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Abstract

Data-to-text generation converts structured data into natural language

text, simplifying complex data interpretation and reducing manual effort.

Traditional rule-based and neural approaches each offer distinct strengths

and weaknesses—rule-based systems ensure data fidelity but often pro-

duce rigid text, while neural models generate more natural text but risk

deviating from the source data. To address these limitations, a neural-

symbolic data-to-text conversational system was proposed, consisting of

an information retrieval system, a generative grammar, and a text scorer.

This study explores the use of large language models as text scorers, focus-

ing on their ability to align with human judgments when scoring grammar-

generated text. A benchmark dataset was created to study human prefer-

ences, and several large language models (LLMs) were tested using the

sentence-scoring method to obtain model judgments. Experiments re-

vealed that all LLMs struggled with the “likelihood trap”, favoring bland

responses over informative ones. Prompts, including prompts contain-

ing shuffled data, were effective in mitigating this issue, suggesting that

the prompt’s role is less about conveying accurate information and more

about mitigating word frequency effects on sentence scoring. Furthermore,

increasing model scale did not consistently improve performance, sug-

gesting that larger models primarily enhance competencies that are not

critical for the text-scoring task. The FLAN-T5 model outperformed other

tested models, with the 783M-parameter variant achieving near-human

performance. Finally, the integration of a basic generative grammar with

the LLM text scorer demonstrated the effectiveness of the neural-symbolic

approach. LLMs’ extensive linguistic knowledge allows for simplification

of the grammar design, while the grammar ensures accurate data represen-

tation in the generated text.
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1. Introduction

Data-to-text(D2T) generation is the process of generating natural language

text to convey the information embodied in structured data. This approach

offers several advantages, such as making complex information more ac-

cessible to a wider audience, reducing the effort needed for manual data

interpretation and reporting, and minimizing human error. In law enforce-

ment, officers often need to analyze sensor data, such as location tracking

and surveillance feeds, or compile reports based on criminal records. These

tasks are typically repetitive and time-consuming, requiring substantial hu-

man resources. A D2T system can simplify this work by generating clear

and insightful texts directly from the data, saving time and maintaining ac-

curacy. This need for efficiency and accuracy in handling large volumes of

structured data is a key motivator for developing the D2T system within the

police force.

The D2T generation can be seen as a process of making a series of deci-

sions that guide the creation of text from data. Neural D2T systems make

these decisions by learning linguistic patterns from large datasets, while

rule-based systems rely on predefined rules to process them. Neural models

are capable of generating natural text because they develop strong linguis-

tic capabilities during training. However, neural models tend to halluci-

nate, which is the behavior of producing text that deviates from the source

data [1], [2]. On the other hand, rule-based systems produce texts highly

accurate in their representation of data since humans have direct control

over the generation process [3]. While this approach ensures data fidelity,

creating natural text requires encoding complex linguistic knowledge into

the rules, which is costly. Even then, some unexpected cases may be over-

looked, leading to rigid text outputs.

The complementary strengths and weaknesses of neural and rule-based

approaches motivate the investigation of a neural-symbolic system for data-
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Introduction

Figure 1.1: The main workflow of the proposed neural-symbolic data-to-text
conversational system. This research focuses on the text scorer component,
highlighted in the purple frame.

to-text generation. The concept of hybrid natural language generation(NLG)

has been around since Knight et al.’s 1995 paper, where they introduced a

statistical-symbolic approach that added a statistical component to a rule-

based generator [4]. The key idea was to allow the rule-based generator

to produce multiple variations of the same idea, while the statistical compo-

nent would select the most suitable one. Their experiments showed that this

combination effectively filled the linguistic gaps of the generator, leading to

more natural text. Moreover, by using a statistical filter that could filter out

invalid texts, the system could simplify the rule set and combine them more

flexibly.

Building on the neural-symbolic NLG concept, and applying it to the

police department’s D2T needs, the following neural-symbolic data-to-text

conversational system is proposed. An illustrative diagram of the system’s

main workflow can be found in Figure 1.1. The main workflow consists

of three steps: first, retrieve a data snippet that contains the information

relevant to the user’s question; second, apply grammar rules to generate

answers describing this data snippet; and third, use a language model as a

text scorer to select the candidate answer that best matches human prefer-

ences. This design divides responsibilities between components, allowing

each to focus on a specific problem. The information retrieval component

ensures the correct data is selected, the grammar rules handle the faithful-

ness of the generated text to the data, and the language model ensures the
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linguistic quality of the final output.

This study is an exploratory investigation into the proposed neural-symbolic

data-to-text conversational system, with an emphasis on the text scorer com-

ponent. Specifically, it examines the use of large language models(LLMs) as

text scorers. The core objective is to assess whether LLMs can reliably act

as proxies for human judgment. The study addresses this by breaking the

investigation into three key questions:

How can LLM judgments be obtained? Various methods have been

discussed in related work, and this study focuses on the sentence scoring

method, which is a widely adopted and straightforward measure of acquir-

ing LLM judgments.

How do humans rate different grammar-generated texts? To explore

this, a human preference dataset was constructed, simulating grammar-

generated text and gathering human judgments to understand their pref-

erences.

How well do LLM judgments correlate with human preferences? Dif-

ferent LLM architectures and model scales were tested, alongside various

methods to improve correlation. Particular attention was given to the in-

fluence of model scale, based on the hypothesis that, since factual accuracy

is controlled by the grammar component, the small-scale models with basic

formal linguistic competence could be sufficient for the task.

This thesis is organized as follows: Chapter 2 reviews related work, start-

ing with an overview of D2T methods. It then examines human text judg-

ments from two angles—acceptability and dialogue context—and includes

studies on predicting human preferences, sentence scoring, the “likelihood

trap”, and the impact of model scale on scoring tasks. Chapter 3 presents

the methodology, detailing the approach for capturing LLM preferences,

the benchmark dataset for human judgments, and the evaluation metric.

Chapter 4 describes experiments that assess model architecture, scale, and

strategies for mitigating the likelihood trap through re-ranking models and

prompts, concluding with an evaluation of grammar-based generation with

LLM scoring. Chapter 5 discusses key interpretations of the experimental
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results and proposes directions for future research, and Chapter 6 summa-

rizes the main insights and contributions.

This thesis contributes to the field of AI by exploring innovative meth-

ods for enhancing data-to-text systems, an area integral to NLG. The study

advances the use of large language models in reflecting human judgment

of text, while demonstrating how neural-symbolic AI can be harnessed for

tasks requiring factual accuracy. Such advancements underscore AI’s po-

tential in transforming data into reliable insights across diverse fields, from

law enforcement to finance.
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2. Related work

The related work section begins by providing background on the data-to-

text (D2T) generation task in Section 2.1, offering an overview of rule-based,

neural-based, and neural-symbolic approaches to D2T systems. Follow-

ing this, Section 2.2 and Section 2.3 explore how humans perceive different

types of text. These two sections address the topic from distinct perspec-

tives: acceptability judgments focus on human evaluation of isolated text

pieces, while dialogue judgments consider how text is perceived within

the context of a conversation. Related studies on predicting these human

preferences are also included in the corresponding section. Next, Section

2.4 discusses sentence scoring, a common method for obtaining LLM judg-

ments, and Section 2.5 explores the “likelihood trap”, a counter-intuitive

phenomenon that can occur when using sentence scoring. Another poten-

tial method for obtaining LLM judgments is briefly mentioned in Section

2.6. Finally, the impact of LLM scale on the text-scoring task is discussed in

Section 2.7.

2.1 Data-to-Text Generation

Data-to-text generation is the process of generating natural language text to

convey the information embodied in structured data. While it was achieved

through rule-based models traditionally, neural approaches become com-

mon in recent years due to their ability to generate fluent output while re-

ducing the effort of manually designing rules. However, neural models tend

to hallucinate, which is the behavior of producing text that deviates from the

source data [1], [2]. The tendency to generate plausible yet factual incorrect

output has restricted the real-world deployment of data-to-text models due

to safety and ethics concerns [5], [6]. For example, in medical applications,

a hallucinatory description of patient data could provoke a life-threatening
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incident for the patient [5]. Several studies have focused on tackling the

fidelity challenge of neural data-to-text generation [1], [7]. However, these

methods only mitigate the hallucination and do not guarantee the fidelity of

the generated text. Moreover, a recent study from Xu et al. formally defined

hallucination and showed that hallucination is inevitable by employing re-

sults from learning theory [6].

To acquire more control over the generated output, we revisit the rule-

based approach. Rule-based models convert data to natural language by

selecting and filling handcrafted templates [8]. Such models are highly ro-

bust, allowing humans to have full control over the generated text, which

makes them generally accurate in their representation of the data [3]. De-

spite the high-quality output, the development of the rule set requires ex-

tensive time and cost. For complex situations involving multiple domains,

the cost of describing data using rules is extremely high, which makes rule-

based modeling only applicable to simple scenarios [3]. Rule-based systems

also face challenges when they need to be extended to other domains [3].

Rule-based systems, despite generating text with great fidelity, are often

criticized for producing rigid responses that lack naturalness and fail to cap-

ture the nuances of human expression [9]. On the contrary, neural models,

while proving capable of generating more human-like text, inevitably pro-

duce text that deviates from the input data. The complementary strengths

and weaknesses of neural and rule-based approaches motivate the investi-

gation of a neural-symbolic approach, where the two problems of factual

accuracy and naturalness are left to rule-based and neural methods, respec-

tively.

The concept of a hybrid NLG solution dates back to Knight et al.’s 1995

paper [4]. They argued that a rule-based generator requires extensive lex-

ical, grammatical, and conceptual knowledge to produce fluent sentences.

However, constructing such a comprehensive knowledge base is practically

impossible. To address this, they proposed integrating a statistical language

model to bridge this knowledge gap. Their experiments demonstrated that

adding the statistical component effectively filled in the linguistic knowl-
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edge gap of the generator. Furthermore, they showed that the rule design

of the generator could be simplified by delegating lexical choice to the sta-

tistical component. This allows the generator to use simpler grammar rules

and combine them more freely, though it may produce more invalid texts.

The statistical component can then filter out problematic texts from the gen-

erator.

The key idea behind the two-level generation in Knight et al.’s study can

be summarized as using an over-generating grammar to express the same

idea in multiple ways and selecting the optimal one using a statistical com-

ponent. Despite this innovative approach, Knight et al.’s study is limited

in using a bi-gram model as the statistical component. The bi-gram model

cannot capture complex linguistic patterns due to its short context. Conse-

quently, only some aspects of lexical choices were delegated to the statistical

component. Given the extensive linguistic knowledge acquired by LLMs,

the possibility of delegating more text-generation choices to the language

model needs to be explored.

2.2 Acceptability Judgment

Acceptability can be regarded as a perception that arises when a speaker

encounters a linguistic stimulus [10]. It is a cover term that can be used

interchangeably with well-formedness, nativeness, and naturalness in lin-

guistic literature [11].

Chomsky acknowledged that human perceptions of acceptability are not

always clear-cut. Some texts are clearly acceptable and others are not [12].

But there is also some middle ground, where texts are perceived as neither

entirely acceptable nor unacceptable. Experiments by Lau et al. compared

human acceptability rating patterns with binary and gradient judgment pat-

terns [13]. They observed that the distribution of acceptability judgments

was similar to the baseline distribution of gradient judgments. Thus sup-

porting the gradient characteristic of acceptability.

Human acceptability judgment is influenced by various factors. Chom-
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sky notes that grammaticality can be seen as one of the many factors that

influence acceptability [12]. The following studies have also proven that

acceptability is sensitive to grammaticality. In Sprouse et al.’s experiments,

they observed that 90% of the cases claimed by linguists to be grammatically

different also showed differences in acceptability [14]. Other factors widely

recognized as having an impact on acceptability include the occurrence of

wh-dependencies, the length of dependencies, the relative frequency of lex-

ical items, and the relative frequency of grammatical structures [10].

Multiple studies have focused on predicting human acceptability judg-

ments. The most widely adopted method is to normalize the probability

assigned to the target text by a pre-trained language model [13], [15]–[21].

Lau et al.’s empirical experiment shows that there is no correlation between

sentence length and human acceptability judgments [13]. Based on their ar-

gument that acceptability is independent of sentence length and word fre-

quency, they proposed several normalization methods to mitigate the effect

of these factors on sentence probabilities [15], [16]. Experiments demon-

strate that normalized sentence probabilities better correlate with human ac-

ceptability judgments. In the subsequent studies, Lau et al. have proven the

robustness of their approach using different pre-trained language models,

different languages, and out-of-domain texts [16], [17]. Following the suc-

cess of predicting the acceptability of single sentences, Lau et al. studied the

acceptability prediction of sentences in a given context [18], [20]. They first

examined the impact of context supplements on human acceptability rat-

ings. They observed a compression effect when sentences were rated within

contexts. Context increased the acceptability ratings of ill-formed sentences

while decreasing the acceptability ratings of well-formed sentences. For

acceptability prediction, they continued the previously proposed unsuper-

vised approach ( pre-trained language model plus normalization) and once

again proved the effectiveness of the method. The performance of bidirec-

tional models was comparable to the estimated human upper bound, which

is the estimated correlation between a human participant’s ratings and the

mean ratings. In Ek et al.’s paper, they investigate the impact of augmenting

language models with syntactic and semantic information on acceptability
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predictions [19]. Experiments show that enhancing language models with

syntactic information can help reduce perplexity1. However, both syntactic

and semantic information fail to boost the models’ performance in accept-

ability prediction. These results also indicate that lower perplexity does not

lead to more accurate prediction in acceptability judgments.

There are attempts to predict acceptability or naturalness in a supervised

fashion. Inspired by second language assessment, Tian et al. extract a set of

linguistic features to predict human judgments of sentence naturalness [22].

The features include lexical features, such as token-type ratio, parsing fea-

tures, such as parse tree height, and language model features, such as sen-

tence perplexity. A binary classification model is then trained on the manu-

ally labeled dataset to classify sentences as “natural” or “unnatural” based

on these linguistic features. Although experiments by Tian et al. show that

this automatic evaluation method is highly correlated with human judg-

ments, their model performs poorly in evaluating sentences outside the

training domain. To improve model’s performance in other domains, su-

pervised training on a labeled set of this particular domain is required. In

Warstadt et al.’s study, they trained a classification model to predict binary

acceptability. The model contains a sentence encoder and a classification

head. The model outperforms Lau et al.’s unsupervised models but falls

short compared to human judgments [23]. Despite the encouraging perfor-

mance of their supervised model, Warstadt et al. move on to obtain accept-

ability prediction in an unsupervised manner as in Lau et al.’s study [24].

Based on these studies, it can be concluded that unsupervised meth-

ods using pre-trained language models tend to be more robust and gen-

eralize better than supervised methods, which often suffer from poor do-

main portability. This observation led us to focus on LLMs in an unsu-

pervised manner, rather than adding an extra classification head or scor-

ing layer. Furthermore, Lau et al.’s finding—specifically, that normalizing

1Perplexity is a measure of how well a language model predicts a sample. It is the
exponentiation of the average negative log likelihood of a sequence. In simpler terms,
lower perplexity indicates that the model is more confident in its predictions, meaning it
assigns higher probabilities to the correct words in a sequence.
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sentence length and word frequency improves the correlation between sen-

tence probabilities and human acceptability judgments—prompted us to

conduct preliminary experiments comparing different normalization tech-

niques. This finding also plays a key role in our subsequent analysis and

discussion.

2.3 Dialogue Judgment

The text scorer’s task is to select the candidate answer that aligns most

closely with human preferences. This requires considering not only the

generated text itself but also the context, which is the user’s question. The

question and the candidate answer together form a dialogue. In the previ-

ous subsection, most studies overlooked the role of context, and those that

did include it only considered the preceding text in a monologue. Therefore,

this subsection reviews studies that focus on human judgment of dialogues.

Paul Grice has proposed the cooperative principle to describe and ex-

plain how humans behave in conversations.

Make your contribution such as is required, at the stage at which it occurs, by

the accepted purpose or direction of the talk exchange in which you are engaged.

The cooperative principle can be concluded in simple words: say what

you need to say, when you need to say it, and how you need to say it. Grice

then lists four maxims to specify the behavior that follows the cooperative

principle: quantity, quality, relation, and manner. These maxims can be seen

as requirements that people seek to follow themselves and expect the other

party in the conversation to follow when forming a response.

The maxim of quantity, where one tries to be as informative as one possibly can,

and gives as much information as is needed, and no more.

The maxim of quality, where one tries to be truthful, and does not give informa-

tion that is false or that is not supported by evidence.

The maxim of relation, where one tries to be relevant, and says things that are

pertinent to the discussion.

13
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The maxim of manner, when one tries to be as clear, as brief, and as orderly as

one can in what one says, and where one avoids obscurity and ambiguity.

Several studies used Grice’s maxims as the evaluation criterion of di-

alogues. Jacquet et al. investigate the impact of the Gricean Maxims of

Quality, Quantity, and Manner on chatbots’ humanness [25]. They observe

that the violations of the maxim of quality have a significant negative effect

on the humanness of the chatbot. Nam et al.’s study evaluates a chatbot’s

communicative performance based on the maxims violated by the gener-

ated utterances [26]. The results show that the chatbot violates the maxim

of relation most frequently.

Several studies investigate the effectiveness of using pre-trained lan-

guage models in dialogue evaluation tasks. Mehri et al.’s work proposed a

zero-shot dialogue evaluation framework that can assess fine-grained qual-

ities without any ground-truth reference [27]. Their main idea is that the

quality of an utterance can be judged by how likely a pre-trained language

model is to generate a follow-up sentence that recognizes a specific quality

in it. For example, if a response is interesting, the model is more likely to

generate the follow-up utterance “This is an interesting response.” Wall-

bridge et al. conducted an experiment where participants rated the accept-

ability of dialogue turns [21]. They found that the pre-trained language

model’s probability of the dialogue turn based on the previous context has

a weak but significant correlation with human judgments.

Like the studies discussed in the previous subsection, these studies fur-

ther support the unsupervised use of LLMs in the text-scoring task. Ad-

ditionally, they encourage us to focus on the probability of the candidate

answer being conditioned on the question.

2.4 Sentence Scoring

Essentially, sentence scoring is using a language model to estimate the likeli-

hood of a sentence [28]. The idea behind this is that a better sentence should

be more acceptable to the language model, resulting in a higher likelihood
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score [24]. Many studies on hypothesis re-ranking and automatic NLG eval-

uation are variants developed on the idea of computing text likelihood via

language models. Based on summarizing previous research, the common

variants of sentence scoring are classified into three categories: different

language model architectures, different modifications upon sentence likeli-

hoods, and different usages of prompts.

Different language model architectures Methods for calculating sen-

tence likelihood through language models have evolved along with lan-

guage modeling. In Lau et al.’s study, they built a variety of language

models using unsupervised training, including N-grams, Bayesian Hidden

Markov Models, and Recurrent Neural Networks for sentence likelihood [16].

Among them, the RNN model’s sentence scoring had the highest correlation

with human judgment. After the rise of transformer architecture, recent sen-

tence scoring studies mainly use transformer-based language models. Pre-

trained language models are also widely adopted, as they score sentences

out of the box.

Warstadt et al. obtained sentence likelihood from decoder-only models,

such as GPT2 and Transformer XL [24]. For decoder-only models, the sen-

tence likelihood can be estimated using the chain rule. Given a sentence

W = {w1, ..., w|W|}, where wi is the i-th token of W, and |W| is the sentence

length, the log-likelihood of W can be calculated as:

log P(W) =
|W|

∑
t=1

log P(wt|W<t) (2.1)

Here, W<t represents the list of tokens previous to token wt. Decoder-

only models can calculate sentence log-likelihood within single inference.

However, it can only extract unidirectional information without consider-

ing bidirectional context [28].

Several studies have investigated the ability of encoder-only models to

estimate sentence likelihood and compared them with decoder-only mod-

els [29], [30]. Unlike decoder-only models, which can only capture unidi-
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rectional contexts, the encoder-only model can utilize bidirectional contexts

through its masked language modeling(MLM) objective. In MLM, a token

wt is substituted with [MASK] and predicted using the past and future to-

kens Wt = {w1, ..., wt−1, wt+1, ..., w|W|}. To score the sentence W, one needs

to first mask each token wt and calculate the probability of the token being

masked. Then, the sentence likelihood can be estimated by summing the

probability of each token. The formula is:

log P(W) =
|W|

∑
t=1

log P(wt|Wt) (2.2)

Salazar et al.’s experiments show that encoder-only models such as BERT

and RoBERTa outperform decoder-only models of similar size such as GPT2

on the Benchmark of Linguistic Minimal Pairs (BLiMP) [29]. BLiMP dataset

evaluates language models’ abilities to assign a higher score to the more ac-

ceptable sentence in a sentence pair [24]. Salazar et al. suggest that encoder-

only models perform better because they are able to capture bidirectional

information. [29]. For example, for the sentence “The pamphlets about Win-

ston Churchill have resembled those photographs.”, encoder-only models can use

both “The pamphlets” and “resembled those photographs” as clues for determin-

ing whether to use the verb “have” or “has”. Decoder-only models, on the

other hand, can only make judgments based on “The pamphlets about Winston

Churchill”, which contains misleading signal “Winston Churchill” that would

cause the models to lean towards using the verb “has”. However, encoder-

only models requires multiple inferences to estimate sentence likelihood,

which leads to expensive computational and time cost [28]. Some works

have sought to mitigate this problem using techniques such as distillation

and stochastic estimation, but this comes at the expense of performance [29],

[31].

Encoder-decoder models are trained in a sequence-to-sequence(seq2seq)

fashion. The encoder processes the source sequence while the decoder auto-

regressively generates the target sequence. This makes encoder-decoder

16



Related work 2.4 Sentence Scoring

models well-suited to compute the generation probability of a sequence con-

ditioned on another sequence [32]. Given a source sequence X = {x1, ..., x|X|},

the probability of generating sentence W can be calculated as:

log P(W|X) =
|W|

∑
t=1

log P(Wt|W<t, X) (2.3)

Inspired by this, Yuan et al. proposed to use BART, an encoder-decoder

based pre-trained model, to evaluate the quality of the generated texts [32].

A benefit of using encoder-decoder model is that the scoring can be aug-

mented by adding prompts. However, the use of prompts does not always

improve performance. Yuan et al.’s experiments have shown that some

prompts lead to lower performance. Therefore, the use of prompts and the

content of prompts need to be investigated before applying them to scoring

tasks.

To combine the advantages of encoder-only models and decoder-only

models while mitigating their drawbacks, Song et al. proposed a novel

sentence-scoring model called Transcormer [28]. Transcormer exploits a

sliding language modeling approach and employs a triple-stream self-attention

mechanism. These innovations allow the model to estimate sentence scores

in bidirectional contexts with only one forward pass. Compared to the

decoder-only model, Transcormer improves sentence scoring performance

without significantly increasing computational cost. Compared to the encoder-

only model, Transcormer improves inference efficiency with comparable

performance.

Different modifications upon sentence likelihood In many cases, sen-

tence likelihoods can be used directly as sentence scores. However, apply-

ing modifications upon sentence likelihoods can yield sentence scores that

align with the scoring objective better. In automatic speech recognition,

interpolation is often used to combine the sentence scores of the acoustic

model with the scores of the language model [30]. In neural machine trans-

lation, it is common to introduce length normalization to the scoring func-
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tion. Otherwise, the pure sentence likelihood will tend to prefer shorter

sentences over longer ones. This is because each token in the sentence adds

a negative log-likelihood, yielding a lower score for sentences with more

tokens [33]. Lau et al. proposed normalization methods to mitigate the

influence of word frequency and sentence length on sentence likelihood,

as these factors do not affect human judgments of sentence acceptability.

Their experiments demonstrated that normalized sentence likelihood has a

stronger correlation with human acceptability judgments [16]. In the fol-

lowing study, Xie et al. proposed to calculate the likelihood difference be-

tween an original text and its perturbed version. They argue that perturba-

tion can function as a normalization factor to modulate the effects of word

frequency and text length when estimating sequence likelihood [34].

Different usages of prompts Prompting involves adding brief phrases

to inputs or outputs and guiding pre-trained models to perform specific

tasks. In sentence scoring, prompts can be used to define the background

and criteria for scoring. For instance, adding the prompt “Is the text natu-

ral?” before the text can direct the model to focus on naturalness scoring.

Yuan et al.’s experiments with BART demonstrated that prompts enhance

the alignment between model judgments and human assessments [32]. Ad-

vances in LLMs now support extensive context windows, enabling stating

detailed evaluation criteria in prompts. In their study, Fu et al. introduced

a tailored evaluation protocol for varying evaluation tasks [35]. While their

approach extends the lengths of prompts, the essence remains sentence scor-

ing, where sentence scores are conditional possibilities conditioned on ex-

tensively long prompts.

2.5 Likelihood Trap

A common premise of all sentence scoring studies is that the higher the like-

lihood that a language model assigns to a piece of text, the higher the qual-

ity of that piece of text. However, it is debatable if this intuitive premise

holds. Researchers have long reported the existence of the likelihood trap:

the counter-intuitive empirical observation that high-likelihood text tends
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to be bland, incoherent, and repetitive. Li et al. observed that neural con-

versation models often assign a higher likelihood to generic responses like

“I don’t know” than more informative alternatives [36]. They ascribed this

behavior to the more frequent occurrences of generic responses in the train-

ing set. More informative responses sometimes contain specific information

that never appeared in the training set, thus receiving a lower likelihood

than bland but safe responses that appear more frequently in the training

data. Holtzman et al. demonstrated that human-written text does not maxi-

mize the text likelihood [37]. They showed that LLM can generate texts with

a much higher likelihood than human-written texts, but these texts are less

diverse and more repetitive. Therefore, they argued that high-quality text

does not necessarily have a high likelihood, but rather has a likelihood that

is close to the likelihood of human-written text. Zhang et al. quantify the

relationship between text likelihood and text quality [38]. They sampled a

list of context-continuation texts with different model likelihoods and col-

lected human ratings of these texts. They illustrate that the text with the

highest quality is not the most likely. Text quality is positively related to

text likelihood until an inflection point where it then becomes negatively

related.

These findings make researchers aware that though using likelihood max-

imization as a training objective leads to highly capable language models,

using it as a generation objective leads to degeneration. Different sampling

and re-ranking methods were proposed to avoid the generation of likely yet

generic texts. However, current automatic text evaluation frameworks (e.g.,

BARTScore and GPTScore) do not take into account the presence of likeli-

hood traps. While they attempt to structure the text evaluation task as a

text generation task, they fail to include other essential text generation pro-

cesses [32], [35]. These frameworks judge text quality solely based on text

likelihood, which might result in bland, incoherent texts being perceived

as being of higher quality than informative texts. Therefore, in this study,

the re-ranking process was tested as a way to improve the quality of the

language model’s judgments.

In the series of studies on DialoGPT, researchers have proposed two dif-
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ferent re-rank models. The Maximum Mutual Information(MMI) scoring

function is a pre-trained backward model that predicts the probability of

the source input from the given response [36], [39]. Intuitively, maximizing

the backward model likelihood penalizes bland hypotheses. Since a bland

hypothesis can work as a response to many possible queries, the proba-

bility of each specific query conditioned on this bland hypothesis will be

low. The human evaluation demonstrates that the inclusion of MMI can

significantly improve relevance, informativeness, and human likeness. Di-

alogue Ranking Pre-trained Transformers(DialoRPT) is a re-ranking model

trained on 133M pairs of human feedback data using a contrastive learning

approach [40]. Rather than scoring each dialogue individually, the training

objective is to maximize the scores of the positive samples while minimizing

the scores of the negative samples. Experiments show that DialoRPT has a

higher human preference correlation than DialoGPT and MMI.

2.6 Comparative Assessment

A recent study from Liusie et al. compared two options of using LLM

to evaluate NLG output: sentence scoring and comparative assessment.

Comparative assessment uses relative comparisons between pairs of can-

didates [41]. Liusie et al. were motivated by the insight that humans often

find it more intuitive to compare two options rather than scoring each one

independently. Experiments show that for moderately sized LLMs, compar-

ative assessment outperforms absolute scoring. Comparative assessment

can also achieve results comparable with state-of-the-art methods. How-

ever, comparing the full set is a O(N2) task, which is computationally pro-

hibitive for large N. To address this issue, Liusie et al. proposed an efficient

LLM pairwise assessment framework [42]. Using this efficient approach, the

score prediction generated based on a small set of comparisons can achieve

similar performance to the full set of comparisons. Another issue with com-

parative assessment is the positional bias. Liusie et al.’s experiments have

shown that most LLMs, especially the larger ones, favor text at a certain

position.
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2.7 The Scale of LLM

Current LLMs, trained on trillions of tokens and billions of parameters, have

not only demonstrated near-human or even beyond-human performance in

traditional NLP tasks but have also shown the ability to perform complex

tasks such as code generation and mathematical reasoning. However, in

the proposed system, the LLM is assigned to only one task - acting as a

proxy for human judgment. Deploying a large-scale model for this simple

task may lead to under-utilization of the model’s capabilities, which pro-

longs the reasoning time, creates an excessive carbon footprint, and affects

the system’s accessibility to resource-constrained devices. However, scaling

down the model may also lead to a decrease in model performance, as pre-

vious research has shown that scaling up improves model performance for

a vast majority of tasks [43], [44]. This motivates the investigation into the

appropriate size of language models needed for the system.

Mahowald et al. note that the coupling of language and thinking in ev-

eryday life leads to confusion between language and thinking in LLM as-

sessment [45]. A common fallacy associated with the language-thinking

relationship is that a model that is good at language must also be good at

thinking. When a language model generates coherent logical text, it is of-

ten assumed that it also possesses relevant knowledge and reasoning skills.

Another fallacy is that if a model is not good at thinking, e.g., if it is unable

to demonstrate an understanding of world knowledge, then it must also be

a poor model of language. To mitigate the conflation of language and think-

ing, they suggest that when evaluating LLMs, linguistic competence should

be separated into formal linguistic competence (understanding of the syntax

and semantics of the language) and functional linguistic competence (the

ability to use the language in the real world). After evaluating the two com-

petencies separately, Mahowald et al. outline that LLMs have largely ac-

quired formal language competence, but leave many gaps in functional lan-

guage competence. Unlike formal language competence, which can be ac-

quired with simple next-word-prediction training, to acquire functional lan-

guage competence, LLMs often require augmentation of other models and
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special fine-tuning. LLMs without these additions tend to lack robustness

and generality in functional language competence. Mahowald et al. also

emphasizes that obtaining functional language competence enhancements

often requires several orders of magnitude more training costs than obtain-

ing formal language competence enhancements. Since today’s LLMs often

possess certain functional language capabilities, we speculate that much of

the scale of these models may not contribute to formal language compe-

tence gains, but rather be used for functional language competence gains.

Given that in the proposed system the factual accuracy of the generated text

is taken care of by the grammar, we argue that the language models we use

only need to have basic formal language competence.

The scale of a model is composed of three key factors: the parameter

size, the training dataset size, and the amount of computation used for

training [43]. Warstadt et al.’s study highlights that training set size, com-

pared to parameter size and model architecture, has the greatest impact on

a model’s grammatical competence [24]. Experiments showed that LSTM

and transformer-based models trained on the same training set performed

similarly on grammatical tasks. The performance of GPT-2 models with

different parameter sizes is also not significantly different. In contrast, the

change in the quantity of training data incurs a significant change in the

model’s grammatical competence. Warstadt et al. also speculate that there

is a linear relationship between the model’s grammar competence gain and

the logarithm of the training set size. In a subsequent study, Zhang et al.

tracked changes in language models’ different capabilities as the training

set’s size increased [46]. They found that language models require only

10M to 100M words to learn common syntactic and semantic features. Most

of the progress in syntactic learning occurs before 10M words of training,

while slight growth in semantic learning can still be observed after 100M

words of training. Overall, there is little difference in the linguistic knowl-

edge the 100M and 30B models possessed. Although Zhang et al.’s exper-

iments show that training on billions of words can significantly improve a

model’s factual knowledge and thus dramatically improve the performance

of downstream NLU tasks, a model’s factual knowledge (which can be cate-
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gorized as functional linguistic competence in Mohawald’s criterion) is not

the most important concern for us. In another study, Huebner et al. trained

a RoBERTa model with a 5M word corpus that mimicked the linguistic input

received by children during language development. This RoBERTa model

had 15 times fewer parameters and 6000 times less training data than the

standard RoBERTa model but shows comparable grammatical knowledge

to that of the standard RoBERTa model [47].

These studies inspired us to focus more on small-scale language models

that were trained to acquire formal language competence rather than large-

scale language models that provide functional language capabilities.
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3. Methodology

The Ethics and Privacy Quick Scan of the Utrecht University Research In-

stitute of Information and Computing Sciences was conducted (see B). It

classified this research as low-risk with no fuller ethics review or privacy

assessment required.

This study investigates the use of LLMs as the text-scoring component

within a neuro-symbolic data-to-text conversational system. The role of the

text scorer is to guide the system in selecting the answer that most closely

aligns with human preferences for a given question. To accomplish this, the

text scorer’s judgments should mirror those of humans, meaning that when

people prefer one candidate’s answer over another, the text scorer should

also prioritize that answer. This section first outlines the method used to

capture LLMs’ preferences, followed by a description of the dataset used as

a benchmark for human preferences. Finally, the metric used to evaluate the

model’s performance in the text-scoring task is discussed.

3.1 Sentence Scoring

A straightforward way to capture LLMs’ preferences is to use its language

modeling capabilities to compute answer probabilities conditioned on a ques-

tion. The idea behind this is that a higher conditional probability for an an-

swer indicates that the model finds the answer more acceptable. Current

LLMs’ architectures can be categorized into three main types, i.e., decoder-

only, encoder-only, and encoder-decoder. For different model architectures,

the methods of calculating conditional probabilities are different.

Let Q = {q1, q2, ..., q|Q|} represent the sequence of tokens in the question,

A = {a1, ..., a|A|} represent the sequence of tokens in the answer. Define

the concatenation of Q and A as W = {w1, ..., w|Q|, w|Q|+1, ..., w|Q|+|A|}. ·i
denotes the i-th token of the respective sequence, and | · | denotes the length
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of the respective sequence.

In decoder-only models, the probability of a token is computed based on

its left context. Given the word sequence W, the conditional probability of

the answer A given the question Q can be calculated using the chain rule of

probability as follows:

P(A|Q) =
|Q|+|A|

∏
i=|Q|+1

P(wi|W<i) (3.1)

Here, W<i represents the tokens that precede wi.

For encoder-only models, the probability of a token is derived based on

both its left and right context. To obtain the probability of a specific token,

the token needs to be substituted with a special [MASK] token. Therefore,

to compute A’s conditional probability, each answer token in W needs to be

masked once. The formula is:

P(A|Q) =
|Q|+|A|

∏
i=|Q|+1

P(wi|W<i, W>i) (3.2)

Here, W>i represents the tokens that follows wi. It is worth noting that this

approach provides an estimate of the conditional probability rather than an

exact value.

Encoder-decoder models function in a sequence-to-sequence manner,

treating the question Q as the source sequence and the answer A as the

target sequence. For a token in the target sequence, its probability is calcu-

lated based on the entire source sequence and tokens that precede it in the

target sequence. A’s conditional probability is calculated as:

P(A|Q) =
|A|

∏
i=1

P(ai|A<i, Q) (3.3)
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The above approach can also be extended to support the use of prompt

messages. A prompt message providing additional context or guidance can

be treated similarly to the question, acting as a conditioning factor for the

answer. The conditional probability of the answer given the prompt can be

calculated in the same manner as P(A|Q).

The conditional probability of an answer is influenced by its length.

Specifically, longer answers tend to have lower probabilities than shorter

ones, regardless of their quality, due to the multiplicative nature of the chain

rule. To mitigate this bias, a length normalization technique should be ap-

plied. Several normalization methods were compared in a preliminary ex-

periment(see A). The best-performing method was found to be the log prob-

ability averaged by the sentence length. Therefore, in subsequent experi-

ments, the following normalized conditional probability is used as sentence

score:

Score(A|Q) =
log P(A|Q)

|A| (3.4)

3.2 Dataset

3.2.1 Dataset Design

The primary objective of dataset construction is to simulate possible out-

puts of the generative grammar and gather human preferences for these

outputs. To accurately mimic the texts that such a grammar might pro-

duce, several critical decision branches likely encountered during grammar

derivation were carefully considered. A general derivation process is illus-

trated in Figure 3.1, where five main text generation choices were identified

based on common decision branches in the derivation tree.

A transaction scenario representing the data a user might query about

was created. Five wh-questions related to this transaction were formulated,

reflecting the types of queries users might ask. For each question, 20 candi-

date answers—representing texts derived from the grammar—were gener-
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Figure 3.1: An indicative grammar derivation process. Text generation choices
are represented in the green bubbles, placed near the decision branches that
lead to those choices. Example sentences for each type of choice are shown in
the orange boxes.

ated. These candidate answers fall into five categories, each corresponding

to one of the identified text generation choices. Within each category, the

answers vary based on the specific decisions associated with that text gen-

eration choice.

From: Alice, Dutch, Female

To: Bill, 37-year-old, Male

Amount: 2000 euro

Date: March 24th 2024

Question:

1. When did Alice send the payment to Bill?

2. Who sent Bill 2000 euro on March 24th 2024?

3. How much money did Alice send to Bill on March 24th 2024?

4. Who received a payment from Alice on March 24th 2024?

5. What is the connection between Alice and Bill?
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3.2.2 Data Collection

Five surveys were composed and distributed to collect human preference

data. Each survey contains a question, and all candidate answers to that

question. Participants were asked to rate each candidate answer according

to their preferences on a 5-point Likert scale with the following options: un-

acceptable, poor, passable, good, and perfect. To prompt the participants

to capture their nuanced preferences, a context was weaved at the begin-

ning of the survey. The context guided participants to imagine that their

organization developed a series of chatbots, which are designed to enable

human interactions with structured data through natural language. The

candidate answers are responses they got from different chatbots when in-

quiring about a transaction. The transaction data available to the chatbots

are also transparent to the participants. To mitigate bias caused by the order

of answers, answers were randomly shuffled for each participant. Addi-

tionally, participants were asked to describe their English proficiency level.

A check question containing false transaction information was also set in

each survey to test whether participants had sufficient English proficiency

and took the survey seriously.

When designing the survey, different response formats were considered,

specifically ’ranking’ versus ’absolute rating’. The subsequent experiments

require human rankings of candidate answers as a benchmark. Although

a ’ranking’ format would provide straightforward data for these experi-

ments, asking participants to rank 20 candidate answers at once could be

overwhelming and confusing. Breaking the ranking task into smaller sub-

groups was also ineffective, as it would not yield a comprehensive ranking

of the entire set of answers. Alternatively, the ’absolute rating’ format has

been successfully employed in several previous studies investigating hu-

man preferences in natural language tasks [13], [16], demonstrating its

suitability for survey use. While this format does not directly produce rank-

ing data, rankings can be derived by sorting the average participant ratings

for each candidate answer.

It is important to note that specific criteria for each rating option were
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Figure 3.2: Pie charts depicting the distribution of participants’ ratings for
each Q&A pair. Each row represents the rating distributions for all candidate
answers to a given question, with answers ordered from left to right in de-
scending order of average ratings. The questions are listed in Section 3.2.1.

Figure 3.3: Pie charts depicting the distribution of participants’ ratings for
each Q&A pair, after excluding problematic participants. Each row represents
the rating distributions for all candidate answers to a given question, with an-
swers ordered from left to right in descending order of average ratings. The
questions are listed in Section 3.2.1.

not provided in the survey. Providing such criteria would have transformed

the survey into an annotation task, where participants follow a predefined

evaluation protocol to label each response. This goes against the purpose of

collecting human preferences.

3.2.3 Dataset Overview

A total of 73 responses were collected. An initial data cleaning was con-

ducted. Participants who did not complete the survey, those who reported

limited English proficiency, and those who failed the check question were

excluded. 40 responses remained for analysis.

As shown in Figure 3.2, the ratings among participants did not exhibit

strong agreement. There are two possible explanations for this lack of agree-
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ment: First, human preferences for the candidate answers may generally be

uniform, but disagreement arose due to the presence of problematic par-

ticipants. Second, human preferences for certain candidate answers may

inherently vary, making consensus difficult to achieve. An outlier detection

was done to further recognize problematic participants. For each candi-

date answer, the first and third quartiles (Q1 and Q3) and the interquartile

range (IQR) of the ratings were calculated. Any rating that fell below (Q1

- 1.5*IQR) or above (Q3 + 1.5*IQR) was considered an outlier. Each par-

ticipant was then evaluated based on the number of outlying ratings they

provided. Two participants who had a significantly higher number of out-

lying ratings compared to others were removed from the analysis.

As shown in Figure 3.3, the agreement among participants after remov-

ing problematic participants does not significantly improve. Moreover, par-

ticipants did not fail to agree on the ratings of all candidate answers. For

every question, some responses were collectively rated positively or nega-

tively by participants. This suggests that the observed disagreements are

not due to problematic participants or differing interpretations of the rat-

ing scale among participants. Unlike annotation tasks, where high inter-

annotator agreement is necessary to ensure dataset quality, this investiga-

tion into preferences recognizes that low agreement on certain responses is

a normal phenomenon. It reflects the natural variation in individual prefer-

ences.

To establish a benchmark for human preferences, mean aggregation was

used instead of majority voting. Mean aggregation provides a better repre-

sentation of overall human preference, especially in this case where partic-

ipant agreement is low. For instance, consider two answers: one rated as

perfect by all five participants, and another rated as perfect by three partici-

pants but bad by two. Majority voting would treat both answers as equally

good, while mean aggregation would rank the universally approved an-

swer higher, reflecting a more nuanced understanding of collective prefer-

ence. Each candidate answer received at least five ratings from different

participants. The candidate answers for each question were then ranked

based on average participant ratings, which reflect the overall level of hu-
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Question Pearson’s ρ Spearman’s ρ Kendall’s τ

When did Alice send the payment to Bill? 0.84 0.81 0.69
Who sent Bill 2000 euro on March 24th 2024? 0.64 0.58 0.48

How much money did Alice send to Bill on March 24th 2024? 0.70 0.67 0.56
Who received a payment from Alice on March 24th 2024? 0.76 0.73 0.63

What is the connection between Alice and Bill? 0.68 0.65 0.53

Table 3.1: Average correlation coefficients between participants’ individual
preferences and benchmark preferences for each question.

Text generation choices Standard deviation Range
the use of voice and tense 0.87 1.82

the use of core verb 0.81 1.71
the use of noun phrases 0.95 2.07

whether to use certain prepositional phrases 1.15 2.33
the position of the used prepositional phrases 0.92 2.00

Table 3.2: Average standard deviation and range of human ratings for each
text generation choice.

man preference for the different responses to the same question.

As shown in Table 3.1, the benchmark preference exhibits strong corre-

lations with participants’ individual preferences.

3.2.4 Data Analysis

The 20 candidate answers for each question can be divided into five sets,

each containing four answers that vary according to a specific text genera-

tion choice outlined in Figure 3.1. To analyze the impact of each text gener-

ation choice on human preferences, the standard deviation of each partici-

pant’s ratings within each set of answers was calculated. The average stan-

dard deviation for each text generation choice was then computed across

all questions and participants, along with the average difference between

the maximum and minimum ratings. Results are presented in Table 3.2.

A higher standard deviation indicates that the ratings are more dispersed,

suggesting that the text generation choice introduces greater variability in

human preference. A larger range implies a more substantial impact, with

some sentences being rated highly while others poorly. As shown in Ta-

ble 3.2, the choice of whether to use certain prepositional phrases has the

strongest impact on participants’ preferences, while the choice of core verbs

has the least impact.
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Overall, text generation choices that have a large impact on human pref-

erences, such as the use of noun phrases, and the use of certain prepositional

phrases or not, affect how much transaction information is conveyed in the

text. Text generation choices that have less impact on human preferences,

such as the use of core verbs and the use of voice and tense, do not affect the

amount of transaction information contained in the text but rather the way

in which a set of information is conveyed.

3.3 Metric

The performance of a model in the text scoring task is determined by how

closely its preferences of candidate answers align with human preferences.

To evaluate this alignment, Kendall’s τ, a rank correlation coefficient, is em-

ployed. Kendall’s τ measures the similarity between two rankings. It is

defined as:

τ =
Concordant(pair)− Discordant(pair)

Total(pair)
(3.5)

This coefficient is calculated by counting the number of concordant and dis-

cordant pairs in the two rankings and then taking the difference, which is di-

vided by the total number of possible pairs. The value of Kendall’s τ ranges

from -1 to 1, where 1 represents perfect agreement, -1 indicates perfect dis-

agreement, and 0 suggests no association. For each question, Kendall’s τ

is computed between the model’s ranking of all candidate answers and the

benchmark rank based on human preferences. A higher Kendall’s τ value

indicates a stronger correlation between the model’s preferences and human

preferences, signifying better model performance.
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This chapter presents a series of experiments evaluating key factors influ-

encing model performance in the text-scoring task. Section 4.1 examines

the impact of model architecture (decoder-only, encoder-only, and encoder-

decoder), followed by an analysis of model scale in Section 4.2. In Section

4.3, we investigate the “likelihood trap”, identifying core issues that reduce

alignment between model and human judgments, with Sections 4.4 and 4.5

detailing experiments on mitigating this issue using re-ranking models and

prompts. Finally, in Section 4.6, we assess the effectiveness of integrating

grammar-based generation with LLM text scoring, validating the neural-

symbolic approach’s role in improving data-to-text outputs.

4.1 Model Architecture

This experiment was designed to investigate the influence of model archi-

tecture on model performance in the text-scoring task. GPT2, RoBERTa, and

T5 were selected as baselines, representing decoder-only, encoder-only, and

encoder-decoder architectures, respectively. An overview of the models can

be found in Table 4.1.

Model Architecture Parameter size Training data
GPT2 [48] decoder-only 355M Pre-trained on 40GB of text data

RoBERTa [49] encoder-only 355M Pre-trained on 160GB of text data
T5 [50] encoder-decoder 220M Pre-trained on 750GB of text data

OPT [51] decoder-only 125M-13B Pre-trained on 800GB of text data
FLAN-T5 [52] encoder-decoder 77M-11.3B Instruction fine-tuned on T5

MMI [39] decoder-only 355M Fine-tuned from GPT2 on 27GB of
conversational data, with the objec-
tive of predicting source sentences
from responses

Table 4.1: Overview of models used in the study. The parameter size indicates
the range of model variants evaluated, from smaller to larger versions. MMI
stands for Maximum Mutual Information scoring function.
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Figure 4.1: Kendall’s τ between model and human rankings for each question.
“Human Performance” reflects the estimated upper bound for LLMs. The con-
tent of Questions 1-5 is detailed in Section 3.2.1.

Given that some candidate answers show low agreement among human

participants, it is unreasonable to criticize LLMs for their low correlation

with human preferences when humans themselves struggle to reach a con-

sensus. Therefore, estimating human performance is crucial to establish an

upper bound for LLM performance. Human performance was estimated

using a one-vs-rest approach, where each participant’s ratings were com-

pared against the average ratings of the remaining participants. The overall

average performance across all participants was used as the estimate of hu-

man performance.

As shown in Figure 4.1, RoBERTa’s rankings of the candidate answers

show a poor correlation with the human benchmark across all questions,

often approaching a negligible correlation strength. In contrast, GPT2 and

T5 demonstrate better alignment with human rankings, exhibiting moder-

ate correlations for most questions. However, despite their stronger perfor-

mance relative to RoBERTa, both GPT2 and T5 still fall significantly short

of human performance. The models’ performance also varies considerably

across different questions. Notably, for question 2, both GPT2 and T5 achieve

correlations that are close to the estimated human upper bound. In contrast,
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Figure 4.2: Kendall’s τ between model and human rankings for each text gen-
eration choice. “Human Performance” reflects the estimated upper bound for
LLMs.

all models show little correlation with human rankings on question 5.

Given the variation in model scales, it’s impossible to isolate the impact

of architecture on performance. However, RoBERTa, despite having a sim-

ilar parameter size to GPT2 and being pre-trained on a larger dataset, ex-

hibits weaker performance. Moreover, its encoder-only architecture, which

commonly uses a masked language modeling training objective, requires

multiple inferences to compute a sentence score. In contrast, decoder-only

models like GPT2 and encoder-decoder models like T5 can compute the

score in a single inference. Considering RoBERTa’s underperformance de-

spite its considerable scale, along with its higher computational cost com-

pared to GPT2 and T5, we argue that encoder-only models are not suitable

for the text-scoring task.

As discussed in Section 3.2.4, different text generation choices exhibit

different levels of impact on human preference. This motivates us to inves-

tigate models’ performances on each text generation choice. As shown in

Figure 4.2, models struggled to align with human preferences regarding the

use of voice, tense, and core verbs. However, models demonstrated near-

35



Experiments and Results 4.2 Model Scale

Figure 4.3: The relationship between OPT parameter size and performance.
The performance is measured by the average Kendall’s τ between model and
human rankings across all questions.

human performance in aligning with preferences related to the use of noun

phrases. Considering the analysis from Section 3.2.4, it becomes clear that

the text generation choices where the models performed poorly are those

with a smaller impact on human preferences, while the choices where the

models performed well are those with a stronger impact on human prefer-

ences.

4.2 Model Scale

In the previous experiment, GPT2 and T5 demonstrated a moderate corre-

lation with human preferences, but substantial gaps remain between their

performance and the estimated human performance. This experiment in-

vestigates the impact of the model scale on performance in the text-scoring

task. OPT and FLAN-T5, which include more variants at different scales,

are used for this purpose. These models are considered the successors of

GPT2 and T5, respectively. The parameter sizes and training dataset details

are shown in Table 4.1.

Parameter size and training set size are key components of the model

scale. However, as illustrated in Figure 4.3 and 4.4, increasing the model’s

parameter size does not consistently lead to better performance in the text-

scoring task. For example, the OPT billion-parameter variants have sim-
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Figure 4.4: The relationship between FLAN-T5 parameter size and perfor-
mance. The performance is measured by the average Kendall’s τ between
model and human rankings across all questions.

ilar performance as the smaller variant with 355M parameters, while the

FLAN-T5 model with 783M parameters performs worse than its smaller

248M counterpart. Since all variants of each model are trained on the same

dataset, it is evident that simply increasing parameter size is not effective

in improving performance. Similarly, the OPT variant which has a similar

number of parameters as GPT2, does not show a significant performance

gain compared to GPT2, even though its training set is more than 20 times

larger than GPT2. This suggests that expanding the training set size alone

is also ineffective in enhancing model performance in this task.

Overall, regardless of model scale, all models show a weak correlation

with human preferences and fall significantly short of estimated human per-

formance. Thus, increasing the model scale—whether through parameter

size or training set size—is not an effective solution for improving perfor-

mance in the text-scoring task.

4.3 Likelihood Trap

The strong performance of LLMs on various natural language processing

tasks makes their shortcomings in the text-scoring task surprising. To un-

derstand this, a deeper analysis was conducted to explore the differences

between model rankings and human benchmark rankings.
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Figure 4.5: The comparison of OPT-350M rankings with average human rank-
ings. The average human ranking represents the mean of human benchmark
rankings for candidate answers that have the same model rank.

Figure 4.6: The comparison of FLAN-T5-248M rankings with average human
rankings. The average human ranking represents the mean of human bench-
mark rankings for candidate answers that have the same model rank.
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Question Answer Model rank Human rank
When did Alice send
the payment to Bill?

Alice sent the payment
to Bill.

1 19

Alice sent the payment
to Bill on March 24th
2024.

2 1

What is the connection
between Alice and Bill?

Alice is connected to
Bill.

1 21

On March 24th 2024,
Alice sent a payment of
2000 euro to Bill.

3 3

Table 4.2: Examples of the first issue observed in the FLAN-T5-248M model,
where bland answers lacking requested information are ranked higher than
concrete answers preferred by humans.

As shown in Figure 4.5 and Figure 4.6, both the OPT and FLAN-T5 mod-

els tend to rank the answers most favored by humans around the third to

fifth position. Additionally, after the fifth position, model rankings fluctuate

but generally increase as human rankings go higher. This indicates that the

models are not completely misaligned with human preferences.

However, a key issue arises when these models place bland, uninforma-

tive answers—those rated lowest by humans—at the top, while concrete,

well-constructed answers that humans strongly prefer are placed lower. Ta-

ble 4.2 provides examples where FLAN-T5 ranks answers that lack the re-

quested information higher than more informative responses.

Another issue is the models’ difficulty in prioritizing natural, fluent an-

swers among candidate answers that contain the requested information. Ex-

amples of this issue are shown in Table 4.3.

Though the examples used are from OPT-350M, and FLAN-T5-248M,

the pattern is not unique to these models. It is observed in GPT-2, OPT, and

other FLAN-T5 variants across different parameter sizes.

The first issue, in particular, has broader implications for the design of

other components in a data-to-text conversational system. If the text scorer

cannot effectively filter out the uninformative answers, the query system

must precisely extract the fine-grained information requested by the user,

and the generative grammar must ensure this information is included dur-
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Question Answer Model rank Human rank
When did Alice send
the payment to Bill?

Alice sent the payment
on March 24th 2024 to
Bill.

12 15

Alice, on March 24th
2024, sent the payment
to Bill.

17 12

Who sent Bill 2000 euro
on March 24th 2024?

A Dutch woman named
Alice sent 2000 euro on
March 24th 2024.

20 12

A Dutch woman named
Alice sent 2000 euro on
March 24th 2024 to Bill.

13 14

Table 4.3: Examples of the second issue in the FLAN-T5-248M model, where
the model struggles to prioritize natural and fluent answers.

ing text generation.

Only a few uninformative answers were included in the original human

preference dataset. To further investigate LLMs’ behavior when scoring un-

informative answers, a new dataset was created.

Informativeness dataset This dataset consists of 20 wh-questions related

to the transaction information described in Section 3.2.1. Each question is

paired with two candidate answers, both of which represent possible out-

puts from the generative grammar. The sole difference between the answers

lies in the inclusion or omission of the requested information, which is the

result of a single decision divergence in the grammar derivation process.

Examples from this dataset are provided in Table 4.4.

Since humans are expected to prefer the informative answer, a model

aligned with human preferences should assign a higher score to these an-

swers compared to their uninformative counterparts. The model’s perfor-

mance is evaluated by the percentage of questions where it correctly scores

the informative answer higher.

From this point forward, this dataset will be referred to as the “infor-

mativeness dataset”, and the dataset collected from human participants as

the “human preference dataset”. Both datasets assess the model’s ability to

align with human preferences in selecting candidate answers. The informa-

tiveness dataset specifically focuses on answers that differ in whether they
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Question Uninformative Answer Informative Answer
Who sent Bill 2000 euro on
March 24th 2024?

2000 euro was sent to Bill
on March 24th 2024.

2000 euro was sent to Bill
on March 24th 2024 by
Alice, a Dutch woman.

How much was the pay-
ment Alice sent to Bill?

Alice paid Bill. Alice paid Bill 2000 euro.

When did Alice send the
payment to Bill?

Alice sent Bill the pay-
ment.

On March 24th 2024, Alice
sent Bill the payment.

Who was paid by Alice on
March 24th 2024?

A person was paid by her
on March 24th 2024.

A 37-year-old man named
Bill was paid by her on
March 24th 2024.

Table 4.4: Examples from the informativeness dataset. Each question is paired
with two answers, one lacking requested information (uninformative) and one
providing the requested information (informative).

Model Percentage of correctly scored questions
GPT2 0.5

OPT-350M 0.4
OPT-13B 0.3

T5 0.1
FLAN-T5-248M 0.4
FLAN-T5-11.3B 0.45

Table 4.5: Model performance on the informativeness dataset. The perfor-
mance is measured by the percentage of questions where each model correctly
assigns a higher score to the informative answer.

contain the requested information. The human preference dataset provides

a broader overview of how well the model aligns with human judgment

across all types of generated answers.

As shown in Table 4.5, all models, regardless of architecture or scale, per-

formed poorly in prioritizing informative answers. The worst-performing

model, T5, assigned a higher score to the bland answer in 90% of the cases.

Even the best-performing model, GPT2, selected the informative answer

only half the time, which remains far from ideal.

This counter-intuitive behavior, where neural language models tend to

favor bland, uninformative texts, has been documented by researchers and

is referred to as the “likelihood trap”(see section 2.5). One explanation

for this is that uninformative responses appear more frequently in train-

ing data, leading the model to assign them higher likelihoods. In contrast,

informative responses, especially those containing specific details not seen
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Model Percentage of correctly scored questions
GPT2 0.5
MMI 0.7

GPT2+MMI 0.8

Table 4.6: MMI Model performance on the informativeness dataset. The per-
formance is measured by the percentage of questions where each model cor-
rectly assigns a higher score to the informative answer.

during training, are penalized with lower likelihoods.

4.4 Re-ranking Model

One solution to mitigate the likelihood trap is the use of re-ranking mod-

els. The Maximum Mutual Information (MMI) scoring function is often em-

ployed in conversational systems to re-rank the top N candidate responses

generated by a standard forward language model. MMI operates as essen-

tially a pre-trained backward model, predicting the likelihood of the source

question given the response, i.e., P(Question|Answer). The idea behind this

is that uninformative responses are likely to correspond to many possible

questions, leading to a lower probability for the specific question.

To evaluate the effectiveness of MMI re-ranking, a comparison was made

between three approaches: using the forward model (GPT2) alone, using

the backward model (MMI) alone, and combining both models. This com-

parison was conducted on both the human preference and informativeness

datasets. GPT2 was selected for comparison because the MMI model shares

the same architecture as GPT2 and is specifically designed to improve the

quality of responses generated by GPT2-like models. In the combined ap-

proach, the score from the MMI model is added to the score from GPT2 for

each answer.

As shown in Table 4.6, MMI performs better than GPT2 at filtering out

uninformative answers. However, as shown in Table 4.7, MMI performs

similarly to GPT2 on the general human preference dataset. The two main

issues identified earlier—the inability to filter out uninformative answers

and the failure to prioritize natural, fluent answers—are key factors in the
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Model Average correlation between model and human
GP2 0.21
MMI 0.19

GPT2+MMI 0.20

Table 4.7: MMI Model performance on the human preference dataset. The per-
formance is measured by the average Kendall’s τ between model and human
rankings across all questions.

model’s poor alignment with human preferences. MMI’s success in filter-

ing out uninformative answers, yet its poor overall alignment with human

preferences, suggests it struggles to prioritize natural and fluent responses.

Similarly, the combined approach does not offer any improvement in align-

ing with overall human preferences. Though it is the most effective at filter-

ing out uninformative answers, its results are still far from ideal. The 20%

rate of selecting bland answers over informative ones indicates that other

components of the system must share the responsibility of information se-

lection. Thus, MMI re-ranking is considered ineffective in improving model

performance in the text-scoring task.

4.5 The Use of Prompts

The transaction data involved in the Q&A is external knowledge not avail-

able to LLMs during training. As a result, instead of assigning a high likeli-

hood to answers containing unfamiliar details, LLMs tend to favor more

generic responses. In this section, the impact of providing this external

knowledge to LLMs through prompt is investigated.

Each prompt consists of a short task description, the question, and the

relevant transaction data. For example:

Answer the following question naturally and informatively

based on the transaction data:

Who sent Bill 2000 euro on March 24th 2024?

Transaction data:

From: Alice, Dutch, Female
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To: Bill, 37-year-old, Male

Amount: 2000 euro

Date: March 24th 2024

In this section, all results are based on P(Answer|Prompt) rather than

P(Answer|Question).

Figure 4.7: Model Performance on the Human Preference Dataset with and
without Prompt. The performance is measured by the average Kendall’s τ
between model and human rankings across all questions.

Figure 4.8: Model Performance on the Informativeness Dataset with and with-
out Prompt. The performance is measured by the percentage of questions
where each model correctly assigns a higher score to the informative answer.

As illustrated in Figures 4.7 and 4.8, using prompts improves the per-

formance of all models on both the human preference and informativeness

datasets.

In Figure 4.7, T5 and FLAN-T5, which have similar parameter sizes, per-

form similarly without prompts in terms of alignment with human pref-

erences. However, after using prompts, FLAN-T5 shows a significant per-
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formance growth, far surpassing T5. This performance growth can be at-

tributed to FLAN-T5’s instruction fine-tuning on over 1000 tasks, which is

the key difference between the two models.

Figure 4.9: Relationship between Parameter Size and Model Performance on
the Human Preference Dataset. The performance is measured by the average
Kendall’s τ correlation between model and human rankings across all ques-
tions.

Figure 4.10: Relationship between Parameter Size and Model Performance on
the Informativeness Dataset. The performance is measured by the percentage
of questions where each model correctly assigns a higher score to the informa-
tive answer.

Scaling up model size, however, does not guarantee better performance.

As illustrated in Figure 4.9, after using prompts, OPT with 350M parame-
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Prompt content Informativeness Human preference
Question 0.5 0.16

Task description + Question 0.4 0.17
Data + Question 1.0 0.30

Shuffled data + Question 1.0 0.29
Task description + Data + Question 1.0 0.39

Table 4.8: The effect of varying prompt content on FLAN-T5-783M’s perfor-
mance across the informativeness and human preference datasets. The per-
formance on the informativeness dataset is measured by the percentage of
questions where each model correctly assigns a higher score to the informative
answer. The performance on the human preference dataset is measured by the
average Kendall’s τ correlation between model and human rankings across all
questions.

ters is outperformed by GPT2, which has a similar parameter size but was

trained on a much smaller dataset. Similarly, OPT-1.3B, despite having more

parameters and a larger training set than GPT2, does not show a significant

performance advantage. Figure 4.10 further demonstrates that GPT2 per-

forms as well as or better than larger OPT models when using prompts.

While it can be observed that OPT’s performance generally improves

with an increase in parameters, the comparison between GPT2 and OPT

models suggests that simply scaling up model size is not a necessary condi-

tion for improving performance in the text-scoring task.

Overall, FLAN-T5 demonstrated superior performance across both datasets

after the use of prompts. FLAN-T5-2.85B aligns most closely with human

preferences, achieving a Kendall’s correlation of 0.44, which approaches the

estimated human performance of 0.47. FLAN-T5-783M stands out as the

smallest model with a 100% success rate in filtering out uninformative an-

swers, while also achieving a Kendall’s correlation of 0.39—comparable to

human performance. Among models with fewer than 1 billion parameters,

it has the best performance.

To investigate the impact of different prompt component on model per-

formance, a series of comparison experiments was conducted, with results

shown in Table 4.8. On both datasets, using only the task description as the

prompt led to performance similar to not using a prompt at all. In contrast,

using only the data as the prompt resulted in a significant improvement
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compared with no prompt. When data was removed from the full prompt,

performance dropped sharply, while removing the task description caused

only a slight change. This suggests that the performance boost from using

prompts is largely due to the inclusion of the data.

To further explore the role of adding data in the prompt, the sequence

of words describing the data was randomly shuffled several times, and the

model’s average performance was computed. An example of shuffled data

is:

March 2000 24th Male Female data: Transaction Alice,

Dutch, 2024 From: Date: 37-year-old, euro Bill, Amount: To:

As shown in Table 4.8, the model’s performance on both datasets remained

almost unchanged whether the data was shuffled or not. Although shuffled

data cannot convey accurate information, its presence in the context still led

to the same performance boost as the unshuffled data. This suggests that

the primary role of the data is not to communicate specific information, but

rather to introduce rare data-related tokens into the context so that answers

containing these details are not penalized due to their under-representation

in the training data.

4.6 Grammar and Text Scorer Integration

To evaluate the effectiveness of the proposed neural-symbolic approach in

enhancing data-to-text systems, this experiment constructs a basic grammar

and tests the LLM text scorers using actual grammar-generated outputs,

following the workflow illustrated in Figure 1.1. The information retrieval

system is not included in this experiment. The same transaction information

from Section 3.2.1 was used to simulate the information retrieval system’s

output.

The grammar used in the experiment is a basic feature-based context-

free grammar, primarily designed to ensure the factual accuracy of the gen-

erated texts while allowing diversity in how the same transaction informa-

tion is described. However, other aspects of text generation, such as well-
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Question Answer Time(second)
When did Alice send the payment to Bill? Alice sent the payment on March 24th 2024. 163.84

Who sent Bill 2000 euro on March 24th 2024? Alice was sending Bill 2000 euro on march 24th 2024. 171.92
How much money did Alice send to Bill on March 24th 2024? Alice sent Bill a 2000euro payment on March 24th 2024 182.24

Who received a payment from Alice on March 24th 2024? Bill received a payment of 2000 euro on March 24th 2024 from her. 170.95
What is the connection between Alice and Bill? Bill received a payment of 2000 euro on March 24th 2024 from her. 163.64

Tell me more about Alice. The Dutch woman sent a 2000 euro payment on march 24th 2024. 165.43
Describe the transaction between Bill and the Dutch woman. Bill received 2000 euro from her on March 24th 2024. 170.74

Table 4.9: Responses generated by the system for each question, along with
the total time taken for sentence generation and text scoring. The information
retrieval system is not included in this experiment.

formedness, were not carefully considered, leading to the potential for ill-

formed sentences. For example, the grammar may produce sentences like

"A man named Bill named Bill" or "The payment from Alice was sent by

Alice," where certain phrases are redundantly repeated. Based on previ-

ous results (Section 4.5), FLAN-T5-783M was selected as the text scorer,

as it performed best among models with fewer than 1 billion parameters,

demonstrating near-human performance. The experiment was conducted

on an NVIDIA L4 GPU. Sentences were processed in batches of 50 to reduce

inference time.

For each input question, the grammar generated 10,000 distinct sen-

tences describing the transaction information. The text scorer then evalu-

ated these sentences and selected the one with the highest score. The total

time was calculated as the sum of the sentence generation and text scor-

ing times. The number 10,000 was chosen to ensure broad coverage of the

generated sentences, providing a diverse set of potential outputs to compre-

hensively assess the text scorer’s ability. The fine-tuning of this number is

left for future studies, as it may depend on the complexity of the grammar

and the specific task requirements.

As shown in Table 4.9, the generated responses remain faithful to the

transaction information, demonstrating that the grammar component en-

sures factual accuracy. At the same time, the results show that the text

scorer effectively filters out ill-formed sentences. This suggests that the lin-

guistic knowledge acquired by the LLM can fill gaps left by the grammar.

This supports the idea that the grammar design can be simplified within the

neural-symbolic system, as discussed in Section 2.1, shifting the burden of

encoding linguistic knowledge to the neural model while maintaining con-
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trol over factual accuracy. Examples of generated texts and their scores are

shown below.

What is the connection between Alice and Bill?

Bill received a payment of 2000 euro on March 24th 2024 from her.

-1.05

Bill was receiving 2000 euro on March 24th 2024.

-1.35

Bill has received the payment from Alice.

-1.84

Alice has given the 2000 euro payment to the man on March 24th 2024.

-2.20

Bill named Bill named Bill had been receiving a 2000 euro payment.

-3.43

She had been sending a man it.

-4.68

Alice was giving him it.

-5.01

A payment was given by Alice named Alice named Alice.

-5.62

Additionally, repetitive and bland answers were assigned lower scores

compared to more informative ones, as illustrated in the examples above.

This indicates that the "likelihood trap" issue—where models favor unin-

formative responses—is effectively mitigated by the text scorer.

Moreover, the combined system of grammar and text scorer, without

further optimization, can generate well-formed answers in approximately 3

minutes. The system also demonstrates the ability to handle various query

types, not limited to wh-questions.

These findings suggest that the neural-symbolic approach, which inte-

grates a grammar component with a large language model as the text scorer,

is effective for the data-to-text generation task.
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5. Discussion and Future Study

5.1 Word Frequency

As discussed in Section 2.2, Lau et al. highlighted that while human percep-

tion of text is unaffected by factors like sentence length and word frequency,

language model (LM) judgments are influenced by both. Their experiments

demonstrated that normalizing sentence length and word frequency can

significantly improve the correlation between model judgments and human

preferences. In this study, however, only sentence length was normalized.

This is primarily because, unlike sentence length, word frequency is diffi-

cult to measure accurately, due to the lack of transparency in LLM train-

ing data. Furthermore, preliminary experiments revealed that performance

gains were largely attributed to sentence length normalization, with little

added benefit from explicit word frequency normalization. This may be be-

cause the influence of word frequency cannot be easily mitigated through

simple normalization, especially when the word frequency data may not

accurately reflect real-world usage. Interestingly, the experiments showed

that even shuffled prompts, which contain no coherent information, pro-

vided similar performance boosts as unshuffled prompts. Given that these

prompts consist largely of rare, data-related tokens, we raise the possible

interpretation that the prompt may be functioning as a factor that mitigate

the influence of word frequency from the sentence score.

5.2 Scale

The experimental results indicate that increasing the model scale does not

always result in better performance on the text-scoring task. For exam-

ple, while the FLAN-T5 model improves as its parameter count increases

from 77M to 2.83B, the 11.3B variant performs similarly to the much smaller
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783M model (see Figure 4.9). Similarly, the OPT-1.3B model, despite having

more parameters and data than GPT2, achieves performance comparable to

GPT2.

This suggests that larger models are not necessarily more effective for

the specific capabilities required by the text-scoring task. As discussed in

Section 2.7, LLMs’ linguistic competence can be divided into formal linguis-

tic competence—the ability to produce and comprehend language struc-

tures—and functional linguistic competence, which involves cognitive func-

tions used when applying language in real-world contexts.

Given these definitions, we propose that the text-scoring task likely re-

lies more on formal linguistic competence than on functional competence.

Previous studies have found that improving functional linguistic abilities

requires significantly more training [45]. Therefore, a plausible explanation

for the similar performance of larger and smaller models is that the superi-

ority of larger models in functional competencies, such as formal reasoning

and world knowledge, is not reflected in this task.

Additionally, earlier research suggests that language models need only

around 10M to 100M words to acquire fundamental linguistic knowledge [46].

Thus, a potential explanation for the similar performance of FLAN-T5-783M

and FLAN-T5-11.3B is that the model may have reached a plateau in the for-

mal linguistic competence required for the text-scoring task at around 783M

parameters, with further scaling contributing more to functional rather than

formal capacities. The better performance of FLAN-T5-2.83B compared to

both FLAN-T5-783M and FLAN-T5-11.3B could be attributed to performance

variability, given the relatively small dataset. Similarly, the comparable per-

formance between OPT-1.3B and GPT2 may reflect similar levels of formal

linguistic competence, despite differences in functional capabilities.

5.3 Close-source LLM

The scope of this study is limited to open-source LLMs in the exploration

of text scoring. This is due to the fact that this study focuses on the use of
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Metric Question 1 Question 2 Question 3 Question 4 Question 5 Average
Kendall’s τ 0.49 0.65 0.30 0.50 0.44 0.48

Table 5.1: Kendall’s τ between human rankings and GPT-4o rankings for each
question. The average value is the correlation coefficients averaged across
questions.

Text generation choices ChatGPT 4o
the use of voice and tense 0.62

the use of core verb 0.09
the use of noun phrases 0.26

whether to use certain prepositional phrases 0.61
the position of the used prepositional phrases 0.40

Table 5.2: Kendall’s τ between human rankings and GPT-4o rankings for each
text generation choice, averaged across all questions.

sentence-scoring methods and sentence-scoring methods are not applicable

to closed-source LLMs. Calculating sentence scores requires access to the

logits of the input tokens, which are available in open-source models. In

contrast, this information is not transparent in closed-source models. For

instance, models like Gemini do not expose logit information, while others,

such as GPT series models, only provide logits for generated tokens. Addi-

tionally, closed-source models often contain hundreds of billions of param-

eters. The use of these models also comes with a price. This runs counter to

the objective of minimizing the scale and cost of the model, which is a key

consideration in this study.

To provide a reference to the performance of current close-source LLMs

in the task, GPT-4o, the latest model in the ChatGPT family, was prompted

to rank the candidate answers for each question. The prompts were written

in a manner similar to that of the surveys offered to humans. Each prompt

contains the context, the transaction information, a question, and all candi-

date answers to that question.

As shown in Table 5.1, GPT-4o exhibits near-human performance. How-

ever, it aligns poorly with human performance in terms of core verb usage.

Though GPT-4o outperforms all open-source LLMs, the comparison is not

fair due to the fundamental differences in the ranking methods applied to

these two types of models. For GPT-4o, the ranking task was reformulated
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as a text generation task, where the model generates ranked candidate an-

swers. In contrast, for the open-source models, the task was essentially ap-

proached as a language modeling problem, where rankings were based on

the probabilities of different word sequences. It is notably that GPT-4o’s re-

sponse is not consistent. Feeding the same prompt to GPT-4o several times

yields different rankings. In addition, it also exhibits the behaviour of skip-

ping certain candidate answers during ranking as well as putting the same

candidate answers in different places in a single shot ranking.

5.4 Future Study

Due to the capacity limit of this study, more fine-grained text-generation

choices, such as the use of determiners, were not considered during dataset

construction. Additionally, while collecting human preferences through pair-

wise comparison would likely improve the reliability of human benchmark

rankings, absolute ratings were used due to the limited capacity of the par-

ticipants. Future research could address these limitations by constructing a

more comprehensive dataset.

This study focused on the text-scoring task using sentence scoring, which

is only applicable to open-source LLMs. Other approaches, such as compar-

ative assessment, could be explored in future work.

Another promising direction for future research is the application of

knowledge distillation techniques to reduce model size. A recent study

by Fu et al. demonstrated that smaller models can achieve strong perfor-

mance on specific tasks by concentrating their modeling power on the target

task [53].

While the use of LLMs as text scorers simplifies grammar rule design, the

computational cost may increase if the text scorer is tasked with filtering out

a large number of problematic texts generated by the grammar. Therefore,

future research should explore the trade-off between reducing grammar de-

velopment efforts and controlling the computational costs of the text scorer.

Similarly, the balance between the information retrieval system and the text
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scorer requires further investigation. If the information retrieval system can

retrieve fine-grained data tailored to answer specific queries, the scale and

computational cost of the text scorer may be reduced further. Studying these

trade-offs will be key to improving overall system efficiency.
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6. Conclusion

To summarize, this study focused on investigating the use of the LLM as

the text scorer component in a neural-symbolic data-to-text conversational

system. The key objective is to assess whether LLMs can align with human

judgments regarding grammar-generated answers for a given question.

A benchmark dataset of human preferences was constructed, revealing

that text generation choices with a significant impact on human preferences

tend to influence how much information is conveyed, while less impactful

choices affect the style in which the information is presented. It is also found

that human participants have low preference agreement on certain candi-

date answers, reflecting the natural variation in individual preferences.

Sentence scoring was used to evaluate model judgments, and the ex-

periments demonstrated that encoder-only models performed poorly on

this task. All models struggled with the “likelihood trap”, where they fa-

vored bland, uninformative responses over more informative ones. Re-

ranking models were ineffective in addressing this issue, whereas the use of

prompts, even when shuffled, proved effective. Since the shuffled prompt

is also effective, we raise the possible interpretation that the prompt may be

functioning as a factor that mitigates the influence of word frequency on the

sentence score.

It was also observed that increasing the model scale does not guaran-

tee better performance on the text-scoring task. We hypothesize that the

scale growth primarily contributed to the enhancement of functional lin-

guistic competencies, such as world knowledge, rather than formal linguis-

tic competence, which is more critical for the text-scoring task. As a re-

sult, increasing the model scale does not necessarily improve performance

in this context. The FLAN-T5 model, possibly benefiting from instruction

fine-tuning, outperformed other models, with the 783M-parameter variant
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Conclusion

achieving near-human performance.

Finally, the integration of a basic generative grammar with the LLM

text scorer demonstrated the effectiveness of the neural-symbolic approach.

The LLM’s rich linguistic knowledge simplifies the grammar design, while

the grammar guarantees accurate data representation in the generated text.

This approach balances naturalness with factual accuracy, as well as the

trade-off between the development cost of grammar and the computational

cost of the LLM, highlighting the potential of the neural-symbolic method

for data-to-text generation.
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A. Preliminary Experiment

A.1 Background

As discussed in Section 2.4, modifying sentence probabilities can produce

scores that align better with the intended scoring objectives. In both neural

machine translation and human acceptability judgment prediction, length

normalization is commonly applied to prevent shorter sentences from being

favored by pure probability scores [20], [33]. Additionally, Lau et al. argue

that word frequency should be adjusted in sentence probabilities, as human

acceptability judgments are not affected by this factor [16], [20].

The goal of this preliminary experiment is to compare various normal-

ization methods from previous studies to identify the most effective ap-

proach for use in subsequent experiments.

A.2 Methodology

A.2.1 Dataset

The preliminary experiment uses the BNC and ENWIKI datasets1 from Lau

et al.’s study, both containing a diverse set of sentences with human accept-

ability judgments [13], [16]. The BNC dataset consists of sentences from the

British National Corpus, while the ENWIKI dataset includes sentences from

English Wikipedia. Each dataset contains 2,500 sentences, with approxi-

mately 10 human ratings per sentence. The performance of each method

is evaluated using the Pearson correlation coefficient, which measures the

correlation between the normalized sentence probability and the average

human rating.

1https://gu-clasp.github.io/projects/smog/experiments/
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Preliminary Experiment A.2 Methodology

Normalization method Equation

LogProb log Pm(W)

MeanLP [15] log Pm(W)
|W|

PenLP [33] log Pm(W)
((5+|W|)/(5+1))α

NormLP(token) [16] − log Pm(W)
log Ptoken(W)

NormLP(word) − log Pm(W)
log Pword(W)

SLOR [54] log Pm(W)−log Ptoken(W)
|W|

Delta [34] log Pm(W)−log Pm(W ′)
|W|

Table A.1: Overview of the normalization methods used in the preliminary
experiment. The log probability of a sentence, log Pm(W), is computed using
Equation A.1, while log Ptoken(W) and log Pword(W) represent the token-level
and word-level unigram probabilities, respectively. Calculation of the unigram
prababilities follows Equation A.2 and A.3. W ′ refers to the word-level shuf-
fled version of the original sentence W, and |W| denotes the sentence length
in tokens. The parameter α is set to 0.8 following the approach used by Lau et
al [20].

A.2.2 Normalization Methods

In this experiment, the language model used was GPT2. Given a sentence

W = {w1, ..., w|W|}, where wi is the i-th token of W and |W| is the sentence

length, the log probability of W is calculated as:

log Pm(W) =
|W|

∑
t=1

log Pm(wt|W<t) (A.1)

Here, W<t represents the sequence of tokens prior to wt. The frequency of a

token wi in the training data is computed as:

ntrain(wi)

Ntrain
(A.2)
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Preliminary Experiment A.3 Results

Here, ntrain(wi) is the number of occurrences of wi, and Ntrain is the total

number of tokens in the training set. Using this, the unigram probability of

the sentence is defined as:

log Ptoken(W) =
|W|

∑
t=1

log
ntrain(wt)

Ntrain
(A.3)

Since GPT2’s training data is not publicly available, the unigram probabil-

ity was approximated using an open-source re-implementation of GPT-2’s

training corpus2.

Lau et al. proposed NormLP(uni) to account for word frequency in sen-

tence probabilities, but this method conflates token frequency and word fre-

quency, as Ptoken reflects token frequency [16]. Due to GPT-2’s Byte Pair En-

coding (BPE) tokenization, token frequency does not directly correspond to

word frequency. BPE often splits words into subword units, causing rare

short words to have higher unigram probabilities than longer, more fre-

quent words that are split into multiple tokens.

To address this, we propose NormLP(word), which normalizes using

word frequency instead of token frequency. The word-level unigram proba-

bility Pword is calculated similarly to Ptoken, but the smallest unit is the word

rather than the subwords.

A.3 Results

As shown in Table A.2, all normalization methods significantly outperform

the baseline LogProb, indicating that normalizing sentence length, word fre-

quency, or both can improve alignment between sentence probabilities and

human judgments.

MeanLP and PenLP, which normalize sentence length, both show im-

proved performance. Notably, MeanLP, which simply averages LogProb by

2https://skylion007.github.io/OpenWebTextCorpus/
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Preliminary Experiment A.3 Results

Normalization method BNC ENWIKI
LogProb 0.33 0.33
MeanLP 0.62 0.60
PenLP 0.54 0.53

NormLP(token) 0.58 0.55
NormLP(word) 0.60 0.56

SLOR 0.53 0.56
Delta 0.62 0.57

Table A.2: Pearson correlation coefficients between the normalized sentence
probabilities and average human ratings for different normalization methods
on the BNC and ENWIKI datasets. A higher correlation score indicates better
alignment with human judgments.

sentence length, outperforms the more complex PenLP. PenLP was origi-

nally developed for neural machine translation, where the parameter α is

typically fine-tuned on a development set. Its relatively poor performance

here may be due to the lack of fine-tuning or its unsuitability for predicting

human acceptability judgments.

NormLP(token) and NormLP(word), which both intend to normalize

word frequency, show that NormLP(word) outperforms NormLP(token).

We speculate that this could be because token frequency has a limited im-

pact on both sentence probability and human acceptability judgments, while

word frequency might influence sentence probability more directly without

affecting human acceptability. Thus, the normalization of word frequency

appears more effective than token frequency normalization.

SLOR and Delta both account for both sentence length and word fre-

quency. SLOR performs worse than Delta, despite showing strong perfor-

mance with N-gram and RNN-based language models in the same task.

This suggests that SLOR may not be well-suited for normalizing probabili-

ties in LLMs. Delta performs similarly to the top method, MeanLP, but its

higher computational cost (requiring sentence probabilities to be computed

twice) makes it impractical for use in subsequent experiments.

In conclusion, MeanLP is selected for the following experiments due to

its simplicity and superior performance in aligning with human judgments.
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B. Ethics and Privacy Quick Scan Report

This research followed the ethics and privacy regulations of the Utrecht

University Research Institute of Information and Computing Sciences. The

Ethics and Privacy Quick Scan Report is provided in this annex, with non-

applicable questions omitted and the “Your Information” section removed

for anonymization.
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Ethics and Privacy Quick Scan (version: 15 July 2024) 

Section 1. Research projects involving human participants 

  Yes No 

P1 Does your project involve human participants? 

This includes for example use of observation, (online) surveys, 

interviews, tests, focus groups, and workshops where human 

participants provide information or data to inform the research. If 

you are only using existing data sets or publicly available data (e.g. 

from X, Reddit) without directly recruiting participants, please 

answer no.  

Yes  

 

If no, continue with Section 2; if yes, fill in the following questions. 

Recruitment 

  Yes No 

P2 Does your project involve participants younger than 16 years of 

age? 

 No 

P3 Does your project involve participants with learning or 

communication difficulties of a severity that may impact their ability 

to provide informed consent?1 

 No 

P4 Is your project likely to involve participants engaging in illegal 

activities? 

 No 

P5 Does your project involve patients?  No 

P6 Does your project involve participants belonging to a vulnerable2 

group, other than those listed above? 

 No 

 

If the answer to all of P2-P6 is no, continue with P8. 

  Yes No 

P8 Does your project involve participants with whom you have, or are 

likely to have, a working or professional relationship: for instance, 

staff or students of the university, professional colleagues, or 

clients? 

Yes  

 

 
1 For informed consent people need to be able to (1) understand information provided relevant to 
making the consent decision, (2) retain this information long enough to be able to make a 
decision, (3) weigh the information, (4) communicate the decision.  
2 Vulnerable people include those who are legally incompetent, who may have difficulty giving or 
withholding consent, or who may suffer highly adverse consequences if their personal data were 
to become publicly available or from participating. Examples include irregular immigrants, 
refugees, sex workers, dissidents and traumatized people at risk of re-traumatization.   



If the answer to P8 is yes, please answer P9. 

  Yes No 

P9 Is it made clear to potential participants that not participating will in 

no way impact them (e.g. it will not directly impact their grade in a 

class)? 

Yes  

 

If the answer to P9 is yes, then continue with PC1. 

Consent Procedures Yes No Not 

applicable 

PC1 Do you have set procedures that you will use for obtaining 

informed consent prior to collecting data from all participants, 

including (where appropriate) parental consent for children or 

consent from legally authorized representatives? (See 

suggestions for information sheets and consent forms on the 

website3.) 

Yes   

PC2 Will you tell participants that their participation is voluntary? Yes   

PC3 Will you obtain explicit consent for participation?  Yes   

PC4 Will you obtain explicit consent for any sensor readings, eye 

tracking, photos, audio, and/or video recordings?  

  Not 

applicable 

PC5 Will you tell participants that they may withdraw from the 

research at any time and for any reason? 

Yes   

PC6 Will you give potential participants time to consider 

participation? 

Yes   

PC7 Will you provide participants with an opportunity to ask 

questions about the research before consenting to take part 

(e.g. by providing your contact details)?  

Yes   

 

If the answer to PC1-PC7 is yes, then continue with PC8. 
 

Yes No 

PC8 Does your project involve concealment4 or deliberate misleading of 

participants? 

 No 

 

 

 

 
3 uu.nl/en/research/institute-of-information-and-computing-sciences/ethics-and-privacy 
4 This may for example involve concealment of the study aim, of the identity of the researcher, or 
subliminal messaging during the study.  



If the answer to PC8 is no, continue with Section 2. 

Section 2. Data protection, handling, and storage 
 
The General Data Protection Regulation imposes several obligations for the use of personal data 
(defined as any information relating to an identified or identifiable living person) or including the use 
of personal data in research. 

  Yes No 

D1 Are you gathering or using personal data (defined as any information 

relating to an identified or identifiable living person5)? 

 No 

 
If the answer to D1 is no, continue with Section 3. 
 

Section 3:  Research that may cause harm 
 
Research may harm participants, researchers, the university, or society. This includes when 
technology has dual-use, and you investigate an innocent use, but your results could be used by 
others in a harmful way. If you are unsure regarding possible harm to the university or society, 
please discuss your concerns with the Research Support Office.  

  Yes No 

H1 Does your project give rise to a realistic risk to the national security 

of any country?6 

 No 

H2 Does your project give rise to a realistic risk of aiding human rights 

abuses in any country?7   

 No 

H3 Does your project (and its data) give rise to a realistic risk of 

damaging the University’s reputation? (E.g., bad press coverage, 

public protest.) 

 No 

H4 Does your project (and in particular its data) give rise to an 

increased risk of attack (cyber- or otherwise) against the University? 

(E.g., from pressure groups.) 

 No 

H5 Is the data likely to contain material that is indecent, offensive, 
defamatory, threatening, discriminatory, or extremist? 

 No 

H6 Does your project give rise to a realistic risk of harm to the 
researchers?8  

 No 

 
5 This includes people’s name, postal address, unique ID, IP address, voice, photo, video etc. 
When a person can be identified by combining multiple data points (e.g. gender + age + job role), 
this also constitutes personal data. When a person can be identified by a simple search online 
(e.g. with the content of a tweet) this also constitutes personal data. Note that Survey tool 
Qualtrics by default collects IP addresses and that the survey needs to be anonymized before 
distribution to prevent this. 
6 For example, research that can be used for autonomous armed vehicles/drones/robots, 
research on automated detection of objects, research on AI-enhanced forgery of video/audio 
data. 
7 For example, research on natural language/video/audio processing for automated identification 
of people's identity, sentiments, or opinions. 
8 For example, research that involves potentially violent participants such as criminals, research in 
likely unsafe locations such as war zones, research on an emotionally highly challenging topic, 



H7 Is there a realistic risk of any participant experiencing physical or 
psychological harm or discomfort?9 

 No 

H8 Is there a realistic risk of any participant experiencing a detriment to 
their interests as a result of participation?10 

 No 

H9 Is there a realistic risk of other types of negative externalities?11  No 

 

If the answer to H1-H9 is no, continue with Section 4. 

Section 4: Conflicts of interest 
  Yes No 

C1 Is there any potential conflict of interest (e.g. between research 

funder and researchers or participants and researchers) that may 

potentially affect the research outcome or the dissemination of 

research findings? 

 No 

C2 Is there a direct hierarchical relationship or imbalance of power 

between researchers and participants?  

 No 

 

If the answer to C1-C2 is no, continue with Section 5.  

Section 5: Your information 

 

  

 
research in which the researcher is alone with a not previously known participant in the 
participant's home.  
9 For example, research that involves strenuous physical activity, research that stresses 
participants, research on an emotionally challenging topic. 
10 Detriment to participants’ interests may include risks to participants’ reputation if the data was 
disclosed, risks to their livelihoods, risks of prosecution or persecution, etc.  
11 A negative externality is a harm produced to a third party, social group, society in general, or 
the environment. For instance, intended or unintended negative ethical (e.g. bad governance or 
management practices), social (e.g. consumerism, inequality, stigmatization) or environmental 
effects (e.g. large CO2 footprint or e-waste production) of your project. 
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