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Department of Information and Computing Sciences
Utrecht University

Artificial Intelligence
December 2024



Abstract—Tiny object detection in video footage using com-
puter vision models has a wide range of applications. Following
an overview of relevant deep learning methods and related work
done in this field, this paper explores the performance of Video
Transformer models for this challenging task. More specifically,
this work focusses on the effect of early fusion of spatio-
temporal features on the performance of Video Transformers.
In this paper, we propose a switch to a Video Swin backbone,
using spatial-temporal fusion mechanics to resolve the shape
mismatch between the backbone output and model input, while
attempting to conserve as much temporal information as possible.
These fusion mechanics are put between the backbone and the
model, making it compatible with any object detector. Using this
approach, different fusion mechanics are investigated, of which
a 3D convolution resulted in the best performance. The resulting
multi-frame model does not show performance improvements
compared to state-of-the-art models. When compared to a single
frame version of the same model, the overall performance is
comparable, although distinct differences can be noted in their
respective capabilities to successfully detect specific object classes.
The multi-frame model outperforms the single frame model in
scenarios with large objects, rare classes and medium speed
objects. These results indicate that, while the multi-frame model
struggles with interpreting the added temporal information in
the context of small objects, it can offer some unique advantages
in certain areas. The work provided new insights in how early
temporal context can affect a model’s performance, thereby
increasing the understanding of the remaining challenges of Video
Transformers for tiny object detection. Based on these findings,
future work can be directed towards improving the method
proposed in this paper aiming to achieve performance gains on
a broad range of real-world applications.

Index Terms—Tiny Object Detection, Video Transformers

I. INTRODUCTION

Object Detection is a fundamental aspect of computer vision
with significant implications for a wide range of practical
applications. Recently, there has been a great interest in
Transformer models [41], as they have delivered state-of-
the-art results on object detection problems. Despite of their
impressive results in general, there remains uncertainty on
their performance regarding tiny objects [36]. This paper aims
to explore the performance of Transformer models, specifically
on small objects.

In many applications, there are cases where target objects
appear very small in the captured data. For example, aerial
surveillance at high altitudes for search and rescue missions
[33] or pedestrian detection for autonomous vehicles [6] both
have to deal with recognizing objects at a far away distance.
With only few pixels representing the target, it is still important
that detections happen accurately and reliably.

The domain of Tiny Object Detection (TOD) faces many
challenges. Firstly, only limited features can be extracted from
tiny objects, in contrast to larger objects with ample feature
information. The low pixel quantity of these tiny objects
makes them difficult to separate from the background, even
for humans. Their representation is easily lost in later layers
of popular deep learning methods for computer vision when
feature maps are down-sampled to reduce spatial redundancy
[37]. Due to the low number of pixels representing tiny objects,
they can be easily mistaken for noise in low quality footage.

Secondly, there is low tolerance for error in evaluation of
TOD. Bounding boxes are used to enclose the target object,
which the model is tasked with predicting. It is common to
use the Intersection over Union (IoU) score as the performance
metric to determine the quality of the prediction. However, the
same absolute translation of the predicted bounding box results
in a bigger change of the IoU score for tiny objects compared
to medium or large objects. [10]. This can make it difficult for
a model to converge during training.

Small Medium Large
Min Area Size (pixels) 0× 0 32× 32 96× 96
Max Area Size (pixels) 32× 32 96× 96 ∞×∞
Object Count (%) 41.43% 34.32% 24.24%
Image Occurence (%) 51.82% 70.07% 82.28%
Total Object Area (%) 1.23% 10.18% 88.59%

TABLE I
MS COCO PROPERTIES OF OBJECT SIZE CATEGORIES. TAKEN FROM [23]

Thirdly, datasets are distributed unevenly with respect to the
target object size. As shown in Table I, while small objects
make up over 40% of the objects in MS COCO, they appear
in only roughly half of the images, far less than medium and
large objects. There is a lot less variation in training samples
containing small objects, as most will appear within the same
image setting [23]. The fact that small objects appear together
a lot in the same image has other effects as well. In the
object detection domain, all objects need to be annotated with
enclosing bounding boxes to be useful for training. This is a
resource demanding process which not everyone can afford.
Some datasets like UA-DETRAC [44] reduce the number
of annotations needed by placing ’ignore regions’ over the
vanishing point at the horizon, where the model does not have
to pay attention to and no objects are annotated, removing
a lot of small objects in the process. This is, however, not
realistic for real life scenarios. For a more extensive study on
challenges in TOD, we refer the reader to [37] [34] [10] [40].

The aforementioned challenges necessitate the development
of efficient techniques capable of extracting valuable features
from the limited data available for tiny objects. A solution
could be to leverage the rich temporal information available
in video data to improve the performance of object detection
models. Indeed, many state-of-the-art models use multiple
frames to enhance the detection performance on the target
frame.

The success of the Transformer model [41] has also made
it a prime candidate for the extension to video-based object
detection. However, as noted in [36], there is a significant
research gap in the area of video-based Transformers in TOD
compared to other classical or deep learning models. In this
paper, we aim to bridge this gap by studying the effect of early
fusion of temporal information in the Transformer pipeline.

In particular, a property shared by current Video Trans-
former object detection models is that the fusion of spatio-
temporal features happens only during or after the encoding
step. The effectiveness of methods that combine spatial and
temporal features early has already been shown for image



classification, with the successful extension of the Swin Trans-
former [30] to the Video Swin Transformer [31]. Similar to
the human brain, where motion processing already starts in
the primary visual cortex [19], early fusion appears to be a
valid intuition.

However, the application of early fusion methods within the
object detection domain have remained unproven. Following
the observed improvements in the Video Swin Transformer
architecture, we aim to investigate whether this early fusion
strategy can be replicated when adopting a similar approach by
utilizing it as the backbone for current Video Transformers for
object detection. Thus, we intend to answer the main research
question of this paper:

• Does early fusion of spatio-temporal features result in
higher mAP scores for Video Transformers on a challeng-
ing dataset containing small objects with both moving
and static camera footage?

Following this research question, we formulate a series of
sub-questions to help answer the main research question:

1) What is the performance difference between utilizing the
output from a single-frame backbone (Swin Transformer)
across multiple frames compared to a dedicated video
backbone (Video Swin Transformer)?

2) Which temporal fusion strategy (such as 3D convolutions,
temporal attention, e.g.) result in the highest perfor-
mance?

3) In which kind of footage does the proposed early fusion
strategy excel over current Video Transformer models?

First, some background concepts will be provided to explain
some of the core concepts of the paper. Then, some related
works relevant to the current study will be highlighted. Lastly,
we share our plan for the study.

II. BACKGROUND

In this section, we briefly introduce some of the core
concepts relevant to the subject of this paper. First, object
detection and related domains will be explained. Second, we
discuss popular deep learning methods that form the basis
of many computer vision applications today. Lastly, we will
discuss the attention mechanism and the Transformer model.

A. Computer Vision Domains

As noted in the introduction, computer vision has many ap-
plications. However, these applications often require different
outputs due to the diverse nature of the problems they aim to
address. As a result of these differing requirements, various
domains have emerged within the field of computer vision. A
few notable ones will be discussed here.

Object detection is a computer vision task that involves
the localization and identification of objects within an image
or a video frame. This process not only entails predicting
the correct class label of an object from a set of predefined
class categories, but also defining the spatial extent of the
object within the image. The region representing the object
is enclosed by a rectangular bounding box, where the spa-
tial information is encapsulated in the bounding box corner

coordinates. Mathematically, object detection can be defined
as a function f : I −→ O, where I is the image input and
O = {(ci, bi)} is a set of tuples for each object i containing
a class label ci and a bounding box bi = (xi, yi, wi, hi),
representing the top-left coordinates together with the width
and height of the bounding box.

The bounding box prediction sets it apart from image seg-
mentation, where each object is outlined by a detailed pixel-
wise mask, resulting in a fine-grained representation of its
boundaries compared to the rudimentary bounding box. Thus,
image segmentation can be defined as a function f : I −→ S,
where S is the image with each pixel assigned a class label.

In contrast to image classification, which can be described
as a function f : I −→ c where f considers the entire
image I to predict a single class label c, object detection
requires a class label for each individual object captured by a
bounding box prediction. An object is then ’detected’ if there
is sufficient overlap between the ground truth bounding box
and the predicted bounding box, provided that the predicted
class matches the actual class of the object.

Object detection differs from object tracking in that ob-
ject tracking requires the target to be linked to the object
trajectories [24]. When applied to the video domain, object
tracking models must establish a relation between a sequence
of object appearances across multiple frames and deduce that
it is the same object moving through time. The object’s path
is then the history of its spatial locations in the previous
frames, allowing for precise tracking. Given a sequence of
frames F = {I1, I2, ..., In}, object tracking can be defined as a
function f : F −→ Ti where Ti is a set of positions per frame
T = {T1, T2, ..., Tn} for an object oi. While it is required that
objects are detected in a consistent manner (e.g. remaining
the same class overtime) in object detection for video data,
this only has to be enforced over a short period and does not
require saving the entire object path. Thus, object detection on
video data can be seen as a reduced form of object tracking.
However, object tracking differs from object detection in that
object tracking does not require object classification.

B. Neural Networks

Neural networks are a core concept in the Deep Learning
branch of machine learning. They are inspired by the working
of the human brain through the use of a network of artificial
neurons, enabling machines to learn relations in complex data.
The term ’deep’ in Deep Learning refers to the fact that
these networks consist of many layers of artificial neurons.
Deep Learning has shown remarkable success in problems
from domains such as Computer Vision and Natural Language
Processing.

In Feed-forward Neural Networks (FFNN), information
flows in one direction. They are comprised of an input and
output layer, with an arbitrary number of hidden layers in
between. Thus, the input of the current layer can only come
from the previous layer.

Recurrent Neural Networks (RNN) are a class of neural
networks that allow the artificial neurons to take their previous



output as its input. This means that cycles exist in this network
architecture. It allows the hidden layers to serve as a kind of
memory, known as the hidden state, that enables them to learn
dependencies over time.

Convolutional Neural Networks (CNN) are specialized neu-
ral networks with layers that use the convolution operation to
extract information from grid-like data structures like images.
This convolutional layer consists of sliding filters (also called
kernels) over the input data to identify patterns. These convolu-
tional layers are often applied multiple times in a hierarchical
fashion, with higher layers being able to capture more abstract
and complex features.

For a comprehensive summary of the topics mentioned
above and their role in computer vision problems, we direct
the reader to [14] [2].

C. Attention and Transformers

The attention mechanism was proposed by Bahdanau et al.
[5] to be used in RNN based sequence-to-sequence models. In
these early sequence-to-sequence models, an encoder captures
an input sequence by propagating the input elements through
the hidden states of RNN, compressing their information into
a single fixed-length context vector. A decoder is a RNN
that takes the context vector as its starting hidden state to
generate the output sequence. Due to the sequential nature of
RNN and the fixed size of the context vector, long distance
dependencies between input elements cannot be represented
accurately in the context vector. Bahdanau et al. resolve this
limitation by introducing weighted connections between each
current target hidden state and all hidden states of the encoder,
possibly bypassing much of the RNN structure. The weights
that determine the influence of the hidden state at each encoder
stage are learned in conjunction with other parts of the model.

Vaswani et al. [41] departed from the standard RNN archi-
tecture and showed that it was possible to build a sequence-
to-sequence model with only the attention mechanism. This
model, known as the Transformer, still adheres to the standard
encoder/decoder structure, applying attention both within these
modules separately (self-attention) and between the encoder
and decoder (cross-attention). It describes attention as a
weighted sum over values, where the weights are computed
by some sort of compatibility metric between queries (what
information we are looking for) and keys (the information
that is offered). This compatibility metric reflects how much
attention should be payed to the current key given a query,
and is thus also known as the attention score. The attention
function used in Transformers is given as

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V (1)

with sets of queries, keys and values combined into matrices
Q,K and V respectively and dk the dimensionality of the
keys. Equation 1 is referred to as the Scaled Dot Product
Attention, as the compatibility metric is the dot product scaled
by a factor 1√

dk
as a normalization step. To capture different

kinds of relations, Multi-Head Attention was introduced by

Vaswani et al. [41]. Here, the query, key and value matrices
of the same features are divided into h heads, in a way that
each query, key and value vector in the matrix is split into h
parts. Each head is then given to Equation 1 separately and
concatenated again. A visual representation can be found in
Figure 1.

Fig. 1. Attention components in Transformers. Taken from [41]
.

The Multi-Head Attention operation is given as

MultiHead(Q,K, V ) = Concat(head1, ..., headh)WO (2)

where

headi = Attention(QWQ
i ,KWK

i , V WV
i ) (3)

WO,WQ
i ,WK

i and WV
i are weight matrices that are

learnable parameters of the model. This makes it possible
to simply use a single input vector for the entire Multi-
Head Attention operation, allowing the model to adjust the
learnable weight matrices to linearly transform that input into
their respective query, key and value feature representations.
Using the same input to generate the query, key and value
feature vectors is called self-attention. Self-attention allows
the model to capture relationships and dependencies within the
same sequence of data. The encoder consists of a Multi-Head
Attention operation performing self-attention, followed by a
fully connected FFNN. This encoder module can be stacked
multiple times if necessary. In the decoder, the first Multi-Head
Attention operation is slightly modified to prevent the model
from looking ahead in the sequence. The subsequent Multi-
Head Attention operation is different as it uses cross-attention.
Queries are generated by transforming the input (the output
of the previous layer in the decoder) through the learnable
weights, but the key/value pairs are extracted from the encoder
output. Cross-attention allows the model to focus on parts of
one sequence (the query) based on the information in another
sequence (the keys and values). Similarly to the encoder, the
decoder module can be repeated. The output of the last decoder
is fed to a FFNN, followed by a linear layer and a softmax
layer to do predictions.

Because the encoder and decoder modules are allowed to
be stacked, resulting networks can become very deep. This



can lead to the vanishing gradient problem, where gradients
become very small and disappear as they are backpropagated
throughout the network. To this end, a residual connection is
added after every Multi-Head Attention and FFNN layer, fol-
lowing the ResNet approach [20]. In addition, Layer Normal-
ization [4] is applied on the output of the residual connection
addition.

A last important feature of the Transformer model are
the positional encodings. The attention mechanism computes
attention scores between all pairs of queries and keys. This
calculation is not influenced by the order of the individual in-
put elements, as it considers these relationships independently.
To solve this, a sine or cosine function is added dependent on
the position and dimension.

PE(pos,2i) = sin(pos/100002i/dmodel) (4)

PE(pos,2i+1) = cos(pos/100002i/dmodel) (5)

The positional encodings introduce a notion of relative
position that the model can identify from features to capture
sequential information. A full overview of the Transformer
model can be seen in Figure 2.

Fig. 2. Overview of the Transformer model. Taken from [41]

D. Vision Transformers

Vision Transfomer (ViT) [15] implemented the Transformer
architecture for Image Classification using non-overlapping
image patches as the input elements. These patches are flattend
and linearly embedded, after which a positional encoding gets
added, resembling the standard Transformer model. This is
then fed to the Transformer encoder, where the output is

directly handled by a FFNN to perform classification. The ViT
framework was later adapted to the Object Detection domain
as well [46]. A notable ViT variant is the Swin Transformer
[30], which introduces a hierarchical design together with
a shifted attention window approach to self-attention. Image
patches are then merged in later layers. Self-attention is calcu-
lated on each patch separately. So in the deeper layers, when
all patches are merged, self-attention in the Swin Transformer
looks the same as in the original ViT. However, in earlier
layers, no interaction is happening between the features of
different patches, as the self-attention is applied locally within
the patch only. This limits the model’s ability to capture global
information. To resolve this, the authors shift the attention
window diagonally after each layer in a way that each shifted
attention window has overlap with multiple attention windows
from the last layer. The success of the Swin Transformer has
made it a popular backbone for many models today.

The Contextual Transformer Block [26] was inspired by
Vision Transformer architecture, extending the process of self-
attention to include local spatial information. Instead of every
embedded patch generating a key, keys are generated using a
3×3 convolutional operation, thus incorporating local context
within each key.

With the success of the Vision Transformer on image tasks,
there extension to video analysis was a logical consequence.
TimeSformer [7] adapted the ViT model to incorporate tem-
poral information as well. It uniformly samples frames from
the video, where each frame is divided into patches similar
to ViT, concatenating all patches per frame to obtain the
final input of the model. Performing self-attention between
all of these patches would be too costly, so they instead
propose to perform self-attention on the spatial and temporal
dimensions separately. In the spatial dimension, self-attention
is calculated within the frame, like in ViT, while self-attention
in the temporal dimension is calculated with patches at the
same position in different frames. This was empirically found
to result in a larger learning capacity as it contains distinct
learning parameters for temporal attention and spatial attention
[7].

ViViT [3] uses a different procedure to convert video
data into the model input. The patches are extended into 3
dimensions, with the extra dimension spanning the temporal
axis represented by multiple frames stacked. This tubelet
embedding strategy allows the model to already fuse spatial-
temporal features in the early stages. However, this means
that the model could not be fine-tuned starting from strong
pre-trained ViT model parameters, as it would cause a shape
mismatch in the embedding layer as a result of this change
to 3D. To solve this, the embedding weights are initialized by
using the pre-trained 2D embedding weight on the position
of the central frame, padded with zeroes on both sides along
the temporal dimension. Additionally, where self-attention in
TimeSformer is performed on spatial and temporal dimensions
separately within the encoder, ViViT splits it up further by
calculating spatial and temporal self-attention in different
encoders. This resembles the late-fusion approach also found



in TransVOD, which first extracts spatial features per frame
and only later applies temporal information.

Following the Swin Transformer architecture, Video Swin
Transformer [31] extends the concept of shifting attention
windows for video data. Using a 3D embedding process sim-
ilar to ViViT, the embedding mismatch problem encountered
in fine-tuning from a pre-trained starting point is resolved
by repeating the pre-trained embedding weights along the
temporal dimension and averaging them. This way, pre-trained
model weights can be used as the remaining architecture
remains the same.

III. RELATED WORK

In this section, relevant work for this study will be dis-
cussed. Sections III-A and III-B will focus on object detectors
using only spatial features. Sections III-C, III-D and III-E will
concentrate on methods that benefit from temporal features
also.

A. CNN Object Detectors

Object detection networks are methods with a certain class
of Neural Networks (see Section II-B) at their core. CNNs
have seen great success in the domain of Object Detection.
R-CNN [18] introduced a two-stage approach based on the
CNN architecture. It first identifies possible object locations
using a separate region proposal method before subjecting
them to object classification and bounding box regression
independently. This is slow, as each region proposal is passed
through the CNN sequentially. Fast R-CNN [17] achieves a
significant speed-up by feeding the image with all region
proposals to the CNN in one forward pass. Classification and
bounding box regression is learned jointly during training,
combining them into a single, unified network. However, the
initial region proposals are still outsourced to a region proposal
method, which was found to be a bottleneck in the Fast R-CNN
pipeline. Faster R-CNN [38] resolved this by implementing
the Region Proposal Network (RPN) to let the model itself
predict possible object locations. Feature Pyramid Networks
(FPN) [28] was introduced to replace the RPN and address
the challenge of handling objects at different scales by using
a top-down architecture with lateral connections. FPN helps
in producing a feature pyramid, which allows the network to
capture multi-scale representations of the input image. This is
particularly beneficial for detecting objects of varying sizes. SS
R-CNN [22] uses self-supervised learning to gain performance
for TOD.

You Only Look Once (YOLO) models [35] are a family
of models that eliminate the need for two stages in R-CNN
based models by performing them simultaneously. An image
is divided into a grid, where each grid predicts a certain
number of bounding boxes with a confidence score, together
with single conditional class probability for that cell. The
confidence score and the conditional class probability are
used to determine the final bounding box prediction. Multiple
iterations of YOLO exist, with the latest being YOLOv8. TPH-
YOLOv5 [50] replaces the head of the YOLO model, which is

responsible for the actual object localization and classification,
for a Transformer style prediction head. This was found to
increase performance on drone footage, which deals with many
tiny objects.

B. DETR Transformers

DETR [8], introduced by Carion et al., was the first success-
ful application of the Transformer model to the object detec-
tion domain. It views object detection as a set based matching
problem. Image features are first extracted using a CNN
backbone, which serve as the input of the Transformer encoder.
The pipeline of DETR itself consists of 3 important parts. In
the encoder, self-attention is performed with key, query and
value embeddings generated from the flattened feature vector
obtained by the backbone with an added positional encoding.
In the decoder, cross-attention is performed between the key-
value pair generated from the output of the encoder and
the queries generated from N learnable positional encodings.
These N object queries (usually, N = 100) specialize in
attending to different parts of the image during training. Lastly,
the outputs of the decoder are propagated through N Feed-
forward Neural Networks, resulting in N predictions. The
N predicted bounding boxes must be mapped to the ground
truth bounding boxes in a bijective manner, transforming it
into a bipartite matching problem. Usually, N is picked so
that it is always higher than the estimated number of object
detections in a single image. The excess predictions are then
mapped to a no object class as a sort of padding. The loss
is then calculated based on the Hungarian algorithm, which
determines the correspondence between predicted bounding
boxes and the ground truth. The bipartite matching principle
forces the model to make a single unique prediction for each
object directly, removing the need for extra post-processing
components like Non-Maximum Suppression and making it
fully trainable end-to-end.

DETR has inspired a whole range of similar architectures
aiming to improve the performance regarding one or more
parts of the pipeline. Deformable DETR [51] was introduced
to address the complexity issues observed in the encoder
self-attention and decoder cross-attention of DETR. While
attention is initially uniform and dense, the model learns to
focus its attention on only a subset of positions in the feature
map, resulting in sparse final attention. This transition from
dense to sparse attention is slow to converge. Deformable
DETR solves this by only attending to a limited set of posi-
tions around the reference point. These positions are sampled
from learnable offsets to the reference point, inspired by the
deformable convolution operation. This Deformable Attention
can be applied to multi-scale feature maps as well, boosting
the performance for TOD. Dynamic DETR [13] approaches
the same complexity problem in a different manner by using
dynamic attention. They are better able to approximate full
self-attention than Deformable DETR by using convolution-
based approaches. In addition, the decoder cross-attention is
replaced by RoI-based dynamic convolution operation with
1× 1 filters to lower the learning difficulty of cross-attention.



Numerous other efforts have been made to improve the
decoder cross-attention, as it as was found to mainly be
responsible for the slow convergence [39]. Anchor-DETR [43]
proposes to use anchor points as input for the decoder cross-
attention. In DETR, the object queries that are learnt during
training do not have an explicit meaning. When analyzing
where these individual object queries attend to, it is empirically
found to cover a large region of the image. Anchor points
can help the Transformer model to focus on smaller areas
where objects are likely to be present. The resulting predicted
object queries will be closely concentrated around the initial
anchor point, allowing for more precise object localization.
DAB-DETR [29] extends on this principle by using 4D coor-
dinates as object queries, representing bounding boxes. These
bounding boxes are dynamically updated after every iteration
to improve the cross-attention computation, significantly im-
proving the detection of small objects compared to DETR.
H-DETR [21] uses a one-to-many matching scheme during
training alongside the standard one-to-one matching, allowing
for more queries to effectively learn spatial information during
the training process. In one-to-one matching, queries that
are matches to no object are assigned a ’None’ class. The
downside of this approach is that only the class-based loss
can be used when updating the weights in such an instance.
This hybrid matching can be applied to other variants of DETR
as well, like Deformable DETR.

DN-DETR [25] takes a different approach by addressing
the instability of the Hungarian matching process. Small
changes in the matching cost matrix can lead to significantly
diverging outcomes, and blocking pairs have been proven to
exist in the bipartite matching problem. These difficulties are
especially pronounced in the early stages of training. DN-
DETR introduces an an auxillary output task where the model
must recover the original ground truth bounding box given a
version with added noise to the ground truth. This was found
to increase training speed significantly.

DINO [47] combines and improves upon ideas proposed in
DAB-DETR and DN-DETR, both viewing decoder queries as
anchor boxes and implementing a query denoising auxillary
task. Where DN-DETR does not allow the model to predict a
no object class for the auxiliary tasks when no anchors are
nearby, DINO implements a contrastive denoising training,
where the model has the ability to reject useless anchors.

To compete with both the impressive speed and accuracy of
YOLO models, RT-DETR [32] was introduced in an attempt
to make the DETR architecture more efficient. Results indicate
that the encoder in Deformable DETR is responsible for 49%
of the total processing, while only accounting for a 11%
performance increase [27]. So instead, the authors propose
to only perform encoding of the high level features of the
multi-scale feature map, fusing them later with the lower level
features. Additionaly, an IoU-aware Query Selection process
is designed to help sort out better queries.

C. CNN Video Object Detectors

Some Object Detection Networks have started to make use
of temporal information. Alqaysi et al. [1] introduces the
idea of stacking 3 monochrome frames to serve as the input
for a YOLOv4 model. This shows the potential to increase
performance by making temporal information available to
the model early on in the object detection pipeline. T2-
YOLOv5 [11] implements a two-stream approach, combining
both 3 stacked monochrome frames and motion-only features
in a YOLOv5 architecture. This is achieved by using a
second backbone which processes the absolute difference of
input frames, combining the extracted features with the main
YOLOv5 architecture in a late fusion manner. An issue with
this method is that it requires a stationary camera, as objects
have to move across the frame in a predictable way for the
model to learn.

D. Video Transformers

Video Transformers refer to the class of Transformers that
incorporate temporal context for object detection. TransVOD
[48] was the first method in this new line of Transformer
models. It uses Deformable DETR to extract purely spatial
information from the feature maps of multiple frames. A
given number of reference frames are randomly sampled from
frames within a certain window size of the current frame. The
object queries outputted by the Deformable DETR decoder
(referred to as spatial object queries) are fed to a Feed-
forward Neural Network to predict the object classes. A
selection of these spatial object queries is made of the top-
k confident predictions, on which cross-attention is performed
in the Temporal Query Encoder (TQE) with the spatial object
queries from the current frame to aggregate the object queries.
This results in enhanced object queries that carry temporal
information. This procedure can be performed again with
these enhanced object queries and a smaller top-k selection
of spatial object queries for additional gain, but possibly
missing interesting spatial object queries with low confidence.
Likewise, the output of the encoder for the current frame
is fused with the outputs of the reference frame encoders
in the Temporal Deformable Transformer Encoder (TDTE).
Deformable Attention is applied between the enhanced object
queries and the fused encoder output in the Temporal De-
formable Transformer Decoder (TDTD), which is then fed to
a Feed-forward Neural Network for final classification and box
regression. TransVOD++ and TransVOD Lite are variations of
TransVOD. TransVOD++ is focussed on improving the quality
of the detections, where TransVOD Lite aims to make Video
Object Detection available in real-time.

PTSEFormer [42] proposes a different temporal-spatial fea-
ture aggregation method. In this model, feature aggregation
happens in between the Image Transformer encoder and
decoder. A correlation operation is defined which resembles
the standard encoder module, except there is only a residual
connection between the queries Q and the output of the Multi-
Head Attention. A DETR encoder outputs features of the
current frame to be used as the query for the correlation



operation, while the key/value pair are generated from the
reference frame features extracted by other DETR encoders.
A Gated Correlation operation (STAM) is also introduced,
inspired by the gate control design in Gated Recurrent Units.
Inversely, the queries are obtained from the output of the
respective reference frame, with the key/value pair coming
from the current frame. These outputs are then aggregated
using another correlation operation and consecutive Gated
Correlation operation, followed by a DETR decoder for the
final prediction. While TransVOD incorporates temporal in-
formation after the decoder, PTSEFormer allows for fusion of
spatio-temporal features between the encoder and the decoder.

Feature Aggregated Queries (FAQ) [12] dynamically ag-
gregates queries of reference frames and only employs a
single Image Transformer structure, on the current frame. The
aggregated query is then used as the query of this Image
Transformer decoder. Thus, spatial and temporal features are
fused in the decoding step, an earlier stage than in TransVOD
but later than PTSEFormer.

Video Sparse Transformer With Attention-Guided Memory
(VSTAM) [16] proposes a novel External Memory module that
stores features with the highest attention weights, allowing the
encoder to access these important frames together with the
current adjacent neighbouring frames. VSTAM incorporates
temporal information already in the encoder, by allowing self-
attention both within each frame, the same position across
multiple frames and random positions across multiple frames.

E. Feature Aggregation

Feature aggregation methods are frequently compared to
Transformer models, thus playing a crucial role in the ongoing
discourse on optimal architectures for video analysis. Flow-
Guided Feature Aggregation (FGFA) [52] uses optical flow
to capture object motion and improve object detection in
video data. Optical flow represents the motion of objects in
consecutive frames, which can be utilized to align features of
objects over time.

Sequence Level Semantics Aggregation for Video Object
Detection (SELSA) [45] aggregates information across frames
by considering high-level semantics. Object features in differ-
ent frames are fused based on their semantic similarity.

Memory Enhanced Global-Local Aggregation for Video Ob-
ject Detection (MEGA) [9] incorporates a memory mechanism
to retain information from previous frames, allowing it to store
global semantic context. Unlike SELSA, MEGA can also make
use of local information, fusing it with the global information
to increase accuracy.

IV. METHODOLOGY

A common characteristic shared between the Video Trans-
formers discussed in the background section is that they use
temporal information after extracting information of each indi-
vidual frame in the backbone. TransVOD first handles purely
the spatial components of each frame, opting to combine
temporal information at a later stage [48]. PTSEFormer fuses
the information of multiple frames between the encoder and

the decoder [42]. In Feature Aggregated Queries, temporal
information is introduced in the decoder [12]. VSTAM incor-
porates the information of adjacent frames during encoding
[16].

Given that small objects provide limited visual information,
we hypothesize that introducing temporal information to the
model as early as possible in the detection pipeline is beneficial
for the performance for detecting small objects. To test this
hypothesis, we propose a novel transformer architecture that
integrates temporal information at an earlier stage in the
detection pipeline. Specifically, our approach modifies the
backbone of a detection model, introducing temporal features
from the very beginning of the detection pipeline.

A. Model Architecture

Early fusion is achieved by replacing the conventional
single-frame Transformer backbone with a Video Swin Trans-
former backbone for a given detection model. This choice is
inspired by Arnab et al. [3], who explored the benefits of
the structure of their video classification model ViViT. Instead
of sampling the patches per individual frame during embed-
ding, ViViT uses 3D patches extended along the temporal
dimension. Multiple frames are stacked, rather than looked
at seperately, so that overlapping regions in adjacent frames
end up in the same patches. This sampling strategy, known
as tubelet embedding, allows for spatio-temporal features to
fuse already during embedding [3]. A visual explanation can
be found in Figure 3.

Fig. 3. Top: single-frame sampling. Bottom: Tubelet embedding. Taken from
[3].

The Video Swin Transformer [31] combines the tubelet
embedding approach with the shifting attention windows of
the regular Swin Transformer. As many object detection
models use the Swin Transformer as the backbone, Video
Swin Transformer is a fitting candidate to introduce temporal
information early in the model. This sets it apart from the



Video Transformers discussed in the Section III, as these
models only use additional frames further down the object
detection pipeline. While other alternative directions are pos-
sible, like applying feature aggregation techniques discussed in
Section III-E, replacing the Swin Transformer backbone with
a Video Swin Transformer offers a unique advantage. This
modification incorporates time early into the model without
fundamentally changing the architecture. This allows for a
precise study of the effects of early temporal context in
isolation.

1) Video Transformer Integration: The added temporal
dimension results in a shape mismatch when replacing the
Swin Transformer backbone with a Video Swin Transformer.
Specifically, the Video Swin Transformer output feature maps
have an additional temporal dimension alongside the standard
spatial dimensions (height and width). Typically, an object
detection model expects a feature map with just the spatial
and channel dimensions. To resolve this, a fusion mechanism
needs to be added which reduces the temporal dimension
without losing the valuable information that can be learned
from the motion of objects. These fusion mechanics aim to
capture temporal dependencies across frames, enhancing the
backbone output when compared to the output of a single-
frame backbone, while remaining the same shape. This is im-
portant, as it enables us to examine the impact of introducing
temporal context at the backbone level. By keeping the original
detection model’s structure intact, any observed improvements
can be attributed to the added temporal information.

B. Fusion Mechanics

Multiple fusion mechanics will be explored in this study
to determine the most effective way to replace a Swin Trans-
former backbone with a Video Swin Transformer with only
minimal change to the structure of the object detection model
itself. Three different fusion mechanics will be tested: First, a
summation over the temporal dimension is added between the
backbone and the detection model to reduce the dimensionality
of the backbone output. This parameter-free fusion method
deviates the least from the single-frame model, as no extra
parts are needed. However, the fact that it’s a non learnable
method means that it will likely struggle with the newly added
temporal information. Second, a learnable approach will be
tested with a Multi-Head Attention module. We use four
attention heads to limit the number of extra parameters that
are introduced in the model, while still allowing some different
relations to be learned. While the ability to establish connec-
tions across multiple frames is a big advantage, the increased
complexity might be detrimental to the model performance.
Finally, we introduce a 3D Encoder by adapting the existing
encoder of the object detection model into three dimensions to
remove the need for an added piece between the backbone and
the model, serving as another learnable fusion method. This
combines the advantages of previous methods, both staying
close to the original model architecture, while also having the
capability to adjust to the added temporal information. An

overview of the different fusion mechanics can be found in
Figure 4.

Fig. 4. The different options for fusion mechanics from top to bottom: 1.)
Sum, 2.) Multi-Head Attention (n=4), 3.) 3D encoder. Note that each variant
is distinct and used separately.

The object detection model we use for experimentation is
H-Deformable DETR. The multi-scale deformable attention
increases the effectiveness of detecting small objects [51].
Together with the hybrid matching scheme discussed in the
Related Work Section, which increases training efficacy [21],
it makes H-Deformable DETR a promising model for the
purposes of this study. It is important to note that, while we
use H-Deformable DETR during this study, our method can
be applied to a multitude of other object detection models
with a similar structure. We choose to adapt a single-frame
Transformer to better isolate the effect of introducing temporal
information early on in the model, turning it into a Video
Transformer. However, the alterations discussed in this section
can also be applied to Video Transformers discussed in Section
III-D.

C. Initialization

Another advantage is that H-Deformable DETR has been
pretrained with a Swin Transformer backbone. This allows
for easy experimentation with different weight initialization
methods when switching to a Video Swin Transformer back-
bone. Two approaches will be tested in this study. One
approach consists of taking H-Deformable DETR weights and
replacing the backbone weights with the pretrained weights
of the Video Swin Transformer, combining the models into
one end-to-end model. The other approach involves only the
pretrained H-Deformable DETR weights and inflating them to
fit the dimensions of the Video Swin Transformer backbone,
according to the following procedure.

First, the weights in the patch embedding layer are inflated
by inserting a new axis and repeating the weights along this
axis. If the original weight tensor has a shape (N,C,H,W ),
the inflated tensor will have the shape (N,C,D,H,W ), where
D is the number of frames. The weights relating to the
relative position bias tables are then extended using bicubic
interpolation to adjust the dimensions. Lastly, some parameters



specific to the 2D Swin Transformer are deleted, such as
the attention mask and relative position index . The attention
mask controls which tokens can attend to each other, whereas
the relative position index helps the model to understand the
relative positions of those tokens. Moving to a 3D structure,
the relations these tokens have among themselves changes
significantly. Thus, these parameters will be deleted from the
pretrained weights, as there is no way to appropriately extend
these tensors into three dimensions. They will be initialized
in the Video Swin Transformer model upon construction, as
if no pretrained weights are being used.

D. Temporal Coverage

To determine the optimal temporal fusion method, we train
the three variants with different configurations of the number
of frames and the distance between them. We introduce the
definition of temporal coverage, which is defined as the total
span of frames used for detection. This value consists of the
number of frames (including the current frame) and the stride
between them. Different combinations of stride and number of
frames can result in the same temporal coverage. This allows
for selecting interesting values for the number of frames and
stride, which can be easily compared in a meaningful way. We
can compare specific models on the basis of how many frames
they use (number of frames), how much an object moves
across a timed sequence (stride), and how much of the timed
sequence the model is able to see (temporal coverage). Figure
5 gives a visual explanation of how this sampling strategy is
employed. The notation we use to refer to a certain temporal
coverage is generalized as:

TEMPORAL COVERAGE: (FRAMES × STRIDE)

Fig. 5. Visualization of temporal coverage, with a sequence of frames
represented as squares with example image ids. The current frame of the
sequence used for object detection is highlighted in green, while the sampled
support frames are highlighted in red.

V. EXPERIMENT

This section will detail the experimental setup used to
produce results. Important parameters will be discussed, and

the data for training and testing will be covered. Following
this, training specifications are provided and evaluation metrics
are given.

A. Experimental Setup

For the single-frame model, a Swin-Tiny backbone is used
in all experiments. For every fusion method, the Video Swin-
Tiny backbone is used. The different fusion mechanics will be
tested with various settings of temporal coverages.

Three temporal coverages will be considered. A temporal
coverage of three will naturally only consist of three frames
with a stride of one. Next, a temporal coverage of five includes
three frames with a stride of two and five frames with stride
one. Finally, a temporal coverage of nine includes five frames
with stride two and nine frames with stride one. An overview
of all variations can be found in Table II.

Frames are sampled with the detection frame at the center
of the sequence. In cases where this is not feasible, such as
when a frame is near the beginning or the end of a video,
we adjust sampling by using as many frames as possible
from the restricted side of the current frame, and fill up
the sequence with frames from the opposite end to meet
the temporal coverage requirement. This is necessary, as the
backbone requires a fixed number of frames as input, meaning
that we must ensure the sequence of frames is always fully
populated. Another solution would be to copy the furthest
possible frame from the current frame to fill up the sequence.
However, this would remove translation of objects between
frames, and hereby loosing vital temporal information.

B. Data

The data used in this study is the Visdrone-VID dataset
by Zhu et al.[49]. The dataset consists of a training set with
24,198 frames over 56 videos and a test set with 6,322 frames
over 16 videos filmed at 24 frames per second. Footage is
obtained with a moving drone, recording traffic and pedestrian
situations in urban areas. While the videos show substantial
overlap in scenery, they can be broadly categorized in ei-
ther being centered around vehicles in traffic or focused on
pedestrians walking. The dataset consists of 11 classes. A
breakdown of the class distribution can be found in Figure
13 in the appendix. While this study is concerned with small
object detection, we aim to create a model which does not
harm its ability to detect larger objects. This makes Visdrone-
VID a suited candidate for experimentation, as it contains a
variety of different object sizes.

To reduce the redundancy in video data and speed up train-
ing, validation and testing, we select frames from Visdrone-
VID at an interval of five. Because footage is filmed at a
relatively high frame rate, subsequent frames will have a lot
of information in common. We decide to filter out some of this
redundant data, especially since the multi-frame models would
have a lot of overlap when selecting neighbouring frames
for detection on the current frame. While we leave out some
frames for detection, the multi-frame models still have access
to those frames.



C. Training Specifications

The training parameters of the standard H-Deformable
DETR implementation are applied in this study as well.
The models are trained over 10 epochs with a learning
rate of .0002, starting from the pretrained H-Deformable
DETR weights. The backbone weights of the pretrained H-
Deformable DETR weights are used to initialize the Video
Swin Transformer backbone following the procedure detailed
in Section IV-A. All models are trained on a GPU-cluster
consisting of 4 A16 GPUs. Each GPU uses the maximum
possible batch size of one, making the effective batch size
during training four. After each epoch, the model is evaluated
and after training is finished, the best result is be reported from
among those evaluations.

D. Evaluation Metrics

To evaluate the model performances, we employ a variety
of quantitative metrics to analyze the different fusion methods.
To determine the best performing multi-frame method, we
use mean average precision at an IoU overlap of .5. The
single frame and the best performing multi-frame method are
then compared with a precision-confidence curve, a recall-
confidence curve, a precision-recall curve, a F1-confidence
curve and finally a confusion matrix to see the mistakes the
models are making. These metrics give a good overview of
the differences in the models. To give a further comprehensive
overview, we will analyze the model based on different scene
characteristics to observe how the model performs in different
settings. Multiple object/scene properties will be taken into
account to categorize a frame so that we can understand the
advantages and disadvantages of each model. These results
are then contrasted against current state-of-the-art models
mentioned in the original Visdrone-VID paper [49].

VI. RESULTS

This section will provide an overview of the results of the
experiments detailed in the previous section. First, the different
fusion mechanics are compared to determine the most effective
way to incorporate temporal information into a model. Then,
the best multi-frame method is tested against the single frame
method on multiple metrics. These results are then compared
to state-of-the-art models previously trained on the Visdrone-
VID dataset. Finally, a quantitative analysis is made on the
multi-frame and single frame method, which dives deeper into
the performance on different characteristics in scenes between
these models.

A. Temporal Fusion Methods

In Table II, results of each fusion mechanic are given for
each temporal coverage configuration. Model performances
are listed as the mean average precision on an IoU-overlap
of .5 after their best validation score during training. The
results for the Multi-Head Attention fusion method on nine
frames with stride 1 are not available due to hardware memory
limitations.

TABLE II
RESULTS FOR TEMPORAL FUSION VARIANTS, TRAINED ON DIFFERENT

TEMPORAL COVERAGES. TEMPORAL COVERAGE IS LISTED AS
’TEMPORAL COVERAGE: (NUMBER OF FRAMES X STRIDE)’. ALL VALUES

REPORTED ARE MAP@50

Fusion Type

Temporal
Coverage

Sum Fusion Multi-Head
Attention
Fusion

3D Encoder
Fusion
(Enc5x1)

3: (3x1) 32.5 31.2 32.8

5: (3x2) 31.8 29.3 32.0

5: (5x1) 32.1 29.6 33.5

9: (5x2) 27.7 25.7 31.3

9: (9x1) 30.0 - 32.2

Single-frame baseline H-Deformable DETR 36.2

From these results, it is clear that the 3D Encoder variant
is the best performing fusion method when using a temporal
coverage of five with five frames and stride one. Five frames
seems to strike a good balance in the number of frames used
for detection, as both three frames and nine frames results in
lower precision. A stride of one is optimal not only for the 3D
Encoder variant with five frames, but across all other fusion
methods and temporal coverage configurations, as a stride of
two decreases performance for all models.

B. Single-frame Comparison

We provide a quantitative analysis between the single-
frame method and the multi-frame method, using the 5 frames
with stride 1 3D Encoder variant, which achieved the best
performance as shown in Table II. From this point on, we will
refer to this multi-frame variant as Enc5x1, indicating that it
uses the 3D Encoder with five frames and stride one, and we
will refer to the single-frame baseline model as SF. We visu-
alize the differences between the models by examining some
key metrics for each class: the precision-confidence curve,
recall-confidence curve, precision-recall curve, F1-confidence
curve, and the confusion matrix. The results can be found in
Appendix A.

C. State of the Art Comparison

The single-frame and multi-frame models are measured
against state-of-the-art models evaluated on the Visdrone-VID
dataset [49]. We report the mean average precision at the IoU
tresholds of .5 and .75, as well as the mean average recall
for 100 detections per frame over all IoU tresholds. We only
list the models that were among the top three performers in
any category on the dataset. For an extended report on model
performances on Visdrone-VID, we refer the reader to the
original paper [49].



TABLE III
COMPARISON AGAINST STATE-OF-THE-ART MODELS REPORTED BY ZHU

ET AL.[49]. SF IS THE SINGLE-FRAME BASELINE MODEL. ENC5X1 IS OUR
3D ENCODER VARIANT WITH FIVE FRAMES AND STRIDE ONE.

Metrics

Model mAP@50 mAP@75 mAR100

AFSRNet 52.5 19.4 45.1

CN-DhVaSa 48.1 16.8 39.6

DBAI-Det 58.0 25.3 50.8

HRDet+ 51.8 16.8 39.0

VCL-CRCNN 43.9 18.3 33.5

CFE-SSDv2 44.8 18.0 41.9

H-Deform.
DETR (SF)

36.2 14.3 50.6

H-Deform.
DETR (Enc5x1)

33.5 14.2 46.4

D. Quantitative Analysis

This quantitative analysis aims to give a deeper insight into
the model performances on different scene/object character-
istics, to determine the advantages of each model. We first
provide the precision values per object size in Figure 6, and a
detailed overview of the precision and recall per class in Table
IV.

TABLE IV
COMPARISON ON PRECISION OF SINGLE FRAME BASELINE (SF) AND

MULTI-FRAME MODEL (ENC5X1) FOR EACH CLASS ON VISDRONE-VID,
IOU.5.

Precision Recall

Class SF Enc5x1 SF Enc5x1

Pedestrian 49.6 41.9 56.8 59.7

People 22.9 19.8 34.7 36.4

Bicycle 6.0 8.6 36.4 26.7

Car 58.5 52.8 71.9 76.0

Van 16.6 22.8 31.1 32.1

Truck 24.5 33.7 41.9 42.9

Tricycle 19.5 19.5 33.5 37.4

Awning-tricycle 14.5 15.8 34.8 18.4

Bus 14.7 14.7 15.7 26.8

Motor 29.2 32.4 36.2 35.7

Others 0.0 4.6 0.0 2.5

An interesting next step is to split the Visdrone-VID dataset
into static and moving camera scenes, since some video object
detectors are known to struggle with moving camera scenes,
as discussed in the Section III. Videos are classified as either
static or moving based on significant motion. Static videos are
thus not strictly static, since all video data is recorded with a
drone, some light movement is present in all videos. We also
allow videos with some camera turns to be classified as static.
The difference between videos shot by drones recording over

large distances and videos shot by a relatively stationary drone
is so pronounced that they can be unambiguously categorized
into one of the two groups. Four videos are labeled as
stationary, while 12 videos are labeled as moving. While this
split is heavily imbalanced, it still provides a valuable insight.
Using the precision reported in Table IV as a reference for the
performance on all videos, Table V offers a comprehensive
breakdown of the precision for all classes in each scene, and
Table VI does the same for recall.

Fig. 6. Average Precision for COCO standardized object sizes.

TABLE V
COMPARISON ON PRECISION OF SINGLE FRAME BASELINE (SF) AND
MULTI-FRAME MODEL (ENC5X1) ON STATIC AND MOVING CAMERA

FOOTAGE, IOU.5.

Precision

Class SF,
Static

Enc5x1,
Static

SF,
Moving

Enc5x1,
Moving

Pedestrian 48.1 41.7 50.3 42.0

People 35.0 27.8 16.7 14.7

Bicycle 10.7 18.4 3.3 3.3

Car 60.3 51.6 57.0 53.7

Van 17.4 20.2 16.1 24.5

Truck 15.9 20.9 30.3 40.9

Tricycle 25.8 24.8 16.4 16.5

Awning-
tricycle

30.7 20.3 5.6 10.7

Bus 15.1 15.9 14.6 13.9

Motor 32.8 37.8 27.0 29.1

Others 0.0 12.4 0.0 0.0



TABLE VI
COMPARISON ON RECALL OF SINGLE FRAME BASELINE (SF) AND

MULTI-FRAME MODEL (ENC5X1) ON STATIC AND MOVING CAMERA
FOOTAGE, IOU.5.

Recall

Class SF,
Static

Enc5x1,
Static

SF,
Moving

Enc5x1,
Moving

Pedestrian 57.8 57.2 56.5 60.6

People 36.8 41.3 32.7 32.0

Bicycle 39.4 31.9 31.8 18.1

Car 73.6 75.4 70.6 76.4

Van 31.5 34.5 30.9 30.9

Truck 36.7 27.7 44.1 51.1

Tricycle 38.1 48.0 30.6 31.6

Awning-
tricycle

42.2 21.3 23.0 14.2

Bus 9.0 15.6 28.0 53.4

Motor 40.6 43.7 33.6 31.1

Others 0.0 2.5 0.0 0.0

A different perspective would be to look at the speed
of objects themselves. By grouping objects based on their
movement across frames, we can better understand how the
multi-frame model handles objects at different speeds. Since
it is able to use temporal context, it might be possible for the
multi-frame model to learn something about the object from
its speed. We define the speed of an object by measuring the
total translation of the center of an object bounding box in
pixels between consecutive frames. This gives a new speed
to an object for each frame. This could allow the model to
discern between different patterns of motions, such as the
different accelerations of busses and cars. The speed bins are
chosen in such a way that all of them contain a sufficient
number of objects, while keeping the ranges of each speed bin
meaningful. The first bin contains 251595 (almost) stationary
objects, the second bin contains 146890 slow moving objects,
the third bin contains 133637 medium-paced objects, and the
fourth bin contains 131378 fast objects.

VII. DISCUSSION

The following discussion will seek to further understand the
main findings given in the previous section. We will highlight
the important patterns in the results and discuss how we can
interpret them within the framework of small object detection
for Video Transformers. Additionally, we will touch on some
of the limitations of the current study

A. Temporal Fusion Methods Results

The results of the comparison of temporal fusion methods
reveal an interesting trend when trained on different tempo-
ral coverages. Most notably, increasing the stride negatively
impacts the performance of all tested fusion methods. When
comparing each fusion method with a fixed number of frames
while only varying the stride, a consistent drop is observed

Fig. 7. Average precision grouped on object speed measured in pixels per
frame.

across all models. For example, the performance for the 3D
Encoder fusion variant decreases from 32.8 to 32.0 when
switching from three frames with stride one to three frames
with stride two. Similarly, performance drops from 33.5 to
31.3 when comparing five frames with stride one to five frames
with stride two, respectively. While an increased stride allows
the model to observe a broader temporal range, it appears that
the model struggles with the larger jumps between frames.

Analyzing the optimal number of frames gives a more
conflicting picture. While the 3D Encoder Fusion method
achieves the highest performance with five frames, both
the Sum Fusion and Multi-Head Attention Fusion methods
perform better with three frames. This difference may be
attributed to the complexity of each fusion method. The Sum
fusion method, being a simple parameter-free implementation,
is perhaps unable to effectively process a larger number of
frames. Without learnable parameters, temporal information
might be lost when summing the backbone output feature
maps. Conversely, the Multi-Head Attention fusion method
might become too complex with more added frames leading
to difficulties with learning effectively. The 3D Encoder fusion
method is potentially a middle road, being able to use more
frames without overwhelming the model. We can also observe
from Table II that adding more frames beyond this point will
not result in an increase in performance.

When compared against the single-frame baseline imple-
mentation, all configurations of temporal coverage and fusion
mechanics are outperformed by the single-frame baseline.
The best-performing multi-frame model, which uses the 3D
Encoder Fusion approach, falls short of the baseline by 3
percentage points. This suggests that the model has difficulty
adapting to the added temporal context.

B. Single-frame Comparison Results

When comparing the precision-confidence curve of the
single-frame model to the multi-frame model using the 3D
Encoder variant with five frames and stride one, we see a
sharper increase in the precision for the single-frame model.



This indicates that the single-frame model is more conservative
in assigning high confidence scores, being able to reach perfect
precision for all classes at a confidence of 0.836 as opposed to
the multi-frame variant, which only reaches perfect precision
at a confidence of 0.920.

Ideally, precision should be high across all confidences,
even at the low end. At this lower spectrum of confidence
values, we can see some key differences between the models
on various classes. The multi-frame model has a lower per-
formance for the pedestrian, car and people classes, but has
a better performance on the truck, motor and van classes at
lower confidences. An interesting observation here is that the
multi-frame model performs noticeably better at distinguishing
between the closely aligned classes car, van and truck, while it
seems to struggle with pedestrian class. We can observe this
by looking at the range of lower confidences in Figures 14
and 15, noting a big shift in performance between the models
on these classes. This is further backed up by analyzing the
confusion matrices in Figures 22 and 23. They show increased
off-diagonal numbers for the classes car, van, truck. From the
confusion matrix of the multi-frame method in Figure 15, we
can also observe that the reason for the performance drop in
the pedestrian class is due to the model making much more
false positive predictions of that class.

The anomalies in the precision-confidence graph where
there occurs a drastic drop to zero at higher confidence scores
signify that the model is unable to make any predictions
exceeding this confidence threshold. The single-frame model
is not able to make highly confident predictions for the class
tricycle. This can most likely be attributed to the relatively
low class count of tricycle (as can be seen in Figure 13), and
a strong resemblance to the class bicycle. In the case of the
multi-frame model, the precision for the people class drops
to zero at higher confidence thresholds. This is unexpected,
since people is one of the larger classes in the dataset with
a significant number of training samples. As seen earlier, this
is the result too many false positives for the people class,
as shown by Figure 23. A similar phenomenon happens for
the class car in the multi-frame model. Figure 13 shows that
these are among the most frequent classes in the training set.
This indicates that the multi-frame model is biased towards
frequent classes. The overconfidence of the multi-frame model
then leads it to assign a high confidence score to a people
prediction that is incorrect, resulting in the drastic drop in
precision.

A notable difference between the single-frame and multi-
frame models in the recall-confidence curve is the awning-
tricycle class. In the single-frame model, the awning-tricycle
curve is close to the all classes average, whereas in the multi-
frame variant, it is one of the lowest ranking classes. If we
look at the confusion matrices in Figures 22 and 23, we see
that the multi-frame model misses the awning-tricycle class
entirely (meaning no other prediction is made for that object)
almost twice as much as the single-frame model.

This trend can be also be found in the precision-recall and
F1-confidence curves, where closely related classes result in

the biggest performance gaps. Another universal trend in all
graphs is the ability of the multi-frame model to correctly
handle the other class, although in a very limited way, with
performance consistency the lowest of all classes. However,
as can be seen from the precision-recall curve of the single-
frame model, the baseline makes no other predictions at all.
This once again shows the conservative detection capability of
the single-frame model, which is a disadvantage in this case.

C. State of the Art Comparison Results

It is apparent from Table III that both the single-frame
H-Deformable DETR baseline and our own implemented
H-Deformable DETR (Enc5x1) do not outperform the best
reported models of the Visdrone-VID dataset when compared
on mean average precision with IoU .5 and .75. However, the
recall of both models are comparable to the reported values
on Visdrone-VID. This means that both models are making
too many false positive predictions. This is supported by the
confusion matrices in Figure 22 and Figure 23. Both models
predict objects where in reality there are none.

It is important to note that the focus of this study is on
adapting a generic object detection Transformer to incorporate
temporal information. This means that no further optimization
techniques have been applied. In contrast, many state-of-the-
art models trained on Visdrone-VID may have used specialized
techniques for the specifics of the dataset. This could also
be an explanation for the performance difference between the
models.

D. Quantitative Analysis Results

The results of Table IV reaffirm the findings of Section
VII-B. For certain classes, like van and truck, the multi-
frame model achieves a better performance on both precision
and recall metrics. On frequently occurring classes like car,
pedestrian and people, we can observe that the multi-frame
model makes more predictions of these classes, resulting in a
higher recall but a lower precision.

Examining Figure 6, which compares the precision of both
models across objects grouped by COCO-standardized size
categories, reveals some interesting details about the multi-
frame model. Although its design was intended to improve
the performance on small objects, the only performance gain
of the multi-frame model is achieved on large objects. This
could be attributed to the inherent nature of large bounding
boxes, which are more likely to overlap with themselves in
neighboring frames, relative to smaller objects. This might
make it easier for the multi-frame model to keep track of the
object as it moves across time.

Tables V and VI provide the differences in precision and
recall on both static camera footage as well as moving camera
footage. It is difficult to establish a trend from these results. On
average, the single-frame model performs better in terms of
precision on static camera footage, particularly for frequently
observed classes like car, pedestrian and people. However,
the results on these classes lie closer together when focusing
on moving camera footage. Here, the multi-frame model even



outperforms the single-frame model by a larger margin on
the classes van, truck and awning tricycle compared to the
static camera footage. Differences in recall between static and
moving camera footage seem more arbitrary. While the bus
class improves by a huge margin for the multi-frame model in
moving camera footage (especially when comparing against
the single-frame model), the opposite is true for the bicycle
class. Overall, the multi-frame model appears more effective at
handling moving camera footage when evaluated on precision,
being able to leverage the temporal context to make consistent
predictions, while recall remains more variable.

Finally, when observing the results of Figure 7, we see that
the multi-frame model achieves higher performances on slow
to medium-paced objects. This indicates that, while the model
can benefit from motion information of objects, objects that
are too fast prove challenging for the multi-frame model. This
may be linked to the previously discussed theory that sufficient
bounding box overlap between consecutive frames is needed
for the model to excel, as both small and fast objects prove to
be difficult for the multi-frame model.

E. Limitations

Although the results of this study provide a meaningful
insight into the differences between models, there are sev-
eral limitations that were encountered during experimenta-
tion worth addressing. The availability of high quality data
containing both moving and static camera footage is very
limited. In this regard, the Visdrone-VID dataset is suited well
for this study, as it features both small objects and moving
camera footage, both of which were identified as challenging
for previous methods discussed in SectionIII. However, the
dataset does have its shortcomings. It suffers from inconsistent
labeling issues, which negatively impact model performance.
For example, in Figure 8 we can see that the car in this frame is
wrongly labeled as an awning-tricycle. Since awning-tricycle
is already a very rare class in this dataset, these errors can have
great effect on the model’s ability to understand that class.
Furthermore, since the model correctly predicts the object as
car, it is considered an error during evaluation, lowering the
performance scores for the model.

Fig. 8. Example of annotation error in Visdrone-VID. Cyan is the annotated
label, while blue is the model prediction.

More nuanced errors also appear in the dataset. In Figure
9, we see an object annotated as bicycle, while the exhaust
pipe on its side suggests that it is actually a motor. Indeed,
the model predicts the object as motor.

Fig. 9. Confusion between bicycle and motor in Visdrone-VID. Cyan is the
annotated label, while blue is the model prediction.

A similar issue is found in the distinction between the
classes people and pedestrian. The authors of the Visdrone-
VID papers define the classes as follows: ”If a human main-
tains standing pose or walking, we classify it as a pedestrian;
otherwise, it is classified as a person.” [49]. However, in Figure
10 it is obvious that both humans maintain a standing pose,
but are labeled as people. Since they maintain a standing pose,
the model correctly classifies both humans as pedestrian.

Fig. 10. Confusion between people and pedestrian in Visdrone-VID. Cyan is
the annotated label, while blue is the model prediction.

Even humans who are in a sitting position, and thus should
be classified as people, are sometimes annotated incorrectly.
In Figure 11, three people sit on a motor, yet the human in
the middle is labeled pedestrian. This shows the inconsistency
of the annotations in the Visdrone-VID dataset. This is a
challenging issue, as the problem is most pressing in difficult
edge cases, such as closely related classes. We can see from
the confusion matrices in Figures 22 and 23 that the classes
in the given examples are those that the model struggles to
differentiate.



Fig. 11. Confusion between people and pedestrian on a motor in Visdrone-
VID. Cyan is the annotated label.

Another edge case that leads to lower performance scores
is the lenient approach to the annotations of objects leaving
or entering the frame. In most occurrences of objects leaving
a scene, the model is able to detect the object longer than
they are annotated. Conversely, the model often picks up on
objects entering a scene before they are even annotated. While
this behaviour should be encouraged in the model, it currently
results in a lower precision. An example of this problem is
displayed in Figure 12, where the parked car in the bottom
left is about to leave the scene as the camera moves forward.

Fig. 12. Early cut-off of annotations in Visdrone-VID. Cyan is the annotated
label, while blue is the model prediction.

Lastly, due to time constraints, we were not able to ex-
periment with the model’s full capability after training from
scratch. Instead, we relied on the pretrained weights of the
H-Deformable DETR model. While this approach is common
and gave a clear picture of differences between models, it
might mean that the potential of the multi-frame model was
not fully reached. Ultimately, the weights are derived from
a 2D framework following the procedure detailed in Section
IV-C. Some of the learned patterns might not carry over well to
3D, and the model might struggle to relearn new connections.

F. Future Work

Following the discussion on the limitations of the current
study, several new interesting research opportunities arise.
As shown by the results of our experiments, the adapted
H-Deforamble DETR model struggles with interpreting the
added temporal context introduced early in the object detection
pipeline. A deeper analysis of the model mechanics could
reveal the exact difficulties the model faces when dealing
with multiple frames. Future studies could identify the current
bottlenecks of early temporal information.

For example, the current Video Swin backbone used in
the model may struggle to extract meaningful features across
frames due to the original weights being focused on single-
frame object detection. A potential solution could be to
experiment with different training techniques that allow the
model to better capture temporal dependencies. A study on
the effect of pretraining on large-scale video datasets and
the possible increased ability of the model to extract motion-
related features more effectively could be worth considering.

Additionally, more refined fusion mechanics could be ex-
plored in future work. Currently, we only consider three fusion
mechanics covering a broad spectrum of possible complexity,
ranging from a simple summation to Multi-Head Attention
with many learnable parameters. Our results show that a
compromise between simplicity and complexity is most opti-
mal. However, there are potential fusion mechanics other than
the 3D Encoder that could be developed. A separate study
solely focused on finding the optimal way of ’collapsing’ the
temporal dimension in the feature map while preserving the
information would be a great supplement to our findings.

Further research could also focus on using our approach
with various other object detection models. While the goal of
this study was to specifically adapt a Transformer to include
temporal information, other architectures might deal with early
temporal information better. A comparison of a wide variety
of models could further highlight the current shortcomings of
our method.

Lastly, the lack of sufficient high-quality video data contain-
ing small objects from both a static and moving camera per-
spective could be addressed in future work. While Visdrone-
VID was a great baseline for the comparison done in this
study, the increasing demands on model performances require
datasets with higher quality annotations. Exploring meaningful
partitions within the dataset could be considered, such as a
balanced split in static and moving camera footage, among
other characteristics found in various real-life scenarios.

VIII. CONCLUSION

The purpose of this paper was to examine the applicability
of Transformers in tiny object detection under challenging cir-
cumstances. Specifically, we aimed to address the effectiveness
of early spatial-temporal feature fusion.

Our findings are that early fusion of spatial-temporal
features does currently not result in improved mAP scores
for Video Transformers on datasets containing small objects
with both moving and static camera footage.



When comparing the performance of single-frame backbone
to the multi-frame backbone distinct trade-offs were high-
lighted in the results. While the multi-frame model showed
a bias towards making false positive predictions for the most
frequent classes, it was better equipped to distinguish rarer
classes in the dataset.

Among the tested temporal fusion strategies, adapting the
encoder of the detection model into a 3D convolution
proved to deliver the best results. It introduced a learnable way
of combining the temporal information of multiple frames,
while staying close to the original model architecture.

Interestingly, the proposed early temporal fusion strategy
did not achieve better results on small objects, as it was
originally intended and designed for. However, our method
did outperform the single-frame model in scenarios with large
objects, rare classes and medium speed objects. These
results indicate that, while the multi-frame model struggles
with interpreting the added temporal information in the context
of small objects, it can offer some unique advantages in certain
areas.

In conclusion, this study explored the effects of introducing
temporal information early on in the object detection pipeline.
By experimenting with different fusion strategies, new insights
were gained in how early temporal context can affect a model’s
performance. By testing the model under different constraints
regarding scene/object characteristics, we were able to better
understand the current challenges facing Transformers in the
domain of tiny object detection. These findings can steer future
work in this field by identifying and resolving the bottlenecks
in our proposed method, such that a performance gain can be
achieved on a broader range of real-world applications.
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APPENDIX

Fig. 13. Class distribution of training and testing set Visdrone-VID [49], grouped along COCO standardized sizes. Small objects have a bounding box area
less than or equal to 32× 32 pixels, medium objects have an area between 32× 32 and 96× 96 pixels, and large objects have an area greater than 96× 96
pixels.



Fig. 14. Precision-confidence curve for H-Deformable DETR with a single-frame Swin Transformer backbone.

Fig. 15. Precision-confidence curve for H-Deformable DETR with a multi-frame Video Swin Transformer backbone using the Enc5x1 fusion mechanic.



Fig. 16. Recall-confidence curve for H-Deformable DETR with a single-frame Swin Transformer backbone.

Fig. 17. Recall-confidence curve for H-Deformable DETR with a multi-frame Video Swin Transformer backbone using the Enc5x1 fusion mechanic.



Fig. 18. Precision-Recall curve for H-Deformable DETR with a single-frame Swin Transformer backbone.

Fig. 19. Precision-Recall curve for H-Deformable DETR with a multi-frame Video Swin Transformer backbone using the Enc5x1 fusion mechanic.



Fig. 20. F1-confidence curve for H-Deformable DETR with a single-frame Swin Transformer backbone.

Fig. 21. F1-confidence curve for H-Deformable DETR with a multi-frame Video Swin Transformer backbone using the Enc5x1 fusion mechanic.



Fig. 22. Confusion matrix for H-Deformable DETR with a single-frame Swin Transformer backbone.

Fig. 23. Confusion matrix for H-Deformable DETR with a multi-frame Video Swin Transformer backbone using the Enc5x1 fusion mechanic.
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