 98.24% (0.44)
Split 2 97.64% (0.17) 67.54% (5.62) 99.39% (0.17) 94.37% (0.59) 33.33% (6.54) 97.27% (0.35)
Split 3 97.08% (0.60) 95.16% (0.99) 99.09% (0.39) 94.73% (0.58) 35.92% (4.91) 98.47% (0.69)
Split 4 97.12% (0.80) 61.38% (12.87) 99.06% (0.48) 94.95% (0.25) 38.75% (6.18) 98.17% (0.62)
Split 5 96.70% (0.71) 49.20% (11.41) 99.24% (0.24) 94.34% (0.20) 25.42% (4.75) 98.64% (0.33)
TOKENSGT
Split 1 99.36% (0.49) 93.82% (5.21) 99.68% (0.24) 95.22% (1.04) 48.18% (4.93) 97.74% (0.83)
Split 2 99.74% (0.18) 98.80% (0.60) 99.80% (0.18) 94.44% (0.56) 49.23% (4.21) 96.62% (0.58)
Split 3 99.47% (0.48) 99.29% (0.62) 99.70% (0.30) 94.59% (0.72) 40.82% (5.20) 98.01% (0.51)
Split 4 99.33% (0.58) 95.52% (3.64) 99.55% (0.42) 94.42% (0.76) 47.92% (7.80) 97.25% (0.61)
Split 5 99.67% (0.23) 97.36% (3.11) 99.81% (0.13) 94.83% (0.35) 40.42% (3.78) 98.24% (0.55)
TYPEMTSK
Split 1 97.13% (0.36) 53.26% (4.77) 99.59% (0.16) 95.32% (0.32) 36.82% (5.18) 98.27% (0.24)
Split 2 98.31% (0.95) 73.01% (17.07) 99.74% (0.12) 94.90% (0.45) 38.46% (7.48) 97.54% (0.66)
Split 3 95.49% (1.30) 92.22% (1.56) 99.05% (1.09) 92.35% (3.21) 25.71% (5.12) 96.61% (3.32)
Split 4 98.56% (0.77) 78.62% (16.71) 99.67% (0.16) 94.81% (0.58) 41.25% (6.65) 97.97% (0.52)
Split 5 98.63% (1.09) 79.20% (16.98) 99.67% (0.26) 94.42% (0.48) 30.83% (4.52) 98.39% (0.61)
TOKENMTSK
Split 1 99.00% (0.72) 92.25% (6.35) 99.39% (0.42) 95.39% (0.38) 50.00% (7.00) 97.86% (0.15)
Split 2 99.37% (0.53) 95.63% (2.81) 99.57% (0.40) 93.67% (0.67) 39.49% (5.62) 96.09% (0.61)
Split 3 90.46% (5.98) 88.60% (4.79) 92.38% (7.14) 86.99% (8.55) 27.35% (2.74) 90.80% (9.12)
Split 4 99.13% (0.60) 94.37% (5.68) 99.40% (0.34) 94.51% (0.40) 46.67% (6.69) 97.37% (0.75)
Split 5 98.10% (0.89) 88.16% (5.34) 98.66% (0.69) 93.30% (0.82) 37.50% (5.31) 96.83% (0.82)

Table 5.8: Average accuracy and standard deviation on training and development verbs,
overall and per class of verbs (n=5 per split).

Training Development
Overall Irregular Regular Overall Irregular Regular

TYPESGT 0.30% 15.67% 0.12% 0.41% 5.48% 0.47%
TOKENSGT 0.16% 2.04% 0.09% 0.30% 3.86% 0.58%
TYPEMTSK 1.20% 12.68% 0.25% 1.04% 5.61% 0.64%
TOKENMTSK 3.40% 3.00% 2.77% 2.98% 7.88% 2.56%

Table 5.9: Standard deviation of the average accuracy per split.

frequency models also show on the irregular class of the training data that they do not only
have much lower accuracies but also less stable results between and within different splits,
compared to token frequency models. These results suggest that it would be beneficial for
type frequency models to dive deeper into the investigation of which exact set of irregular
verbs should be in the training and development set, in order to capture human behaviour
on real verbs. However, we consider this task beyond the scope of this thesis and continued
by aggregating the results from all five splits, so that we obtain the most representative
result within our possibilities. We show these overall results in Chapter 6.
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5.2.3 Influence of Distribution on Wug Experiment Correlations

For nonce verb inflection evaluation, we again computed the Pearson and Spearman corre-
lation coefficients between A&H’s human Wug Test production probabilities and the nonce
verb predictions aggregated from the five runs on each split. For this second experiment,
we also computed correlations on the irregular class. That is, correlations between the
models’ and human production probabilities for the irregular inflection of the nonce verbs.
We computed the correlations for the regular and irregular class separately (cf. Corkery
et al., 2019). This means that we computed the correlation between models’ and human
production probabilities for the regular nonce verb inflections, as well as for the irregular
inflections. The correlations on the regular class represent how well the decision regular
versus not regular is captured. The correlations on the irregular class also represent how
well the model predicted the specific irregular inflection, e.g., spling–splung or spling–splang,
or something else.
In Figures 5.2 and 5.3, we show the aggregate correlations per split. Again, the first

bar represents the results from Experiment 1. We also include the average fold correlation
and standard deviation. From these figures, it can be seen that TOKENSGT obtained relatively
unstable correlation coefficients on the regular and irregular class throughout the different
splits, while TYPESGT obtained relatively stable correlations. These observations make sense,
given that different training-development distributions of verbs can drastically change the
token frequency distribution of irregular inflection patterns in the training data. Some
of these distributions may be more or less contributing to generalisation of past tense
inflections in a human-like manner. When type frequency is used, this difference in frequency
distribution of inflection patterns in the training data is less extreme, which explains the
smaller differences in how the model generalises to the nonce verbs from the Wug Test.
The difference in variation of correlations between TOKENSGT and TOKENMTSK, on the other

hand, is less straightforward. TOKENMTSK obtained more stable correlation throughout the
different splits. For the token frequency model, it thus seems that the multi-task training
setup had a stabilising effect. For the type frequency models, we see the opposite effect of
multi-task training. In most cases, TYPESGT demonstrated more stable correlations across
the five splits than TYPEMTSK.
In conclusion, TYPESGT and TOKENMTSK have relatively stable correlations, regardless of

different training-development set verb distributions, while TOKENSGT and TYPEMTSK have
relatively less stable correlations. These results demonstrate that, depending on the type of
model, it is relevant to be mindful of which verbs and inflection patterns are maintained in
the training data if—for instance—a set of real verbs is selected as a development set. In
line with the conclusion from the previous section on real verb performance, we conclude
from this that the aggregation of the results on all five splits gives the most fair comparison
between the four models within our possibilities. Therefore, we aggregated the inflection
predictions from all 25 runs. We present these results in more detail in the following Chapter
(6).
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(a) Pearson’s correlation coefficient.

(b) Spearman’s correlation coefficient.

Figure 5.2: Correlation with human Wug Test data based on aggregate beam predictions
for the regular class for each of the five training-development splits.
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(a) Pearson’s correlation coefficient.

(b) Spearman’s correlation coefficient.

Figure 5.3: Correlation with human Wug Test data based on aggregate beam predictions
for the irregular class for each of the five training-development splits.
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Chapter 6

Overall Results

To gain a more comprehensive insight into the performance of the four models, we aggre-
gated for each model the results from all five runs on each of the five splits.

6.1 Performance on Real Verbs

In this first part of the final analysis, we dive deeper into the model performance on real verbs.
Like before, we discuss the models’ average accuracies on the training and development set.
Next, we also take a look at inflection error categories and auxiliary task performance.

6.1.1 Inflection Accuracy

In Table 6.1, we present the average accuracy on the training and development set of each
of the four models. These results show that the differences in the average overall training
and development accuracies are very small. On the training set, there is a slightly better
overall performance of TOKENSGT compared to the other models. On the development set
overall, TOKENMTSK performed slightly worse compared to the other three models. For the
regular class, it can be noted that results are very similar for all models except TOKENMTSK,
which performed slightly worse on both regular verbs from the training and development
set. Nonetheless, these differences in accuracy are small.

Training Development
Overall Irregular Regular Overall Irregular Regular

TYPESGT 97.11% 66.16% 99.20% 94.77% 34.96% 98.16%
TOKENSGT 99.51% 96.96% 99.71% 94.70% 45.31% 97.57%
TYPEMTSK 97.62% 72.26% 99.54% 94.36% 34.62% 97.76%
TOKENMTSK 97.21% 91.80% 97.88% 92.77% 40.20% 95.79%

Table 6.1: Average accuracy on the training and test verbs of all four models (n=25).

A notable difference can be seen between token frequency and type frequency models on
the irregular class. This is especially true for the training set accuracies. TOKENSGT obtained
the best accuracy on the irregular verbs of both the training and development set. With that,
TOKENSGT is the only model that performs near-perfect on irregular and regular training
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verbs, as well as regular verbs from the development set, like the models from previous
studies (Corkery et al., 2019 and K&C). On the irregular class, TOKENMTSK performs only
somewhat worse than TOKENSGT. TYPESGT shows the worst accuracy on the irregular verbs
from the training set, with only ∼66% accuracy, and TYPEMTSK performed only somewhat
better.
This difference between type and token frequency models on the irregular class per-

formance makes sense, given that the token frequency models are trained on a set with
proportionally more examples of irregular inflections compared to the type frequency mod-
els. It is also a result that we have seen throughout Experiment 1 and 2. In our early
stopping criterion experiment (5.1.5), we saw that other type frequency models were able
to obtain near-perfect accuracies on the irregular class from the training set as a result of
more training epochs. However, the larger number of training epochs led to overfitting on
the training examples in general, leading to a worsened fit with human behaviour on the
nonce verbs. We discuss this finding further in the Discussion (Chapter 7).
All models obtained lower accuracies on the development set than on the training set,

which is especially true for the irregular class. This makes sense because irregular verbs
that are not seen during training can be hard or even impossible to generalise to. In the
next section, we discuss this in more detail by categorizing the types of errors.

6.1.2 Inflection Error Analysis

We classified the inflection errors that we aggregated from all runs into different categories.
We focussed on the following three classes: over-regularisations of irregular verbs, blending
errors on irregular verbs, and other errors. In the case of over-regularisation, the model
predicted a regular inflection for an irregular verb (e.g., write–writed). We classified in-
flections of irregular verbs as a blending when the inflection consisted of both the regular
inflection as well as the correct irregular inflection (e.g., write–wroted). All other inflection
errors were classified as other; think of errors such as predicting the wrong irregular form
for an irregular verb (e.g., sit–sit or sit–sut instead of sat), predicting an irregular form for
a regular verb (mind–mound instead of minded), or errors that have nothing to do with
an inflection pattern but rather with the (phonetic) form in general (e.g., execute–execued
instead of executed).
Figures 6.1 and 6.2 visualise for each model the distribution of all errors over the three

classes for the training and development set, respectively. Along the Y-axis, the number
of errors is indicated. Within the bars, the percentage per class is given. From Figure 6.1,
we can conclude that the type frequency models over-regularise irregular verbs from the
training set significantly more often, both proportionally and absolutely. Moreover, the
majority of the type frequency models’ errors can be explained by over-regularisation. This
is in line with the fact that type frequency model accuracies on the irregular class are
relatively poor, whereas their accuracies on the regular class are near-perfect.
On the development set, the difference in over-regularisation between the type and

token frequency models is smaller than on the training set, as can be seen in Figure 6.2.
This is mainly due to the fact that the token frequency models over-regularise irregular
verbs from the development set more often than those from the training set. However, the
type frequency models over-regularised still slightly more often than the token frequency
models. This is in line with the performance of the four models on the development set, as
presented in the previous section. On the irregular class, all four models perform relatively
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Figure 6.1: Classification of aggregate inflection errors on the training set (n=25).

Figure 6.2: Classification of aggregate inflection errors on the development set (n=25).

poorly on the irregular verbs from the development set, although the type frequency models
performed slightly more poorly. As explained, the over-regularisation of novel forms is in
line with the human speaker’s tendency to inflect novel forms regularly and is not necessarily
seen as an undesired outcome. The limitation of the development set accuracy is that it does
not fully provide insight into whether model generalisations align with human behaviour.
Our evaluation of generalisation—the Wug Test—is presented in Section 6.2.3.

6.1.3 Label Accuracy Multi-task Models

As explained, the multi-task models did not only predict verb inflections, but also class
labels (regular/irregular). In Table 6.2, the label prediction accuracies on the training and
development set are given for TYPEMTSK and TOKENMTSK. From these results, we can conclude
that the token frequency model outperformed the type frequency model on the irregular
class of the training set, while they performed relatively similarly on the regular class. This
is in line with the main task accuracies of TYPEMTSK and TOKENMTSK.
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Training Development
Overall Irregular Regular Overall Irregular Regular

TYPEMTSK 76.70 33.76 84.97 81.41 25.90 84.48
TOKENMTSK 83.20 39.64 84.82 80.57 27.17 83.53

Table 6.2: Average accuracy on verb label prediction (n=25).

Furthermore, both models performed worse on this label prediction task compared to
their main task of verb inflection predictions. Though this makes sense, given that this
auxiliary task was assigned a lower weight in the loss optimization during training (0.3,
as opposed to 0.7 for the main task), it is interesting that both models seem unable to
predict verb labels as accurately as verb inflections. If we assume that the discrete binary
distinction between regular and irregular verbs is an appropriate approach to past tense
inflection—which aligns with the dual-route view of P&P—one would not expect this large
difference in performance on the two tasks. We discuss this result further in the final
discussion (Chapter 7).

6.2 Wug Experiment

In this second part of the chapter, we discuss the final results based on aggregating all nonce
verb inflections and compute the correlations between these aggregate predictions and
the A&H human Wug Test data. However, since we aggregate a larger set of results, we
complement our analysis with a broader examination of the models’ predictions first.

6.2.1 Beam Production Probabilities

We begin this analysis by discussing the beam production probabilities. For all four models,
we found that the top 12 beam ranking probabilities are usually heavily skewed for high
probabilities for the top 1 predictions. Furthermore, we were not able to find beams that
contained more than one plausible form1, which would always be the top 1 prediction. To
illustrate this, the example below shows the top 5 from one beam prediction for the nonce
verb n"oUld (nold). In this example, a model predicted the regular form n"oUld@d (nolded)
with a high probability of > 0.99. We do not see any other plausible forms that could be
expected here, such as n"Eld (neld, as suggested by A&H). This is true for the whole top
12 in the beam prediction, but for simplicity, we present the top 5 here, as forms are also
getting more bizarre towards the bottom of the beam.

1. n"oUld@d nolded ≈ 0.9990
2. n"oUld@d@d noldlded ≈ 0.0003
3. n"oUldoUd@d noldloded < 0.0001
4. n"oUldloUd@d@d noldlodeded < 0.0001
5. n"oUld@ nolde < 0.0001

Although less frequently, there were also instances where beam probabilities were less
heavily skewed. Bize is an example of a nonce verb for which this happened relatively more

1A plausible form refers to a form that is morphologically legal and reasonable within the inflection rules.
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frequently, and more often by the token frequency models. In the example below, TOKENMTSK
predicted the irregular inflection boze (which is also suggested by A&H as the most plausible
irregular inflection). The probability assigned to this prediction is only ∼0.50. Again, all
other predictions in the beam are implausible forms. We also see that the implausible forms
combine the top form boze combined with the regular inflection bized, though the form
bized itself does not appear in the top 12.

1. b"oz boze ≈ 0.5041
2. b"oizd boized ≈ 0.4436
3. b"oiAt boiat ≈ 0.0355
4. b"oiA3zd boia-uzed ≈ 0.0031
5. b"oiA3ouz boia-u-ouz ≈ 0.0030

Our observations are in line with the results from Corkery et al. (2019), who found that the
beam prediction of individual models usually contain only one plausible form at the top with
a high probability, followed by implausible forms with low probabilities. They also found
that aggregating the beam probabilities gave more insight into the overall preferences of the
model as this washed out the unstable beam rankings of individual runs. This underlines
the importance of focusing on the aggregate results as well as the consideration of other
decoding strategies than beam search (see the Discussion, Chapter 7).

6.2.2 Production Probability Distributions

To gain insight into the overall predictions of our models, we aggregated and normalised
the beam probabilities of the 25 model runs per category: Regular, Irregular 1, Irregular
2, and Other (as explained in the Methods, Section 4.4.3). These results are visualised in
Figures 6.3b–6.3e. These distributions can be compared to the human speaker production
probabilities from A&H’s Wug Test, visualised in Figure 6.3a.
For all four models, the overall pattern corresponds to the human results presented in

Figure 6.3a, which is that the regular inflection is most frequently used for most nonce verbs.
In contrast with the individual beam probabilities, the aggregate beam results occasionally
contain more than one plausible inflection. This is especially true for the token frequency
models. For some nonce verbs, both the regular and irregular 1 inflections are predicted. In
the case of the token frequency models, the irregular 2 form is present as well for a few
nonce verbs, while this is minimally the case for the type frequency models.2.
One difference between our models and human speaker data is that the models generally

predicted higher probabilities for the Other class. However, we cannot compare the similarity
between the predicted forms of this class since A&H did not publish these productions.
Nevertheless, we do know from inspecting the beam rankings that the models predict
implausible forms; sometimes as top 1 prediction, such as the blending of bized and boze:
bize–bozed.

2Remind that A&H did only provide plausible irregular 2 forms for 11 out of 58 nonce verbs.
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(a) Production probability distribution from the A&H Wug Test (n=44).

(b) TYPESGT production probability distribution based on aggregate beam probabilities (n=25).

(c) TOKENSGT production probability distribution based on aggregate beam probabilities (n=25).

Figure 6.3: Production probability distributions (Part 1 of 2).
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(d) TYPEMTSK production probability distribution based on aggregate beam probabilities (n=25).

(e) TOKENMTSK production probability distribution based on aggregate beam probabilities (n=25).

Figure 6.3: Production probability distributions (Part 2 of 2).

6.2.3 Wug Experiment Correlations

6.2.3.1 Production Probabilities

Like in Experiment 1 and 2, we compute the correlation between the human speaker data
and the aggregate model predictions. Since we aggregated results from 25 model runs,
we also computed production probabilities based on top 1 predictions. We counted for
each nonce verb how often an inflection (Regular/Irregular 1/Irregular 2/Other) was the
top prediction in the beam, and divided this by the total number of runs to compute a
production probability distribution.3 We argue that—when aggregating the results from a
high number of runs—considering top 1 predictions is a realistic and human-like approach,

3Note that counting top 1 predictions based on only five runs, we only have five top 1 predictions per verb,
which is not sufficient to compute a representative probability distribution with. This is why top 1 predictions
were not used in the evaluations of Experiment 1 and 2.
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given that A&H human production probabilities are an aggregation of one prediction per
participant per verb as well.
In Table 6.3 we present for all four models the correlation coefficients between the

aggregate results and the A&H human production probabilities. In Table 6.4 we present
the average correlation between the human production probabilities and the 25 individual
model runs.

Regular Irregular
Beam Top 1 Beam Top 1
r ρ r ρ r ρ r ρ

TYPESGT .69 .58 .63 .50 .45 .40 .44 .40
TOKENSGT .63 .49 .62 .47 .47 .36 .48 .39
TYPEMTSK .64 .55 .57 .47 .46 .45 .46 .35
TOKENMTSK .60 .47 .57 .47 .28 .42 .48 .29

Table 6.3: Pearson’s (r) and Spearman’s (ρ) correlation coefficients between model produc-
tion probabilities (based on beam and top 1 predictions) and human production probabilities.

Regular Irregular
r ρ r ρ

TYPESGT .51 .51 .34 .24
TOKENSGT .43 .41 .33 .27
TYPEMTSK .50 .49 .36 .26
TOKENMTSK .41 .41 .33 .23

Table 6.4: Average Pearson’s (r) and Spearman’s (ρ) correlation coefficients between indi-
vidual beam production probabilities and human production probabilities.

In Table 6.3 we generally see small differences between the correlations based on the
aggregate results of the four models, especially for their top 1 predictions on the regular
class. However, even if differences are small, for the regular inflection of the nonce verbs
it is always TYPESGT with the highest correlation coefficients. TYPEMTSK also scores higher
or similar on the regular correlations compared to TOKENMTSK. Finally, single task models
have slightly stronger aggregate correlations than their multi-task versions on the regular
class. For the average individual correlations, we can make similar observations, although
the difference is somewhat more pronounced between type and token frequency models,
and less pronounced between single and multi-task models.
In both the aggregate and average results, the correlations on the irregular class are

usually relatively comparable between most models. The differences that can be found
between the models, do not generally point to one of the models as doing consistently better
or worse than others. This suggests that the four models generally share the struggle to
capture human behaviour on the irregular class of nonce verb inflection.
Another observation that can be made is that all models generally have a higher correla-

tion with the A&H data on the regular class than on the irregular class. This suggests that it
is easier for our models to capture human behaviour in determining when to apply regular
inflection, rather than predicting the specific type of irregular inflection. Furthermore,
although the token frequency models have demonstrated significantly better performance
on the irregular class of real verbs compared to the type frequency models, token frequency
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models do not consistently show a higher correlation on the irregular class.
In conclusion, there is a slightly better fit with human nonce verb inflections by type

frequency models compared to token frequency models, and we usually found slightly worse
correlations for the multi-task models compared to the single task models. These results have
implications for the effect of token frequency and the validity of the dual-route approach.
However, for a complete discussion of results we also must take into account results from
the previously discussed sections and experiments. Therefore, our final discussion of the
first and second research question is given in the Discussion (Chapter 7).

6.2.3.2 Ratings

In the second experiment of A&H’s study, acceptability ratings of the nonce verb inflections
were also elicited from the participants (n=24). On a scale of 1 to 7, participants indicated
to what extent they found inflections if the nonce verbs acceptable. For completeness, we
computed correlations between the model predictions and this rating data. Table 6.5 and
6.6 show the aggregate and average correlation coefficient of all models with respect to the
rating experiment results of A&H.

Regular Irregular
Beam Top 1 Beam Top 1
r ρ r ρ r ρ r ρ

TYPESGT .71 .65 .65 .60 .40 .57 .40 .50
TOKENSGT .63 .54 .62 .51 .35 .32 .34 .31
TYPEMTSK .69 .60 .62 .51 .38 .44 .38 .37
TOKENMTSK .61 .49 .59 .41 .43 .38 .44 .39

Table 6.5: Pearson’s (r) and Spearman’s (ρ) correlation coefficients between model produc-
tion probabilities (based on beam and top 1 predictions) and human rating data.

Regular Irregular
r ρ r ρ

TYPESGT .54 .55 .31 .24
TOKENSGT .44 .44 .24 .23
TYPEMTSK .55 .53 .29 .26
TOKENMTSK .42 .43 .30 .28

Table 6.6: Average Pearson’s (r) and Spearman’s (ρ) correlation coefficients between indi-
vidual beam production probabilities and human rating data.

As can be seen from the tables, the human rating data led to relatively similar results as
the human production probabilities. However, the preference of type frequency models over
token frequency models on the regular class is somewhat stronger here. Like before, the
differences are less pronounced for the correlations based on the models’ top 1 predictions.
Finally, compared to the correlations based on the human production data, we see here
slightly stronger correlations for the regular class.
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6.2.3.3 Nonce Verb Label Prediction

To evaluate the multi-task models’ label predictions on nonce verbs, we calculated the
correlation between the human production probabilities from A&H’s Wug Test and the
model predictions. For each nonce verb, the multi-task models predicted a probability for
the regular class label. We aggregated these probabilities across all runs, similar to how
we did for the beam probabilities, and computed the correlation with the human data.
Additionally, we calculated this correlation by counting how often the regular class was
predicted for each verb (i.e., p > .50 for regular class label, referred to as Top 1) and divided
this by the number of runs. In Table 6.7, these correlations are shown. We also repeat the
results from the multi-task model inflection predictions for comparison.

Labels
Probability Top 1
r ρ r ρ

TYPEMTSK labels .53 .38 .56 .39
TOKENMTSK labels .51 .36 .49 .34
TYPEMTSK inflections .64 .55 .57 .47
TOKENMTSK inflections .60 .47 .57 .42

Table 6.7: Correlations between human production probabilities and aggregated label
probabilities and top 1 predictions; and repeated correlations between human production
probabilities and beam and top 1 inflection predictions. Pearson (r) and Spearman (ρ) on
the regular class.

In line with the main task results, the type frequency model somewhat outperforms the
token frequency model. However, the correlations based on label predictions are weaker
compared to those based on the inflection predictions of the main task. This difference
can be explained by the fact that the class label prediction and inflection prediction do not
always align. For TYPEMTSK, the label and inflection predictions agree on 88% of the nonce
verbs of the Wug Test. It was 14 times the case that a regular label and irregular inflection
were predicted for the same form, while it was 159 times the case that an irregular label
and regular inflection were predicted for the same form. For TOKENMTSK, this is the case
for 90% nonce verbs. It predicted 48 times a regular label while predicting an irregular
inflection, and 94 times an irregular label while predicting a regular inflection.
We conclude from these results that label prediction and inflection prediction often

agree, but not always. In case of disagreement between the two, the models tend to label
verbs more often as irregular than the inflection prediction does. Like with the accuracy
on real verbs, the fit of the models’ label predictions with human data is worse compared
to their inflection predictions. As mentioned before, this is not the expected result if it is
accurate to make a discrete distinction between regular and irregular verbs and assume
that they are separately processed, as suggested by the dual-route view of P&P. We discuss
this further in the Discussion Chapter (7) in light of the second research question.

6.2.4 Regular Inflection Tendency

Finally, we take a look at the models’ tendency to predict the regular inflection on novel
inputs. We have seen in Section 6.1.2 and 6.2.2 that there is a global tendency of models—
like humans—to produce a regular inflection on novel forms. Moreover, over-regularisations
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were more often made by type frequency models on real verbs. Though this contributed
to a worse accuracy on irregular verbs compared to token frequency models, they also
slightly outperformed token frequency models on correlations with human data on the
Wug Experiment. To discover whether a stronger tendency for the regular inflection on
the nonce verbs co-occurs with higher correlations, we computed different measures of
regular inflection tendency. In Table 6.8, we show for each model their average production
probability for the regular inflection, the percentage of nonce verbs where the regular
inflection probability is ≥ 50%, and the percentage of nonce verbs where the regular
inflection probability has the largest probability compared to the other inflection classes.
These results are presented in Table 6.8.

Average probability p > 50% Largest probability
Human data 81% 95% (55/58 verbs) 98% (57/58 verbs)
TYPESGT 78% 84% (49/58 verbs) 88% (51/58 verbs)
TOKENSGT 76% 88% (51/58 verbs) 91% (53/58 verbs)
TYPEMTSK 81% 92% (53/58 verbs) 93% (54/58 verbs)
TOKENMTSK 72% 83% (48/58 verbs) 90% (52/58 verbs)

Table 6.8: Different measures of regular inflection tendency on the Wug Test.

First of all, TYPEMTSK has the highest regular inflection tendency. Depending on the
measure, TYPESGT and TOKENSGT follow. This pattern does not perfectly fit the finding that
TYPESGT has the best overall fit with human behaviour. However, the differences between
TYPESGT, TOKENSGT and TYPEMTSK were usually small and sometimes even negligible. Moreover,
TOKENMTSK having the significantly weakest regular inflection tendency aligns with having the
weakest correlations with the human data on the regular class. We conclude from the results
that a stronger tendency for regular inflection does not precisely go hand-in-hand with a
better fit with human behaviour on novel input. This indicates that, as can be expected,
there are more subtle intricacies that play a role in a good fit with human behaviour on
novel verbs.
Something else that does seem to exactly match the regular inflection tendency of

models is the number of training epochs. TYPEMTSK trained for the highest number of average
epochs (50), while TOKENMTSK trained for the lowest average number of epochs (17), leaving
TYPESGT and TOKENSGT in the middle (with on average 28 and 27 epochs respectively). This
suggests that using more training epochs results in an overall stronger tendency to use the
regular inflection on novel input.
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Chapter 7

Discussion

In this chapter, we discuss the results of this thesis in light of the posed research questions
in Section 1.1. Finally, we propose several directions for future research.

7.1 The Effect of Token Frequency

The first sub-question that we posed is: Does training an ED model on token frequency instead
of type frequency lead to more similar real and nonce verbs inflections to those of human
speakers? To find an answer to this question, we trained ED models similar to the ones used
in Corkery et al. (2019) and K&C on type frequency and token frequency. In case of type
frequency (TYPESGT), the training data of the model contained each example once. This is
in line with the input data of previous studies (A&H; Corkery et al., 2019; K&C). In the
case of token frequency (TOKENSGT), the training data was augmented with token frequency
distribution. This was done by adding verb examples multiple times in the training data,
proportional to how often its past tense form occurs in the CELEX corpus. Since for the
second sub-question we investigated the effect of a multi-task training setup, we also made
a type and a token frequency model in this setting: TYPEMTSK and TOKENMTSK. Hence, we
compared two pairs of type and token frequency models.
Aggregating the results from Experiment 1 and Experiment 2, we first compared the

models to each other on average accuracy on the training and development set, containing
only real verbs. Though the regular class performance was relatively similar between the
models, the token frequency models strongly outperformed the type frequency models on
the irregular class from the training set. Token frequency models also outperformed the type
frequency models on the irregular verbs from the development set, but this difference was
smaller. In Experiment 2, we noted that type models had much higher standard deviations
on the irregular class accuracy as well. As pointed out throughout the experiments, the
difference in accuracy could be explained by the fact that the token frequency models have
proportionally more exposure to irregular examples compared to the type frequency models.
Using the Wug Test as the test of generalisation, we compared the models’ nonce verb

inflections by computing the correlations between the model inflection predictions and the
A&H humanWug Test data. We found that the type frequencymodels generally obtain higher
correlations on the regular class compared to the token models. However, it is important to
mention that the token frequency models obtained only slightly worse correlations based
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on the aggregate beam results, and we found no notable difference between correlations
based on the aggregate top 1 predictions.
Insights from Experiment 1 generally led to a selection of models with higher nonce

verb correlations, also compared to those of previous studies (Corkery et al., 2019; K&C).
However, we also observed that the irregular class accuracy of the type frequency models
significantly dropped from near-perfect accuracy on the training set to 65%–75%. Although
we prioritised capturing human behaviour on novel inputs, as this evaluates the ability of
models to generalise, this came with the cost of performing worse on real irregular verbs for
the type frequency models. This is in line with the findings of Corkery et al. (2019), who
also explored using fewer training epochs for a model similar to TYPESGT, and found indeed
higher Wug Test correlations but lower training performance, especially on the irregular
class.
In contrast, the token frequency models did not face this issue, as they achieved near-

perfect accuracy on the training verbs and relatively similar aggregate correlations with
human Wug Test data. As mentioned in the Theoretical Background and Introduction,
the token frequency distribution of verbs is also more similar to the linguistic input of
human language learning. In conclusion, we consider token frequency to be a valuable
aspect that makes ED models a more representative cognitive model of English past tense
inflection. This finding is particularly noteworthy, as previous studies on past tense inflection
consistently relied on type frequency rather than token frequency (e.g., A&H; Corkery et al.,
2019; K&C). Our results also contribute to our understanding of the cognitive processes
underlying English past tense inflection, suggesting that token frequency might play a more
important role than previously assumed.

7.2 The Effect of Dual Route Multi-task Training

The second sub-question that we posed is: Does training an ED model on an auxiliary task of
distinguishing regular and irregular verbs lead to more similar inflections of real and nonce
verbs to those of human speakers? To investigate this question, we experimented with models
that were not only trained on the main task of predicting verb inflections, but also on an
auxiliary task to predict the verb class (regular or irregular). The objective of this multi-task
training is to reflect in the task of the model the P&P dual-route proposition that regular and
irregular verbs are distinctly processed in English past tense inflection. To find an answer
to this question and gain more insight into the plausibility of the dual-route approach,
we compared the multi-task trained models (TYPEMTSK and TOKENMTSK) to their single task
versions (TYPESGT and TOKENSGT).
In Experiment 1, different weighted sums of the overall loss were investigated. Results

demonstrated that a weight of 0.7 to the main task of inflection prediction and 0.3 to the
auxiliary task of classification led to the strongest fit with human nonce verb inflections.
This was compared to the two other options where the weighted sum was (0.8, 0.2) and
(0.6, 0.4) to the main and auxiliary tasks, respectively. The model with the lowest weight
assigned to the auxiliary task (0.2) is obtained stronger correlations with human nonce
vebr data than one with a heavier weight for the auxiliary task (0.3). This would suggest
that the auxiliary task adds something useful. However, the results also demonstrated that
the weighted sum of (0.7, 0.3) led to the label performance being significantly worse than
in the other settings.
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Comparing the aggregate results of the selected models, we found that the multi-task
models usually perform either worse or similar on the training and development verbs. The
only improvement observed was TYPEMTSK performing slightly better on irregular verbs from
the training set compared to TYPESGT. This is also true for the Wug Test correlations: overall,
the single task models yielded either similar and otherwise usually slightly stronger overall
correlations than their multi-task versions. This is regardless of using type frequency or
token frequency. This means that inflections on real and nonce verbs cannot be considered
more similar to those of humans when the model is additionally focusing on the discrete
distinction between regular and irregular by means of an auxiliary task.
Another relevant finding was the difference between the main task and auxiliary task

performance. Overall, the label predictions were less accurate on the real verbs and also
yielded lower correlations with humanWug Test data, compared to the inflection predictions.
Label predictions from the auxiliary task and inflection predictions from the main task
matched about 90% of the times for both models on nonce verb predictions. This was largely
due to the models predicting an irregular label for a nonce verb that they predicted a regular
past tense form for. Interestingly, the model has trouble matching its inflection and label
predictions to some extent. Of course, the auxiliary task was assigned a lower weight, which
explains the better performance on the main task compared to the performance on the
auxiliary task. However, if this binary classification of verbs is a completely accurate way
to model past tense inflection, one may not expect this difference between the main and
auxiliary task predictions.
In conclusion, the relatively small performance differences between the single-task

and multi-task models on real and nonce verbs suggest that adding the auxiliary task may
not significantly alter the models’ representations. It is possible that the auxiliary task,
designed to reflect the dual-route idea, compels the models to learn abstract representations
similar to those learned without the auxiliary task. Such a finding would be consistent
with P&P’s dual-route view, as well as with Ma and Gao (2022) their findings that their
transformer model captures an abstract distinction between regular and irregular verbs.
However, we also observed mismatches between label predictions and inflection predictions,
which challenge this interpretation. Therefore, we consider it a feasible explanation that
performance was either similar or slightly worse in the multi-task training setup, because
the binary distinction of verbs is not exactly accurate and beneficial for human-like inflection
generalisations, and the auxiliary task may not have entirely resulted in the dual-route-like
representation despite its intended design.
Future research could further investigate this by using a similar multi-task training setup

but experimenting with three classes instead of two, regular, semi-regular, and irregular, to
investigate whether this is a more optimal classification of verbs. Another option would be
to interpret the obtained representations of the model, as briefly discussed in this chapter
(Section 7.5.3).

7.3 Model Configuration Choices for Encoder-Decoders as Mod-
els of Inflection

In Experiment 1 (Section 5.1), we explored different model configuration choices to answer
the question: Which data and model configuration choices improve an ED model’s ability
to predict more similar inflections of real and nonce verbs to those of human speakers. As
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explained, we adopted a similar model to the one implemented by Corkery et al. (2019) and
K&C. However, exploration and investigation of different model configuration choices for
the specific task of this model had not been conducted before. Our experiment also allowed
for a model selection to make the most fair comparison between the four models that we
investigated in this thesis. The final selection of models demonstrated an improvement
on the correlations obtained in the previous study of Corkery et al. (2019), where similar
evaluation led to regular class Wug Test correlations of .30/.45 (Pearson and Spearman, re-
spectively) instead of .69/.58 (TYPESGT). Below, we discuss the most important observations
in Experiment 1 that led to these improvements.

7.3.1 Representativeness of the Data

The first steps of Experiment 1 considered different versions of the dataset. Most importantly,
we discovered that a set of highly frequent and irregular verbs was omitted from the A&H
dataset that was also used by Corkery et al. (2019) and K&C. The results showed that
nonce verb inflections were more similar to those of humans when these verbs were actually
included in the data.
We drew a similar conclusion regarding the inclusion of more than one correct inflection

for some verbs (e.g., dive–dove/dived). Although previous studies have also chosen to include
these in the data, it is not straightforward to assume that this is the best option without any
empirical exploration. This is because, for instance, in cases homophones such as wring/ring
(wrung/rang), human speakers usually are provided with semantic context that allows for
disambiguation between these verbs, whereas the model is not.
Similar to our conclusion with regard to the dataset augmentation with token frequency,

these findings suggest that the above alternations to the dataset both made the data more
representative of the linguistic input of human language learning as well as improved all
four models’ fit with human behaviour on nonce verbs.

7.3.2 Preventing Overfitting

Another main finding from Experiment 1 is that mitigating the suspected problem of
overfitting on the real verb training data improved the match between model generalisations
to novel inputs and human data. Overfitting on the real verb data was mitigated by using
an early-stopping mechanism with an appropriate patience threshold parameter, as well
as an appropriate selection of hyperparameter settings, including network depth and size,
dropout, batch size and learning rate. However, for the four models, it differed which
settings resulted in optimal generalisations to nonce forms.
A consequence of this, however, is that less overfitting of the type frequency models led

to a significantly weaker performance on real irregular verbs, compared to the near-perfect
accuracies also found by the previous studies (Corkery et al., 2019; K&C). Within the scope
of Experiment 1, we have not been able to discover a type frequency model that is able to
perform well on real verbs and obtain equally high correlations with human data. When the
training data was augmented with the token frequency distribution, the models performed
with near-perfect accuracy on real verbs and correlated almost as strongly with human data
as TYPESGT. Therefore, we suggest that the described improvements to prevent overfitting
go hand-in-hand with augmenting the training data with the token frequency distribution.
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In conclusion, our results show that both model configuration choices regarding model ar-
chitecture, training and hyperparameters—especially those influencing the risk of overfitting—
improved a model’s capacity to capture human behaviour on nonce verbs.

7.4 Distribution of Verbs

A downside of using an early-stopping criterion is that we had to split the real verb data
into a training and development set to be able to track convergence on the development
verbs. As explained in this thesis (Sections 3.4.4, 5.2), the problem with this is that it is not
a straightforward task to find a training-development split for verb data that suits this task:
a training set containing all the relevant information to generalise in a human-like manner
to the nonce verbs, as well as a development set that is a representative set of the training
data. Though for Experiment 1, we relied on one random split, following the conventional
approach in the field of machine learning, we further investigated the effect of this with our
fourth sub-question: Does the distribution of real verbs over a training and development set
influence an ED model’s fit with human behaviour on real and nonce verb inflections?

Experiment 2 mainly revealed that different distributions of verbs into training and
development parts can lead to differences in performance on real verbs as well as a model’s
fit with A&H human Wug Test data, but this differed between the models. As mentioned
before, the performance of the type frequency models is weaker and less stable compared
to the more robust token frequency models. On the nonce verbs, the correlation strength
with human data also depended on the particular set of verbs the models are trained on, in
particular for TOKENSGT and TYPEMTSK).
This raises the issue of identifying an optimal split to ensure the training and development

sets are as representative as possible. Unlike K&C, who relied on a single random data split,
we chose to aggregate results across multiple splits, as this approach was the most suitable
within the scope of this thesis to handle this issue. Future research could also look further
into which distribution of verbs results in the most representative split so that the data may
divided into an optimal training-development split, and an early-stopping criterion can
still be used to help prevent overfitting on the training verbs. Another option for future
research would be to use all verbs as training data. This eliminates the problem of finding
an ideal distribution of verbs and replicates the task of language acquisition most accurately
(cf. Corkery et al., 2019). However, an appropriate fixed number of epochs should be used
in order to make sure that sufficient training epochs are used without overfitting.

7.5 Additional Directions for Future Research

In this final section of the Discussion, we propose several directions for future research
based on the findings and limitations of this thesis.

7.5.1 Decoding Strategy

Inspecting the aggregate beam results revealed that the beam search predictions contains
at most only one plausible form as the top 1 prediction. All other predictions appeared to
be forms that are unnatural to use in human language. Usually, the probabilities were also
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heavily skewed for the plausible top 1 prediction. A possible way to overcome limitations of
the beam search could be using other decoding strategies instead of beam search. Examples
of this are nucleus sampling (Holtzman et al., 2019) or top-k sampling(Fan et al., 2018;
Radford et al., 2019). These techniques could help improve observed problems such as
repetition (see also examples in Section 6.2.1).
In this thesis, however, we have focused on another way to overcome the beam search

algorithm limitations, which is by focusing on the aggregate top 1 predictions. When
aggregating model predictions across a sufficient number of runs, top 1 predictions could
be considered similar to the A&H Wug Experiment, where they elicited from each of the 41
participants one past tense form for each nonce verb. Hence, this not only eliminates the
beam search limitations but also makes the experimentation more similar to that of human
speakers.

7.5.2 Inflection Trends and Patterns

Another observation from the overall results is that the correlations between the models’
production probabilities and those of human speakers were generally stronger on the regular
class compared to those on the irregular class. This is true for all four models, as well as
the models from previous studies (A&H; Corkery et al., 2019; K&C). As mentioned in the
previous chapter, this implies that it is more straightforward whether humans would inflect
a verb regular or irregular, compared to the decision of which irregular pattern to apply.
Furthermore, we found that the tendency of models to inflect novel input regularly could

only partially explain the strength of the correlations. Of course, the regular inflection being
highly productive must be captured in order to mimic human inflections on novel inputs.
However, more subtle and complex intricacies underlie the decisions of humans to inflect
novel forms.
A limitation of the models related to this is the fact that the models made past tense

inflection errors that are a blend of both regular and irregular inflection. We saw this happen
on the training, development and nonce verbs (for instance, bize–bozed). This type of error
is also noted by P&P as a limitation of R&M’s connectionist model. K&C noted that their
model (though obtaining significantly lower correlations than ours) overcame this problem
and did not find this error type. These errors pose a limitation of our models’ fit with human
behaviour, as these are not human-like errors (Pinker, 1999).
Future research could focus on a more detailed understanding of these behavioural

nuances and generalisation patterns in neural ED models.

7.5.3 Interpretation of Encodings

A general limitation, often pointed out, is that neural networks are ‘black boxes’ with limited
insight into what they learn (McCloskey, 1991). This is especially relevant in cognitive
modelling, where the goal is to gain more insight into human behaviour and the underlying
cognition. However, future research could address this limitation by applying more advanced
analytical methods. Corkery et al. (2019) did this by making a t-SNE (t-distributed Stochastic
Neighbour Embedding) visualization of the verb encodings (Van der Maaten and Hinton,
2008). The multi-dimensional encodings of the model are mapped onto a two-dimensional
space, which visualises which verb encodings are close to each other. This can be useful to
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understand where specific inflection decisions of the models come from.
Another way for future studies to interpret the model encodings could be by implement-

ing probing classifiers (Belinkov, 2022). For instance, a binary classifier could be trained to
predict whether a model’s encoding represents a regular or irregular verb. The purpose of
this probing classifier is to reveal the specific properties encoded by the model. In this setup,
the classifier’s ability to accurately distinguish between regular and irregular verb forms
would indicate whether the model abstractly captures this distinction in its representations.
This approach could provide valuable insights into the validity of the dual-route theory,
complementing the findings from our multi-task training.

7.5.4 Other Languages

Finally, we want to highlight the importance of future research to focus on other kinds of
morphological inflection and languages besides English past tense inflection. One of the
studies that have already done this are McCurdy et al. (2020), who focused on German plural
inflection of nouns, and Yang et al. (2023) (using the UniMorph dataset McCarthy et al.,
2020) who focused on past tense inflection in English, Dutch and German. Different cases
of inflection in different languages pose different challenges. For example, in German plural
inflection, there are multiple regular rules, and there is no majority class like the regular
past tense inflection in English. Looking into different cases and languages provides more
insight into the general capacity of these neural models as cognitive models of morphological
inflection.
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Chapter 8

Conclusion

In this thesis, we investigated our main research question of whether neural models, specifi-
cally EDs, have the potential to cognitively model English past tense inflection. Despite the
strong scepticism following P&P’s rebuttal of R&M’s connectionist model in of past tense
inflection in 1986, recent work (a.o., Corkery et al., 2019 and K&C) demonstrated that
contemporary, advanced neural models overcome many theoretical and empirical limitations
of R&M’s model. However, Corkery et al. (2019) also showed that their ED model was not
able to precisely capture human behaviour on nonce forms.
In this thesis, we have followed up on the studies of Corkery et al. (2019) and K&C

by investigating the effect of different data, models and training configurations. Our
results demonstrated that the representativeness of the data influenced a model’s ability
to generalise in a human-like manner to novel inputs. Making the data more complete,
hence more similar to the linguistic input of human language learning, improved its fit with
human behaviour on nonce forms. The representativeness of the data must also be taken
into account if verbs are distributed into a training and development set, as our results
demonstrated that this can influence model performance as well.
Furthermore, our results confirmed that the suspected overfitting of the previous studies’

models could be prevented with the use of an early stopping mechanism and appropriate
hyperparameter settings. This led to a substantial improvement in correlations between
model predictions and human Wug Test data. Additionally, models achieved near-perfect
performance on regular verbs from the training and development sets, comparable to that
reported by Corkery et al. (2019). However, adjustments such as fewer training epochs also
led to a decrease in model performance on irregular real verbs in the training set, which
was observed by Corkery et al. (2019) as well. This is undesirable for a cognitive model of
past tense inflection, as a model preferably also captures that speakers perform near-perfect
on their acquired set of verbs.
A key finding of this thesis is that augmenting the training data with the token frequency

distribution of verbs led to a substantial increase in accuracy on irregular verbs in the training
set (≃96% compared to the type frequency model’s ≃66%). Additionally, correlations were
almost equally strong as those obtained with type frequency when aggregating predictions
across multiple model instances (cf. Corkery et al., 2019). Our results show that augmenting
the training data with token frequency does not only make the input more similar to those
of humans, but also is valuable in increasing the overall fit with human behaviour. This is
a relevant finding, given that previous studies modelling past tense inflection consistently
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chose to only reflect type frequency in the training data (a.o., A&H; Corkery et al., 2019;
K&C).
We also investigated whether a multi-task training setup additionally focusing on the

discrete distinction between regular and irregular verbs—intended to represent ideas of
P&P’s dual-route approach—improves a model’s fit with human behaviour on real and
nonce verbs. Our results did not demonstrate that this was the case, as only relatively small
differences in real and nonce verb performance were found, often to the disadvantage of the
multi-task setup. Based on our findings, neither definite confirmation nor rejection of the
dual-route approach could be determined. Nonetheless, our experiments demonstrate that
contemporary neural models can be a meaningful way to experiment and gain insight into
long debated topics such as English past tense inflection. These models have a large learning
capacity and the flexibility to integrate and empirically experiment with different theories,
even if they initially opposed the neural modelling approach. Future research could further
investigate the plausibility of approaches such as the dual-route view in a similar way.
Although our results demonstrate improvements in generalising to novel inputs in a

more human-like way compared to previous studies, our results suggest that ED models still
face the challenge to capture human behaviour on a detailed level, such as on the irregular
inflection of nonce verbs and occasionally predicting unrealistic forms (e.g. blendings,
dive–doved). Nevertheless, our findings suggest that there are promising avenues to further
improve the alignment of these models with human behaviour.
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Appendix A

Hyperparameter setting results from
Experiment 1

Network size Batch Learning Train Dev
Emb/LSTMs Dropout size rate All Irreg Reg All Irreg Reg r ρ

TYPESGT
300/100 0.1 32 0.001 99.31 92.02 99.70 95.10 51.82 97.39 .53 .49
300/100 0.3 32 0.001 98.75 81.12 99.75 95.56 43.18 98.29 .56 .51
300/100 0.5 32 0.001 98.69 79.44 99.78 95.80 44.55 98.44 .57 .53
400/200 0.1 32 0.001 98.26 76.97 99.43 95.19 40.91 98.02 .54 .53
400/200 0.3 32 0.001 98.37 78.54 99.43 95.32 43.64 97.99 .52 .48
400/200 0.5 32 0.001 98.01 70.00 99.59 95.66 40.46 98.54 .58 .55
300/100 0.5 16 0.001 98.73 81.91 99.67 95.95 47.73 98.47 .55 .54
300/100 0.5 64 0.001 98.14 68.76 99.78 95.70 40.91 98.59 .56 .52
400/200 0.5 16 0.001 97.73 64.27 99.61 95.78 36.82 98.74 .52 .56
400/200 0.5 64 0.001 98.27 77.08 99.43 95.63 45.00 98.29 .57 .55
400/200 0.5 32 0.0001 98.49 77.42 99.67 88.59 37.72 91.30 .53 .45
400/200 0.5 32 0.01 95.09 37.75 98.30 94.53 35.00 97.61 .59 .62
400/200 0.5 64 0.0001 97.83 66.52 99.57 88.13 32.27 91.08 .38 .41
400/200 0.5 64 0.01 97.05 57.53 99.24 95.44 41.36 98.24 .61 .59

Average accuracy on real verb data and Pearson’s r and Spearman’s ρ with human Wug Test
data: hyperparameter settings Experiment 1. (Part 1 of 2)
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Network size Batch Learning Train Dev
Emb/LSTMs Dropout size rate All Irreg Reg All Irreg Reg r ρ

TOKENSGT
300/100 0.1 32 0.001 99.65 97.42 99.79 95.36 47.72 97.96 .51 .47
300/100 0.3 32 0.001 99.36 93.82 99.68 95.21 48.18 97.74 .61 .53
300/100 0.5 32 0.001 98.96 91.35 99.39 95.85 49.10 98.39 .53 .47
400/200 0.1 32 0.001 99.08 94.04 99.37 95.10 51.36 97.46 .61 .50
400/200 0.3 32 0.001 99.35 96.07 99.55 95.57 51.82 97.99 .61 .51
400/200 0.5 32 0.001 99.11 91.46 99.54 95.66 45.00 98.39 .45 .42
300/100 0.3 16 0.001 99.03 90.90 99.47 95.19 45.00 97.84 .40 .39
300/100 0.3 64 0.001 99.64 96.52 99.81 95.24 48.18 97.74 .50 .46
400/200 0.3 16 0.001 98.34 85.84 99.05 95.12 48.64 97.51 .50 .46
400/200 0.3 64 0.001 99.19 94.94 99.42 94.71 48.18 97.21 .57 .51
300/100 0.3 32 0.0001 99.91 99.21 99.96 88.61 42.27 91.23 .55 .44
300/100 0.3 32 0.01 95.19 65.06 96.79 93.74 43.64 96.48 .53 .53
400/200 0.3 32 0.0001 99.98 99.78 99.99 86.41 39.55 89.12 .46 .35
400/200 0.3 32 0.01 96.38 75.06 97.59 93.35 45.91 95.95 .50 .51
TYPEMTSK
300/100 0.1 32 0.001 97.57 61.23 99.63 94.85 38.18 97.84 .57 .53
300/100 0.3 32 0.001 96.76 45.96 99.62 95.41 37.27 98.42 .62 .60
300/100 0.5 32 0.001 97.80 66.63 99.53 95.99 42.27 98.72 .56 .54
400/200 0.1 32 0.001 97.69 69.33 99.26 94.68 40.91 97.53 .50 .56
400/200 0.3 32 0.001 97.22 59.89 99.30 95.63 42.27 98.37 .48 .52
400/200 0.5 32 0.001 97.70 66.85 99.43 95.75 41.36 98.54 .51 .47
300/100 0.1 16 0.001 97.47 58.88 99.65 95.55 40.91 98.39 .51 .53
300/100 0.1 64 0.001 97.50 60.45 99.59 93.20 35.00 96.26 .49 .43
300/100 0.3 16 0.001 98.10 73.71 99.48 94.88 46.36 97.41 .50 .49
300/100 0.3 64 0.001 97.54 63.93 99.44 93.33 42.73 96.08 .44 .42
300/100 0.1 32 0.0001 90.48 28.76 94.07 79.24 27.27 82.19 .27 .28
300/100 0.1 32 0.01 97.05 62.92 98.98 94.68 40.91 97.54 .46 .48
300/100 0.3 32 0.0001 90.01 26.85 93.74 81.02 27.73 83.94 .34 .25
300/100 0.3 32 0.01 97.13 53.26 99.58 95.32 36.82 98.27 .66 .61

TOKENMTSK
300/100 0.1 32 0.001 99.37 94.38 99.66 94.27 43.64 97.96 .50 .48
300/100 0.3 32 0.001 99.12 93.25 99.43 94.64 45.91 97.24 .54 .47
300/100 0.5 32 0.001 98.68 88.43 99.25 94.56 44.55 97.21 .53 .48
400/200 0.1 32 0.001 98.67 90.90 99.11 94.27 42.18 97.06 .40 .38
400/200 0.3 32 0.001 99.03 92.70 99.40 95.17 45.45 97.86 .44 .42
400/200 0.5 32 0.001 98.46 86.52 99.08 94.83 44.55 97.49 .52 .47
300/100 0.3 16 0.001 99.58 98.09 99.67 94.51 47.27 97.01 .46 .47
300/100 0.3 64 0.001 98.75 91.01 99.21 94.81 50.45 97.24 .48 .43
300/100 0.5 16 0.001 99.0 92.25 99.39 95.39 50.00 97.86 .58 .48
300/100 0.5 64 0.001 98.96 88.76 99.54 94.83 43.63 97.61 .37 .44
300/100 0.3 32 0.0001 99.05 93.37 99.38 88.52 44.09 91.06 .52 .43
300/100 0.3 32 0.01 96.91 76.07 98.09 93.81 44.09 96.51 .54 .47
300/100 0.5 16 0.0001 97.92 93.93 98.18 89.20 43.64 91.76 .54 .44
300/100 0.5 16 0.01 94.28 58.54 96.23 92.35 42.27 95.00 .38 .41

Average accuracy on real verb data and Pearson’s r and Spearman’s ρ with human Wug Test
data: hyperparameter settings Experiment 1. (Part 2 of 2)
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