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Abstract

This research aims to take steps in developing Seizure and Ictal-Interictal Injury Continuum (IIIC) de-
tection models on long and noisy EEG recordings from critically ill ICU patients because automated
detection can significantly help neurologists and patients by diagnosis of serious brain diseases like tu-
mors and epilepsy. This work is a continuation of the work by Jin Jing et al. who developed a DenseNet
Convolutional Neural Network called Sparcnet for the same purpose. Sparcnet is capable of classify-
ing seizures, lateralized/generalized periodic discharges and rhythmic delta activity (LPD, GPD, LRDA,
GRDA), as well as everything else defined as ”Other”. However, this deep learning model was not
trained on longer EEG recordings and had high false positive rates on this type of noisy data. In order
to improve the quality of Seizure and IIIC labels for raw 10-second EEG segments, the labels from
experts were passed through a Bag of Words algorithm. This algorithm improved labels where power
spectral density values were peaking but could not be applied universally to all patients and had to be
tuned by an expert. The results suggest that the method has limitations in the form of a bias which
results from only using one expert and clustering only on power spectral density. These labels were
used in transfer learning experiments with different parameters and the Sparcnet model. This showed
that the transfer learning experiments failed to outperform Sparcnet 1. The main indications for this
result were that the label quality is still not good enough and that there is a need for more computing
power to do proper hyperparameter tuning. A Boosting Cascade and Multinomial Logistic Regression
(MLR) were applied as postprocessing steps on the Sparcnet model to provide a less resource-heavy
approach to the problem and try to reduce the false positive rate of Sparcnet. The results showed that
the Boosting Cascade was able to slightly improve almost all macro evaluation metrics and reduce the
false positive rate of classes at the cost of increasing the false positive rate of the ”Other” class. The
MLR model was able to reduce the false positive rate for the ”Other” and ”Seizure” classes. Both meth-
ods showed to be able to recognize clear artifacts that Sparcnet wrongfully classified as seizures. The
results suggested that both methods rely too much on the Sparcnet output, which is not optimal, and
that they might not be able to capture the complex nonlinear patterns in the EEG data. A number of
recommendations resulted from this work. First, the labels are not ready and need to be improved by
having experts do another round of labeling while they validate each other’s labels with the graphical
user interface that was developed with the Bag of Words method. Second, in order to exclude hyper-
parameters as a potential reason for bad performance improvements can be made by implementing
adaptive learning rates, k-fold cross-validation, and advanced hyperparameter tuning. Third, these
improvements need enough computing power in the form of a High Performance Computing Cluster.
Fourth, more research can be done on a data-level approach to solve the imbalance in the dataset.
Fifth, more patterns need to be added to the data. The ”Other” class for example needs to be split in a
”Normal” and ”Artifact” class.
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Introduction

Artificial Intelligence (AI) has been deemed a transformative technology with immense potential in the
field of medicine. Through machine learning and deep learning, AI is capable of supporting medical
specialists with disease detection [67], which is of immense value for healthcare and results in an
increase in overall patient well-being [54]. Early and accurate disease detection provides significant
societal benefits. Firstly, it significantly enhances patient outcomes across various medical fields [53].
This approach enables healthcare providers to identify and address potential health issues before they
become more severe [5] [83]. Secondly, diagnostic support systems hold the potential for enormous
economic benefits [89] [61] through reduced healthcare costs and decreased diagnostic mistakes.

Advancing disease diagnosis with AI is essential for several reasons. Medical specialists have
limited time [71], diseases can evolve, and patient dynamics change [99], making clinical interpretation
of medical information a cognitively challenging task and causing diagnostics to be prone to human
errors [54]. The increasing pressure on medical specialists is likely to persist due to projected workforce
shortages among healthcare professionals, driven by an aging population and a rise in chronic disease
[21]. Research in AI models for medical diagnostics has already shown that training models on large-
scale data can yield better diagnostic performance than experts and significantly improve the experts’
performance when aided with AI diagnostic support systems [41] [49].

Many of the various medical specialties can greatly benefit from diagnostic AI, and this is particularly
true for Neurology and Electroencephalography (EEG) analysis. There are three main reasons, that
fall under the previously made arguments, why this specialization would benefit greatly. First, early
detection of diseases have a great influence in patient outcomes. EEG analysis is a crucial tool for
diagnosing epilepsy and seizure disorders [77] [58], monitoring brain activity in Intensive Care Units
(ICUs) [3], and evaluating neurological conditions such as acute brain injury [10], strokes [91], and brain
tumors [51]. It is also essential in diagnosing dementia [2] and sleep disorders [8]. The noninvasive
nature of EEG and the ability to do real time monitoring make this method invaluable in clinical and
research settings.

Second, there is a shortage of neurological expertise globally [50]. This is also projected to become
worse as the widespread presence of neurological diseases increases. Given that people with epilepsy
make up 1% of the world population and the fact that morbidity can be prevented with cost effective
medicines [52] [7] there is an urgent need to use AI for improved patient outcomes in neurological care.

Third, EEG interpretation is difficult, and clinical decision making based on EEG is susceptible to
bias which causes misinterpretation and misdiagnosis [34] [35] [60] [4]. This difficulty is caused by the
non-stationary, non-linear, and non-Gaussian nature of EEG signals and brain signals [36] [78], which
are grounds for the variability in the signal’s statistical characteristics over time. Additionally, variations
in electrode sensor placements, differences in EEG acquisition hardware from various manufacturers,
and even minor discrepancies in electrode application on the skull can significantly affect EEG signal
readings. These variabilities underscore the substantial challenges in achieving consistent and general-
izable EEG signal interpretation across different individuals and sessions. Furthermore, manual visual
inspection and analysis of EEG is time consuming and takes years of clinical training [73]. Inspection
and monitoring of long-term medical EEG signals is especially prone to human errors because of the
requirement for a high level of focus over this longer period of time.

The analysis of Ictal-Interictal Injury Continuum (IIIC) patterns is crucial in Neurology and ICU set-
tings, due to their association with critically ill patients and increased mortality rates [33] [96] [Table
1]. IIIC patterns consist of seizures (SZ), lateralized and generalized periodic discharges (LPD, GPD),
and lateralized and generalized rhythmic delta activity (LRDA, GRDA). These patterns can lead to sig-
nificant brain damage and elevate the risk of in-hospital fatalities [43] [96] [11] [63]. Central to patient
management is the identification of IIIC patterns, as they play a key role in guiding treatment decisions.
Although aggressive medicine can suppress harmful brain activity, the primary goal remains to pre-
serve brain function while minimizing adverse effects [75]. It is crucial for clinicians to distinguish which
patterns are more closely related to seizures and which correlate more strongly with mortality risks [33].
Understanding and identifying these patterns not only aids in patient care but also drives research into
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new treatments and gives insight into seizure mechanisms. Automated identification of IIIC patterns
AI models would ensure targeted treatment leading to more effective interventions, improved patient
outcomes, and reduced healthcare costs.

Table 1: EEG Patterns and Their Clinical Associations

Pattern Indication Associated with Seizure % of ICU Patients Mortality

LPDs Acute stroke, traumatic brain in-
jury, encephalitis, tumors

Yes 8.7% 24-41%

GPDs Toxic–metabolic encephalopa-
thy, anoxic brain injury, acute
brain injury, infections, epilepsy

Yes 0.8-4.5% 30-64%

LRDAs Intracerebral hemorrhage, sub-
arachnoid hemorrhage

Yes 4.7-7.1% Not specified

GRDAs Variety of cerebral lesions and
metabolic disturbances

No Not specified Not specified



1
Project and Research Description

1.1. Related work
There is an extensive body of work for machine learning in seizure detection. Past research on general
seizure detection includes both traditional machine learning and deep learning methods. K-nearest
neighbors were used to distinguish seizure from non-seizure EEG data [44], wavelet packet decompo-
sition and random forest were combined to classify signals after feature importance analysis [79] and
wavelet transform was commonly used for EEG feature extraction [76] [84] [23] with support vector ma-
chine being the preferred classifier [28] [46] [14]. Developing accurate seizure detection models with
these traditional machine learning methods requires expertise in signal processing and data mining,
showing high efficiency on small datasets but encountering limitations as data size increases [92].

Because of this problem, deep learning models have been employed to achieve better results in the
field of seizure detection on EEG data. Haidar Khan et al. applied theWavelet Transform (WT) for signal
transformation and analyzed changes in probability distributions using Convolutional Neural Networks
(CNN) and Kullback-Leibler divergence (KL divergence) for data probability distribution methods [38].
Kostas et al. trained a Long Short Term Memory (LSTM) model to capture temporal information for
their predictions [82]. Liu et al. introduced a patient-independent approach in epilepsy research by
deploying a Bidirectional Long Short-Term Memory (Bi-LSTM) network [47]. Recent studies have also
explored CNN-based deep learning models, including 3D-CNN and ResNet, for classification purposes
[62], [95], [29]. Lee et al. worked on a hybrid approach combining ResNet50 and LSTMwith supervised
contrastive learning [45].

These developments provide impressive results in seizure detection but they are all missing the abil-
ity to detect LPDs, GPDs, LRDAs and GRDAs. This is mainly because there are no publicly available
datasets that include these patterns. To solve this problem, Jin Jing et. al started by doing research
on rapid IIIC annotation in order to create large datasets for training machine learning models. They
utilized unsupervised machine learning to demonstrate that EEG data can be efficiently clustered into
distinct patterns, significantly enhancing the labeling process for IIIC patterns. This method proved to be
60 times faster than manual review [31]. Their approach began with the application of a Change Point
Detection (CPD) algorithm to analyze the frequency characteristics of the signal, thereby segmenting
the EEG. In parallel, time and spectral features were extracted. The dimensionality of these features
was reduced per-patient and then clustered to form a dictionary. This dictionary was then combined
with the segments to create histograms. These histograms were further clustered and subsequently
scored by EEG experts. A follow up study showed that the pairwise agreement from this automated
method was not significantly different from inter-rater agreements using manual labeling [32].

Subsequently, their attention shifted to gathering large annotated datasets in order to train deep
learningmodels and achieving expert level classification on IIIC patterns. Methods focused on overcom-
ing challenges like inter-rater agreement, substantial class imbalance in datasets, extracting features
from raw EEG and leveraging unlabeled data. Wendong et al. used deep active learning on a large
labelled datasetset from 1454 hospitalized patients. Their method consisted of first training a Dense-
Net Convolutional Neural Network (CNN) to create a 2D embedding map and using Nearest-neighbor
label spreading to create additional pseudo-labels for a second round of training. Results showed label
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spreading increased convergence speed and models approached expert level performance across IIIC
pattern categories [19]. This research resulted in a follow up paper where another CNN based on the
DenseNet architecture named Sparcnet was trained using 6,095 scalp EEGs from 2,711 patients, both
with and without IIIC events [30]. The training and testing datasets comprised of 50,697 distinct or
separate segments that were selected on specific criteria. These EEG segments were annotated by
20 experts. The research aimed to evaluate Sparcnet’s performance in terms of sensitivity, specificity,
precision, and calibration against that of experts for identifying IIIC events. The model was evaluated
on the calibration index, the the model’s receiver operating characteristic (ROC), and precision-recall
curves (PRC) and achieved scores comparable to the experts’ benchmarks for the six IIIC and the non
IIIC class.

Despite these advances in IIIC detection, models are not yet capable of replacing Neurologists
because there is a need for high quality data in order to build robust models [65]. In general seizure and
IIIC detection, few published algorithms have fully addressed the requirements for successful clinical
transition due to three major shortcomings [56].

1.2. Problem Definition and Research Questions
1.2.1. Introduction
This research aims to take steps in developing Seizure and IIIC detection models on long and noisy
EEG recordings from critically ill ICU patients because automated detection can significantly help neu-
rologists and patients. This is a relatively unknown field of research. The goals are to reduce the
false positive rate, overcome data limitations, and improve the generalization to continuous EEG data
which can be considered as significant challenges. The previously named challenges are addressed
by building on the foundational work of Jin Jing et al. and applying transfer-learning with the Sparcnet
model on extensive, continuous ICU EEG recordings from critically-ill patients that were acquired by
Massachusetts General Hospital. The data consists of raw EEG recordings measured in microvolt with
a 10-20 international system from 140 patients that are processed to 10-second L-Bipolar 16 channel
segments with labels from three experts. The labels consist of the seizures, IIIC patterns, and the
”Other” class which consists of both normal brain activity and artifacts, noise that is not relevant for
diagnosis.

This study specifically investigates the effectiveness of Dense Convolutional Neural Networks in
detecting Seizure and IIIC patterns within this continuous and noisy data. The variability in ground truth
labels from experts is inherent to the nature of EEG signals. Consequently, the previously mentioned
Bag of Words method, refined by an expert neurologist, is used to enhance data quality. Because
of the success in reducing false positive rates on a smaller set of patients [15] and due to their less
complicated implementation, this research uses a feature based Boosting Cascase and Multinomial
Logistic Regression to post process the outputs from Sparcnet. These efforts set the stage for the
following problems, knowledge gaps and research questions:

1.2.2. Problem 1 : Limited High Quality Data Availability
Data availability is limited, particularly for IIIC patterns, which hinders the development of robust models
for this classification task. Most datasets for seizure detection have fewer than 25 subjects and feature
different sampling frequencies, segmentation methods, number of channels, and placement methods
[90]. There is also significant variability in ground truth labels. The average percent group consensus
among experts is 65%, due to variations in decision thresholds [30]. If there is ambiguity and no clear
consensus on the labels, machine learning models will struggle to learn the correct patterns. These
shortcomings are especially prevalent in the emerging challenge of the Ictal-Interictal Continuum, as
there are no publicly available datasets for these patterns.

This underscores the necessity of researching techniques for rapid annotation of EEG segments
and developing methods capable of learning from smaller datasets. It highlights the need to address
the limited data availability of IIIC patterns and to enhance the quality of labels. Such advancements
are essential until large high quality annotated datasets exist and in order to realise models that are
able handle real-world data and deliver classifications at an expert level under current circumstances.

A bag of words method has the potential to address this concern. The method revolves around
finding unique words and using their counts in text documents to make vector representations of those
documents. This vector representation can then be used to classify documents. The method which
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stems fromNatural Language Processing and Information Retrieval domain has crossed over two times
to EEG data. Wang et al. showed that a bag of words representation can effectively capture both local
and global structure similarity information in the EEG signal [87]. Furthermore, as stated in the related
work section, Jing et al. showed that combining Bag of Words with Change Point Detection can be used
to label EEG segments faster. How Bag of Words can be applied in the problem of Seizure and IIIC
classification is fully described in section 3.4. This problem and method require further research and
qualitative analysis on long EEG recordings from patients in the ICU, posing the first research question:

RQ1.
To what extent can Change Point Detection, K-means Clustering and Power Spectral Density be
used as a Bag of Words method to improve EEG labels on continuous data from 140 patients?

1.2.3. Problem 2 : Reduced performance on noisy continuous EEG-data
Deep learning models that process EEG data have not been fully tested on their generalization ability
because they are typically trained on the limited database of scalp EEG recordings [38]. Researchers
conclude that methodologies need to be extensively tested in clinical practice onmore EEGdata than for
example widely used datasets like CHB-MIT [82] [62]. Reduction in performance can be observed when
changing test datasets, suggesting that deep learning models tend to overfit to the training data [94].
This lack of generalization is often caused by models that learn patient specific patterns which is noticed
when evaluating on the test set that has new patients [20] [85]. This effect of reduced performance on
a new test set is especially pronounced when applying models like Sparcnet to real-world continuous
data for IIIC detection, which is noisier than most sampled data [15].

This is why there is a need to extensively validate these models on large scale real world continuous
EEG datasets from a large number of critically ill patients. By applying them to this type of data we
can make sure that they are robust in the clinical setting and can deal with different patients, a high
variability of seizure patterns, non pathological EEG background rhythms and artifacts. Training and
testing on this type of recording gives a sense of the capability from deep learning models to really
assist in helping Neurologists and what is needed to develop these models further.

In order to improve generalization and deal with the limited data availability for IIIC patterns intro-
duced in the previous section, Transfer Learning can be used. Transfer learning is a deep learning
technique that uses a dataset with a similar distribution and task in order to initialize learning for train-
ing on another dataset [88]. A straightforward transfer learning approach that has proven to work with
medical data is fine tuning [40], where parts of the network from a pretrained model are frozen and
other parts are retrained. It has three main advantages that can be leveraged. First, it is able to en-
hance model generalization by using a pre-trained model such as Sparcnet trained on a large dataset
and prevent overfitting. Second, the models performance on the smaller dataset can be improved by
also benefiting from the features learned on the large dataset. Third, it can reduce training time and
data need because the model has already learned relevant features for IIIC detection [72] [97]. Since
Transfer Learning deals with both problem one and two it is subject to the second research question:

RQ2.
How well can Transfer Learning contribute, in Dense Convolutional Neural Networks, to capture
better the complex nature of extensive ICU EEG data and their IIIC patterns?

1.2.4. Problem 3 : High False Positive Rate
The number of false positives on datasets of real longer continuous EEG recordings is generally too
high. Research by Dirks et al. demonstrated that Sparcnet struggled with a high false positive rate
on noisy continuous data. Sparcnet particularly classified samples as seizures that could be clearly
identified as artifacts. A large number of false positives can lead to unnecessary interventions from
neurologists. Rather than alleviating the time constraints faced by neurologists, these models could do
the exact opposite.

This last problem emphasizes the requirement for IIIC detection models to have the necessary post
processing steps that can reduce these misclassifications. The false positive rate of Sparcnets pre-
dictions can be reduced by two postprocessing methods that use manually engineered features. This
research proposes to use a Boosting Cascade and Multinomial Logistic regression. The cascade was
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trained by choosing features and thresholds that could keep a high level of true positives while reclas-
sifying samples that were not IIIC patterns. This method leverages building a strong classifier from
multiple weak classifiers and rapid rejection of negatives. Multinomial Logistic Regression is a statisti-
cal model that can predict multiple classes generalized from the binary classification method Logistic
Regression and is further descriped in section 5.2. Both the Boosting Cascade and Multinomial Logistic
regression models are used to recalibrate the output from Sparcnet. As opposed to computationally
intensive and time-consuming deep learning experiments these methods take less time to train and
can be implemented more easily.

RQ3.
To what degree can a threshold based Boosting Cascade and Multinomial Logistic Regression
with feature engineering reduce the false positive rate of the IIIC pattern detection?



1.3. Outline 7

1.3. Outline
This work is divided into the following chapters:

Chapter 2: Background

The background chapter serves to further expand on concepts used in chapters 3, 4, and 5. The
chapter discusses the EEG signal and its spectral content in section 2.1 in order to give context for the
spectrograms that are used throughout the chapters. It continues to expand on IIIC patterns and their
characteristics in section 2.2, a background on Convolutional Neural Networks as a preliminary for the
DenseNet model in section 2.3, and finally explains the idea of the DenseNet model, that is used in the
transfer learning experiments, in section 2.4.

Chapter 3: Bag of Words and Change Point Detection

This chapter describes themethods that were used to improve the label quality of the EEG segments
from the 140 patients dataset. The chapter starts off by showing the problem of label quality which
the method tries to solve in section 3.1. After this the theory of Change Point Detection, K-means
clustering, and how they are used in the Bag of Words method are explained in sections 3.2, 3.3, and
3.4. The results of the the full method are presented in section 3.5, the implications of these results
are discussed in section 3.6, and finally the limitations of using this method to create new labels are
discussed in section 3.7.

Chapter 4: Transfer Learning with Dense Convolutional Neural Networks

This chapter presents multiple transfer learning experiments that were done with the new labels
from the previous chapter. The goal of using these methods is to outperform the Sparcnet 1 model. It
opens up with a description of the data, how the data was processed, the loss function used to deal
with data imbalance, and the computational setup in sections 4.1, 4.2, 4.3, and 4.4. The chapter then
continues by describing the transfer learning experiments and the metrics used to evaluate them in
sections 4.5 and 4.6. Finally, it ends with a description of the results, a discussion of the results, and
the limitations of using transfer learning to learn complex patterns from continuous EEG data in sections
4.7, 4.8, and 4.9.

Chapter 5: Feature Based Post Processing

Deep learning experiments require a lot of tuning and time to train so in order to provide an alterna-
tive this chapter presents postprocessing with feature based Boosting Cascade and recalibration with
Multinomial Logistic Regression. Both methods use features that say something about the frequential,
morphological, and temporal information of the EEG signal. The features are used to recalibrate the
output from the Sparcnet 1 model. The chapter begins by explaining the theory behind the Boosting
Cascade and Multinomial Logistic Regression in sections 5.1 and 5.2. It then concludes with a de-
scription of the results, a discussion on what to conclude from these results, and the limitations of both
methods in sections 5.3, 5.4 and 5.5.

Chapter 6: General Discussion

The general discussion aims to summarize the results and limitations from chapters 3, 4, and 5, put
the research in the context of the literature and discuss steps that can be made in future work. The
chapter opens with a summary of the results and limitations in sections 6.1 and 6.2. It then continues
with the context to related work in section 6.3. Finally, the chapter concludes with the recommendations
for future work in section 6.4.



2
Background

This chapter serves as background knowledge about EEG signals, IIIC patterns, Convolutional Neural
Networks, and the DenseNet architecture. The frequency content of the EEG signal is explained and
will be used to create features for the postprocessing models in chapter 5 and qualitative analysis of the
outputs of the models that are researched. The IIIC patterns and their specific characteristics that are at
the center of the classification task are further detailed. Finally, the mechanics of Convolutional Neural
Networks and the DensNet architecture are explained which form the basis of the Transfer Learning
experiments in chapter 4.

2.1. Electroencephalography
Inside our brain, neurons have an electrical charge. Due to brain activity, this charge changes. As
the cortex is folded, the direction of these charges typically align, and a net potential can be measured
outside the skull. This signal is referred to as EEG signal and is typically sampled by non-invasive
electrodes placed on the scalp often with an International 10-20 system. Measuring changes in elec-
trical activity results in EEG waveforms. The strength of the fluctuations is measured in microvolt and
the signal can be decomposed into a complex mixture of waveforms with different frequencies. The
frequency of a waveform is defined by how often the wave repeats itself over time. An EEG signal can
then be decomposed from the time domain to the frequency domain with a Fourier transform (equation
2.1) to determine the power of the different frequencies in the signal. In the Fourier Transform, the
amplitude over time x(t) is integrated over all time t while being multiplied by a complex exponential
containing the frequency (f ), time (t), and an imaginary unit (i). The small expression that is x(t)e−2πift

encapsulates the idea of winding a graph around a circle with a variable frequency. This graph that
is wound up around a circle for this specific frequency contains a center of mass that is larger for fre-
quencies that are present in the original circle. This process actually creates a new function that has
frequency as an input and converts the time-domain signal x(t) into the frequency-domain represen-
tation X(f), revealing the signal’s frequency content. This results in the power or amplitude of each
frequency component (figure 2.1 B & C).

X(f) =

∫ ∞

−∞
x(t)e−2πift dt (2.1)

The frequency content of a signal is important for characterizing normal and abnormal brain activity
[27] [70]. The frequency bands that are most important for clinical decision making are alpha (8-12 Hz),
beta (12-30 Hz), theta (4-7 Hz), gamma (30-100 Hz), and delta (0.5-4 Hz) waves [6]. Alpha waves can
be associated with seizure control in epilepsy [1], slow waves like delta waves are of prime importance
of detecting epilepsy [86], and ratios between for example the alpha and delta waves can be used
as features in detecting harmful brain activity [98]. A central tool in quantitative EEG that is standard
in most quantitative EEG software is the ”spectrogram” [57]. The spectrogram plot has time on its x-
axis, frequency on the y-axis, and power in color (figure 2.1b A, B & C) and is essentially a plot of the
Fourier transform over time. These spectrograms are widely used by neurologists and relate back to
information in the raw EEG signal. Through spectrograms, clinicians can infer underlying EEG patterns.

8
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(a)Waves to frequency bins (b)Waves to Spectrograms

Figure 2.1: Waves and their frequency content [57]

Seizures for example often have a gradual increase in the power of higher frequencies which is more
difficult to see in the raw EEG signal but can clearly be observed in the spectrogram (figure 2.2 C & D).

A better way to make spectrograms is by using Multi-taper spectral estimation [37]. The power
spectral density (PSD) that is obtained by the signal’s raw Fourier transform contains variance, and
noise and is a biased estimate of the true spectral content. This is caused by the spectral leakage that
occurs when using a taper on finite data. The taper is also called a window function and has the property
of being zero valued outside of an interval. Multi-taper spectral estimationmakes use of multiple window
functions and averages their single taper spectra across those tapers to create less noisy spectrograms.
The tapers that are being used come from the discrete prolate spheroidal sequences (DPSS) and
construct low-bias, statistically consistent spectral estimators that reduce spectral leakage.

2.2. IIIC patterns
The ictal-interictal continuum (IIC) consists of a spectrum of EEG patterns that are positioned between
clearly ictal (seizure) and interictal (between seizures) patterns. These patterns share some features
with seizures but can not be definitively classified as seizures. As mentioned in the introduction there
are two types of patterns next to seizures and those are Periodic Discharges (PDs) and Rhythmic Delta
Activity (RDA). These two forms of patterns can appear across the entire brain resulting in generalized
periodic discharges and rhythmic delta activity (GPD, GRDA). In contrast when these patterns can
appear in one of the two hemispheres which are called lateralized periodic discharges and rhythmic
delta activity (LPD, LRDA). The patterns can be seen in figure 2.3.

PDs emerge as waveforms that repeat with a consistent shape and lasting time, each set apart by
noticeable intervals which can be called the inter-discharge interval separating the discharges as can
be seen in Figure 2.4. These waveforms show up at almost consistent times, where the definition of
”nearly consistent” is the cycle length altering by less than 50% in most pairs of cycles. A discharge
is marked by waveforms that do not go beyond 0.5 seconds in duration, regardless of the phases
involved, or those extending 0.5 seconds or more but limited to three phases or fewer [24]. RDA is
characterized by the repetitive occurrence of waveforms that share a uniform appearance and duration
but unfold without any inter-discharge intervals between subsequent waveforms. The time frame, or
period, of these rhythmic occurrences, should remain under a 50% variability from one cycle to the
following in the majority of cycle pairs. Although a sinusoidal waveform is often seen, the scope for
what is considered rhythmic includes patterns that may exhibit sharpness at their peaks or troughs. For
a pattern to fall under RDA, it needs to be within a frequency range of 0.5 to 4.0 Hz. Rhythmic and
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Figure 2.2: Spectrogram of real seizure [57]

periodic patterns need at least six cycles or discharges in a row in order to qualify.
LPDs are the most commonly observed pattern and are seen in 8.7% of critically ill patients [81]

[12] [9]. Often they are seen in patients with structural brain injuries such as acute stroke, traumatic
brain injury, encephalitis, and tumors [9] [17]. They are associated with an increased risk of seizures
and can appear in the setting of epilepsy, systemic infection, metabolic and toxic insults as well as in
the absence of structural lesions [17]. GPDs were observed in 0.8-4.5% of critically ill patients [81].
The most common etymologies are toxic–metabolic encephalopathy, anoxic brain injury, acute brain
injury, infections, and epilepsy. They are also often associated with seizures particularly nonconvulsive
seizures and nonconvulsive status epilepticus [16] [64]. LRDAs are perceived in 4.7-7.1% of critically
ill patients that are monitored by continuous EEG [81] [18] [69] [74]. Intracerebral hemorrhage and
subarachnoid hemorrhage are the most common causes of LRDA [18]. GRDAs are seen together with
a variety of cerebral lesions and metabolic disturbances [81] [74]. Unlike the previous patterns, GRDA
does not seem related to seizures [42] [80].
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Figure 2.3: IIIC patterns

2.3. Convolutional Neural Networks
In this thesis, Convolutional Neural Networks (CNN) like the Sparcnet model are used to do transfer
learning and apply post processing techniques. CNNs are neural networks specifically designed for
processing data with a grid like topology [22]. These networks originated from the field of computer
vision and were designed to be able to get an understanding of 2D or 3D image data. As opposed
to classical neural networks they preserve spatial information by not just flattening the input of the
image. They are capable of extracting high level features like edges or other shape patterns. By using
a kernel, CNNs reduce the size of the image to a form that can be easily processed by the network.
The kernel consists of weights that can be learned through a loss function and the parameters are
optimized via gradient descent-based optimization algorithms. Unlike general neural networks, which
use matrix multiplication, CNNs have a special convolutional operation present in one of the layers
of the network. The convolution operation which involves the weighted sum of products between the
kernel and overlapping patches of the input produces a feature map. This feature map shows the
intensity of predicted features across the different regions of the input.(2.5). Because the same kernel
parameters interact with all spatial locations of the input data this operation is computationally efficient
and it also makes use of the spatial information.
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Figure 2.4: Rhythmic Delta Activity vs Periodic Discharges [24]

Figure 2.5: Convolutional operation [55]

In order to calculate the values y element wisemultiplication and sumare applied as seen in equation
(2.2). In the equation, I represents the input which in this case is a 2D matrix with indexesm and n. K
represents the kernel with indexes i and j. The kernel K is usually smaller than the input matrix I and
depending on padding and stride slides over a few data points from I.

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(m,n)K(i−m, j − n) (2.2)

Applying many convolutional operations like this decreases the shape of the input (2.3). Continu-
ously applying these operations will not leave any pixels left at the edges. One of the ways to capture
the information at the edges is by using padding and adding zeros around the input(2.4).

Shape = (nh − kh + 1)× (nw − kw + 1)

with n as input size and k as kernel size
(2.3)
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Shape with padding = (nh − kh + ph + 1)× (nw − kw + pw + 1)

with padding ph rows and padding ph columns
(2.4)

Another important parameter in the convolutional operation is stride which represents the number of
rows and columns the patch is moved per slide. This can be done for computational efficiency or
dimensionality reduction. The output shape becomes smaller based on the stride height sh and stride
width sw (2.5).

Shape with stride = ((nh − kh + ph + sh)/sh)× ((nw − kw + pw + sw)/sw) (2.5)

After doing a convolutional operation the input is further transformed by adding a bias value and
passing the input through a non-linear function just as with normal neural networks. Non linear func-
tions like equations (2.6),(2.7),(2.8) and (2.9) [13] are also called activation functions. These functions
introduce nonlinearity into the network, control the output range, and control the gradient flow when
doing backpropagation during training. They are essential for neural networks by enabling them to
learn complex patterns from the data. When doing the convolutional operation on an input that has
for example three dimensions only the depth of the kernel changes but the operation is still in two
dimensions.

Besides these operations and layers most CNN’s have pooling layers to reduce data dimensional-
ity and introduce spacial invariance. The goal of pooling layers is to reduce the number of trainable
parameters while keeping the same relevant features even when the input is translated to a smaller
extent [26]. Pooling techniques can for example consist of max-poling and average-pooling. As their
name insinuates they can either take a max value out of an input patch or generate the average over
that input patch.

Sigmoid: S(x) =
1

1 + e−x
(2.6)

Tahn: f(x) = tanh(x) = (ex − e−x)

(ex + e−x)
(2.7)

Relu: f(x) =

{
0 for x ≤ 0
x for x > 0

(2.8)

Softmax: fi(x⃗) =
exi∑J
j=1 e

xj

for i = 1, . . . , J (2.9)

In a simple CNN, these layers are alternated and consist of the feature learning part of the network.
Features learning layers are often followed up by a classification layer which flattens the features so
that they can serve as input for a fully connected layer. This fully connected layer can end with a
Softmax function that maps the output of the fully connected layer to a probability for a certain number
of classes.

2.4. DenseNet
DenseNet is a form of CNN that, instead of making architectures more deep and wide, tries to leverage
feature reuse to create a condensed model that is easy to train and highly parameter efficient. The main
idea is to concatenate different feature maps that are learned by different layers [25]. In the DenseNet
architecture, the input first passes through a batch normalization, convolution, and activation layer that
generates the feature maps (equation 2.10). The input for the next layer is not only this feature map
but the feature map and the original input concatenated. The input of each layer consists of the feature
maps of the previous layers as in equation 2.11.

H(x) = Conv(ReLU(BN(x))) (2.10)

xl = H([x0, x1, . . . , xl−1]) (2.11)

Having access to the raw information of the input and all the feature maps has a positive effect
on the variation of the input between layers, mitigates the loss of information as the network deepens,
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and prevents models from overfitting on noise from the training data. Because of the concatenation,
the dimensions start exploding that is why after a few concatenations a transitional layer is added
which consists of a 1D convolution layer in order to project the dimensions back to a lower dimensional
one. A sequence of layers that concatenate feature maps before going to a transition layer is called a
denseblock (2.7)

Figure 2.6: Denseblock [25]

An interesting effect that might be counterintuitive is that this approach actually requires fewer pa-
rameters. This is because through this method there is no need to re-learn redundant feature maps as
the architecture promotes feature reuse. The DenseNet architecture differentiates between information
that is added to the network and information that is preserved. DenseNet layers are really narrow and
thus add a small set of feature maps to the collective knowledge of the network. The number of feature
maps is also kept in check by a hyperparameter k called the growth rate (k0 is the input dimension).

Input feature maps of the l-th layer = k0 + k(l − 1) (2.12)

Another advantage is that DensNet architectures are easier to train compared to normal neural
networks because each layer has direct access to the gradients from the loss function and original
input signal because of the direct connections between layers. Finally, because of the short paths in
the network, there is a strong regularization effect and the models tend not to overfit on smaller training
sets.

Figure 2.7: DenseNet architecture [25]



3
Bag of Words and Change Point

Detection

This chapter deals with label quality and the methods described serve as a preprocessing step before
applying the models in chapters 4 and 5. Bag of Words and Change Point Detection were used to
improve the labels. One of the experts used a graphical user interface (GUI) to tune the parameters of
the number of clusters in the k-means clustering of this Bag of Words in order to output better labels
than the majority vote of the expert labels. In some of the cases, labels were better from the outputs of
the models and in some cases, the labels were better from specific experts or combinations of experts
and model outputs. Each case was reviewed by one of the experts and choices were made on which
labels had the highest quality. The chapter starts by introducing the problem and by giving examples
of the labels. Following this, the methods used to solve the problem are explained. Finally, some of
the results and the limitations of these methods are discussed.

3.1. Label Quality
The opinions varied substantially between experts and not all experts produced labels for each patient.
This problem of label quality can be seen in the examples from the dataset of a few sampled patients.
Figure 3.2 shows segments of patients ”glad001” and ”goodSZ001” in the form of the expert labels,
average power with change points and spectrograms. Both these patients show how different the
labels can be for each expert. The classes are represented as swimmer plots with color codes seen in
figure 3.1. The ”Other” class is represented as dark blue, the ”Seizure” class as red, the ”GPD” class
as yellow, the ”LPD” class as orange, the ”LRDA” class as green, and the ”GRDA” class as light blue.
The spectral content of the signal can be seen in the spectrograms denoted by the left lateral (LL), right
lateral (RL), left para-central (LP), and right para-central (RP) brain regions and plots in the figures.

In glad001 there are no labels from expert A as seen from the grey bar in the A swimmer plots,
expert B has the class ”LPD” as shown by the orange B swimmer plot and expert S has the classes
”Other”, ”LPD” and ”LRDA” which can be seen in the S swimmer plot based on the colors orange, green
and dark blue. The majority of the labels end up being ”LPD” as seen by the orange color in the M
swimmer plot where expert B’s labels overrule the tie in labels on some of the segments. The problem
with this sample is that there are clear artifacts present in this sample which can be identified by the
extremely high average power in the spectrograms for regions right lateral (RL) and right para-central
(RP).

In the first half of the segment from goodSZ001 expert A sees ”Seizure” (red color bar in the A
swimmer plot) while expert B detects ”LPD” (orange color bar in the B swimmer plot) and expert S
detects ”Other” and ”LPD” (orange and blue bars in the S swimmer plot). In the second half of this
segment, both experts B and S detect ”Seizure” (red bars in the B and S swimmer plots) while expert
A thinks the ”LPD” class is present (orange bar in the A swimmer plot).

Figure 3.3 also shows the labels, spectrograms, average power, and change points but for patient
”glad022” and a different segment of patient ”goodSZ001”. This other patient and different segment
from ”goodSZ001” give insight into the errors that can occur in the final labels when applying a majority

15
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Figure 3.1: Color code of classes for swimmer plots

vote over the expert labels. In glad022 the expert labels from experts A and S are ”Seizure” (the red
bars in the A and S swimmer plots) and the labels from expert B are ”GPD” (the yellow bars in the B
swimmer plot) on segments where there is no signal. It is clear from the spectrograms in the left lateral,
right lateral, left para-central, and right para-central that these sections should in this case be labeled
as ”Other” because there is no measurement in the parts where the spectrogram is dark blue (0 dB). A
measurement of 0 dB should be labeled as an artifact because there are no seizure or IIIC patterns in
the EEG.

In the other segment from goodSZ001 experts B and S labeled the first part of the EEG as ”Seizure”
(shown by the red color bars in the swimmer plots B and S) and expert A as ”LPD” (indicated by the
orange swimmer plot A). This first part of the segment also shows really high average power just like
in ”glad022” which also indicates an artifact.

3.2. Change Point Detection
Solving the previously mentioned problems is done through a pipeline that generates a number of new
labels based on the expert labels and the power spectral density of the signal. The new labels that
are generated are the clean labels denoted by C and the SZ labels which are a combination of the
clean labels and the seizures from the experts. The pipeline starts by loading in the spectrograms of a
patient and the labels from the experts. The spectrograms are calculated by using multitaper spectral
estimation as described in the background section 2.1. The labels from the experts are used to create
majority vote labels that are described in the swimmer plots as M. Since not every sample has a label
from every expert there is a possibility for a tie. In this case, the label is overruled by the label from
expert B.

The spectrograms are aligned with the labels and the mean power in decibels is calculated for each
time point. Since this mean power can have a very high resolution that is very noisy it is smoothed using
a Savitzky-Golay filter. The Savitzky-Golay filter is a generalized moving average with filter coefficients
determined by an unweighted linear least-squares regression and a polynomial model. The degree of
the polynomial is the smoothing parameter for the function and is set at 10 for all patients.

On the smoothed average power Change Point Detection (CPD) is applied. A changepoint is a
moment in time when a statistical property of a signal abruptly changes. CPD is often used to find
changes in time series signals [48]. The CPD algorithm used follows the following steps:

• Choose a point and divide the signal into two sections
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Figure 3.2: glad001 and goodSZ001: Expert labels, Average power (dB) and spectrograms for brain regions (LL, RL, LP, RP)

Figure 3.3: glad022 and goodSZ001: Expert labels, Average power (dB) and spectrograms for brain regions (LL, RL, LP, RP)

• Compute an empirical estimate of the mean power
• For each point add deviation from the empirical estimate
• Add deviations from section to section and compute the total residual error
• vary the location of the division point between sections until this residual error is the lowest

The empirical estimate, in this case, is just the mean of the mean power from segment kr to kr+1

and given by equation 3.1
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⟨x⟩kr+1

kr
=

1

kr+1 − kr + 1

kr+1∑
i=kr

xi (3.1)

Theoretically now if every point becomes a changepoint the residual error vanishes which is why
a penalty term is added that grows linearly with the number of changepoints. This means that the
function rejects adding additional changepoints if the decrease in residual error does not meet the
threshold. This means that given a signal x1, x2, ..., xN and changepoints k1, x2, ..., kK the error for the
number of changepoints J(K) is given by equation 3.2.

J(K) =

K∑
r=0

kr+1∑
i=kr

(
xi − ⟨x⟩kr+1

kr

)2
+ βK (3.2)

•
(
xi − ⟨x⟩kr+1

kr+1

)2
is the deviation of point xi from the empirical estimate.

• βK is the penalty term, with β being a constant.

In summary, the average power signal is segmented in such a way that the deviation from the mean
of those segments is as small as possible while preventing overfitting through a minimum threshold
parameter. The optimization of the deviation error is done through dynamic programming and with
early abandonment [39].

3.3. K-means clustering
The k-means clustering algorithm is used to make the Bag of Words representation of the data in
order to spread labels to segments that have the same frequency content. K-means clustering is an
unsupervised algorithm that is used to identify groups of data points and assigning each point to one
of those groups with their centers. The algorithm tries to minimize the sum of the Euclidean distance
between assigned cluster centers µi and the points x in the cluster Ci and the clusters k (equation 3.3).

J =

k∑
i=1

∑
x∈Ci

∥x− µi∥2 (3.3)

The algorithm is initialized by randomly assigning k initial cluster centroids. First, the nearest data
points are assigned to the new cluster. In the assignment step, each data point xp is assigned to the
nearest centroid µi (equation 3.4). After reassigning the new labels the centroids are calculated again
as in equation 3.5. These two steps are repeated until the centroids don’t change any more.

Ci =
{
xp : ∥xp − µi∥2 ≤ ∥xp − µj∥2 for all j, 1 ≤ j ≤ k

}
(3.4)

µi =
1

|Ci|
∑
x∈Ci

x (3.5)

3.4. Bag of Words
In the EEG recording K-means clustering is used on the power spectral density values to create a
dictionary of ”words”. The entire signal and its frequency content are divided into segments with cluster
centroids and labels. Then for each segment from the Change Point Detection, a histogram of cluster
labels is made. Each time point in the sample that has dB values over all frequency bins is assigned to
one of the clusters by comparing them to the cluster centroids. A histogram per sample is created from
the counts of the cluster labels. These counts of cluster labels are the Bag of Words representation
of the frequency content. The histograms are clustered again in order to spread labels to all cluster
members. This process has two parameters the ”number of words” for the first clustering and the
”number of clusters” for the second clustering.

After these clustering steps cluster level labels are assigned to the entire cluster of histograms
based on the majority label of the medoid. This way each cluster has a consistent label. As a final
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step in the label spreading process, the labels are spread over the changepoint segments so that each
segment that belongs to the same cluster has the same labels.

At this point, a postprocessing step was implemented to improve the labels. All samples that had
average power outside of the range of [-20, 20] were set to the Other class. This resulted in cleaned
labels C. Because the new cleaned labels missed some seizures that experts found in the data a third
set of labels was created: any seizures in M were set in a copy of C creating SZ. This resulted in the
labels M, C and SZ.

3.5. Results
Applying the previously mentioned pipeline on the examples from the label quality section resulted in
the new SZ and C labels seen in figures 3.4, 3.5 and 3.6. In the figures the BOW color bar shows the
clusters from the Bag of Words method and its corresponding sections.

The segment from glad001 in figure 3.4 shows that there are more ”Other” classes as seen by the
dark blue bars in the regions where the average power spikes and the power over the frequency bins
are high in the spectrograms. This is a clear improvement over the majority vote plot in figure 3.2. The
segment of goodSZ001 in the same figure gave a similar result as opposed to taking the majority label
(M) with the exception of the part after the seizure where it took over the label ”Other”. The segment
from glad022 in figure 3.5 also shows an improved presence of the ”Other” class when the signal is
zero and when there are abnormal power spikes as opposed to the ”Seizure” labels, depicted by the
red color bars, that were seen in the M swimmer plot of figure 3.3. The SZ and C labels for the second
goodSZ001 segment also considerably changed compared to M. The power artifacts at the beginning
of the segment were relabeled as the ”Other” (the dark blue bars in SZ and C) class and showed correct
”Seizure” labels (the red color bars in SZ and C) towards the end where there was an increase of power
in the left lateral and left para-central regions over certain frequency bins.

Figure 3.6 shows that in patient ”glad003” the parameters have a big influence on the C labels. The
labels where the number of clusters was set to 30 classified the ”Seizure” classes from expert B as the
”GRDA” class, as shown by the light blue color bars in the C(50,30) swimmer plot, while a parameter
of 50 resulted in the ”Other” class and label (the dark blue color bars). In this segment, there were only
labels from expert B. This shows both the influence of the parameters on the C labels and that there
are segments where the new C labels are not better than those of the experts.

Figure 3.4: glad001 and goodSZ001: Bag of Words clusters (BOW), new labels (SZ, C), Average power (dB), for brain regions
(LL, RL, LP, RP)



3.6. Discussion 20

Figure 3.5: glad022 and goodSZ001: Bag of Words clusters (BOW), new labels (SZ, C), Average power (dB), for brain regions
(LL, RL, LP, RP)

Figure 3.6: Bag of Words and Change Point Detection on glad003 under different settings for number of clusters (50 and 30)

3.6. Discussion
The results showed that using the frequency content of the signal can improve the labels on segments
where the frequency is extremely high or extremely low. The results did show that different parameters
were necessary for some patients and that the method could not be applied with the same parameters
to all cases. The Bag of Words and Change Point Detection method can not be universally applied to
long EEG recordings without validation from an expert and parameter tuning. In some cases, the labels
from the Bag of Words and Change Point Detection did not create an improvement and the labels had



3.7. Limitations 21

to be ”saved” by choosing a combination of the labels from a certain expert and keep seizures from
other experts. This method does hold the potential to improve labels in a much shorter period of time
compared to manually relabelling every segment. The GUI is a tool that can be used to validate labels
quickly and look at raw EEGs.

In order to attempt to create a dataset with better labels expert B tuned the number of words and
number of cluster parameters and made decisions on one of the following six scenarios for all patients
with these three new labels. For example, the result in figure 3.6 led to the decision to use scenario 3
which meant using the labels from M which in this case means using the labels from expert B.

1. Use label C only (flag : 0)
2. Use label C + Seizure from M = SZ (flag : 1)
3. Use label M only (flag : 2)
4. Use label expert B only (flag : 3)
5. Use label expert B + Seizure from M (flag : 4)
6. Use label C + Seizure from M + Seizure from expert A (flag : 5)

The parameters and decisions for the labels can be seen in table A.1 in the appendix. The labels
after using the previously discussed methods and tuned by one of the experts resulted the final labels
that were used in the transfer learning experiments and the post processing algorithms.

3.7. Limitations
Combining the expert labels this way to generate new labels has the limitation that it is tuned by one
expert. This makes the labels biased to the preferences of the expert who is tuning the labels. This
same principle applies to scenario selection to rescue the labels when the Bag of Words and Change
Point Detection method fails to generate better labels after tuning. The expert assigning the flags of
the scenarios could have a preference towards its own labels which would introduce a bias in the
data. Because expert B was tuning the labels and creating the scenarios, two out of the six scenarios
involved using the labels from expert B. Even if the labels from expert B are better the preferred scenario
would be to have each expert’s opinion weigh equally in the process of tuning the hyperparameters and
making decision rules to prevent the labels from skewing towards one expert.

Another limitation is that the new labels are skewed toward the frequency content of the signal be-
cause of the clustering of power spectral density values. Noise in the EEG signal can influence the
power spectral density values which results in less accurate clustering results. The power spectral
density values give insight into the frequency domain but by only clustering on power spectral density
values, this method loses morphological, spatial, and temporal information. Temporal and morphologi-
cal information are important to identify short lived events like spikes, bursts, or artifacts and identifying
rhythms and oscillations. Spatial information gives an understanding of the spatial distribution of brain
activity that is useful for detecting the localization of the patterns in certain areas of the brain.



4
Transfer learning with Dense

Convolutional Neural Networks

The previous chapter served as a step to improve and decide on the final labels. In order to deal with the
limited data availability problem and leverage the information learned by Sparcnet 1, transfer learning
experiments were done using the new labels. This chapter explored the potential of Transfer Learning
on the noisier labels in order to classify the IIIC patterns. A total of 7 experiments were done with the
around 12 hour long EEG recordings that were labelled by three experts and cleaned with the Bag of
Words and Change Point Detection Models. These experiments were evaluated with machine learning
evaluation metrics that give insight in the performance of the models on the classification task.

4.1. Data
The data was sampled from 140 patients who were in the ICU of the Massachusetts General Hospital.
There were 71 males and 64 females. The average age was 49.49 years and the average length of
the EEG recording was 13.37 hours. The measurements were in micro volts and recorded with an
international 10-20 system at a sampling rate of 200 Hz. The full table 1 can be seen in appendix A.2.

4.2. Data pre-processing
In order to prepare the data for training the DenseNet CNN a number of steps were taken. The pro-
cessing starts by taking the mono-polar EEG data and transforming it to L-bipolar and dropping the two
midlines. This means each channel measures the voltage difference between two adjacent nodes. The
L-bipolar montage is less prone to artifacts and best appreciate focal potentials. The data is organized
into specific groups: left lateral, right lateral, left para-central, right para-central. This is done to im-
prove the signal to noise ratio and put more emphasis on local differences. Following this conversion
to bipolar, a notchfilter is applied to the signal with the aim of removing the power line noise that is
present at 60 Hz. After removing the power line noise, a bandpass filter is used that keeps frequencies
between 0.5 and 40 Hz. The bandpass filter ensures that high frequency noise and low frequency drifts
are eliminated. In order to mitigate some artifact problems, the amplitudes of the signals are clipped
between -300 to 300 microvolts. This clipping ensures that the data falls in the physiological range for
EEG signals. The processed data is then segmented in overlapping windows. Each window is 10s
long and the windows overlap 4s with the previous sample and 4s with the upcoming sample. These
choices were made because this way the input of the data is the same way as in the original Sparcnet
1 model. This ensures that the EEG recording is divided in 10s segments with a moving window of 2s
and creates the 8s overlap.

There is a high imbalance in classes in the dataset and the data comes from recordings of specific
patients. With the aim of truly testing the model’s generalizability across patients, the same patient data
can not be present in both the training and test splits. This is why a stratified split is used that makes
sure that each class is represented in the training, validation and test spit and that there is no overlap
in patient data. The stratified split works by first initializing a class count dictionary per patient and a
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global class order from the smallest class count to the largest.
Based on the class with the smallest amount of labels, patients are assigned to the training validation

and test set in iterations. In each iteration, the current ratio is compared to a target ratio Rtarget (0.7,
0.15, 0.15) and patients are assigned to splits that are furthest away from this ratio until all the patients
are in the splits. This way of spreading the patients generated the splits in tables 4.1 and 4.2 that were
used to train and test the models.

Class Training Set Validation Set Test Set
Other 1,550,739 370,679 336,829
Seizure 32,087 14,322 10,826
LPD 285,114 59,998 65,072
GPD 177,358 43,812 37,340
LRDA 243,121 20,592 18,817
GRDA 68,176 3,766 5,418

Table 4.1: Class Distribution across Training, Validation, and Test Sets in number of patients

Class Training Set (%) Validation Set (%) Test Set (%)
Other 71.25 17.04 15.46
Seizure 61.18 27.33 11.49
LPD 67.39 14.18 18.42
GPD 65.43 16.15 13.13
LRDA 80.33 6.81 10.15
GRDA 86.19 4.76 8.05

Table 4.2: Class Distribution Across Training, Validation, and Test Sets

4.3. Loss function
In order to deal with the fact that the dataset is imbalanced, the weighted KL divergence loss function
is used that allows differential weighting of classes. This function assigns higher weights to underrep-
resented classes which causes the model to pay more attention to this class. The loss function is given
by

KLweighted =
1

K

K∑
k=1

M∑
m=1

wm

[
L̃k,m · log L̃k,m

Lk,m

]
(4.1)

The total number of samples that are present in the dataset and used in the weighted KL Diver-
gence loss function is denoted by K. Each one of these samples gives a contribution to the overall
loss. We make a distinction between the predicted probability distribution for each sample and the real
probability distribution. The predicted probability distribution is denoted by L̃k and consists of the logits
that are produced by the DenseNet CNN model transformed by a softmax function in order to create
probabilities. The true probabilities Lk are one hot encoded vector where the real class has a value of
1 and the other classes have a value of 0. This vector can be seen as the ground truth which is com-
pared against the model’s predictions. Since its weighted KL divergence loss, the function has a weight
vector wm that penalizes the model for making mistakes on the under sampled classes. Because the
model trains on batches of data the weighted KL divergence loss is averaged over all K samples. The
reason for doing this is that by averaging over the samples the loss is normalized. By normalizing, the
batch size does not have influence on the gradients and ensures stable updates while training.
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4.4. Computational setup and distributed training
Computations were realized on a Linux systemwith a AMDRyzen Threadripper 3960X 24-Core Proces-
sor, 251 GB RAM, Nvidia RTX A6000 GPU, and two Nvidia Quadro RTX 6000/8000 GPUs. Because of
limited fast SSD memory and an HDD that caused program shutdowns, the deep learning experiments
were continued inside a Docker container on another Linux system with an Intel(R) Xeon(R) W-2145
CPU @ 3.70GHz, 251 GB RAM and two Nvidia GeForce RTX 2080 Ti GPUs. The open source DL-
framework Pytorch was used to construct the DenseNet CNN and load in the pretrained weights from
Sparcnet. Because the data could not fit into memory ( 800 GB) dataloader and dataset classes from
the Pytorch framework had to be constructed to load raw data from a Hierarchical Data Format (HDF5).
Also because of the size of the dataset and the number of parameters from the model multiple GPUs
were used in combination with the data parallel module available from Pytorch in order to greatly speed
up training.

4.5. Hyper-parameters and experiments
With this basic set-up, 7 experiments were conducted, as summarized in table 4.3. We tested one
main type of optimization algorithm, the ADAM optimizer. This optimizer shows better performance
than the standard Stochastic Gradient Descent algorithm in most cases. Because of limited computing
resources, a grid search across all parameters was not possible and the models were trained with
two different batch sizes: 128 and 256 (experiment 1 & 4). Batch size 256 was chosen to continue
with for the rest of the experiments because of the reduction in computing time, allowing the rest of
the experiments to be done faster. Also limited by computing power, one experiment was done with
the shuffle parameter that shuffles the data at every epoch for better generalization and to prevent
the model to learn the order of the data (experiment 2). This parameter drastically increased training
time. Because of training loss getting stuck in a plateau an experiment has been done with a larger
learning rate to see if the solution ended in a local minimum (experiment 3). Furthermore, a number of
transfer learning experiments were done. At first, only the classifier was retrained but three experiments
were added. These experiments consisted of only retraining the classifier and the last denseblock
(experiment 5), retraining the full model (experiment 6), and not loading any weights from Sparcnet
(experiment 8). Finally, the old training data was added to the training set to see if retraining on more
data would yield better results (experiment 7). The training used early stopping by monitoring the
validation loss and stopping model training when the model does not improve within 5 epochs.

Experiment Batch Size Shuffle Learning Rate Unfreezed Optimizer Old Data
Exp 1 128 No 6.25*1e-5 Classifier Adam No
Exp 2 128 Yes 6.25*1e-5 Classifier Adam No
Exp 3 128 No 0.1 Classifier Adam No
Exp 4 256 No 6.25*1e-5 Classifier Adam No
Exp 5 256 No 0.6.25*1e-5 Dense Block 7 Adam No
Exp 6 256 No 6.25*1e-5 Full Adam No
Exp 7 256 No 6.25*1e-5 Classifier Adam Yes
Exp 8 256 No 6.25*1e-5 - Adam No

Table 4.3: Transfer Learning Experiments

4.6. Evaluation metrics
Models were quantitatively evaluated using Accuracy, Confusion Matrices, Receiver Operating Curves
(ROC), Area Under the Curve (AUC), Precision Recall curves (PR), F1 scores, Matthew’s Correlation
Coefficient, and Calibration plots. At the basis of classification, evaluation metrics stand the number of
True Positives (TP), True Negatives (TN), False Positives (FP) and False Negatives (FN) which can be
seen in the Confusion Matrix in figure (4.1) The confusion matrix is made of the model’s right classifi-
cations (TP & TN) and the model’s misclassifications (FP & FN based on the actual classifications and
the models predictions. The accuracy of the model can be defined by dividing the right classifications
by all types of classifications in the confusion matrix summed over all classes as seen in equation 4.2.



4.6. Evaluation metrics 25

Accuracy =

∑N
i=1 TPi +

∑N
i=1 TNi∑N

i=1 TPi +
∑N

i=1 TNi +
∑N

i=1 FPi +
∑N

i=1 FNi

(4.2)

Figure 4.1: Confusion Matrix

ROC curves are graphical tools that can be used to evaluate the performance of binary classification
models. In this case, binary classification means the classification of one of the IIIC classes versus the
classification of anything other than that class. This means the presence or absence of a certain harmful
brain activity pattern. It uses sensitivity on its y-axis and 1-specificity on the x-axis. Sensitivity is defined
by the number of true positive (TP) cases that the model predicts divided by the number of true positive
cases summed with the number of false negative (FN) cases. Also called the true positive rate (TPR),
sensitivity is a measure of how many of the actual positive cases the model was able to capture. If
you look at seizures, it is a proportion of how many of the actual seizures were classified correctly.
If the model predicts 90 out of 100 seizures the sensitivity is 90%. Specificity, on the other hand, is
calculated by the number of true negative (TN) cases divided by the sum of the true negative cases
and the number of false positive (FP) cases. This means that if out of the 100 non seizures it correctly
classifies 90 as non seizure the specificity is 90%. 1 - specificity is equal to the false positive rate (FPR)
because FPR and specificity are complementary; the sum of true negative cases and false positive
cases is a representation of the total number of negative cases. FPR is calculated by the number of
false positive cases divided by the number of true negative cases and the number of false positive
cases. The FPR is a measure of how many false alarms the classifier makes, which is important in the
medical setting because of the valuable time of doctors. If the model out of the non seizures classifies
10 of them as seizures the FPR is 10%. The curve is created by evaluating, for a number of thresholds,
what the TPR and FPR are. These thresholds can be seen as a decision boundary for which to classify
the pattern based on the probability output of the model.

Just like the ROC curve, the precision-recall (PR) curve is also used to evaluate binary classifiers
and is often used on imbalanced sets. It has precision on the y-axis and recall, which is the same as
sensitivity, on the x-axis. Precision is a measure of the actual positive predictions that belong to the
positive class and is calculated by dividing the number of true positive cases by the sum of true positive
cases and false positive cases. This means that if the model predicts 100 seizures and 85 of them
were actual seizures the precision is 85%. The PR curve focuses more on the classification of positive
instances, which means a large number of negative samples (the other classes) will not skew the
evaluation. For both curves, a higher area under the curve (AUC) indicates better performance and can
be interpreted as a measure of the classifier’s ability to distinguish between the positive and negative
classes. To underscore why these metrics are important in the case of the unbalanced dataset consider
the following example. There is a dataset with 10000 patients where 100 patients have a rare disease
and the remaining do not. There is a model that detects 80 true positives 100 false positives, 9800
true negatives, and 20 false negatives. The accuracy is calculated as the ratio of all correctly predicted
instances to the total instances: 80+9,800

80+100+9,800+20 = 9,880
10,000 = 0.988, or 98.8%. The accuracy metric is
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actually misleading because of the imbalance in the data. The precision is: 80
80+100 = 80

180 ≈ 0.444, or
approximately 44.4%. The recall is 80

80+20 = 80
100 = 0.8, or 80%. This means that there are many false

positives in the prediction of the model but it does capture most of the actual disease.

Sensitivity = Recall = TPR =
True Positives

True Positives+ False Negatives
(4.3)

Specificity =
True Negatives

True Negatives+ False Positives
(4.4)

FPR = 1− True Negatives
True Negatives+ False Positives

=
FP

FP+ TN
(4.5)

Precision =
True Positives

True Positives+ False Positives
(4.6)

The F1 score is called the harmonic mean of precision and recall. The harmonic mean of precision
and recall is two times the product of precision and recall divided by the sum of precision and recall. As
seen in equation 4.7 you end up with the arithmetic mean of the false positives and the false negatives
in the denominator. This means the F1 score equally considers false positives and false negatives.
Because of the property that F1 is sensitive to both errors, this metric is especially useful for this dataset
since it is highly imbalanced. In the example from earlier the F1 score is 2 · 0.444·0.8

0.444+0.8 ≈ 2 · 0.35521.244 ≈ 0.571,
or approximately 57.1% which gives a more balanced indication of a model’s performance.

F1 = 2 · Precision · Recall
Precision+ Recall

=
True Positives

True Positives+ 1
2 (False Negatives+ False Positives)

(4.7)

The MCC evaluation metric is also a more balanced metric than accuracy. It is a macro metric
which means that the TN, TP, FN, and FP are calculated across all classes and their sums are used in
equation 4.8. The denominator of the MCC equation is a normalization constant that makes sure that
the value is between -1 and 1. In the extreme case of anti diagonal confusion matrix which means the
true positives and true positives are zero, the value goes to -1. In the extreme case of the diagonal
confusion matrix where the true positives and true negatives are 1 the MCC goes to 1.

MCC =
TP · TN − FP · FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(4.8)

As seen in figure 4.2 by moving the decision threshold over output probability on the left the lines
of the scores are generated on the right. The accuracy reaches a constant and is really high for a
larger threshold while the recall goes down. This is an example of the precision-recall trade off and
the accuracy being skewed just as in the calculation example from before. Other metrics that are used
to evaluate the models are the macro variants of precision, recall, and F1 (equations 4.9, 4.10 and
4.11). The macro metrics offer a robust way of dealing with the class imbalance and representing false
positives and false negatives across all classes.

Macro Precision =
1

N

N∑
i=1

TPi

TPi + FPi
(4.9)

Macro Recall = 1

N

N∑
i=1

TPi

TPi + FNi
(4.10)

Macro F1 =
1

N

N∑
i=1

2× Precisioni × Recalli
Precisioni + Recalli

(4.11)

In addition to quantitative evaluation, a qualitative evaluation was done using swimmer plots and
spectrograms. A swimmer plot is a graphical way of showing the models’ outputs over time per patient.
The swimmer plots show the outputs from Sparcnet, the best performing model from the experiments,
the labels from the experts, the original cleaned labels, the new bag of words labels, the labels after the
boosting cascade, and the multinomial logistic regression model. The spectrograms are plotted above
the swimmer plots in order to identify clear artifacts and changes in power over the frequency bins.
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Figure 4.2: MCC and F1 compared to accuracy over thresholds

4.7. Results
4.7.1. Performance on ROC curves
The ROC curves from the experiments seen in figure 4.3 give insight in how well the models are able
to discriminate between a class and the rest of the classes. The performance of the model is summa-
rized in the AUC metric as described in section 4.6. This figure shows the performance of Sparcnet 1
compared to all other models that were trained in the transfer learning experiments. It can be seen that
the AUC scores on the ROC curve from the Sparcnet model are 0.73 for Other, 0.77 for Seizure, 0.84
for LPD, 0.74 for GPD, 0.89 for LRDA, and 0.55 for GRDA. Notably, the low score for GRDA indicates
that Sparcnet is barely better than random guessing for this class. Classes such as LPDs and LRDAs
are classified reasonably well, while Other, Seizure, and GPD are classified moderately well.

Experiment 3 showed the lowest AUC across the board, with the exception of the LPD class, and
had the lowest AUC of any class. This experiment, which had a higher learning rate and retrained the
classifier, performed worse than guessing on Seizure, LRDA, and GRDA because of the AUC being
lower than 0.5, which indicates systematic errors in the predictions. Experiments 8 and 6 where no
transfer learning had been done and where the entire model was retrained after weight initialization,
had the lowest AUC for almost all classes. In Experiment 8, the AUC is actually lower than 0.5 for GPD,
indicating that the model systematically makes wrong predictions. The same is true for Experiment 6
and the GRDA class. Experiment 5 which involved unfreezing the last DenseBlock from Sparcnet, had
similar AUCs as Sparcnet with the exception of the LRDA class. This model had the highest AUC of
all models over all classes at 0.95 for LRDA. Experiment 2 improved on Sparcnet AUC in every class
except the Other class and the lateralized classes and had the highest AUC for seizure. Experiment 7
which included the old training data from Sparcnet had higher AUCs than Sparcnet with the exception
of the LRDA class. Experiments 1 and 4 showed comparable or better performance on AUC than
Sparcnet 1. These experiments involved retraining only the classifier but with different batch sizes.
There is a noticeable increase in AUC for the GRDA class as it goes from 0.55 to 0.67. Also the AUC
for the other class goes from 0.73 to 0.82 which is a big jump. Both experiments have a bit smaller
AUC on the LPD class and experiment 4 is a bit better than experiment 1 on GPD and Seizure while
the AUC for experiment 1 is a bit higher on LRDA.
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Figure 4.3: ROC curves for transfer learning experiments

4.7.2. Performance on PR curves
Figure 4.4 shows the precision recall curves of Sparcnet 1 compared to the transfer learning experi-
ments. The curves give insight in the balance between precision and recall and are summarized in the
AUC metric described in section 4.6. It can be seen that Sparcnet’s AUC scores for the PR curve are
0.82 for Other, 0.25 for Seizure, 0.45 for LPD, 0.37 for GPD, 0.26 for LRDA and 0.04 for GRDA.

The low performance of precision and recall for the GRDA can be seen across the board in all the
experiments. None of the AUCs surpass the highest score from Sparcnet of 0.04. Experiments 1 and
4 show big improvements in Other and Seizure classes, moderate improvement in the GPD class and
lower AUC in the LPD and LRDA classes. Experiments 8 and 6 again rank in the top lowest scoring
models based on the AUC in the PR curves. Experiment 8 scores consistently lower on AUC on all
classes. Experiment 6 scores the same with the exception of the Other class. Except for experiment 3
all models had a higher AUC for ”Other” indicating better balance between precision and recall for the
different thresholds on that class. Also for seizures most experiments had a clear better precision and
recall balance. The experiments showed around the same or worse balance between precision and
recall on the ”LPD” and ”GPD” classes in comparison to Sparcnet 1. Experiment 5 was the only one
to surpass Sparcnet 1 on the ”LRDA” class and the rest of the experiments did not perform better.
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Figure 4.4: PR curves for transfer learning experiments

4.7.3. Evaluation metrics
The macro metrics and class specific metrics in tables 4.4, 4.5, 4.6 and 4.7 are calculated by forcing
the model to make a decision based on the probabilities of the model. The entire array of probabilities
is passed to a function that returns the index with the largest number. The original Sparcnet model
outperforms any of the experiments on accuracy, Macro F1 and MCC. The accuracy is considerably
higher with 11% more than the second best model of experiment 4 on this metric. The higher accuracy
makes sense because the class specific metrics in table 4.5 show that Sparcnet has the highest F1
(0.77) for the Other class which by far the largest class in the dataset. Sparcnet does not have the best
metrics on Macro Precision and Recall. Experiments 1 and 4 both showed better macro precision
and recall but because macro F1 and MCC take all classes into account these experiments don’t score
better on the balanced metrics. There is a clear decline in the macro metrics for experiments 2, 3, 5
and 8. This decline is accounted for by the class specific results. Experiments 2, 3 and 5 show zero
precision, recall and F1 on the other class. Experiment 3 shows zero precision, recall and F1 on GPD.
Experiment 8 does the same for LPD, GPD, and GRDA but has a precision for the other class of 1
which indicates over classifying Other. The models where the class specific metrics are zero across the
board suggest that these models do not classify that specific class at all and are the reason for the low
macro evaluation metrics. Experiment 6 is another example of showing a higher accuracy because of
its performance on the Other class but scoring really low in the rest of the macro metrics. Experiment
7 does not show the decline as experiments 2, 3, 5, 6 and 8 but is not better than experiments 1 and 4
in terms of macro metrics.
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4.7.4. Confusion matrices
In the confusion matrix of figure 4.5 the actual labels and the predicted labels of Sparcnet 1 can be
seen. Sparcnet 1 is best at predicting the ”Other” class as 71% of actual labels were predicted as such
by Sparcnet 1. The ”LPD” class is second best and has 57% of actual labels predicted while being
confused in 27% of cases with the ”Other class. For the other classes, the predicted labels belonged
to less than 50% of the actual labels. The ”Seizure” and ”LRDA” classes ended up with 48 and 47% of
the actual labels. The ”Seizure” class was mostly confused with the ”LPD” class and the ”LRDA” class
was confused in 41% of the cases with the ”Other” class. The model had the lowest actual predictions
for the ”GPD” and ”GRDA” classes with 27% and 21% of the actual labels. The ”GRDA” class was
mostly confused with the ”Seizure” class and the ”GPD” class with the ”Other” class.

The confusion matrix in figure 4.6 shows the actual labels and predictions of the retrained model
with a batch size of 256. The new model best captures the class is ”LRDA”. For this class 84% of the
actual labels were classified by the model. The ”GRDA” class had an increase of 12% and the ”Seizure”
class of 1% in the classification of the actual labels. These two improvements went at the cost of the
correct detection of the other classes. The ”LPD”, ”GPD” and ”Other” classes lost 11%, 7% and 25% of
the correctly predicted classes. The confusion of the ”Other” class with the rest of the classes is less
apparent but 43% of the actual GPDs were confused as LPDs and there is an increase in the confusion
of other classes with the ”LRDA” class.

4.7.5. Swimmer plots
Figure 4.7 shows the swimmer plots of patients ”glad004” and ”glad017”. These two examples from
the test data show an improvement over Sparcnet 1 in glad017 and an increase in misclassification
due to the bias towards ”LRDA” in glad004. Sparcnet 1 is clearly better at predicting LPDs in glad004,
which are both present in the new labels from the Bag of Words model and the labels from expert B.
The retrained model from experiment 4 which had batch size 256 is over-classifying the ”LRDA” class
as can be seen by the green TF 256 bar. In glad017 the retrained model seems to follow the new labels
more closely and classifies the samples correctly whereas Sparcnet 1 is wrongly classifying segments
as the ”GPD” class.

Experiment Accuracy Macro Precision Macro Recall Macro F1 MCC
Sparcnet 1 0.6369 0.3884 0.4526 0.3848 0.3425
Exp 1 0.4691 0.4136 0.4559 0.3065 0.2650
Exp 2 0.1019 0.2673 0.3755 0.2290 0.1418
Exp 3 0.1053 0.0720 0.2078 0.0907 0.1181
Exp 4 0.5244 0.4150 0.4823 0.3575 0.2980
Exp 5 0.0930 0.2877 0.3401 0.1436 0.1077
Exp 6 0.3130 0.1863 0.1987 0.1408 0.0946
Exp 7 0.4247 0.3774 0.4491 0.3226 0.2584
Exp 8 0.1717 0.1919 0.2989 0.0934 0.1217

Table 4.4: Macro Metrics for Transfer Learning Experiments

Experiment
Sparcnet 1
Exp 1
Exp 2
Exp 3
Exp 4
Exp 5
Exp 6
Exp 7
Exp 8

Other PR Other RC Other F1
0.8410 0.7112 0.7706
0.8946 0.4902 0.6334
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.8883 0.5581 0.6855
0.0000 0.0000 0.0000
0.8878 0.3819 0.5340
0.8906 0.4181 0.5691
1.0000 0.1703 0.2911

Seizure PR Seizure RC Seizure F1
0.1587 0.4831 0.2389
0.3084 0.4992 0.3812
0.5017 0.3875 0.4373
0.0194 0.5687 0.0376
0.3283 0.4929 0.3941
0.2101 0.5515 0.3043
0.0600 0.4024 0.1044
0.1402 0.6261 0.2291
0.0302 0.8115 0.0583

Table 4.5: Metrics for Other and Seizure Classes
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Experiment
Sparcnet 1
Exp 1
Exp 2
Exp 3
Exp 4
Exp 5
Exp 6
Exp 7
Exp 8

LPD PR LPD RC LPD F1
0.5355 0.5711 0.5527
0.3520 0.4568 0.3976
0.4460 0.2980 0.3573
0.3970 0.6714 0.4989
0.3759 0.4634 0.4151
0.5364 0.2683 0.3577
0.1398 0.1712 0.1539
0.4869 0.4857 0.4863
0.0000 0.0000 0.0000

GPD PR GPD RC GPD F1
0.5036 0.2749 0.3556
0.7630 0.0764 0.1389
0.5385 0.2933 0.3798
0.0000 0.0000 0.0000
0.7006 0.2044 0.3164
0.9028 0.0286 0.0554
0.0000 0.0000 0.0000
0.5755 0.2868 0.3828
0.0000 0.0000 0.0000

Table 4.6: Metrics for LPD and GPD Classes

Experiment
Sparcnet 1
Exp 1
Exp 2
Exp 3
Exp 4
Exp 5
Exp 6
Exp 7
Exp 8

LRDA PR LRDA RC LRDA F1
0.2565 0.4656 0.3307
0.1376 0.9563 0.2406
0.1044 0.5138 0.1736
0.0156 0.0049 0.0074
0.1672 0.8406 0.2789
0.0689 0.9817 0.1288
0.0260 0.2277 0.0467
0.1549 0.5030 0.2369
0.1211 0.8114 0.2108

GRDA PR GRDA RC GRDA F1
0.0349 0.2100 0.0599
0.0261 0.2566 0.0474
0.0133 0.7606 0.0262
0.0002 0.0018 0.0004
0.0299 0.3346 0.0548
0.0079 0.2108 0.0153
0.0040 0.0090 0.0055
0.0165 0.3750 0.0316
0.0000 0.0000 0.0000

Table 4.7: Metrics for LRDA and GRDA Classes

Figure 4.5: Confusion Matrix Sparcnet 1



4.7. Results 32

Figure 4.6: Confusion Matrix Exp 4

Figure 4.7: glad004 and glad017 transfer learning swimmer plots and spectrograms
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Figure 4.8: Raw EEG glad017



4.8. Discussion 34

4.8. Discussion
The results from the transfer learning experiments show that unfreezing more layers and training more
parameters does not help with capturing the patterns in the data. Training more parameters of the
DenseNet Convolutional Neural Network on this data did not increase performance compared to just
using Sparcnet 1. The results show how the large ”Other” class can skew accuracy. Retraining the
entire network (experiment 5) has a higher accuracy than just retraining the last denseblock and the
classifier (experiment 6) even though the balanced F1 and MCC metrics are better. This is caused
by the fact that the denseblock model from experiment 5 is not predicting any ”Other” classes. This
behavior can be seen across all experiments for at least one of the classes except for experiments
1, 4, and 7. Combining these results with the training loss plots in section A.4, it can be concluded
that models trained without transfer learning and models where more parameters are trained are not
learning effectively from the data and labels.

Experimenting with the batch size, shuffle, and learning rate hyper-parameters showed vastly differ-
ent results in the evaluation metrics and training loss plots (training losses can be seen in section A.4).
From these three hyper-parameters batch size had the least influence but still increased the macro
evaluation metrics. Shuffling the data every epoch showed an initial increase in validation loss and
a decreasing training loss that seems to plateau. Because shuffling the data at each epoch should
theoretically increase generalizability this could be a sign that the labels are still too noisy. A much
larger learning rate resulted in the lowest macro F1 score of the transfer learning experiments and an
increasing training loss while training. This concludes that the learning rate was set way too high caus-
ing it to overshoot the optimal solution and should be closer to the original learning rate. It is clear that
the hyperparameters have a large influence on the results.

The confusionmatrix in figure 4.6 also showed that the best performingmodel of the transfer learning
experiments is biased towards LRDA and only improves detection for Seizures and GRDA. The better
detection of seizures andGRDA is attributed to the loss function and the larger weights for these classes
which have the least samples in the dataset.

As the results show transfer learning with the current set of hyper-parameters and experiments
trained on the labels from the Bag of Words and Change Point Detection method is not a solution to
help capture the complex nature of ICU EEG data and their IIIC patterns. The results gave evidence
for two possible reasons for the negative results in the transfer learning experiments. First It could
be that the quality of the data is still not good enough and that there is too much noise for the model
to learn anything. The limitations from the Bag of Words and Change Point Detection method could
have influence on the transfer learning experiments. Second the hyper-parameters that have a large
influence on the results and are not being set right. The learning rate, early stopping parameter, and
shuffle parameter have a big effect on the evaluation metrics, training losses, and the way that the
model learns.

The model’s inability to learn the patterns from the data could also be due to the combination of
these two factors but there is an indication that the labels are not yet ready to be used to conduct deep
learning experiments. This conclusion is supported by the results and limitations from chapter 3 but
also by the swimmer plots, the evaluation metrics, and training plots seen in the results. The swimmer
plots in figure 4.7 of some of the training patients showed high variability between experts and the new
labels. In the case of glad017 the labels between expert A, B and S all vary substantially over the
12 hour recording. The labels of expert S were mostly incorrect, expert A labeled most segments as
”Other” around halfway of the EEG and expert B labeled these all as ”LPD”. The labels of expert A
and S have influence on the Bag of Words pipeline and introduce more ”Other” classes around halfway
of the EEG in the final labels. The raw EEG in figure 4.8 which is sampled from one of these points
labeled as ”Other” shows that there are LPDs present in the sample. This is an indication that not all
labels might be correct in the training, validation, and test data. In glad004’s case, experts A and S had
no labels. The final labels ended up looking different than the labels from expert A, they introduced
more ”LRDA”, ”Seizure” and ”Other” classes.

4.9. Limitations
As stated in the discussion the negative results from the Transfer Learning experiments could be due
to inaccurate noisy labels or because of the decisions that were made for one of the many hyperpa-
rameters and in the training process of the DenseNet model. Certain decisions in the training process



4.9. Limitations 35

and on the hyperparameters were made because of computing and time constraints but it is not certain
that these are optimal. The training set was 600 GB and consisted of over 2 million 16x2000 samples.
This means it can’t be loaded into memory resulting in a lot of iterative reading operations from an
HDD or SSD. If the storage disks are old and don’t have fast memory then the iterative operation of
data loading is slow. This can cause a bottleneck even with a good CPU and powerful GPUs. Even
though the DenseNet CNN models in the Transfer Learning experiments had a thousand to a million
parameters, which is relatively few parameters, the model still took a really long time to train because
of the many denseblocks that are fully connected between layers and the large amount of training data.
The computing and time constraints led to the following choices and limitations:

1. Early stopping with patience of 5 epochs on every experiment
2. No Shuffling of the batch at each epoch for all experiments
3. No adaptive learning rate
4. No K-Fold cross validation during training
5. No Gridsearch across the combination of hyperparameters

Because one epoch often took more than an hour early stopping with a patience parameter of 5
epochs was implemented. It could be the case that model training was ended prematurely because of
this and that the models are getting stuck in a plateau and only starts learning a longer period of time.

Data shuffling, which is good practice, could not be done because it would greatly increase the time
it took do to one epoch and would reduce the amount of experiments that could be done. The training
loss plot shows interesting behavior that could indicate that the validation loss is decreasing after an
initial increase but training is stopped because of the early stopping logic. By not shuffling the data for
the other experiments training can become inefficient because the model sees the same patterns in a
batch which makes it hard for the model to learn diverse features.

As seen from the results and the discussion of experiment 3 in the previous section increasing the
learning rate resulted in the models not learning. Even though the larger leanring rate did not yield
better results there is no guarantee that the old learning rate of Sparcnet is the best option and the
models could still get stuck in a local minimum or overshoot the global optimum. The more extensive
way of dealing with this is by using an adaptive learning rate that are known to overcome plateaus in
the training loss and achieve smoother convergence [93]. Implementing this in the training loop would
also reduce the need to do manual tuning or a gridsearch over a few learning rates.

Just like an adaptive learning rate implementing K-fold cross validation which would entail training
and validating over multiple folds of the combined training and validation set could be an improvement
of the current training loop. There are advantages to K-Fold cross validation like reducing variance,
maximizing data use, improve model generalization and reduce overfitting [59].

Although the experiments are done for some settings like batch size and learning rate other hyper-
paramters were not tuned at all. There were no changes in optimization algorithms, different patience
values for early stopping and model depth. A gridsearch to find the optimal combination of parameters
could not be implemented because of computing power.

A big problem of this dataset is the imbalance in classes. This problem is currently solved by using
the weighted Kullback-Leibler divergence loss function. The loss function is one of the most important
aspects of training deep learning models. Using a different loss functions might give better results
especially since the weighted loss function might not capture the complexity of the imbalanced dataset
and its efficiency can vary based on dataset feature. Weighted Kullback-Leibler divergence loss is an
algorithm level solution to the imbalanced dataset problem and data level solutions are not explored.



5
Feature based post processing

This chapter deals with the postprocessingmethods that are applied on the output of Sparcnet. Both the
Boosting Cascade and the Multinomial Logistic Regression model leveraged features generated from
the raw EEG data in order to try to reduce the False Positive Rate of the classes that are associated
with harmful brain activity: Seizure, LPD, GPD, LRDA, and GRDA. The models were quantitatively
evaluated with the evaluation metrics from section 4.6 and qualitatively through swimmer plots.

5.1. Boosting Cascade
The process of using a boosting cascade to reject features can also be called a bad sample detection
algorithm. The goal of this model is to reclassify samples that were unjustly classified as a ”non Other”
class to ”Other”. Very clear artifacts that the SparcNet model classifies as harmful brain activity should
be filtered out. This method is based on the bad channel detection from Dirks et al. who showed an
improvement of the macro F1 score [15]. The pipeline begins with the calculation of features that hold
information about the signal that can be used to detect these bad samples. These features include
line length, Shannon entropy, zero crossing count, Non Linear Energy Operator (NLEO), Kurtosis total
power, and total power for each of the frequency bands (α, β, θ, γ and δ). Line length is the total length
of the waveform and is calculated by the absolute difference between each two following points x[i+1]
and x[i] summed over all points in the sample (equation 5.1). The line length feature is a measure
of the waveform dimensionality changes and is sensitive to the variation of the signal amplitude and
frequency.

Line Length =

N−1∑
i=1

|x[i+ 1]− x[i]| (5.1)

Shannon entropy is a feature that measures uncertainty. It is a non-linear metric that can quantify
the degree of complexity in a time series and a higher entropy means the signal is more complex
and less predictable [66]. To calculate the entropy of the signal a histogram of the signal is made.
The values and their counts are put in 50 bins creating a probability density function. To estimate the
probability distribution p(xi) the histogram is multiplied by the bin widths. This output is normalized and
zero probabilities are removed before using the entropy equation 5.2.

H(X) = −
n∑

i=1

p(xi) log p(xi) (5.2)

Zero crossing is a feature that measures when a signal goes from positive to negative and the other
way around (equation 5.3). The number of zero crossings can be associated with subtle epileptiform
discharges and is able to discriminate between patients with epilepsy and normal subjects [68].

Z =

N−1∑
i=1

⊮((x[i] · x[i+ 1]) < 0) (5.3)

36
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Kurtosis is a well know statistical feature that represents the shape of the distribution tails compared
to the overall shape of the distribution. Samples with high Kurtosis could indicate outliers and artifacts.
The function that calculates this feature first checks if the signal is not zero otherwise it returns a zero.
After this check the sample mean x̄, standard deviation s, sample size n and the sample values xi

are used in the bias corrected Fisher Kurtosis (equation 5.4). This version of the Kurtosis formula
makes sure the feature is unbiased and adjusted according to Fisher’s definition. This ensures a more
accurate measure of how the tails compare to the rest of the distribution.

Kf,unbiased =
n(n+ 1)

(n− 1)(n− 2)(n− 3)

(
n∑

i=1

(xi − x̄)4

s4

)
− 3(n− 1)2

(n− 2)(n− 3)
(5.4)

As explained in section 2.1 the power of the frequency bands and their ratios hold important informa-
tion about what is going on in the brain. The most useful frequency ranges are alpha, delta, and theta
frequencies because they show the highest correlation with epilepsy and seizures. By using Multi-taper
spectral estimation the power spectral density is computed of the signal. Multi-taper spectral estima-
tion needs a number of parameters to compute the respective dB values for frequency bands over time.
The first parameter is the moving window. In the calculation of the spectrogram, a moving window of 4
seconds with a 2 second step was used. The second parameter is the time bandwidth product and the
number of tapers. The time bandwidth product is a parameter that controls the spectral ratio and the
spectral leakage while the number of tapers is the amount of DPSS. The time product was set at 2 and
three tapers were used. The third parameter is the frequency band pass which is the range of interest
for the spectral analysis and was set at the range from 0.5 - 20 Hz. Finally, the last parameter is the
sampling rate which is the sampling rate from the data at 200 Hz. From the power spectral density, a
number of features are computed. By summing over all frequency bins the total power of the sample is
generated. The same thing is done for the alpha, theta and delta frequency ranges creating total alpha
power, total theta power and total delta power. Since their ratios hold information about harmful brain
activity these features are also computed.

These features are computed for each of the 16 channels in the EEG samples. Because the goal is
to reject an entire sample in the boosting cascade these features need to be transformed from channel
specific features to sample specific features. This is done by using statistical features that capture
information over the entire sample.

The statistical features that were calculated consisted of minimum and maximum values, the stan-
dard deviation, the median, the interquartile range and the confidence intervals. The minimum and
maximum values give information of the range of values. The median is a central tendency measure
that is more robust than the mean value. The standard deviation is a measure that gives information
about the spread around the mean. The 2.5th, 25th, 75th and 97.5th percentile ranges give insight in
the spreading of the labels and the interquartile range is calculated from the difference between the
75th and 25th which measures the spread of the middle 50% of the data. The confidence intervals help
understand the tails of the data. All these features help understand the patterns and variability in the
data.

Before training the Boosting Cascade all feature are standardized by subtracting the feature’s mean
and dividing by the feature standard deviation. The features are then loaded in with the labels and the
Other class is changed to 0 and the rest of the classes to 1. For each feature the the Spearman
correlation coefficient is calculated with respect to the labels. The sign of each feature is adjusted to
ensure a positive correlation with the label. This is done because otherwise the direction of the threshold
can be both ways for rejecting samples as artifacts. The sensitivity cutoff is initialized at 0.999 and the
initial global false negatives and true negatives are set to zero. The features are then ranked based
on their false positive rate for the sensitivity cutoff. The feature with the lowest false positive rate is
selected and its threshold is calculated. All samples that have values below this threshold are thrown
away, the feature is removed from the data and the steps are done again until all the features have
been processed. At each step, the global sensitivity and false positive rate are tracked. Figure 5.1
shows the training steps of the cascade and the trade off between a worse sensitivity and a better false
positive rate. Feature generation and training are both done on the same training set training set of
section 4.2.

In order to improve generalizability, the number of features used in the cascade is validated on the
validation set from section 4.2. In figure 5.2 the F1 score is plotted against the number of features. The



5.2. Multinomial Logistic Regression 38

Figure 5.1: Training steps of the cascade

F1 score reached a plateau and the number of features that was used to evaluate the cascade on the
test set which also stems from the splits of section 4.2 was 40.

5.2. Multinomial Logistic Regression
In order to further explore postprocessing and make use of the calculated features from the boosting
cascade we fit a Multinomial Logistic Regression (MLR) model on a vector of the logits from Sparcnet
concatenated with all the features from that sample. Multinomial Logistic Regression is a generalization
of the binary Logistic regression classifier to a multiclass problem with more than two possible discrete
outcomes. MLR is a probabilistic model of the categorically dependent variable given a set of indepen-
dent variables. As seen in equation 5.5 the probability for class k is given by a linear combination of
feature vector x and parameters β in a softmax function where it is being normalized to ensure that the
sum of probabilities is equal to 1.

P (Y = k | x) = eβ
T
k x∑K

j=1 e
βT
j x (5.5)

The fitting process consists of finding the right parameters β that maximize the likelihood function
which is the probability density of the data as a function of the parameters. The likelihood in essence
tells us how well the parameters fit the distribution of the data. Mathematically this is done through the
product of the probabilities from equation 5.5 for each sample. Because this multiplication over a large
dataset can cause a number to go to zero, the log-likelihood is taken which transforms the product into a
sum and makes computations easier. The derivation from probability to log likelihood leads to equation
5.6 where the total log-likelihood is a sum of the log probabilities over all true classes. Because there
is an imbalance in the data the classes have a weight wyi that corresponds to the frequency of the
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Figure 5.2: Validation cascade based on F1

class in the training set. Each term βT
yi
xi is the logit favouring class yi and log

(∑K
j=1 e

βT
j xi
)
is the

normalization factor. The parameters of the MLR are calculated by maximizing the log-likelihood for
the entire training set.

ℓ(β) =

n∑
i=1

wyi

βT
yi
xi − log

 K∑
j=1

eβ
T
j xi

 (5.6)

In order to find the parameters that maximize the log-likelihood on the training set the Limited-
memory BFGS (LBFGS) optimization algorithm was used with an iteration parameter of a thousand
steps. LBFGS belongs to the Quasi-Newton methods and works well on large-scale optimization prob-
lems with a high number of variables. The number of variables that were trained on was 6 logits + 132
features = 138 variables. This method maintains a smaller memory of updates in the algorithm making
it memory efficient.

5.3. Results
5.3.1. Performance on ROC curve
Figure 5.3 shows the ROC curves of Sparcnet 1, MLR and the Boosting Cascade with 40 features. The
MLR model shows better AUC on all classes except LPD. On Other, Seizure, LRDA and GRDA the
MLR curve is completely above Sparcnet’s curve with considerably higher AUC. The Cascade with 40
features has comparable curves as Sparcnet with minor improvement on Other and Seizure and minor
decline in AUC for LPD and GPD. In the ROC curves the Multinomial Logistic Regression has a higher
AUC than both the Cascade and Sparcnet with the exception of the LPD class.

5.3.2. Performance on PR curve
In the PR curves of figure 5.4 the boosting cascade with 40 features only shows improvements in AUC
on the Other and Seizure class. This means that most of the reclassifications from one of the ”non
Other” classes were done on samples that had Seizure labels. The cascade had a minimal impact on
the AUC of ”Other” but a larger impact on the Seizure AUC. The MLR model shows a considerable
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improvement for ”Other” AUC from 0.82 to 0.91. It has a slightly lower AUC on LPD and GPD while
having a slightly better AUC in the PR curve for ”Seizure”, ”LRDA”, and ”GRDA”.

5.3.3. Macro Evaluation Metrics
The macro evaluation metrics in table 5.1, which are calculated after taking the maximum probability for
a class, show a small improvement in the accuracy by applying the boosting cascade. This difference
in accuracy can be explained by the over sampled ”Other” class and the reclassification to Other. The
cascade has the highest score for both the balanced metrics macro F1 and MCC. While the metrics
are inconsistent for the ”Other” class the changes in evaluation metrics per class are minor with the
exception of the Seizure class, just as in the PR curve. The seizure class has a considerably larger
precision and about the same recall resulting in a higher F1 score. The MLR model shows lower
accuracy than the two other methods but a higher macro recall. The higher recall is especially larger
for the ”GPD”, ”GRDA” and ”LRDA” classes.

5.3.4. Confusion Matrices
Figures 5.5 and 5.6 show the confusion matrices with the percentage of actual labels and the predicted
labels from the Boosting Cascade and MLR models. The confusion matrices in figure 5.6 show that for
the MLR model, LRDA is confused the least with 12% being misclassified as Other, 2% as Seizure and
LPD, and 9% as GRDA. Noticeably LRDA is never confused with GPD which is explainable since the
pattern is different and the localization of the pattern is also different even though 1% of GPD’s is being
misclassified as LRDA. In the MLR confusion matrix of figure 5.5, Other and GRDA are the second
best accurately classified classes with 56% of actual labels being predicted correctly. After these two
classes, LPDs are classified accurately in 51%, Seizures in 44%, and GPD in 40% of the cases. GPDs
are often confused with LPDs and Seizures are often confused with LPDs. This means that in terms of
actual classes and predictions, the MLR recalibrated towards better detection of ”LRDA” and ”GRDA”
at the cost of higher false positives for these classes.

5.3.5. Swimmer plots
The swimmer plots of patients ”glad064”, ”glad024”, ”glad132” and ”glad105” can be seen in figures
5.7 and 5.8. These patients were chosen because they showed interesting behavior from the models
in the swimmer plots. The swimmer plots from patient number 24 in the test set (glad024) show that
the Boosting Cascade and MLR clearly are capable of rejecting the false positive seizures that were
caused by artifacts. Sparcnet 1 classifies a large number of samples as the ”Seizure” class in the
swimmer plot as can be seen by all the red bars. Both the Boosting Cascade and the MLR reclassify
most of the labels as ”Other”. This effect is also shown in patient number 64 from the test set (glad064)
for the Boosting Cascade. Sparcnet 1 has some ”Seizure” false positives halfway and near the end of
the EEG recording. These labels are reclassified to the ”Other” class as well. MLR reclassifies most of
the cases in the middle where there is an increase in power across the frequency bands as the ”LPD”
class which is not in line with either the expert or BOW labels. The model does seem to classify more
”GPD” classes before and after this segment which is correct compared to the expert and BOW labels
but at the cost of more false positives for the other classes. The swimmer plots of ”glad132” show that
when the spectrograms are not exhibiting extreme dB values there is almost no change in the labels
compared to Sparcnet 1. MLR shows a slight improvement in the classification of the ”LPD” class near
the end of the recording but again at the cost of extra false positives. The same thing for the Boosting
cascade happens on ”glad105”, there is not a single change to the Sparcnet 1 classifications. MLR on
the other hand increased the detection of the ”GPD” class.

Also notable is that there is an indication that the Bag of Words (BOW) labels are not completely
correct for ”glad064.” The swimmer plot in Figure 5.7 shows that on the segment where there is an
increase in power in the spectrogram, a number of ”GPD” labels can be seen. Figure 5.9 shows a raw
EEG sample from one of these segments that illustrates that these samples experience artifacts and
an argument could be made that they belong to the ”Other” class.

5.4. Discussion
The Boosting Cascade shows better overall macro evaluation metrics than Sparcnet 1. It not only has
a better accuracy but also a better precision and recall trade-off although the margins of improvement
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Figure 5.3: ROC curves for feature based models

are not really large. It reduces the False Positive Rate for Seizure, LPD, GPD, and LRDA while slightly
increasing the False Positive Rate for the other class. The greatest improvement is on the Seizure
class which is a reduction of 34.7%. The method has also shown to be able to reject clear artifacts
based on the spectrograms as seen in figure 5.7. This means that, at the cost of increasing the False
Positive Rate with 2.4%, the Boosting Cascade is able to at least improve the detection of the other
class and reject some of the False Positives. The only false positive reductions that show up in the
normalized confusion matrices are for the Seizure and LPD class which shows that the improvements
are not that significant on GPD and LRDA. These results show that this method albeit by a small amount
is able to reduce the false positive rate of the classifications on noisy continuous EEG recordings at
the cost of slightly increasing the false positive rate of the Other class. The swimmer plots indicate that
even though there is an improvement, the model seems to reclassify clear artifacts and does not really
reduce the false positive rate of the other classes that much.

The Multinomial Logistic regression model used to re-calibrate the logits of Sparcnet and the fea-
tures from the boosting cascade has the lowest macro precision but the largest recall. This means that
in general over all classes the model is more sensitive to detecting the actual positives. The precision
and recall showed that MLR is relatively good at predicting the ”Other” and ”Seizure” classes. This is
further supported by their low class-specific False Positive Rates. On all the other classes the False
Positive Rate is higher than Sparcnet 1 and the Boosting Cascade, this is in line with the lower macro
precision and higher macro recall. If specifically a low False Positive Rate for seizures is required then
this is a good postprocessing method. When the model is forced to make predictions based on the
highest output probability there is a clear increase in the recall for the GPD, LRDA, and GRDA which
means it captures more of the actual cases from these classes. Based on the ROC curves MLR is bet-
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Figure 5.4: PR curves for feature based models

ter at distinguishing between if the specific class is present or not over all thresholds with the exception
of the LPD class.



5.5. Limitations 43

Metric Sparcnet 1 MLR Cascade 40
Macro Metrics
Accuracy 0.6369 0.5432 0.6561
Precision Macro 0.3884 0.3866 0.3998
Recall Macro 0.4526 0.5398 0.4558
F1 Macro 0.3848 0.3921 0.3981
MCC 0.3425 0.3306 0.3572
Other Class
Precision 0.8410 0.8968 0.8431
Recall 0.7112 0.5559 0.7397
F1 0.7706 0.6863 0.7880
FPR 0.3295 0.1567 0.3373
Seizure Class
Precision 0.1587 0.3288 0.2239
Recall 0.4831 0.4444 0.4823
F1 0.2389 0.3779 0.3059
FPR 0.0598 0.0212 0.0390
LPD Class
Precision 0.5355 0.4078 0.5353
Recall 0.5711 0.5100 0.5642
F1 0.5527 0.4532 0.5494
FPR 0.0788 0.1178 0.0779
GPD Class
Precision 0.5036 0.4221 0.5046
Recall 0.2749 0.4014 0.2729
F1 0.3556 0.4115 0.3542
FPR 0.0232 0.0470 0.0229
LRDA Class
Precision 0.2565 0.2194 0.2567
Recall 0.4656 0.7642 0.4656
F1 0.3307 0.3410 0.3309
FPR 0.0558 0.1123 0.0557
GRDA Class
Precision 0.0349 0.0446 0.0350
Recall 0.2100 0.5631 0.2100
F1 0.0599 0.0826 0.0599
FPR 0.0670 0.1395 0.0670

Table 5.1: Comparison of Sparcnet 1, MLR, and Cascade 40 Models

5.5. Limitations
Recalibrating the output of Sparcnet 1 with the Boosting Cascade and MLR can improve certain per-
formance metrics but there are limitations. These methods are highly dependent on the quality of the
output from Sparcnet 1. Transfer learning does not have this problem because the Sparcnet 1 model
can provide a good starting point even when the initial model is not optimal. This means that the prob-
lems of the initial model will be propagated through the recalibrated outputs from the Boosting Cascade
and the MLR. Furthermore, logistic regression and the decision thresholds from the boosting cascade
might not be able to capture the complex non-linear patterns that the DenseNet Convolutional Neu-
ral Network was designed to capture. Logistic regression is a generalized linear model and captures
non-linear patterns less well than deep learning models. This is because logistic regression constructs
linear boundaries to separate the data. Since the electrical activity measured in EEG exhibits complex
behavior with nonlinear dynamic properties more complex models might be better suited. Finally, Spar-
cnet 1 learned rich hierarchical features that were used to capture nuanced patterns in the data. These
features can become diluted or overlooked by simpler methods like logistic regression or a boosting
cascade.
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Figure 5.5: Confusion matrix Cascade 40

Figure 5.6: Confusion matrix Multinomial Logistic Regression
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Figure 5.7: glad004 and glad017 postprocessing swimmer plots and spectrograms

Figure 5.8: glad132 and glad105 postprocessing swimmer plots and spectrograms
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Figure 5.9: Raw EEG sample from glad064



6
General Discussion

6.1. Summary of Results
The frequency content of the EEG signal can improve labels in some cases through Bag of Words
and Change Point Detection. The parameters have to be tuned per patient by an expert and in some
cases, the labels from the pipeline have to be overwritten by expert labels or a combination of expert
labels. The method worked on patients with segments that showed a clear increase in power over the
frequency ranges in different brain regions. This method holds the potential to improve labels over a
short period of time and the GUI can serve as a tool to quickly validate label quality.

The transfer learning experiments failed to outperform Sparcnet 1. Re-training more layers resulted
in worse ROC curves, PR curves, and evaluation metrics (figures 4.3, 4.4 and table 4.4 ). Training the
entire model, denseblock 7 and not initializing Sparcnet’s weight resulted in training loss curves that
did not show any learning. Once trained these models each omitted one of the classes entirely from
their classifications. Training the classifier from the DenseNet model with the weights from Sparcnet 1
gave the best results. The best model was the model with a batch size of 256, as this change in batch
size significantly increased the macro evaluation metrics compared to a model with a batch size of 128.
This model has a strong bias towards the ”LRDA” class as seen in the confusion matrix (figure 4.6). The
training hyperparameters were shown to have an effect on the training loss curves and on evaluation
metrics. Any changes to the learning rate or data shuffling from Sparcnet 1 resulted in a model not
classifying one of the classes and a great reduction in performance on the evaluation metrics, ROC
curve, and PR curve.

The boosting cascade with 40 features showed an increase in performance on macro evaluation
metrics compared to Sparcnet 1. The model increased the False Positive rate for the ”Other” class but
reduced the false positive rate for the rest of the classes. The improvements were extremely small but
the swimmer plots did show the ability to recognize clear artifacts and reclassify the ”Seizure” class as
”Other. Using MLR as a postprocessing method with the logits from Sparcnet 1 and the features from
the boosting cascade gave better ROC curves than both Sparcnet 1 and the Boosting Cascade with
the exception of the ”LPD” class. MLR resulted in having the lowest macro precision but the largest
macro recall. The model showed an increase in false positives for all the classes except the ”Other”
and ”Seizure” classes, reducing their false positive rate significantly.

6.2. Summary of Limitations
The Bag of Words method has two limitations. First, the method has to be tuned by an expert and can
not be generalized across all patients. Since the expert has to both set the parameters and the decision
rules on which labels to keep, the method is susceptible to the bias of the expert. In this case, the
pipeline was tuned by one expert and there could be a preference towards their own labels. Second,
the Bag of Words method only clusters on power spectral density. This ensures capturing spectral
information but temporal, spatial, and morphological information from the EEG signal is overlooked.

The transfer learning experiments are highly dependent on the label quality and on the choices in
training hyperparameters. The swimmer plot from ”glad017” (figure 5.7) indicated that the limitations of
the Bag of Words method could have an influence on the results from the transfer learning experiments.

47
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This could mean that there are other incorrectly labeled segments like in ”glad017” in the training and
test data. These incorrectly labeled segments could add too much noise for the models to learn the
correct patterns and the evaluation metrics could be based on wrong labels. Training a DenseNet
Convolutional Neural Network on this much data is computationally intensive. Because of a lack of
resources and time not all parameters were chosen to be optimal. The implementation of an adaptive
learning rate, k-fold cross-validation, and a grid search across parameters were not conducted.

Multinomial Logistic Regression and the Boosting Cascade rely heavily on the quality of the outputs
from Sparcnet 1. The problems of the initial model will be passed on to the calibrated outputs. Unlike in
transfer learning where the weights from Sparcnet 1 function as a starting point and initialization even
when the model is not optimal. The threshold from the Boosting Cascade and the logistic regression
model might not be able to capture the complex nonlinear patterns that are present in the EEG data
and the hierarchical features from Sparcnet 1 could be lost.

6.3. Context to related work
This research is the first work that tries retraining Sparcnet 1 for better performance on noisy long
continuous EEG recordings, the only model capable of capturing Seizure and IIIC patterns in EEG
recordings of critically ill patients in the ICU. It tries to overcome the limited data availability by using
the Bag of Words model to create a new large dataset and use transfer learning to initialize the model
with the information already learned by Sparcnet 1. By retraining Sparcnet 1 this research continues
the work of Jin Jing et al. [30]. Through the Bag of Words and transfer learning methods, steps were
taken to create a dataset with high-quality labels and a model that can detect Seizure and IIIC patterns
in longer noisy continuous EEG recordings from a larger set of patients. Furthermore, two feature-
based postprocessing methods were applied to the output of Sparcnet 1 in continuation of the work by
Dirks et al. [15]. Even though this work did not significantly improve the performance of Sparcnet 1 it
succeeded in identifying major problems and limitations and can be used as a stepping stone for future
work.

6.4. Future work
Label improvement
The main route forward is improving the quality of the labels. There were enough indications that the
labels were not where they needed to be for training deep learning models. The first step would be to
have the experts do another round of labeling and let them validate their labels with the Bag of Words
tool. These new labels can serve again as the input for the Bag of Words pipeline which becomes better
with higher quality labels. More research can also be done on using the features from the Boosting
Cascade for clustering in Bag of Words instead of power spectral density values. Using the features
in the pipeline would solve the limitation of the method and also cover temporal and morphological
information of the EEG signal.

Hyperparameters
Improvements can be made by implementing the proposed solutions to deal with data generalization,
learning rate, and hyperparameters. Adding the adaptive learning rate, k-fold cross-validation, and a
gridsearch could improve the performance of the models. Furthermore, the early stopping logic greatly
influences model training, and the shuffle parameter, although computationally intensive, is a robust
way to ensure that the model does not learn the order of the data. An interesting experiment would be to
remove the early stopping logic, add shuffling, and let the model train for 500 epochs while monitoring
the training and validation loss. Experimenting with and implementing these strategies is a way to
exclude hyperparameters as the cause of the bad performance of the deep learning models. Other
more advanced hyperparameter tuning solutions include coarse-to-fine random searches and Bayesian
hyperparameter optimization. The idea of coarse-to-fine search is to perform a random search on the
initial hyperparameter space, find a promising area, and perform a grid search on that area. At a high
level, Bayesian search starts with a prior estimate of parameter distributions, maintains a probabilistic
model of the relationship between hyperparameter values and model performance, and then alternates
between training and maximizing the estimate and updating the probabilistic model.
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High Performance Computing cluster
In order to make these suggested improvements, that add a lot of computational operations, there
needs to be enough computing power. Training these deep learning neural networks is best done in a
cycle of tuning, improving labels, and training. In this work, the cycle has been completed once but it
is highly recommended to speed up this process by training on a High Performance Computing (HPC)
cluster. The reason for this is because of the amount of data in the continuous long EEG recordings and
the workload of training a DenseNet CNN. HPC clusters consist of high speed computer servers that
are networked together and have a centralized scheduler that can efficiently manage parallel computing
workload.

Class imbalance
The data is highly imbalanced and the solution currently is to use a weighted loss function which is
an algorithm level approach to the problem but there are also data level and hybrid solutions. More
research could be done by exploring data level solutions with a different loss function. This would
entail using over sampling, under sampling, or SMOTE while training with another loss function like
cross entropy loss.

Include more patterns
A large limitation for all the methods is that the current ”Other” class encompasses everything that
is not a seizure or an IIIC pattern. This class is broad and includes for example patterns that are
seen as normal behavior and different artifacts caused by muscles, electrical interference, noise, and
movements. Feeding the deep-learning model examples with these two completely different patterns
with the same label could confuse the model. An important recommendation would be to split up the
”Other” class. The data showed to have many artifacts and the models should be able to distinguish a
normal EEG and an artifact.
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A
Supplementary Materials

A.1. Bag of Words and Change Point detection parameters

subject_id num_words num_clusters sgolay_para thr_cpd flag
glad003 50 50 10 0.1 3
glad032 50 30 10 0.1 1
glad046 100 50 10 0.1 1
glad027 100 50 10 0.1 1
glad018 50 30 10 0.1 4
glad023 100 50 10 0.1 4
glad094 50 30 10 0.1 1
glad078 50 30 10 0.1 1
glad059 50 30 10 0.1 5
glad131 50 30 10 0.1 1

goodSZ001 50 30 10 0.1 1
goodSZ002 50 30 10 0.1 1
goodSZ004 50 30 10 0.1 1
goodSZ005 50 30 10 0.1 1
goodSZ006 100 50 10 0.1 1
glad053 50 30 10 0.1 5
glad007 50 30 10 0.1 5
glad057 50 30 10 0.1 1
glad060 50 30 10 0.1 1
glad125 50 30 10 0.1 1
glad062 50 50 10 0.1 1
glad109 50 30 10 0.1 3
glad102 50 30 10 0.1 2
glad115 100 50 10 0.1 2
glad127 50 30 10 0.1 2
glad013 100 50 10 0.1 1
glad022 100 50 10 0.1 1
glad001 50 30 10 0.1 0
glad002 50 30 10 0.1 1
glad004 50 30 10 0.1 1
glad005 50 30 10 0.1 1
glad006 50 30 10 0.1 1
glad008 50 30 10 0.1 1
glad009 50 30 10 0.1 1
glad010 50 30 10 0.1 1
glad011 100 50 10 0.1 1
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Table Continued from previous page
subject_id num_words num_clusters sgolay_para thr_cpd flag
glad012 100 50 10 0.1 1
glad014 100 50 10 0.1 1
glad015 50 30 10 0.1 1
glad016 100 50 10 0.1 1
glad017 100 50 10 0.1 1
glad019 50 30 10 0.1 1
glad020 50 30 10 0.1 1
glad021 50 30 10 0.1 1
glad024 50 30 10 0.1 1
glad025 50 30 10 0.1 1
glad026 50 30 10 0.1 1
glad028 50 30 10 0.1 1
glad029 50 30 10 0.1 1
glad030 50 30 10 0.1 1
glad031 50 30 10 0.1 1
glad033 50 30 10 0.1 1
glad034 50 30 10 0.1 1
glad035 50 30 10 0.1 1
glad036 50 30 10 0.1 1
glad037 50 30 10 0.1 1
glad038 100 50 10 0.1 1
glad039 50 30 10 0.1 1
glad040 50 30 10 0.1 1
glad041 50 30 10 0.1 1
glad042 50 30 10 0.1 1
glad043 50 30 10 0.1 1
glad044 50 30 10 0.1 1
glad045 50 30 10 0.1 1
glad047 100 50 10 0.1 1
glad048 50 30 10 0.1 1
glad049 50 30 10 0.1 1
glad050 50 30 10 0.1 1
glad051 50 30 10 0.1 1
glad052 50 30 10 0.1 1
glad054 50 30 10 0.1 1
glad055 50 30 10 0.1 1
glad056 50 30 10 0.1 1
glad058 50 30 10 0.1 1
glad061 50 30 10 0.1 1
glad063 50 50 10 0.1 1
glad064 50 30 10 0.1 1
glad065 50 30 10 0.1 1
glad066 50 30 10 0.1 1
glad067 50 30 10 0.1 1
glad068 50 30 10 0.1 1
glad069 50 30 10 0.1 1
glad070 50 30 10 0.1 1
glad071 50 30 10 0.1 1
glad073 50 30 10 0.1 1
glad074 50 30 10 0.1 1
glad075 100 50 10 0.1 1
glad076 50 30 10 0.1 1
glad077 50 30 10 0.1 1
glad079 50 30 10 0.1 1
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Table Continued from previous page
subject_id num_words num_clusters sgolay_para thr_cpd flag
glad080 50 30 10 0.1 1
glad081 50 30 10 0.1 1
glad082 50 30 10 0.1 1
glad083 50 30 10 0.1 1
glad084 50 30 10 0.1 1
glad085 50 30 10 0.1 1
glad086 50 30 10 0.1 1
glad087 50 30 10 0.1 1
glad088 50 30 10 0.1 1
glad089 50 30 10 0.1 1
glad090 50 30 10 0.1 1
glad091 50 30 10 0.1 1
glad092 50 30 10 0.1 1
glad093 50 30 10 0.1 1
glad095 50 30 10 0.1 1
glad096 50 30 10 0.1 1
glad097 50 30 10 0.1 1
glad098 50 30 10 0.1 1
glad099 50 30 10 0.1 1
glad100 50 30 10 0.1 1
glad101 50 30 10 0.1 1
glad103 50 30 10 0.1 1
glad104 50 30 10 0.1 1
glad105 50 30 10 0.1 1
glad106 50 30 10 0.1 1
glad107 50 30 10 0.1 1
glad108 50 30 10 0.1 1
glad110 50 30 10 0.1 1
glad112 50 30 10 0.1 1
glad113 50 30 10 0.1 1
glad114 50 30 10 0.1 1
glad116 50 30 10 0.1 1
glad117 50 30 10 0.1 1
glad118 50 30 10 0.1 1
glad119 50 30 10 0.1 1
glad120 50 30 10 0.1 1
glad121 50 30 10 0.1 1
glad122 50 30 10 0.1 1
glad123 50 30 10 0.1 1
glad124 50 30 10 0.1 1
glad126 50 30 10 0.1 1
glad128 50 30 10 0.1 1
glad129 50 30 10 0.1 1
glad130 50 30 10 0.1 1
glad132 50 30 10 0.1 1
glad133 50 30 10 0.1 1
glad134 50 30 10 0.1 1
glad135 50 30 10 0.1 1
glad158 50 30 10 0.1 1
glad159 50 30 10 0.1 1

A.2. Patient information
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Patient Gender Age (years) EEG Length (hours)
glad001 Female 58.6 15.7
glad002 Female 7.8 12.0
glad003 Male 56.0 12.8
glad004 Male 76.5 12.9
glad005 Male 9.7 12.0
glad006 Male 74.4 12.8
glad007 Male 33.7 13.0
glad008 Female 7.6 12.0
glad009 Female 87.3 12.7
glad010 Female 65.6 12.5
glad011 Male 67.8 12.7
glad012 Male 22.8 12.0
glad013 Male 77.8 12.4
glad014 Male 59.0 13.3
glad015 Male 76.5 12.7
glad016 Male 18.2 12.0
glad017 Female 62.3 12.8
glad018 Male 11.4 16.2
glad019 Male 59.3 15.7
glad020 Female 22.0 12.7
glad021 Male 39.5 15.5
glad022 Female 35.6 12.8
glad023 Male 68.6 23.2
glad024 Female 67.3 13.2
glad025 Female 57.7 12.0
glad026 Male 57.7 14.6
glad027 Male 57.9 12.4
glad028 Female 58.4 13.0
glad029 Male 60.1 12.5
glad030 Male 43.3 12.0
glad031 Female 74.0 12.4
glad032 Male 3.4 12.0
glad033 Male 76.0 20.3
glad034 Female 54.8 12.2
glad035 Female 48.8 18.4
glad036 Female 12.3 12.0
glad037 Female 74.4 12.5
glad038 Male 16.8 12.0
glad039 Female 78.9 17.8
glad040 Female 67.8 12.0
glad041 Male 63.4 13.2
glad042 Male 63.0 12.7
glad043 Male 83.6 12.8
glad044 Female 64.8 12.6
glad045 Male 0.0 12.0
glad046 Male 61.3 13.8
glad047 Female 42.7 12.9
glad048 Female 25.4 12.0
glad049 Female 67.0 12.5
glad050 Female 79.1 13.0
glad051 Female 29.0 12.0
glad052 Male 84.7 12.6
glad053 Male 20.1 12.0
glad054 Male 62.3 16.7
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glad055 Female 83.7 12.8
glad056 Female 26.5 12.0
glad057 Male 59.2 13.0
glad058 Male 7.4 12.0
glad059 Male 28.7 12.0
glad060 Male 37.6 12.8
glad061 Female 57.4 12.0
glad062 Female 86.2 12.7
glad063 Female 64.6 12.0
glad064 Male 83.3 12.0
glad065 Male 45.9 12.4
glad066 Female 32.0 12.0
glad067 Female 5.3 13.2
glad068 Male 7.7 12.0
glad069 Female 64.9 12.7
glad070 Female 74.6 12.8
glad071 Female 38.7 16.0
glad073 Female 84.3 12.9
glad074 Male 71.7 12.5
glad075 Female 10.0 12.0
glad076 Female 21.1 12.0
glad077 Male 19.2 22.0
glad078 Male 30.3 14.8
glad079 Female 49.1 18.9
glad080 Male 63.6 12.4
glad081 Male 13.9 12.0
glad082 Male 26.3 12.0
glad083 Female 6.8 12.0
glad084 Female 61.4 12.4
glad085 Female 20.6 12.0
glad086 Male 40.3 12.0
glad087 Female 49.6 12.0
glad088 Female 47.8 12.8
glad089 Male 17.9 12.7
glad090 Male 26.0 14.9
glad091 Male 1.9 12.0
glad092 Male 71.4 12.9
glad093 Male 73.1 14.7
glad094 Male 51.9 13.2
glad095 Male 61.0 13.5
glad096 Female 23.8 12.0
glad097 Female 71.5 12.6
glad098 Male 47.8 12.0
glad099 Female 71.2 12.6
glad100 Female 64.3 20.8
glad101 Male 82.9 12.0
glad102 Female 86.5 15.4
glad103 Female 20.8 12.0
glad104 Female 72.7 12.6
glad105 Male 59.3 12.6
glad106 Female 57.0 16.1
glad107 Female 69.9 12.0
glad108 Female 69.1 12.7
glad109 Female 68.3 13.2
glad110 Male 79.2 18.0
glad112 Male 64.0 13.0
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glad113 Female 79.4 12.0
glad114 Female 77.5 12.6
glad115 Female 64.8 13.1
glad116 Female 47.2 12.0
glad117 Female 79.9 20.5
glad118 Female 2.6 13.3
glad119 Male 50.1 12.0
glad120 Male 89.2 13.1
glad121 Female 53.9 13.2
glad122 Female 74.9 12.9
glad123 Female 40.1 12.0
glad124 Male 72.8 14.4
glad125 Male 36.5 12.0
glad126 Male 13.0 12.0
glad127 Male 26.7 12.8
glad128 Female 20.6 12.0
glad129 Male 19.7 12.0
glad130 Male 26.1 12.0
glad131 Male 72.5 12.6
glad132 Male 33.3 12.0
glad133 Female 65.3 15.6
glad134 Male 56.1 12.0
glad135 Female 68.8 12.0
glad158 Female 57.3 12.0
glad159 Male 83.4 21.2
flame01 Female 87.8 12.0
flame02 Female 87.5 12.0
flame04 Male 76.5 12.0
flame05 Female 54.2 12.0
flame06 Male 20.8 12.0

A.3. DenseNet convolutional neural network architecture

Layer (type) Output Shape Param #
Conv1d-1 [-1, 64, 1000] 7,232
ELU-2 [-1, 64, 1000] 0
MaxPool1d-3 [-1, 64, 500] 0
ELU-4 [-1, 64, 500] 0
Conv1d-5 [-1, 128, 500] 8,320
ELU-6 [-1, 128, 500] 0
Conv1d-7 [-1, 32, 500] 12,320
ELU-8 [-1, 96, 500] 0
Conv1d-9 [-1, 128, 500] 12,416
ELU-10 [-1, 128, 500] 0
Conv1d-11 [-1, 32, 500] 12,320
ELU-12 [-1, 128, 500] 0
Conv1d-13 [-1, 128, 500] 16,512
ELU-14 [-1, 128, 500] 0
Conv1d-15 [-1, 32, 500] 12,320
ELU-16 [-1, 160, 500] 0
Conv1d-17 [-1, 128, 500] 20,608
ELU-18 [-1, 128, 500] 0
Conv1d-19 [-1, 32, 500] 12,320
ELU-20 [-1, 192, 500] 0
Conv1d-21 [-1, 96, 500] 18,528
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AvgPool1d-22 [-1, 96, 250] 0
ELU-23 [-1, 96, 250] 0
Conv1d-24 [-1, 128, 250] 12,416
ELU-25 [-1, 128, 250] 0
Conv1d-26 [-1, 32, 250] 12,320
ELU-27 [-1, 128, 250] 0
Conv1d-28 [-1, 128, 250] 16,512
ELU-29 [-1, 128, 250] 0
Conv1d-30 [-1, 32, 250] 12,320
ELU-31 [-1, 160, 250] 0
Conv1d-32 [-1, 128, 250] 20,608
ELU-33 [-1, 128, 250] 0
Conv1d-34 [-1, 32, 250] 12,320
ELU-35 [-1, 192, 250] 0
Conv1d-36 [-1, 128, 250] 24,704
ELU-37 [-1, 128, 250] 0
Conv1d-38 [-1, 32, 250] 12,320
ELU-39 [-1, 224, 250] 0
Conv1d-40 [-1, 112, 250] 25,200
AvgPool1d-41 [-1, 112, 125] 0
ELU-42 [-1, 112, 125] 0
Conv1d-43 [-1, 128, 125] 14,464
ELU-44 [-1, 128, 125] 0
Conv1d-45 [-1, 32, 125] 12,320
ELU-46 [-1, 144, 125] 0
Conv1d-47 [-1, 128, 125] 18,560
ELU-48 [-1, 128, 125] 0
Conv1d-49 [-1, 32, 125] 12,320
ELU-50 [-1, 176, 125] 0
Conv1d-51 [-1, 128, 125] 22,656
ELU-52 [-1, 128, 125] 0
Conv1d-53 [-1, 32, 125] 12,320
ELU-54 [-1, 208, 125] 0
Conv1d-55 [-1, 128, 125] 26,752
ELU-56 [-1, 128, 125] 0
Conv1d-57 [-1, 32, 125] 12,320
ELU-58 [-1, 240, 125] 0
Conv1d-59 [-1, 120, 125] 28,920
AvgPool1d-60 [-1, 120, 62] 0
ELU-61 [-1, 120, 62] 0
Conv1d-62 [-1, 128, 62] 15,488
ELU-63 [-1, 128, 62] 0
Conv1d-64 [-1, 32, 62] 12,320
ELU-65 [-1, 152, 62] 0
Conv1d-66 [-1, 128, 62] 19,584
ELU-67 [-1, 128, 62] 0
Conv1d-68 [-1, 32, 62] 12,320
ELU-69 [-1, 184, 62] 0
Conv1d-70 [-1, 128, 62] 23,680
ELU-71 [-1, 128, 62] 0
Conv1d-72 [-1, 32, 62] 12,320
ELU-73 [-1, 216, 62] 0
Conv1d-74 [-1, 128, 62] 27,776
ELU-75 [-1, 128, 62] 0
Conv1d-76 [-1, 32, 62] 12,320
ELU-77 [-1, 248, 62] 0
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Conv1d-78 [-1, 124, 62] 30,876
AvgPool1d-79 [-1, 124, 31] 0
ELU-80 [-1, 124, 31] 0
Conv1d-81 [-1, 128, 31] 16,000
ELU-82 [-1, 128, 31] 0
Conv1d-83 [-1, 32, 31] 12,320
ELU-84 [-1, 156, 31] 0
Conv1d-85 [-1, 128, 31] 20,096
ELU-86 [-1, 128, 31] 0
Conv1d-87 [-1, 32, 31] 12,320
ELU-88 [-1, 188, 31] 0
Conv1d-89 [-1, 128, 31] 24,192
ELU-90 [-1, 128, 31] 0
Conv1d-91 [-1, 32, 31] 12,320
ELU-92 [-1, 220, 31] 0
Conv1d-93 [-1, 128, 31] 28,288
ELU-94 [-1, 128, 31] 0
Conv1d-95 [-1, 32, 31] 12,320
ELU-96 [-1, 252, 31] 0
Conv1d-97 [-1, 126, 31] 31,878
AvgPool1d-98 [-1, 126, 15] 0
ELU-99 [-1, 126, 15] 0
Conv1d-100 [-1, 128, 15] 16,256
ELU-101 [-1, 128, 15] 0
Conv1d-102 [-1, 32, 15] 12,320
ELU-103 [-1, 158, 15] 0
Conv1d-104 [-1, 128, 15] 20,352
ELU-105 [-1, 128, 15] 0
Conv1d-106 [-1, 32, 15] 12,320
ELU-107 [-1, 190, 15] 0
Conv1d-108 [-1, 128, 15] 24,448
ELU-109 [-1, 128, 15] 0
Conv1d-110 [-1, 32, 15] 12,320
ELU-111 [-1, 222, 15] 0
Conv1d-112 [-1, 128, 15] 28,544
ELU-113 [-1, 128, 15] 0
Conv1d-114 [-1, 32, 15] 12,320
ELU-115 [-1, 254, 15] 0
Conv1d-116 [-1, 127, 15] 32,385
AvgPool1d-117 [-1, 127, 7] 0
ELU-118 [-1, 127, 7] 0
Conv1d-119 [-1, 128, 7] 16,384
ELU-120 [-1, 128, 7] 0
Conv1d-121 [-1, 32, 7] 12,320
ELU-122 [-1, 159, 7] 0
Conv1d-123 [-1, 128, 7] 20,480
ELU-124 [-1, 128, 7] 0
Conv1d-125 [-1, 32, 7] 12,320
ELU-126 [-1, 191, 7] 0
Conv1d-127 [-1, 128, 7] 24,576
ELU-128 [-1, 128, 7] 0
Conv1d-129 [-1, 32, 7] 12,320
ELU-130 [-1, 223, 7] 0
Conv1d-131 [-1, 128, 7] 28,672
ELU-132 [-1, 128, 7] 0
Conv1d-133 [-1, 32, 7] 12,320
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ReLU-134 [-1, 255, 7] 0
AvgPool1d-135 [-1, 255, 1] 0
DenseNetEnconder-136 [-1, 255] 0
Dropout-137 [-1, 255] 0
Linear-138 [-1, 6] 1,536
Total params: 1,090,859
Trainable params: 1,090,859
Non-trainable params: 0

A.4. Training losses

Figure A.1: Training loss: batch size 128, shuffle
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Figure A.2: Training loss: batch size 256, denseblock 7

Figure A.3: Training loss: batch size 256



A.4. Training losses 67

Figure A.4: Training loss: batch size 128, learning rate 0.1

Figure A.5: Training loss: batch size 128
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Figure A.6: Training loss: batch size 256, no transfer learning

Figure A.7: Training loss: batch size 256, full model trained
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