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Abstract

This thesis provides a theoretical basis for applying structural similarity to joint inverse

problems with gradient-based variational regularization. This study develops an over-

arching formulation for these types of problems which have been successfully applied in

geophysics, image enhancement, and medical imaging in prior research. Via the Direct

Method from the calculus of variations, the study identifies lower semi-continuity and

coerciveness as essential properties for the well-posedness of the variational problem

with regularizers that are integrals over an integrand specifying structural similarity.

Informed by practice, well-posedness of the coupled inverse problem is proven for previ-

ously used specific integrands with solutions in Wm,p, BV, SBV , and the space of finite

Radon measures M. Specifically, the use of gradient-difference, cross-gradient or Schat-

ten norms as structural similarity quantifiers is theoretically justified. A generalized

form of the cross-gradient that inherently works on N coupled problems is introduced

and is proven to lead to a well-posed problem. Additionally, quasiconvex relaxation and

compensated compactness are explored as alternative methods that provide insight when

the Direct Method fails, in particular for the case of using a dot-product regularizer.

This thesis also shows that both new and existing structural regularizers outperform

traditional TV regularization in RGB image deblurring problems.
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1 Introduction

In mathematics, we can often phrase a problem in such a way that we apply an operator

K to some object b resulting in some other object d. Without paying attention to the

precise meaning of these terms we have the operator equation

K(b) = d.

This is called a forward problem, since in applications given an observed quantity b

we apply the forward operator K to get data d. The inverse problem is then given by

the opposite, where we have some data d and aim to find a corresponding b. Inverse

problems are common in all disciplines where data is gathered: including all physical

sciences, finance and engineering. Take for example b and d as vectors and K a matrix,

then the inverse problem can be solved by calculating the inverse matrix K−1. Even in

this simple case already difficulties arise, as a matrix is not always invertible. For non-

linear operatorsK, which are used for example in scattering problems or fluid mechanics,

an inverse operator K−1 can be ill-defined.

This is why solving an inverse problem (see [23] for general theory) is often difficult as the

problems can be ill-posed, ill-conditioned and there is often noise present. To combat

these problems the notion of a well-posed problem is introduced. We call an inverse

problem well-posed if there exists a solution and there is some continuous dependence

of this solution based on the initial data. Sometimes, also uniqueness of the solution is

required to call a problem well-posed but we disregard this here as proving this is only

possible in specific cases. Where possible, the conditions for uniqueness of a solution

are mentioned throughout.

Often in application, multiple measurements via similar or different data-gathering tech-

niques are performed of the same physical system. A relatively recent idea [35] is joint

inversion, where we can introduce a coupling between inverse problems with different

data d1, . . . , dN that describe the same system b. The inverse problems can be the same

except for noise when the system is measured via the same method, or of different form

when multiple methods are used. There have already been practical applications in geo-

physical reconnaissance [60, 1, 30, 31, 32, 33, 35, 34, 38, 47, 48, 56, 57], medical imaging

[7, 8, 10, 24, 25, 41, 43, 64] and image enhancement [37, 21, 45], but also in mathematical

problems in spectral theory like determining the singular values of compact operators

[29]. There are also theoretical indications for why joint inversion improves on sepa-

rate inversion, but a complete theory does not exist. In [29] the authors prove that for

self-adjoint compact operators, the joint problem is at most as ill-posed as the worst

separate problem, and often less ill-posed.
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In broad terms there are two approaches to joint problems; Model Fusion (MF) and

Structural Similarity (SS). The former is where we use one or more of the gathered

data-sets di, i = 1, . . . , N corresponding to ill-posed problems to introduce additional

constraints to enrich the other better posed problems [53]. Instead of looking for the best

solution in some solution space we can also model a joint inverse problem statistically.

We regard the data and solution as random variables and search for the solution with

the highest likelihood given the data. Here, instead of using constraints, the information

gained from knowing a (partial) solution of one of the problems can be used in the other

problems. More concretely, this statistical influence is used to adjust the Bayesian priors

of the other problems [8, 10, 34, 64]. Model fusion is then also called Mutual Information

(MI). Mathematically, MF leads to a direct encapsulation of given data in the inverse

problem to be solved and must be taken on a case to case basis.

The latter approach (SS) assumes a priori structural similarities between the problems

and is the focus of this thesis. For example, inverting MRI anatomical information

together with PET-scan functional information to create a 2/3D representation of a brain

[25, 22, 24], where there is some complicated relation between the two imaging methods.

Structural similarity is also used in multi-channel imaging, where we can regard RGB-

valued images as three quantities b1, b2, b3 corresponding to the same image [37, 21], or

jointly invert a low resolution gray-valued image with a high resolution pan-chromatic

image [46, 6]. This resemblance in structure can then be used to define a coupled inverse

problem based on all data-sets. It can be expected that the added information of similar

structure, when true, leads to a better solution to the coupled inverse problem compared

to the solutions when solving separately. This has been established quantifiably for many

specific problems (for examples, see [57, 34, 32]). The practical details can be completely

different within disciplines and across applications. In this thesis, we aim for a general

view of inverse problems with structural similarity and see that they can be modelled

via a similar approach.

Using MF, only one separate inverse problem is solved in the end and no coupled solu-

tions are computed. It cannot be easily fit in the same framework as structural similarity

and we only discuss it briefly in relation to SS in this thesis.

In geophysics and medical imaging the measurements are often performed via compli-

cated machinery where a large amount of physical parts and sensors are used. Since

inverse problems like this often come from real-world data, the ability to deal with noisy

measurements is essential. An ill-posed problem can only be solved unsatisfactorily via

numerical methods, as the solutions might differ enormously when using noisy data.
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Also, there might be no solution or there could be no numerically robust way of solving

it. Before being able to proof convergence of a solving algorithm, existence of a solution

is necessary. This is where well-posedness is important. Also, well-posed problems can

properly deal with noisy measurements as estimations of the continuous dependence on

the initial data of the solution can be used to give upper bounds on the possible error.

To change an ill-posed problem into an well-posed one, one often adds regularization

terms [23, 15]. Explicit regularization is then used to promote solutions with specific

properties such as sparseness or limited growth [44]. We can formalize a joint inverse

problem in a variational problem where we want to solve

argminb∈B ∥Kb− d∥2H + αJ(b). (1)

Where K : B → H is an operator, d the corresponding data, α > 0 and J : B → R the

regularization term. The classical case is Tikhonov-type regularization which is closely

linked to the spectral values of K where we take

J(b) :=
1

2
∥b∥2B. (2)

Throughout this report, to get some grasp on the existence of solution to the problem, we

will assume B a Banach space and H a Hilbert space with some corresponding topologies

τB, τH. We will define these aggregate B,H using direct products as B :=
⊕

Bi,H :=⊕
Hi, i = 1, . . . , N such that we can look at the components Bi,Hi separately for each

of the N ∈ N = {1, 2, . . . , } data-gathering techniques.

Furthermore, we will be assuming that all components of K given by Ki : Bi → R are

linear operators with two different types of particular choices for the Banach spaces Bi.
Namely, Bi being a function space of vector-valued functions b : Ω → R such as

Lp(Ω),Wm,p(Ω), BV (Ω), SBV (Ω), p ∈ [1,∞],m ∈ N,

or the space of vector-valued finite Radon measures b : Ω → RN given by

[M(Ω)]N , N ∈ N,

with Ω a nice subset of Rn. In these settings, our regularization term J : b :=

(u1, . . . , uN ) 7→ R̄ is some integral that quantifies the structural similarity between

the problems like

J(u1, . . . , uN ) :=

∫
Ω
f(x, u1(x), . . . , uN (x),∇u1(x), . . . ,∇uN (x))dx.

With M(Ω) treated slightly differently as Radon-Nikodym derivatives need to be used

instead of gradients. Here we use J : µ 7→ R̄ as

J(µ) :=

∫
Ω
f

(
dµa

dL1

)
dx.
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For certain integrands f(·), the Direct method of the Calculus of Variations will provide

necessary and sufficient conditions for well-posedness of the variational problem defined

in Equation (4). In the case as outlined above, the relevant notions for using the Direct

method for J with vector-valued f are (mean) coercivity, lower semi-continuity, qua-

siconvexity, and the growth at small and large values of f(∇b(x)), x ∈ Ω. The theory

of compensated compactness and (quasi)convex relaxation come into play in settings

where the Direct method has lacking answers. Throughout this thesis, we will prove

results in the general N ∈ N case when possible. Currently, the applied mathematical

literature almost exclusively works with N = 2 and hence the specific f(·) that are used
are only defined in this case. One of the aims of this report is developing a more thor-

ough mathematical understanding of the general case, which could lead experts in more

applied fields such as geoscience and computational imaging to develop new regularizers

that lead to well-posed inverse problems.

Coupled inverse problems have up till now been mainly approached from a problem-

based perspective. This can be seen in the current literature on joint inversion, where

only stratified methodological sources exist [33, 7, 64] and these are mainly focused

on practical performance. Theoretical underpinning of joint inversion in variational

problems is, where present, exclusively heuristic and informal. To the best knowledge

of the author, this thesis rectifies these gaps in knowledge in two ways.

Firstly, applying the theory of Calculus of Variations to provide an explicit character-

isation of the necessary properties for well-posedness of coupled inverse problems for

N,n ∈ N. This leads to a more delicate understanding of the variational problem.

The broader framework is then immediately useful, as gathering joint integrands f(·)
from all application domains that use joint inversion in one place and investigating well-

posedness for specific f(·) is now possible. Before only subject-specific gathering of joint

inversion techniques were written [33, 37, 64].

Secondly, in problems that are not well-posed, like when measuring structural similarity

of two vectors by the magnitude of the dot-product (where we take the integrand f

in J to be dependent on the dot-product), the application of (quasi)convex relaxation

and compensated compactness can still give reasons why structural similarity is fruitful

in some settings. Calculating the quasiconvex envelopes of integrand functions can

lead to new quasiconvex regularizers in a similar way as convex relaxation is used to

develop lower semi-continuous integral representations. Additionally, understanding the

topological spaces where non-linear expressions are compact with respect to the weak

convergence leads to verifiable conditions for regimes where the variational problem is

well-posed. This can provide insight into the type of applications where dot-product

4



regularization should work well and where it will not. Both these methods, although

thoroughly understood, have not been used for structural similarity integrals before.

Additionally, when considering coupled inverse problems with more than two compo-

nents N > 2, up till now structural regularizers have been considered as

J(u1, . . . , uN ) :=
N∑
i=1

N∑
j=1

J(ui, uj), (3)

where J(ui, uj) measures the similarity between a pair of problems. A direct definition

of J(u1, . . . , uN ) not based on pairs ui, uj is newly introduced here, where we have used

the quasiconvexity of certain specific integrands f based on the cross-product for N = 2

to inform us about the correct form for N > 2. The numerical experiments conducted

in this thesis are the first using a structural regularizer defined in this way.

The remainder of this thesis is organised as follows. In Section 2 the general theory for

existence and uniqueness of solutions for a coupled inverse problem is discussed. After a

brief discussion of the possible choices for the pair of the Hilbert space with a topology

(H, τH), a thorough exposition of the possible pairs (B, τB) of a Banach space B with

a given topology τB where we are searching for a solution is included. In Section 3

we determine the general necessary and sufficient conditions for the integral functionals

J that lead to a well-posed Equation (4). In Section 4 we prove or disprove these

properties for many specific integrands f(·) set forth in the literature over the last few

decades. For the quasiconvex integrands fGD, fCG, we extend the definition from N = 2

to N ∈ N. Section 5 exists of the statements and proofs of well-posedness when having B
as [W 1,p(Ω)]N , [BV (Ω)]N , [SBV (Ω)]N , or M. In Section 6, we take a closer look at the

integrands that are separately convex but not quasiconvex. A version of the Div-Curl

lemma is used to find a subspace of W 1,2 where J is l.s.c. when using integrands that

are convex transformations of the dot-product. Also, we investigate if (quasi)convex

relaxation can be used to define better regularizers J̄ for structurally similar problems.

Finally to put the theory to the test, in Section 7, an algorithmic approach to solving

inverse problems that have both TV regularization and a joint structural component is

developed. Using this method, we numerically asses the integrands that lead to well-

posed problems in the case N = 3, n = 2 for vector-valued image enhancements.
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2 Problem setting

The variational joint inverse problem that we study is given by

argminb∈B ∥Kb− d∥2H + αJ(b). (4)

With B = B1
⊕

· · ·
⊕

BN where Bi ∈ {Lp(Ω),Wm,p(Ω),M(Ω), BV (Ω), SBV (Ω)}, i =
1, . . . , N are Banach, H Hilbert, K : B → H is an operator, d the corresponding data,

α > 0 the regularization parameter, and J : B → R the regularization term in our case

given by

J(u1, . . . , uN ) :=

∫
Ω
f(x, u1(x), . . . , uN (x),∇u1(x), . . . ,∇uN (x))dx. (5)

Although most of the theory is applicable to any finite number N ∈ N of data-gathering

techniques, it is sensible to first look at how to couple two inverse problems for N = 2.

To explicitly include the two different problems we take H1,H2 Hilbert spaces, B1,B2

Banach spaces over R. Then H = H1
⊕

H2 is a Hilbert space with the inner product

given by

⟨h1, h2⟩H := ⟨h11, h12⟩H1 + ⟨h21, h22⟩H2 , (6)

for h1 = h11
⊕
h21, h2 = h12

⊕
h22 ∈ H. Similarly for 1 ≤ p < ∞, B = B1

⊕
p B2 is a

Banach space with the norm given by

∥b∥B :=
(
∥b1∥pB1

+ ∥b2∥pB2

) 1
p
. (7)

For b = b1
⊕
b2 := (b1, b2) ∈ B. We then have

∥Kb− d∥2H = ∥K1b1 − d1∥2H1
+ ∥K2b2 − d2∥2H2

.

In most cases this construction is sufficient, as in applications often only two inverse

problems are coupled. However, we can generalise the construction of B,H also for the

more general case over N ∈ N. In this report we almost exclusively use the direct sum⊕
1 with p = 1 as the norm belonging to B is the linear sum of the component norms,

more explicitly

∥b∥B :=

N∑
i=1

∥bi∥Bi , (8)

⟨h1, h2⟩H :=

N∑
i=1

⟨hi1, hi2⟩Hi . (9)

In this section, we state the general theorem of existence of the variational optimalisation

problem formulated in Equation (4) and in particular for a coupled system of size N ∈ N
as described in the introduction. The existence is dependent on functional analytical
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properties; the choice of specific spaces B,H, the topologies τB, τH, and convex-analytic

properties of J . We postpone the discussion concerning J to Section 3. Here we discuss

the possible choices of (B, τB) and comment on (H, τH). Specifically, which topologies

τB, domains Ω, and other properties are necessary for solutions in B. Only some basic

prerequisite knowledge of Lp(Ω) spaces is necessary as the relevant choices for the Banach

space B (Sobolev, BV, SBV, M) are introduced from definition.

2.1 Existence of a minimizer

First we define some properties of functions.

Definition 1 (Lower semi-continuity). Let f : Rn → R̄ = R ∪ {∞,−∞} a function. It

is lower semi-continuous at x0 ∈ Rn if for all x→ x0 ∈ Rn converging in Rn we have

lim inf
x→x0

f(x) ≥ f(x0).

A function is called l.s.c. if it is lower semi-continuous at all x0 ∈ Rn.

Definition 2 (Coercivity). Let f : X → R̄ a function from a normed vector space X .

It is called coercive if for every sequence (xn)n ⊂ X that has ∥xn∥X → ∞ we have

lim
n→∞

f(xn) = ∞.

For variational regularization we have the following result.

Theorem 1 (Variational minimiser). [23] Let B a Banach space and H a Hilbert space

associated with the topologies τB, τH. Assume the pair (B, τB) has the property that

bounded sequences have τB-convergent subsequences. Moreover, assume the norm on H
is τH-l.s.c. and that the operator K : B → H is linear and sequentially continuous with

respect to the topologies τB and τH. The functional J : B → R+ ∪ {∞} is proper and

τB-l.s.c. Additionally, let either J be coercive or the pair (K,J) are (mean) coercive in

the sense of Lemma 1. Let d ∈ H, α > 0.

If all these conditions are met, then the minimisation problem defined by Equation (4)

given by

argminb∈B ∥Kb− d∥2H + αJ(b),

has a minimiser.

Remark 1. Here l.s.c. stands for lower semi-continuity, see Definition 1. Note that the

inclusion of ∞ in the range of J implies that J is still well-defined if we have elements

b ∈ B such that J(b) = ∞. In the remainder we write R+ ∪ {∞} as [0,∞]. This is

similar to the extended real line R̄ := {R,∞,−∞} but now we have only added one

element ∞ instead of two.
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Lemma 1 (Mean coercivity). [23] Let K : B → H linear, J : B → [0,∞] and d ∈ H.

Let p0 ∈ B∗ the topological dual space of continuous linear functionals on B and b0 ∈ B,
such that ⟨p0, b0⟩ = 1, and b0 /∈ N (K) (the null space of K), chosen such that J is

coercive on

B0 := {b ∈ B : b ∈ N (p0)},

in the sense that for b ∈ B

∥b− ⟨p0, b⟩b0∥B → ∞ =⇒ J(b) → ∞.

If these choices can be made we say that the pair (K,J) is mean coercive.

If this is the case, the requirement of coercivity of J in Theorem 1 can be substituted by

the requirement that the pair (K,J) is mean coercive.

Remark 2. This lemma seems quite technical but is necessary already in basic sit-

uations. For example, when standard TV regularisation is used on BV ([0, 1]) with

J(b) = TV [b], already J is not coercive on the entire space. Namely, a sequence of

constant functions running off to infinity has zero total variation and hence J is not

coercive. However, taking p0(b) :=
∫ 1
0 b(x)dx as the continuous linear functional com-

puting the mean, then the corresponding subspace B0 ⊂ BV ([0, 1]) are the functions that

have zero mean. Now J is (mean) coercive on B0 and satisfies the assumptions as re-

quired in Theorem 1 with B := B0. In addition to TV regularisation, the matrix-norm

regularisers that are considered in Section 4 will also turn out to be mean coercive.

Now to more explicitly regard a coupled problem, the general form in Theorem 1 is

equivalent to the following for joint inversion.

Corollary 1 (Joint construction, N = 2). Follow the construction in Equations (6)

and (7). Let K1,K2 be linear operators that are sequentially continuous with respect

to topologies on B1,H1 and B2,H2 respectively. Let the norms on H1,H2 be τH1 , τH2

lower semi-continuous. Let (B1, τB1), (B2, τB2) have the property that bounded sequences

have convergent sub-sequences. Let K : B 7→ H, (u1, u2) 7→ (K1u1,K2u2) be an operator

that is linear and sequentially continuous with respect to τB, τH. Then the existence of

a minimizer of the Tikhonov type regularization is only dependent on the properties of

J and on possibly whether (K,J) is (mean) coercive.

Proof. Let τB be the product topology of τB1 , τB2 . We have assumed that B1,B2 are

compact spaces (wrt the respective topologies), since the finite direct sum of compact

spaces is compact we have that B is compact wrt τB. Since l.s.c. works piece-wise also

the norm on H is l.s.c. wrt to the product topology τH. By construction, K is linear and
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sequentially continuous wrt the topologies. All other necessary conditions in Theorem

1 are related to J and the result follows.

The relevant properties of J are properness, non-negativity, τB-l.s.c. and (mean) coer-

civity. We will deal with these in Section 3. We state Lemma 1 more explicitly in the

case where B := B1
⊕

p B2 is given below. There is some nuance with taking duals of a

space built from a direct sum.

Lemma 2 (Dual of direct sum). [28] Take 1 ≤ p <∞. Let B = B1
⊕

p B2 be a Banach

space. Then

B∗ isometrically isomorphic to B∗
1

⊕
q

B∗
2,

where 1
p +

1
q = 1.

The following technical result can be informally understood as the functional J(b) being

mean coercive on a function space B if ∥∇b∥ → ∞ =⇒ J(b) → ∞.

Lemma 3 (Mean Coercivity of Direct Sum). Let K : B → H linear, J : B → [0,∞]

and d ∈ H. Let p0 = (pu, pv) ∈ B∗ and b0 = (u0, v0) ∈ B such that for all b = (u, v),

⟨pu, u0⟩ = ⟨pv, v0⟩ = 1 and (u0, v0) /∈ N (K). Chosen such that J is coercive on

B0 :=

{
(u, v) ∈ B1

⊕
p

B2 : u ∈ N (pu), v ∈ N (pv)

}
.

in the sense that for all b ∈ B,

∥u− ⟨pu, u⟩u0∥B1 or ∥v − ⟨pv, v⟩v0∥B2 =⇒ J(b) → ∞.

Then the variational problem given in Equation (4) can also be called (mean) coercive.

Proof. The only actual change from Lemma 1 is the condition that for all (u, v) we have

⟨pu, u0⟩ = ⟨pv, v0⟩ = 1 instead of ⟨p0, b0⟩ = 1. This can be changed since in the proof of

Lemma 1 we actually only need that any b can be split into b = b1 + b2 where b1 ∈ B0

and b2 ∈ span b0. Heuristically, think of these two parts as the result of splitting the

function b into a multiple of the 1 function (times the mean), which is in span b0, and

the remaining oscillations around the mean ∈ B0. The condition ⟨p0, b0⟩ = 1 makes

sure that this also holds for b := b0 as then ⟨p0, b0 − ⟨p0, b0⟩b0⟩⟩ = 0. This can also be

done element-wise for u, v. By the definition of p0 we have b − ⟨p0, b⟩b0 ∈ B0 for all b

iff u− ⟨pu, u⟩u0 ∈ N (pu) and v − ⟨pv, v⟩v0 ∈ N (pv) for all (u, v). This follows from the

assumption ⟨pu, u0⟩ = ⟨pv, v0⟩ = 1. Hence if we pick (pu, pv) in such a way that the

conditions are true, we have the same result as in Lemma 1 via

∥ · ∥B = ∥ · ∥B1 + ∥ · ∥B2 .
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So the coercivity condition can also be split over the two sub-spaces.

Note that in Corollary 1 we have skipped over the difficulty of determining if K is se-

quentially continuous with respect to to the topologies by assuming this is the case.

Also the dimensionality and structure of N (K) plays a role via Lemma 3 but we skip

over this for now. Even in practical examples these things are not always straightfor-

ward, especially when considering problems over general Banach spaces with non-trivial

topologies. If the topologies are the weak topologies over function spaces B, then the

situation is much simpler as continuity in the strong topologies implies continuity in the

weak topologies. It is well-known that continuity in the norm topology is equivalent to

boundedness of a linear operator K and this is frequently verifiable in practice. The

structure of N (K) does not need to be complicated, as in some applications we have

injective operators such that N (K) = {0} and mean coercivity is straightforward. Also

skipped over but equally important is the fact that Theorem 1 only tells us something

over the existence of a minimizer but nothing about the uniqueness or dimensionality of

the set of minimizers. In the case of integral operators J as described in the introduc-

tion, uniqueness comes either from injectivity of K or strict convexity of J [23] as can

be seen from Lemma 5 below.

One can easily extend Corollary 1 to any finite but arbitrary number N ∈ N.

Corollary 2 (Joint construction, N ∈ N). Take B = B1
⊕

1 · · ·
⊕

1 BN , H constructed

via Equation 9. Let K1, . . . ,KN be linear operators that are sequentially continuous

with respect to topologies on (B1,H1), · · · , (BN ,HN ) respectively. Let the norms on

H1, . . . ,HN be τH1 , . . . , τHN
lower semi-continuous. Let (B1, τB1), . . . , (BN , τBN

) have

the property that bounded sequences have convergent sub-sequences. Let K : B 7→
H, (u1, . . . , uN ) 7→ (K1u1, . . . ,KNuN ) be an operator that is linear and sequentially

continuous wrt τB, τH. Then the existence of a minimizer of the Tikhonov-type reg-

ularization is only dependent on the properties of J and on whether (K,J) is mean

coercive.

Proof. The proof is along similar lines as the N = 2 case and is omitted.

For uniqueness of the minimizer for a minimization problem with regularisation we have

the following. Define the functional E : B → R̄ with α > 0 as

E(b) := ∥Kb− d∥2H + αJ(b). (10)

Lemma 4 (Injectivity implies strict convexity). [23] Let B be a Banach space and H a

Hilbert space. Furthermore, let K : B → H be linear, d ∈ H. Then

∥Kb− d∥2H

10



is convex in d ∈ B. Furthermore, it is strictly convex if and only if K is injective.

Lemma 5 (Uniqueness of minimizer). [23] Assume that the functional E has at least

one minimiser and either K is injective or J is strictly convex. Then the minimiser is

unique.

2.2 Choice of Hilbert space

In light of Corollary 2 there are multiple considerations from the functional analytical

perspective. Firstly, there is a choice to be made considering the H-norm and topology

as they appear in the data fidelity term given by

∥Kb− d∥2H.

In the continuous setting where the physical system b := (u1, . . . , uN ) : B → RN and

the observed parameter field d := (d1, . . . , dN ) ∈ H are continuous function, we consider

the L2 norm on the components as

∥Kb− d∥2H :=

N∑
i=1

∥Kiui − di∥2L2(Ω),

where Ω ⊂ Rn. In regards to function spaces, the Lp(Ω) spaces are the easiest to define

and best understood, they form the natural choice for H. Note that we have to take

p = 2 since this the only Lp space that is Hilbert. With this choice Corollary 2 is

applicable and we can consider b ∈ B in any Banach space. This requirement of ∥ · ∥H
corresponding to a Hilbert norm is non-trivial as many choices for normed spaces H are

not complete or the norm is not induced by an inner product. In addition to L2(Ω), the

Sobolev space W 1,2(Ω) as defined in Definition 5 is also known to be Hilbert and hence

an appropriate choice.

If we have non-continuous parameter fields d1, . . . , dN the choice is easier since the

consideration of d existing in a Hilbert space is only relevant when d(x), x ∈ Ω is non-

discrete. This is because taking a particular H is mainly a modelling choice dictated

by the application setting of the coupled inverse problem. In image enhancement, it is

natural to choose b and d both as matrices in Rl1×l2 as an image of length l1 by l2 ∈ N
is already discretized(with constant value on each pixel of the image). Via this model,

we are no longer interested in deciding which space of functions H is as we can take the

norm from the inner product on Rl1×l2 . Even for geophysical and medical applications,

data d is often only gathered at a finite amount of points such that we can regard d as a

multi-dimensional array (a matrix in 2-d or tensor for n-d, n > 2) in a general Euclidean

space.
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We are interested in solving the inverse problem numerically and we have discretized

our region Ω, we can only look at a finite number of values xj , j = 1, . . . , k ∈ Ω. Then

while carefully matching the ordering of multi-dimensional b(xj), d(xj) and only looking

at differences in the same location, we can take the norm as

∥ · ∥2H :=
N∑
i=1

k∑
j=1

∥Ki(ui(xj))− di(xj)∥2Hi
,

where we have taken ∥ · ∥Hi a norm on the space of multi-dimensional arrays. The

difference being that now any norm ∥ · ∥Hi that arises from an inner product on Hi can

be chosen instead of only the L2 norm as any finite-dimensional inner product space is

automatically Hilbert.

With these choices, in both the continuous (Hi = Lp(Ω),W 1,2(Ω)) and the discrete

(Hi ∼ RNk) case the norms on Hi, i = 1, . . . , N are by definition τHi lower semi-

continuous. Hence we know how we can deal with the norm over H in the variational

problem.

2.3 Choice of Banach space

Throughout this thesis, we assume that our Banach spaces Bi, i = 1, . . . , N are in

particular function spaces over some subset Ω ⊂ Rn such that ui : Ω → R, i = 1, . . . , N .

Here instead of the general case, we assume one-dimensional range of ui, as these function

are commonly parameter fields such as temperature or conductivity this is a valid choice.

Even then, note that this is not restrictive, as for vector-valued co-domains of ui we

can take a bigger N via the component-restrictions. It is now a natural question to ask

which of those Banach spaces have the property that bounded sequences have convergent

sub-sequences with respect to the considered topology (compactness). Disregarding the

analytical properties of J for now we can say the following; having dealt with the Hilbert

space, in order to have existence of a minimizer of joint regularization via the Direct

method (Corollary 1), we have to verify two things; does the pair (B, τB) have the

property that bounded sequences have convergent sub-sequences and is the functional

J τB-l.s.c? We deal with the former below, and deal with J entirely in Section 3.

Definition 3 (Compactness). We call a Banach space B compact with respect to the

topology τB if any bounded (wrt ∥ · ∥B) sequence in B has a τB- convergent sub-sequence.

Remark 3. Note that this is the usual definition of a compact space when we take τB to

be the norm topology. There is nuance however, as different topologies can be considered

on the normed vector space (B, ∥ · ∥B) unrelated to the norm topology. Determining

compactness wrt these different (often weaker) topologies is not always easy.
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The celebrated Banach-Alaoglu theorem provides an answer towards determining if a

pair is compact.

Theorem 2 (Sequential Banach - Alaoglu). [14] Let B be a separable normed vector

space. Then every bounded sequence (uk)k ⊂ B∗ has a weak−∗ convergent subsequence.

If B is also reflexive, then every bounded sequences in B has a weakly convergent subse-

quence and on B∗ the weak and the weak−∗ topologies coincide.

The statement above gives a sufficient condition for compactness with respect to the

weak−∗ topology, namely B being a separable reflexive normed space. This is not

a necessary condition as the Banach spaces M(Ω), BV (Ω), and SBV (Ω) which are

defined later in this section do not satisfy these conditions. However, we can still get

compactness of the topology τB of a subspace B′ ⊂ B by adding additional constraints on

the considered elements in B′. For example, in BV (Ω) we can consider any B′ ⊂ BV (Ω)

where we have a uniform bound C ≥ 0 such that u ∈ B′ =⇒ ∥u∥BV (Ω) ≤ C.

Note that via our 1-direct sum construction, if we assume B1 = · · · = BN , then separa-

bility and reflexivity of the components provides it for B as well. Proving separability

and reflexivity of normed spaces is often not straightforward. Since the details are rather

technical and not that enlightening, I have opted to put them in Appendix A. In short,

the admittable (B, τB) are given in the following paragraph. The formal definitions and

minor results are the topic of the rest of this section.

Let Ω ⊂ Rn. Assume B1 = · · · = BN , τB1 = · · · = τBN
, then the pair (B, τB) has the

property that bounded sequences have convergent sub-sequences if we have (Bi, τBi) as

in one of the following cases;

1. Lp(Ω), p ∈ (1,∞) with the weak topology.

2. A bounded and equi-integrable set F ⊂ L1(Ω) with the weak topology.

3. For Ω Lipschitz, Wm,p(Ω) for p ∈ (1,∞),m ∈ N with the weak topology.

4. M(Ω) with its weak−∗ topology and considering uniformly bounded sequences

(µk)k.

5. For Ω bounded and Lipschitz, BV (Ω) with its weak−∗ topology and considering

uniformly bounded sequences (uk)k.

6. For Ω bounded and Lipschitz, SBV (Ω) with its weak−∗ topology and the condi-

tions in Theorem 37.

Remark 4. By taking the 1-direct sum of these Bi, i = 1, . . . , N implies that we have

B = [Lp(Ω)]N , . . . , [SBV (Ω)]N via the usual notation.
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Remark 5. The assumption B1 = · · · = BN is not necessary and it is possible to have

Bi ̸= Bj since the coupling in the H norm is indirect and every proof works component-

wise for B. It is possible to mix and match choices in the list above to construct B.

A quick introduction of these spaces follows.

Remark 6. Throughout this report, we denote by LN (or L) the Lebesgue measure on

RN . With abuse of notation, we denote by the same notation LN the restricted Lebesgue

measure on any Ω ⊂ RN . B(Ω) is the corresponding Borel σ-algebra over Ω ⊆ RN .

Definition 4 (Lp spaces). Let (Ω,B(Ω),L) be a measure space and p ∈ [1,∞). The

space Lp(Ω) consists of equivalence classes of measurable functions f : Ω → R̄ such that∫
Ω
|f |pdL <∞,

where two measurable functions are equivalent if they are equal L-a.e. The Lp(Ω)-norm

is defined as

∥f∥Lp(Ω) :=

(∫
Ω
|f |pdL

) 1
p

. (11)

We are not only interested in the Lp spaces but also in the more general Sobolev spaces,

as often our regularizers depend on the size of the gradients and not only on the function

values themselves.

Definition 5 (Sobolev spaces). [2] Let m ∈ N, p ∈ [1,∞), then

Wm,p(Ω) := {u ∈ Lp(Ω) : Dαu ∈ Lp(Ω) for all 1 ≤ |α| ≤ m}, (12)

with Dα the derivative with respect to multi-index α, together with

∥ · ∥m,p,Ω :=

 ∑
0≤|α|≤m

∥Dαu∥pLp(Ω)


1
p

(13)

is called the Sobolev space corresponding to Lp with order m. For p = ∞, we take the

essential supremum instead of (fp)
1
p . The closure of C∞

0 (Ω) in Wm,p(Ω) is denoted by

Wm,p
0 (Ω).

Definition 6 (Weak convergence inWm,p). Let Ω ⊂ Rn, p ∈ [1,∞) then (uh)h converges

to u weakly in Wm,p(Ω) (denoted uh ⇀ u) if for all multi-indices 1 ≤ |α| ≤ m, (Dαuh)h

weakly converges to Dαu in Lp(Ω) and (uh)h strongly converges to u in Lp(Ω).

Note that in particular for m = 1 we need ∇uh ⇀ ∇u weakly in Lp(Ω) and uh → u

strongly in Lp(Ω) for weak convergence of uh → u in W 1,2(Ω).
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In variational problems even the Sobolev functions are often too restrictive. The exten-

sion to functions of bounded variation (BV) is often possible and necessary. Although

historically the theory of Sobolev functions and BV functions are not directly related,

nowadays good links between the two are established. From Definition 5, a function f

belongs to Wm,p if its corresponding weak derivatives fα, |α| ≤ m are in Lp. There are

functions for which the weak derivatives are not functions themselves, but only defined

measure-theoretically as distributions. The classical example is the Heaviside function

H(x) :=

1, x ≥ 0

0, x < 0

with weak derivative δ0 as Dirac measure/distribution. One can extend W 1,1(Ω) (also

called the space of absolutely continuous functions) ⊂ L1(Ω) to also consider these

objects. First we introduce the space of finite Radon measures M(Ω), on which we can

also perform minimization problems. Our BV functions then are not elements in this

space, but have weak derivatives in M(Ω).

Definition 7 (Radon measure). [4] Let (Ω,B(Ω)) be a measure space with Ω ⊂ Rn and

B(Ω) its corresponding Borel σ-algebra. Then a measure µ : B(Ω) → RN is called a

finite Radon measure if it is finite on all compact Borel subsets of Ω. The space of all

RN -valued finite Radon measures on Ω is denoted as [M(Ω)]N .

Remark 7. There is a more general definition of Radon measure over metric spaces,

but since Ω is always an open subset of some Rn and hence is always locally compact

and Hausdorff we take this easier definition throughout.

Theorem 3 (Riesz). [4] The dual space of the Banach space of all continuous linear

functionals on Ω denoted by [C0(Ω)]
N with the supremum norm is the space [M(Ω)]N

with |µ|(Ω) the variation of a measure on some set E defined as

|µ|(E) := sup

{ ∞∑
h=0

|µ(Eh)| : Eh ∈ E pairwise disjoint, E = ∪∞
h=0Eh

}
, (14)

as norm.

An application of Theorems 2 and 3 results in the following.

Theorem 4 (De La Vallée - Poussin). [4] Firstly, ([M(Ω)]N , |µ|) is a Banach space. Sec-

ondly, when only taking into account uniformly bounded sequences (µh)h with suph |µh|(Ω) <
∞, this space is weakly−∗ compact and the map µ 7→ |µ|(Ω) is l.s.c. with respect to the

weak−∗ convergence.
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Hence we can take B1 = [M(Ω)]N with τB1 as the weak−∗ topology. Instead of consid-

ering the finite Radon measures themselves, we can also look at functions in L1(Ω) that

have weak derivatives that are finite Radon measures.

Definition 8 (BV functions). [4] Let Ω ⊂ Rn open. Let u ∈ L1(Ω). Then u ∈ BV (Ω)

if the distributional derivative Du is representable by a finite Radon measure in Ω, i.e.

if ∫
Ω
u
∂φ

∂xi
dx = −

∫
Ω
φdDiu, ∀φ ∈ C∞

c (Ω), i = 1, . . . , n. (15)

For vector-valued functions u ∈ [BV (Ω)]N we have∫
Ω
uα

∂φ

∂xi
dx = −

∫
Ω
φdDα

i u,∀φ ∈ C∞
c (Ω), i = 1, . . . , n, α = 1, . . . , N. (16)

The measure being Radon and finite are the required properties for the distributional

derivative being compatible with the topology on Ω. Another equivalent characterisation

is the following.

Theorem 5 (Characterization of BV ). [4] u ∈ [L1(Ω)]N belongs also to [BV (Ω)]N iff

V (u,Ω) <∞. Where the variation V is defined to be

V (u,Ω) := sup

{
N∑
α=1

∫
Ω
uα div φαdx : φ ∈ [C1

c (Ω)]
Nn, ∥φ∥∞ ≤ 1

}
. (17)

Note that BV is a strict subspace of L1 and a Banach space if we take the norm

∥u∥BV :=

∫
Ω
|u|dx+ V (u,Ω). (18)

We can see that u ∈ L1(Ω) \BV (Ω) only if V (u,Ω) = ∞.

With the aim of extending our integral operators J to functions on BV it is prudent to

understand the distributional derivatives Du for functions in u ∈ BV .

Definition 9 (Hausdorff measure). Let k ∈ [0,∞), Ω ⊂ Rn. Then the k-dimensional

Hausdorff measure of Ω is given by

Hk(Ω) := lim
δ↓0

Hk
δ (Ω),

where for 0 < δ ≤ ∞, Hk
δ (Ω) is defined by

Hk
δ (Ω) := π

k
2
Γ
(
1 + k

2

)
2k

inf

{∑
i∈I

[diam(Ei)]
k : diam(Ei) < δ,E ⊂ ∪i∈IEi

}
, (19)

for finite or countable covers (Ei)I of Ω.
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Remark 8. The definition above is technical, this is necessary as the Hausdorff measure

can be seen as quantifying the k-dimensional area of a set with k not necessarily integer.

The scaling in front of the infimum is to have the property that Hn(Ω) = Ln(Ω) for all

Ω ⊂ Rm.

Any measure µ can be split into three parts, the absolutely continuous part µa, the

purely atomic part µj and a diffuse singular part µc. Note that W 1,1 is the space of

functions where the weak derivative only consists of µa. We say that u ∈ BV (Ω) is a

jump function if Du = Dju and denote by Ju the set of jump discontinuities (or atoms

of Du).

Theorem 6 (Du in BV ). [4] Let u ∈ [BV (Ω)]N . Then Du ∈ [M(Ω)]N can be composed

into its absolutely continuous part Dau, its jump part Dju, and its Cantor part Dcu as

Du = Dau+Dju+Dcu.

Additionally, these parts are given by

Dau := ∇u(x)Ln (20)

the approximate differential,

Dju := Du|Ju , (21)

with Ju the jump set of u, and

Dcu := Du|Ω\Su
, (22)

with Su the discontinuity set.

There are additional formulas for computation of Dcu and Dju but as we are mainly

focused on SBV (where Dcu = 0) we do not state them. The intuitive understand-

ing of the different parts is as follows: Dau = ∇u and non-zero for x ∈ Ω where

we can take a proper limit of linear approximations. It is n-dimensional. Dju(x) =

(u+(x)− u−(x))Hn−1 as value between the left and right limits towards x in the n− 1

dimensional Hausdorff measure. The Cantor part is harder to understand intuitively

and it leads to analytical difficulties since its dimensionality is somewhere in (n− 1, n).

In variational optimalisation there is always a trade-off between the functional setting,

where we decide which objects to consider and what convergence looks like, and the

analytical side, where we want to do computations of limits and operators. The main

difficulty for minimization in BV is not the functional side, but the fact that too few

regularizers J depending on Du are l.s.c. due to the analytical difficulties with comput-

ing Dcu. This is why often a less general function space is chosen, where we have easier

to check conditions for l.s.c. In the case of BV we use SBV .
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Definition 10 (SBV ). A function u ∈ BV (Ω) is a special function of bounded variation,

denoted by u ∈ SBV (Ω) if Dcu = 0.

Since SBV is a subset of L1, the weak topology is defined in the same way. The following

chain of inclusions is true.

Lemma 6 (Space inclusions). Let Ω be open. Then

W 1,1(Ω) ⊂ SBV (Ω) ⊂ BV (Ω) ⊂ L1(Ω).

Hence SBV is a useful extension of the Sobolev functions, where we still have a grasp

on the distributional derivatives.
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3 Properties of the Regularizer

In light of Theorem 1, we are interested in the properties of a regularizer J(u1, . . . , uN )

defined over functions (u1, . . . , uN ) ∈ B, with respect to some topology τB. We will

assume that we have picked an admissible pair (B, τB) as discussed in Section 2.3. We

discuss the major case distinctions for the dimension of the domain/co-domain and

introduce the framework for l.s.c. of integral operators. Next, we state the theorems

that provide l.s.c. in W 1,p, BV, SBV and their application domains. Then, we clearly

define the possible types of convexity and explain pathways to prove quasiconvexity for

specific integrands f . In Section 5, we will use these results together with Section 2

to prove or disprove well-posedness of the variational regularization of many integrands

used in the literature.

3.1 Method

We wish to frame the regularisation in the form of Calculus of Variations and answer

multiple questions about integral regularizers of the form

J(u1, . . . , uN ) :=

∫
Ω
f(x, u1, . . . , uN ,∇u1, . . . ,∇uN )dx.

We have with m1, . . . ,mN , k1, . . . , kN ∈ N as the dimensionality of respectively

u1, . . . , uN ,∇u1, . . . ,∇uN ,

the general integrand function

f(x, u1, . . . , uN , s1, . . . , sN ) : Ω× Rm1+···+mN+k1+···+kN .

In practice we collect equal m-dimensional observed quantities u1(x), . . . , uN (x) with x

in some n-dimensional space Ω ⊂ Rn, so we can assume m1 = · · · = mN = m such

that m1 + · · ·+mN = Nm. Note also that as (s1, . . . , sN ) := (∇u1, . . . ,∇uN ) this now
implies that k1 = · · · = kN = Dim(Ω)m := nm. So f : Ω × RNm × RNnm. Of course,

this can also be written as f : Ω× RNm(n+1) with an appropriate mapping. For ease of

notation, we assume d = 1 throughout. Note that for m > 1 ∈ N, we can project down

to m = 1 by considering each component in ui(x) ∈ Rm, i = 1, . . . , N as a different

quantity giving u1i (x), . . . , u
m
i (x). From Corollary 2 we need to answer the following

questions for existence of a minimizer in regards to J .

1. Is J non-negative and proper?

2. Is J coercive or is (K,J) mean coercive?
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3. Is J τB weakly lower semi-continuous?

When we require uniqueness, it comes either from injectivity of K or strict convexity

of J via Lemma 5. Non-negativity, properness and (mean) coercivity can be checked

relatively easily when a specific f(·) is given. One of the main problems is that for inte-

grands fs specifying structural similarity, (K,J) is not mean coercive. This is because

weak convergence of uh ⇀ u, vh ⇀ v does not imply ⟨uh, vh⟩ ⇀ ⟨u, v⟩. Most of the

structural similarity measures fs only consist of these types of cross-terms. The div-curl

lemma (Theorem 22) and the theory of compensated compactness deals with integrands

of this type, and we will discuss this in Section 6.1. For practical purposes, if we have

a non-coercive structural similarity regularizer JS , a mean coercivity term of the form

JC(u1 . . . , uN ) :=
N∑
i=1

αiTV(ui), αi > 0, (23)

is added such that J := JS + JC is mean coercive by construction. Using this, we

do not need to worry about the coercivity of the sole structural similarity term. The

third question however, has been an active object of study for a long time with still an

incomplete theory. The lower semi-continuity of integrals in general Banach spaces is

still an area of study, but there are partial answers in our case of vectorial integrands

from RN×n → R̄ in function spaces B. Based on the theory there is a case distinction.

(i) N = 1 or n = 1.

(ii) N = n = 2.

(iii) N = 2, n > 2.

(iv) N ≥ 3, n ≥ 2.

Taking N = 1 is just separate inversion. We can assume N ≥ 2 since we are doing joint

inversion. However most structural similarity metrics are defined only for N = 2 such

that cases (ii), (iii) are most relevant. For one-dimensional domain or co-domain (case

(i)), it is a core fact of variational calculus that convexity of the integrand provides

l.s.c. of the integral. For functions with vectorial input and vector-valued output,

different notions of convexity exists (joint, separate, quasi, poly, rank one) and there are

inherent links between them and l.s.c. In essence, for this more general class of functions,

convexity is no longer necessary and the broader class of quasiconvex functions f(·) result
in J that are l.s.c. The case distinction above over N,n is between the equivalence of the

different types of convexity (defined in Section 3.2 ) which in general has the following

implications shown in Figure 1.
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Figure 1: Venn diagram of types of convexity

Separately Convex

Rank one Convex

Quasiconvex

Polyconvex

Jointly Convex

Whereas separate convexity plays no role in the l.s.c. of J , it is a necessary requirement

for convergence of numerical solutions in most algorithms (See Section 7.3). Different

types of convexity are necessary for l.s.c. in the different cases. The larger the phase

space RN×n, the easier it is for an integral to be l.s.c. and consequently a less strict notion

of convexity is necessary. In case (i), joint convexity of f is necessary and sufficient, for

(ii) it is still unknown if rank one convexity is necessary and sufficient. This is because

there are strong indications that quasiconvexity and rank one convexity are equivalent

in this case [18, 50, 63]. In cases (iii) and (iv) we have strict separation between all the

different convexities and quasiconvexity is equivalent to l.s.c. The definitions and exact

results are the topic of the next section.

3.2 Types of convexity

Let us define the other forms of convexity that play a role in the vectorial Calculus of

Variations. We take our definitions from Dacorogna [18]

Definition 11 (Joint convexity). A function f : RN×n → R∪{+∞} is said to be jointly

convex if

f(λξ + (1− λ)η) ≤ λf(ξ) + (1− λ)f(η),
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for every λ ∈ [0, 1], ξ, η ∈ RN×n.

Definition 12 (Polyconvexity). A function f : RN×n → R ∪ {+∞} is said to be poly-

convex if there exists F : Rτ(n,N) → R ∪ {+∞} jointly convex, such that

f(ξ) = F (T (ξ)),

where T : RN×n → Rτ(n,N) is such that

T (ξ) := (ξ, adj2 ξ, · · · , adjn∧N ξ) . (24)

In the preceding definition, adjs ξ stands for the matrix of all s× s minors of the matrix

ξ ∈ RN×n (See Definition 20), 2 ≤ s ≤ n ∧N := min{n,N} and

τ(n,N) :=
n∧N∑
s=1

σ(s), where σ(s) :=

(
N

s

)(
n

s

)
=

N !n!

(s!)2(N − s)!(n− s)!
. (25)

Definition 13 (Quasiconvexity). A Borel measurable and locally bounded function f :

RN×n → R is said to be quasiconvex if

f(ξ) ≤ 1

Ln(D)

∫
D
f(ξ +∇φ(x))dx, (26)

for every bounded open set D ⊂ Rn, for every ξ ∈ RN×n and for every φ ∈ W 1,∞
0 (D).

Definition 14 (Rank one convexity). A function f : RN×n → R ∪ {+∞} is said to be

rank one convex if

f(λξ + (1− λ)η) ≤ λf(ξ) + (1− λ)f(η)

for every λ ∈ [0, 1], ξ, η ∈ RN×n with rank{ξ − η} ≤ 1.

Definition 15 (Separate convexity). A function f : Rm → R∪{+∞} is said to be sepa-

rately convex, or convex in each variable, if the function xi → f (x1, · · · , xi−1, xi, xi+1, · · · , xm)
is jointly convex for every i = 1, · · · ,m, for every fixed (x1, · · · , xi−1, xi+1, · · · , xm) ∈
Rm−1.

Remark 9. Quasiconvexity is not defined for functions taking values at ∞. This is not

a problem since in Theorem 12 we have assumed f to be Carathéodory.

Joint convexity is the most basic and states that the value of the function f between

two points is everywhere equal to or less than the linear interpolation of the endpoints

values. Polyconvex functions are functions that are jointly convex from a certain point

of view. Namely, the function is jointly convex when considering the new variable set

T (ξ) instead of ξ based on the minors of ξ. Quasiconvexity is not intuitive as Equation

(26) is not straightforward. One can see this non-local condition as a generalisation of
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the idea that there is no way to add a function φ locally around a point ξ to decrease the

average value around f(ξ). However, rank one convexity can easily be characterized by

saying that these are the functions that are jointly convex along all rank one directions

in ξ.

The conditions for quasiconvexity are in practice very difficult to prove since we need

to look at all the Lipschitz perturbations ∇φ over all possible domains D at all possible

points ξ. There are results that make it a bit easier, as it is proven that we can fixD = B1

the open ball of radius 1 [18] like in Theorem 17. Even so, proving quasiconvexity via

the definition can only be done in specific easy cases. This is why rank one convexity

and polyconvexity are often used to establish if a function is quasiconvex. In addition

to Figure 1 above, we have the following relations.

Theorem 7 (Relations between convexities). [18] Let f : RN×n → R, then

jointly convex =⇒ polyconvex =⇒ quasiconvex =⇒ rank one convex .

With all counter-implications false for general N,n ∈ N. For min{N,n} = 1,

jointly convex ⇐⇒ polyconvex ⇐⇒ quasiconvex ⇐⇒ rank one convex .

In cases (ii), (iii), (iv) [18, 3]

polyconvex ⇏ jointly convex,

and

quasiconvex ⇏ polyconvex.

In cases (iii), (iv), [59]

rank one convex ⇏ quasiconvex.

It is a well-known open conjecture by Morrey [40] stating that in case (ii), the so-called

planar case where N = n = 2, we have that rank one convexity and quasiconvexity are

equivalent.

For functions in C2(Ω), rank one convexity is equivalent to ellipticity of the Euler-

Lagrange (E-L) equations. The E-L equations for a C2 function f are elliptic if the

Legendre-Hadamard (L-H) condition given by

N∑
i,j=1

n∑
α,β=1

∂2f(ξ)

∂ξiα∂ξ
i
β

λiλjµαµβ ≥ 0, (27)

is satisfied for all λ ∈ RN , µ ∈ Rn, ξ ∈ RN×n.
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Lemma 7 (Legendre-Hadamard conditions). [18] Let f : RN×n → R̄ ∈ C2(Ω). Then f

is rank one convex iff Equation (27) holds for all λ ∈ RN , µ ∈ Rn, ξ ∈ RN×n.

A general way to disprove quasiconvexity is then as follows. We find parameter values

λ, µ, ξ for a counterexample of the Legendre-Hadamard conditions, which implies that

the function is not rank one convex. Then as all quasiconvex functions are rank one

convex, we immediately disprove it. For the cases (ii), (iii) with N = 2 and assuming

that partial derivatives commute, the L-H conditions are given as

n∑
α,β=1

∂2f(ξ)

∂ξ1α∂ξ
1
β

(
λ1
)2
µαµβ + 2

∂2f(ξ)

∂ξ1α∂ξ
2
β

λ1λ2µαµβ +
∂2f(ξ)

∂ξ2α∂ξ
2
β

(
λ2
)2
µαµβ ≥ 0. (28)

For all λ ∈ R2, µ ∈ Rn, ξ ∈ R2×n.

An additional result that will be used characterizes equivalence between rank one con-

vexity, quasiconvexity and polyconvexity for quadratic forms.

Theorem 8 (Convexity for quadratic forms). [18] Let M be a symmetric matrix in

R(N×n)×(N×n). Let

f(ξ) := ⟨Mξ; ξ⟩,

where ξ ∈ RN×n and ⟨·; ·⟩ denotes the scalar product in RN×n. The following statements

then hold.

1. f is rank one convex if and only if f is quasiconvex.

2. If N = 2 or n = 2, then f polyconvex ⇔ f quasiconvex ⇔ f rank one convex.

3. If N,n ≥ 3, then in general f rank one convex ⇏ f polyconvex.

So in all cases, a quadratic integrand is equivalently rank one convex and quasiconvex.

Additionally, in our most prominent case (ii) also polyconvexity is equivalent.

3.3 Lower semi-continuity

We wish to find sufficient properties of integrands f for the functional J to be τB weakly

l.s.c. depending on the dimension n of Ω and the amount of observed quantities N .

We first need some minimal measure-theoretical requirements on f such that we can

integrate it against the Lebesgue measure.
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Definition 16 (Normal and Carathéodory functions). [4] Let f : Ω × Rd → R̄ be a

function. We say that f is normal if f is LN × B(Rd) measurable and s → f(x, s) is

lower semi-continuous in Rd for LN almost every x ∈ Ω. We say that f is Carathéodory

if f is real-valued, LN × B(Rd) measurable and s→ f(x, s) is continuous in Rd for LN

almost every x ∈ Ω.

As structural quantifiers depend on the gradients of the functions u1, . . . , uN we do not

state results for l.s.c. in Lp(Ω) spaces but immediately concern us with Sobolev spaces.

3.3.1 W 1,p(Ω)

Sufficient but not necessary conditions for generalN,n are given in the following classical

result.

Theorem 9 (Ioffe). [4] Let Ω ⊂ Rn an open and bounded set, f : Ω×RN ×Rk → [0,∞]

be a normal function. Assume that z → f(x, y, z) is convex in Rk for all x ∈ Ω and all

y ∈ RN . Then ∫
Ω
f(x, y, z) dx

is lower semi-continuous for (yh)h ⊂ [L1(Ω)]N strongly converging to y and (zh)h ⊂
[L1(Ω)]k weakly converging to z.

If we want to use this result with y := (u1, . . . , uN ) and z := (∇u1, . . . ,∇uN ) we need to

take k = nN . Note that the strong/weak convergence here is defined component-wise.

We immediately state the most general result for the two parts N = 1, n = 1 of case (i)

in a Sobolev space.

Theorem 10 (l.s.c. for case n = 1). [4, 12] Let Ω ⊂ R an open interval, N ∈ N+. Let

p ∈ (1,∞]. Define

J(u1, . . . , uN ) :=

∫
Ω
f(x, u⃗, ∇⃗u).

If

• f is normal and non-negative,

• f is jointly convex in the variables ∇u1, . . . ,∇uN ,

then J is weakly l.s.c. on W 1,p(Ω).

Theorem 11 (l.s.c. for case N = 1). [16, 18] Let Ω ⊂ Rn be open and bounded with

boundary ∂Ω Lipschitz. Let p ∈ (1,∞]. Let f : Ω × R × Rn → R ∪ {∞} a function.

Define

J(u) :=

∫
Ω
f(x, u,∇u)
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If

• f is Carathéodory and bounded from below,

• The mapping ξ 7→ f(·, ·, ξ) is jointly convex,

then J is weakly l.s.c. on W 1,p(Ω).

Remark 10. There is some nuance with the two different cases, where the topological

requirements of the possible f are slightly different. Normal vs. Carathéodory and non-

negative vs. bounded from below. This difference is only relevant when considering if

and only if statements of the same results. In this thesis we are (almost) always in the

less general case of non-negative Carathéodory functions and only care about sufficient

properties, so we can forget about this nuance.

These results are based on the structure of W 1,p(Ω) as weak convergence here implies

strong Lp(Ω) convergence of the functions themselves with weak Lp(Ω) convergence of

the gradients. For Sobolev spaces Wm,p(Ω) with higher order m > 1 ∈ N but still n = 1

or N = 1 we can use the Rellich-Kandrochov Sobolev embeddings given in Theorem 35

. From this theorem, regardless of dimension of a Lipschitz Ω, for p ∈ [1,∞),m > 0 ∈ N
we have a compact embedding of

W 1+m,p(Ω) ↪→W 1,p(Ω).

So for J to be weakly l.s.c. on W 1+m,p(Ω) we have exactly the same conditions as for

W 1,p(Ω) as the weak convergence in W 1+m,p comes naturally from the weak topology

of W 1,p.

In a multi-dimensional domain Ω such that n > 1, joint convexity is no longer a necessary

condition and there is a larger choice of regularization functionals that are l.s.c. We have

informally the following (formally Theorem 12).

J weakly l.s.c. ⇐⇒ f Carathéodory and quasiconvex.

Note that in addition to this weaker type of convexity, there is also a switch from more

general normal functions to Carathéodry ones as from Theorem 10 to Theorem 11. Ide-

ally, we would like to consider the normal functions which can also have values equal to

infinity and only l.s.c. instead of full continuity of f is needed. However, if we consider

normal functions instead the statement is no longer if and only if, quasiconvexity is

necessary but no longer sufficient (Coming from the difficulty of quasiconvexity with

values at ∞) [18].
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Quasiconvexity is a fundamental notion because of Theorem 12 below, which provides

l.s.c. for functions only dependent on the derivative. Note that throughout the report

we often take ξ := ∇b = (∇u1, . . . ,∇uN ) ∈ RN×n as a (Jacobian) matrix. Then to cut

down on excessive notation we write

|ξ| := ∥ξ∥ = ∥ξ∥2 = ∥ξ∥RNn =

√∑
i,j

(
ξji

)2
. (29)

Remark 11. Even further in the report we will also use the equivalent Schatten 2-norm

notation ∥ξ∥lp defined in Definition 21.

Definition 17 (Growth conditions). [18] Let f : RN×n → R and 1 ≤ p ≤ ∞. Then f

is said to satisfy growth condition (Cp) if

1. (C∞) When p = ∞

|f(ξ)| ≤ η(|ξ|) for every ξ ∈ RN×n,

where η is a continuous and increasing function;

2. (Cp) When 1 < p <∞

−α (1 + |ξ|q) ≤ f(ξ) ≤ α (1 + |ξ|p) for every ξ ∈ RN×n,

for some α ≥ 0, 1 ≤ q < p;

3. (C1) When p = 1

|f(ξ)| ≤ α(1 + |ξ|)

for every ξ ∈ RN×n, where α ≥ 0.

Theorem 12 (l.s.c. in W 1,p). [18] Let p ∈ [1,∞]. Let f : RN×n → R be Carathéodory,

quasiconvex and satisfying growth condition (Cp). Let Ω ⊂ Rn be a bounded open set

and

J(b) :=

∫
Ω
f(∇u1, . . . ,∇uN )dx.

Then J is weakly lower semi-continuous in W 1,p (Ω) (weak * lower semi-continuous if

p = ∞ ), i.e.

lim inf
bν→b

J (bν) ≥ J(b).

Hence we have sufficient conditions for all cases when our Banach space B is assumed

to be a Sobolev space. Note that there are also some minor conditions on Ω, namely

it being bounded and open. There are results that also hold for unbounded Ω but the

growth restrictions become more cumbersome in this case [18]. For Sobolev spaces with

higher order, we can apply the same result.
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3.3.2 M(Ω)

Unfortunately, the theory of l.s.c. of regularizers as integrals over some integrand func-

tion f where we take B = [M(Ω)]N is rather limited. This has to do with the complicated

ways that measures can be approximated by other measures. Namely, for a general mea-

sure µ we can weakly−∗ approximate any part of it (be it absolutely continuous, atomic,

or Cantor) by a sequence of any other part (µach , µ
atomic
h or µch) or any combination of

them. The only concrete results are concerned with the special case n = 1 where Ω

is one-dimensional, as here convexity and weak−∗ convergence of these approximations

are manageable. These are explored below.

From [4] we have the following result on the space of RN -valued finite Radon measures

on Ω.

Theorem 13. (Radon-Nikodym)[4] Let µ be a finite measure on Ω. Then there is a

unique pair of RN -valued measures µa, µs such that µa << L1, µs ⊥ L1 and µ = µa+µs.

There is a unique function f ∈ [L1(Ω)]N such that µa = fL1. This function f is called

the density of µ wrt L1 (or Radon-Nikodym derivative) and is denoted by dµa

dL1 .

The Radon-Nikodym derivative acts on measures as the usual derivative acts on func-

tions and is the natural definition.

Theorem 14. [4] Let Ω ⊂ R be one-dimensional and open, N ∈ N. Define J :

[M(Ω)]N → R as

J(µ) :=

∫
Ω
f (φµ) dx

where φµ is dµa

dL1 . Where f : RN → [0,∞] is Borel. Then J is strongly l.s.c. iff f is l.s.c.

Also J is weakly l.s.c. iff f ̸= ∞, l.s.c., jointly convex and it has non-negative recession

function. i.e.

f∞(x) := lim
t→∞

f(tx)− f(0)

t
≥ 0,∀x ∈ Rn \ {0}.

Remark 12. The condition on the recession function f∞ is quite weak as it says that

eventually the function f is non-decreasing in every direction.

3.3.3 BV (Ω)

As discussed above, the complicated ways we can approximate measures dictate that

weak l.s.c. of our regularization terms J can only be proved in easy settings. In the

space [M(Ω)]N we only have Theorem 14 where we restrict to the special case n = 1.

This result can be used to prove a similar result for functions in [BV (Ω)]N as the weak

derivatives of such functions are by definition in [M(Ω)]N . As this is how l.s.c. is proved
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via the Direct method, there are no general existence results in the full multi-variate

case for BV that are derived from this approach. It turns out that the only integrands

f(·) for which we can get weak l.s.c. of J are the ones where we can regard our function

as defined on a one-dimensional domain. Or equivalently, where our values of f(·) can
be parameterised with only one variable.

This can be understood intuitively as follows. For a function b ∈ [BV (Ω)]N ,Ω ⊂ Rn

we have ∇b ∈ [M(Ω)]N . As we only have a result in [M(D)]N if Dim(D) = 1 we

can understand l.s.c. in [BV (Ω)]N if the corresponding [M(Ω)]N can be equivalently

understood as [M(D)]N with one-dimensional D. Hence there is some mapping ψ that

reduces the information on n-dimensional Ω to a 1-dimensional D, say

ψ(x) : Ω → D.

Then if this ψ is well-behaved and f(ψ(x)), ψ−1(f(x)) satisfy certain properties we can

use our result on [M(D)]N for [BV (Ω)]N . It turns out that if f is isotropic, so ψ(x) = |x|
this preserves l.s.c. of the integral functional J . The isotropy transforms our vectorial

integrand into a function with essentially one-dimensional input domain.

Theorem 15 (l.s.c. in BV ). [4] Let Ω ⊂ Rn be open and bounded, f : [0,∞) → [0,∞].

Let J : BV (Ω) → R be given by

J(b) :=

∫
Ω
f(|∇b|)dx.

Then J is sequentially weakly−∗ l.s.c. in BV (Ω) iff f is increasing, l.s.c., and convex

in the one variable.

Remark 13. Formally in [4] the authors have an additional limit condition on the

recession function f∞, but since in their case β ∈ [0,∞] and the limit exists, this always

holds.

Note the similarity to Theorem 10.

3.3.4 SBV (Ω)

The conditions necessary for compactness of a subspace SBV ′ ⊂ SBV stated in Theo-

rem 37 also provide enough regularity on the behaviour of Da, Dj for an application of

the Direct method and Theorem 10.

Definition 18 (SBV minorant). Let K ⊂ Rn be a compact set. A function φ : K×K×
RN×n → [0,∞] is called a SBV minorant for some function f if it is jointly convex in

the third variable, l.s.c., and increasing with super-linear growth for some c > 0. Also

φ(i, j, p) ≥ c|p|, ∀i, j ∈ K, i ̸= j, p ∈ RN×n,
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and

f(x, s, z) ≥ φ(x, s, z),

for all (x, s, z).

Theorem 16 (Existence minimizer in SBV ). [4] Let Ω ⊂ Rn be open and bounded,

f : Ω× RN × RN×n → [0,∞] be normal and convex in the third variable. Additionally,

there exists a SBV minorant φ for f . Then

min{J(b) : b ∈ [SBV (Ω)]N , b(x) ∈ K for Ln a.e x ∈ Ω},

has at least one solution.

Note the convexity requirement, but the weaker assumption that b(x) ∈ K is not neces-

sary for all x ∈ Ω such that we do not need uniformly bounded b, but only boundedness

a.e. Theorem 16 is quite restrictive as φ has strong requirements and f must be jointly

convex in the gradients. There is a result relaxing this convexity to quasiconvexity, but

due to the more complicated gradients for SBV functions we need to introduce addi-

tional measure-theoretic conditions. Due to technical reasons [4, 18, 54] (Lq bounds on

Lp oscillations of ∇u near jump sets Ju of functions u ∈ SBV ) only results for functions

f with super-linear growth (Cp with p > 1) are known for SBV . With the exception

of the matrix-based generalisations of total variation (VTV, TNV, TSV), the regular-

izations that are used in joint inversion have super-linear growth. Note that this is a

problem, as we can prove that there exists such a φ as necessary in Theorem 16 in the

fV TV , fTNV , fTSV cases. For the case where there is super-linear growth we have the

following.

Theorem 17 (l.s.c. in SBV). [4] Let f : Ω × RN × RN×n → [0,∞) be Carathéodory

with

c|ξ|p ≤ f(x, b, ξ) ≤ a(x) + ψ(|b|)(1 + |ξ|p), (30)

for all (x, u, ξ) ∈ B1 × RN × RN×n for some p > 0, c > 0, a ∈ L1(Ω) and an increas-

ing function ψ : [0,∞) → [0,∞). Here B1 is the Euclidean unit ball in Rn. If f is

quasiconvex with respect to ξ for all x ∈ Ω, b ∈ RN then

J(b) :=

∫
Ω
f(x, b,∇b)

is weakly lower semi-continuous for sequences bh ∈ [SBV (Ω)]N converging to b ∈
[SBV (Ω)]N with Hausdorff measure suphHN−1(Jbh) <∞.

Remark 14. For functions f only depending on the gradient ξ the upper bound in

Equation (30) is equivalent to the upper bound of the Cp growth condition. Whereas
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when working in Wm,p, for Cp we can have negative q−growth with q < p, for functions

in SBV the lower bound in the equation above is much more strict. However, applying

Theorem 17 to

fε(x, b, ξ) := ε|ξ|r + f(x, b, ξ) (31)

and then taking the limit ε ↓ 0 we get the equivalent lower bound

0 ≤ f(x, b, ξ).

So for non-negative functions f only depending on the gradient, we have Cp =⇒
Equation (30) with the given p.
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4 Specific Integrands

Now that the general framework for regularization with J as an integral with respect

to some integrand function f has been established, we will take a look at the explicit

forms of integrands that have been used in applications. One of the core aims of this

thesis is to look at how joint inversion is used in different application domains and which

specific form this takes. In light of this, an exhaustive literature review was performed,

and consequently many different integrands have been found that are used in multiple

disciplines that are adjacent to mathematics. To already have something in mind when

we think about how to measure similarity, we first define all specific integrands under

consideration. To motivate the introduction of these numerous integrands, we discuss in

Section 4.2 the past results on how model fusion and structural similarity have been used

before in medical and geoscientific imaging, and image enhancement. This discussion will

underline why there are many different integrands as the desired (analytical, numerical,

heuristic) properties of these functions f differ wildly in the applications. Afterwards,

in Section 4.3, we prove or disprove the desired properties as discussed in Theorem 1

using the types of convexity discussed Section 3.2. Finally in Section 4.4 the integrands

f that are quasiconvex for n ∈ N, N = 2 are given generalised definitions for N ∈ N.
An overview and tabulation of the found properties is given in Table 1 at the end of the

section.

4.1 Definition of integrands

The explicit integrands are only defined for N = 2. For ease of notation we take

ξ = (ξ1, . . . , ξN ) := (∇u1, . . . ,∇uN ). We omit J as it is assumed to be of the form

J(∇b) = J(ξ) =

∫
Ω
f(∇u1, . . . ,∇uN ), (32)

with integrand f : RN×n → [0,∞) and ∇b ∈ B. For the case where we have finite

Radon measures M(Ω), we will define our functions only when necessary in Section 5.2.

This is because care must be taken with defining functions and derivatives of functions

with measure-valued input. See Section 4.2 for the contexts in which the f below are

used and some cursory notes on performance. As the specific forms for the integrands

have been taken from the existing literature, the definitions below are all for N = 2.

With exception of the matrix-norm based fV TV , fTNV , fTSV (defined below) and the

new fgCG, fgNambu.

We stress that although the forms of the functions can be quite different, the reasons

behind the definition are largely the same. Namely, we aim to quantify the similarity of
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two n-dimensional vectors ξ1, ξ2. As these describe the change in value of our param-

eter fields u1, u2, similarity in Rn of the gradients ∇u1,∇u2 is equivalent to structural

similarity in the actual values. As there is no standard way to compare two vectors, the

importance of different properties of these vectors lead us to define different quantifiers.

For example, should we only look at the angle between the vectors or is the difference

in magnitude also importance? Also, should we only do an element-wise comparison or

is there some relation between different directions? Another possibility is regarding the

whole ξ as a matrix and looking at the eigenvalues/vectors.

We can look at the (element-wise) difference between the gradients

fGD(ξ) :=

n∑
i=1

|ξ1i − ξ2i |2, (33)

or a variant of this called the matched difference

fmGD(ξ) := min
w∈R2

∥w1ξ
1 − ξ2∥22 + ∥ξ1 − w2ξ

2∥22, (34)

where an optimal ω-weighting between directions is included. Some integrands are based

on the dot-product,

fDOT(ξ) := ⟨ξ1, ξ2⟩2, (35)

such as the adapted dot product

faDOT(ξ) := |⟨ξ1, ξ2⟩|, (36)

or the normalised dot product

fnDOT(ξ) :=

∣∣∣∣〈 ξ1

|ξ1|
,
ξ2

|ξ2|

〉∣∣∣∣2 . (37)

We can also use the angle between vectors to measure similarity via the cosine similarity

fcos(ξ) := 1− cos(θ) = 1− ⟨ξ1, ξ2⟩2

|ξ1|2|ξ2|2
, (38)

where θ is the angle between ξ1 and ξ2. Several can be fit in the general framework by

Arridge et al. [25] of integrating over

fφ,ψ(ξ) = φ(ψ(|ξ1||ξ2|))− ψ(|⟨ξ1, ξ2⟩|), (39)

with arbitrary strictly increasing functions φ,ψ : [0,∞) → [0,∞). In particular, linear

parallel level sets:

fLP(ξ) := |ξ1||ξ2| − ⟨ξ1, ξ2⟩, (40)

quadratic parallel level sets:

fQP(ξ) :=
√

1 + |ξ1|2|ξ2|2 − ⟨ξ1, ξ2⟩2, (41)

33



and the cross-gradient:

fCG(ξ) := |ξ1 × ξ2|2 = |ξ1|2|ξ2|2 − ⟨ξ1, ξ2⟩2. (42)

A normalized cross-gradient is also sometimes used as

fnCG(ξ) :=

∣∣∣∣ ξ1|ξ1|
× ξ2

|ξ2|

∣∣∣∣2 . (43)

However, if we work out the brackets, we will find exactly the same form as fcos. So

throughout the report we take fcos = fnCG and only worry about the first form. An

adapted version of fCG is called the Nambu functional.

fNambu(ξ) := |ξ1 × ξ2| =
√

∥ξ1∥2∥ξ2∥2 − ⟨ξ1, ξ2⟩2. (44)

As we will prove later in this section, the only functions that result in a well-posed

problem via the Direct method (as they are quasiconvex) are fCG, fNambu, and fGD.

We will introduce generalised versions of fCG and fNambu for general N that remain

quasiconvex. For N > 2 ∈ N, joint regularisers are mostly used in image processing

and are generalised vectorial total variation norms (see [37] for an excellent overview of

the properties). We take a look at vectorial/joint total variation (VTV/JTV), which is

sometimes also called the total Frobenius variation (TFV)

fVTV(ξ) = fTFV(ξ) :=

√√√√ N∑
i=1

|ξi|2, (45)

total nuclear variation (TNV),

fTNV(ξ) := ∥ξ∥∗, (46)

where with singular values of ξ given by σ1(ξ), . . . ,

∥ξ∥∗ :=
∑
i

|σi(ξ)|, (47)

the nuclear norm of matrix ξ. Finally, we also regard total spectral variation (TSV)

fTSV(ξ) := ∥ξ∥∞, (48)

where

∥ξ∥∞ := max
i

{σi(ξ)}, (49)

the spectral norm of matrix ξ.
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4.2 Joint inversion in applications

Incorporating structural similarity into regularizers is commonplace in many fields. We

can roughly put the applications in three groups; medical imaging, geoscientific recon-

naissance, and image enhancement. The method of incorporating structure can also be

done in three different ways; first solving one inverse problem and then using the solution

to directly influence the other inverse problem(s) (a priori information / Model Fusion

(MF)), using information gained from solving one inverse problem to adjust Bayesian

priors for the other inverse problem(s) (Mutual Information (MI)), and the variational

coupling of inverse problems via a joint regularization. In practice, this categorization is

too rigid as results and ideas in different methodologies influence each-other. Although

we are expressively only interested in the variational method, this is why we discuss

results of all methods.

Although most of the time the medical and geoscientific problems are solving for 2- or 3-

dimensional images there is a distinct difference between them and image enhancement.

As the image enhancement inverse problem takes as input an image d that is corrupted

by an operator K−1 and solves for the uncorrupted image b. In medical and geoscientific

applications, the inputs are physical parameter fields such as electrical conductivity or

DC resistivity and the inverse problem is for solving an image of the physical system

b. We discuss below which integrands f have been used in the variational approach by

researchers and how they compared based on their practicality and usefulness.

4.2.1 Medical Imaging

Structural information is mostly assimilated via an anatomical prior based on MRI

scans, as the image quality of MRI scans are good but the relevant functional properties

can best be captured via different image methods.

When using MF, MRI priors in the form of undersampled Fourier data have been used

in 2-dimensional electrical impedance tomography (EIT) [41], positron emission tomog-

raphy (PET) [24, 43], and magnetic particle imaging (MPI) [7] reconstruction. Different

methods using the MRI information are used based on the form of the imaging data to

be inverted. Defining the finite element mesh [41], introducing a conditional regulariza-

tion based on dot-product and cross-gradient functions [24] or weighted TV [41] based

on the MRI signal strength have all been shown to improve the image reconstruction.

From the statistical perspective (MI), Vunckx et al. [64] compares different statistical

methods for combined MRI-PET scans with Bowsher’s prior [10] performing the best.

Ehrhardt et al [24] also compares conditional regularization to Bowsher’s prior, with the
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structural regularization outperforming Bowsher. Mutual information is also used for

multi-spectral MRI [8]. Since the variational joint inversion that our results are about

can be regarded as an indirect form of structural priors, this performance indicates that

further gains can be made.

In this sense, different integrands fLP , fQP , fV TV have been compared when doing joint

inversion of PET functional information with MRI anatomical information in [25]. In

this paper, joint inversion improves on separate inversion with fLP performing best,

followed by fQP , fV TV , and lastly separate TV .

4.2.2 Geosciences

Gallardo and Meju [33] is an excellent source of using different methods based on joint

structure in geoscience. Instead of MF, in the geoscientific literature the term structure-

coupled joint inversion of multi-physics data is used, the variational approach is called

structural cooperative inversion [33]. Model Fusion and Mutual Information approaches

are difficult for geoscientific applications [34] because of the different scales involved

(10−3 − 106 meters) and the lack of understanding of the exact petrophysics. There

is also a lack of good computational techniques for solving the inverse problems when

framed in a MF or MI language due to the highly non-linear and non-convex functions

involved.

For MF, constraints based on the cross-gradient [30, 32, 1], or similarity of the Hessians

[56] are introduced. Noteworthy is [31] for pioneering MF with cross-gradient (CG)

constraints with N = 4. Where-after further gains where made using real world data

and quantitative comparison to the ground truth [60, 47, 48]. Incorporating structure

using CG constraints leads to better imaging.

In the variational framework, fDOT , fnDOT , fCG, fnCG, fGD and 1
fcos

are all used in geo-

science [33]. Originally, [35] used a smooth threshold operator where we use a step

function to either include a cost when the structure is different or no cost when the

structure is similar. Concrete results come from [34], where the authors compare fCG

and fV TV for a DC resistivity and borehole tomography problem. The variational ap-

proach performs better than separate inversion with fCG and fV TV behaving similarly.

Also, [38] shows that using fCG improves joint seismic and EM imaging.

4.2.3 Image Enhancement

In image enhancement, total variation regularization is of standard use as it has been

shown to significantly improve image quality. This is because TV regularization leads

36



to sharper edges and more pronounced structures in the image, and omitting it leads

to smoothed edges which visually look fuzzy. For multi-channel (N > 1) data such as

RGB or spectral imagery multiple generalizations for TV regularization can be defined.

Holt [37] compares the different generalizations fV TV /fTFV , fTNV , fTSV that fit within

our variational framework to each other and to so-called l1 and global l2 (Color TV in

[21]) pooling.

Jl1(ξ) =
N∑
i=1

TV [ξi], (50)

Jl2(ξ) =

√√√√ N∑
i=1

TV [ξi]2. (51)

Only fV TV has all desired theoretical properties for a joint structure regularizer in multi-

channel images and performs best quantitatively for denoising as well. Followed by fV TV

and fTSV , with Jl1 , Jl2 lacking the most theoretical properties and having the worst

quantitative results. Ehrhardt et al [21] compares fNambu, fLP , and Jl2 to a non-structure

based state-of-the-art approach called non-local means. For denoising, the methods

perform similarly for low noise with the structure-based approaches performing better

as noise increases. For demoisaicking, Jl2 is worst overall with fLP also outperforming

fNambu at high noise level.

Remark 15. In a synthetic setting, Scherders [57] compares different methods for struc-

tural regularization with computing inverse acoustic and EM wave fields. With applica-

tions in non-destructive material testing, bio-medics, and geophysical exploration. fGD

and fcos are compared with separate inversion, where improvement in EM but not in

acoustic data was found.

4.3 Properties of integrands

We consider different structural similarity integrands put forth in the literature and

consider if we can apply Corollary 2. For a given integrand f , we need non-negativity,

properness, a Cp growth condition and quasiconvexity. Coercivity or Lemma 3 is also

necessary, and we will prove it when possible. Else we will assume our inclusion of the

coercivity regularizer Jc as defined in Equation (23). The specific p in the growth condi-

tion then tells us which Sobolev space we can consider in the variational problem. The

focus is here on the Sobolev spaces as the well-posedness in other spaces only has stricter

requirements. For the other considered function spaces B, we refer to Section 2 giving

us the topology for which the problem has a minimizer after establishing well-posedness

in W 1,p. Note that properness and non-negativity both are automatically satisfied by
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our assumption on the form of J in Equation (32). However, the non-negativity of the

integrand f(·) such that it is admissible in this assumption is sometimes not directly

evident, a proof is then given. In Section 5, all assumptions and the precise settings

where the inverse problem is well-posed is described for each quasiconvex integrand f .

An overview can be found in Table 1. Note that we abuse notation and use | · | as Eu-
clidean norm on Rn,RNn and RN interchangeably based on the length of the argument

inside.

4.3.1 Gradient Difference

Lemma 8. The function defined as

fGD(ξ) :=
n∑
i=1

∣∣ξ1i − ξ2i
∣∣2 = n∑

i=1

(ξ1i )
2 + (ξ2i )

2 − 2ξ1i ξ
2
i ,

satisfies C2, is polyconvex and separately convex for n ∈ N.

Proof. Since fGD is a sum of squares, it is non-negative. The lower bound Cp is then

trivially true for any α ≥ 0, q ≥ 1. For the upper bound, the highest order terms in fGD

are of order 2, hence

fGD(ξ) ≤
∑
j=1,2

n∑
i=1

(
ξji

)2
= |ξ|2.

Take α = 1 and we have the upper bound such that fGD satisfies C2.

fGD is a quadratic form with a corresponding symmetric matrix. We can apply Theorem

8. Take the specific ordering ξ = (ξ11 , ξ
1
2 , . . . , ξ

2
n, ξ

2
n) ∈ R2×2n. Then the symmetric

matrix M is given by

M :=


1 −1 0 0 . . . 0

−1 1 −1 0 . . . 0

. . . . . . . . . . . . . . . . . .

0 . . . 0 0 −1 1


with ones on the main diagonal and −1’s on each lower and upper diagonal. Then

fGD(ξ) = ⟨Mξ; ξ⟩. From Theorem 8, rank one convexity is equivalent to quasiconvexity

for all (N,n) and poly-convexity for N = 2 or n = 2. We have assumed N = 2 implicitly.

We proof rank one convexity via the Legendre-Hadamard conditions, which is allowed

since fGD ∈ C2. We compute for α, β = 1, . . . , n

∂2f

∂ξ2β∂ξ
1
α

=

−2 α = β

0 α ̸= β
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∂2f

∂ξ1α∂ξ
1
β

=

2 α = β

0 α ̸= β

∂2f

∂ξ2α∂ξ
2
β

=

2 α = β

0 α ̸= β

Summing the terms we can simplify our sum over α, β = 1, . . . , n to a sum over α =

1, . . . , n since the cross-contributions (where α ̸= β) are 0. Then the L-H condition is

n∑
α=1

(
2(λ1)2 − 4λ1λ2 + 2(λ2)2

)
µ2α =

n∑
i=1

2(λ1 − λ2)2µ2α ≥ 0

for all λ ∈ R2, µ ∈ Rn. This is true since every term is a product of squares, so our

function is rank one convex via Lemma 7. From Theorem 8 polyconvexity follows since

we have N = 2.

Polyconvexity implies separate convexity so the lemma follows.

4.3.2 mGD

Lemma 9. The function defined as

fmGD(ξ) := min
w∈R2

∥w1ξ
1 − ξ2∥2 + ∥ξ1 − w2ξ

2∥2,

does not satisfy any Cp, is not rank one convex and not separately convex for n ∈ N.

We first rewrite fmGD in a more explicit form.

fmGD(ξ) = min
ω∈R2

n∑
i=1

(ω1ξ
1
i − ξ2i )

2 +

n∑
i=1

(ξ1i − ω2ξ
2
i )

2

= min
ω∈R2

n∑
i=1

(ω1ξ
1
i )

2 + (ξ2i )
2 − 2ω1ξ

1
i ξ

2
i + (ξ1i )

2 + (ω2ξ
2
i )

2 − 2ω2ξ
1
i ξ

2
i

= min
ω∈R2

n∑
i=1

(ω2
1 + 1)(ξ1i )

2 + (ω2
2 + 1)(ξ2i )

2 − 2ξ1i ξ
2
i (ω1 + ω2)

= min
ω∈R2

(ω2
1 + 1)|ξ1|2 + (ω2

2 + 1)|ξ2|2 − 2(ω1 + ω2)

n∑
i=1

ξ1i ξ
2
i .

Proof. For n ∈ N, we differentiate the argument with respect to ωj , j = 1, 2.

∂

∂ωj
fmGD(ξ) = 2ωj

n∑
i=1

(ξji )
2 − 2

n∑
i=1

ξ1i ξ
2
i .
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Equating ∂
∂ωj

fmGD(ξ) to zero for non-zero ξj gives

ωj =

∑n
i=1 ξ

1
i ξ

2
i

|ξj |2
.

With ωj ∈ R arbitrary if ξj = 0⃗. The critical points are at (ω1, 0), ω1 ∈ R if ξ1 = 0⃗,

at (0, ω2), ω2 ∈ R if ξ2 = 0⃗ and at
(∑n

i=1 ξ
1
i ξ

2
i

|ξ1|2 ,
∑n

i=1 ξ
1
i ξ

2
i

|ξ2|2

)
else. Then the value of the

function at the special cases ξj = 0⃗ is given by

fmGD(ξ) =

|ξ2|2 if |ξ1| = 0, |ξ2| ≠ 0

|ξ1|2 if |ξ1| ≠ 0, |ξ2| = 0

and for the non-special cases equal to

fmGD(ξ) =
n∑
k=1

(ξ1k)
2 + (ξ2k)

2 −
(∑n

i=1 ξ
1
i ξ

2
i

)2
|ξ1|2

−
(∑n

i=1 ξ
1
i ξ

2
i

)2
|ξ2|2

.

Equivalently for the non-special cases,

fmGD(ξ) = |ξ|2 − ⟨ξ1, ξ2⟩2 ·
(

1

|ξ1|2
+

1

|ξ2|2

)
.

We have a counter-example for rank one convexity using an interpolation point in the

n-dimensional subspace where |ξj |2 = 0 . Let

λ =
1

2
, ξ =

(
1 0 . . .

1 0 . . .

)
, η =

(
1 0 . . .

−1 0 . . .

)
.

Then ξ − η is a rank one matrix. Now since ξ1, ξ2, η1, η2 ̸= 0,

1

2

(
2− 12

(
1

1
+

1

1

))
+

1

2

(
2− (−1)2

(
1

1
+

1

1

))
= 0.

However, the component (λξ + (1− λ)η)2 = 0⃗ such that we are in the special case and

fmGD(λξ + (1− λ)η) = 12 = 1.

Which is the reverse inequality necessary for rank one convexity.

This function is not separately convex, there is complete symmetry in ξ1 and ξ2, without

loss of generality we fix all ξ2i , i = 1, . . . , n, ξ1i , i ̸= j for some j ∈ {1, . . . , n}. We then

have a one argument function f̄mGD as

f̄mGD(ξ
1
j ) = |ξ2|2+

∑
i ̸=j

(ξ1i )
2+(ξ1j )

2−

∑
i ̸=j

ξ1i ξ
2
i + ξ2j ξ

1
j

2(
1∑

i ̸=j(ξ
1
i )

2 + (ξ1j )
2
+

1

|ξ2|2

)
.

As counterexample we fix ξ2j = 1, ξ2i = 0, i ̸= j, then for some k ̸= j ∈ {1, . . . , n} fix

ξ1k = 1, ξ1i = 0, i ̸= j, k. Then

f̄mGD(x) = 12 + 12 + x2 − (0 + x)2
(

1

1 + x2
+

1

1

)
= 2− x2

1 + x2
.
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This is not a convex function, from λ = 1
2 , x1 = −1, x2 = 1

1

2
f̄mGD(−1) +

1

2
f̄mGD(1) = (2− 1

2
) < 2 = f̄mGD(0).

Due to asymptotic behaviour at small |ξj | values, this function does not satisfy any

growth condition Cp, p ∈ [1,∞] as our function is unbounded in the directions where

lim|ξj |→0 fmGD(ξ).

4.3.3 Dot, aDOT, nDOT

Heuristically, using the dot-product in regularization makes sense as it quantifies both

the size of the angle and the magnitudes of two n-dimensional vectors. This is why it is

disappointing that, as Lemma 10 shows, solving the problem in Corollary 2 via the Direct

method in Sobolev spaces is not guaranteed to be well-posed for regularizations based

on the dot-product. However, in particular for fDOT and faDOT , there is still some hope

as described in Section 6.1. There we find that under some additional (minor) functional

analytical assumptions on the solution space, variational minimization problems having

a dot-product regularization term are well-posed.

For now, we provide proofs for the properties in Table 1. We first state a more general

result under which both fDOT and faDOT fall. It tells us that any sensible transformation

h of the dot-product can never be a rank one convex function.

Lemma 10. Let f : RN×n → R ∪ {∞} be a function given by

f(ξ) = h(⟨ξ1, ξ2⟩) = h

(
n∑
i=1

ξ1i ξ
2
i

)
,

for some h : R → R∪ {∞}. Additionally, assume that there exists some z ̸= 0 ∈ R such

that

h(z) > h(0).

Then f is not rank one convex.

This is the simplest version of the statement, a more general version is given by the

following corollary.

Corollary 3. Let f : RN×n → R ∪ {∞} be a function given by

f(ξ) = h

(
a

n∑
i=1

g
(
ξ1i ξ

2
i

))
+ c,
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with h : R → R, a ̸= 0 ∈ R, c ∈ R. Assume g : R → R with for some z ̸= 0 g(z) > g(0)

and

h

(
a

n∑
i=1

g(0)

)
< h

(
a

n∑
i=1

g(0) + ag(z)

)
.

Then f is not rank one convex.

The proof of this version follows straightforwardly from the proof of Lemma 10 with the

additional assumptions.

Proof. We can prove that f is not rank one convex by providing a counterexample. Let

λ =
1

2
, ξ =

(
x 0 . . .

0 0 . . .

)
, η =

(
0 0 . . .

y 0 . . .

)
, x, y ̸= 0 ∈ R.

Then rank(ξ − η) = 1. Then

f(λξ + (1− λ)η) = h

(
n∑
i=2

0 +
xy

4

)
,

and

λf(ξ) + (1− λ)f(η) = h

(
n∑
i=1

0

)
.

Hence for this to be a counterexample the inequality below must be true for some

x, y ̸= 0 ∈ R.
h
(xy

4

)
≥ h(0).

We can now retroactively choose x, y such that z = xy
4 . Then our assumption on h

provides this directly.

Lemma 11. The function defined as

fDOT (ξ) := ⟨ξ1, ξ2⟩2,

satisfies C4, is not rank one convex and is separately convex for n ∈ N.

Proof. fDOT satisfies C4 as it is non-negative (such that any lower bound is satisfied)

and using Jensen’s inequality

fDOT (ξ) :=

(
n∑
i=1

ξ1i ξ
2
i

)2

≤
n∑
i=1

(
ξ1i
)2 (

ξ2i
)2 ≤ n∑

i=1

max(
(
ξ1i
)4
,
(
ξ2i
)4
) ≤

n∑
i=1

(
ξ1i
)4
+

n∑
i=1

(
ξ2i
)4

≤

(
n∑
i=1

(ξ1i )
2

)2

+

(
n∑
i=1

(ξ2i )
2

)2

≤

(
n∑
i=1

(ξ1i )
2 +

n∑
i=1

(ξ2i )
2

)2

= |ξ|4,
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such that C4 holds.

Although a proof via the Legendre-Hadamard conditions is possible, we can also simply

choose h(x) = x2 in Lemma 10 from which non rank one convexity follows immediately.

This function is separately convex, there is complete symmetry in ξ1 and ξ2, without

loss of generality we fix all ξ2i , i = 1, . . . , n, ξ1i , i ̸= j for some j ∈ {1, . . . , n}. We then

have a one argument function f̄DOT as

f̄DOT (ξ
1
j ) =

∑
i ̸=j

ξ1i ξ
2
i + ξ2j ξ

1
j

2

.

This is a second degree polynomial in ξ1j with a positive second order coefficient (ξ2j )
2.

This is a convex function.

Lemma 12. The function defined as

faDOT (ξ) :=
∣∣⟨ξ1, ξ2⟩∣∣ ,

satisfies C2, is not rank one convex and is separately convex for n ∈ N.

Proof. From the absolute value, we have non-negativity of faDOT such that any lower

bound for Cp is satisfied. As established before in the proof of Lemma 11, we have

⟨ξ1, ξ2⟩ = O
(
|ξ|2
)
. Such that C2 is satisfied.

We apply Lemma 10 with h(x) = |x| to disprove rank one convexity of faDOT .

This function is separately convex, there is complete symmetry in ξ1 and ξ2, without

loss of generality we fix all ξ2i , i = 1, . . . , n, ξ1i , i ̸= j for some j ∈ {1, . . . , n}. We then

have a one argument function f̄aDOT as

f̄aDOT (ξ
1
j ) =

∣∣∣∣∣∣
∑
i ̸=j

ξ1i ξ
2
i + ξ2j ξ

1
j

∣∣∣∣∣∣ .
This is a linear function and hence is convex.

We generalize Lemma 10 to include normalization.

Corollary 4. Let f : RN×n → R ∪ {∞} be a function given by

f(ξ) = h

(
⟨ξ1, ξ2⟩
|ξ1||ξ2|

)
= h

(
1

|ξ1||ξ2|

n∑
i=1

ξ1i ξ
2
i

)
,

for some h : R → R ∪ {∞} with h(z) > h(0) for some z ∈ [−1, 1]. Then f is not rank

one convex.

43



Proof. We can prove that f is not rank one convex by providing a counterexample. Let

λ =
1

2
, ξ =

(
x 0 0 . . .

0 y 0 . . .

)
, η =

(
0 x 0 . . .

y 0 0 . . .

)
, x, y ̸= 0 ∈ R.

Then rank(ξ − η) = 1. Then

f

(
1

2
ξ +

1

2
η

)
= h

(
1

|( ξ2 + η
2 )

1||( ξ2 + η
2 )

2|

n∑
i=1

(
ξ

2
+
η

2

)1

i

(
ξ

2
+
η

2

)2

i

)

= h

 1√
x2

4 + y2

4

√
x2

4 + y2

4

(xy
4

+
xy

4

) = h

(
xy
2

x2+y2

4

)
= h

(
2xy

x2 + y2

)
and

1

2
f(ξ) +

1

2
f(η) =

1

2
h

(
1

2 · 2
· (0)

)
+

1

2
h

(
1

2 · 2
· (0)

)
= h(0).

Then our assumption on h provides this directly as the range of 2xy
x2+y2

is [−1, 1]. As we

can pick x, y such that this fraction is equal to z.

Lemma 13. The function defined as

fnDOT (ξ) :=

〈
ξ1

|ξ1|
,
ξ2

|ξ2|

〉2

=

(
1

|ξ1||ξ2|

n∑
i=1

ξ1i ξ
2
i

)2

satisfies C1, is not rank one convex and not separately convex for n ∈ N.

Proof. The function is non-negative since our last operation on the argument is a square.

Hence any lower bound in Cp is satisfied. For the upper bound, we look at the orders (in

|ξ|) of the terms in fnDOT . We have ⟨ξ1, ξ2⟩ = O(|ξ|2) and |ξ1| · |ξ2| = O(|ξ1|) ·O(|ξ2|) =
O(|ξ|) · O(|ξ|) = O(|ξ|2). Hence dividing and then squaring them gives

fnDOT (ξ) =

(
O(|ξ|2)
O(|ξ|2)

)2

= O(1).

We can bound fnDOT from above by some number α > 0 and C1 is satisfied.

The function fnDOT can be written as in Lemma 4 with the function h(x) = x2. Then

h(1) > h(0) and the lemma disproves rank one convexity. This function is not separately

convex, there is complete symmetry in ξ1 and ξ2, without loss of generality we fix all

ξ2i , i = 1, . . . , n, ξ1i , i ̸= j for some j ∈ {1, . . . , n}. We then have a one argument function

f̄nDOT as

f̄nDOT(ξ
1
j ) =

 ∑
i ̸=j ξ

1
i ξ

2
i + ξ1j ξ

2
j√∑

i ̸=j(ξ
1
i )

2 + (ξ1j )
2∥ξ2∥

2

.
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As counterexample we fix ξ2j = 1, ξ2i = 0, i ̸= j and for some k ̸= j ∈ {1, . . . , n}, ξ1k =

1, ξ1i = 0, i ̸= j, k. Then

f̄nDOT(ξ
1
j ) =

 0 + 1 · ξ1j√
12 +

(
ξ1j

)2
· 1


2

=

(
ξ1j

)2
(
ξ1j

)2
+ 1

.

This is not a convex function as the second derivative is not everywhere positive.

f̄ ′′nDOT(ξ
1
j ) =

2− 6
(
ξ1j

)2
((

ξ1j

)2
+ 1

)3 , f̄
′′
nDOT(1) =

−1

2
< 0

4.3.4 LP

Lemma 14. The function defined as

fLP(ξ) := |ξ1||ξ2| − ⟨ξ1, ξ2⟩,

satisfies C2, is not rank one convex and is separately convex for n ∈ N.

Proof. This is as in Equation (39) with φ(s) = ψ(s) = s. Since |ξ1||ξ2| ≥ ⟨ξ1, ξ2⟩,
we have non-negativity of fLP . Hence we satisfy any lower bound for the Cp growth

conditions. Our function satisfies C2, because we have general inequalities

|ξ1||ξ2| < |ξ1|2 + |ξ2|2 = |ξ|2,

and the dot product component is also of O
(
|ξ|2
)
.

We disprove rank one convexity via the Legendre-Hadamard conditions. The terms for

α, β are

∂2fLP
∂ξ2β∂ξ

1
α

=


ξ1αξ

2
β

|ξ1||ξ2| α ̸= β

ξ1αξ
2
α

|ξ1||ξ2| − 1 α = β

∂2fLP
∂ξ1α∂ξ

1
β

=

− ξ1αξ
1
β |ξ

2|
|ξ1|3 α ̸= β

ξ1αξ
1
α|ξ2|

|ξ1|3 α = β

∂2fLP
∂ξ2α∂ξ

2
β

=

− ξ2αξ
2
β |ξ

1|
|ξ2|3 α ̸= β

ξ2αξ
2
α|ξ1|

|ξ2|3 α = β
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For all λ ∈ R2, µ ∈ Rn, ξ ∈ R2×n. We can find a counterexample by only considering

one non-cross term in µα. Take µi = 0, i ̸= 1, 2 and µ1 = µ2 = 1, the LHS of the L-H

conditions is then given by

2∑
α=1

ξ1αξ
1
α|ξ2|

|ξ1|3
(λ1)2 + 2λ1λ2

(
ξ1αξ

2
α

|ξ1||ξ2|
− 1

)
+ (λ2)2

ξ2αξ
2
α|ξ1|

|ξ2|3

+
∑

(α,β)∈{(1,2),(2,1)}

−
ξ1αξ

1
β|ξ2|

|ξ1|3
(λ1)2 + 2λ1λ2

ξ1αξ
2
β

|ξ1||ξ2|
−
ξ2αξ

2
β|ξ1|

|ξ2|3
(λ2)2.

Now taking λ1 = λ2 = 1 and keeping ξ1β, ξ
2
β, β ̸= 1, 2 arbitrary, we get

=
∑
α=1,2

(ξ1α)
2|ξ2|

|ξ1|3
+ 2

(
ξ1αξ

2
α

|ξ1||ξ2|
− 1

)
+

(ξ2α)
2|ξ1|

|ξ2|3

+
∑

(α,β)∈{(1,2),(2,1)}

−
ξ1αξ

1
β|ξ2|

|ξ1|3
+ 2

ξ1αξ
2
β

|ξ1||ξ2|
−
ξ2αξ

2
β|ξ1|

|ξ2|3
.

We can rewrite this by combining terms as

|ξ2|
|ξ1|

(
1− 2ξ11ξ

1
2

|ξ1|2

)
+

|ξ1|
|ξ2|

(
1− 2ξ21ξ

2
2

|ξ2|2

)
+

(ξ11 + ξ12)(ξ
2
1 + ξ22)

|ξ1||ξ2|
− 4.

Picking ξ12 = ξ12 = ξ21 = 1, ξ11 = 10 and substitution gives

=

√
2√
101

(
1− 20

101

)
+

√
101√
2

(
1− 2

2

)
+

11 · 2√
2
√
101

− 4 ≈ −2.34 < 0.

So there is no rank one convexity and consequently neither all other forms of convexity.

This function is separately convex, there is complete symmetry in ξ1 and ξ2, without

loss of generality we fix all ξ2i , i = 1, . . . , n, ξ1i , i ̸= j for some j ∈ {1, . . . , n}. We then

have a one argument function as

f̄LP(ξ
1
j ) =

√∑
i ̸=j

(ξ1i )
2 + (ξ1j )

2|ξ2| −

∑
i ̸=j

ξ1i ξ
2
i + ξ1j ξ

2
j

 .

We can write this with variables a, b ≥ 0, c, d ∈ R depending on the fixed variables as

f̄LP(x) =
√
x2 + a · b− (c+ dx).

Convexity can relatively easily be proven via the second derivative.

f̄ ′LP(x) =
bx√
x2 + a

− d,

f̄ ′′LP(x) =
ab

(x2 + a)
3
2

.

Now since a, b ≥ 0 we have f̄ ′′LP ≥ 0 and fLP is separately convex.
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4.3.5 QP

Lemma 15. The function defined as

fQP(ξ) :=
√
1 + |ξ1|2|ξ2|2 − ⟨ξ1, ξ2⟩2,

satisfies Cp for p > 4, is not rank one convex and not separately convex for n ∈ N.

Proof. This is as in Equation (39) with φ(s) =
√
1 + s, ψ(s) = s2. Since ⟨a, b⟩ =

|a||b| cos(θ) and cos(θ) ∈ [0, 1] we have |a||b| ≥ ⟨a, b⟩. Our function satisfies Cp, p ≥ 4,

because we have at most O
(
|ξ|4
)
terms from

|ξ1|2|ξ2|2 < |ξ1|4 + |ξ2|4 = O
(
|ξ|4
)
,

this implies √
1 + |ξ1|2|ξ2|2 = O(

∣∣ξ|2) .
We also have

⟨ξ1, ξ2⟩ = O
(
|ξ|2
)
,

squaring it is then of order O
(
|ξ|4
)
. By positivity of the first term and non-positivity

of the second term in fQP we can bound by

fQP(ξ) ≥ −⟨ξ1, ξ2⟩2 = −O(|ξ|4)

and

fQP(ξ) ≤
√

1 + |ξ1||ξ2| = O(|ξ|2).

The strict inequality of q < p necessary between the lower bound and the upper bounds

in Cp makes it such that in this case the lower bound has the tightest constraint. Re-

sulting in Cp, p > 4 being satisfied.

We disprove rank one convexity via the Legendre-Hadamard conditions. The terms for

α, β are

∂2f

∂ξ2β∂ξ
1
α

=


ξ1αξ

2
β√

1+|ξ1|2|ξ2|2

[
2− |ξ1|2|ξ2|2

1+|ξ1|2|ξ2|2

]
− 2ξ1βξ

2
α α ̸= β

ξ1αξ
2
α√

1+|ξ1|2|ξ2|2

[
2− |ξ1|2|ξ2|2

1+|ξ1|2|ξ2|2

]
− 2

(
ξ1αξ

2
α − ⟨ξ1, ξ2⟩

)
α = β

∂2f

∂ξ1α∂ξ
1
β

=


− ξ1αξ

1
β |ξ

2|2

(1+|ξ1||ξ2|)
3
2
− 2ξ2αξ

2
β α ̸= β

|ξ2|2√
1+|ξ1||ξ2|

[
1− (ξ1α)

2|ξ2|2
1+|ξ1|2|ξ2|2

]
− 2(ξ2α)

2 α = β

∂2f

∂ξ2α∂ξ
2
β

=


− ξ2αξ

2
β |ξ

1|2

(1+|ξ1||ξ2|)
3
2
− 2ξ1αξ

1
β α ̸= β

|ξ1|2√
1+|ξ1||ξ2|

[
1− (ξ2α)

2|ξ1|2
1+|ξ1|2|ξ2|2

]
− 2(ξ1α)

2 α = β
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For all λ ∈ R2, µ ∈ Rn, ξ ∈ R2×n. We can find a counterexample by only considering

the non-cross-terms in µα. Take all µi = 0, i ̸= 1 and µ1 = 1, λ1 = λ2 = 1, the LHS of

the L-H conditions is then given by

n∑
α=1

|ξ2|2√
1 + |ξ1||ξ2|

[
1− (ξ1α)

2|ξ2|2

1 + |ξ1|2|ξ2|2

]
− 2(ξ2α)

2 +
2ξ1αξ

2
α√

1 + |ξ1|2|ξ2|2

[
2− |ξ1|2|ξ2|2

1 + |ξ1|2|ξ2|2

]

−4
(
ξ1αξ

2
α − ⟨ξ1, ξ2⟩

)
+

|ξ1|2√
1 + |ξ1||ξ2|

[
1− (ξ2α)

2|ξ1|2

1 + |ξ1|2|ξ2|2

]
− 2(ξ1α)

2.

Then taking ξ1 = 0⃗

=

n∑
α=1

|ξ2|2
[
1− 0

1

]
− 2(ξ2α)

2 +
0

1

[
2− 0

1

]
− 4 (0− 0) +

0√
1

[
1− 0

1

]
− 2 · 02

=

2∑
α=1

|ξ2|2 − 2(ξ2α)
2.

Picking ξ2β = 0, β ̸= 1, , ξ21 = 1
2 we get(

1

2

)4

− 2

(
1

2

)2

= −15

16
< 0.

So there is no rank one convexity and consequently neither all other forms of convexity.

This function is not separately convex, there is complete symmetry in ξ1 and ξ2, without

loss of generality we fix all ξ2i , i = 1, . . . , n, ξ1i , i ̸= j for some j ∈ {1, . . . , n}. We then

have a one argument function f̄QP as

f̄QP(ξ
1
j ) =

√√√√√1 +

∑
i ̸=j

(ξ1i )
2 + (ξ1j )

2

 |ξ2|2 −

∑
i ̸=j

ξ1i ξ
2
i + ξ1j ξ

2
j

2

.

Setting ξ1i = ξ2i = 0, i ̸= j and ξ2j = 1 we have

f̄QP(x) =
√

1 + x2 − x2.

This is not a convex function as can be seen from the second derivative

f̄ ′′QP(x) =
1

(1 + x2)
3
2

− 2, f̄ ′′QP(0) = −1 < 0.

4.3.6 CG

Lemma 16. The function defined as

fCG(ξ) := (ξ1 × ξ2)2 := ∥ξ1∥2∥ξ2∥2 − ⟨ξ1, ξ2⟩2,

satisfies C4, is polyconvex and separately convex for n ∈ N.
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The proof is given after Lemma 17 below. Note that we take the second expression to be

the definition of (ξ1 × ξ2)2 in general n-dimensional vector spaces. This is because the

vectorial cross-product as mostly used in the physical sciences is exclusively defined in

R3. The generalized definition above comes usually from the fact that the cross-product

in R3 is equivalent to the exterior product u ∧ v of two vectors u, v ∈ R3, which can be

written as Gramian

u ∧ v := G(u, v) :=

∣∣∣∣∣⟨u, u⟩ ⟨u, v⟩
⟨u, v⟩ ⟨v, v⟩

∣∣∣∣∣ .
Now using the same formula and generalizing to u, v ∈ Rn we get

(u× v)2 := u ∧ v =

∣∣∣∣∣⟨u, u⟩ ⟨u, v⟩
⟨u, v⟩ ⟨v, v⟩

∣∣∣∣∣ = ∥u∥2∥v∥2 − ⟨u, v⟩2,

by the basic properties of the inner product.

We first state some results that are used in the proof of Lemma 16. From Definition 12

we know that for fCG to be polyconvex, we need to have a convex function F : Rτ(n,2) →
R ∪ {∞} such that

fCG(ξ) = F (T (ξ)),

with T : R2×n → Rτ(n,2) and
T (ξ) := (ξ, adj2ξ).

Here our assumption that N = 2, makes the computations more tractable since T only

depends on the first two minors of ξ. Whereas in general it would depend on the first

min{N,n} minors. We quickly unpack the construction of these adjugate matrices of

order s as denoted adjsξ for general N × n matrices ξ.

Definition 19 (Increasing Tuples). Let n ∈ N, 1 ≤ s ≤ n. Then define

Ins := {(α1, . . . , αs) ∈ Ns : 1 ≤ α1 < α2 < · · · < αs ≤ n},

to be the set of all increasing s-tuples up to n.

We introduce a backwards inverse lexicographical ordering on Ins as follows.

α ≻ β

if and only if for the largest integer k ≤ s such that αk ̸= βk and αl = βl for all l > k

we have

αk < βk.

Then there is a unique bijection φns : {1, . . . ,
(
n
2

)
} → Ins that respects this ordering [18].
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Definition 20 (Adjugate matrices). The adjugate matrix of order s, adjsξ ∈ R(
N
s )×(

n
s)

is defined to be

adjsξ =


(adjsξ)

1
1 . . . (adjsξ)

1
(ns)

...
. . .

...

(adjsξ)
(Ns )
1 . . . (adjsξ)

(Ns )
(ns)

 .

Where

(adjsξ)
i
α = (−1)i+α det


ξi1α1

. . . ξi1αs

...
. . .

...

ξisα1
. . . ξisαs

 ,

and (i1, . . . , is), (α1, . . . , αs) are such that φNs (i) = (i1, . . . , is), φ
n
s (α) = (α1, . . . , αs).

Lemma 17 (Lagrange’s identity). [9] For any two sets (a1, . . . , an), (b1, . . . , bn), n ∈ N
real (or complex) numbers we have

n∑
i=1

a2i
∑
i=1

b2i −

(
n∑
i=1

aibi

)2

=
∑

1≤i<j≤n
(aibj − biaj)

2. (52)

Proof. (Lemma 16) From Lemma 17 we see that fCG can be written as a sum of squares,

and thus is always non-negative. Any lower bound for Cp is satisfied. We have

|ξ|4 =

(
n∑
i=1

|ξ1i |2 + |ξ2i |2
)2

=
n∑
i=1

(
|ξ1i |2 + |ξ2i |2

)2
+

n∑
i,j=1,i ̸=j

(
|ξ1i |2 + |ξ2i |2

) (
|ξ1j |2 + |ξ2j |2

)

≥
n∑

i,j=1

∥ξ1∥2∥ξ2∥2 ≥ fCG(ξ).

Hence taking into account the upper bound, we have Cp, p ≥ 4.

Since implicitly N = 2, n > 1, we get s = min{N,n} = 2 and τ(n, 2) =
(
2
1

)(
n
1

)
+
(
2
2

)(
n
2

)
=

2n+ n(n−1)
2 . In particular we only need to worry about the minors adj2ξ of order 2. We

have variables

T (ξ) =
(
ξ, (adj2ξ)

1
1, . . . , (adj2ξ)

1
(n2)

)
∈ R2n+

n(n−1)
2 .

From Definition 20 we have in particular I22 = {(1, 2)} with |I22 | = 1 and In2 the set of

all
(
n
2

)
increasing 2-tuples up to n. Hence the upper indices of our 2×2 minors are fixed

and equal to (1, 2). Let α ∈ {1, . . . ,
(
n
2

)
} such that φn2 (α) = (α1, α2) with (α1, α2) ∈ In2 .

Then

(adj2ξ)
1
α = (−1)1+α det

(
ξ1α1

ξ1α2

ξ2α1
ξ2α2

)
,

and (
(adj2ξ)

1
α

)2
=
(
ξ1α1

ξ2α2

)2
+
(
ξ1α2

ξ2α1

)2 − 2ξ1α1
ξ1α2

ξ2α1
ξ2α2
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=
(
ξ1α1

ξ2α2
− ξ1α2

ξ2α1

)2
.

Note that this is the same form as in Lemma 17. It can be seen that the terms under

the sum in the RHS of Equation (52) are the adjugate minors of the matrix(
a1 . . . an

b1 . . . bn

)
.

Our claim is that we can take F : Rτ(n,2) → R∪ {∞} as F (T (ξ)) =
∑

α∈In2

(
(adj2ξ)

1
α

)2
.

It is a sum of squares of some of our variables (ξ, adj2ξ). Since x 7→ x2 is convex and a

sum of convex function is convex we have that F is a convex function in T (ξ). The only

difference between Equation (52) and F (T (ξ)) is the summation over α ∈ Ins , from the

definition of In2 we have an equivalent index set as

In2 = {(i, j) ∈ N2, 1 ≤ i < j ≤ n}.

From Definition 12 we have that fCG is polyconvex. Polyconvexity implies separate

convexity so the lemma follows.

4.3.7 Nambu

Lemma 18. The function defined as

fNambu(ξ) = |ξ1 × ξ2|,

satisfies C2, is polyconvex and separately convex for n ∈ N.

Notably, using the same algebraic definition as discussed in Lemma 16, namely

|ξ1 × ξ2| :=
√
∥ξ1∥2∥ξ2∥2 − ⟨ξ1, ξ2⟩2,

fNambu is the square root of fCG.

Proof. We can write

fNambu =
√
fCG,

and fCG satisfies C4, so we can take roots on the lower and upper bound of fCG and

immediately get that fNambu satisfies C√
4 = C2. Plugging in,

fNambu(ξ) =

√√√√∑
α∈In2

(
(adj2)

1
α

)2
,
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We can rephrase this in terms of a norm. If we define ∥ · ∥M to be the Euclidean norm

on (adj2ξ) ∈ R(
n
2). Now extend this function via the standard embedding to R2n×R(

n
2).

Then

fNambu(ξ) = ∥T (ξ)∥M , where T (ξ) ∈ R2n × R(
n
2).

We can take FNambu = ∥·∥M , which is a convex function since it is a (projected) norm. So

directly from the definition we have fNambu polyconvex. Polyconvexity implies separate

convexity so the result follows.

Remark 16. From Lemma 16, we have polyconvexity of the cross-gradient. By defini-

tion this gives a convex function FCG in terms of (ξ, adj2ξ). So

fNambu(ξ) =
√
FCG(T (ξ)).

Unfortunately the composition is the wrong way, as we would have FCG(T (
√
ξ)) also

polyconvex. However,the specific form of FCG is also conducive for the inverse compo-

sition.

4.3.8 VTV, TNV, TSV

Before proving the properties of these regularizers, we give some additional motivation

about their construction. Compared to the other regularizers that are defined only for

N = 2, these are defined for general N,n ∈ N. Also they are mainly used in linear

programming instead of variational optimization and are developed from a different

mathematical view. The three structural regularizers fV TV , fTNV , fTSV can be regarded

as different versions of a more general form. Where we regard ξ ∈ RN×n as a matrix

and take

fNorm(ξ) := ∥ξ∥·, (53)

where ∥ξ∥· is some matrix norm defined on RN×n. In particular, fV TV comes from

the Frobenius norm, fTNV from the nuclear norm, and fTSV from the spectral norm.

Although we are not restricted in choosing these particular norm, there are good reasons

why these would work best. In applications where TV regularization is used, the most

natural extension of single TV regularization defined as

TV [u] =

∫
Ω
|∇u|,

is instead of taking the absolute value over a vector ∇u ∈ Rn, we take the Nn-

dimensional norm over N vectors u1, . . . , uN as

TV [u1, . . . , uN ] :=

∫
Ω

√√√√ N∑
i=1

|∇ui|2.
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This is exactly the same formula as fV TV , or taking the Frobenius norm of the matrix

ξ := [∇u1, . . . ,∇uN ]T . Note the difference between the definition above and Jl2(ξ) as

defined in Equation (51) where the integrals are taking inside the square root instead

of the other way around. This makes fV TV a natural choice in vectorial settings for

application domains that use TV regularization [25, 34, 37].

From the perspective of looking at ξ as a matrix with the gradients of parameter fields

as rows, structural similarity can be quantified via looking at rank(ξ). As having small

rank is equivalent to having the gradients be linear combinations of each-other, and

hence they act the same structurally. In fact, if we have rank(ξ) = 1 the behaviour of

all gradients can be predicted from only one parameter field. In contrast, if rank(ξ) =

min{N,n} then in general the gradients act independently from each other and there is

low structural similarity. However, rank minimization problems have been proven to be

NP-hard [19, 61] and hence intractable for usage in realistic applications where we have

to minimize rank(ξ(x)) at many points x for each iteration. However, approximating the

solution of minimizing the rank function could still lead to satisfactory regularization

[27]. We have the following result.

Theorem 18 (Anderson). [5] Let G ∈ RN×n. Let σ1, . . . be the singular values of G.

Then the nuclear norm

∥G∥∗ :=
∑
i

|σi|,

is the convex envelope of the function rank(G) over the unit ball B1 in RN×n.

Taking the convex envelope of the rank function makes sense, as taking an envelope is

a natural approximation to a function. Additionally, as convex envelopes are convex we

get automatically l.s.c. of the integral when taking ∥ · ∥∗ as integrand. We can extend

this envelope affinely to any other bounded set in the space of matrices by the following

procedure. Let B1 be the unit ball in 2-norm over the space of matrices. Let Br be the

ball of radius r ≥ 1 in the 2-norm. The convex envelope on Br is then given by 1
r∥ · ∥∗.

As fTNV (ξ) = ∥ξ∥∗, this is a natural choice for minimization problems with matrices.

Finally, note that fTNV and fV TV are not only matrix norms, but in particular Schatten

p-norms with p = 1, 2 respectively.

Definition 21 (Schatten Norm). Let p ∈ [1,∞). Let G a matrix with σ1, . . . its singular

values. Then the Schatten p-norm is given by

∥G∥lp :=
∑
i

(σi)
p.

For p = ∞ we have

∥G∥l∞ := max{σ1, . . . , }.
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Regarding the Schatten ∞-norm results in fTFV [37].

Lemma 19. The functions defined as

fTNV (ξ) = ∥ξ∥l1 ,

fV TV (ξ) = ∥ξ∥l2 ,

fTSV (ξ) = ∥ξ∥l∞ ,

satisfy C1, are jointly convex and separately convex for N,n ∈ N.

Proof. By definition |ξ| :=
√∑

i,j |ξij |2 = ∥ξ∥l2 . The C1 condition in this case asks for

existence of an α ≥ 0 such that for all G ∈ RN×n the following holds.

|∥G∥lp | ≤ α(1 + |G|).

Note that both |G| and ∥G∥lp are matrix norms on a finite dimensional vector space,

hence there is equivalence between them. By non-negativity of the norm, we automati-

cally satisfy all lower bounds for Cp. The equivalence of matrix norms gives a constant

cp ≥ 0 such that

∥G∥lp ≤ cp|G|, ∀G ∈ RN×n.

Picking α = cp implies that condition C1 holds. There are exact values known of these

constants cp, but we omit them here since only existence is necessary. ∥ξ∥lp is trivially

jointly convex, since any norm on a vector space is convex. Joint convexity implies

separate convexity.

4.4 Extended definitions

In the previous subsections we have found that the integrand functions that are qua-

siconvex are fGD, fCG, fNambu, fV TV , fTNV , and fTSV . There are some differences be-

tween them regarding where they are defined for our parameters N,n. Namely, where

fV TV , fTNV , fTSV are defined on the entire space N2 we have that fCG, fNambu and fGD

are only defined for n ∈ N, N = 2. We remark that fCG and fNambu both evaluate to

the zero function for n = 1.

There is a standard way of considering joint structural similarity regularizers in cases

where there are more than two channels (N > 2) [37, 21]. This is the naive way

of comparing each pair over all channels and adding the contributions. Namely, if
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we have an N × n dimensional b = (u1, . . . , uN ) ∈ B and the regularizer comparing

ui, uj , i, j = 1, . . . , N, i ̸= j is given by

Ri,j(ui, uj),

then the final regularizer is given by

R(b) :=
∑

i ̸=j=1,...,N

Ri,j(ui, uj) =
1

2

∑
i=1,...,N

∑
j=1,...,i

Ri,j(ui, uj).

Here we only have to compute certain terms by the symmetry of R in (i, j). We choose

to define our generalized fGD in this way as

fgGD :=
1

2

∑
i=1,...,N

∑
j=1,...,i

fGD(ξ
i, ξj). (54)

This is well-defined and equivalent to the construction above because of the linearity of

our integral J with respect to f . We do the same with fCG and fNambu for completeness

sake. However we denote them by fjCG, fjNambu with ”j” for joint as we define different

generalisations fgCG, fgNambu via a novel non-naive approach.

fjCG(ξ) :=
1

2

∑
i=1,...,N

∑
j=1,...,i

fCG(ξ
i, ξj), (55)

fjNambu(ξ) :=
1

2

∑
i=1,...,N

∑
j=1,...,i

fNambu(ξ
i, ξj). (56)

As seen from the proof of polyconvexity of fCG, fNambu in Lemma 16 and Lemma 18

we can write a cross-product of two vectors ξ1 × ξ2 as convex function of the adjugate

matrices of ξ = (ξ1, ξ2)T . In particular

fCG :=
∑
α∈In2

(
(adj2ξ)

1
α

)2
.

This is a sum over all adjugate matrices of order 2 of ξ. This begs the following question,

what is the natural way of generalizing this sum for N ̸= 2? The parameter n is already

neatly incorporated in the expression above in the In2 term. However, we have a choice

about how to incorporate N , do we only look at the the adjugate matrices of order N , at

all adjugate matrices up to orderN or up to min{n,N}? Also, do we incorporate another

sum over IN2 as this is implicitly already in included in the expression as |I22 | = 1?

The author would argue that simplicity and symmetry are two key qualities that we

would like this integrand to have. To have a function that is symmetric in (N,n) is

natural because this implies a duality between domain Rn and co-domain RN . Funda-

mentally, we can view the parameter fields u1, . . . , uN and the locations x ∈ Ω ⊂ Rn also
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in this dual way. We can take each of the notion as foundational, where every location

has N different corresponding quantities or dually where every parameter field has a

value at each location. For symmetry, both sums over INs and Ins are necessary and we

use as upper bound for the order s the term min{n,N}. To have the simplest function,

we argue that looking only at one order s instead of multiple s = 1, . . . ,min{n,N} is

key. This does not hamstring our function fgCG in an informational perspective as all

adjugate matrices of a fixed order s incorporate all coefficients of ξ. It is arguable that

additionally using the adjugate matrices of order < s only muddles the impact of a

given ξij on the final result. As then every coefficient is included in more than one of

the adjugate contributions and the explicit formula, where we sum over all order up to

s, only increases in complexity. Taking the min{n,N}-th order results in the largest

products of coefficients (since it includes the most cross-terms) where our generalized

definition is still equal to fCG for N = 2. Hence we have chosen to define the generalised

version fgCG for ξ ∈ RN×n as

fgCG(ξ) :=
∑

β∈IN
min{N,n}

∑
α∈In

min{N,n}

(
(adjmin{N,n}ξ)

β
α

)2
. (57)

Taking different notions than simplicity and symmetry as core will naturally lead to a

different definition of fgCG, here investigation on the best form is still possible.

Lemma 20. The function fgCG satisfies Cmin{N,n}2, is polyconvex and separately convex

for N,n ∈ N.

Proof. The definition of adjugate matrices (adjsξ)
β
α (Definition 20) gives that it is

(−1)β+α times the determinant of a s × s matrix. From a function-based perspec-

tive we can see (adjsξ)
β
α as a polynomial of variables ξij , i = 1, . . . , N, j = 1, . . . n of order

s as we know how to compute determinants. Now in fgCG we have that each term is

a square of a multi-variable polynomials of order min{N,n}. Hence we have fgCG a

multi-variable polynomial of order min{N,n}2. From each variable ξij having

ξij ≤ |ξ|,

we get for any arbitrary product of length min{N,n}2 of coefficients of ξ denoted by

xk, k = 1, . . . ,min{N,n} where every xk is equal to some coefficient ξij the following

bound. ∏
k=1,...,min{N,n}2

xk ≤ |ξ| · · · · · |ξ| = |ξ|min{N,n}2 .

So each polynomial is bounded from above by |ξ|min{N,n}2 and adding up all contributions

we get that fgCG satisfies Cmin{N,n}2 with α = |INminN,n||InminN,n|.
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By construction this is a sum of squares over (adjminN,nξ)
β
α. By the definition of

adjugate matrices these variables above are the coefficients of adjminN,nξ with β =

1, . . . ,
(

N
min{N,n}

)
, α = 1, . . . ,

(
n

min{N,n}
)
. By the definition of polyconvexity we have a

convex function F : Rτ(n,N) → R in T (ξ) = (ξ, . . . , adjmin{N,n}ξ). Hence fgCG is poly-

convex. Since polyconvexity implies separate convexity, we get this for free.

We define fgNambu in exactly the same correspondence to fgCG as fNambu is to fCG.

fgNambu(ξ) :=

√√√√√ ∑
β∈IN

min{N,n}

∑
α∈In

min{N,n}

((
adjmin{N,n}(ξ)

)β
α

)2

(58)

Doing it this way, we get the same properties for fgNambu as for fNambu.

Lemma 21. The function fgNambu satisfies Cmin{N,n}, is polyconvex and separately

convex for N,n ∈ N.

Proof. The proof is the same as for Lemma 18. Namely, we can regard the square root

of the double sum over INs , I
n
s with s = min{N,n} as a norm over (adjsξ) ∈ R(

N
s )(

n
s).

Then extend it to the entire space T (ξ) ∈ Rτ{N,n} as projected norm. Then fgNambu

is a norm over this Euclidean space and hence convex. Since the variables are given

in terms of the coefficients of the adjugate minors this gives polyconvexity of fgNambu.

Polyconvexity implies separate convexity. In addition, the order of fgNambu is given by

a square root of the order of fgCG. So via a similar reasoning as in Lemma 20 of each

term under the square root we have fgNambu satisfying Cmin{N,n}.
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Table 1: Properties of specific integrands f

Coercive C p Convex Poly Quasi Rank One Separate

GD - 2 - X X X X

mGD - - - - - - -

Dot - 4 - - - - X

aDot - 2 - - - - X

nDot - 1 - - - - -

LP - 2 - - - - X

QP - > 4 - - - - -

CG - 4 - X X X X

Nambu - 2 - X X X X

VTV X 1 X X X X X

TNV X 1 X X X X X

TSV X 1 X X X X X

gGD - 2 - X X X X

jCG - 4 - X X X X

jNambu - 2 - X X X X

gCG - min{N,n}2 - X X X X

gNambu - min{N,n} - X X X X
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5 Well-posedness

Here we combine all the properties found in Section 4.3 with the different cases in Sec-

tions 2.3 and 2.3 for (B, τB) to determine for which specific integrands f our minimization

problem is well-posed.

5.1 W 1,p(Ω)

As before, we only look at W 1,p(Ω) since Wm,p(Ω) is compactly embedded in it for

m > 1.

Theorem 19 (Well-posedness inW 1,p(Ω)). Let Ω ⊂ Rn be open, bounded and Lipschitz,

p ∈ (1,∞). Take as Banach space B =
⊕N

i=1W
m,p(Ω) with the corresponding weak

topology on each component. Let H =
⊕N

i=1Hi where Hi are Hilbert spaces with τHi

l.s.c. norms. Let K : B → H be a linear operator that is sequentially continuous wrt

τB, τH. d ∈ H, b = (u1, . . . , uN ) ∈ B, α > 0. Let J : B → R ∪ {∞} be given by

J(u1, . . . , uN ) :=

∫
Ω
f(∇u1, . . . ,∇uN ),

for f(·) ∈ {fV TV , fTNV , fTSV } or

J(u1, . . . , uN ) :=

∫
Ω
fs(∇u1, . . . ,∇uN )dx+

N∑
i=1

αiTV [ui], αi > 0,

for fs(·) ∈ {fgGD, fjCG, fjNambu, fgCG, fgNambu}. Additionally, let K be such that (K,J)

is mean coercive. Then

argminb∈B∥Kb− d∥2H + αJ(b)

has a minimizer. Furthermore, this minimizer is unique if K is injective.

Proof. The core argument rests on Theorem 1. It is necessary to check all conditions

in this statement. Via Corollary 2 we can transport our properties on the components

of
⊕N

i=1 Bi and
⊕N

i=1Hi to properties of B,H. From the discussion in Section 2.3, we

know that our combination of choosing as Banach space Wm,p(Ω), p > 1,m ∈ N with

the weak topology and Lipschitz Ω satisfies the required properties of Corollary 2 (and

consequently Theorem 1). Our assumptions on Hi, τHi also give the required properties

of Theorem 1 for the Hilbert space.

Note that by construction all f, fs are real-valued and continuous on Ω̄ and since Ω is

bounded, we have that J is proper (and non-negative by non-negativity of f or fs).

For f ∈ {fV TV , fTNV , fTSV } we have that they satisfy the necessary properties for weak

l.s.c. in W 1,p(Ω) in Theorem 12 from Lemma 19. Here we can directly decide mean

coercivity of (K,J) depending on N (K) since J(b) is coercive in ∇b.

59



For fs ∈ {fgGD, fgCG, fgNambu} we get weak l.s.c. in W 1,p(Ω) from Lemma 22 below.

Since there is no way to get mean coercivity from the structural part fs we add a mean

coercive TV part. We can write the total variation inside the integral as

J(b) =

∫
Ω
fs(∇b) +

N∑
i=1

|∇bi|dx.

Now we can decide mean coercivity depending on N (K) since this J(b) is coercive in

∇b.

Our assumptions on K are the same as in Theorem 1. Hence with the discussion above,

the theorem can be applied and results in existence of a minimizer for the variational

problem.

For uniqueness of the minimizer, we need strict convexity of either ∥Kb− d∥2H or J(b).

Since in all choices for f, fs, there is no strict convexity of J(b) in either b or ∇b, we only
have to look at the first term. Applying Lemma 4 gives uniqueness if K is injective.

Noteworthy is the fact that if K is injective, we can easily prove mean coercivity of

(K,J) in the cases above as then N (K) = {0} and we choose b0 = bΩ as the mean over

our domain in Lemma 3. We have chosen here for the more general case, as K is not

always injective and it is sometimes worth the effort to prove mean coercivity of (K,J)

explicitly.

Remark 17. It is also possible to get uniqueness of the minimizer from strict convexity

of J(b). It is not clear how to define strict quasiconvexity in a similar way as strict joint

convexity. The core argument of uniqueness is that J strictly convex implies J
(
u+v
2

)
<

J(u)+J(v)
2 . If we naively define strict quasiconvexity to be

f(ξ) <
1

|D|

∫
D
f(ξ +∇φ)dx,

we do not have the same property, so this does not translate.

Lemma 22 (TV contribution preserves l.s.c.). Let p ∈ [1,∞],Ω ⊂ Rn be open and

bounded. Let fs : RN×n → R be as in Theorem 12 such that∫
Ω
fs(ξ)dx,

is l.s.c. in W 1,p(Ω;RN ). Then the function given by

J(ξ) :=

∫
Ω
fs(ξ)dx+

N∑
i=1

αiTV [ξi]

is also l.s.c in W 1,p(Ω). In addition, the same is true when we replace W 1,p(Ω;RN ) by

SBV (Ω).
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Proof. We can write the total variation also as an integral over Ω via

TV [ui] =

∫
Ω
|∇ui(x)|dx,

or

TV [ui] =

∫
Ω
|ξi|,

So our result follows if we can apply Theorem 12 to the function f = fs + fc :=

fs +
∑N

i=1 |ξi|. We need f to be Carathéodory, quasiconvex and satisfy Cp.

From Lemma 6 we have W 1,p(Ω) ⊂ BV (Ω) such that TV [ui] < ∞ for all i = 1, . . . , N

and the sum 0 ≤
∑N

i=1 αiTV [ui] < ∞. So fs(ξ) ≤ f(ξ) < ∞ for all ξ ∈ RN×n,

in particular it is real-valued. From the explicit form of the continuous contribution∑N
i=1 |ξi| we can easily see f to be LN ×B(RN×n) measurable and continuous. Together

this implies f to be Carathéodory.

The new contribution fc is affine in ξ, this implies that it is convex and in particular

quasiconvex. Now, the sum of quasiconvex functions is quasiconvex via

f(ξ) = fs(ξ)+fc(ξ) ≤
1

|D|

∫
D
fs(ξ+∇φ)dx+ 1

|D|

∫
D
fc(ξ+∇φ)dx =

1

|D|

∫
D
f(ξ+∇φ)dx

for all D ⊂ Rn bounded and open, ξ ∈ RN×n and φ ∈W 1,∞
0 (D). So f is quasiconvex.

We prove that fc satisfies C1.

0 ≤ fc(ξ) =
N∑
i=1

αi|ξi| ≤ max
i
αi ·

N∑
i=1

√√√√ n∑
j=1

(ξji )
2.

Note that
√
· is a concave function, then applying Jensen’s inequality for concave func-

tions with ϕ(x) =
√
x with xi =

∑n
j=1(ξ

j
i )

2 we have

ϕ

(∑N
i=1 xi
N

)
≥
∑N

i=1 ϕ(xi)

N
.

Substitution gives √∑N
i=1

∑n
j=1(ξ

j
i )

2

N
≥
∑N

i=1 |ξi|
N

.

Writing this as a norm we get for all ξ ∈ RN×n

√
N |ξ| ≥ fc(ξ).

Such that with α =
√
N maxi αi ≥ 0 we have C1 for fc.

Let fs satisfy Cp, p ∈ (1,∞). Then

fs(ξ) + fc(ξ) ≤ α(1 + |ξ|p) + ᾱ|ξ| ≤ max{α, ᾱ, 1}(1 + |ξ|p + |ξ|),
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for some α ≥ 0, ᾱ =
√
N maxi αi. For all ξ with |ξ| > 1 we have |ξ|p > |ξ| so

f(ξ) ≤ max{α, ᾱ, 1}(1 + |ξ|p).

The set of all ξ with |ξ| ≤ 1 is compact in RN×n. Since f is continuous it is bounded

on this set, denote the upper bound by C > 0 ∈ R+. Then for all ξ we have

f(ξ) ≤ max{C,max{α, ᾱ, 1}(1 + |ξ|p)} ≤ a(1 + |ξ|p)

with a = max{C,α, ᾱ, 1} and f satisfies the upper bound of Cp. For the lower bound

we notice that fc ≥ 0 such that the same q lower bound holds for f as for fs. Together

we have that f satisfies Cp.

If fs satisfies C1 we have easily

|f(ξ)| ≤ |fs(ξ) + fc(ξ)| = (α+ ᾱ)(1 + |ξ|),

such that f satisfies C1. If fs satisfies C∞, then the new η̄(|ξ|) := η(|ξ|) + ᾱ(1 + |ξ|)
implies C∞ for f . We have all necessary properties of Theorem 12. So we can apply it

to f := fs + fc and the lemma follows in W 1,p(Ω).

The conditions for l.s.c. of SBV (Ω) are also Carathéodory, quasiconvexity and a growth

condition as described in Theorem 17. We can use the same arguments to conclude the

result for SBV (Ω) instead of W 1,p(Ω) since the growth condition necessary is a special

case of Cp as discussed in the remark after Theorem 17.

5.2 M(Ω) with n = 1

The notation in this case is not straightforward as our Banach space B is now given

by [M(Ω)]N with the variation norm as seen in Section 2.3. The integrand f as in

Theorem 14 is still a vector-based function but now with one-dimensional domain.

Care must be taken as our integrands f as in Section 4.1 are only defined on func-

tion spaces. We define new corresponding functions f· such that we can take f (µ) =

fgGD(µ), fV TV (µ), fTNV (µ), fTSV (µ). We want to define integrands f(·) : [M(Ω)]N →
[0,∞] that measure structural similarity. For a measure µ ∈ [M(Ω)]N we can assume

that the structure is encoded in dµa

dL1 ∈ [L1(Ω)]N . We can define our f(·) in the natural

way where we consider the Radon-Nikodym derivatives similarly as the weak derivatives

∇u for u ∈ W 1,p(Ω). We use similar notation as from the context we can see which

definition is used.

Definition 22 (Matrix norms on M(Ω)). Define for Ω ⊂ R, µ ∈ [M(Ω)]N the following

f· : [M(Ω)]N → [0,∞);

fgGD(µ) :=
1

2

∑
i=1,...,N

∑
j=1,...,i

((
dµa

dL1

)i
−
(
dµa

dL1

)j)2

,
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fTNV (µ) :=

∥∥∥∥dµadL1

∥∥∥∥
l1
,

fV TV (µ) :=

∥∥∥∥dµadL1

∥∥∥∥
l2
,

fTSV (µ) :=

∥∥∥∥dµadL1

∥∥∥∥
l∞
.

Lemma 23. The functions fgGD, fTNV , fV TV , fTSV as in the definition above are jointly

convex for n = 1, N ∈ N.

Proof. Note that taking a linear combination is well-defined for Radon-Nikodym deriva-

tives. So that convexity is defined by the usual condition as in Definition 11. For n = 1

we have equivalence between rank one convexity and convexity. Taking into account the

proofs of Section 4.3 the only integrands that possibly are convex are

fgGD, f(j)(g)CG, f(j)(g)Nambu, fV TV , fTNV , fTSV .

The cross-product in one dimension is equal to 0, so both f(j)(g)CG and f(j)(g)Nambu

are equal to the zero function. Although this is a convex function, it is the trivial case

and does not act as a regularizer anymore, we do not consider this trivial case. By the

equivalence of convexity we have fgGD, fTNV , fV TV , fTSV convex for n = 1.

Lemma 23 states that these newly defined functions are l.s.c. and convex. The Schatten

norms can be simplified as dµa

dL1 is a function in [L1(Ω)]N and can be considered a vector

in RN for a fixed x ∈ Ω. The singular values of a vector are given by its 2-norm followed

by all 0’s. Plugging this into the Schatten norms, we get

fV TV (µ) =

N∑
i=1

∥∥∥∥∥
(
dµa

dL1

)i∥∥∥∥∥
2

L1(Ω)

,

and

fTNV (µ) = fTSV (µ) =

√√√√ N∑
i=1

∥∥∥∥∥
(
dµa

dL1

)i∥∥∥∥∥
2

L1(Ω)

.

Theorem 20. [Well-posedness in M(Ω)] Let Ω ⊂ R be open, N ∈ N. Take as Banach

space B = [M(Ω)]N with the corresponding weak−∗ topology. Let H =
⊕N

i=1Hi where

Hi are Hilbert spaces with τHi l.s.c norms. Let K : B → H be a linear operator that is

sequentially continuous wrt τB, τH. d ∈ H, µ ∈ B, α > 0. Let J : B → R ∪ {∞} be given

by

J(µ) :=

∫
Ω
f (µ) dL1,
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for f(·) ∈ {fgGD, fV TV , fTNV , fTSV }. Additionally, let K be such that (K,J) is mean

coercive. Then

argminµ∈B∥Kµ− d∥2H + αJ(µ)

has a minimizer. Furthermore, this minimizer is unique if f = fgGD or K is injective.

Proof. As with all these proofs for well-posedness, we want to apply Theorem 1. It is

necessary to check all conditions in this statement. Via Corollary 2 we can transport our

properties on the components of
⊕N

i=1 Bi and
⊕N

i=1Hi to properties of B,H. From the

discussion in Section 2.3, we know that our combination of choosing as Banach space

B = [M(Ω)]N with the variation topology gives the required properties for Theorem

1. Our assumptions on Hi, τHi also give the required properties of Theorem 1 for the

Hilbert space.

Note that by the definitions above all f are well-defined and real-valued. Additionally,

by non-negativity of f and boundedness of Ω we have that J is non-negative and proper.

The (mean) coercivity of J in dµa

dL1 comes from the proofs in Section 4.3.

Our assumptions on K are the same as in Theorem 1 and we have assumed mean

coercivity of (K,J).

Only left is the weak l.s.c of J . If we take f(µ) = φ
(
dµa

dL

)
, we need to prove l.s.c.,

joint convexity and the recession condition to apply Theorem 14. Lemma 23 gives joint

convexity of our functions f . Since norms are continuous, fTNV , fV TV are l.s.c. in

particular. As fgGD is a polynomial in [L1(Ω)]N it is also continuous.

We compute the recession functions for functions of type f := ∥ · ∥lp . By homogeneity

of a norm , for non-trivial dµ
a

dL1 we have

f∞

(
dµa

dL1

)
= lim

t→∞

∥t dµ
a

dL1 ∥lp − ∥0∥lp
t

= lim
t→∞

|t|∥ dµ
a

dL1 ∥lp
t

=

∥∥∥∥dµadL1

∥∥∥∥
lp
> 0.

For f
(
dµa

dL1

)
= fgGD(µ) in the non-trivial case we have

f∞

(
dµa

dL1

)
= lim

t→∞

∑
i=1,...,N

∑
j=1,...,i

((
dµa

dL1

)i
−
(
dµa

dL1

)j)2

− f(0)

t

= lim
t→∞

∑
i=1,...,N

∑
j=1,...,i

t

((dµa
dL1

)i)2

+

((
dµa

dL1

)j)2
+ 2

(
dµa

dL1

)i(dµa
dL1

)j
= ∞.

So the conditions of Theorem 14 are satisfied and we consequently get weakly−∗ l.s.c.

of J .
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Finally, we can apply Theorem 1 and get existence of a minimizer for the variational

problem. By the strict convexity of fgGD we immediately get a unique minimizer via

Lemma 5. Note that a norm is never strictly convex by homogeneity, so in the other

cases only the injectivity of K can imply uniqueness of the minimizer.

5.3 BV (Ω) with isotropic integrand

Based on Theorem 15, our challenge of determining the well-posedness of the Tikhonov-

type regularization problem is given by determining which functions f· defined in Section

4.1 are isotropic (this means that we can write it is a function of |∇b|) and test if they

satisfy the properties necessary in the theorem.

We can quickly forget about most of the integrands considered in this thesis, as we can

rule out isotropy immediately in most cases. If we take ξ ∈ R2×n (or RN×n) and consider

ξ =

(
1 1

1 1

)
, η =

(
0 0

0 2

)
,

with additional zeros in the case N ̸= 2, then the element-wise norms are equal as

|ξ| = |η| = 2,

however

|ξ1||ξ2| = 2 ̸= 0 = |η1||η2|,

and

⟨ξ1, ξ2⟩ = 2 ̸= 0 = |η1||η2|.

So any function f(·) including any of these terms cannot be isotropic as we can find two

matrices ξ ̸= η with equal norm that have different f(·) value. Every function except

the Schatten norms fTSV , fV TV , and fTNV belong to this class and hence cannot be

isotropic. In regards to these matrix norms we have that fV TV (ξ) = |ξ| and hence is

the trivial case, this is still interesting as using fV TV as integrand results in a well-

posed problem over [BV (Ω)]N . Although fTNV and fTSV are equivalent to fV TV when

regarded as norms a proof of an increasing mapping between them as necessary for

Theorem 15 could not be found or constructed. We conjecture that such a function does

not exist based on the complex behaviour of the Schatten norms with small perturbations

in the singular values. As the only structural integrand giving a well-posed problem in

this setting is the trivial one given by fV TV , we have opted to not include a lemma or

proof of this fact.
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5.4 SBV (Ω)

The complexity of the structure of all compact subspaces of the space SBV (Ω) as

discussed in Appendix A increases the explicit conditions for well-posedness of the vari-

ational problem. However,

Theorem 21 (Well-posedness in SBV (Ω)). Let Ω ⊂ R be open, bounded and Lipschitz,

N ∈ N. Take as Banach space B a subspace of the Banach space [SBV (Ω)]N with

the corresponding weak−∗ topology Additionally, assume there is some l.s.c. increasing

θ : (0,∞) → (0,∞] with

lim
t→0

θ(t)

t
= ∞,

where

sup
b∈B

{∫
Ju

θ
(
|u+ − u−|

)
dHn−1

}
<∞. (59)

Let H =
⊕N

i=1Hi where Hi are Hilbert spaces with τHi l.s.c norms. Let K : B → H be

a linear operator that is sequentially continuous wrt τB, τH. d ∈ H, b = (u1, . . . , uN ) ∈
B, α > 0. Let J : B → R ∪ {∞} be given by

J(b) :=

∫
Ω
fs(∇u1, . . . ,∇uN )dx+

N∑
i=1

αiTV [ui], αi > 0

for fs(·) ∈ {fgGD, fjCG, fjNambu, fgCG, fgNambu}. Additionally, let K be such that (K,J)

is mean coercive. Then

argminb∈B∥Kb− d∥2H + αJ(b)

has a minimizer. Furthermore, this minimizer is unique if K is injective.

For compactness of our Banach space B′ ⊂ [SBV (Ω)]N we see in Theorem 37 that for

each uniformly bounded sequence (uh)h ⊂ [SBV (Ω)]N we can find corresponding φ, θ

such that we have

sup
h

{∫
Ω
φ(|∇uh|)dx+

∫
Juh

θ(|u+h − u0h|)dHn−1

}
<∞.

As we will see in the proof below, we can forget about the φ since Cp with p > 1

implies its existence. Now instead of a θ defined on the whole of B, we can also take

a collection of (θk)k∈K for some index set K with for each k satisfying the properties

for some Bk ⊂ SBV (Ω). Then taking B =
⋃
k∈K Bk by considering these subspaces

simultaneously is permitted.

Proof. The proof is almost equivalent to the proof of the second J in Theorem 19 with

fs+TV . The only difference being the additional functional conditions of B and that we
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need l.s.c. in SBV (Ω) instead of W 1,p(Ω). Here taking as integrands fV TV , fTNV , fTSV

do not lead to well-posed problems as these have linear growth and subsequently cannot

satisfy the lower bound c|ξ|p ≤ f(ξ) with p > 1 for some c > 0.

Instead of Lemmata 22 and 11 for l.s.c in W 1,p(Ω) of the two cases for f we now use

Lemmata 22 and 17 to get weak l.s.c. in [SBV (Ω)]N .

We need compactness of B with respect to the weak−∗ topology. This is the case when

we satisfy the conditions of Theorem 37. In the assumptions above, a satisfactory θ

provides two things; a bound on both the size of the jump set Jb, b ∈ B and magnitude

of the jumps |b+− b−| in Jb. We still need to prove existence of a suitable φ. The claim

is that the growth condition necessary for the l.s.c. in SBV (Ω) provides us with a φ.

By the l.s.c. in SBV (Ω) we have for some p > 1

0 ≤ f(ξ) ≤ α(1 + |ξ|p).

Take φ : [0,∞) → [0,∞] as φ(x) = α(1 + |x|p). Then this is easily seen to be lower

semi-continuous and increasing in x. Also

lim
t→∞

α(1 + |t|p)
t

= ∞,

since α > 0, p > 1. Finally, let uh ∈ SBV (Ω) be a uniformly bounded sequences with

∥uh∥∞ < C for all h. Then since Ω is bounded,

sup
h

{∫
Ω
φ(|∇bh|)dx

}
= sup

h

{∫
Ω
α(1 + |∇bh|p)dx

}
≤
∫
Ω
α(1+Cp)dx ≤ α(1+Cp)|Ω| <∞.

Hence we can dispense of the need to provide adequate φ for compactness of B. For the
rest of the argument we lead to reader towards the proof of Theorem 19.
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6 Relaxation

We are primarily interested in functions fs that are separately convex but are not jointly

convex as by Theorem 28 it is necessary for numerical convergence. Functions that are

quasiconvex give l.s.c. of the integral regularizer J via the Direct method. From Table

1 we see that these are fDOT , faDOT , and fLP . There are largely two main avenues of

approach in adapting our joint inverse problem such that it becomes well-posed for non

quasiconvex integrands.

The first being compensated compactness, explored in Section 6.1, where we can provide

weak continuity of non-linear expressions fs(∇b) using additional functional analytic

assumptions.

The second utilizing (quasi)-convex relaxation, explored in Section 6.2. This is a method

where we define a new integral regularizer J̄ called the relaxed problem as

J̄(b) :=

∫
Ω
Qf(∇b(x))dx, (60)

where Qf is the quasiconvex envelope of f , similarly defined as in convex analysis or

used in Γ-convergence.

Definition 23 (Envelopes). For L = C(convex), P (polyconvex), Q(quasiconvex), R(rank-

one-convex) we have the L-convex envelope of a function f given by

Lf(ξ) := sup{g(ξ) ≤ f(ξ) : g is L− convex}.

With these definitions, we can apply the well-posedness results from Section 5 with joint

structural regularizer J̄ as the Direct method is applicable to the quasiconvex integrand

Qf .

6.1 Compensated compactness

In general, nonlinear expressions do not commute with weak−∗ limits. However, there

are specific cases where weak−∗ convergence of the variables does guarantee weak conti-

nuity of the given expression. A prominent example are the minors of a gradient matrix

ξ with in particular the determinant [54]. Providing the compatibility of nonlinear

functions with weak(−∗) limits is the core of the theory of compensated compactness,

with its most important results being concerned with products. We have the following

div-curl lemma.

Definition 24 (Precompactness in a metric space). Let X be a metric space. A subset

Y ⊂ X is called precompact (or relatively compact) if any sequence of elements (yn)n ∈ Y

has a subsequence (ynj )j ∈ Y that metrically converges to some element y ∈ X.
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Theorem 22 (Murat-Tartar). [54] Assume that the sequences (uj), (vj) ⊂ L2(Ω) are

such that uj ⇀ u, vj ⇀ v in L2 and that (div uj)j , (curl vj)j are precompact inW−1,2
loc (Ω).

Then

uj · vj ⇀ u · v in L1
loc.

Remark 18. There is a generalisation for 1 < p < ∞ and q its conjugate on (uj) ⊂
Lp(Ω), (vj) ⊂ Lq(Ω) [51] along similar lines.

Let (uj)j ∈ W 1,p(Ω) with ∆uj relatively compact. Since we are working in a metric

space we have {∆uj}j precompact iff any sequence in the set has a norm-convergent

subsequence.

If we pick for the precompact sets in particular the null space of the differential operators,

we have the conditions: curl vj = 0 and div uj = 0. Now in particular we are interested

in sequences of gradients that weakly convergence such that we apply Theorem 22 to

sequences ūj := ∇uj and v̄j := ∇vj for some (uj), (vj) ∈ W 1,p
loc(Ω). From standard

calculus we have that the curl of a gradient field is always zero. Hence the condition

on vj is non-restrictive and the condition on uj ( div ∇uj = ∆uj = 0) characterizes

the set of harmonic functions. Taking the Laplacian of discontinuous functions is not

well-defined in the classical calculus sense, we remedy this by using the usual weak forms

defined on Sobolev spaces.

Definition 25 (Weak Laplacian). Let Ω an open bounded domain with C1 boundary.

The strong solution of the Dirichlet problem is given by solving for u in some function

space

∆u = f, in Ω,

and

u = 0, in ∂Ω,

for given f ∈ L2(Ω). We call u ∈W 1,2(Ω) a weak solution if∫
Ω
∇u · ∇v = ⟨f, v⟩; ∀v ∈W 1,2

0 (Ω).

Remark 19. We have only defined the Dirichlet problem with zero boundary condi-

tion for ease of understanding, we can extend the definition and all results to non-zero

boundary conditions.

Using the fact that W 1,2(Ω) is Hilbert, via the Lax-Milgram Lemma [49] (or Riesz

representation Theorem 3) we have a function −∆u ∈W−1,2(Ω) such that

⟨−∆u, v⟩ = ⟨f, v⟩;∀v ∈W 1,2
0 (Ω).
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This is meant when stating that −∆u = f in the distributional sense. This distributional

solution is now taken to be the definition of a Laplacian on W 1,2(Ω).

Lemma 24 (Div-Curl for gradient fields). Assume we have sequences uj , vj ∈W 1,2(Ω)

such that ∇uj ⇀ ∇u,∇vj ⇀ ∇v in L2(Ω). Additionally assume that for all j, ∆uj ∈ K
for some precompact set K ⊂W−1,2(Ω). Then

∇uj · ∇vj ⇀ ∇u · ∇v in L1
loc(Ω).

Proof. By definition, uj , vj ∈ W 1,2(Ω) implies ∇uj ,∇vj ∈ L2(Ω). For weak differential

operators we still have the usual identities curl ∇u = 0 and div ∇u = ∆u in the

distributional sense. Hence, following the discussion below Theorem 22 leads to a direct

application and we immediately get the result.

This also explains the nomenclature as we regard only a subspace of the possible gra-

dients, in particular those that have ∆uj ∈ K. This additional topological condition

then ”compensates” for the lack of compactness through the dot product in general.

We apply the lemma above to some specific structural regularizers J(u, v).

Lemma 25 (Weak l.s.c of convex functions). [42] Let F : R → R convex. Then if

un ⇀ u in L1(Ω) we have∫
F (u(x))dx ≤ lim inf

n

∫
F (un(x))dx.

Theorem 23 (L.s.c using div-curl lemma). Let Ω ⊂ Rn bounded. Let (uj , vj)j ⊂
[W 1,2(Ω)]2 with uj ⇀ u, vj ⇀ v ∈ W 1,2(Ω). Assume (∆uj)j a precompact set in

W−1,2(Ω). Let J : [W 1,2(Ω)]2 → R given by

J(u, v) :=

∫
Ω
F (∇u(x) · ∇v(x)) dx, (61)

with F : R → R a convex function. Then, with possibly taking a subsequence

lim inf
j→∞

J((uj , vj)j) ≥ J(u, v).

Proof. Let (uj , vj)j ∈ [W 1,2(Ω)]2, then ∇uj ,∇vj ∈ L2(Ω). By the definition of the

W 1,2(Ω) norm, we have strong convergence of ∇uj → ∇u,∇vj → ∇v in L2(Ω). Note

that strong convergence implies weak convergence such that ∇uj ⇀ ∇u,∇vj ⇀ ∇v in

L2(Ω) up to some sub-sequence. Applying Lemma 24 we have that weakly ∇uj ·∇vj →
∇u · ∇v in L1

loc(Ω) up to sub-sequence. Denote this possible sub-sequence by the same

notation (uj , vj)j . For bounded Ω we have bj ⇀ b in L1(Ω) iff bj ⇀ b in L1
loc(Ω). Then

we can apply Lemma 25 to (bj)j := (u · v)j ∈ L1(Ω) with F and get

lim inf
j

J(uj , vj) = lim inf
j

∫
Ω
F (∇uj(x) · ∇vj(x)) ≥

∫
Ω
F (∇u · ∇v) = J(u, v).
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Note that in particular we can apply Theorem 23 to using integrands fs that are convex

transformations of the dot-product. Specifically fDOT and faDOT .

6.2 Quasiconvex relaxation

Computing the (quasi)convex envelopes of functions is of interest to minimization prob-

lems because of the reasons. Firstly, as explained earlier, computing the quasiconvex

envelope Qf of a function f enables the usage of the Direct method to an inverse prob-

lem with the relaxed integral regularizer J̄ as in Equation (60). Secondly, when not

dealing with a data fidelity term and interested solely in the minimization of an energy

functional J(∇b), the infimum cannot by attained using minimizing sequences of J in

the set of admissible functions. However, with some coercivity conditions, we can find

a minimizing sequence attaining the infimum the relaxed problem J̄ .

In this thesis, we are mainly interested in the first application but our results on the

envelopes of specific integrands f can also be applied in the direct minimization problems

in the second application. Where we can also deduce properties of the minimizers of

system reliant on energy functionals using fDOT and faDOT .

Definition 26 (Relaxed problem). Let p ∈ [0,∞]. Let a variational problem called (P)

be given by

inf

{∫
Ω
f(∇b)dx, u ∈ u0 +W 1,p

0 (Ω)

}
.

Then the relaxed problem (QP) is given by

inf

{∫
Ω
Qf(∇b)dx, u ∈ u0 +W 1,p

0 (Ω)

}
.

Theorem 24 (Relaxation). [18] Let Ω ⊂ Rn be a bounded open set. Let f : RN×n → R
be Borel measurable function satisfying, for 1 ≤ p <∞ and all ξ ∈ RN×n

g(ξ) ≤ f(ξ), |g(ξ)|, |f(ξ)| ≤ α(1 + |ξ|p),

where g : RN×n → R is quasiconvex and α > 0 is a constant, while for p = ∞ it is

assumed that f is locally bounded and bounded below by g. Then

inf(P ) = inf(QP ).

More precisely, for every p ≤ q ≤ ∞ and u ∈ W 1,q(Ω), there exists a sequence {uν}ν ⊂
u+W 1,q

0 (Ω) such that uν → u in Lq(Ω) and∫
Ω
f(∇uν(x))dx→

∫
Ω
Qf(∇u(x))dx.
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Remark 20. Note that this convergence is in general not in any Sobolev space. However,

if we also have p-undergrowth of f with p > 1, we can get convergence of the minimizing

sequence uν to u in W 1,p(Ω) [18].

From the nested structure (as seen in Figure 1) of the different types of convexity, we

have

Cf ≤ Pf ≤ Qf ≤ Rf ≤ f.

In the light of the reasons outlined above, we are particularly interested in computing

the convex and quasiconvex envelope for the given functions. We have the following

representation for Qf .

Theorem 25 (Representation Qf). [18] Let f : RN×n → R be locally bounded and

Borel measurable. Let g : RN×n → R be quasiconvex and such that f(ξ) ≥ g(ξ) for every

ξ ∈ RN×n. Then, for every ξ,

Qf(ξ) = inf

{
1

Ln(D)

∫
D
f(ξ +∇ϕ(x))dx : ϕ ∈W 1,p

0 (D)

}
, (62)

where D ⊂ Rn is a bounded open set. In particular it is independent of the choice of D.

From the definition, we see that the global relaxation can be regarded as point-wise

over ξ and can be looked at locally. However, similarly as in the definition of quasi-

convexity (Definition 13), the right-hand-side is difficult to compute explicitly due to

the large search space. This is why the rank one convex envelope Rf is used as a first

approximation of Qf .

6.2.1 Rank one envelope

If we can prove that Rf(ξ) = 0 for a non-negative f such that f(ξ) ≥ 0, then Qf ≤ Rf

implies that also Qf = 0. There are multiple representation formulas for Rf , we will be

working with the one below, based on repeated laminations.

Theorem 26 (Representation Rf). [18] Let f : RN×n → R ∪ {∞}. Let g : RN×n →
R∪{∞} be rank one convex and such that f(ξ) ≥ g(ξ) for every ξ ∈ RN×n. Let R0f := f

and for k ∈ N define inductively

Rk+1f(ξ)

:= inf
λ∈[0,1],A,B∈RN×n

{λRkf(A)+(1−λ)Rkf(B) : λA+(1−λ)B = ξ with rank{A−B} ≤ 1}.

Then point-wise for ξ, Rf(ξ) = limk→∞Rkf(ξ) = infk∈NRkf(ξ).
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We will use Theorem 26 to prove that the rank one convex envelopes of fDOT and faDOT

are both equal to the zero function. In fact, while a priori there is no exact k such that

Rkf = Rf , we will see in the proof that already for k = 2 we have R2f = 0, this together

with the non-negativity of fDOT /faDOT implies that Rf = R2f = 0. We first need a

technical lemma about a particular type of approximation of Rkf . It tells us that we

can ”rank one convexify” via repeated lamination of a majorant function in each step.

We can see the R̄k as a kind of forcing function that ”drives” Rk to be below it in each

step.

Lemma 26 (Forcing Rkf). Let ξ ∈ RN×n. Let f : RN×n → [0,∞]. Define inductively

R̄0f(ξ) := f(ξ),

R̄k+1f(ξ) := λkR̄kf(Ak) + (1− λk)R̄kf(Bk)

with some λk ∈ [0, 1], Ak, Bk ∈ RN×n with

ξ = λkAk + (1− λk)Bk,

and

rank{Ak −Bk} ≤ 1.

(Note this is not a uniquely determined value and depends on the choice of λl, (Al, Bl)

in each step l ≤ k) Then for all k ∈ N and any choice of λ1, . . . , λk, A1, B1, . . . , Ak, Bk

we have point-wise for ξ

Rkf(ξ) ≤ R̄kf(ξ).

Proof. Let ξ ∈ RN×n. For k = 1 we have

R̄1f(ξ) = λ0f(A0) + (1− λ0)f(B0),

for some A0, B0 with rank{A0 − B0} ≤ 1 and ξ = λ0A0 + (1 − λ0)B0. By definition of

R1f(ξ), these λ0, A0, B0 are in the admissible set that the infimum is taken over. By

the definition of an infimum over a set, we have

R1f(ξ) ≤ R̄1f(ξ).

Assume the statement holds for all values up to and including k ∈ N. Then for k+1 we

have

Rk+1f(ξ)

:= inf
λ∈[0,1],A,B∈RN×n

{λRkf(A)+(1−λ)Rkf(B) : λA+(1−λ)B = ξ with rank{A−B} ≤ 1}.

For a point-wise majorant g(x) ≥ l(x) ≥ 0 for all x ∈ C with C a set, we have in general

inf
x
l(x) ≤ inf

x
g(x).
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By positivity of f and λ and since Rkf ≤ R̄kf by assumption we can take g = R̄kf and

l = Rkf , then take C := {λ ∈ [0, 1], A,B ∈ RN×n : λA + (1 − λ)B = ξ with rank{A −
B} ≤ 1}. We get

inf
C
{λRkf(A) + (1− λ)Rkf(B)}

≤ inf
C
{λR̄kf(A) + (1− λ)R̄kf(B)}.

Now picking a particular choice of admissible Ak, Bk, λk can only result in a bigger value

than the infimum over C and hence

≤ λkR̄k(Ak) + (1− λk)R̄k(Bk) =: R̄k+1f(ξ).

Which proves the claim.

Lemma 27 (Rf = 0). For n = 2, we have Rf = 0 for f = fDOT , f = faDOT .

Proof. Let ξ ∈ R2×2. The proof consists of two parts, in the first part we define Aλ, Bλ ∈
R2×2 such that rank{Aλ−Bλ} ≤ 1 and for any λ ∈ (0, 1) we have λAλ+(1−λ)Bλ = ξ.

Now defining C := {λ ∈ [0, 1], A,B ∈ RN×n : λA+(1−λ)B = ξ with rank{A−B} ≤ 1}
in the definition of R̄kf , we can take the limit λ → 0 with Aλ, Bλ such that we stay

inside C. This limit will then be proven to be

lim
λ↓0

λf(Aλ) + (1− λ)f(Bλ) = min{|ξ11ξ21 |, |ξ12ξ22 |}.

Since we have done one lamination over Aλ, Bλ, we get by definition of R̄k,

R̄1f(ξ) ≤ min{|ξ11ξ21 |, |ξ12ξ22 |}.

This holds for any ξ, and since the zero function is a rank one convex minorant for f ,

we have that Rf ≥ 0. In the second step we will prove that based on this choice of R̄1

we have R̄2f ≤ 0. Via Lemma 26 we get 0 ≤ R2f ≤ R̄2f ≤ 0, which implies R2f = 0

and finally Rf = infk∈NRkf = R2f = 0.

Let µ ∈ R \ {0}. Define

Aµλ :=

(
0 ξ12 −

ξ11
µ

ξ21
λ ξ22 +

ξ21
µ

(
1
λ − 1

)) (63)

Bµ
λ :=

 ξ11
1−λ ξ12 +

λξ11
(1−λ)µ

0 ξ22 −
ξ21
µ

 (64)

Note that Aµλ and Bµ
λ both have a zero entry, this tells us that they are on axes. We

now have two free parameters, λ ∈ (0, 1) tells us how far along ξ is along the line of
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between Aµλ, B
µ
λ and µ adjusts the position on the ξ11 , ξ

2
1 axes where the points Aµλ, B

µ
λ

lie in such a way that ξ is still on the line between them. We compute

λAµλ + (1− λ)Bµ
λ =

(
0 λξ12 −

λξ11
µ

ξ21 λξ22 +
ξ21
µ (1− λ)

)
+

(
ξ11 (1− λ)ξ12 +

λξ11
µ

0 (1− λ)ξ22 −
(1−λ)ξ21

µ

)

=

(
ξ11 ξ12

ξ21 ξ22

)
= ξ.

Also

rang{Aµλ −Bµ
λ} = rang

− ξ11
1−λ ξ12 −

ξ11
µ − ξ12 −

λξ11
(1−λ)µ

ξ21
λ ξ22 +

ξ21
µ

(
1
λ − 1

)
− ξ22 +

ξ21
µ


= rang

(
− ξ11

1−λ − ξ11
1−λ

λ(1−λ)
µ

ξ21
λ

ξ21
λ
λ(1−λ)

µ

)
= 1.

Where the coefficient between the columns is given by λ(1−λ)
µ . So λ,Aµλ, B

µ
λ are valid

choices for computing R̄1f(ξ). Now for f := faDOT ;

λf(Aµλ) + (1− λ)f(Bµ
λ)

= λ

∣∣∣∣0 + (ξ12 − ξ11
µ

)(
ξ22 +

ξ21
µ

(
1

λ
− 1

))∣∣∣∣+ (1− λ)

∣∣∣∣0 + (ξ12 + λξ11
(1− λ)µ

)(
ξ22 −

ξ21
µ

)∣∣∣∣
= λ

∣∣∣∣ξ12ξ22 − 1

µ

(
ξ11ξ

2
2 +

(
ξ12ξ

2
1 −

ξ11ξ
2
1

µ

)(
1

λ
− 1

))∣∣∣∣+(1−λ)
∣∣∣∣ξ12ξ22 + λ

1− λ

(
ξ11ξ

2
2

µ
− ξ11ξ

2
1

)
− ξ12ξ

2
1

µ

∣∣∣∣ .
Note that we can pick µ ∈ R \ {0} freely, as we let µ → ∞, we note that all the terms

with 1
µ → 0 as our values for ξij are fixed. Looking at the order of the terms in µ and λ

we have

λ

∣∣∣∣ξ12ξ22 − 1

µ

(
ξ11ξ

2
2 +

(
ξ12ξ

2
1 −

ξ11ξ
2
1

µ

)(
1

λ
− 1

))∣∣∣∣+(1−λ)
∣∣∣∣ξ12ξ22 + λ

1− λ

(
ξ11ξ

2
2

µ
− ξ11ξ

2
1

)
− ξ12ξ

2
1

µ

∣∣∣∣
= λ

∣∣∣∣ξ12ξ22 −O
(
1

µ

)
−O

(
1

λµ

)
−O

(
1

µ2

)∣∣∣∣+(1−λ)
∣∣∣∣ξ12ξ22 + λ

1− λ

(
O
(
1

µ

)
+O(1)

)
−O

(
1

µ

)∣∣∣∣ .
We end up with arbitrarily small contribution of the terms with an order involving 1

µ .

When taking µ to ∞ we have some ε depending on ξ, µ such that

λf(Aµλ) + (1− λ)f(Bµ
λ) = λ

∣∣ξ12ξ22∣∣+ (1− λ)

∣∣∣∣ξ12ξ22 − λ

1− λ
O(1)

∣∣∣∣+ ε.

Now since λ
1−λ → 0 as λ→ 0, we can make the rhs equal to

= |ξ12ξ22 |+ ε,

with arbitrarily small ε > 0. Now by the definition of R̄k we have choices of λ0, A0, B0

such that R̄1f(ξ) = |ξ12ξ22 |+ ε.
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Via the same procedure but taking Aµλ, B
µ
λ to have zero components in the second column

instead of the first, and adjusting the other entries such that Aµλ, B
µ
λ stay admissible to

compute R̄1f we get choices for λ0, A0, B0 such that

R̄1f(ξ) = |ξ11ξ21 |+ ε.

From the definition, we can choose our value for R̄1f based on which ξ we have got.

Choosing the smallest value between the two constructions above, we can take R̄1f(ξ) :=

min{|ξ11ξ21 |, |ξ12ξ22 |}+ ε to get our forcing function as small as possible.

For the second lamination we take Aµλ, B
µ
λ as defined above again. Then by construction

we have admissible choices for λ1, A1 := limµ→∞Aµλ1 , B1 := limµ→∞Bµ
λ1

for R̄2f(ξ) and

we have

R̄2f(ξ) = λR̄1f(ξ)+(1−λ)R̄1f(ξ) = λ(min{|A1
1A

2
1|, |A1

2A
2
2|}+ε)+(1−λ)(min{|B1

1B
2
1 |, |B1

2B
2
2 |}+ε)

= λ(0 + ε) + (1− λ)(0 + ε) = ε.

We can take ε > 0 arbitrarily small. Now via Lemma 26 we have

R2f ≤ lim
ε→0

R̄2f = 0,

and we have our claim as outlined in the beginning of the proof.

For f := fDOT a similar reasoning holds. Via the same line of arguing we can take

R̄1f(ξ) := min{(ξ11ξ21)2, (ξ12ξ22)2} + ε. Afterwards then R̄2f ≤ ε for any ε > 0. So the

same claim follows.

6.3 Further application

Both techniques that have been explored in this section, compensated compactness and

quasiconvex relaxation, have only been put to minor use in this thesis. It is very likely

that further results are possible through these methods as only surface-level techniques

are explored, what follows is a brief discussion on possible avenues that can lead to

stronger results.

In regards to compensated compactness, there are much more general results of the

Murat-Tartar theorem (Theorem 22) [54]. The setup is as follows, let A be a homoge-

neous first order linear PDE operator with constant coefficients. Define the wave cone

ΛA := ∪ξ∈Sd−1kerA(ξ) where A(ξ) is the symbol of A. Which are all non-elliptic direc-

tions. Then weak convergence can now be taken through any quadratic form q : RN → R
if we can find a corresponding A such that

q(A) ≥ 0 for all A ∈ ΛA.
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Taking A := curl and q : R2n → R as q(A1, . . . , A2n) =
∑n

i=1AiAn+i results in

Theorem 22. Finding new versions of these correspondences that satisfy the condition

above will give for b ∈W 1,2(Ω)∫
Ω
ϕq(∇b)dx ≤ lim inf

j

∫
Ω
ϕq(∇bj)dx,∀ϕ ∈ C0(Ω). (65)

This can be used to get similar statements as in Theorem 23 but for structural integrands

based on different non-linear expressions than the dot-product.

In regards, to quasiconvex relaxation we state the following conjecture;

Conjecture 1. For n ∈ N, we have Rf = 0 for f = fDOT or f = faDOT .

Using clever direct computations of more repeated laminations Rkf this seems doable,

but the author has not found the correct avenue of approach yet per date of publication.

Furthermore, computing Rf with f = fLP might lead to new insights as it is not evident

that RfLP is necessarily zero. Finally, new methods of numerical computations and

approximations of rank one or quasiconvex envelopes are still being developed [63, 20]

and could be applied to structural integrands to find potential quasiconvex candidates.
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7 Numerical Experiments

In addition to the theoretical part where we look at well-posedness of the joint inverse

problem with structural similarity regularization we also perform some practical numer-

ical experiments.

We will use the newly proposed fgCG, fgNambu in Section 4.4 and compare them with

existing methods fgGD, fjCG, fjNambu in the case (N = 3, n = 2). This is inspired

by the work in geophysics, where good methods of 3-dimensional imaging can have a

large impact and the work by Arridge et al. [21] on RGB-images using parallel level

sets (fLP , fQP ). The application is for image enhancement with RGB-channels. Our

optimization problem is to minimize over u = (u1, u2, u3) with ui : Ω ⊂ R2 → R, i =
1, 2, 3. With the cost functional being given by

∥K1u1 − d1∥2 + ∥K2u2 − d2∥2 + ∥K3u3 − d3∥2+

+α1TV [u1] + α2TV [u2] + α3TV [u3] + β

∫
Ω
fs(ξ), (66)

with α1, α2, α3, β > 0,Ki linear operators and fs ∈ {fgGD, fjCG, fjNambu, fgCG, fgNambu}.
We can roughly write this as a functional over [0,∞) where for simplicity we assume

that the TV regularization parameters are equal (α1 = α2 = α3 = α) as

Φ(u) := ∥Ku− d∥2 + αTV [u] + βJ(ξ). (67)

The problem is well-posed via Corollary 2 for B = [W 1,p(Ω)]3 or an appropriate B′ ⊂
[SBV (Ω)]3 since all conditions are satisfied for Theorems 19 and 21. While this is true, in

this section we lay aside the exact theoretical setting and focus on the practical concerns

with solving such a problem numerically. We have a discretized bounded domain Ω ⊂ R2

with a bounded co-domain [0, 255] as in standard image practices. The exact function

space where we consider u is not important as we have a uniform bound on solutions

and only look at a finite number of values x1, . . . , xK ∈ Ω,K ∈ N. When sampled in this

way, where we have a discrete grid, as discussed in Section 2, any norm will is admissible.

Throughout the implementation, the Euclidean (L2) norm is used. As we have p-growth

with p = 2 or 4 (see Table 1) for our integrands we can take Bi = W 1,2(Ω),W 1,4(Ω) or

SBV (Ω), i = 1, 2, 3 if pressed for an answer.

We can see this minimization problem over Φ from two perspectives. Define the following

sub-problems,

Ai(ui) := ∥Kiui − di∥2 + αiTV [ui], i = 1, 2, 3, (68)

A(u) :=
3∑
i=1

Ai(ui) = ∥Ku− d∥2 + αTV [u], (69)
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B(u) := ∥Ku− d∥2 + βJ(u). (70)

Either we solve for three vector variables u1, u2, u3 ∈ RK a problem

Φ(u1, u2, u3) =

3∑
i=1

∥Kiui − di∥2 + αiTV [ui] + βJ(u1, u2, u3),

or we solve for one vector variable u ∈ R3K

Φ(u) = A(u) + βJ(u).

It is a valid approach [15] to solve Φ directly as a non-convex optimization problem.

However, the splitting of the problem in this way via sub-problems may prove fruitful

as Ai, A are now linear inverse problems with TV regularization. These problems are

well-researched and good algorithmic approaches have been developed. In this thesis,

the Bregman method is used in particular. Note that B is in general a non-convex

problem (since it is only quasiconvex) such that another algorithm is needed to solve it.

Note that J(·) is separably convex so a Block Coordinate Descent algorithm is a valid

approach [13]. Specifically, for non-convex optimization problems with a large number

of variables, one of the main algorithms used is L-BFGS. From the second perspective

and solving for A,B, there is an iteration component in both problems. A priori it

is unclear which order of solving the sub-problems (and which view to take) gives the

best result. We assume that each channel has an equal amount of information about

the structure and take α := α1 = α2 = α3. We include in each sub-problem the data

fidelity term since this is the main inverse problem and the other terms are just additive

regularization terms.

After defining the algorithms below, the results of 6 experiments of increasing complexity

are included in Subsection 7.1. Afterwards, a discussion on the numerical convergence

and implementation details is given in the final Subsections 7.3 and 7.4. Most figures

can be found in Appendix C as an increased size possible and side-by-side comparison

is most convenient. All code can be found in the authors GitHub: https://github.

com/schilperoortteun/Structural-similarity-in-inverse-problems.

7.1 Experimental setups

Before taking a look at a more realistic application, a comparison between algorithmic

approaches is useful as per the above discussion. When solving Φ or B a L-BFGS

algorithm is used due to the non-convexity of the problem and the large amount of

variables. When solving a particular sub-problem Ai or A we use existing numerical

methods for solving TV regularization. For the exact implementation details and an
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overview of the programming packages used we refer to reader to Section 7.4. Since

both solving methods work using iterations that compare a new cost with an old cost

we can use this to our advantage by additionally iterating over different methods to get

the best of both worlds. In a small example we will compare the following algorithmic

approaches based on speed and performance.

(A) Solve entire problem Φ(u).

(B) Solve A1(u1), then iterate Φ(u), then A2(u2), then Φ(u), then A3(u3) then Φ(u),

. . . .

(C) Solve A1(u1), then iterate B(u), then A2(u2), then iterate B(u), . . . .

(D) Solve A(u), then iterate Φ(u).

(E) Solve A(u), then iterate B(u).

(F) Solve Φ(u), then A(u).

(G) Solve B(u), then A(u).

We can look at algorithms F and G as solving a TV regularized problem after a pre-

regularization has been done via the continuous problem using structural similarity. The

algorithms D and E pre-regularize via the structural similarity and afterwards solve a

TV problem. As exit condition deciding when to switch solving methods, it makes sense

to use the same condition that is used when solving the respective algorithms itself.

Specifically when only minor improvements are made between the new and the old

cost of a solution. Heuristically, ending with an inverse problem that involves the TV

term makes sense as one hopes to get ”flatter” and more defined objects in the picture.

However, there is also an argument to be made that one can best end with a continuous

optimization solver, as strict bounds on the variables can be present and these can be

better implemented when using continuous methods. We will compare these approaches

visually and using PSNR and SSIM measures where we take the mean SSIM over the

channels. Note that this test is not for finding the optimal image reconstruction in a

quantitative sense and only uses the measures as an indicator of performance together

with computing time, RAM usage and other implementational challenges.

7.2 Results

Six experiments have been performed:
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1. A square with equal changes in magnitude for N = 2 channels.

2. A square with equal changes in magnitude for N = 3 channels.

3. A square with unequal changes in magnitude for N = 3 channels.

4. A more complex image with multiple structures of unequal overlap and unequal

changes in magnitude for N = 3 channels.

5. Our method applied to a realistic large-scale image.

6. Comparison between different integrands fs.

The quantitative results are included in this section in tables, but for ease of the reading

the image results are included in Appendix C.

7.2.1 Two channels

As the reader will see in Experiments 2 and 3, pre-regularization followed by continuous

optimization is the best algorithmic approach. However, an even more trivial example

is possible and investigated here. We only test algorithms D and E to each-other and to

solely using TV regularization. The most base example we can have is similar structure

in N = 2 channels, we have used similar code as in the upcoming RGB examples, but

now only looking at the R and G channels. Structurally, a square is interesting since it

has sharp edges and corners and a region inside without any changes in value. These

are features that TV regularization has problems with. The two channels have exactly

the same structure in this example.

With f = fgCG we get the following results for different values of β. The benchmark

is given for β = 0 with the TV regularization with PSNR = 25.73 and SSIM = 0.7691.

Higher and lower values for β than included in the table give worse performance.

Table 2: 2 Channels, β

Algorithmn β PSNR (CG) SSIM (CG)

D 1e-3 26.82 0.8873

E 1e-3 26.82 0.8873

D 1e-2 27.10 0.8779

E 1e-2 27.10 0.8779

D 1e-1 26.56 0.7435

E 1e-1 26.56 0.7435

As we can see there is substantial improvement of including a structural regularizer.
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Note that there is no difference between D and E up to the fourth significant figure.

This is because the inclusion of the small parameter α for the problem to remain coercive

in algorithm D has little to no impact because it is overshadowed by the cost of J . A

visual comparison of the deblurred image at its cross-sections is included in Figure 2.

Visually there does not seem to be much improvement from TV, this makes sense as

the relative change in PSNR and SSIM values is relatively small. A close look at the

horizontal and vertical section tells another story. For TV regularization we get negative

pixel values (included via the implementation but possible to cutoff manually) and at the

regions outside the square where there is a constant background, TV introduces a small

increase and decreases at some points resulting in distinctive bands. The structural

regularization afterwards smoothes out these bands.

7.2.2 Equal channels

We deblur a picture of a square where at the same points in all RGB channels there

is an equal change in magnitude. Immediately clear from the visuals in Figure 3 are

the deformities in algorithms B, C, F, G, and TV. For the TV regularization, these

white regions are slightly negative grey-scale values, and consequently not that different

from the black background. This is why the PSNR and SSIM values are not largely

impacted by this minor difference in value. For the others, it appears that there are

numerical instabilities introduced somewhere along the solving method. This is likely

due to solving a TV regularization problem after the L-BFGS-B algorithm as this is the

common denominator across the approaches. As there are approaches with adequate

results, the mechanics of these instabilities are not explored further.

Algorithmn A has only minor changes to the blurred image, this is why one of the reasons

why decoupling both components of the inverse problem, the TV and the structural

term, is necessary. Algorithms D and E lead to marked improvements in PSNR and

SSIM values in Table 3 and are visually comparable to TV regularization when we have

deleted negative values. .

7.2.3 Unequal channels

Now we change the image from the previous channel such that between background and

foreground, the blue channel value increases from null to maximum, while in the other

channels a smaller jump from null to half is made. (see Figure 4)

The results in Tabel 4 are similar as in the case of equal channels with algorithms D and

E leading to improvements. Noteworthy is that the relative and absolute improvement

82



Table 3: Equal channels

Algorithmn PSNR (CG) SSIM (CG)

A 23.0 0.45

B 20.5 0.61

C -6.7 0.00

D 29.4 0.84

E 29.3 0.83

F 8.7 0.03

G 8.7 0.03

TV 28.5 0.76

Table 4: Unequal channels

PSNR (CG) SSIM (CG)

A 17.9 0.39

B 17.3 0.55

C -8.0 0.00

D 24.1 0.72

E 24.0 0.70

F 1.4 0.02

G 1.4 0.02

TV 23.4 0.67

in the quantitative measures is decreasing as the picture becomes more complicated.

7.2.4 Qualitative comparison

Based on the previous experiments, the best algorithms D and E first solve a TV regu-

larization problem, where-after taking the structural regularization into account via Φ or

B to further augment our variables. To quantitatively test whether using the structure

leads to a better result we define the following Algorithm S:

1. Solve A(u)

2. Solve S(u)

where we have defined a new problem that is essentially sub-problem B(u) given by

S(u) := ∥Ku− d∥2 + βJ(u) + γTVε[u],
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with 1 >> γ > 0 included to grant coercivity of the problem. Note that without the

γTV [u] and if we have fixed all uj , j ̸= i but one of the channels ui, i = 1, . . . , 3, we

have a convex function S(ui). The question on whether the incorporation of J helps

has now been reduced to comparing the solution after the first step of the algorithm to

the final solution after solving S(u). For the bigger data set we tested on one picture

and determined α ∈ [0.0001, 0.001] performs best for problem A. We fix this across the

data set. We tested different γ < α with the best performance with γ = 10−6. From

Table 5 we see that this new algorithmic approach S has better PSNR and similar SSIM

as the others. In Figure 5 we see that Algorithmn S works better in the parts where

there is overlap and from the sections we see that there are also sharper edges. There is

some larger intermingling between the channels solely using TV regularization resulting

in distinctive patches of mixed colour.

Table 5: Multi-structure
PSNR (CG) SSIM (CG)

D 21.6 0.82

E 21.6 0.82

S 22.0 0.82

TV 20.9 0.71

7.2.5 Large-scale image

Instead of constructed small-scale examples as in the experiments above, here we have

sampled three different realistic images of significant size taken from the Skimage data

set. Since the sizes of the images change and we do not have normalized the cost

function J , a new optimal value for β needs to be chosen for each image. The blurring

kernels are given by Gaussian kernels with parameter 1
σ2 = 0.005. Of note, is the

increased computation time necessary for these larges images compared to the earlier

experiments. The growth in computation time is definitely non-linear in both memory

usage and number of computations. Below a table denoting the sizes and parameter

chosen.

Table 6: Large-Scale images

Image Size β PSNR(TV) SSIM(TV) PSNR(CG) SSIM(CG)

Cat 300 x 415 10−8 26.8 0.67 29.7 0.80

Coffee 400 x 600 10−9 20.3 0.58 25.1 0.68

Rocket 427 x 640 10−9 25.8 0.77 28.7 0.83
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7.2.6 Comparison structural integrands

As found in Section 5, there are several different structural integrand functions that

lead to well-posed problems and consequently should lead to improved numerical per-

formance. All previous comparisons have been between TV and cross-gradient regu-

larization since during the implementation stage it was discovered that the particu-

lar form of fs did not have a large impact on the final results. The functions fs :=

fCG, fGD, fN , fjCG, fjN have been implemented as can be found in Section 7.4. In Fig-

ures 9 and 10 a quantitative comparison across these different choices can be found. The

data used is the Cat image but with a smaller Gaussian blur than the large-scale image

experiment is used to speed up computation time. Note that only a small part of the

y-axis is included to highlight the minor differences between methods, but performance

is similar and better compared to TV regularization with in this case PSNR equal to

33.2 and SSIM equal to 0.90.

7.3 Convergence

We are interested in the convergence of numerical methods applied to an inverse problem

of the form in Equation (66). This can be regarded more generally as an inverse problem

with both separate (TV) and joint regularization (structural similarity). Formally, this

is a functional minimization problem over b = (u1, . . . , uN ) ∈ B with cost Φ : B → [0,∞]

given by:

Φ(b) := ∥Kb− d∥2H +
N∑
i=1

Ri(ui) +R(u1, . . . , uN ), b ∈ B. (71)

The right hand side is given by a data fidelity term ∥Kb − d∥2, single regularizers

Ri : Bi → [0,∞] and a joint regularizer R : B → [0,∞]. In our RGB deblurring problem

we have taken Ri = αiTV,R = βJ .

Setting aside the specific method used to minimize a sub-problem of Φ(b) and only as-

suming that it is numerically sound we take a look at the class of methods that take

advantage of the interplay between the components of b = (u1, . . . , uN ). The most

common approach for solving these types of problems is called alternating minimization

[17, 13] for N = 2 and (block) coordinate descent for N > 2. Where the overarching

property of such algorithms are that they are iterative and only a subset of the total

amount of equations is used in each respective iteration. In our case this is done by

considering only one ui, i = 1, . . . , N at the time and fixing all others. Define the Block

Coordinate Descent (BCD) algoritmn as cyclically solving for z the minimization prob-

lem given by Φ(z, u2, . . . , uN ),Φ(u1, z, . . . , uN ), . . . ,Φ(u1, . . . , uN−1, uN ). In the case
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where Φ(b) is jointly convex, we have Theorem 27 for convergence. For non-convex Φ(u)

we get Theorem 28. The need to introduce the sets Di are to limit our search space for

values of ui(x) ∈ R. As we can see, the convergence of solutions depend on two factors;

analytical properties of the function Φ and topological properties of the ranges of the

components.

Definition 27 (Range). For i = 1, . . . , N , let Di ⊂ R be the set of possible values for

ui(x), x ∈ Ω, i = 1, . . . , N .

Theorem 27 (Convergence convex case). [58] If Φ(·) is jointly convex and differentiable,

Di closed and convex, and when looking at the one-vector projection

Φ(u1, . . . , z, . . . , uN )

this attains a unique minimum z̄ for all z = u1, . . . , uN . Then every limit point of a

sequence of solutions when using BCD is a minimizer.

Theorem 28 (Convergence non-convex case). [58] If Φ(·) is continuously differentiable,

Di closed and convex, and when looking at the one-vector projection Φ(u1, . . . , z, . . . , uN )

this attains a unique minimum z̄ for all z = u1, . . . , uN and is monotonically non-

increasing in the interval (ui, z) or (z, ui) ⊂ D̄i. Then every limit point of a sequence

of solutions when using BCD is a minimizer.

In our case when using the structural similarity regularization R := βJ , we have gener-

ally R a non-convex functional such that Theorem 28 is the most relevant one. Theorem

27 can be used for TV regularization or when having a convex R. We can find conditions

on Ri, R such that Theorem 28 can be applied.

Lemma 28. Assume R(u1, . . . , uN ) continuously differentiable and separately convex,

and that Ri(ui) is convex and continuously differentiable for all i = 1, . . . , N . Assume

there exist a, b ∈ RN with for all x ∈ Ω, ui(x) ∈ [ai, bi] ∈ R for all i = 1, . . . , N . Then

the minimisation problem given by Equation (71) converges (up to subsequence) under

BCD.

Proof. All three terms in the inverse problem given in Equation (71) are continuously

differentiable, so Φ is continuously differentiable. By Theorem 4 we have convexity of the

data fidelity term so we only have to look at the other contributions. The Di = [ai, bi]’s

being intervals are closed and convex. Since we have assumed Ri(ui) to be a convex

function, the second term will also not lead to any problems. We apply Theorem 28,

note that separate convexity of R in each component ui gives the unique maximum and

monotone non-increasing behaviour on each interval Di.

86



Remark 21. Note that the condition that R is separately convex is stronger than the

necessary condition in Theorem 28 that it is separately monotonically non-increasing

having a unique minimum. Since separate convexity comes automatically for quasiconvex

functions and we only use regularizers of this type, this more complicated condition is

superfluous for this report.

We can almost take Ri(ui) := αiTV [ui], R(u) := βJ(u) with J chosen quasiconvex

and directly apply the lemma above. The only hiccup is that TV is not continuously

differentiable at zero. As described in the implementation (Section 7.4), and through a

commonly used method in numerical applications, we have slightly changed TV at small

values such that it becomes smooth. With this in mind we have the following result for

convergence of Equation (67).

Lemma 29. Let TVε be a continuously differentiable variant of TV . Let J be continu-

ously differentiable and separately convex. Let b ∈ B with compact image in RN . Then

every limit point of a sequence of solutions using BCD is a minimizer of

∥Kb− d∥2 + αTVε[b] + βJ(∇b).

Proof. This follows almost immediately from Lemma 28. Note that the compact image

K(b) of b can be separated into closed and bounded intervals Di ∈ R, i = 1, . . . , N .

7.4 Implementation

We want to solve Equation (67) with a numerical algorithm. Our problems Ai and A

defined in Equation (69) only have the first two terms and constitute a linear inverse

problem with TV regularization in RK or R3K ,K ∈ N respectively. This can be solved

via standard techniques [26]. PyLops [52] has a Split-Bregman implementation that can

handle L1 and L2-regularizers with a linear operator. We use this when solving A or Ai

in algorithms B - G. Within the PyLops implementation, parameters nouter, ninner for the

amount of inner and outer loops of the Bregman optimization need to be given. From the

documentation ”A small number of inner iterations is generally sufficient and for many

applications optimal efficiency is obtained when only one iteration is performed.” [52].

Small values of ninner were tested in the multi-structure case (experiment 4) with ninner =

1 performing best, increasing ninner leads to increasingly worse results. We have tested

multiple values for nouter, which should not be too big to keep the computation tractable,

and chose nouter = 150 to strike the balance between performance and computation

time. Noteworthy is that PSNR / SSIM are not monotonically increasing functions in
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nouter, there is a sharp increase in performance for small values but choosing a large

nouter >≈ 200 eventually leads to a decrease.

Now that we have a method for the sub-problems Ai, A, we can take a look at the

joint problem Φ. It is not jointly convex so the Bregman method cannot be used

and non-convex optimisation is necessary. In our case, we have chosen the structural

regularizer J in such a way that it is an integral with a quasiconvex integrand f . By

linearity of integrals this implies that J is separately convex in ui, i = 1, . . . , N when

all other uj , j ̸= i are fixed. As our benchmark paper is [21] we have chosen for a

similar L-BFGS implementation using quasi-Newton line search. In particular, the SciPy

[62] implementation for L-BFGS-B where we have supplied an approximated gradient

DΦ(u) as described below. No explicit form of the gradient is required an sich in the

L-BFGS-B implementation as linear (or quadratic) approximations of the gradient can

be computed from the objective function Φ(u). However, the computation time required

to approximate DΦ(u) blows up due to the large amount of variables we require (one for

each pixel and channel in the image) and the fact that computing J(u) is time-consuming

as it is an integral. We use a NumPy implementation to calculate J , together with the

increased accuracy this makes it worthwhile to calculate give an explicit version of

DΦ(u).

Equation (67) can be written as a PDE (in time) of

∂tΦ(u) = −DΦ(u) = −A∗(Au− d) + αD[TV [u]] + βD[J(∇u)], (72)

where A∗ is the adjoint of A and D is the Gateaux differential. Using Taylor approxi-

mation and Green’s identity, we can compute D[TV [u]] and D[J(∇u1,∇u2,∇u3)] with
∇u2,∇u3 fixed.

Theorem 29 (Gateaux formula). [21] Let f : RN → R be a twice continuously differ-

entiable function. Then the Gateaux derivative of J : C1(Ω) → R at u1 ∈ C1(Ω) with

direction h : C1(Ω) is given by DJu1 : C1(Ω) → R with

DJu1(h) = −
∫
Ω
h div [∇f(∇u1)] +

∫
∂Ω
h⟨∇f(∇u1), n⟩,

where n is the outer normal vector of Ω.

Using image extension (or setting ∇u = 0 at ∂Ω) it is practically easy to disregard the

surface integral over ∂Ω. Note the straightforward extension of f(∇u1) to f(∇u) via

channel-wise differential operations. Then

DJu(h) = [DJu1 , DJu2 , DJu3 ](h) = −
∫
Ω
h div [∇f(∇u)].
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Our aim is the compute the right-hand side for a chosen

fs ∈ {fgGD, fjCG, fjNambu, fgCG, fgNambu}

such that we can plug it in Equation (72) and apply L-BFGS. To obtain the Gateaux

derivatives we need to approximate the norms ∥ξ∥, ∥ξ·∥, ∥ξ·∥ smoothly. We take for ε > 0

∥ξ∥ε :=
√

∥ξ∥+ ε2.

Other than the numerical instabilities present when dividing by zero when using the

exact norm ∥ξ∥, there is an additional gain in TV regularization when using this method.

Where we define the differentiable approximation of TV used in Lemma 29 by

TVε[u] :=
√

|∇u|2 + ε,

it is well-known that using this formula gives an absence of ”staircasing” [39]. This is a

phenomena that can be found when using TV regularization on images that smoothes

out the oscillations into blocks with zero gradients. Additionally, for robustness at small

gradients, we have a trade-off to make because of the two following desired behaviours;

ε is such that if there are only small changes in the parameter field, so ∥ξ∥ ∼ 0 then

∥ξ∥ε is close to zero. This would imply a small ε. As we will see in the computation

below, we also need to be able to have a nice expression for lim∥ξ∥→0
1

∥ξ∥ε . Where the

limit is finite and large but in such a way having a few of these values in a solution u

does not overshadow the other contributions to DΦ(u). This implies a not too small ε,

we have used ε = 0.1 for the small-scale and ε = 1 for the large-scale experiments.

For the actual calculations of D[TV [u]], D[J [u]] we refer to Appendix B. Note that we

have an explicit form for the gradient DΦ(u) we take a look at the discretization of the

domain Ω. We have three functions u1, u2, u3 : R2 → [0, 255], since we already have

discretized images we want to know the values of these functions at M ∈ N different

pixels. We label xm,l, l,m = 1, . . . , M2 as a 2-dimensional grid. For implementation

of BFGS, we want to know the gradient in direction DJuk(xm,l
) for k = 1, 2, 3,m, l =

1, . . . , M2 . Note that although J is defined as an energy functional on Ω, the derivative

DJ is a local function depending on xm,l. We use a central difference formula for the

components of ξ. As a concrete example to show the computation we take fs = fgCG.

Using the results from Appendix B, DJuk(xm,l
) is given by

DJuk(xm,l) = −1

2
(|∇ui(xm,l)|2 + |∇uj(xm,l)|2), i ̸= j ̸= k.

We now estimate ∇ui(xm,l) ∈ R2 in each direction m, l via a central difference approxi-

mation, i.e.

∇ui(xm,l) =
1

2
(ui(xm+1,l)− ui(xm−1,l), ui(xm,l+1)− ui(xm,l−1)) .
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Substitution of this approximation above in DJuk(x(m,l)) gives the gradient for J used

in the code and likewise for the other integrands fs.

The PSNR of a given image ū compared to the original image u is given by

PSNR(ū) = 20 log

(
MAX(u)√
MSE(u, ū

)
. (73)

Where MAX(u) is the maximum value. For SSIM the ”structural similarity” method of

scikit-image [55] has been used.
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8 Summary and Outlook

The core aim of this thesis was to develop a fundamental understanding of the necessary

conditions for well-posedness of coupled inverse problem. More specifically, to investigate

in regards to joint inverse problems, where the coupling of the different components is via

a variational regularization that quantifies structural similarity. Using existing theory

of optimization problems over Banach spaces and taking into account the application

domains of structural similarity we have found settings such that Theorem 1 can be

applied. These settings lead to a well-posed minimization problem with an additional

condition for uniqueness of solution.

Roughly, two types of conditions where investigated, the functional analytic, where

it was determined that the following settings lead to Banach spaces where bounded

sequences have convergent sub-sequences and hence can be used to optimize over:

1. For Ω Lipschitz, Wm,p(Ω) for p ∈ (1,∞),m ∈ N with the weak topology.

2. M(Ω) with its weak−∗ topology and considering uniformly bounded sequences

(µk)k.

3. For Ω bounded and Lipschitz, BV (Ω) with its weak−∗ topology and considering

uniformly bounded sequences (uk)k.

4. For Ω bounded and Lipschitz, SBV (Ω) with its weak−∗ topology and the condi-

tions in Theorem 37.

For the other type, the necessary convex analytic properties belonging to the structural

regularization functional J are given by non-negativity, (mean) coercivity, Cp growth,

and quasiconvexity. After a thorough review of the three different application where

structural similarity is used (medical imaging, geophysical reconnaissance, and image

enhancement) a catalog of different structural integrands fs with their properties was

constructed. Especially of note are fGD, fCG, fNambu which are quasiconvex when re-

stricted to two coupled inverse problems. In addition to the usual way of generalizing

to N inverse problems via summing all contributions over pairs (fgGD, fjCG, fjNambu),

explicit generalized definitions fgCG, fgNambu that preserve quasiconvexity have been

newly defined in this thesis. On top of this, the Schatten p-norms fV TV , fTNV , fTSV

can also be used in the most general setting as these are (quasi)convex.

The two types of conditions are combined to prove well-posedness of the variational

problem in specific cases. In particular, Theorems 19, 20 and 21 outlining existence of

solution in respectively W 1,p,M, and SBV (Ω) are new.
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For structural integrands depending on the dot product that are separately convex but

not quasiconvex there are proof of concept results (Theorem 23 and 27) based on the

theory of compensated compactness and relaxation. Specifically, when working on the

Hilbert space [W 1,2(Ω)]N and restricting to sequences that have weak Laplacians ∆ in

a precompact set, there is l.s.c of J with these types of structural regularizers. Clever

computation of repeated laminations and forcing functions are used to prove that the

rank one envelopes of fDOT , faDOT are the zero functions for n = 2.

Finally, structural similarity was also investigated numerically. Using RGB-valued im-

ages, qualitative and quantitative improvement is discovered when using structural sim-

ilarity after total variation regularization. The best algorithmic practice was discovered

to be Algorithm S described by first minimizing over u ∈ B

∥Ku− d∥2 + αTV [u],

via conventional TV optimization, then afterwards using this solution u as the initial

condition to minimize (with appropriate parameters)

∥Ku− d∥2 + βJ(u) + γTVε[u].

This algorithm convergences to a local minimum and leads to substantial advancement

on large-scale realistic images.

Concerning further work, as discussed in Section 6, more technical theory can likely

be applied to get additional results about l.s.c structural regularizers not predicated

on the Direct method. Additionally, a brief exploration in results from Mumford-Shah

functionals over BV (Ω) that is not included seems to indicate that they can be used

to get well-posedness or the existence of minimizing sequences for non-isotropic inte-

grands. Furthermore, there is the hope that the explicit conditions on J can be used by

researchers to define better structural similarity quantifiers and that applied scientists

can sleep better at night knowing their variational problems are well-posed when using

the cross-gradient.
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A Fine Properties of Function Spaces

In this appendix we state the results that allows us to take a particular Banach space

B with a topology τB as an admittable choice in the main variational problem. This

is by no means a comprehensive account of the statement and proofs and only aims to

shed light on the necessary theory to confirm admissibility. Compactness either comes

via Banach - Alaoglu (Theorem 2) for Lp,Wm,p, p > 1,m ∈ N or is proved directly in

the case of BV, SBV . The definition of the spaces and their topologies can be found in

Section 2.

It is a well-known result that Lp, 1 < p < ∞ is reflexive and separable. This follows

from the following line of statements.

Definition 28 (Uniform convexity). A normed space X is called uniformly convex if

for all ε > 0 there exists some δ > 0 so that for x, y in the unit ball B1, ∥x+ y∥ ≥ 2− δ

implies ∥x− y∥ < ε.

Theorem 30 (Uniform convexity of Lp). [36] Let 1 < p < ∞. Then Lp is uniformly

convex.

Theorem 31 (Milman-Pettis). [11] Every uniformly convex Banach space is reflexive.

Theorem 32 (Separablility of Lp). The space Lp is separable for 1 ≤ p <∞.

Hence the Lp(Ω)-space with its weak topology is compact via Theorem 2. Note that

this holds for any measure space on arbitrary Ω with any positive measure µ, there are

no restrictions on the shape of Ω and µ does not necessarily be equal to L. For the edge
cases p = 1 and p = ∞, we do not have reflexivity of Lp. Since we do not even have

separability of L∞, variational problems are difficult to solve and we omit this case.

However, another characterization for separability exists for p = 1.

Definition 29 (Equi-integrability). Let (Ω, R, µ) be a positive measure space. A set

F ⊂ L1(Ω) is called equi-integrable if for all ε > 0 there exists a δ > 0 such that∫
E
|f |dµ < ε,

for f ∈ F and µ(E) < δ. In the case where µ is finite and F bounded, equi-integrability

is equivalent to

F ⊂
{
f ∈ L1(Ω, µ) :

∫
Ω
φ(|f |)dµ ≤ 1

}
,

for some increasing continuous function φ : [0,∞) → [0,∞] with super-linear growth.

The first formulation is the classical one, but the second is more useful when we consider

in particular BV, SBV ⊂ L1 as we will do later.
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Theorem 33 (Dunford-Pettis). [4] Let F ⊂ L1(Ω) be a bounded subset. Then it is

relatively weakly sequentially compact if and only if F is equi-integrable.

This result gives us the possibility of choosing (B, τB) := (F, τL1(Ω)) with F bounded

and equi-integrable. A relatively straight-forward corollary of Theorem 30.

Theorem 34. [2] Wm,p(Ω) is separable for 1 ≤ p < ∞ and reflexive and uniformly

convex for 1 < p <∞.

Another important statement are the Rellich-Kondrachov Sobolev embedding theorems.

There is some nuace with the topological properties of Ω and which embeddings are

valid. We will assume Ω bounded and being a Lipschitz domain but we note that most

embeddings work for unbounded domains and a significantly weaker topological notion

than Lipschitz called the ”weak cone property” [2].

Definition 30 (Lipschitz domain). Let Ω ⊂ Rn be bounded. We say that Ω is locally

Lipschitz, or a Lipschitz domain if for all x ∈ ∂Ω we have a neighbourhood Ux where

Ux ∩ ∂Ω is the graph of a Lipschitz continuous functions.

In the theorem below we have n = DimΩ.

Theorem 35 (Rellich-Kondrachov, m ≥ 1). [2] Let Ω ∈ Rn be Lipschitz. Let j ≥
0,m ∈ N, 1 ≤ p <∞.

• If mp > n or m = n, p = 1 then

W j+m,p(Ω) ↪→ Cj(Ω̄), (74)

in particular for j = 0,

Wm,p(Ω) ↪→ Lq(Ω), p ≤ q ≤ ∞.

• If mp = n, then

W j+m,p(Ω) ↪→W j,q(Ω), p ≤ q ≤ ∞, (75)

in particular for j = 0,

Wm,p(Ω) ↪→ Lq(Ω), p ≤ q ≤ ∞.

• If mp < n then

W j+m,p(Ω) ↪→W j,q(Ω), p ≤ q ≤ np

n−mp
, (76)

in particular for j = 0,

Wm,p(Ω) ↪→ Lq(Ω), p ≤ q ≤ np

n−mp
.
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Remark 22. The same embeddings are true with arbitrary domains Ω if we takeWm,p
0 (Ω).

If we consider bounded Ω, then we also have the embeddings for 1 ≤ q < p. Rellich-

Kondrachov implies that for Lipschitz Ω, bounded sequences inWm,p(Ω) have convergent

subsequences in Lp(Ω). From Definition 6, weakly convergent sequences inWm,p(Ω) con-

verge strongly in Lp(Ω), so the function space Wm,p(Ω) is compact with respect to its

weak topology.

For weak−∗ compactness in M(Ω) we have the previously stated Theorem 4 (De La

Vallée - Poussin).

To think about compactness in BV , we notice that a Sobolev space Wm,p(Ω), p > 1 is

compact with respect to its weak topology. AsW 1,1 ⊂ BV , we want a similar statement

for p = 1. However the space W 1,1(Ω) is not compact with respect to its weak topology

due to the difficulties with compactness in L1, it is necessary to extendW 1,1 to BV for a

similar compactness result. This provides an additional reason why BV is an interesting

choice in variational problems.

Theorem 36 (Compactness in BV). [4] Let Ω ⊂ Rn be bounded and Lipschitz. Let

(uk)k ⊂ [BV (Ω)]N be a bounded sequence in [BV (Ω)]N , then there exists a sub-sequence

(uh(k))k weakly−∗ converging in [L1(Ω)]N towards some u ∈ [BV (Ω)]N .

Note that this is a not too restrictive setting and would invite us to work on the space

BV for our minimization problem. See the problems discussed after Theorem 6 for

reasons why we restrict our setting to SBV . This restriction leads us into having

some kind of grasp on the weak derivatives of our functions. This grasp is not trivial

however, since all L1 vector fields are the gradient of a SBV function and L1 functions are

badly behaved in general. As we have seen before in Theorem 33, our desired property;

compactness and closure of L1(Ω) wrt some topology is not straightforward. This carries

over to SBV (Ω), which is in general an unbounded subset of L1(Ω), and in the equi-

integrability condition we integrate. Here non-zero Cantor parts Dc can appear. As

in BV , we consider the weak−∗ topology on SBV (Ω). The necessary conditions come

from a natural application of Dunford-Pettis (Theorem 33 ) when considering F = SBV .

They are essentially boundedness and conditions on Dau and Dju similar to the second

formulation of equi-integrability in Definition 29. In most cases we take θ = 1, and

subsequently only measure the size of Juh in Hausdorff measure.

Theorem 37 (Compactness of SBV (Ω)). [4] Let Ω ⊂ Rn be open and bounded. Let

φ : [0,∞) → [0,∞], θ : (0,∞) → (0,∞] be lower semi-continuous increasing functions

with

lim
t→∞

φ(t)

t
= ∞, lim

t→0

θ(t)

t
= ∞.
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Let (uh)h ⊂ SBV (Ω), with ∥uh∥∞ uniformly bounded in h. Additionally,

sup
h

{∫
Ω
φ(|∇uh|)dx+

∫
Juh

θ(|u+h − u−h |)dH
n−1

}
<∞,

where the jump set Juh is the set where Djuh ̸= 0. Then there exists a subsequence

(uh(k))k weakly−∗ converging in BV (Ω) to u ∈ SBV (Ω). Additionally, the approximate

gradients ∇(uh)h weakly converge to ∇u in [L1(Ω)]N and (Djuh)h weakly−∗ converge

to Dju in Ω.

So any subset (uh)h ⊂ SBV (Ω) that is uniformly bounded in ∞-norm with correspond-

ing functions φ, θ that satisfy the conditions above is an admissible B1 with the weak-∗
topology. The conditions in Theorem 37 on φ, θ can be used to determine if the two

separate parts of the weak gradient Da, Dj converge to their respective parts or if there

is cross-over in the limit.
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B Computation Gateaux Derivatives

Necessary for the implementation of the numerical experiment is and explicit expres-

sions for D[TV [u]]. This is equivalent to computing the Gateaux derivative as given in

Theorem 29 with fTV (u) :=
∑3

i=1 |∇ui|. Let k ∈ {1, 2, 3}, pick i ̸= j ̸= k ∈ {1, 2, 3} the

other two values. Then we have for some constant C(i, j) ∈ R

∇fTV (ξk) = ∇
[√(

ξk1
)2

+
(
ξk2
)2

+ C(i, j)

]
=

(
ξk1
∥ξk∥

,
ξk2
∥ξk∥

)
.

Remark 23. Again, we abuse notation and use ∥ξ∥, ∥ξ·∥, ∥ξ·∥ all as the Euclidean norm

that makes sense given the vector/matrix inside.

Note that via our notation, the gradient operator ∇ acts over the lower indices Rn = R2

in this case with the upper indices of ξ denoting the channel. Computing the divergence

over ξk1 , ξ
k
2 gives

div [∇f(ξk)] = (ξk2 )
2

∥ξk∥
3
2

+
(ξk1 )

2

∥ξk∥
3
2

=
1

∥ξk∥
.

Because of the outlined difficulties with the norms ∥ξ∥ as described in the implementa-

tion details in Section 7.4, we use

D(TV [u]) = −
3∑

k=1

1

∥∇uk∥ε
.

For the computations below, we assume that we have a well-defined 1
∥ξ∥ as in the end

we will plug in the smooth approximation ∥ξ∥ε of the norm. For the k-th channel we

have

∇fgGD(ξk) = ∇
[
1

2

(
(ξi − ξk)2 + (ξj − ξk)2 + (ξj − ξi)2

)]
=

1

2
[4ξk1−2(ξi1+ξ

j
1), 4ξ

k
2−2(ξi2+ξ

j
2)].

div ∇fgGD(ξk) =
1

2
(4 + 4) = 4.

For each k this is the same, so the function is constant for all values ξ ∈ R3×2 and given

by

div ∇fgGD(ξ) = 4.

A more involved calculation gives

∇fjCG(ξk) = ∇
[
1

2

(
|ξk|2|ξi|2 + |ξk|2|ξj |2 + |ξi|2|ξj |2 − ⟨ξk, ξi⟩2 − ⟨ξk, ξj⟩2 − ⟨ξi, ξj⟩2

)]

=
1

2

[
ξk1

(
|ξi|2 + |ξj |2 − ξi1 − ξj1

)
, ξk2

(
|ξi|2 + |ξj |2 − ξi2 − ξj2

)]
.
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With for a particular channel

div ∇fjCG(ξk) = 2(|ξi|2 + |ξj |2)− ξi1 − ξi2 − ξj1 − ξj2.

In total

div ∇fjCG(ξ) = 4(∥ξ1∥2 + ∥ξ2∥2 + ∥ξ3∥2)− 2
∑
l,m

ξlm.

Using the chain rule we have

∇fjNambu(ξk) = ∇
(√

fjCG(ξk)

)

=
1

4fjNambu(ξk)

[
ξk1

(
|ξi|2 + |ξj |2 − ξi1 − ξj1

)
, ξk2

(
|ξi|2 + |ξj |2 − ξi2 − ξj2

)]
,

then using the quotient rule for[
ξk1

(
|ξi|2 + |ξj |2 − ξi1 − ξj1

)
, ξk2

(
|ξi|2 + |ξj |2 − ξi2 − ξj2

)]
4fjNambu

=:
[g1(ξ

k), g2(ξ
k)]

4fjNambu
,

we get

div ∇fjNambu(ξk) =
∑
l=1,2

∂gl
∂ξkl

(
fjNambu − gl

2fjNambu

)
f2jNambu

,

with
∂gl

∂ξkl
= (|ξi|2 + |ξj |2)− ξil − ξjl =

∂

∂ξkl
∇fjCG(ξk), l = 1, 2.

This can be computed for a given ξ as we know ∇fjCG(ξk).

The explicit form of the generalised cross-gradient defined in Definition 57 for N =

3, n = 2 is given by

fgCG(ξ)

=
(
ξ11ξ

2
2

)2
+
(
ξ11ξ

3
2

)2
+
(
ξ21ξ

1
2

)2
+
(
ξ21ξ

3
2

)2
+
(
ξ31ξ

1
2

)2
+
(
ξ31ξ

2
2

)2
−2(ξ11ξ

1
2ξ

2
1ξ

2
2 + ξ11ξ

1
2ξ

3
1ξ

3
2 + ξ21ξ

2
2ξ

3
1ξ

3
2), ξ ∈ R3×2.

For the k-th channel with C(i, j) ∈ R a constant, we have the gradient

∇fgCG(ξk)

= ∇
[(
ξk1

)2((
ξi2
)2

+
(
ξj2

)2)
+
(
ξk2

)2((
ξi1
)2

+
(
ξj1

)2)
− 2

(
ξk1ξ

k
2

(
ξi1ξ

i
2 + ξj1ξ

j
2

))
+ C(i, j)

]
= 2

(
ξk1∥ξ2∥2 − ξk2

(
ξi1ξ

i
2 + ξj1ξ

j
2

)
, ξk2∥ξ1∥2 − ξk1

(
ξi1ξ

i
2 + ξj1ξ

j
2

))
.

Such that taking the divergence results in

div[∇fgCG(ξk)] = 2
[
∥ξi∥2 + ∥ξj∥2

]
.
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The chain rule and quotient rule also holds channel-wise for fgCG and fgNambu as for

fjCG, fjNambu before. So

div[∇fgNambu(ξk)] =
∑
l=1,2

∂gl(ξ
k)

∂ξkl
·
(
fgNambu(ξ

k)− gl(ξ
k)

2fgNambu(ξk)

)
fgNambu(ξk)2

,

with

(g1(ξ
k), g2(ξ

k)) := ∇fgCG(ξk) =
(
2∥ξ2∥2, 2∥ξ1∥2

)
.
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C Figures

Included here the image results for the numerical experiments performed throughout

Section 7.

Figure 2: Two Channel Deblurring

Figure 3: Equal Channels
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Figure 4: Unequal Channels

Figure 5: Multi-structure
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Figure 6: Cat
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Figure 7: Coffee
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Figure 8: Rocket
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Figure 9: Comparison PSNR

Figure 10: Comparison SSIM
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