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Abstract

Landscape evolution models (LEMs) are physics-based simulations that evaluate the influ-
ence of geomorphic processes on regional landscape development over longer time periods.
These processes are represented in a simplified manner, and their parameterization cannot
always be readily linked to real-world quantities. This makes their calibration and appli-
cation challenging, especially as the calibrated parameter values are imposed to the entire
model domain and extrapolated in time. This study introduces a data-driven calibration
using historical observations from different stations in the Swiss Alps, aiming to automate
and streamline the calibration process.

Using a Sobol sequence method allowed comprehensive exploration of the parameter
space, identifying behavioral parameter sets that were then tested for their transferability
across different spatial and temporal scales. Calibrating parameters on smaller catch-
ments significantly reduced computational demands, streamlining the calibration process
and making it more practical. Results from temporal transferability tests indicated consis-
tent performance in discharge simulations, although sediment transport remained highly
sensitive and variable over extended periods. Spatial transferability showed promising
potential, suggesting that parameter sets calibrated on smaller catchments could be ef-
fectively applied to larger areas.

However, the study also highlighted significant challenges, particularly in simulating
hydrological extremes and accurately capturing sediment transport processes. The use of
a yearly timestep limited the model’s ability to reflect seasonal dynamics, and the current
model setup lacked sufficient data and complexity to properly simulate key processes such
as glacier dynamics and temperature effects. These limitations underscore the need for
further refinement in both data inputs and model structure to enhance the accuracy and
robustness of LEMs.
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1 Introduction

Landscape evolution models (LEMs) are essential for understanding how geomorphological pro-
cesses, such as erosion, sediment transport, and deposition, shape the Earth’s surface over long
timescales. These models simulate the complex interactions between landscape dynamics and
environmental factors, making them valuable tools for reconstructing past landscapes and fore-
casting future changes. However, LEMs often rely on simplified representations of processes
and proportionality parameters that may not directly correspond to measurable real-world
quantities (Reinhardt et al., 2010). This simplification is necessary due to practical and com-
putational limitations, but it also introduces challenges in accurately calibrating and validating
these models (Willgoose et al., 1991).

Calibration and validation of LEMs are crucial steps to ensure that the models realistically
represent natural landscapes. LEM calibration methods involve adjusting parameters iteratively
by comparing model outputs with observed landscape features (van der Beek and Bishop,
2003). However, due to the complexity of the Earth’s system and the high-dimensional nature
of parameter spaces, calibration is challenging and requires robust methods (Hancock et al.,
2011). Key calibration approaches include:

• Manual Calibration: Parameters are manually adjusted by experts based on their
domain knowledge and comparisons between model outputs and observed data. This
iterative process involves fine-tuning until the model closely aligns with the real-world
observations.

• Automated Calibration: This method uses optimization algorithms to adjust param-
eters, minimizing the difference between model outputs and observed data. It reduces
subjectivity and labor by systematically exploring parameter space, often employing tech-
niques like gradient descent and Bayesian optimization.

• Parameter Space Exploration: Involves navigating the multidimensional space of all
possible parameter combinations. Techniques like Latin Hypercube Sampling (LHS) and
Sobol sequences enhance coverage, while hybrid methods combine broad exploration with
precise optimization to avoid pitfalls like local minima.

• Data Mining: Utilizes statistical and computational methods to extract patterns and
correlations from large datasets. In calibration, it helps identify optimal parameter sets
that accurately reflect observed real-world phenomena by analyzing and validating exten-
sive data.

For model validation, the Kling-Gupta Efficiency (KGE) is used to compare simulated data
with observations, providing an estimation of model performance by considering correlation,
variability, and bias between simulated and observed data. KGE values are calculated for
discharge and suspended sediment concentration (SSC) at a specified outlet node corresponding
to the real-world location of the hydrological stations. This approach allows for a comprehensive
assessment of how well the model replicates key hydrological and sediment transport processes.

Despite these approaches, the calibration and validation processes are complicated by the scale-
dependency of parameters, making them difficult to transfer between different spatial or tem-
poral contexts. Parameters effective in one catchment or time resolution may not perform well
when applied elsewhere, raising questions about the robustness and generalizability of LEMs.

This study addresses these challenges by exploring the viability and utility of calibrating LEMs
using data from specific stations. This restricts the calibration period to the timeframe covered
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by the dataset, in this case, 49 years. A key aspect of this approach is evaluating how well
calibrated parameters perform when simulations are extended beyond the calibration period,
and whether they can accurately predict landscape changes over longer timescales. This is
tested by running simulations extended in time of the best-performing models from the same
catchment and comparing variations in discharge and sediment transport.

Additionally, the study investigates whether calibrating LEMs on smaller catchments, to save
computational time, allows the derived parameters to be successfully applied to larger areas.
This raises the question of whether LEM parameters can be transferred in space, offering a
practical solution to the computational challenges of LEM calibration.

However, the calibration framework used in this study introduces certain limitations. The model
simulates only sediment transport linked to river channels and does not include processes such
as glacial dynamics, which are significant in alpine environments. The model also uses annual
averages and yearly timesteps, thus missing seasonal variations and restricting the analysis to
inter-annual changes. Furthermore, with only one station per catchment, the calibration lacks
detailed insights into within-catchment variability, potentially reducing the robustness of the
calibrated parameters.

The chosen study area is the region southeast of Interlaken, Switzerland, characterized by var-
ied topography, hydrological complexity, and the availability of high-resolution data. This area
includes three primary catchments: Aare, Lütschine, and Lonza. They feature diverse char-
acteristics such as differences in altitude, glacier coverage, and catchment size. The detailed
hydrological data available, including discharge and suspended sediment concentration mea-
surements from multiple stations, make it an ideal location to test our calibration approach.
By utilizing high-resolution digital elevation models and climatic data, we can simulate a range
of geomorphic and hydrological conditions to assess the generalizability of the calibrated LEM
parameters.

In summary, this study aims to contribute to the ongoing discussion about the transferabil-
ity of LEM parameters across different spatial and temporal contexts. By examining whether
calibration on limited datasets can yield reliable predictions when extended and whether pa-
rameters calibrated on smaller catchments can be effectively applied to larger regions, we hope
to advance the practical use of LEMs in geomorphology and landscape management.
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2 Methods

2.1 Model Description

2.1.1 Modelling Framework

LEM utilizes numerical methods to simulate the topographic changes. While non-exhaustive,
the following process can be simulated:

1. The erosion and weathering effect caused by water, wind and ice on rock and soil.

2. The transport and deposition of sediment by river, glacier, shallow-water flow over the
landscape.

3. The impact of tectonic movements on the landscape, including uplift and subsidence.

The predicting framework can be used to do landscape reconstruction or to forecast forward in
time, both of which can be used on to gain an understanding of the processes that lead to the
development of patterns in the landscape, conduct hazard assessment or evaluate the impact
of climate change (Simpson, 2017; Temme et al., 2017).

The modelling framework in use for this project is Landlab 2.7.0, an open-source Python
library designed for the creation and simulation of landscape (Hobley et al., 2017; Barnhart
et al., 2020; Hutton et al., 2020). It provides tools and components for carrying out various
types of numerical simulations in the geosciences, in particular on earth surface processes such
as hillslope and fluvial geomorphology, hydrology, weathering and vegetation.

Landlab uses a grid data structure and support rectangular, hexagonal and Voronoi grid. Fields
in Landlab are arrays of data associated with a specific grid element (nodes, cells or links). They
can store various physical quantities such as elevation, temperature, soil moisture, etc. Each
field is identified by a name and is associated with one of the grid elements. While there is a
standard list of names for each field, it is possible to create custom one, as they work like any
other variable in python.

Landlab’s design feature modular components that describe specific physical processes or al-
gorithms. These components interact with Fields and can be combined to build models with
varying degree of complexity. This is a great feature of Landlab as it allow user to simulate
environmental processes by simply integrating pre-built component but also allow the user to
design their own. In this project, we will use a set of pre-built components to calculate the flow
of water with a D8 algorithm, simulate the erosion using the stream power law and compute
the discharge and suspended sediment at different point of the grid.

The selection of Landlab for this research is based on four key considerations. First, its
component-based architecture facilitates customization and allows for varying degrees of com-
plexity to suit specific modeling requirements. Second, the high-resolution Digital Elevation
Models (DEMs) available for our study area can be seamlessly integrated into Landlab. Third,
Landlab offers extensive documentation, tutorials, and examples, which greatly ease the learn-
ing curve and support for model development. Lastly, Landlab is built in Python, enabling
easy integration with other scientific libraries such as NumPy (Harris et al., 2020) and Pandas
(pandas development team, 2020), and it aligns with the author’s programming expertise.
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2.1.2 Model Structure

The overall model structure is presented in Figure 1, with inputs shown in blue and outputs
in red. The landscape evolution model (LEM) in this study, implemented using the Landlab
library, simulates discharge and suspended sediment concentration (SSC) based on key envi-
ronmental inputs: a digital elevation model (DEM), temperature, precipitation, and soil type.
The DEM defines the topography of the grid, enabling the application of a lapse rate correction
to adjust precipitation data according to elevation.

Runoff is generated from precipitation using a spatially varying runoff coefficient, which is
influenced by temperature and slope, the latter derived from the terrain. Water flow direction
is determined from elevation differences between neighboring grid cells, guiding runoff and
allowing the estimation of discharge at each node by multiplying runoff by the cell area.

Discharge, in combination with soil type, is then used to calculate the erosion rate. Erosion
deposition is subsequently computed based on both erosion rate and discharge. The final SSC
is determined by integrating the effects of erosion and deposition processes. These interactions
and their mechanics will be explored in more details in the following sections.

Figure 1: Flowchart of the model structure showing blue input data (Temperature, Precipita-
tion, DEM, Soil Type) and red output data (Discharge, SSC).
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2.1.3 Grid Setup and Resolution

A grid system organizes spatial data into a structured format where nodes act as the data
collection points, links describe the connections between these points, and cells define the areas
around nodes. Therefore, when a specific calculation depends on the area, it will generally use
the cell, and when it depends on a point value, like the elevation, it will use the node.

In this study, we employed a regular rectangular grid within Landlab to represent the spatial
domain of our LEM. Selecting the appropriate grid type and resolution is crucial, as it directly
influences the accuracy of model outputs, the computational efficiency of simulations, and the
complexity of implementation. We chose a rectangular grid because it is straightforward to
implement, simplifying the development process. Moreover, flow accumulation is an essential
and computationally demanding part of the hydrological modelling. These calculations run
more efficiently when the cells have consistent arrangement.

Selecting an appropriate grid resolution was critical to ensure that the model accurately repre-
sented the landscape while remaining computationally feasible. We conducted preliminary tests
using grid resolutions of 10m, 20m, 50m, and 100m to evaluate the model’s performance across
different scales. These tests assessed runtime, Kling-Gupta Efficiency (KGE), hydrological loss,
and station placement accuracy in terms of elevation and catchment area. Hydrological loss
was calculated as the difference between the total runoff generated within a catchment and the
discharge observed at the corresponding hydrological station.

2.1.4 Hydrological Modeling

Hydrological modeling is a central component of the Landscape Evolution Model (LEM), in-
volving the conversion of precipitation into runoff, determination of flow directions across the
terrain, and calculation of discharge at each grid cell. This section details the processes and
equations used to simulate these hydrological components.

Runoff Generation
Runoff generation transform precipitation into surface runoff. In the model, annual precipita-
tion data are assigned to each grid cell after applying an elevation-based correction to account
for the change in precipitation due to the altitude. The corrected precipitation is calculated as:

Pcorrected = Pmean ∗ (Znode − Zmean) ∗ Lz
p (1)

Where:

• Pcorrected is the corrected precipitation [m/yr]

• Pmean is the upscaled value computed using bilinear interpolation [m/yr][m/yr]. This
interpolation is performed to match the resolution of the model grid, utilizing the SciPy
library (version 1.13.1) (Jones et al., 2001)

• Znode is the elevation of each grid node in the DEM [m]

• Zmean, represents the average elevation at each data point within the precipitation dataset
[m][m]. This is computed by applying a uniform filter, where the filter size corresponds to
the ratio between the precipitation cell size and the grid size of the Landscape Evolution
Model (LEM), effectively representing how many LEM cells fit within a single precipi-
tation cell. The calculation is performed using the SciPy library (version 1.13.1) (Jones
et al., 2001)
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• Lz
p is the precipitation lapse rate [m−1], which varies every 1000m up to 3000m, with a

fixed rate above 3000m. These lapse rates are calibration parameters. See Table 3 for the
value in use

The amount of precipitation that becomes runoff is determined by a spatially variable runoff
coefficient, which accounts for local factors such as slope and temperature that influence infil-
tration and evaporation. The runoff at each grid cell is calculated using the following formula:

R = P ∗Rratio (2)

The runoff coefficient, constraint between 0 and 1, is calculated with the following formula:

Rratio = min (1,max (0, Rref × Sratio × Tratio)) (3)

Where:

• Rref is the reference runoff coefficient [−], a calibration parameter representing the max-
imum runoff potential before modifiers.

• Sratio is the slope ratio [−]

• Tratio is the temperature ratio [−]

The slope ratio Sratio is given by:

Sratio = Sα +

(
S − Smin

Smax − Smin

)Sβ

(4)

Where:

• S is the local slope at the grid cell [−]

• Smin and Smax are the minimum and maximum slopes in the grid [−]

• Sα is a small positive constant ensuring Sratio is never zero, set at 0.01

• Sβ is the slope power exponent [−], a calibration parameter controlling the sensitivity to
slope changes

The temperature ratio Tratio is defined as:

Tratio =

(
Tmean − Tmin

Tmax − Tmin

)Tβ

(5)

Where:

• Tmean is the mean annual temperature at each grid cell [◦C]

• Tmin and Tmax are the minimum and maximum annual temperature at each grid cell [◦C]

• Tβ is the temperature power exponent [−], a calibration parameter controlling sensitivity
to temperature changes

The slope ratio represents the reduced water infiltration, as steeper slopes lead to faster runoff
and reduced vegetation cover, while the temperature ratio capture the effect of evaporation.
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Both coefficients are integrated as a reducing factor on the Rref , which serves as a base reference
value.

Flow Direction Calculation
After generating runoff, determining the flow direction at each grid cell is the next step for
simulating streamflow across the landscape. The model use the D8 (eight-direction) algorithm
via the FlowDirectorD8 component in Landlab. The D8 algorithm assigns flow from each
cell to one of its eight neighboring cells (north, northeast, east, southeast, south, southwest,
west, northwest) based on the steepest downhill gradient (O’Callaghan and Mark, 1984). This
method simply and efficiently models the path water takes under gravity on a rectangular grid.

To address depressions or pits where water could become trapped, the DepressionFinderAn-
dRouter component is used. It identifies such areas and adjusts flow directions to route water
around or through depressions, ensuring continuous downstream flow (Tucker et al., 2001).
Without this adjustment, flow accumulation could be artificially halted, leading to errors in
discharge calculations.

Discharge Calculation
Now that the flow direction is established, discharge Q at each grid cell is calculated using the
FlowAccumulator component. This algorithm accumulates runoff from all upstream cells based
on flow directions, effectively simulating water accumulation as it flows downstream.

The discharge is calculated as:

Q =
∑
i

R ∗ Ai (6)

Where:

• Q is the discharge at each grid cell [m3/yr]

• R is the runoff at each grid cell [m/yr]

•
∑

i Ai is the accumulated upstream drainage area at each grid cell [m2]

Station Placement
We use the Kling-Gupta Efficiency (KGE) to compare simulated data with observations. It
provides an estimation of model performance by considering correlation, variability, and bias
between the simulated versus observed data. KGE values are calculated for discharge and
suspended sediment concentration (SSC) at a specified outlet node corresponding to the real-
world location of the hydrological stations.

The placement of these outlets involved finding the nearest node, from the station’s coordinates,
with a significant discharge. Initially, the distances from each grid node to the provided station
coordinates are calculated to determine their respective proximity. For each station, the script
iterates through the sorted nodes by distance, selecting the first node where the discharge
surpasses a threshold. This node is designated as the station location, and its coordinates and
ID are stored. The threshold has been set at 5% of the maximum discharge, this has been tested
for all the catchments at different resolution. To verify the accurate placement of the stations,
we compared the catchment area and altitude of the station and the LEM’s node defined as
the outlet. The error margin for both measurements are within 5 to 8% depending on the
resolution, with an exception for station 2200 that require a resolution of at least 50m. This
difference is due to the proximity of station 2200 to the junction of two streams, approximately
200m, which can lead to significantly overestimating the discharge received at the outlet node.
As an additional verification, the LEM generate Figure 2 to show the real-world location of the
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station, in yellow (visible only when a mismatch is present), versus where they are placed, in
red.

In an effort to reduce the error and improve the robustness, we attempted an approach that
relied directly on the flow path. This was accomplished by recording all the nodes that belong
to each catchment and place the station accordingly. While it achieved more consistent results
and removed the need for a threshold parameter, it was computationally costly, adding about
10 to 20% additional runtime. This option is available but was not use in the generation of the
results due to the computational cost.

Figure 2: Station position in the grid superposed with their real world location

2.1.5 Erosion Transport

The ErosionDeposition component in Landlab models the processes of erosion and deposition
in a landscape evolution context. This component is based on the equations presented by Davy
and Lague (2009), which balances the complexity of fluvial processes, manageable parameters
and simplicity in model formulation (Barnhart et al., 2019).

Erosion Rate Calculation
Erosion is calculated using a stream power law model, which considers both the topographic
slope and the water discharge per unit width:

Ė = KqmSn − Ėc (7)

where:

• Ė is the erosion rate [m/yr]

• K is an erosion efficiency factor with a variable unit, dependent on the value of m and n
parameters

• q is the water discharge per unit width [m2/yr]

• m and n are dimensionless power exponents use to control the influence of Q and S [−]

• S is the topographic slope [−]
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• Ėc is an erosion threshold, representing the critical erosion below which no erosion occurs
[m/s]

The stream power law approach accounts for the ability of flowing water, within a river channel,
to detach and transport sediment. We also incorporate a soil suitability map to approximate
the distribution of different geological units, allowing the erosion efficiency factor K to vary
spatially according to the underlying geology. A more detailed explanation of this approach is
provided in Section 2.2.1, under the description of the Soil Suitability dataset.

Deposition Rate Calculation
Deposition occurs when the transported sediment settles due to reduced flow or increased
resistance. The deposition rate is determined by the following equation:

D = F
qsvs
q

(8)

Where:

• D is the deposition rate [m/yr]

• F is the deposition fraction [−], representing the portion of sediment that is transformed
into ”fines” and are no longer available for deposition (considered removed from the mass
balance system)

• qs is the sediment flux [m2/yr]

• vs is the settling velocity [m/yr]

• q is the discharge per unit width [m2/yr]

The equation shows that the deposition rate is proportional to sediment flux and settling
velocity, but inversely related to discharge. Higher discharge keeps sediment in suspension,
while lower discharge or higher settling velocity increases deposition. Additionally, vs influences
the response type: values less than 1 lead to a detachment-limited response, and values greater
than 1 result in a transport-limited response.

Suspended Sediment Concentration (SSC) calculations
The ErosionDeposition component calculates the net sediment flux at each node by taking the
difference between the erosion and deposition rates. The sediment outflux is the sediment that
leaves the node and can be converted into Suspended Sediment Concentration (SSC) using the
following formula:

SSC = qouts ∗ ρ/q (9)

With:

• SSC is the suspended sediment concentration [kg/m3]

• qouts is the sediment outflux from the node [m2/yr]

• ρ is the estimated rock density, set at 2000 [kg/m3]

• Q is the discharge per unit width [m2/yr]

This calculation allows us to estimate the suspended sediment concentration, linking the sedi-
ment transport processes modeled within Landlab to real-world measurable values of sediment
load.
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2.2 Data

2.2.1 Input Data

Digital Elevation Model (DEM)
The digital elevation model (DEM) used in this study is the swissALTI3D, provided by the
Swiss Federal Office of Topography (SwissTopo) (SwissTopo, 2024). This high resolution model
covers the entirety of Switzerland and Liechtenstein with elevation data free from vegetation
and man-made structures, updated on a 6-year cycle, in LV95+ coordinates system (CRS)
and with a 2m resolution on a regular grid. To assemble the model, the source includes laser
measurements (LiDAR) and aerial imagery. The altitude accuracy vary from 50cm below 200m,
up to 3m above 200m.

The data processing for geospatial raster images involves six operations to prepare the data for
the integration into the LEM:

1. Obtain a CSV file containing download link for each raster (TIFF format) by indicating
the desired coordinates range on the swisstopo website 1.

2. Each raster is downloaded into a directory (3000 map for the project area).

3. Each file is then downsample following a scale factor, factor 10, 20, 25 and 50 were used
in the project, corresponding to 20m to 100m resolution. This is accomplished using the
GDAL 3.8.5 library(GDAL/OGR contributors, 2020). This step reduces the file size and
making it more manageable for subsequent calculations.

4. Using the Warp function of GDAL, the raster files are merged together. This is essential
for creating a continuous spatial dataset from individual raster tiles.

5. Using PCRaster 4.4.1, we create a new DEM where each pit along a flow are modifying
the elevation (Karssenberg et al., 2010). This is not necessary since Landlab reroute the
flow around each pit but greatly help with the computation, since reducing the number
of pit reduce the amount of computation necessary at each time step.

6. GDAL translate is used to convert the TIFF file (from step 4 and 5) to ASCII. Landlab
is able to handle both format, but ASCII were easier to access and less computationally
intensive to access. The ASCII is then meshed and serve as a base for the grid size and
resolution.

We prepared a total of four maps for the simulation. One map covering the entire area and one
map for each individual catchment: Aare, Lutschine and Lonza. These maps were prepared at
different resolutions, ranging from 10 to 100m grid size.

Precipitation
The precipitation data used in this study is part of the Alpine Precipitation Grid Dataset
(EURO4M-APGD)2, provided by the Federal Office of Meteorology and Climatology (Me-
teoSwiss) (Isotta et al., 2014; MeteoSwiss, 2019). The dataset cover the European Alps and
the adjacent regions (4.8E to 17.5E, 43N to 49N) over a 49 years period, from 1971 to 2019.
It contains the daily precipitation (rainfall and snow water equivalent) sums in millimeter on
a 5x5km grid using the ETRS89 CRS. These measurements are based on high-resolution rain-
gauge from 8500 stations interpolated spatially with an effective resolution of approximately

1SwissAlti3D URL: https://www.swisstopo.admin.ch/en/height-model-swissalti3d
2EURO4M-APGD: https://www.meteoswiss.admin.ch/climate/the-climate-of-switzerland/

spatial-climate-analyses/alpine-precipitation.html
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10-20km. The interpolation was done by linear regression using regionally varying precipitation-
topography relationships estimates using the PRISM algorithm (Schwarb, 2000).

The files are in monthly NetCDF format for the area covered, and two steps are required to
prepare them for use in the simulation. After loading them using xarray 2024.3.0 (Hoyer and
Hamman, 2017), we need to convert the CRS to LV95+, using pyproj 3.6.1, and slice them at
the coordinates of interest, one per simulated area. Due to the difference in grid size, a 5 km
margin has been taken in all directions to ensure that the grid is fully covered. The second
step is to sum up each daily value to obtain the annual precipitation. The results are saved in
a new NetCDF file containing the annual precipitation.

Given the high effective resolution, the data should be interpreted as area average for our
application. Additionally, the difference in resolution and coordinate system between the DEM
and the precipitation dataset make revising not as straightforward. To achieve this during the
simulation, we need to take into account the local elevation during the resizing. The formula
is explained in Section 2.1.4.

Temperature
The temperature dataset is provided by the Federal Office of Meteorology and Climatology
(MeteoSwiss)3 (Begert et al., 2003). It covers Switzerland and span from 1961 to 2023 and
contained the mean, maximum and minimum temperature in Celsius in LV95+ CRS with a
grid of 1x1km. The measurements are based on approximately 80 stations, taken two meters
above the ground, and derived using daily values calculated using an automatic 10-minute
measurement (to represent both daytime and nighttime conditions). All the measurements are
assembled using a homogeneous time series to maintain consistency and interpolated using a
regionally variable topography-temperature relationship.

The files are in yearly NetCDF format and were prepared for the simulation by extracting
the data for the region covered by each DEM in a Numpy’s compressed array format (NPZ),
resulting in three files that contain the time series that overlap with the precipitation data
(1971-2019): the yearly average, maximum and minimum. Numpy 1.26.4 was used for this
operation (Harris et al., 2020).

A Lapse rate was considered in an earlier iteration, but the dataset is already taking into
account the difference in elevation at a 1km resolution, which should be enough for the need of
this study.

Soil Suitability
The soil suitability map utilize in this study is provided by the Office Federal of Agriculture
(OFAG)4 and the Office Federal of Statistics (OFAG, 2020). The map was originally created
in 1980 and updated in 2000. It contains 144 different classes of soil types, based on their
suitability for agricultural and forestry use, distributed over 11,000 polygons with a scale of
1:200,000. It considers various natural conditions such as soil depth, permeability and hydro-
logical regime. The map units are coded with a letter and number, representing geological and
geomorphological features, and store in a shape file.

In this project, we use this map to obtain an approximation of the different geological units,
the following classification was of interest which were separated in four categories depending

3Temperature dataset URL: https://www.meteoswiss.admin.ch/climate/

the-climate-of-switzerland/spatial-climate-analyses.html
4Soil Suitability URL: https://www.blw.admin.ch/blw/fr/home/politik/datenmanagement/

geografisches-informationssystem-gis/bodeneignungskarte.html
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on their estimated potential of SSC production (heuristic):

• High potential of SSC production:

– Molasse partially covered by moraine (Ticino area)

– Sandy Molasse

– Flysh

– Glacier and Névé

• Medium-High potential of SSC production:

– Pudding, conglomerate

– Schist (Bündnerschiefer)

• Medium potential of SSC production:

– Limestone

• Low potential of SSC production:

– Hard crystalline rock: Granite, Orthogneiss

– Softer crystalline rock: Paragneiss

Each category were assigned a different erodibility factor K, allowing to approximate and cali-
brate the SSC production of each catchment and fit the observed dataset more closely.

2.2.2 Calibration Data

Hydrological Station
This study utilizes historical hydrological data from the Federal Office for the Environment
(FOEN)5. Two types of measurements were used in this project: water discharge and suspended
sediment concentration, collected from five stations in the region of Interlaken. Table 1 present
information about each station and their corresponding dataset.

The dataset was prepared by regrouping all station data into CSV files, translating them in
English (UTF-8), and inspected for inconsistencies and misalignment.

A more detailed overview of each catchment and station is available in Annex 5.

Study Area
This hydrological dataset were obtained in an area south-east of Interlaken, in Switzerland,
characterized by varied topography and hydrological patterns. The high-resolution digital el-
evation model (DEM), precipitation records and freely available hydrological data make this
region an ideal place to test the effectiveness of our method. The total study area cover an
area of 3000 km² and include the three catchment with time series for the SSC: Aare (2019),
Lutschine (2161) and Lonza (2269).

5Hydrological Dataset: https://www.bafu.admin.ch/bafu/en/home/topics/water/state/data/

obtaining-monitoring-data-on-the-topic-of-water/hydrological-data-service-for-watercourses-and-lakes.

html
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Table 1: Hydrological Stations Information

Station 2019 Brienzwiler

Stream Aare
Altitude 574 m a.s.l.

Catchment Size 555 km²
Glacier Area 15.5%
Coordinates 2’649’942 / 1’177’374

Discharge Data 1905-2022
SSC Data 1964-1991, 2020-2023

Discharge [m³/s] Avg Max Min
35 45 27

Station 2109 Gsteig

Stream Lutschine
Altitude 586 m a.s.l.

Catchment Size 381 km²
Glacier Area 13.5%
Coordinates 2’633’140 / 1’168’191

Discharge Data 1908-2022
SSC Data 1964-1988, 2012-2023

Discharge [m³/s] Avg Max Min
19 23 15

Station 2161 Blatten bei Naters

Stream Massa
Altitude 1446 m a.s.l.

Catchment Size 196 km²
Glacier Area 56.5%
Coordinates 2’643’694 / 1’137’291

Discharge Data 1931-2022
SSC Data -

Discharge [m³/s] Avg Max Min
14 20 9.5

Station 2200 Zweilutschinen

Stream Weisse Lutschine
Altitude 652 m a.s.l.

Catchment Size 165 km²
Glacier Area 13.1%
Coordinates 2’635’309 / 1’164’547

Discharge Data 1964-2023
SSC Data -

Discharge [m³/s] Avg Max Min
10 7.9 6.4

Station 2269 Blatten

Stream Lonza
Altitude 1523 m a.s.l.

Catchment Size 77 km²
Glacier Area 24.7%
Coordinates 2’629’128 / 1’140’919

Discharge Data 1956-2022
SSC Data 1966-1999

Discharge [m³/s] Avg Max Min
4.7 6.0 3.5

The largest catchment is Aare with a size of 555 km², high discharge and a relatively low glacier
area and elevation. Lutschine catchment is relatively similar, albeit smaller, with an area of 381
km² and lower discharge. Lonza is the third catchment, situated 1000 m above the two others,
significantly smaller (77 km²) and covered by one fourth of its surface by glacier. We added
two more catchments: one sub-catchment of Lutschine, using station Weiss Lutschine (2200).
And a catchment that capture the opposite hillside of Lonza, using station Massa (2161). This
station was introduced at a later stage to help the investigation on some of the challenges
we faced in the calibration of station Lonza (2269). Aare and Lutschine are recharching the
reservoir of Lake Brienz, while Lonza is flowing into the Rhone.

Figure 3 provides an overview of the area, including the station location and the glacier thick-
ness. The addition of different catchment will provide comparison point, allowing to test the
effect of resolution and parameters, and the viability of the calibration of an area using only
key catchment.
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Figure 3: Overview of the simulated area. Stations with both Q and SSC observations are
marked in yellow, while stations with only Q observations are marked in blue.

2.3 Model Calibration and Validation

2.3.1 Objective Function

The objective function used for model validation and calibration is the Kling-Gupta Efficiency
(KGE), which evaluates model performance by combining correlation, variability, and bias. The
KGE is calculated as:

KGE = 1−
√

(r − 1)2 + (α− 1)2 + (β − 1)2

Where:

1. r is the correlation coefficient between the observed and simulated data, indicated how
well the two datasets are linearly related

2. α = σsim

σobs
is the variability ratio, where σ are the standard deviations

3. β = µsim

µobs
is the bias ratio
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KGE range from −∞ and 1, where a value of 1 indicates a perfect match between simulated
and observed data. A KGE value of 1 −

√
2 correspond to model performance equivalent to

random guessing.

The KGE is computed for both discharge and suspended sediment concentration (SSC) at var-
ious stations within the catchments. To aggregate KGE across multiple stations, each station’s
KGE is calculated individually, and the overall KGE score is derived by taking a weighted
average of station-specific KGEs. The weights are based on the number of data point at each
station, ensuring that stations with more data points have a greater influence on the overall
score.

Additionally, we introduced a model accuracy metric to ease interpretation. By setting a 50%
accuracy at KGE = 1 −

√
(2) and 100% accuracy to KGE = 1, the conversion is done using

the following formula:

Model Accuracy (%) = KGE ∗ 35.355 + 64.645

2.3.2 Calibration Process

The calibration process aims to identify the parameters controlling both hydrological and sed-
iment processes. It is divided into three steps: preliminary tests, hydrological calibration,
and sediment transport calibration. All calibration parameters are listed in Table 2. The
initial parameter range was selected manually through a trial-and-error approach, guided by
the typical ranges reported in the literature for Landscape Evolution Models (LEMs) in alpine
environments.

Sampling Method
To explore the multidimensional parameter space, we employ a Sobol sequence, a quasi-random
sequence often used in numerical simulations. Unlike purely random sampling, which can leave
gaps in the parameters space, the Sobol sequences generate points that are more uniformly
distributed across the entire range for each parameter. This uniform coverage ensures that all
regions of the parameters space are explored more evenly, reducing the likelihood of missing
important parameter combinations.

Each new point in the Sobol sequence is calculated using binary fractions and bitwise operations,
ensuring that new points fill gaps left by previous ones. The method works best when the total
number of runs is a power of 2, as this fully utilizes the binary structure. This allows for more
evenly distributed points across the sample space.

Preliminary Tests
Before proceeding with the full calibration, preliminary tests were conducted to identify the op-
timal model resolution that balances accuracy and computational efficiency. We tested multiple
resolutions, ranging from 10m to 100m, evaluating the model based on runtime, Kling-Gupta
Efficiency (KGE), hydric loss, and station placement accuracy (elevation and catchment area).
Hydric loss was calculated as the difference between the total runoff of the catchment and the
discharge at the station.

Hydrological Calibration
The initial calibration was performed using KGE(Q) as the objective function. We ran 128
simulations at 50m resolution using a Sobol sequence to thoroughly explore the parameter
space. From these results, we selected two parameter sets for each catchment to serve as the
basis for the next calibration, focused on the Sediment Transport parameters.
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Sediment Transport Calibration
Among the remaining parameters, the discharge and slope power coefficients (m and n) and
the erodibility coefficient (K) are significant unknowns. The calibration of m and n is partic-
ularly sensitive, posing challenges when included in a Sobol sequence for sensitivity analysis.
Many simulations resulted in excessively high erosion, often leading to errors that halted the
calibration process. Therefore, instead of calibrating all three parameters simultaneously, we
chose to fix m and n while leaving K unconstrained.

To guide the selection of m and n, we follow two rules: (1) n should range between 2/3 and 7/3,
as proposed by Whipple et al. (2000), based on the mechanics of river incision into bedrock;
(2) the ratio m/n should lie between 0.4 and 0.6. This approach is grounded in theoretical and
empirical findings that link these values to the physics of stream incision. By fixing m and n
within these empirically and theoretically supported ranges, we aim to balance model robustness
with physical realism, allowing K to capture the spatial variability in erosion potential (Harel
et al., 2016). Based on these considerations, we selected m = 1.2 and n = 2 for the main
calibrations. To explore the impact of different values for these two parameters, we also tested
two additional combinations: m = 1.3, n = 2.3 and m = 1.1, n = 2.3.

The final step in determining the optimal parameter sets involved calibrating the remaining
parameters: the erosion threshold Ec, the effective settling velocity (V), the fraction of eroded
material converted into fines (F), and the four erodibility coefficients (K). We conducted 128
simulations for each of the two hydrological calibrations using Sobol sequences at a 50m reso-
lution.

Calibration Session Label Low Range High Range Unit Equation
Preliminary Precipitation Lapse Rate 1 0.001 0.005 *C/m 1

Precipitation Lapse Rate 2 0.0001 0.005 *C/m 1
Precipitation Lapse Rate 3 0.0001 0.005 *C/m 1
Precipitation Lapse Rate 4 0.0001 0.005 *C/m 1
m – – – 7
n – – – 7

Hydrological Runoff Ratio Ref. 0.7 0.95 – 3
Slope Power Exponent 0.1 0.9 – 4
Temp Power Exponent 0.1 0.9 – 5

Sedim. Transport K High 1.00E-10 1.00E-06 var 7
K MedHigh 1.00E-10 1.00E-06 var 7
K Med 1.00E-10 1.00E-06 var 7
K Low 1.00E-10 1.00E-06 var 7
E c 0 0.7 m/s 7
v 0.1 9.5 m/s 8
F 0 0.9 – 8

Table 2: The table contains all the calibration parameters, sorted according to the order in
which they were calibrated. First are the preliminary tests, followed by the hydrological cali-
bration, and then the sediment transport calibration.

2.3.3 Validation Approach

A full model validation, involving performance testing against entirely independent datasets,
was not conducted in this study. Instead, validation was approached by performing sensitivity
analysis and evaluating the spatial and temporal transferability of the calibrated parameters.

The model’s spatial transferability was evaluated by applying parameter sets calibrated on one
catchment (e.g., Aare) to other catchments (e.g., Lutschine and Lonza). This approach tests
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whether parameters optimized for one area can successfully simulate discharge and suspended
sediment concentration in a different geographic context. The results showed that while dis-
charge simulations transfer relatively well between catchments, sediment transport simulations
(SSC) were much more sensitive to local geomorphic conditions, resulting in lower transferabil-
ity for SSC across catchments.

The temporal transferability of the model was evaluated by extending the simulation period
beyond the calibration timeframe. Due to the limitations of our precipitation and temperature
datasets, which span only a 49-year period, we needed a method to simulate longer timescales
without introducing new data or altering the calibration. To achieve this, we looped the 49-
year precipitation and temperature records, effectively repeating the datasets to cover a total
simulation period of 1000 years.

This approach maintains consistency with the calibration period and ensures that the model
operates under the same climatic conditions as during the calibration phase. It allows us to
assess the model’s performance over long timescales without introducing additional variables
or uncertainties that new data might bring. However, this method introduces an artificial
cyclicity into the model inputs, as the same 49-year climatic patterns are repeated throughout
the simulation. This cyclicity does not account for natural climatic variability and trends that
occur over centennial or millennial timescales, such as long-term climate change or rare extreme
events.

The artificial repetition of climatic data is a limitation that must be considered when inter-
preting the long-term simulation results. It may affect the model’s ability to capture long-term
geomorphic processes and sediment transport dynamics accurately. The lack of natural vari-
ability could lead to an underestimation of extreme events’ impact on landscape evolution,
which are critical drivers of geomorphic change (Pazzaglia, 2003). Despite this limitation, the
looping method provides a practical means to evaluate the model’s stability and performance
over extended periods. It offers insights into its temporal robustness within the constraints of
the available data.

2.4 Previous Consideration for Calibration through Machine Learn-
ing

Initially, the aim was to use machine learning techniques to identify the patterns between the
data and model parameters, potentially skipping or limiting the optimization steps of LEMs.
However, a few challenges were encountered.

At the simplest implementation, we were trying to get a pattern between the validation metric of
the LEM and its parameters. However, actual field data is necessary in the training to obtain
any correlation that could explain the model parameters. One challenge is the difference in
temporal and spatial resolution between the data. The training feature is in raster format that
are spread in time and space, for example the precipitation, the discharge and the elevation.
While the target model parameters are singular value that are fixed across the 50 years, and
not spatially distributed (for most parameters). This dimension mismatch, both between the
features and the target and within the target data themselves, made the design of the training
dataset challenging. A potential solution would have been to reduce the feature dimension by
transforming them in mean, standard deviation, etc. However, it would lead to a significant
lost of information, so an alternative approach was required.

Two alternatives approaches were considered:
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1. The use of more advance technique, such as convolution neural network algorithm (CNN)
that are specifically designed to handle raster or images data. An interesting method, but
much more involved to implement and calibrate. Moreover, ones can start questioning on
the need and application of such a pipeline. Potentially, we could use the CNNs to directly
predict the output of the LEMs instead of predicting the LEMs parameters, effectively
using the CNNs as a generalized landscape simulation model. This is out of the scope of
this project, but further research on that front could be considered.

2. On the other hand, the current LEM implementation is largely automated, run in parallel
and allow changing area with relative ease. An adaptable simulation able to generate
numerous parameters permutations and where the implementation of different calibration
is straightforward, due to how the code is structured.

Focusing on the strength of this code instead, we started looking for statistical or computational
approaches able to identify patterns in numerous parameters permutation and able to determine
the best combination. This led us to the current methodology described in this report.

3 Results

In this section, we present the results of this project, aiming to cover all the possibilities in a
well conceived manner. First, we will do preliminary tests to define an optimal resolution that
provide a balance between accuracy and computational efficiency.

The second part present the calibration on the three selected catchments, selecting multiple
”best model”. Third, using the ”best models”, we will investigate the parameter’s sets trans-
ferability both in time (running for 1000 of years) and space (using parameters set between
catchment and to the whole area), parameters sensitivity (which parameters are the most
important) and further tests on the resolution (how are the output changing with different
resolutions). Lastly, we will take test the overall calibration process by investigating how long
it takes with this method to reach good performing models.

3.1 Preliminary Tests

The preliminary tests were conducted to identify the optimal resolution that balances model
accuracy and computational efficiency. For these tests, we used default parameters (Table 5),
the precipitation dataset, and a fixed runoff coefficient of 0.6. The results indicated that while
finer resolutions significantly increased computational time, the model’s performance in terms
of KGE and hydric loss showed minimal variation across different resolutions. However, at
coarser resolutions (e.g., 100m), inaccuracies in station placement led to significant errors in
catchment area estimation.

Table 4 shows the performance of the model at the three main stations: Station 2269 in
the Lonza catchment, and Stations 2109 and 2200 in the Lütschine catchment. As expected,
runtime increases significantly with finer resolutions. For example, in the Lonza catchment, the
runtime jumps from 3.38 seconds at 100m to 240.83 seconds at 10m resolution.

Most evaluation metrics show minimal variation between different resolutions, indicating stable
model performance across scales. However, a notable exception occurs at 100m resolution for
Station 2200, where catchment area errors lead to a significant overestimation, doubling the
catchment area. Further investigation shows that station 2200 is close to a junction, and
incorrect positioning has led to the inclusion of an additional sub-catchment.
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The 50 m resolution offers a balanced compromise, providing an acceptable runtime, allowing
hundreds of simulations to be run in around 30 minutes, while retaining sufficient accuracy for
proper station placement.

After selecting the resolution, we conducted tests to estimate the precipitation lapse rate at
different altitudes. We ran 128 simulations with a fixed runoff coefficient of 0.6 and selected
the model that achieved the highest KGE(Q). The final results are presented in Table 3.

Label Calibration Results Unit Altitude Range
Precipitation Lapse Rate 1 0.00371 *C/m 0-1000m
Precipitation Lapse Rate 2 0.00155 *C/m 1000-2000m
Precipitation Lapse Rate 3 0.00167 *C/m 2000-3000m
Precipitation Lapse Rate 4 0.00081 *C/m +3000m

Table 3: Calibration results for the precipitation lapse rate.

Catchment Runtime [s] Station Z Error [%] Catchment Area Error [%] Hydric Loss [m³/s] KGE(Q) KGE(SSC) std(ssc) mean(ssc) std(Q) mean(Q)
Lonza 10m 240.83 0.1716 -0.4249 4.9798E-05 0.1469 -0.2087 0.0055 0.2137 0.4769 3.3586
Lonza 20m 41.22 0.0357 -0.3512 -1.8851E-07 0.1472 -0.2054 0.0056 0.2126 0.4760 3.3515
Lonza 50m 8.54 -0.0970 -1.2403 5.2798E-08 0.1451 -0.2079 0.0059 0.2114 0.4813 3.3892
Lonza 100m 3.38 -0.2941 -1.3896 1.7958E-07 0.1457 -0.2073 0.0064 0.2125 0.4797 3.3788
Lu-2109 20m 1043.22 0.2395 0.1400 -4.5893E-04 0.6170 -0.4342 0.0089 0.3415 1.8717 1.8717
Lu-2109 50m 55.16 0.3660 0.0499 -6.2782E-04 0.6192 -0.4426 0.0094 0.3432 1.8658 16.6746
Lu-2109 100m 9.94 0.1983 5.5252 -2.7972E-04 0.6410 -0.4368 0.0101 0.3504 1.7970 15.9588
Lu-2200 20m 1043.22 0.0756 0.1438 -4.5893E-04 0.5548 0.8434 7.4486
Lu-2200 50m 55.16 0.1067 0.0551 -3.6664E-05 0.5573 0.8381 7.4019
Lu-2200 100m 9.94 0.0706 -109.0848 4.9298E-07 -0.8191 1.7481 15.4645

Table 4: Resolution Test Results Table.

3.2 Parameters Sensitivity Analysis

The correlation matrix in Figure 4 provides an overview of the relationships between the cal-
ibration parameters and the KGE for both discharge and suspended sediment concentration
(SSC). It’s important to note that the KGE for SSC remains negative across all simulations,
indicating potential inaccuracies in the model’s handling of sediment transport. Therefore,
any conclusions regarding parameters related to sediment transport should be approached with
caution. Furthermore, the interaction between sediment transport and discharge complicates
the isolation of each parameter’s influence (e.g., high erosion can lead to increased discharge).

The sensitivity analysis was challenging due to the number of parameters and their interactions.
This complexity is evident in the correlation matrix, where parameters known to influence sed-
iment transport appear to have higher correlations with discharge. For example, the parameter
v (settling velocity) shows a correlation of -0.4 with discharge, and F (deposition fraction) cor-
relates at 0.3 with discharge. Conversely, the slope exponent, which primarily affects discharge,
has a correlation of 0.21 with KGE(SSC). As a result, the sensitivity analysis largely relied on
manually testing each parameter through a trial-and-error process. Due to time constraints,
the depth of this analysis was limited.

Several key observations were made, notably that the parameters K(high) and K(med) exerted
the greatest influence across all catchments. This suggests that these regions are predominantly
characterized by certain soil types, or that these soils contribute most significantly to sediment
production.

Additionally, the parameters m and n (from the stream power law equation) had to be fixed,
as slight variations in these values required vastly different sets of parameters for sediment
transport. Interestingly, despite the challenges in adjusting m and n, the best model results
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in Table 6 show that the variations attempted with different m and n values led to relatively
similar accuracy ratings (e.g. models 2.Lu and 3.Lu). This suggests that while m and n have a
large influence, their influence on the overall model performance might not drastically change
the accuracy when within certain ranges. Further analysis is required to better understand this
relationship.

Figure 4: Correlation Matrix on all calibration parameters (except m and n) for Lütschine
catchment using 1224 simulations with Sobol sequence

3.3 Calibration of Selected Catchments

The calibration process focused on the three selected catchments, aiming to identify the pa-
rameters sets that best matched the observed data. The ”best models” were identified based
on KGE scores for discharge and suspended sediments.

3.3.1 Hydrological Calibration

The initial calibration was performed using KGE(Q) as the objective function. We ran 128
simulations at 50m resolution using a Sobol sequence to thoroughly explore the parameter
space. The results are detailed in the Annex: Table 10, Table 11, and Table 12. From these
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results, we selected two parameter sets for each catchment to serve as the basis for the next
calibration, focused on the Stream Power Law.

For each catchment, the first selected parameter set is the one with the highest KGE(Q)
value, representing the best model performance. The second set was chosen to include a runoff
coefficient that differs noticeably from the first, while ensuring the KGE(Q) remains high.
This approach allows us to have two parameter sets with distinct characteristics, providing a
wider range of model behaviors for the following analysis. The selected parameter sets for each
catchment are as follows:

• Aare Catchment: Model 05 and Model 99

• Lonza Catchment: Model 215 and Model 125

• Lütschine Catchment: Model 35 and Model 93

3.3.2 Sediment Transport Calibration

We conducted 128 simulations for each of the two hydrological calibrations using Sobol se-
quences at a 50 m resolution. Detailed results are provided in the Annex (Table 13, 14, 15, 16,
17, 18, 19, 20). From each table, we selected one parameter set with the highest KGE(SSC)
and another set with a distinctly different erodibility factor K.

Params Sets Model ID runoff ratio ref slope power temp power m n K(high) K(highmed) K(med) K(low) Ec V F
Default default 0.6000 0.0000 0.0000 1.2 1 9.0000E-09 9.0000E-09 9.0000E-09 9.0000E-09 0.0000 1.0000 0.0000
1.A-1-1 model 32 0.9410 0.0310 0.4014 1.2 2 9.8443E-10 7.0757E-10 9.7203E-10 3.9654E-09 0.5153 4.6522 0.4712
1.A-1-2 model 45 0.9410 0.0310 0.4014 1.2 2 3.6455E-09 2.2390E-09 3.3978E-09 3.5656E-09 0.5873 8.0171 0.7773
1.A-2-1 model 57 0.7100 0.0270 0.1277 1.2 2 4.8448E-10 7.0506E-10 8.8443E-10 3.7858E-09 0.4617 3.8709 0.3595
1.A-2-2 model 52 0.7100 0.0270 0.1277 1.2 2 3.4171E-09 3.2413E-09 3.5451E-09 3.6789E-09 0.6340 6.9320 0.7609
1.Lu-1s-1-1 model 77 0.9466 0.1986 0.1070 1.2 2 2.8659E-09 1.8791E-09 1.7399E-09 2.7510E-09 0.5323 4.2505 0.3466
1.Lu-1s-1-2 model 79 0.9466 0.1986 0.1070 1.2 2 1.3179E-09 5.0100E-10 3.0376E-10 3.6393E-09 0.1227 8.6728 0.2254
1.Lu-1s-2-1 model 32 0.7781 0.1269 0.1171 1.2 2 3.0456E-09 5.8693E-09 7.2862E-10 3.2291E-09 0.5975 1.3111 0.1237
1.Lu-1s-2-2 model 24 0.7781 0.1269 0.1171 1.2 2 2.0238E-09 4.5152E-09 1.2144E-09 1.9057E-10 0.2248 3.7389 0.2116
1.Lu-2s-1-1 model 08 0.9466 0.1986 0.1070 1.2 2 1.3565E-09 1.9307E-09 2.0814E-10 1.3447E-10 0.0518 0.7864 0.1528
1.Lu-2s-1-2 model 56 0.9466 0.1986 0.1070 1.2 2 1.4792E-09 1.6066E-09 1.2825E-09 5.4809E-10 0.2155 0.1683 0.3876
1.Lu-2s-2-1 model 61 0.7781 0.1269 0.1171 1.2 2 1.2198E-09 8.3950E-10 1.6809E-09 1.7245E-09 0.1585 0.3658 0.1589
1.Lu-2s-2-2 model 102 0.7781 0.1269 0.1171 1.2 2 1.9410E-09 1.7916E-09 9.8964E-10 2.8689E-10 0.0015 8.6885 0.7591
1.Lo-1-1 model 53 0.9595 0.1047 0.3338 1.2 2 1.3590E-09 2.3523E-08 2.6708E-08 9.5651E-09 0.4513 8.1119 0.7809
1.Lo-1-2 model 18 0.9595 0.1047 0.3338 1.2 2 5.1118E-09 8.6842E-10 8.3274E-09 3.3319E-08 0.4455 2.5213 0.5677
1.Lo-2-1 model 103 0.7534 0.1038 0.1064 1.2 2 2.7087E-08 3.9483E-08 6.8863E-09 9.1900E-09 0.6324 8.0099 0.7824
1.Lo-2-2 model 137 0.7534 0.1038 0.1064 1.2 2 5.4862E-10 3.9243E-08 2.7369E-09 3.0548E-08 0.3674 0.2937 0.3987
2.Lu-1s-1-1 model 15 0.9466 0.1986 0.1070 1.3 2.3 7.6075E-10 6.1548E-10 5.4567E-10 8.0814E-10 0.6786 7.4347 0.4915
2.Lu-2s-1-1 model 67 0.9466 0.1986 0.1070 1.3 2.3 3.2115E-10 3.6941E-10 1.6356E-10 1.9897E-10 0.3016 0.2247 0.1413
3.Lu-1s-1-1 model 10 0.9466 0.1986 0.1070 1.1 2.3 1.6446E-08 8.7026E-09 3.0776E-09 2.3506E-08 0.4758 0.8311 0.3995
3.Lu-2s-1-1 model 78 0.9466 0.1986 0.1070 1.1 2.3 7.1195E-09 2.0871E-10 2.9843E-09 6.8270E-09 0.2640 1.4247 0.1491

Table 5: Best Model Parameter Sets. Each parameter set is denoted by ”X.Y-Z-W,” where
X represents the fixed m/n calibration number, Y indicates the catchment name (e.g., ’A’
for Aare), Z corresponds to the hydrological calibration model number, and W represents the
stream power law calibration. Each catchment has four primary calibrations, with additional
variations included for different m/n values.

3.3.3 Best Models Results

This calibration process resulted in twenty ”best models”: four parameter sets per catchment,
four additional sets for Lütschine calibrated using two stations and four sets accounting for
variations in m and n. These parameter sets are summarized in Table 5.

Table 6 summarizes the evaluation of the best models based on the Kling-Gupta Efficiency
(KGE) for discharge (Q) and suspended sediment concentration (SSC). The KGE(Q) values
generally indicate good performance across most parameter sets, particularly those calibrated
on the Lutschine catchment (e.g., 1.Lu-1s-1-1 and 1.Lu-1s-1-2), which consistently achieve the
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Params Sets KGE(Q) KGE(SSC) MA(Q) MA(SSC)
1.A-1-1 0.61834 -0.24839 86.50638 55.86327
1.A-1-2 0.61827 -0.28091 86.50377 54.71328
1.A-2-1 0.61687 -0.27069 86.45428 55.07471
1.A-2-2 0.61670 -0.28459 86.44847 54.58334
1.Lu-1s-1-1 0.65356 -0.45042 87.75153 48.72043
1.Lu-1s-1-2 0.65355 -0.46153 87.75138 48.32754
1.Lu-1s-2-1 0.64836 -0.44992 87.56791 48.73821
1.Lu-1s-2-2 0.64836 -0.46069 87.56794 48.35748
1.Lu-2s-1-1 0.65355 -0.48965 87.75134 47.33325
1.Lu-2s-1-2 0.65354 -0.52791 87.75097 45.98067
1.Lu-2s-2-1 0.64836 -0.45916 87.56761 48.41153
1.Lu-2s-2-2 0.64846 -0.52030 87.57135 46.24983
1.Lo-1-1 0.15427 0.17962 70.09908 70.99553
1.Lo-1-2 0.15426 0.13143 70.09883 69.29165
1.Lo-2-1 0.15342 0.17330 70.06899 70.77209
1.Lo-2-2 0.15348 0.16798 70.07128 70.58396
2.Lu-1s-1-1 0.65356 -0.44731 87.75156 48.83027
2.Lu-2s-1-1 0.65353 -0.51877 87.75063 46.30405
3.Lu-1s-1-1 0.65355 -0.49547 87.75142 47.12756
3.Lu-2s-1-1 0.65353 -0.57595 87.75052 44.28232

Table 6: Table showing the evaluation of the best model. For each parameter set, the KGE for
discharge and SSC is provided, along with the Model Accuracy [%]

highest KGE(Q) values around 0.65. The Aare catchment sets (e.g., 1.A-1-1, 1.A-1-2) also
perform well, with KGE(Q) values slightly above 0.61, confirming their suitability for modeling
discharge. In contrast, the performance for SSC, represented by KGE(SSC), is notably weaker
across all parameter sets, with most values being negative, indicating poor model performance in
simulating sediment transport. Parameter sets calibrated on the Lutschine catchment, although
showing relatively better discharge performance, perform poorly for SSC, with values often
below -0.4, and some as low as -0.57595. This trend highlights the difficulty of accurately
modeling sediment dynamics across catchments, suggesting that the sediment processes are
more complex and sensitive to calibration. Interestingly, the models calibrated on the Lonza
catchment (e.g., 1.Lo-1-1, 1.Lo-1-2) show a contrasting pattern: while their KGE(Q) values
are much lower, around 0.15, they achieve the highest KGE(SSC) values among all sets, with
some positive values up to 0.17962. This suggests that the Lonza-specific parameter sets are
better tailored to capture sediment transport processes, likely due to the distinct hydrological
and geomorphological characteristics of the Lonza catchment, which includes higher altitudes
and glacial influences.

The discharge and SSC time series for the Aare catchment, using model 1.A-1-1, are presented
on Figure 5, with a corresponding KGE(Q) of 0.62. The observed discharge is represented by
solid blue circles, while the simulated discharge is shown with blue dashed lines marked by ’x’.
Additionally, the bar plot in the background illustrates the mean annual precipitation in the
catchment, which is plotted on the secondary y-axis to provide context for discharge variations.
Both simulated and observed discharge values exhibit a similar interannual trend, indicating
that the model capture the general variability. However, they are noticeable discrepancies
in magnitude, for example in 2003, where the simulated tend to underestimate. While both
observed and simulated discharges show an expected response to precipitation, the observed
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discharge tends to peak higher in drought years compared to the simulated discharge. This
might indicate limitations in the model’s capacity to capture the hydrological processes, and
probably a lack of seasonal variability due to the yearly timestep.

Table 7 present the results of the Lonza catchment, using model 1.Lo-1-1, with a corresponding
KGE(Q) of 0.15. The comparison between simulated and observed discharges reveals a general
pattern of variability that aligns with precipitation trends, suggesting that the model captures
some hydrological fluctuations. However, the model struggles to consistently reproduce ob-
served peaks and troughs, showing weaker performance compared to other catchments. This
discrepancy indicates that the Lonza catchment involves additional processes not adequately
represented by the model, likely due to its higher altitude and significant glacial coverage, which
introduce complex dynamics not fully captured by the current parameterization.

Table 6 and Table 8 contain the time series for the suspended sediment concentration for the
Aare and Lonza catchment. The simulated SSC captures some inter-annual variability of the
observed SSC, indicating the model’s ability to reflect general sediment transport patterns.
However, alignment between simulated and observed values is inconsistent, especially during
pronounced peaks in observed SSC. Significant discrepancies occur during high SSC events, such
as those around 1980, 1990, and 2010, where observed values show sharp peaks that the model
fails to replicate in magnitude and timing. These peaks indicate intense sediment transport
periods that the model does not accurately capture. The simulated SSC is generally more stable
and subdued compared to the observed data. Suggesting an underestimation of variability and
extremes in sediment dynamics, potentially due to missing seasonal events like heavy rainfall or
snowmelt. During periods of lower observed SSC, the simulated values align somewhat better
but still show noticeable differences. It could indicate that while the model represents base-level
sediment transport reasonably well, it struggles with high-magnitude events.

3.4 Parameter Transferability and Sensitivity Analysis

To evaluate the robustness of the best-performing models, we tested the transferability of the
parameters in terms of space, by using parameters set on different catchment which they were
calibrated for and on the whole area, and temporal by extending the simulation period to 1000
years.

3.4.1 Spatial Transferability

The transferability of parameter sets across different catchments and their performance on
the entire study area are shown in Table 7 for discharge and Table 8 for SSC. The results
demonstrate the significant challenges of applying parameters calibrated in one catchment to
another, especially when extended to the entire area. Notably, many simulations failed due
to excessive erosion, particularly for models calibrated on the Lonza catchment, where none
achieved successful outcomes.

Table 7 presents the Kling-Gupta Efficiency (KGE) values for discharge (Q) at various sta-
tions. The simulations used parameter sets originally calibrated on individual catchments. For
instance, the parameter set 1.A-1-1-50m, calibrated on the Aare catchment, performed mod-
erately well across most stations, with KGE values of 0.61886 at Aare 2019 and 0.56078 at
Lutschine 2109. Even on the Lonza catchment, its performance was relatively acceptable, with
values close to those of the models calibrated directly on Lonza, which barely exceeded 0.15.

The parameter set 1.Lu-1s-2-1-50m, calibrated on the Lutschine catchment, showed varied
performance across the stations but generally performed worse than 1.A-1-1-50m except in its
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Figure 5: Time series of the observed and sim-
ulated discharge on Aare using model 1.A-1-1

Figure 6: Time series of the observed and sim-
ulated SSC on Aare using model 1.A-1-1

Figure 7: Time series of the observed and simu-
lated discharge on Lonza using model 1.Lo-1-1

Figure 8: Time series of the observed and sim-
ulated SSC on Lonza using model 1.Lo-1-1

Figure 9: Time series of the observed and simu-
lated discharge on Lütschine using model 1.Lu-
1s-1-1

Figure 10: Time series of the observed and sim-
ulated SSC on Lütschine using model 1.Lu-1s-
1-1

own catchment. When applied to the entire area, this set resulted in a negative overall KGE
(-0.10943). Overall, the Aare catchment appears to be a suitable candidate for the calibration
of the entire area, possibly because it is the largest catchment, covering 20% of the total area.

Table 8 highlights the KGE values for sediment concentration (SSC) at the same stations,
where the SSC dataset was available. Both parameter sets performed poorly, demonstrating
their inability to represent sediment transport accurately in catchments where they were not cal-
ibrated. This suggests that sediment transport processes are particularly sensitive and require
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careful and dedicated calibration. These findings underscore the need for catchment-specific
parameterization to improve model reliability and performance across varied landscapes.

These results underscore the difficulty of finding a parameter set that performs consistently
across diverse catchments.

3.4.2 Consistency over extended runtime

To evaluate the consistency of model performance over extended periods, we conducted four
simulations on the Lonza catchment using the ”best models”. This approach allows us to
evaluate the variability in discharge and suspended sediment concentration (SSC) among models
with different calibrations. The results are shown in Figure 11 for discharge and Figure 12 for
SSC, where the differences in discharge and SSC were calculated using 1.Lo-1-1 as the reference
model. The discharge and SSC values from the other three models were subtracted from the
reference, and these differences are plotted over time. Due to the limitations of our precipitation
and temperature datasets, which span only 49 years, we extended the simulations to 1000 years
by looping these datasets. While this approach maintains consistency with the calibration
data, it introduces an artificial cyclicity that must be considered when interpreting the long-
term simulation results.

Examining the discharge results in Figure 11, models with identical hydrological calibrations,
such as 1.Lo-2-2 and 1.Lo-2-2, demonstrate similar behavior, which is consistent with expec-
tations, and show a limited influence of the Stream Power Law parameters on the discharge.
During the first 400 years, the models with the same hydrological parameters produce near
identical discharge outputs. However, minor variations begin to emerge after the second half,
with a gradual divergence among models. It might be due to the poor calibration of the up-
lift, however negligeable difference were shown with an uplift between 0.1 and 0.5 mm. The
deviation between all the models reach a difference of 0.35 m³/s, representing approximately a
divergence of 10% compare to the reference model, which can be acceptable over a long period.

In contrast, the SSC results depicted in Figure 12 reveal a slightly different pattern. Despite
the discharge divergence observed after 400 years, the SSC differences do not display the same
increasing trend over time. This is a bit surprising as it indicates that SSC, a process influenced
by sediment dynamics and complex interactions between hydrology and geomorphology, does
not directly mirror the discharge variability in these simulations.

The models 1.Lo-1-1 and 1.Lo-2-2 remain closely aligned throughout the simulation period,
as do models 1.Lo-1-2 and 1.Lo-2-1, effectively forming two pairs. However, upon comparing
their parameters, no clear trends emerge that fully explain these groupings. In addition, a
significant divergence in SSC is observed early in the simulation, particularly for Lonza-1-2,
which reaches a difference of over 0.1 kg/m³, representing a variation exceeding 50% compared
to the reference model. This finding could indicate that even minor parameter adjustments can
lead to substantial differences in SSC predictions.

To further investigate the model’s behavior over the extended simulation, we compared the
changes in elevation after 1000 years. The results showed minimal differences, with a drop of
only 0.2m in mean elevation and standard deviation. This minimal change is unrealistic, as
significant landscape evolution would be expected over such a timescale. The underestimation
of erosion is likely due to the model’s inability to represent extreme events and accurately
simulate sediment transport processes, leading to insufficient cumulative erosion over time.

These findings suggest that while the model maintains some consistency in discharge predic-
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tions over extended periods, its performance in simulating SSC and landscape evolution is
limited. The artificial repetition of climatic data and the lack of representation of extreme
events contribute to the model’s shortcomings in capturing long-term geomorphic changes.

Figure 11: Time series of the discharge differences between model 1.Lo-1-1 and three other
calibrated models (1.Lo-1-2, 1.Lo-2-1, 1.Lo-2-2) on the Lonza catchment.

Figure 12: Time series of the SSC differences between model 1.Lo-1-1 and three other calibrated
models (1.Lo-1-2, 1.Lo-2-1, 1.Lo-2-2) on the Lonza catchment.

3.5 Calibration Process Evaluation

This section evaluates the efficiency of the calibration process, focusing on the computational
time and resources required to achieve well-performing models. The evaluation highlights the
feasibility and scalability of the calibration process when extending it from individual catch-
ments to the entire study area.

Page 30



M.Sc. Thesis - Rayane Meghezi

Parameter Set Aare 2019 Lutschine 2109 Lutschine (sub) 2200 Lonza 2269 Area
1.A-1-1-50m 0.61886 0.56078 0.53790 0.12206 0.35890
1.Lu-1s-2-1-50m 0.46485 0.61863 0.53619 0.04586 -0.10943

Table 7: KGE(Q) at stations within the study area. The simulations were performed using
parameter sets calibrated on a single catchment, with a 50m resolution and a 1000-year extended
runtime. Precipitation and temperature data were applied in a 49-year loop. The overall KGE
for the area was calculated as the mean, weighted by the number of data points at each station

Parameter Set Aare 2019 Lutschine 2109 Lonza 2269 Area
1.A-1-1-50m -0.28940 -0.71972 -0.55792 -0.51675
1.Lu-1s-2-1-50m -1.27342 -0.45781 -0.52929 -0.78882

Table 8: KGE(SSC) at stations within the study area. The simulations were performed using
parameter sets calibrated on a single catchment, with a 50m resolution and a 1000-year extended
runtime. Precipitation and temperature data were applied in a 49-year loop.

Table 9 presents a comparison of the computational efficiency of sequential and parallel cali-
bration approaches for two different Digital Elevation Models (DEMs): the entire study area
(”Area”) and the Aare catchment. The evaluation is based on the time required for a single
simulation run, the total calibration time using sequential runs, and the improvements achieved
by parallelizing the calibration process.

The table shows that calibrating the entire study area is significantly more demanding than
calibrating the Aare catchment. Specifically, a single simulation run for the entire study area
takes 4234.56 seconds (approximately 1.18 hours), while the Aare catchment requires only 42.14
seconds. This disparity illustrates the exponential increase in computational demand with the
size of the DEM.

Sequential calibration of the entire study area requires approximately 300 hours, whereas cal-
ibrating the Aare catchment takes only 3 hours. To reduce to acceptable runtime, a parallel
calibration approach was implemented. For the entire study area, the parallel calibration was
tested with a capacity of 2 simultaneous simulations, reducing the calibration time from 300
hours to 166 hours. This reduction, while significant, still indicates high computational de-
mands due to the large area size and limited parallel capacity under the available hardware (21
GB of RAM).

In contrast, parallel calibration of the Aare catchment allowed for 6 simultaneous simulations,
reducing significantly the calibration time from 3 hours to just 40 minutes. This demonstrates
the substantial gains in computational efficiency achievable through parallel processing.

Overall, these results highlight the advantages of calibrating the Landscape Evolution Model
(LEM) using a single catchment rather than the entire study area. However, the effectiveness
of this method heavily depends on the computational resources available and the specific size
of the catchment selected. As we pointed out in the previous section, it is essential to select the
catchment area carefully, as this has a direct impact on the transferability and performance of
calibrated parameters.

Page 31



M.Sc. Thesis - Rayane Meghezi

DEM DEM Size [km²] Single Run Serie Calibration Time Parallel Model Capacity Parallel Calibration Time
Area 3000 4234.56 s 300 h 2 simulations 166h
Aare 555 42.14 s 3 h 6 simulations 40min

Table 9: Computational time evaluation for the calibration process, comparing sequential and
parallel calibration duration for the entire study area and the Aare catchment at 50m resolution.
The parallel capacity was tested using 21 GB of RAM.

4 Discussion

This study explored the calibration of Landscape Evolution Models (LEMs), focusing on the
transferability of calibrated parameters across different spatial and temporal scales. By testing
whether parameters calibrated on smaller catchments could be applied to larger areas and their
runtime extended beyond the calibration period, we aimed to understand model generalizability.

4.1 Resolution Effects

An unexpected outcome emerged regarding model resolution: there was minimal variation in
results across different resolutions, despite our expectation of significant degradation of accuracy
as resolution decreased. Measures such as hydric loss, changes in Kling-Gupta Efficiency (KGE),
and statistical metrics like mean and standard deviation in time series were negligible. The
main differences were linked to station placement. For instance, Station 2200 is close to the
junction of two streams, within 200 meters. An error in station placement at low resolutions
could double the estimated catchment size.

This finding contrasts with previous studies that have highlighted the importance of spatial
resolution in LEMs. Willgoose (2005) discussed how grid resolution can affect the representation
of topographic features and processes in landscape evolution models. However, in our study,
the lack of significant variation suggests that the model may not be sensitive to the scales tested
or that the processes governing SSC are not adequately captured at these resolutions.

Wohl (2018) highlighted the complexity of channel initiation and headwater processes, which
are sensitive to spatial resolution and may not be well-represented in coarser models. The poor
performance of SSC prediction might explain this lack of sensitivity to resolution. Further
investigation is required, particularly after improving the sediment transport predictions.

4.2 Parameter Sensitivity and Calibration Challenges

Our sensitivity analysis revealed that the stream power law parameters m and n significantly
influence sediment transport predictions. Small changes of 0.1 in these parameters led to
substantial variations in model outcomes. In some cases, the suspended sediment concentration
(SSC) became almost constant; in others, excessive erosion caused the model to fail due to
numerical errors like dividing by zero.

This high sensitivity aligns with findings from Harel et al. (2016), who highlighted the impor-
tance of accurately estimating m and n for reliable model predictions. They suggest fixing these
parameters before proceeding with the calibration of others. The challenge in calibrating m
and n underscores the complexity of geomorphological processes and the difficulty of capturing
them accurately in models.

Interestingly, when the SSC remained constant, the mass flux still varied. This indicates that
the concentration was directly linked to the discharge, as SSC is obtained by dividing the mass
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flux by the discharge. The interdependence of parameters like m and n and their impact on
model stability make calibration complex.

Throughout the study, we realized the difficulty of calibrating LEMs. Initially, we aimed
to automate the process using machine learning and specialized algorithms. However, the
sensitivity of parameters, particularly m and n, made the process complex. Slight variations
significantly altered model behavior, changing the initial range of parameters K by factors of
10 or 100. Many simulations resulted in excessive erosion, causing the models to fail.

This experience mirrors the challenges discussed by Beven and Binley (1992), who highlighted
the limitations of automatic calibration methods in complex, non-linear models. Similarly,
Boyle et al. (2000) suggested combining manual and automatic methods to improve calibration
outcomes, using expert judgment to navigate sensitive parameter spaces.

Time constraints and underestimation of calibration complexity led us to simplify the method-
ology. We adopted the Sobol sequence, which, while simplistic, offers transparency and allows
for manual adjustments. The number of parameters and their interdependence made calibra-
tion challenging. With 12 total parameters, automatic calibration was only partially achieved.
Balancing model complexity to capture essential processes while keeping it interpretable was
difficult. Coulthard (2001) noted that increasing model complexity often comes at the cost of
increased calibration difficulty and computational demand.

4.3 Model Performance

4.3.1 Discharge Predictions

The best-performing models showed consistent discharge simulations across different catch-
ments. Large catchments like the Aare exhibited fewer problems, suggesting that key hydro-
logical processes are being captured adequately. Duan et al. (2003) emphasized the importance
of capturing essential hydrological dynamics for reliable model performance.

In contrast, the Lonza catchment showed a sharp decline in the KGE for discharge simulations,
likely due to its large glacier coverage. Unlike precipitation-driven catchments, the Lonza’s
hydrology is more influenced by glacial melt, which is highly sensitive to temperature changes.
Our model, using annual averages, failed to capture important seasonal temperature variations.
Karger et al. (2023) emphasized the need for high-resolution climate data, including seasonal
temperature fluctuations, when modeling this type of catchment. The absence of these fluctua-
tions, combined with the annual time step, likely contributed to the reduced model performance.
Glaciers act as reservoirs, releasing water in response to temperature changes, which our model
could not fully reflect.

4.3.2 Sediment Transport Predictions

The models had difficulty representing seasonal processes and glacier-related dynamics. They
struggled to capture extreme events and inter-annual variability, mainly due to limited model
complexity and temporal resolution. The use of an annual time step and lack of seasonal
data hindered accurate simulation, leading to discharge prediction errors that were even more
pronounced for sediment transport dynamics.

Pazzaglia (2003) noted that modeling sediment transport accurately requires considering short-
term events and seasonal variations. In our study, although the Lonza catchment had the best
SSC prediction results, it performed poorly in simulating discharge. As the smallest catchment,
the Lonza may be more vulnerable to errors in precipitation estimates and runoff representation,
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especially since spatial precipitation inaccuracies would have a more noticeable impact. The
high KGE(SSC) observed for the Lonza catchment could be explained by the buffering effect
of glaciers, which smooths out extreme events in both discharge and SSC. In other catchments,
the failure to represent extreme events led to poor SSC predictions, while the stability of the
Lonza catchment helped the model perform better for SSC.

This suggests that the model’s temporal resolution limitations have a greater impact on catch-
ments where seasonal and extreme events are key drivers of hydrology and sediment transport.

4.4 Model Calibration and Transferability

4.4.1 Spatial Transferability

The calibration process revealed consistent performance in discharge simulations across different
catchments. Key hydrological parameters exhibited a degree of spatial transferability. This
finding suggests that models calibrated on smaller, less computationally intensive catchments
can be effectively applied to larger and more complex areas without significant loss of accuracy.
This aligns with previous studies by Hancock et al. (2011) and Willgoose et al. (1991), which
emphasize the challenges and potentials in parameter transferability.

However, the limited success in transferring sediment transport parameters points to the com-
plex and localized nature of geomorphic processes. This supports the findings of Davy and
Lague (2009) and Tucker and Hancock (2010), who noted the sensitivity of sediment transport
to catchment-specific factors. To confirm these finding, further testing of sediment transport
spatial transferability will be necessary once within-catchment predictions are improved.

Parameter transfer was most successful for the Aare catchment. Aare is the largest catchment
(555 km²) with a mean elevation of 2135m, covering both high and low altitudes, making it the
most representative of the entire area. In contrast, the Lonza catchment is smaller (196 km²)
with a higher mean elevation of 2937m and over 50% glacier cover. The Lutschine catchment,
at 381 km² with a mean elevation of 2050m and 13% glacier cover, is closer to Aare in size but
has lower altitudes and less glacier cover, making it less representative of the area.

This difference in representativeness was reflected in the results, where the Aare calibration
performed better across all catchments except Lutschine. Lutschine struggled, particularly in
simulating the Lonza station, where it barely produced positive KGE results for the discharge,
likely due to having the lowest glacier cover. Aare’s diverse characteristics make it a better can-
didate for parameter transfer, contributing to its overall success. This highlights the potential
for spatial transferability, but emphasizes the importance of carefully selecting the catchment.

4.4.2 Temporal Transferability

We extended our simulations up to 1,000 years to evaluate the long-term robustness of the
models. The hydrological model maintained consistent performance over this period, with only
minor deviations appearing after the initial 400 years. The maximum deviation in discharge
reached approximately 0.35,m³/s, representing about a 10% difference compared to the refer-
ence model. This level of divergence is acceptable over such an extended period and suggests
that the hydrological components of the model exhibit long-term stability. This finding aligns
with broader literature, where LEMs effectively capture long-term hydrological trends (Whipple
et al., 2000).

In contrast, the sediment transport model showed significant variability over the extended
timescale. Substantial divergences in SSC predictions occurred early in the simulations. Mi-
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nor parameter adjustments led to variations exceeding 50% compared to the reference model.
This instability indicates that sediment transport processes are highly sensitive to parameter
variations and may not be reliably predicted over long periods without more precise calibra-
tion. Since the model already struggles with SSC predictions in the short term, assessing its
robustness over extended periods is challenging.

These findings support the conclusions of Simpson (2017) and Temme et al. (2017), who em-
phasize the inherent challenges in simulating sediment transport over extended periods due to
the stochastic nature of sediment supply and climate variability. In our simulations, the neces-
sity to repeatedly use a limited 49-year climatic dataset introduces an artificial cyclicity that
complicates interpretation. This cyclicity fails to capture the gradual changes in temperature
and precipitation expected over these timescales, such as those resulting from global warming
and other natural climatic cycles.

Furthermore, the lack of correlation between discharge variability and SSC differences empha-
sizes the complexity of sediment dynamics. While discharge predictions remained consistent,
SSC predictions did not display the same stability or direct relationship with discharge changes.
This suggests that factors beyond hydrological inputs, such as sediment availability and channel
morphology, might play significant roles in sediment transport over long timescales.

Improving model accuracy for sediment transport on shorter timescales is essential. Without
reliable short-term predictions, extending the model to longer periods may not yield meaningful
insights. Re-evaluating the model’s performance after enhancing its short-term accuracy could
determine if the approach is viable for long-term sediment transport predictions.

Additionally, the minimal changes observed in elevation after 1,000 years, a drop of only 0.2m in
mean elevation, are unrealistic. Significant landscape evolution would be expected over such a
timescale. This underestimation of erosion underscores the model’s limitations in representing
long-term geomorphic changes. It highlights the importance of incorporating processes that
account for extreme events and climate variability, which drive much of the landscape evolution.

Overall, while the hydrological model components are relatively robust over time, the sediment
transport model requires further refinement. Addressing model accuracy for sediment transport
by incorporating more detailed climate variability, extreme event representation, and enhanced
process simulations is necessary. Re-evaluating the transferability of sediment transport param-
eters with these improvements could determine if this approach becomes viable for long-term
landscape evolution predictions.

4.5 Limitations

Our study has several limitations affecting the accuracy and applicability of the results.

First, while transferring hydrological parameters across catchments reduces computational ef-
fort, sediment transport parameters proved less transferable. This necessitates localized cali-
bration to predict sediment dynamics accurately. Regions with diverse geomorphic conditions
require detailed, catchment-specific calibration. As Pazzaglia (2003) emphasized, sediment
transport is highly sensitive to local factors, and general parameters may miss critical details.

Second, the model overlooks important processes like landslides, floodplain erosion, and bank
dynamics. These processes significantly contribute to sediment production, especially during
extreme events not captured on an annual scale. Including such processes is crucial for improv-
ing the model’s predictive capability, as highlighted by Temme et al. (2017).
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Third, the coarse resolution of input data introduces uncertainties, especially in smaller catch-
ments. Low-resolution models can misrepresent flow paths and catchment areas, leading to
inaccuracies in discharge simulations. For example, errors in station placement caused by low
resolution can result in incorrect catchment size estimates and discharge values. Adopting a
different method for station placement or adjusting the station location at each time step could
help mitigate these issues.

Fourth, the precipitation data we used have limitations. Interpolated precipitation can be highly
uncertain, especially in alpine regions where precipitation varies greatly over short distances.
In the Lonza catchment, underestimation of precipitation made it impossible to simulate the
observed discharge accurately. Adjustments like increasing precipitation by 30% helped, but
did not fully resolve the issue.

Fifth, the model assumes glaciers contribute negligibly to runoff, which may not be accurate
in alpine settings with significant glacier coverage. This assumption affects the simulation of
discharge and sediment transport, as glaciers can act as important water reservoirs.

Lastly, the limited number of available monitoring stations restricts our ability to calibrate
the model effectively. More stations within catchments would provide better data to refine
model calibration and validation. The lack of stations makes it difficult to capture the spatial
variability of hydrological and sediment processes.

These limitations suggest that while our approach reduces computational demands, careful
consideration of local conditions and data quality is essential. Future studies should aim for
higher-resolution data, include additional geomorphic processes, and gather more extensive field
measurements to improve model accuracy.

4.6 Broader Implications

The ability to transfer hydrological parameters across catchments reduces the computational
burden of calibrating models for large or complex regions. This has significant implications for
practical applications of LEMs in geomorphology and landscape management.

However, the limited transferability of sediment transport parameters suggests that localized
calibration is necessary to predict sediment dynamics accurately. Regions with highly vari-
able geomorphic conditions require more detailed, catchment-specific calibration. As Pazzaglia
(2003) emphasized, sediment transport processes are highly sensitive to local factors, and gen-
eralized parameters may not capture critical nuances.

4.7 Recommendations for Future Research

Improving the sediment transport simulation is essential. Including additional data or more
accurate datasets could enhance model performance. For instance, incorporating groundwater
data, precise glacier coverage, and more accurate precipitation and temperature records could
refine the model. High-resolution climate datasets like those described by Karger et al. (2023)
could improve the representation of climatic inputs.

Adding processes like soil infiltration, overflow, glacial dynamics, and river incision calculations
could better represent hydrological and geomorphic processes. However, these additions would
increase model complexity and require careful consideration. Willgoose (2005) noted that while
adding complexity can improve model realism, it also demands more detailed data and increases
calibration challenges.
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Moreover, increasing the number of observation stations per catchment would help capture
the gradient of discharge and provide a better understanding of material transport across the
landscape. Enhanced spatial data could reduce uncertainty and improve model calibration, as
suggested by Temme et al. (2017).

5 Conclusion

This study aimed to improve the calibration of Landscape Evolution Models (LEMs) in alpine
regions using data-driven methods. The use of in-situ observations and a comprehensive explo-
ration of parameter space allowed for more robust calibration results. The findings demonstrate
that calibrating LEMs for smaller catchments can significantly reduce computational demands
while maintaining acceptable performance levels, particularly for discharge simulations.

Spatial transferability tests revealed that parameters calibrated on smaller catchments per-
formed well when applied to larger areas. However, sediment transport predictions remained
highly sensitive to local conditions, indicating that further refinement is needed for this aspect
of the model. The study also highlighted the limitations of using a yearly timestep, which
restricts the model’s ability to capture seasonal variations and extreme events.

While the results show promise for enhancing LEM calibration, challenges such as hydrological
extremes and accurately simulating sediment transport processes remain. Future work should
focus on improving data inputs, such as incorporating glacier dynamics and increasing temporal
resolution, to provide more accurate predictions over longer timescales.

In summary, this research contributes to the understanding of LEM calibration and parameter
transferability, offering practical insights for future applications in landscape management and
geomorphological studies. However, continued refinement of both model structure and data
inputs is essential to fully realize the potential of LEMs. By addressing the limitations identified,
we can move toward more robust and generalizable LEMs, as envisioned by van der Beek
(2013).
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Appendix

Calibration Results

Hydrological

model name kge discharge runoff ratio ref slope power temp power
model 05 0.61824 0.94104 0.03099 0.40138
model 53 0.61781 0.92572 0.10463 0.19547
model 99 0.61665 0.71000 0.02696 0.12769
model 39 0.61648 0.80261 0.03469 0.25469
model 89 0.61442 0.89421 0.08328 0.24683
model 113 0.61342 0.86882 0.11203 0.03135
model 71 0.61050 0.79456 0.08722 0.11160
model 37 0.60717 0.94561 0.19290 0.01741
model 95 0.60581 0.84334 0.01164 0.43921
model 45 0.60094 0.96586 0.05966 0.46705

Table 10: Aare Catchment - 10 best models for hydrological calibration, from 128 simulations

model name kge discharge runoff ratio ref slope power temp power
model 215 0.15416 0.95948 0.10473 0.33381
model 99 0.15382 0.89026 0.11951 0.23650
model 03 0.15375 0.89629 0.15574 0.13092
model 183 0.15363 0.97158 0.17007 0.22013
model 125 0.15349 0.75339 0.10379 0.10643
model 111 0.15230 0.95032 0.18493 0.18442
model 71 0.15170 0.98231 0.16183 0.27125
model 147 0.15124 0.90106 0.11129 0.19336
model 201 0.15031 0.82444 0.12046 0.19592
model 15 0.15006 0.94274 0.13991 0.28956

Table 11: Lonza Catchment - 10 best models for hydrological calibration, from 256 simulations
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model name kge discharge runoff ratio ref slope power temp power
model 35 0.61057 0.94662 0.19862 0.10700
model 47 0.60504 0.85630 0.12002 0.25428
model 93 0.60432 0.77812 0.12691 0.11708
model 11 0.60317 0.96589 0.16507 0.26748
model 87 0.60229 0.89142 0.10616 0.35648
model 67 0.60045 0.93635 0.14440 0.30236
model 117 0.59392 0.83591 0.11174 0.28473
model 49 0.59009 0.73361 0.10237 0.16614
model 83 0.58983 0.92489 0.20006 0.14623
model 59 0.58613 0.97374 0.13015 0.43242

Table 12: Lütschine Catchment - 10 best models for hydrological calibration, from 128 simula-
tions

Stream Power Law

model name kge discharge kge ssc K sp high K sp medhigh K sp med K sp low Ec v s F f
model 32 0.61834 -0.24839 9.84425E-10 7.07566E-10 9.72029E-10 3.96539E-09 0.51527 4.65219 0.47121
model 69 0.61833 -0.26796 3.27767E-09 3.35832E-09 1.41188E-09 3.04318E-09 0.55498 3.12706 0.70942
model 45 0.61827 -0.28091 3.64555E-09 2.23900E-09 3.39784E-09 3.56556E-09 0.58728 8.01712 0.77727
model 20 0.61832 -0.28199 1.49165E-09 1.36891E-09 1.83015E-09 1.55802E-09 0.48857 3.60711 0.38107
model 120 0.61831 -0.28426 4.60052E-10 1.18187E-09 1.22600E-09 3.82150E-09 0.59870 8.89239 0.10641
model 62 0.61834 -0.28998 2.65783E-09 8.04853E-10 1.90465E-09 3.01359E-09 0.60980 1.82423 0.68169
model 92 0.61832 -0.29089 1.77337E-09 1.56648E-09 1.51331E-09 2.72343E-09 0.42626 3.96314 0.57039
model 03 0.61829 -0.29569 1.57498E-09 2.97398E-09 1.70723E-09 2.20575E-09 0.56603 5.53303 0.48490
model 118 0.61837 -0.29635 2.31518E-09 5.46336E-10 1.48831E-09 1.26929E-09 0.67349 0.99087 0.46661
model 52 0.61821 -0.30113 1.40975E-09 9.80028E-10 3.30879E-09 2.27082E-09 0.37140 8.79667 0.54140

Table 13: Aare Model 5 - 10 best models for stream power calibration, from 128 simulation

model name kge discharge kge ssc K sp high K sp medhigh K sp med K sp low Ec v s F f
model 57 0.61687 -0.27069 4.84482E-10 7.05063E-10 8.84429E-10 3.78585E-09 0.46165 3.87086 0.35951
model 92 0.61683 -0.27187 3.52176E-09 2.55220E-09 1.17797E-09 3.32637E-09 0.67217 3.44295 0.73156
model 45 0.61671 -0.27281 1.73581E-09 9.24983E-10 3.68031E-09 2.92912E-09 0.40604 5.51879 0.64419
model 52 0.61670 -0.28459 3.41707E-09 3.24133E-09 3.54507E-09 3.67893E-09 0.63396 6.93201 0.76093
model 97 0.61682 -0.28506 9.27363E-10 1.67743E-09 1.39238E-09 3.95225E-09 0.64278 5.43558 0.17814
model 39 0.61690 -0.28514 2.25008E-09 7.52172E-10 1.82530E-09 2.31670E-09 0.64882 1.34342 0.52605
model 81 0.61682 -0.28696 5.89107E-10 1.21891E-09 2.40971E-09 3.15960E-09 0.51098 5.08121 0.33258
model 26 0.61672 -0.28919 1.50101E-09 3.72119E-09 1.61338E-09 3.00334E-09 0.66589 8.75079 0.38535
model 13 0.61684 -0.29541 1.56471E-09 1.94381E-09 1.88880E-09 1.86545E-09 0.45538 3.22259 0.44707
model 19 0.61690 -0.29811 3.82075E-09 1.87475E-09 9.43048E-10 3.98150E-10 0.62100 0.77549 0.66351

Table 14: Aare Model 99 - 10 best models for stream power calibration, from 128 simulations

model name kge discharge kge ssc K sp high K sp medhigh K sp med K sp low Ec v s F f
model 53 0.15427 0.17962 1.35895E-09 2.35227E-08 2.67081E-08 9.56509E-09 0.45135 8.11187 0.78088
model 197 0.15428 0.13815 4.93449E-09 2.44745E-08 3.06668E-08 2.83982E-08 0.43214 1.82944 0.88153
model 18 0.15426 0.13143 5.11181E-09 8.68420E-10 8.32739E-09 3.33192E-08 0.44546 2.52126 0.56765
model 147 0.15427 0.13100 2.09085E-08 2.55668E-08 2.95788E-08 5.45771E-09 0.55479 4.24063 0.87933
model 77 0.15426 0.13080 6.84368E-09 2.40037E-08 8.64131E-10 3.60953E-08 0.64415 9.27641 0.31252
model 117 0.15426 0.12359 2.17275E-09 3.87768E-08 8.18658E-09 2.59793E-08 0.34559 5.55039 0.40786
model 226 0.15426 0.10749 8.70184E-09 2.40534E-09 1.41859E-08 1.44533E-08 0.42097 6.74084 0.66976
model 230 0.15437 0.10480 1.79856E-08 1.60626E-08 2.13564E-08 3.70298E-08 0.66754 5.10633 0.86205
model 251 0.15400 0.09552 2.97151E-08 3.45242E-08 1.35798E-08 3.74568E-09 0.58028 4.92438 0.83578
model 28 0.15415 0.09151 2.27907E-08 1.90131E-08 6.64283E-09 1.17663E-08 0.37664 8.94412 0.85491

Table 15: Lonza Model 35 - 10 best models for stream power calibration, from 128 simulations
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model name kge discharge kge ssc K sp high K sp medhigh K sp med K sp low Ec v s F f
model 103 0.15342 0.17330 2.70869E-08 3.94828E-08 6.88631E-09 9.18998E-09 0.63242 8.00992 0.78235
model 137 0.15348 0.16798 5.48615E-10 3.92433E-08 2.73693E-09 3.05477E-08 0.36738 0.29367 0.39869
model 54 0.15348 0.16714 1.01522E-09 4.61550E-09 1.91630E-09 2.83520E-08 0.44062 8.23406 0.13102
model 190 0.15350 0.15890 1.00406E-08 4.11029E-09 2.36815E-08 3.11657E-08 0.67773 3.11962 0.75004
model 182 0.15348 0.15636 1.04575E-09 1.06457E-08 1.15434E-08 2.29694E-08 0.29978 1.61264 0.63576
model 151 0.15348 0.14387 2.82375E-08 3.85799E-08 1.91701E-08 2.38349E-08 0.59116 3.62719 0.87649
model 109 0.15348 0.13797 1.11516E-08 3.55493E-08 2.94362E-08 4.60621E-09 0.35906 0.70484 0.88165
model 78 0.15350 0.13517 6.08502E-09 3.21224E-09 3.10557E-08 1.58877E-08 0.54858 8.52134 0.85668
model 138 0.15358 0.13391 1.69302E-08 1.17605E-08 3.90016E-08 1.54286E-08 0.69080 3.97238 0.84469
model 25 0.15348 0.11683 3.29280E-09 3.24541E-08 5.86902E-09 2.41418E-09 0.17239 4.53491 0.18604

Table 16: Lonza Model 125 - 10 best models for stream power calibration, from 128 simulations

model name kge discharge kge ssc K sp high K sp medhigh K sp med K sp low Ec v s F f
model 11 0.10755 -0.30059 1.58671E-09 3.02050E-09 4.05387E-09 2.16033E-09 0.25632 7.84809 0.41424
model 45 0.10747 -0.30696 4.95859E-09 6.13238E-10 6.45232E-09 2.98711E-09 0.51967 8.11562 0.71768
model 33 0.10737 -0.33304 5.51796E-09 1.17259E-09 4.10203E-09 4.07181E-09 0.17236 6.26558 0.76099
model 32 0.64836 -0.44992 3.04560E-09 5.86931E-09 7.28621E-10 3.22911E-09 0.59746 1.31109 0.12370
model 26 0.64838 -0.45653 3.67075E-09 6.74297E-09 2.17252E-09 3.08074E-09 0.65577 6.04912 0.42746
model 24 0.64836 -0.46069 2.02379E-09 4.51522E-09 1.21438E-09 1.90566E-10 0.22475 3.73887 0.21161
model 120 0.64837 -0.46462 2.06487E-09 3.87621E-09 2.85248E-09 3.38013E-09 0.49545 9.33568 0.37578
model 55 0.64837 -0.46595 2.41066E-09 2.73792E-09 1.40240E-10 4.21551E-09 0.47363 7.12670 0.29845
model 20 0.64836 -0.47048 1.66679E-09 4.17144E-09 2.43286E-09 6.86835E-09 0.57751 1.22856 0.26752
model 116 0.64837 -0.47068 1.54611E-09 5.08250E-09 7.95282E-10 3.60256E-09 0.14275 5.02544 0.34399

Table 17: Lütschine Model 35 - 10 best models for stream power calibration, from 128 simula-
tions

model name kge discharge kge ssc K sp high K sp medhigh K sp med K sp low Ec v s F f
model 25 0.14962 -0.35586 3.15576E-09 6.87954E-10 1.61964E-09 4.05889E-10 0.25454 6.14816 0.23349
model 77 0.65356 -0.45042 2.86589E-09 1.87911E-09 1.73992E-09 2.75097E-09 0.53228 4.25046 0.34663
model 106 0.65355 -0.45470 2.50704E-09 2.69490E-09 2.68316E-09 8.09067E-10 0.54487 5.75331 0.10105
model 23 0.65355 -0.46043 1.67320E-09 2.03001E-09 1.96586E-09 3.61232E-09 0.33161 3.91433 0.36590
model 21 0.65355 -0.46097 2.49534E-09 3.46259E-10 5.37948E-10 2.55068E-09 0.41341 9.48402 0.26203
model 79 0.65355 -0.46153 1.31791E-09 5.00998E-10 3.03761E-10 3.63932E-09 0.12270 8.67284 0.22545
model 54 0.65356 -0.46154 3.31598E-09 2.11378E-09 1.22692E-09 3.68455E-09 0.59670 1.75008 0.28360
model 17 0.65357 -0.46341 3.88716E-09 1.48172E-09 2.23008E-09 1.74170E-09 0.61205 7.29902 0.46404
model 48 0.65354 -0.46428 1.26985E-09 2.54019E-09 2.90794E-09 1.65422E-09 0.34090 5.35536 0.18644
model 37 0.65355 -0.46704 2.25807E-09 8.03582E-10 3.20970E-09 2.18644E-09 0.57087 8.56499 0.35450

Table 18: Lütschine Model 93 - 10 best models for stream power calibration, from 128 simula-
tions

model name kge discharge kge ssc K sp high K sp medhigh K sp med K sp low Ec v s F f
model 59 0.14966 -0.30382 8.79937E-10 8.52418E-10 2.72774E-10 2.96181E-10 0.66221 8.45008 0.31249
model 00 0.14962 -0.30909 6.80882E-10 5.23844E-10 6.98468E-10 5.55066E-10 0.33130 8.60722 0.55480
model 15 0.65356 -0.44731 7.60749E-10 6.15476E-10 5.45669E-10 8.08137E-10 0.67856 7.43472 0.49147
model 46 0.65355 -0.45081 3.77615E-10 4.31093E-10 3.54325E-10 7.90552E-10 0.28203 6.40959 0.29516
model 53 0.65354 -0.45975 3.14324E-10 6.69880E-10 2.35301E-10 8.48617E-10 0.56849 2.41997 0.16860
model 24 0.65355 -0.46512 5.68051E-10 3.72861E-10 4.39610E-10 4.75279E-10 0.38185 1.75275 0.33299
model 47 0.65356 -0.46624 7.22490E-10 7.75465E-10 5.91973E-10 4.91299E-10 0.60135 3.33094 0.51471
model 13 0.65354 -0.47238 1.77515E-10 7.95064E-10 1.91105E-10 6.38330E-10 0.08387 3.83601 0.27191
model 05 0.65354 -0.47274 2.38004E-10 6.04651E-10 5.96175E-10 9.77411E-10 0.51207 1.34058 0.37598
model 52 0.65358 -0.47623 7.85788E-10 3.11237E-10 9.08089E-10 5.49360E-10 0.31497 7.26111 0.64749

Table 19: Lütschine Model 35 m/n variation 1 - 10 best models for stream power calibration,
from 128 simulations
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model name kge discharge kge ssc K sp high K sp medhigh K sp med K sp low Ec v s F f
model 10 0.65355 -0.49547 1.64460E-08 8.70259E-09 3.07764E-09 2.35061E-08 0.47576 0.83106 0.39955
model 41 0.65353 -0.50136 1.45914E-09 2.24808E-08 1.58487E-08 3.74974E-08 0.68097 5.64001 0.35150
model 17 0.65355 -0.50318 8.84775E-09 3.06112E-08 1.39045E-08 2.07894E-08 0.26641 8.54335 0.43719
model 03 0.65362 -0.50758 3.39628E-08 3.68430E-08 1.56829E-08 1.81654E-08 0.51538 8.31593 0.76252
model 07 0.65357 -0.50896 2.06389E-08 2.63459E-08 2.62757E-08 2.24950E-08 0.65326 9.36110 0.69246
model 34 0.65356 -0.51389 1.16039E-08 6.13888E-09 1.33859E-08 1.95508E-08 0.23832 4.88474 0.56372
model 13 0.65357 -0.52025 1.46290E-08 2.97076E-08 1.78546E-08 2.80795E-08 0.40335 2.65658 0.50045
model 05 0.65363 -0.52447 1.80357E-08 3.46692E-08 3.61259E-08 3.89616E-08 0.22231 1.44727 0.85726
model 61 0.65356 -0.52510 1.06277E-08 2.27911E-08 3.41932E-08 2.28709E-08 0.55007 3.31793 0.73065
model 59 0.65381 -0.52800 3.65489E-08 2.62678E-08 1.48095E-08 3.94260E-09 0.09874 6.44588 0.84878

Table 20: Lütschine Model 35 m/n variation 2 - 10 best models for stream power calibration,
from 128 simulations

Project Scripts

The scripts used in this project are available on GitHub for review and reproducibility. This
repository includes the source code with four main script for the user to make use of:

1. config/config.yml: to set the base parameters and setting of the LEM.

2. data processing run.py: to download and process the DEM in .tif format and the precip-
itation data.

3. lem run.py: to run multiple simulation of the LEMs in parallel.

4. data analysis run.py: to conduct the data analysis on the model’s output and calibrate
the right set of parameters and range of value.

You can access them in the following link:
https://github.com/barcazama/UU-MScThesis-landscape-calibration.

Relevant Library

• Pandas 2.2.2 (pandas development team, 2020)

• Rasterio 1.3.10 (Gillies et al., 2013)

• Matplotlib 3.8.4 (Hunter, 2007)
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Hydrological Station - Location

Station 2019: Additional Information

(a) Station Information

(b) Catchment Profile

(c) Catchment Map
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Station 2109: Additional Information

(a) Station Information

(b) Catchment Profile

(c) Catchment Map
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Station 2161: Additional Information

(a) Station Information

(b) Catchment Profile

(c) Catchment Map
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Station 2200: Additional Information

(a) Station Information

(b) Catchment Profile

(c) Catchment Map
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Station 2269: Additional Information

(a) Station Information

(b) Catchment Profile

(c) Catchment Map
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