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Abstract 
 
This research investigates the design of heuristic trees in supporting pre-university students in 
mathematical reasoning, as well as finding and formulating proofs within Dutch secondary 
education. The study addresses the challenge of improving students' reasoning skills, 
particularly focusing on the clarity and structure of their reasoning processes. The research 
employed an iterative approach where three iterations have been carried out with a total of 62 
students, refining heuristic tree design based on student feedback and observed outcomes. Each 
iteration involved designing, refining, and implementing heuristic trees with distinct phases - 
orientation, elaboration, formulation, and completion - to guide students through proof-based 
tasks. Findings across iterations demonstrated improvements in students' reasoning and proof-
writing skills. Enhanced reasoning skills were visible in identifying assumptions, structuring 
proofs, and justifying reasoning steps. Students showed increased engagement with heuristic 
tree components, with varying levels of interaction indicating adaptability to individual learning 
needs. It can be concluded that this four-phases design of heuristic trees supports pre-university 
students in mathematical reasoning and proof formulation. Future research could explore 
adaptations for different educational levels and further refine the digital environment to 
optimize heuristic tree usability for mathematical reasoning. 
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Introduction 
Reasoning skills hold significant importance in the secondary education mathematics 

curriculum (Arshad et al., 2017). Gunhan (2014) highlights the significance of secondary school 
students being proficient in mathematical reasoning, engaging in deductive and inductive 
reasoning through the formulation of mathematical assertions, and actively developing and 
sustaining their reasoning skills. This is particularly of importance in proofs, as Gunhan found 
that good mathematical reasoning skills are imperative to proof-writing performance. 
Furthermore, educational research has shed light on the intricate relationship between reasoning 
and proof. When students grapple with open problems, they often employ reasoning activities 
to construct a conjecture, establishing a cognitive bridge between the reasoning and proof 
(Pedemonte, 2018). Therefore, a connection between reasoning and proof becomes evident. 

Research literature shows that proving and reasoning comes with many challenges 
(Stavrou, 2014). Firstly, high school students’ competencies of doing proofs are found below 
the desired level, attributed to the difficulties encountered in teaching and learning mathematics 
(Köğce et al., 2010; Ubi et al., 2018). Secondly, many students cannot find a starting point in a 
proof and cannot identify correct arguments with respect to the specific context of a proof (Reiss 
et al., 2001). The lack of understanding among students in handling mathematical proofs 
underscores the crucial need for them to comprehend the processes involved. However, a 
problem is that proving and reasoning seems to require intense teacher supervision, which is 
not always available (Lester, 2013). Therefore, there is a need for strategies specifically directed 
at addressing challenges in proving in the classroom, as the importance of providing a proof 
lies in promoting understanding of abstract notions (Hanna, 1995; Stylianides, 2018). 

We would like to explore heuristic trees as a means to support students' reasoning in the 
absence of a teacher. Heuristic trees were successfully implemented to support problem-
solving, which of course involves reasoning (Bos & Van den Bogaart, 2022a). However, 
heuristic trees with the specific aim of supporting reasoning have not been explored. Learning 
from heuristic trees for problem-solving areas within mathematics is one of the directions for 
proving questions like those above in mathematics. Heuristic trees are interactive pages 
designed to offer a structured collection of hints presented in a tree format, aiding users in 
addressing a particular problem (Bos & Van den Bogaart, 2022b). Such a tree consists of three 
interconnected sub-trees, aligned with Pólya’s (1945) stages: orientation, making and executing 
plans, and completion (figure 1). This enables students to work freely and actively engage with 
mathematical issues. Additionally, students learn to concentrate on broad heuristic strategies 
during mathematical problem-solving tasks, as intended by the tree structure of a heuristic tree.  

However, heuristic trees have only been applied to problem-solving mathematical areas 
so far. Bearing that in mind, it is not known whether heuristic trees are suitable for supporting, 
finding and formulating (techniques for) mathematical reasoning. Furthermore, no design 
guidelines exist yet for heuristic trees in the reasoning field of pre-university mathematics 
education. With that in mind, the aim of this research is to find out whether heuristic trees can 
be a suitable support for reasoning in the process of finding and formulating proofs for students 
in secondary education. As design guidelines for heuristic trees will play a crucial role in the 
research, a design study will be conducted. To pursue this aim, we will design heuristic trees 
for mathematical reasoning based on existing literature and iteratively refine them based on 
results from three iterations. In each iteration, a class of students will carry out proof-based 
tasks. 
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Figure 1 
 
An Example of the Upper Section of a Heuristic Tree 

 
Note. See https://edspace.nl/htree/heuristiekboom.php?boom_id=146# for the complete heuristic tree. Please note 
that closed cards are represented in blue, with dark blue cards indicating the cards to be opened next. 
 
Theoretical Background 

As the research aims to find out whether heuristic trees can be a suitable support in 
finding and formulating mathematical proofs for students in secondary education, the 
challenges are outlined through introducing encountered difficulties by students in reasoning 
and proving. Secondly, the potential solutions are outlined through the exploration of heuristic 
trees and their possible applicability in the proof field of mathematics. The concept of heuristic 
trees and their design criteria will be discussed. Specifically, the requirements for heuristic trees 
needed for assisting with mathematical problem-solving tasks will be explained, based on the 
already available literature.  
 
Defining mathematical proof and reasoning 

A mathematical proof is a deductive argument that demonstrates a mathematical 
statement, ensuring that the given assumptions logically lead to the conclusion. In a formal 
proof, the argument relies on other previously established statements, such as theorems or 
lemmas or axiomatic systems (Clapham et al., 2014; Cupillari, 2005; Gossett, 2009). On the 
other hand, the term of a mathematical reasoning is not always clearly defined; it is generally 
assumed that everyone has an intuitive understanding of it and the way in which a mathematical 
reasoning is described in various documents tends to be vague, unsystematic, and sometimes 
even contradictory from one document to another (Jeannotte & Kieran, 2017). Therefore, the 
term mathematical reasoning is not rigid. In this study we will define mathematical reasoning 
as a form of proving as the focus will be on proof-based tasks. We will follow the previous 
description of an “argument that demonstrates a mathematical statement, ensuring that the given 
assumptions logically lead to the conclusion”. However, it is not on the level of a formal 
mathematical proof, so argumentation based on theorems, lemmas and axiomatic systems are 
not required. From now on, the terms reasoning and proof are used interchangeably, where 
proof does not refer to a formal proof.  

https://edspace.nl/htree/heuristiekboom.php?boom_id=146
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Difficulties in reasoning and proving 
As mentioned before, understanding the concept of proofs and their construction is 

fundamental for reasoning skills in mathematics education (Çetin & Dikici, 2021). A proof, 
which is more than mere examples, entails a structured logical explanation of why a 
mathematical statement is true. However, students often struggle with constructing proofs due 
to inadequate understanding and application of mathematical language, notation, and proof 
processes. These challenges manifest in various forms, such as difficulty in expressing 
definitions, conceptual understanding, and initiating the proof process. Instead of engaging in 
proof construction and writing, students may resort to informal approaches which hinders their 
ability to grasp the overarching logical structure of the proof process. For example, if students 
do not know how to construct a proof, they try using examples to prove something (Raman, 
2002). In geometry, this may imply that students often believe a pictorial representation suffices 
as proof, or that empirical examples provided by students constitute a valid proof for the 
arbitrary case (Schoenfeld, 2013; Fischbein & Kedem, 1982). 

 
Additional challenges are also found by Stavrou (2014) as students frequently make one 

of these four mistakes: they assume the conclusion in order to prove it; they prove general 
assertions with specific instances; they fail to prove both conditions in a biconditional 
statement; and they misuse definitions. Moreover, many students use superfluous examples to 
support valid proofs, leaving many assignments blank with comments like "I'm not sure how to 
start the proof". Two prevalent misconceptions add complexity: the belief that a single 
counterexample is not sufficient to refute false statements, and the misconception that a few 
confirming cases are adequate to establish the truth of a mathematical generalization 
(Stylianides, 2018).  

In light of these challenges, consider the following question in geometry, often tackled 
by students in secondary education:  

"Prove that the sum of the angles of a triangle is 180 degrees” 

Although this classic problem does not require a lot of prerequisite knowledge or a robust 
understanding of formal proving, students often struggle here. For example, one may use a 
square that can be divided into two right triangles as example to prove it. A pictorial 
representation of such a divided square may likely suffice as argumentation by the student. 
However, this is considered a confirming case but not a generalized proof. 

Heuristic trees in problem-solving 
The concept of heuristic trees and their potential in aiding proving skills might help to 

address the challenges mentioned in the previous section. Heuristic trees strongly engage 
students in problem-solving, allowing them to maintain ownership of the solution methods. 
Hence, it is hypothesized that a heuristic tree may serve as potential support in addressing and 
enhancing proving skills in secondary education.  

The fundamental theoretical concepts regarding the problem-solving phase and the 
compression of mathematical knowledge are reflected in the design principles of heuristic trees 
(Bos & van den Bogaart, 2022b). Compression is a cognitive process of reorganizing 
mathematical information because it is typified by a change in focus from phenomena to 
common aspects of those phenomena (Thurston, 1990; Sfard, 2008). Compression applies to 
objects, procedures, and statements (Bos & van den Bogaart, 2022b). Two types of compression 
can be distinguished in mathematics: compression on cases and compression on steps. When 
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many items are considered as examples of a single overarching category, this is known as 
compression on cases. When knowledge is compressed on steps, distinct steps in a line of 
reasoning are viewed as a single, cohesive process.  

According to Bos (2017), heuristic trees in problem-solving adhere to six design 
principles. Compression-Decompression Ordering (P1) emphasizes progressing from general 
to concrete concepts. This can be noticed in figure 1 where opened cards from left to right 
become increasingly more concrete each step. Logical Ordering (P2) ensures a coherent 
structure, separating main and side issues. Problem Solving Phases Ordering (P3) organizes 
branches in alignment with orientation, plans, and completion. Independence (P4) guarantees 
self-contained information in each branch. Rationing (P5) provides just enough help per click, 
and Revelation (P6) hints at content without explicit disclosure. Overall, these principles are 
very valuable to the study since they can serve as a basis for proof-based areas of mathematics.  

Existing models of the proving process 
After having outlined heuristic trees in general and having connected the principles of 

designing heuristic trees to problem solving, the following will show how it differs with 
proving.  For this reason, existing proof models are explained first, providing grounds for a 
different approach in designing heuristic trees for proving.      

In the landscape of existing models of the proving process, prominently characterized 
by Stein (1984) and Boero (1999), the emphasis has traditionally been on problem exploration, 
particularly within open-ended problem areas. Meanwhile, the proving cycle can also 
frequently start with a proving task centered on a statement estimated to be true, aligning with 
the challenges encountered by secondary students in proving (Kirsten, 2018). The proving cycle 
(figure 2), attuned to the challenges of pre-university students, unfolds through a series of 
phases guiding learners from initial exploration to final proof validation: 

- Exploration: explore the statement area, discover key ideas, and identify reasons for the 
validity of the statement. 

- Selection and Structuring: select promising ideas, work out details, and structure single 
arguments in a deductive order, resulting in a proof outline. 

- Revision and Finalization: fill gaps, revise linguistic and formal arrangement of the 
proof to meet community standards. 

- Validation: validate the final proof by reviewing content, structure, and linguistics. 

Figure 2 

A Visual Representation of the Modified Proving Cycle (Kirsten, 2018) 
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The purpose of incorporating this proof cycle in the research is to provide a structured 
framework that secondary students can use to systematically approach and construct proofs. By 
guiding students through these phases, the proof cycle helps them navigate the complexities of 
proving tasks and enhances their ability to develop mathematical reasoning. 

Drawing on this model for proofs from Kirsten (2018) and the structure of heuristic trees 
for problem-solving, a four-phased proving cycle (figure 3) may serve as a promising starting 
point to design heuristic trees to enhance the understanding and application of mathematical 
proofs. The first two stages are one of the most crucial stages to include and design here as it 
lets students grasp ideas to prove the task. During an initial exploratory phase students need to 
experience freedom and flexibility (Durand-Guerrier et al., 2012). As some students tend to 
make justifications based on specific examples or figures resulting from their own actions, a 
carefully developed exploration can help making them aware such a specific case encourages 
the generation of conjectures, but it does not itself constitute a justification; rather, it merely 
serves to support one (Hsieh et al., 2012). Besides a divergent exploratory phase, students need 
to experience a convergent validating one too. Through this process, students acquaint 
themselves with the inherent openness of exploration, characterized by its flexibility in 
generating and executing ideas. Simultaneously, they grasp the necessity of a more stringent 
approach required for formulating comprehensive proofs, emphasizing the precise utilization 
of language, structure, and content (Durand-Guerrier et al., 2012). 

Figure 3 

A Four-Phased Proving Cycle that may serve as a Starting Point for designing Heuristic 
Trees 

 

 

The last phase in the model includes validating activities, which can be compared to a 
certain extent to Pólya’s (1945) stage of looking back. Although this four-phase proof model 
shares some resemblance with the structure observed in heuristic trees for problem-solving 
(orientation/making and executing plans/completion), substantial deviations are noted in most 
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aspects. Therefore, the construction of heuristic trees for problem-solving partially aligns with 
the theoretical underpinnings of the four-phased proving cycle (figure 3), both providing a 
starting point for designing heuristic trees for proving. 

Research question 
Three main concepts have been made clear: the challenges students face in proving in 

secondary mathematics education, the potential of heuristic trees as a solution and an existing 
model of the process of proving. Reasoning skills are crucial for effective mathematical 
understanding, particularly in proofs. Common challenges and misconceptions in pupils' 
reasoning abilities in proofs underscore the multifaceted nature of difficulties. Heuristics can 
be implemented to enhance proving skills and conceptual understanding in mathematics. This 
involves utilizing heuristic trees, providing an interactive framework to support mathematical 
problem-solving through structured hints. With a four-phased proving cycle drawing on 
existing models and aligning with the outline of heuristic trees, it offers a structured and 
systematic approach to guide the construction and understanding of proofs in the upper 
secondary education.  

As can be noticed in the description of a heuristic tree, heuristic trees have only been 
designed and applied for problem-solving areas of mathematics education. No research has 
been done on the exploration of heuristic trees in reasoning in mathematics education. Thus, it 
is unclear whether heuristic trees are useful for students to assist in addressing, finding, and 
formulating their proofs, let alone if there are specific design standards for heuristic trees in the 
secondary mathematics education proof field. Hence, the main question of the research is:  

How can heuristic trees support pre-university students in mathematical reasoning, as well as 
finding and formulating proofs in the Dutch secondary mathematics education? 

 
Methods 

A qualitative design study was conducted where heuristic trees were designed for tasks 
in mathematical reasoning and proofs. These heuristic trees were iteratively tested and updated 
with students. 
 
Design: heuristic trees for proofs  
 Taking the four-phased proving cycle (figure 3) as a foundation, while (partially) 
adhering to the six design principles, provided a starting point for developing heuristic trees in 
the field of proofs. Unlike the heuristic trees developed for problem-solving tasks, the heuristic 
trees for mathematical reasoning were developed with a different structure. Instead of three 
phases for problem-solving tasks, these heuristic trees explicitly have four phases, based on the 
four-phased proving cycle (figure 3). The following four phases were developed with 
accompanying initial questions: 

- Orientation Phase: How do I get an idea for my proof? 
- Elaboration Phase: How do I make my proof? 
- Formulation & Finalization Phase: How do I write my proof down? 
- Completion Phase: What did I learn and how can I use this knowledge in other settings? 

The orientation phase encompasses the first phase from figure 3, while the elaboration phase 
corresponds to the second and third one and the formulation phase corresponds to the latter two 
phases. The completion phase is not based on the four-phased proving cycle but is instead based 
on the previously developed heuristic trees for problem-solving tasks (Bos & van den Bogaart, 
2022a). 
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 Three heuristic trees have been designed. As an example, figure 4 shows a final 
version of a fully opened designed heuristic tree with its questions that appear in an unopened 
branch. This tree is designed for the algebraic task of proving that the square of an even number 
is always even. Some design principles established for heuristic trees in problem-solving tasks 
are present (Bos & van den Bogaart, 2022a): 

- P1: From general to concrete steps. For example, in the elaboration phase, the general 
plan of approach is made concrete with a suitable expression. 

- P4: Self-contained information in each branch. Each phase is independently accessible. 
- P5 & P6: Just enough help per click & content without explicit disclosure. 

Figure 4 

A Fully Opened Designed Heuristic Tree  

Note. The questions that are visible in the unopened tree are in white boxes. The problem to which the heuristic tree applies 
is: prove that a square of an even number is always even. 
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Design: flowchart 
The students used a help-seeking flowchart (figure 5) to support the help-seeking 

process (Lemmink, 2019). The chart has been modified for mathematical reasoning problems 
in proving. Therefore, it has been extended with a third section about how to write your proof. 
The chart provides guidance on when and how to transition between the orientation, 
elaboration, formulation, and completion phases. It also covers the transition from heuristic 
support to more specific hints. 

 

Figure 5 

The Help-Seeking Flowchart 

 
Note. The blue boxes represent the orientation phase, the green boxes the elaboration phase, the red boxes the 
formulation phase, and the yellow boxes the completion phase. 
 
Design of the study 

The study had the following design research cycle (Bakker, 2018; for a timeline, see 
figure 6): 

 
- Theoretical framework on reasoning, difficulties in proofs, heuristic trees, and existing 

proof models 
- Designing heuristic trees for three different proof tasks 
- Testing the tasks with a class of students   
- Analysis of the iteration 
- Making theoretical conclusions and steps towards further design iteration 

The study consisted of three iterations. Each iteration took place in a classroom-based 
setting at two high schools in Utrecht. All three iterations were conducted between March and 
May of 2024. All cards from the heuristic trees were labelled with a letter and a number. The 
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letter corresponds to the phase (A for orientation, B for elaboration or formulation, C for 
completion), while the number indicates the ordering of the cards within each phase. The 
heuristic trees were adjusted after the first and second iterations based on the results and 
optimized for the next iteration. The heuristic tree from figure 4 was used for the final iteration. 
The details of the adjustments per iteration are described in the results section.  

Figure 6 

 An Illustrative Summary of the Research Cycle of the Study 

 
Each iteration took 45 minutes. During each iteration, 25-35 minutes were available to 

work on the tasks individually. For this reason, the desks were separated, and each row of 
students received a different problem. Printed flowcharts and pawns were distributed to students 
for this part of the iteration. During the proving process, students were asked to move the pawn 
along the flowchart in accordance with their current state. On their laptops, they had access to 
the heuristic trees and the tasks. The students received a worksheet with a wide column for their 
work and a narrow column for noting the opened cards. Every 3 minutes, students were asked 
to draw a line under their work and the noted opened cards. In the second and third iterations, 
the students received a short 10-minute instruction beforehand in which an explanation was 
provided on how to use heuristic trees and the flowchart and what valid mathematical 
reasoning/proof consists of. Finally, during each iteration, 5-10 minutes were given to answer 
two questions about the experience of using the heuristic tree for the process of proving. 
 
Instruments 

As previously mentioned, three heuristic trees were designed, with each heuristic tree 
pertaining to a different branch of mathematics: 

1. Logical reasoning: who ate the cookie? 
2. Geometry: the sum of the angles in a triangle is 180 degrees. 
3. Algebra: the square of an even number is even. 

The third one is shown fully opened with all cards in figure 4. All cards start the elaboration 
phase with card B1, but for the formulation phase the logical and geometric problem start with 
card B7 whereas for the algebraic problem this is card B5. 
 
All final versions of the designed heuristic trees can be found via the following links:  
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https://edspace.nl/hboom/heuristiekboom.php?boom_id=361 
 
https://edspace.nl/hboom/heuristiekboom.php?boom_id=360 
 
https://edspace.nl/hboom/heuristiekboom.php?boom_id=358 
 

The heuristic trees are only available in Dutch, as the target group was Dutch students. 
In addition to the developed heuristic trees and flowchart, students used a worksheet, 
supplemented with two questions to be answered at the end of the iteration. The following two 
questions were provided to the students: 

 
1. Based on your experience with the heuristic tree: 

- Give two tops if you thought the heuristic tree was a useful addition. 
- Give two tips if you did noy find the heuristic tree a useful addition. 
- Give one tip and one top if you found the help both useful and not useful. 

For example, discuss finding an idea for your proof, creating your proof or writing 
down your proof. 
 
2. Write down one (mathematical) proof or reasoning technique that you learned today 

and will use again. Explain why. 
 

Participants  
The participants were 62 students in total from third class at the gymnasium level, with 

three teachers from each class collaborating. In the first iteration, 22 students from Stedelijk 
Gymnasium Utrecht (SGU) participated. This school uses the mathematics book series "Getal 
& Ruimte." In the second and third iterations, 21 and 19 students from Christelijk Gymnasium 
Utrecht (CGU) participated, respectively. A different class participated in the third iteration 
than in the second iteration. CGU uses the book series "De Wageningse Methode". 
 
Data analysis 

A multiple case study was carried out in combination with a bottom-up approach in 
document analysis. Denscombe (2017) emphasizes that case studies focus on a limited number 
of instances of a particular phenomenon and aligns with qualitative research methodologies, 
especially fitting for small-scale projects. As for our case, the implementation and impact of 
heuristic trees on the process of finding and formulating mathematical proofs was a previously 
unexplored case. Therefore, a case study was a valuable way of retrieving in-depth information 
about the impact of heuristic trees in proof-based mathematics. The adoption of a multiple case 
study design was particularly advantageous as it allowed for a nuanced examination of how 
pre-university students engage with and benefit from heuristic trees in the process of finding 
and formulating mathematical proofs, providing valuable insights into the varied dynamics and 
potential impact of heuristic trees (Gustafsson, 2017). 

 
In addition, since document analysis is very useful for qualitative case studies, it was 

employed (Bowen, 2009). All obtained data from the students' work underwent the steps of 
skimming, reading, and interpretation. Specifically, we applied thematic analysis, where the 
students' work was analyzed and categorized (Fereday & Muir-Cochrane, 2006). Since the idea 
was to let patterns emerge from the students' work, a bottom-up approach was appropriate, 
making document analysis suitable. 
 
 

https://edspace.nl/hboom/heuristiekboom.php?boom_id=361
https://edspace.nl/hboom/heuristiekboom.php?boom_id=360
https://edspace.nl/hboom/heuristiekboom.php?boom_id=358
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Results 
1st iteration 

Three different heuristic trees were distributed among the students. Looking at the 
results for each heuristic tree (see figure 7 for a legenda), there were differences. Almost 
everyone correctly provided a proof to the logical reasoning problem. Most students who 
received this problem noted that the task was too easy. Since the problem was perceived as too 
easy, it was not used for further analysis.  
 

From a bottom-up approach in analysis of the work of students for the other two tasks, 
five categories became apparent to assess the students on. Indicators how to assess these, are 
shown below: 
 

• Proof direction 
ð Has the student provided a reasoning that points toward a valid proof? A student can 

demonstrate the wrong thing or demonstrate something with an (informal) example. 
Has the student provided any proof direction at all? 

• Assumptions 
ð Are assumptions made explicitly visible? For example, this could include 

assumptions being stated as “suppose that …”. Are they visible, but implicitly? 
• Use of conjunctions in connecting steps 

ð Is each step logically connected with conjunctions to give meaning to the 
progression of the reasoning steps? For example, this can include a “suppose that 
…, then it follows …” or a “This means that …”. 

• Structure of the proof 
ð Is there a transition from a messy or chaotic elaboration to a concrete (compact) 

step-by-step elaboration? Are neat compact versions of the elaboration visible? 
Some kind of revised version? A version without notes and random 
pictures/examples? Is the proof structured in general? 

• Justification 
ð Are all steps clearly explained in terms of why something is done, why it is the way 

it is, how it follows from previous steps, or why it can be assumed? 

Figure 7 

 The Legend the Tables of the Results are based on 
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It should be noted that a green space in table 1 and figure 7 does not necessarily indicate 
a correct assumption, justification, et cetera. It merely means the student has provided a visible 
argument explaining why they did something within their mathematical reasoning. Therefore, 
the attempt to correctly develop and formulate the proof is important, rather than the correctness 
of the solution itself. 
 

From table 1, it becomes evident that students struggled with constructing a 
mathematical argument. While almost everyone employed a proof strategy, they often used an 
incorrect one, typically relying on informal examples. Most students did not use assumptions, 
structure, or connectives in their proofs. Despite these shortcomings, about half of the students 
were able to explain their reasoning with an argument, regardless of its correctness.  

Table 1 

 Results of the Students from the First Iteration 

 
To assess the extent to which the heuristic tree has supported the student in mathematical 

reasoning, a closer examination can be made for each problem. 
 
Algebraic problem 

Many used numerical examples instead of transitioning to algebraic expressions. 
Almost everyone who wrote 𝑥 = 2𝑛, failed to connect it to 𝑥! = 2 ∙ (2𝑛!).  
 

In figure 8, it is visible how a student has used at least one card from each phase (namely 
A1, B1, B5, C1). Although this student was not able to generalize to 𝑥 = 2𝑛, it is noticeable 
that their method of writing changed due to card B5. However, the use of the heuristic tree did 
not lead this student to form an idea for a correct proof approach. 
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Figure 8 

The Work of a Student from the First Iteration on the Algebraic Task 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Geometric problem 
Almost everyone used an informal example of taking a rectangle or square and 

constructing two triangles from it. One student did apply a correct method, but the caveat is that 
there are deficiencies in writing this proof. For instance, there's a lack of mention of using Z-
angles. Although many consulted the orientation cards and applied the straight angle, they often 
missed the connection to using auxiliary lines and Z-angles, primarily due to opening cards 
from the first column, notably B1 and B7 (both by opening and not opening the “elaboration”-
cards). Figure 9 illustrates how a student is convinced that their proof is complete and correct. 
However, they proved it just for right triangles.  
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Figure 9 

The Work of a Student from the First Iteration on the Geometric Task 

 
Alterations made for 2nd iteration 

As the logical reasoning problem was below the appropriate level for seeking help 
through a heuristic tree, it was decided to reuse only the remaining two problems for the second 
iteration. 

 
The first iteration showed that students did not understand how to construct a 

mathematical argument. This was evident in both the given tips and their solutions. Nearly all 
students incorrectly provided proofs. Based on numerous tips highlighting vagueness and 
confusion about using the heuristic tree and the flowchart, it was decided to provide a brief 10 
min instruction for the second iteration covering: 

- The lesson's goal (practicing mathematical reasoning) 
- What a heuristic tree is and how to use it 
- When something counts as a proof (the difference between an example/conjecture and 

a proof) 
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- The phases of mathematical reasoning 
- An explanation of what to expect (details about the provided papers) 

 
Based on the results from the first iteration, the following adjustments were made in the 

heuristic trees: 
- The language was made clearer. For instance, "algebraically" was explained as "use 

letters". 
- In the phase "How do I write down my proof/reasoning?" it was made more concrete 

that the second card contains a format for a structured elaboration. 
- For the algebraic problem, greater emphasis was placed on using letters in the 

orientation phase for forming ideas. 
- For the geometric problem, a more concrete hint was provided on the "how do I make 

my proof?" card. The first card now mentions both backward and forward reasoning. 
 
2nd iteration  

Table 2 shows that instruction and more concrete hints contributed to better support for 
proof construction. Although only a small portion of the entire group applied their proofs in the 
correct direction, this marked progress. Notably, there is visible improvement in the use of 
assumptions, conjunctions, and structure. In the first iteration, these elements were scarcely 
present in the students' work, whereas now, the majority shows at least some (albeit limited) 
use of one or more of these elements. For assumptions, this was mostly still implicit. Regarding 
justification, there weren't a lot more students providing sufficient argumentation, but the 
number of students without any justification decreased. More students now provided (limited) 
argumentation. 

Table 2 

Results of the Students from the Second Iteration 
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Algebraic task 
Around a quarter of the students have correctly interpreted the question. Among the 

students who have made mistakes, almost everyone has used an algebraic expression but was 
unable to correctly simplify or argue it. For instance, solutions contain expressions like 4𝑛! =
2 ∙ (2𝑛!) (or something similar), but there was a lack of adequate explanation. Almost every 
student began with an explanation of the concepts and provided examples with numbers. 
Almost all of them transitioned to an algebraic expression, especially after opening cards A4 
and/or B2 (which provided the hint 𝑥 = 2𝑛).  
 

 Looking at figure 10, it is clear how the orientation cards (A-cards) guide a student step 
by step to the generalizing step 𝑥 = 2𝑛 to prove the problem. Starting with developing concepts 
and providing examples, the student realizes the direction in which the proof can be given after 
opening card A4. Additionally, it is visible that after opening a formulation card (B5-card), the 
student begins again writing down their proof, but now including both the statement to be 
proven and the assumption with its justification. In short, the heuristic tree has supported the 
student in both forming a correct proof strategy and writing it down in a structured manner. 

Figure 10 

The Work of a Student from the Second Iteration on the Algebraic Task 
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Geometric task 
Approximately half of the students have carried out the geometric task using a correct 

proof technique. However, it is noticeable that there is still a lack of formulation and structure 
in their solutions. For example, the use of Z-angles is not explicitly stated. There has been little 
use of informal examples, such as a right triangle, as evidence. A fifth of the students have 
stuck to the example from the orientation phase for their own proof.  
 

In figure 11, it can be observed that a student changes their proof approach after opening 
a B-card. Auxiliary lines and Z-angles become implicitly visible, and the argument that the 
straight angle is equal to the sum of the angles of the triangle via Z-angles is partially visible. 
However, even after opening a writing card (B7-card), the student is still unable to deliver a 
structured elaboration. In short, the heuristic tree has supported the student in guiding them 
towards a correct proof strategy but has insufficiently supported them in justification and 
structure. 

Figure 11 

The Work of a Student from the Second Iteration on the Geometric Task 
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Alterations made for 3rd iteration 
Although there was improvement compared to the first iteration, issues persisted. 

Structuring the proof and making use of conjunctions was still not applied that much. 
Additionally, there was still a notable lack of explicit notation regarding the use of concepts 
and/or assumptions. Therefore, the intention for the third iteration was to focus more on the 
formulation phase. 
 
The following adjustments were made: 

- Language formulations were made more concrete, shortened where necessary, and 
simplified. Text portions were reduced to better highlight the core of the hint. Terms like 
"class of objects" were removed to make the hint more concrete and easier to 
understand. 

- In the A1 and B1 cards, an explicit mentioning of an example not being a valid proof 
for all cases is noted. 

- In the phase "How do I write my proof/reasoning?", adjustments were made to the first 
card. It now includes the essence of writing your proof neatly and structured. 
Additionally, it specifies that made assumptions and used concepts should be explicitly 
stated. It also asks whether conjunctions are used to logically connect statements. 

- There were not any significant changes in instruction. However, emphasis was placed 
on the difference between providing a proof and an informal example or conjecture. It 
was emphasized that using a right triangle in a proof cannot be generalized to any 
triangle. 

- In the questions at the end, the second question now explicitly asks for a "learned 
mathematical reasoning technique" instead of a "learned reasoning technique". 

 
3rd iteration 

Table 3 shows that a subtle progression is noticeable compared to the 2nd iteration. The 
most striking improvements are found in the components of proof direction, assumptions, and 
structure. The improvements may be attributed to a clearer hint on a card in the writing phase 
of the heuristic tree, which highlights assumptions, conjunctions, and structure more clearly. 
 

As for learned mathematical reasoning techniques, about 30% of students did not write 
anything down or were unable to indicate what they had learned. The most common written 
down learned techniques for the geometric problem were: 

- Examples do not count as evidence 
- Look for special angles 
- Draw a picture 

 
For the algebraic problem, these were: 

- Express numbers as letters for generalization 
- An even number can be expressed as “2n” 
- Write down all your thoughts and then turn them into a clear story 

 
Algebraic problem 

Six out of nine students correctly interpreted and applied the algebraic problem, while 
two out of nine applied it incorrectly, and one student didn't provide any reasoning. Almost 
every student began with an explanation of the concepts and gave examples with numbers. 
Almost all transitioned to an algebraic expression, especially after opening cards A4 and/or B2 
(which provide the hint 𝑥 = 2𝑛). Regarding the correctly carried out proofs, it's notable that 
only two out of six students made their assumptions explicit, while the rest were implicit. 
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Table 3 

Results of the Students from the Third Iteration 

 
Looking at figure 13, it can be noticed how a student, with the help of the A- and B-

cards, gradually moves closer to the generalizing step 𝑥 = 2𝑛 to prove the problem. Starting 
with providing examples, the student understands the direction of the proof after opening card 
B2. Additionally, after opening a formulation card (B5 card), the student starts over with writing 
down their proof. In this revision, the student explicitly mentions assumptions, conjunctions, 
and justifications for the steps taken. In short, the heuristic tree supported the student in both 
forming a correct proof strategy and writing in a structured manner. The effectiveness of the 
formulation card is also apparent from the given top in figure 12, where the student indicates 
that the heuristic tree was helpful for formulating their proof. 

Figure 12 

The Provided Feedback of a Student from the Third Iteration on the Algebraic Task 
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Figure 13 

The Work of a Student from the Third Iteration on the Algebraic Task 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Geometric problem 

Out of the ten students in table 3, six carried out their problem using a correct proof 
technique, while three used a wrong one, and one didn't provide a proof direction. In six out of 
ten cases, there's a clear transition visible in the formulation of the proof, regardless of whether 
the question is answered correctly or not. Regarding this transition, students progress from 
solutions without a clear starting and ending point, with numerous drawings and examples, to 
more concise solutions with justification. 
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However, there's still a noticeable lack of justification and explicit mention of 
assumptions and concepts. Only four out of ten students explicitly mentioned their assumptions, 
with some students being implicit. Additionally, six out of ten students justified their solutions 
to some extent, but the majority are incomplete and/or informal. One student flawlessly 
completed the problem without any errors, even explicitly mentioning assumptions and Z-
angles. 
 

In figure 14, it can be observed that after opening a B-card, a student changes their proof 
approach (noted as B4, but this is via B1). Auxiliary lines and Z-angles become implicitly 
visible but are explicitly mentioned after opening a writing card (B8-card, but via B7). In a 
revision of their work, the student explicitly mentions assumptions, conjunctions, and 
justifications for the steps taken. In short, the heuristic tree supported the student in developing 
a correct proof strategy, explicitly mentioning crucial concepts, and structuring their work.  

Figure 14 

The Work of a Student from the Third Iteration on the Geometric Task 
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Tips and tops 
In table 4 the total number of all given tips and tops are found. Firstly, the number of 

positive remarks regarding the clarity of card explanations increased over the iterations, from 
three in the first iteration to eight in the third. This suggests that improvements made to the 
clarity of the cards were well-received and effective. Secondly, the usefulness of having their 
task divided into small steps/phases remained relatively stable each iteration. This indicates 
consistent value in the phased approach. Thirdly, the positive feedback for helping to write 
down their proof emerged only in the third iteration. This suggests a late but successful 
improvement of features that support students in the formulation of their proofs. Lastly, it is 
visible that many more tops are given than tips. This indicates that students generally 
experienced the heuristic tree as a positive contribution. Overall, the feedback indicates notable 
improvements as there is increased positive feedback on card clarity and specific helpful 
features, such as breaking tasks into smaller steps and support in proof writing, in addition to a 
decrease of negative feedback on vagueness or unclarity. 

Table 4 

Received Feedback of Students from all Iterations on the Use of the Heuristic Trees 

 
Opened cards 

Percentages from table 5 show how many cards per student were opened on average per 
phase. For example, in the elaboration phase of the third iteration, a student has opened an 
average of 53% of the cards. This suggests that not everyone clicks through and that some more 
are satisfied with just a general heuristic.  

Table 5 

Average Percentage of Cards Opened per Phase of the Heuristic Tree 

 
The results highlight that the orientation and completion phases are opened roughly the 

same number of times in each iteration. In contrast, the elaboration and formulation phases have 
an increase in the number of opened cards. The elaboration phase has stabilized at around 50%, 
while the formulation phase has surged with each iteration. Notably, in the last iteration, there 
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is a consistent need for each phase, except for the completion phase, which is seldom used in 
any iteration. It is noticeable that the formulation phase is opened more often in each iteration 
than the elaboration phase. Therefore, there is a need for support with the formulation of their 
proof. 
 

Examining this in more detail, we can observe the number of cards opened during the 
third iteration. For the algebraic task, this was: 
 
A1: 6, A2: 2, A3: 6, A4: 6 
B1: 7, B2: 7, B3: 6, B4: 6, B5: 6, B6: 4 
C1: 1, C2: 1 
 
The number of opened cards for the geometric task was: 
 
A1: 9, A2: 4, A3: 8, A4: 5 
B1: 7, B2: 4, B3: 3, B4: 6, B5: 3, B6: 2, B7: 8, B8: 5 
C1: 4 
 

From figure 15 it is visible that there was no decrease in the opening of cards further to 
the right in the branch, and all the phases were opened almost proportionally (except for the 
completion phase). This is different for the geometric problem as cards A1, A3, B1, and B7 
were opened the most. The need for students to be supported both in finding and guiding their 
proof and in structuring their proof is thus evident. Furthermore, this again suggests that not 
everyone clicks through and that some are satisfied with just a general heuristic instead of more 
concrete hints further in the branch. 

Figure 15 

An Illustration of the Number of Opened Cards per Heuristic Tree for the Third Iteration 

 
 

Note. The left tree is the algebraic task and the right tree the geometric task. The illustration is designed by 
adjusting the thickness of the card to the number of times the card has been opened. For example, a card that has 
been opened 4 times will have a thickness of 4 px. 
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Conclusions 
This research explored how heuristic trees can support pre-university students in 

mathematical reasoning, as well as finding and formulating proofs in the Dutch secondary 
mathematics education. The study involved designing heuristic trees for proofs with three 
iterations, each refining the approach based on feedback and observed outcomes. 

The findings from the first iteration showed that students struggled with finding and 
formulating mathematical proofs. Most relied on informal examples and common issues 
included the lack of explicit assumptions, structured steps, and logical connections in their 
proofs. Feedback revealed that students found the heuristic tree instructions unclear and 
confusing, leading to underutilization of the provided support. 

For this reason, the second iteration included a short instructional session to get students 
acquainted with heuristic trees and the phases of mathematical reasoning. Heuristic tree cards 
were made clearer and more concrete, resulting in better guidance for students. Big 
improvements were observed in students' proof direction, the use of assumptions, and overall 
structure. However, justification, explicit use of assumptions and formulation still posed 
challenges. Feedback indicated fewer issues with card vagueness, suggesting increased clarity 
and effectiveness. 

Further refinements in the third iteration emphasized the importance of assumptions, 
conjunctions, and structured proof writing. Continued improvement was observed, with more 
students demonstrating well-structured proofs and explicitly stating their assumptions and 
reasoning. For the first time, some students successfully completed all aspects of the tasks 
correctly. Students more frequently documented learned mathematical reasoning techniques, 
particularly for algebraic problems. 

When it comes to the design of the heuristic trees, progress is visible in the different 
elements of the proof with each iteration. In the second iteration, it became evident how the 
heuristic tree contributed to an improved proof direction and use of assumptions and 
conjunctions. However, by placing even more emphasis on the formulation phase in the third 
iteration, the results showed progress in proof direction, assumptions, and structure. Therefore, 
by extending the heuristic trees into four phases for reasoning, with a clear distinction between 
carrying out and formulating a proof, students were able to develop a deeper understanding of 
mathematical reasoning and find and formulate structured proofs. 

 
When it specifically comes to formulating a proof, the results indicate that the cards 

from the formulation phase were beneficial for the students. Firstly, the cards were accessed 
proportionately to the orientation and elaboration phases, suggesting that students found them 
necessary. Secondly, several students' elaborations demonstrate how their proofs were rewritten 
into more compact versions with a clear beginning and end, incorporating assumptions, 
conjunctions, and justifications. Thirdly, in the third iteration, students frequently noted that the 
cards for formulating their proofs were useful. Therefore, the addition of the formulation phase 
can be considered an effective component of heuristic trees aimed at mathematical reasoning. 

It is important to note that not every student clicked through all the heuristic tree cards. 
This is a positive sign, indicating that some students were able to find sufficient guidance with 
the initial, more generic hints provided by the cards. This suggests that the heuristic trees were 
flexible enough to cater to varying levels of student need, allowing those who required less 
support to proceed efficiently while still offering detailed assistance for those who needed it. 
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The study demonstrated that the iterative process of refining the heuristic trees in four 
distinct phases and the instructional approach led to progressive enhancements in students' 
ability to find and formulate mathematical proofs. The improvements in students’ proof-writing 
skills across the iterations indicate that the heuristic trees developed in this study can effectively 
support students in their skills in proving. By progressively clarifying and refining the guidance 
provided by the heuristic trees, students were better equipped to construct well-reasoned and 
coherent proofs. Thus, this indicates that we have developed heuristic trees that can support 
pre-university students in their mathematical reasoning, as well as finding and formulating 
proofs. To support students in this, the following four phases are necessary: 

- Orientation Phase  
ð Let students get a grip on the problem and get an idea how to provide a proof. 

- Elaboration Phase 
ð Let students make a plan for their proof and guide them with carrying it out. 

- Formulation & Finalization Phase 
ð Guide students how to formulate their proof in a structured manner and remind them 

to check missing details. 
- Completion Phase 

ð Let students reflect on what they have learnt and how to apply it in other settings. 
 

Discussion  
Interpretations and implications 

The results of the first iteration show that students had much more difficulty with 
mathematical proofs than anticipated. Problems were intentionally chosen that required little 
prior mathematical knowledge, and the required knowledge had already been covered in the 
first year of their high school career. Therefore, if students already struggle with problems that 
require little prerequisites, it raises the question of how well heuristic trees can support students 
when much more mathematical knowledge is required. 

Additionally, the first iteration shows that the results align with the literature: students 
who did not know how to construct a proof, tried using (informal) examples to prove something 
(Raman, 2002). Many students provided a pictorial representation as proof (a square with two 
triangles in it) or gave empirical examples (even squared numbers) that would constitute as a 
valid proof for the arbitrary case (Schoenfeld, 2013; Fischbein & Kedem, 1982). Furthermore, 
some students assumed the conclusion in order to prove it (Stavrou, 2014).  
 

Where Bos & van den Bogaart (2022a; 2022b) have already delved into the design and 
use of heuristic trees in mathematics education, this research has contributed to their study. 
Before the start of this research, no research had been done on the exploration of heuristic trees 
in proofs in mathematics education, just problem-solving. Thus, it was unclear whether 
heuristic trees were useful for students to assist in finding and formulating proofs. This research 
has shown that heuristic trees can indeed support students in their mathematical reasoning, 
albeit in a modified form compared to the known problem-solving heuristic trees. Therefore, 
this research has extended and enriched the previous study 
 
Limitations 

Although it is observed that the developed heuristic trees have contributed to students' 
reasoning skills in mathematics, there are also some limitations: 

 
Firstly, it should be noted that the first iteration was conducted at a different school 

(SGU) compared to the second and third iterations (CGU). The SGU uses the mathematics book 
series "Getal & Ruimte" which is known for its problem-solving approach. The CGU uses the 
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"Wageningse Methode", an innovative book series that focuses more on understanding and self-
discovery (van Smaalen, 2011). This means that the Wageningse Methode places more 
emphasis on mathematical reasoning than Getal & Ruimte. Although the addition of a short 
instruction and redesign of the heuristic trees contributed to improved results in the second and 
third iterations, it is also worth considering the influence of the mathematics book series on the 
results. If the Wageningse Methode indeed focuses more on mathematical reasoning, it would 
not be surprising that this also has a positive effect on the results. Therefore, it must be taken 
into account that two different mathematics book series are involved in the research. 
 

Secondly, three gymnasium classes participated in the research. Although it is good to 
maintain the same educational level in all iterations, it raises the question of whether heuristic 
trees for mathematical reasoning work equally effective for other levels of education such as 
atheneum or HAVO, designed in the format of this study. It may well be that at other levels of 
education the design of the heuristic tree for mathematical reasoning is different. For example, 
some phases may need to be more prominent than others.  

 
A final limitation lies in the layout of the digital environment in which the heuristic trees 

were developed. The site was initially developed for creating heuristic trees for problem-solving 
tasks in mathematics. Therefore, the heuristic trees could only be made with the three phases: 
orientation, making and executing plans, and completion. The layout of the website could not 
clearly separate the phases of elaboration and formulation in this research. This may have 
influenced their use by the students. 
 
Future work 

Future research, focusing on developing suitable tasks and instructions for learning 
mathematical reasoning and proofs, can take this study as a starting point. Although the focus 
of this study has been on developing heuristic trees for mathematical reasoning, designing 
suitable tasks with customized instruction is just as important. This can be covered to improve 
the coherence of learning to find and formulate proofs. 

 
Another great challenge that can be investigated is the difference in the influence of the 

two mathematical book series. It is advisable for future research to delve into this to see how 
much of a difference it makes.  

 
Some small future developments could focus on redesigning the digital environment so 

that heuristic trees can be developed with customizable phases. Additionally, it would be 
beneficial to create an extra intermediate step in the formulation phase. Currently, two cards 
are visible, but the transition between the two is still quite abrupt. An intermediate step could 
streamline the transition. Furthermore, it would be interesting to see if the developed heuristic 
tree for mathematical reasoning can be as effective in the upper levels of secondary education 
or if some of the phases need more or less attention. 
 
Data availability  

The data supporting the findings of this study are available by contacting the author and 
supervisor. 
 
Code availability  

The web-app for heuristic trees is freely available at https://edspace.nl/hboom/index.php 
and published under a creative commons license. The source code can be obtained from the 
author. 

https://edspace.nl/hboom/index.php
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