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ABSTRACT 
Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease that is characterized by the 

involvement of rare genetic variants. Disease association of single rare variants can often not be 

tested. Therefore, variants are usually grouped together to perform burden tests. In numerous 

proteins, disease associated variants are located at specific regions (hotspots). Hotspots can be 

identified by clustering variants together to define groups for burden testing. We extend previous ALS 

hotspot identification study designs, which clustered variants based on distances within linear 

sequences, to include 3D spatial clustering methods. We aim to determine if these 3D methods can 

be used to identify known ALS hotspots or whether specific limitations prevent the application of 

these methods in ALS hotspot detection. In order to examine this, three well known ALS proteins 

(SOD1, FUS and TARDBP) that each represent a different use case (no hotspot, localised hotspot and 

elongated hotspot respectively) will be studied with spherical clustering and protein-structure based 

scan (PSCAN) methods. Our PSCAN results resemble previous findings for the three use cases, while 

spherical clustering methods are not able to replicate expectations for the elongated hotspot use 

case at all. PSCAN is thus an improvement over spherical clustering, for our intended application, as 

no predefined window sizes or shapes are used. Still, PSCAN has notable limitations. The most 

important limitation, especially for neurodegenerative disease, lies in the use of AlphaFold2 models 

which do not adequately represent intrinsically disordered regions. Hotspots which occur in 

disordered regions can not be identified with 3D methods until this limitation is resolved. Therefore, 

current 3D spatial clustering methods should only be used for ALS hotspot detection in ordered 

regions of proteins.  
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LAYMAN’S SUMMARY 
Amyotrophic Lateral Sclerosis (ALS) is a fatal disease in which patients gradually lose control of muscle 

movements. Discovery of genetic rare variants that cause this disease is difficult. Therefore, studies 

often try to find groups of rare variants, instead of single variants, that are associated with ALS. In 

biology, disease causing variants often lie close together. This makes the identification of disease 

associated regions relevant. These regions can be discovered based on 1D distances between variants 

within either protein or gene sequences. However, some relevant information might be missed as 

proteins are folded into 3D structures. Because of this, variants that are far apart linearly can be 

situated close together. In this study, 1D methods are extended, to include 3D information to identify 

ALS associated regions. We do this for proteins with known ALS associated regions so that we can 

verify our findings with existing knowledge. Based on this, we determine whether 3D information 

should be included to study ALS. Our findings show that 3D clustering methods were able to 

adequately replicate expected results. However, we also observed that 3D methods are limited by the 

input structures, as structure prediction tools assume that protein coordinates stay fixed. Since no 

biological reliable coordinates are available for dynamical regions, 3D clustering can only be used to 
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study disease association of non dynamical regions. Indeed, until alternative sources for coordinate 

data have been developed, ALS association of dynamical regions can not be studied in 3D. 

1. INTRODUCTION 
Amyotrophic lateral sclerosis (ALS) is a relatively rare, but fatal neurodegenerative disease. In Europe, 

1 out of 350 individuals are diagnosed with ALS in their lifetime (Feldman et al., 2022; Goutman et al., 

2022). Patients progressively lose their upper and lower motor neurons (Hardiman et al., 2017), 

which ultimately leads to death as a result of respiratory failure 2-4 years after the diagnosis 

(Feldman et al., 2022; Goutman et al., 2022). In most patients, this disease is characterized as 

sporadic as there is no familial history of ALS (Goutman et al., 2022; Hardiman et al., 2017). In both 

sporadic and familial cases, genetic factors are thought to be involved (Hardiman et al., 2017; Al-

Chalabi et al., 2017). However, current genetic findings explain only 70% of familial and 15% of 

sporadic cases (Chia et al., 2018). To date, the exact mechanism behind disease manifestation is not 

yet understood (Hardiman et al., 2017). In the past few years, advances in genomics techniques have 

shed light on the role of rare variants within numerous diseases (Pierre & Génin, 2014). Indeed, these 

rare variants, and not the well-studied common variants, are important for ALS disease risk (Al-

Chalabi et al., 2016; Chen et al., 2022; van Rheenen et al., 2016). Discovering which rare variants are 

involved in ALS can improve our understanding of the underlying disease mechanism.  

As their name suggests, rare variants occur less frequently compared to common variants. Usually a 

Minor Allele Frequency (MAF) cutoff value below 1% is used when referring to rare variants (Chen et 

al., 2022; Pierre & Génin, 2014). Genome-Wide Association Studies (GWAS), which examine disease 

association of single variants, can only discover (relatively) common variants (Asimit & Zeggini, 2010; 

Auer & Lettre, 2015; Pierre & Génin, 2014). To identify rare variants with this technique, an incredibly 

large sample size would be necessary. This is especially difficult to obtain for relatively rare diseases 

such as ALS (Asimit & Zeggini, 2010; Chen et al., 2022; Lee et al., 2014). An additional problem, the 

multiple testing burden, arises due to the detection of large amounts of unique rare variant positions 

during single variant analyses (Chen et al., 2022). All in all, GWAS is not very powerful when it tries to 

identify variants with low MAF values. In order to deal with the shortcomings of GWAS, Rare-Variant 

Association Study methods, such as the burden test, have been developed (Auer & Lettre, 2015). 

During burden tests, association with disease is not tested on individual variants, but on sets of 

variants instead. The number of minor alleles that occur in each set is counted. This is represented as 

a summary score for each set. This score can be allelic, which reflects the presence of variants on 

both alleles, or binary. Since association with the entire set is tested, variants that do not increase 

disease risk decrease the power of the test when they occur in the set (Auer & Lettre, 2015; Chen et 

al., 2022; Lee et al., 2014). These sets, or units, in which variants are grouped together have to be 

determined beforehand. This can be a biological unit such as genes, exons or domains. Alternatively, 

sliding windows (Chen et al., 2022) or clustering methods can be used. Previously, Loehlein Fier et al. 

(2017) devised a method to cluster variants together within sliding windows by introducing breaks in 

between variants that are relatively far apart on the linear sequence. This improves test power and is 

biologically relevant as germline disease causing variants, irrespective of disease origin, have a 

tendency to “cluster” together (Sivley et al., 2018). The method is also relevant for ALS research as 

clusters, or “hotspots”, with ALS associated variants have been observed in the C-terminal domain of 

ALS genes FUS and TARDBP (Lattante et al., 2013; Zou et al., 2017). In our study we define a hotspot 

as the specific region within a protein that is associated with disease. While the 1D spatial clustering 

method has yielded promising findings for ALS (Zonneveld, 2022), it neglects that proteins are not 

just linear sequences. Instead, they are folded into functional 3D structures. Variants that are close 

together in space, but far apart in the sequence will never be clustered together by 1D methods (Fig. 
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1AB). Because of this, the hotspots detected using 1D clustering do not necessarily represent all 

biologically relevant hotspots. Indeed, Sivley et al. (2018) show that relevant hotspot regions can be 

introduced due to protein folding as less than 40% of the spatial patterns identified using protein 

structures were also retrieved from the linear sequences. Including structural information within 

variant testing has already helped to discover potential new hotspots within cancer and Alzheimer 

research (Jin et al., 2022; Niu et al., 2016). Discovering which regions of the protein are affected in 

disease deepens our understanding and could help in the prediction of future risk variants. Therefore, 

identification of hotspots using spatial clustering methods that take 3D structures into account can 

improve hotspot discovery and provide more insight into disease. 

To our knowledge no study has tried to identify ALS hotspots with 3D spatial clustering methods yet. 

The absence of experimental structures for important ALS proteins might explain this. In order to 

perform 3D spatial clustering, structures of the folded proteins are necessary. Previously, this would 

have been a problem for many studies as only a small percentage of proteins have a representative 

experimental structure within the Protein Data Base (PDB). With advances of AlphaFold2 (AF2), this 

problem may be solved as structures can now be predicted based on the protein sequence 

(Tunyasuvunakool et al., 2021). Therefore, protein models predicted by AF2 can be used for proteins 

with and without previously defined experimental structures. The advances in AF2 have encouraged 

studies on protein structures using both newly developed and already existing algorithms. For 

analysis of variants within tumours, a wide variety of clustering methods has already been designed 

(Gao et al., 2017; Martinez-Ledesma et al., 2020; Tokheim et al., 2016). However, the majority of 

these methods were not specifically made to define units for burden testing. We focus on a 3D sliding 

window approach, because 1D sliding window methods have proven to be reliable for the discovery 

of ALS hotspots. A direct translation of 1D to 3D sliding windows, which we refer to as spherical 

clustering in this study, uses spheres with predefined radii to slide across the protein structure. Each 

variant is subsequently used as the centre of their own sphere and all variants that occur within this 

sphere are clustered together (Gao et al., 2017). According to Tang et al. (2020), this method has 

some shortcomings for application in burden testing, such as the use of a predefined window shape. 

To deal with this limitation, they developed an alternative clustering method, namely protein-

structure-based scan (PSCAN). This algorithm iterates over a selection of automatically determined 

window sizes to constructs graphs, in which variants are represented as nodes. All variant pairs with 

distances below the window size are connected by edges (Fig. 1C). Next, the connected components 

in the resulting graph are clustered together. These clusters are subsequently used as units during 

burden testing in order to identify hotspots associated with disease (Tang et al., 2020).  

The aim of our study is to determine whether 3D spatial clustering methods can be used to identify 

ALS associated hotspots. The insights that we obtain can be used during future studies to find new 

hotspots in genes that have already been associated with disease and to empower novel disease 

gene discovery. In order to consider the application and limitations of 3D spatial clustering for ALS 

research, we apply spherical clustering and PSCAN to replicate known ALS hotspots. For our 

purposes, we have chosen to study three well-known ALS proteins: SOD1, FUS and TARDBP. These 

three proteins are relevant to answer our research question since they represent three types of 

hotspot results. First, SOD1 represents a protein where disease associated variants occur across the 

entire protein. Therefore, no hotspot is present in this protein. Second, FUS represents a protein with 

a small localised hotspot (which spans < 10% of the protein) that covers the majority but not all 

relevant variants. Third, proteins with a large and potentially irregular shaped hotspot (which spans > 

30% of the protein) are represented by TARDBP (Lattante et al., 2013; Zou et al., 2017). Furthermore, 

FUS and TARDBP are relevant for our study since these proteins do not have existing experimental 

structures. Therefore, we can investigate whether AF2 models solve the limitation caused by the 
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absence of experimental structures. Following the replication analysis, we also perform an 

exploratory analysis on four candidate ALS genes (KIF4A, UTP14C, UNC13C and TTC3) to test the 

intended application of our method further. All in all, we intend to gain better insight in the current 

possibilities for 3D spatial clustering of rare variants and determine in which directions development 

is still necessary.  

 
Figure 1. Spatial clustering of genetic variants. A comparison of results obtained with 1D clustering (A) and 3D spatial 

clustering (BC). Clusters obtained by 1D clustering are displayed in light grey boxes (A). Variants are visualized as small 

coloured circles. The colour represents clusters obtained from one iteration of PSCAN (Tang et al., 2020) (ABC). For each of 

these PSCAN clusters, a comparison with spherical clustering is displayed to visualize the ability of each method to discover 

elongated hotspots. Spherical clusters are represented by large circles (C). During clustering, connections (dark grey lines) 

are made when the pairwise distance (d) between two variants is below the window size (w). For PSCAN, all connected 

components in the constructed  graph become one cluster (C).  

2. METHODS   
2.1 Obtaining genetic variant datasets 

The whole exome sequencing variant dataset used during this study was retrieved from Project MinE 

(Project MinE ALS Sequencing Consortium, 2018) as genome database (GDB) files, the adapted SQLite 

based data storage format used in the Rare Variant Analysis Toolkit (RVAT) package (Kenna & Hop, 

2023). The cohort included for association testing included 13,138 ALS patients and 69,775 controls 

(for full details on sample and variant quality control see van Rheenen et al. (2021)). All clustering and 

burden testing were restricted to non-synonymous SNVs that were annotated as missense variants 

within the canonical transcripts (Table S1) of the ALS proteins of interest (SOD1, FUS, TARDBP, 

UNC13C, UTP14C, TTC3 and KIF4A). A second GDB was constructed for a separate reference analysis 

on 2 cancer proteins, which were previously reported to exhibit striking hotspot localisations (RAC1 

and MAP2K1) (Gao et al., 2017). We generated this GDB by combining variant data of MinE controls 

with genotype count data of patients described in the ICGC data portal (Zhang et al., 2019). Only 

variants annotated as “substitutions” and “missense” within the data portal were downloaded (On 

July 3th and 5th for RAC1 and MAP2K1 respectively). This data contained the number of patients (in 

each cohort) with each mutation and the cohort sizes. Clustering of cancer variants was restricted to 

the patient specific variants for comparability to Gao et al. (2017). For both GDBs, variant annotation, 

which includes chromosomal position, was obtained for all variants that occurred at least once in the 

cohorts and that had a corresponding allele frequency below 0.001. In parallel to our rare variant 

analysis, we also performed an ultrarare variant analysis for our ALS proteins. Ultrarare variants were 

further characterized by a maximal amount of 5 carriers.  

2.2  Mapping of genetic variants to predicted protein structures 

All protein structure predictions were retrieved from the AF2 database (Jumper et al., 2021; Varadi et 

al., 2022). We chose structures, based on the UniProt ID that corresponded to the canonical 

transcript defined in Ensembl (Table S1) (Martin et al., 2023). For these transcripts, Ensembl data 

were also retrieved for the chromosomal start and end position of each exon and UTR. We determine 

which chromosomal positions occur both within an exon and outside of the UTRs, to obtain each 

position that corresponds to a codon. Because of this, chromosomal positions can be translated 

directly to protein positions. Based on this, the chromosomal positions were added to the AF2 files, 
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which already included protein positions. These chromosomal positions were used to combine AF2 

and annotation files in order to obtain atom coordinates of all rare variants. 

2.3 Simulation of randomized variant positions and randomized 3D protein structures 

In parallel to the main pipeline, we also perform permutation testing using randomised variant 

positions to determine if predicted hotspots are significant or if they could have been obtained by 

chance instead. For each proteins, we perform 100 iterations in which the translation between 

chromosome and protein position is randomised. Next, clustering and burden testing is performed for 

each iteration. To obtain a significance threshold for each protein, the association score of the cluster 

most strongly associated with ALS is selected for each iteration. 

In addition, we perform a parallel analysis with randomised structures instead of AF2 models. For 

each protein, 100 randomised backbone structures, of equal length to the original AF2 prediction, are 

obtained (Methods S1). These structures do not contain sidechains and do not have biological 

plausible foldings. The randomised structures are relatively more elongated compared to biological 

structures, but they do contain folded regions. For our purposes, determining how much predicted 

hotspots depend on the exact AF2 structure, these non-biological structures are adequate. Again, 

clustering and burden testing is performed for each iteration. Based on the association scores of the 

most informative clusters, we obtain a 95% Confidence Interval (CI) for each position. 

2.4 Spatial clustering of genetic variants with PSCAN and spherical clustering algorithms 

The two clustering methods described in the introduction, spherical clustering and PSCAN, are 

performed based on the x, y and z coordinates of each atom of the variant positions. A distance 

matrix is constructed, which contains the smallest distance between each variant position. For 

spherical clustering we use this matrix and a fixed window sizes (or radius) of 5 angstrom (Å) as 

described by Gao et al. (2017). We also repeat the analysis with 10 Å when specified. The general use 

of these radii was validated by Hicks et al. (2019). Each variant is subsequently used as the centre of a 

spherical window. All variants that occur within the window become clustered together. Since 

overlapping clusters are not combined, spherical clustering results in a number of clusters equal to 

the number of variant positions. 

The PSCAN algorithm, as described by Tang et al. (2020), differs from spherical clustering in two 

aspects. First, the algorithm iterates over multiple window sizes. All unique values from the distance 

matrix, rounded on 1 decimal, are used as window sizes. Rounding is done to decrease the number of 

clustering iterations while retaining relevant differences in distances. Second, clusters are combined 

by the use of adjacency-matrix based graphs in which variants are represented as nodes and 

proximity is represented by edges. Adjacency matrices are constructed by changing the distance 

matrix values, that are lower than the window size, to 1 and by changing the other values to 0. All 

connected components of the graph become clusters.  

2.5 Association testing of spatial clusters 

In order to determine whether each cluster is significantly associated with ALS, a burden test was 

performed using the assocTest function of the RVAT package (Kenna & Hop, 2023). During testing, 

each cluster is considered as a unit. The statistical test “firth” and the genetic model “allelic” are 

used. The covariates previously used by the same lab were also applied within this study. All p-values 

obtained during testing are capped at 10-16, which means that no lower p-values can be obtained. 

Three additional analyses were performed on the burden testing results of PSCAN clusters. These 

analyses were only performed on clusters with a cumulative minimum allele count of 5 since 

association scores are not reliable when the allele count is too low (Tang et al., 2020). First, a 

Spearman correlation test was performed to determine whether cluster size (number of protein 
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positions that make up the cluster) is correlated with the p-value. In our study, we refer to this test as 

the cluster size correlation test. Second, the omnibus test ACAT-O, previously described by Liu et al. 

(2019), was used to obtain a combined p-value for each protein. Third, the “most informative” 

division of clusters was determined, as described by Tang et al. (2020), to obtain the most significant 

non-overlapping clusters. The clusters with smallest p-values are iteratively selected. Every time a 

cluster is selected, all clusters with overlapping variants are removed from the group that is used 

during the next iteration of the most informative division search. In case multiple overlapping clusters 

obtain the same significance value, only the largest cluster is selected.  

2.6 Analysis on the reliability of AlphaFold2 wildtype and mutant structure predictions 

In addition to burden testing based on 3D units, we also perform three analyses on AF2 models. First, 

we compare predicted local distance difference test (pLDDT) scores to the locations of intrinsically 

disordered regions (IDRs) and annotated domains, within the canonical transcripts, according to the 

MobiDB (Necci et al., 2017) and Interpro database (Hunter et al., 2009) respectively. Second, SOD1 

experimental and AF2 structures (Table S2) were compared. Experimental structures were chosen 

based on their overall structure quality in the Protein Data Bank (PDB), from RCSB.org. Since the 

structures are in different orientations, they were first aligned with the pairwise alignment tool on 

the same website before downloading them (Berman et al., 2000; RCSB Protein Bank, 2023). For each 

pair of aligned structures, a deformation score, the distance between Cα atoms at each position, was 

calculated. Mean scores are used to compare overall deformation between pairs of structures.  

Third, in order to investigate whether AF2 can predict reliable mutant structures, the deformation 

score is used to compare predicted mutant and wildtype structures as similar metrics are considered 

to be reliable predictors for mutation effect (McBride et al., 2023). Following recommendations for 

mutant structure predictions, we used AF2 Google Colab (AFcolab) as this version of AF2 does not use 

templates (Jumper et al., 2021; Reynisdottir et al., 2022; McBride et al., 2023). The AFcolab algorithm 

uses a smaller reference database compared to the general AF2 algorithm. Sequences for wildtype 

predictions are obtained from Ensembl (Martin et al., 2023) and mutations are added manually. The 

mutations were chosen based on their impact in ALS (van Deerlin et al., 2008; van Rheenen et al., 

2016; van Rheenen et al., 2021; Yamashita & Ando, 2015; Zhou et al., 2020). Predictions were made 

twice for the SOD1, FUS and TARDBP wildtypes, once for the A5V SOD1 mutant, the P525L FUS 

mutant and the G298S TARDBP mutant and five times for the CFAP410 wildtype and the V58L 

CFAP410 mutant. In addition, wildtype models are obtained from the AF2 database (Jumper et al., 

2021; Varadi et al., 2022). The predictions for the same protein were compared with each other to 

study the effect of mutations and the AF2 version. For SOD1, corresponding experimental structures 

(Table S2) were also used within the comparison. All alignments were performed based on the entire 

protein. For FUS, TARDBP and CFAP410 additional alignments, based on high confidence regions (280-

370 and 420-455 for FUS and 1-78 and 105-260 for TARDBP and 1-145 and 210-256 for CFAP410), 

were also made. Together, the three analyses give insight into the reliability of AF2 predictions. 

3. RESULTS 
3.1 Low confidence scores of AlphaFold2 models indicate disorder 

We downloaded the structures of SOD1, FUS and TARDBP from the AF2 database (Jumper et al., 

2021; Varadi et al., 2022). We consider the prediction quality of these structures to determine if they 

are appropriate alternatives to experimental structures. The pLDDT confidence score of the SOD1 

structure is high for the entire protein (Fig. 2A). Moreover, the predicted structure differs as much 

from experimental structures as these experimental structures differ from each other (Fig. 3). 

Strikingly, the majority of the TARDBP and FUS structures are predicted with low confidence. Visually, 

these regions seem to be unfolded (Fig. 2BC). In order to investigate whether unconfidently predicted 
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regions are supposed to be unfolded or whether low confidence scores reflect a poor prediction, we 

compared the predicted structures to known annotations (Fig. 2D). Results show that low pLDDT 

scores overlap with IDRs, while high pLDDT scores overlap with ordered domains. We conclude that 

low confidence scores do not necessarily refer to bad predictions. Instead, these low scores imply 

genuine biological uncertainty. Based on these preliminary findings, AF2 models appear to be good 

approximations of biological structures and can be used reliably instead of experimental structures. 

  
Figure 2. Confidence score of AlphaFold2 structure predictions for FUS (AD), SOD1 (BD) and TARDBP (CD). The structures 

are coloured according to the pLDDT score calculated by AlphaFold2 (A-C). These scores and known annotation are plotted 

for each position in the proteins. Annotation refers to either Interpro domains (orange) or MobiDB intrinsic disorder 

predictions (blue). Some positions have not been annotated with either domains or disorder (grey) (D).  

 
Figure 3. Deformation between SOD1 experimental and computational structures. Distance between AlphaFold2 wildtype 

SOD1 structure and two experimentally determined wildtype structures are displayed for each position in the protein. 

3.2 AlphaFold2 should not be used to predict mutant structures  

The presence of variants affects protein structures and alters the pairwise distance between positions 

used during clustering. It is useful to know whether AF2 mutant structures can be used for variant 

analyses as the majority of mutant structures have not been resolved experimentally. We use AFcolab 

for predictions as this algorithm does not use templates that would introduce wildtype bias 

(Reynisdottir et al., 2022; McBride et al., 2023). In addition to SOD1, FUS and TARDBP, the model of 

CFAP410 was analysed as well as this protein is known for an ALS associated variant outside of its 

disordered region. The number of reference sequences used during prediction changed when 

mutations were added to the input sequence (Table S3). Deformation scores were calculated 

between each structure pair. For FUS, TARDBP and CFAP410, large deformation scores did not 

correspond to mutation placement. Instead, these scores occurred at low confidence regions (Fig. 4A, 

Fig. S1-S4). This was not due to stochasticity as only minor deformation scores were obtained 

between AFcolab models made from the same sequence (Fig. 4A, Fig. S4). When our AFcolab models are 

compared to AF2 database models, which were predicted using a larger reference set, we observe a 

similar effect on the low confidence region (Fig. 4A). This shows that both changes to the input 

sequence and AF2 algorithm have a large effect on the predicted structure for disordered regions.  

The potentially biologically relevant changes in the protein structure, as a result of mutations, are 

overshadowed by the presence of disordered regions. Therefore, we specifically aligned the ordered 

regions of CFAP410 to investigate the direct effect of mutations. These alignments resulted in minor 

deformation scores with a small peak on the mutation location (Fig. 4B). Similar results were obtained 
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for SOD1 structures, which only contain high confidence regions. Indeed, the only notable change in 

the AFcolab models of SOD1 occurs (at the end of the protein) close to the mutation (Fig. 5). This 

change is not observed in the experimental structures. Furthermore, experimentally observed 

differences between wildtype and mutant structures are not present in the AFcolab models (Fig. 5). The 

mutant AFcolab model resembles the wildtype structures more than the experimental mutant 

structure (Fig. S5). Our results indicate that AF2 is not capable of finding reliable mutant structures. 

Therefore, only the wildtype models should be used to obtain coordinates.  

  
Figure 4. Deformation scores between AlphaFold2 structures of CFAP410. The scores are based on full structure alignments 

(A) and localised (only folded regions) alignments to filter out the deformation caused by disordered regions (B). The 

deformation score is the distance at each position between structure pairs. The position of the mutation is displayed by a 

vertical line. 

 
Figure 5. Deformation scores between computational and experimental SOD1 structures. The score represents the 

distance at each position between aligned structure pairs. The position of the mutation is displayed by a vertical line. 

3.3 Hotspot identification with spherical clustering is limited by predefined window sizes 

Spherical clustering was used to find units for burden testing. Potential hotspots consist of the 

clusters with the highest level of association. A permutation test is performed to determine whether 

the same level of association can be obtained when variants are randomly distributed. When 

significance is reached according to permutation testing, all additional significant clusters are also 

considered as potential hotspots. In order to test our spherical clustering method, we aimed to 

reproduce MAP2K1 and RAC1 cancer “hotspots” that Gao et al. (2017) previously identified with a 

similar method. All but one of our predicted hotspots overlapped with these expected hotspots (Fig. 

S6). However, none of the clusters reached significance during permutation testing (p-value = 0.37 

and p-value = 1 respectively) (Fig. S7). This may be an artifact of p-value capping as multiple clusters 

reach the maximal association value. After this preliminary analysis, we decided to apply this method 

to ALS hotspot detection. First we consider if our SOD1 results match with expectations. 

Subsequently, we compare our FUS and TARDBP results with previously detected hotspots. 

Previous studies did not find hotspots within SOD1 (Zou et al., 2017). Therefore, we expect to find no 

significant potential hotspot during our analysis. We find multiple rare variant clusters that are 

maximally associated with ALS (Fig. 6A, Fig. S8A), while ultrarare variant clusters reach relatively 

lower association scores (Fig. S8B, S9B). Both rare and ultrarare variant analysis match expectations 

as no significance is reached (p-value = 1 and p-value = 0.23 respectively) (Fig. 6B, Fig. S10A). This 

indicates that permutation testing can help to distinguish between hotspot presence and absence.  
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In case a hotspot is present, our hotspot detection method should also be able to discover the correct 

location. Therefore, we compare the location of known and predicted hotspots in FUS and TARDBP. In 

TARDBP, we expect to find a C-terminal hotspot that covers a large region (260-400) (Lattante et al., 

2013). However, neither rare or ultrarare variant analysis identifies any significant hotspot (p-value = 

0.39 and p-value = 1 respectively) (Fig. 6B, Fig. S8, S10A). Similar results are obtained when we 

increase the window size to 10Å (p-value = 0.69 and p-value = 1) (Fig. 6CD, Fig. S10B, S11). The non-

significant rare variant cluster, with the highest level of association, does occur within the expected 

region (383-384). However, we are not able to obtain any cluster that resembles the known TARDBP 

hotspot as no sphere can cover this entire region (Fig. 6AC, Fig. S9C). Based on this, we hypothesize 

that spherical clustering can only be used to replicate localised hotspots that cover a smaller region. 

To investigate this further, we consider the known localised hotspot (490-526) in FUS (Lattante et al., 

2013; Zou et al., 2017). Our analysis does indeed identify a significant rare variant hotspot, which 

covers variants at positions 517 and 521, within the expected region (p-value = 0.01) (Fig. 6AB). 

However, the association of this cluster is only driven by the rare variants at position 521 (Fig. S12). 

Moreover, no significant ultrarare variant cluster can be obtained as most of the association driving 

variants at position 521 are not included during ultrarare variant testing (p-value = 0.77) (Fig. S9A, 

S10A). Together, this indicates the presence of a hotspot position rather than a hotspot region. Since 

our 5Å spheres were not able to cover the entire expected hotspot region, we consider whether we 

can detect a hotspot region when radii are increased to 10Å (Fig. 6C). This parameter change 

improved hotspot detection as now both rare and ultrarare variant analyses yield significant hotspot 

regions (p-value = 0 and p-value = 0) that cover a part (517-526) of the established hotspot (Fig. 6CD, 

Fig. S10B, S11). Thus, our results for both FUS and TARDBP show that the selection of an appropriate 

window size is important for reliable hotspot detection.

 
Figure 6. Predicted rare variant hotspots obtained with spherical clustering analysis. The location of the 5Å (AB) and 10Å 

(CD) spheres are displayed in 3D. The colour of the spheres indicates relative association values (yellow for low values and 

dark red for high values). For FUS, all clusters that reach significance according to permutation testing are displayed. For 

SOD1 and TARDBP, only the spheres with the highest level of association are displayed (AC). Permutation test for spherical 

clustering results for each protein. Grey histogram bars represent counts of maximal association scores obtain in each 

permutation. The grey dashed line represents significance threshold (p-value = 0.05) and the green line represents the 

burden test result for the potential hotspot (BD). 

3.4 PSCAN methods can identify both localised and elongated hotspots 

The same analysis was repeated with a PSCAN-based burden test to determine whether this method 

is an improvement over spherical clustering as stated by Tang et al. (2020). In this analysis, only the 

largest clusters that are most strongly associated with ALS are considered potential hotspots. The 

PSCAN method was not able to find any cluster that resemble the known hotspots for RAC1 or 

MAP2K1 (Fig. S13). Permutation testing further indicates that no hotspot is predicted for these 

proteins (p-value = 1 and p-value = 1). These results imply that the two clustering methods might be 
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suitable in different use cases. We apply PSCAN in ALS hotspot detection to determine whether the 

method is appropriate in the use cases represented by  SOD1, FUS and TARDBP.  

First, we consider our PSCAN results for SOD1. Corresponding to our expectations for this protein, we 

find no potential hotspot region during our (ultra)rare variant analysis. Indeed, clusters that contain 

all tested variants reach maximal association scores (Fig. 7A, Fig. S14, S15). Randomly distributing the 

variants across the protein does not change this. Therefore, the same association score is reached in 

each permutation (p-value = 1) (Fig. 7B, Fig. S16). We extend our PSCAN analysis to include cluster 

size correlation testing to gain a potential additional method to distinguish between presence and 

absence of hotspots. A hotspot cluster should only cover a part of the tested variants. Therefore, 

adding non-hotspot variants decreases the association significance. Because of this, we expect a 

relatively low degree of correlation between association score and cluster size for a protein with an 

actual hotspot. For that reason, the absence of hotspots in SOD1 is further substantiated by a 

relatively high degree of correlation (ρ = 0.5, p = 5.3x10-4) (Table S4). All in all, similar to spherical 

clustering, PSCAN results clearly show that, as expected, there is no hotspot within SOD1. 

  
Figure 7. Association scores of PSCAN clusters and significance of potential hotspots from rare variant analysis. The size of 

the cluster is plotted against the association score (-log(p-value)). The horizontal dashed line represents the -log(P) value 

obtained with ACAT-O (A). Grey bars represent a histogram of the maximal -log(P) in each iteration of the permutation test. 

A green line is added to the plot to show the -log(P) value of the potential hotspot, i.e. the cluster with the highest -log(P) 

value obtained in the non-randomised variant distribution. The grey dashed line represents the significant threshold for p-

value = 0.05, based on the permutation test. This line is only displayed when the threshold could be calculated (B). Rare 

variant hotspot results obtained for FUS and TARDBP. Each colour represents a separate cluster and the most significant 

clusters represents the potential hotspot. Grey coloured positions represent positions that have not been clustered (C).  

In contrast to SOD1, hotspots are expected within both FUS and TARDBP. Spherical clustering was 

only able to identify the localised FUS hotspots, as no prediction matched with the known large 

TARDBP hotspot. PSCAN might be reliable in a wider range of use cases as there is no manual 

selection of window sizes. Indeed, preliminary PSCAN analysis indicates hotspot presence in both 

proteins as clusters maximally associated with ALS do not cover the full set of tested variants (Fig. 7A, 

Fig. S14). In line with this, the ACAT score substantiates the presence of a hotspot for both proteins as 

this score reaches a higher level of association compared to full protein clusters (Fig. 7AC). Consistent 

with our expectations of a localised and elongated hotspot in FUS and TARDBP respectively, the 

maximally associated clusters in FUS contain relatively few variants, while the potential hotspot 

cluster contains the majority of variants in TARDBP. The difference in hotspot size is also reflected in 

the cluster size correlation testing, as we obtain a low degree of correlation (ρ=0.28, p=0.01) for FUS 

and a high degree of correlation (ρ=0.67, p=2.4x10-4) for TARDBP (Table 4). This shows that a high 

degree of correlation does not necessarily indicate the absence of hotspots as we assumed 

beforehand. Based on our analysis, the correlation test can not distinguish between a protein with a 
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large hotspot cluster, such as TARDBP, and a protein that is associated with disease in its entirety, 

such as SOD1. Preliminary inquiry into the association scores of the different cluster sizes do indicate 

that PSCAN can retrieve the expected hotspot results for both localised and elongated hotspots.  

We analyse our PSCAN results further by comparing the predicted and known hotspot location. 

PSCAN is more appropriate for our use cases than spherical clustering, if the predicted locations 

match with expectations for both proteins. Similar to our spherical clustering results, we obtain 

significant rare and ultrarare hotspots for FUS (p-value = 0.01 and p-value = 0.01), while no 

significance is reached for TARDBP (p-value = 0.08 and p-value = 0.18) (Fig. 7B, Fig. S16). Still, we 

investigate whether PSCAN and burden testing were able to identify the expected region in both 

proteins. The exact rare variant hotspot region can not be determined for FUS as multiple clusters 

reach the same maximal association score due to p-value capping (Fig. 7A). In order to circumvent 

this problem, we perform an additional rare variant analysis with SKAT burden testing for this protein 

(Fig. S17). Our FUS analyses yield a 3D hotspot that overlaps with a larger part (507-526) of the 

expected region (490-526) compared to spherical clustering (517-526). However, the predicted 

hotspot also contains additional variant positions that do not match with our expectations (412-417) 

(Fig. 7C, Fig. S18-S19). Similar results are obtained for TARDBP as PSCAN predicts a hotspot (125-405) 

that covers an unexpected large part of the protein. Still, the prediction matches well with our 

expectations as the majority of the rare and ultrarare variants (all but three and four respectively) in 

the predicted hotspot occur within the expected region (264-400) (Fig. 7C, Fig. S18A). While PSCAN 

predicts hotspots that contain unexpected variants, the method is an improvement over spherical 

clustering as approximate regions can be replicated for both localised and elongated hotspots. 

The inclusion of the unexpected variants is investigated further to determine whether they are 

indeed non-hotspot variants. To this end, we use SKAT burden testing to compare the association 

scores of expected regions (500-526 and 259-390) with the association scores of predicted regions for 

both proteins. We obtained slightly lower levels of association when the unexpected variants are 

included (Fig. S20). This indicates that the unexpected variants do not contribute to ALS association. 

We hypothesise that the variants may have been included in prediction due to their proximity with 

expected hotspot variants. This is supported by randomised structure predictions which, generally 

speaking, lack the unexpected variants (Fig. S21). The predicted regions primarily occur within IDRs 

that appear unfolded in the AF2 model (Fig. 2A, Fig. S22). Our results give no evidence that the 

unexpected variants are part of the biological hotspot. The results further shows that PSCAN is 

limited by the exact 3D coordinate prediction of IDRs. A second potential limitation has been 

observed as well. Indeed, we obtain a slightly different hotspot region, which does not include the 

unexpected variants, when we remove position 521 prior to clustering. This indicates that the hotspot 

prediction is affected by the exact set of positions included within clustering (Fig. S19). Both 

observations thus point to potential limitations of PSCAN that we should consider further to develop 

an improved, even more reliable, hotspot detection method. 

3.5 Pilot analysis on candidate ALS proteins identifies a potential 3D hotspot 

The PSCAN and spherical clustering methods are meant to help during discovery of new hotspots. 

Therefore, we apply these methods to four proteins (KIF4A, TTC3, UTP14C and UNC13C), which have 

recently been associated with ALS (Fig. S23-S29). No significance in either PSCAN (p-value = 0.56, p-

value = 0.4 and p-value = 0.09) or spherical clustering (p-value = 0.27, p-value = 0.94 and p-value = 1) 

analysis is obtained for KIF4A, UTP14C and UNC13C (Fig. S23-S25, Table S5). Moreover, no cluster is 

clearly more associated with ALS compared to the other clusters for any of these proteins (Fig. S26-

S29). According to our methods, there is no hotspot present within any of these three proteins. In 

contrast, the PSCAN based method does identify a significant rare variant hotspot for TTC3 (p-value = 
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0.01) (Fig. 9AB), which occurs at the interface between two structured regions (Fig. 9C). Therefore, 

we conclude that our PSCAN based method is able to identify a potential 3D ALS hotspot in the 

structured part of TTC3. 

 
Figure 9. Potential hotspot in TTC3 based on rare variant PSCAN analysis. The burden test results, (A) the corresponding 

permutation test results (B) and location in 3D (C) are displayed. Each colour represents a separate PSCAN cluster while grey 

coloured positions represent variants that have not been clustered (A). Grey bars represent a histogram of the maximal -

log(P) in each iteration of the permutation test. A green line is added to the plot to show the -log(P) value of the potential 

hotspot, i.e. the cluster with the highest -log(P) value obtained in the non-randomised variant distribution. The grey dashed 

line represents the significant threshold for p-value = 0.05, based on the permutation test. This line is only displayed when 

the threshold could be calculated (B). The 3D location of the hotspot is displayed by colouring the variants in red (C). 

4. DISCUSSION & CONCLUSION  
The aim of this study was to determine whether 3D spatial clustering methods could be used in the 

study of ALS associated genetic hotspots. In order to consider this, we applied both PSCAN and 

spherical clustering to replicate known ALS hotspots. We observed that these methods were able to 

replicate known hotspots relatively well. However, some key limitations to both methods prevented 

optimal hotspot identification. To make 3D spatial clustering a viable alternative to 1D spatial 

clustering techniques, it is necessary to specify these limitations and describe potential solutions that 

can be used to improve upon the existing methods. We will conclude whether spatial clustering 

methods should take 3D structural information into account for application in ALS hotspot discovery. 

4.1 PSCAN rather than spherical clustering should be used to identify 3D hotspots  

We consider the ability of both spherical clustering and PSCAN-based association tests to reproduce 

known hotspots. Prior to performing a cluster based association test to identify new hotspots, the 

shape and size of the hotspots are not known. Therefore, the test that is used should be able to find 

both small localised and large elongated hotspots. Both methods were able to detect a significant 

localised hotspot in FUS that matched with the approximate location that previous studies identified 

(Lattante et al., 2013; Zou et al., 2017). The choice of window size was crucial to obtain this prediction 

for spherical clustering as the result is limited by the variants that fit within the spherical window. 

PSCAN is not limited by predefined window size and thus predicts relatively larger hotspot regions. 

The effect of this limitation of spherical clustering is even more apparent for TARDBP. Indeed, 

spherical clustering was not able to identify a cluster that resembled the expected hotspot as, again, 

spheres were not able to cover enough variants from the expected region. On the other hand, PSCAN 

clustering and burden testing results matched with the known hotspot location. Despite the fact that 

these clusters were consistent with the hotspot described by Lattante et al. (2013), permutation 

testing results did not match with the presence of any hotspot in TARDBP. In contrast, this test was 

able to correctly detect hotspot presence in FUS and absence of hotspots in SOD1. This shows that 

finding a significant result might be more challenging for large hotspots that cover the majority of 

variants as we see for TARDBP. It should be explored whether the test consistently lacks statistical 

power for large hotspots or whether the non significant result was primarily caused by capped 

association scores. In the former case, additional methods that can deal with both localised and 

elongated hotspots are necessary to determine hotspot presence. However, these permutation test 

results do not change our findings for the two clustering methods. Indeed, we conclude that PSCAN is 
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the more appropriate clustering method as it can find reliable results in all tested use cases, while this 

is not the case for spherical clustering. Therefore, PSCAN should be used to identify 3D hotspots 

during future analyses. 

Three caveats have to be made to this preliminary recommendation. First, the best clustering method 

depends on the exact definition of a hotspot. PSCAN is an excellent method to find specific protein 

regions that are associated with disease. This is reflected by the assumption that adding non-hotspot 

regions to the hotspot-cluster decreases the significance of association. However, some studies use a 

different hotspot definition. For instance, the hotspots that Gao et al. (2017) discovered in RAC1 and 

MAP2K1 refer to a part of the protein with a relatively large amount of mutations. In this case, almost 

all other mutations are also associated with disease. Therefore, adding non-hotspot variants to the 

hotspot-cluster does not decrease significance. For this hotspot definition, PSCAN assumptions are 

not met and spherical clustering should be used instead. Second, our study does not cover the entire 

variety of 3D clustering methods and it is possible that alternative, more appropriate methods exist 

for either hotspot definition (Tunyasuvunakool et al., 2021). Third, some notable use cases exist for 

which protein structure based clustering methods can not be used at all. No relevant coordinates can 

be assigned to untranslated variants as they do not occur within the protein structure. However, they 

can be crucial to understand disease association of genes. This is reflected by UNC13C, for which no 

hotspots could be identified, as it is mostly known for an ALS associated intronic variant (Daoud et al., 

2010; Willemse et al., 2023). Similarly, KIF5A, which is related to KIF4A, is known for a hotspot at the 

C-terminal that involves splice-site variants (Brenner et al., 2018). To study these variants and 

potential hotspots, pre-mRNA based 1D clustering methods should be used instead. 

4.2 Limitations of PSCAN to identify reliable hotspots 

The PSCAN method solves the main limitation of spherical clustering as hotspots of different shapes 

and sizes can be discovered without prior information. Still some limitations to PSCAN exist. A notable 

limitation is caused by the firth statistical test, which caps association scores due to limited precision 

beyond p-values of 10-16. When multiple clusters reach capped scores, as we observed for FUS, it is 

not possible to predict the exact hotspot region. Analysis with the SKAT statistical test solved this 

limitation as the cluster with the highest level of association could be identified. This statistical test 

could also be used to investigate whether significant TARDBP hotspots can be obtained if no capping 

occurs. In our study, we also identified unresolved limitations that have to be addressed.  

A thus far unresolved limitation of PSCAN involves the focus on detection of a region most associated 

with disease, rather than the identification of regions with high variant density. This is relevant for 

hotspot discovery as disease associated variants tend to cluster together (Sivley et al., 2018). 

Predicted hotspots for both FUS and TARDBP contain variants that do not occur within known 

hotspot regions and that do not contribute to ALS association. These non-hotspot variants occur 

(linearly) relatively far away from the known hotspot region. In contrast, 1D spatial clustering analysis 

specifically finds the expected regions by considering variant density (Zonneveld, 2022). Therefore, 

this 1D method results in predictions that match expectations for FUS and TARDBP better, compared 

to the predictions obtained with PSCAN. This observation could be due to the input coordinates, 

which we will discuss later on. However, it should also be noted that the 1D method performs an 

additional processing step which removes variants that occur relatively far away from the other 

clustered variants (Loehlein Fier et al., 2017). Extending PSCAN with a similar processing step could 

result in an improved method that favours biologically relevant clusters. However, this step is less 

straightforward for 3D methods as different distributions of distances apply. Graph-based clustering 

methods have been used as an alternative technique to prioritise 3D regions, which are highly dense 

with variants, within some cancer related studies (Kumar et al., 2019; Niu et al., 2016). These graph-
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based clustering methods, such as Girvan-Newman or Markov clustering, can be used to find a 

module of well connected variants within PSCAN graphs (Girvan & Newman, 2002; van Dongen, 

2000). This removes less connected variants that lie relatively far away. Future studies should test 

whether informative variant modules can be obtained and test whether hotspot detection is 

improved. Similarly, label propagation, using relative occurrence in patients versus controls or 

pathogenicity scores as labels, should be tested as it can help to find the most relevant modules 

(Dimitrakopoulos et al., 2018; Leiserson et al., 2015). Indeed, graph-based clustering methods could 

improve hotspot detection as they prioritise biologically relevant regions that are densely mutated 

with risk variants. 

Graph-based clustering methods could also resolve two additional PSCAN limitations. First, these 

methods improve computational efficiency as a reduced number of clusters have to be tested for 

association. Second, they may improve robustness with respect to variants included in the study. 

Currently, adding or removing variant positions to the analysis can affect the result of clustering. 

Namely, introducing an additional variant not only adds this single position to the cluster, but could in 

some cases also lead to the union of two separate clusters by bridging the interconnecting distance. 

Because of this, the exact predicted hotspot region can differ slightly between analyses on the same 

protein. This is not desirable since the underlying biological hotspot does not change. Therefore, it is 

important to consider whether extending PSCAN as described above would resolve this limitation or 

whether additional adjustments to the analyses method are necessary. 

4.3 Limitations of AlphaFold2 

The coordinates that the PSCAN algorithm uses can originate from experimentally determined 

structures. However, for many proteins, computational methods such as AF2 are necessary to obtain 

structures. In our study, we assumed that AF2 models are a good representation of biologically 

relevant folding. However, there are some important downfalls of AF2 that we should consider. These 

limitations are not specific to PSCAN or spherical clustering, but apply to all clustering methods that 

rely on protein structures. First, AF2 does not deal well with different protein conformations (Perrakis 

& Sixma, 2021). For example, only the apo conformation of SOD1 is represented by the AF2 

prediction (Strange et al., 2003a). Since only one conformation of the protein may be predicted 

(Saldaño et al., 2022), some conformation specific hotspots could be missed. On top of that, it should 

be noted that proteins might have a relevant change in conformation upon complex formation. For 

FUS, a change from compact to elongated conformation has been observed upon interaction with 

RNA (Hamad et al., 2020). This completely changes the distance between variants and could 

therefore influence hotspot identification. While advances have been made for the prediction of 

protein-protein complexes, this not is not case for complexes that include RNA or DNA (Perrakis & 

Sixma, 2021). Because of that, FUS and TARDBP hotspots that are relevant during complex formation 

can not be studied with AF2 models. In order to find these conformation specific hotspots, either 

experimental structures or structures obtained with computational modelling techniques have to be 

used instead (Allison, 2020; Thomasen & Lindorff-Larsen, 2022). Moreover, it should be noted that 

AF2 does not predict structures based on fundamental driving forces of folding (Buel & Walters, 2022; 

Perrakis & Sixma, 2021). Instead, predictions reflect structures that could be present within the PDB 

(Jumper et al., 2021). This shows a bias towards the structures that occur within the PDB. This has 

important implications for the prediction of both mutant and IDR structures as we describe below.  

We performed a pilot analysis to determine whether AF2 can reliably predict the effect of variants. 

Variant pathogenicity was previously predicted based on deformation scores calculated from AF2 

mutant structures (McBride et al., 2023) and based on the output of a new algorithm that builds on 

the existing AF2 architecture (Cheng et al., 2023). These methods might already be able to improve 
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hotspot detection as predicted pathogenicity scores can be used for either filtering out benign and 

neutral variants prior to clustering or for label propagation during clustering. This leads to the 

question whether the underlying structural prediction can also be trusted. These structural 

predictions could lead to a better understanding of disease manifestation by showing the direct effect 

of mutations. In our pilot analysis, the direct effect of mutations on AF2 structures was mostly 

overshadowed by IDR artefacts on which we will focus in the next section. Therefore, we consider the 

effect of mutations within ordered regions of CFAP410 and SOD1. For both proteins, the structure is 

only effected at the location of the mutation. McBride et al. (2023) also observed a strictly local effect 

of mutations that gradually declines as distance to the mutation increases. We hypothesize, based on 

our SOD1 findings, that predicted mutation effects do not match with biological effects of mutations. 

Indeed, previous studies showed that predicted mutant structures are not reliable as destabilizing 

mutations, that cause unfolded structures in nature, did not lead to an unfolded protein prediction 

(Buel & Walters, 2022). This makes sense as the AF2 algorithm assumes that mutations do not affect 

the structure (Yang et al., 2023). Furthermore, the inability of AF2 to predict reliable mutant 

structures may be caused by a innate bias to wildtype structures since these are overrepresented in 

the PDB. 

4.4 Challenges of structure prediction for intrinsically disordered regions 

The expected and predicted hotspots for FUS and TARDBP occur within low confidence regions of the 

AF2 structures. It is important to consider whether we can trust the coordinates for these regions as 

they influence our clustering result. Indeed, our randomised structure analysis indicated that the 

inclusion of non-hotspot variants within hotspot predictions depended on the coordinates predicted 

by AF2. Low confidence scores are considered good predictors for disorder (Jumper et al., 2021; 

Tunyasuvukanool et al., 2021). Indeed, we observe that low confidence regions in FUS and TARDBP 

overlap with known IDRs. This raises the question whether IDR structures predicted by AF2 can be 

trusted. The structure of IDRs can usually not be captured experimentally, because of which reliable 

computational predictions are necessary (Punta et al., 2015). However, absence of IDRs within the 

PDB also impacts AF2 prediction quality. Our analysis with AFcolab models demonstrated this as 

predicted IDR structures completely change depending on AF2 algorithm or mutations in the query 

sequence. Both directly affect the number of reference structures that is taken into account. 

Moreover, it has been hypothesized that the number of potential references is negatively impacted 

by the fast evolving nature of IDRs (Ruff & Pappu, 2021). Since IDRs are mostly absent from reference 

structures, small changes in the reference set can have a large impact on the predicted structure. This 

explains why these regions are always predicted with low confidence. These results also show that 

the predicted coordinates for IDRs do not represent actual biology. Indeed, while IDRs are unfolded in 

AF2 models, this is not necessarily the case in nature. Namely, they adopt transient conformations 

that facilitate interactions with multiple binding partners (Punta et al., 2014; Van Der Lee et al., 2014). 

This high level of conformation diversity further contributes to a decreased prediction quality 

(Saldaño et al., 2022). Moreover, neither AF2 or experimental structures can capture the dynamic 

behaviour and conformational diversity of IDRs. We conclude that AF2 can not predict reliable IDR 

coordinates. 

The observation that IDRs are not predicted reliably explains the occurrence of non-hotspot variants 

within the PSCAN predictions for both FUS and TARDBP. In FUS, the predicted hotspot contains 

variants from two separate IDRs which are in close proximity within the AF2 model. Similar effects 

occur in TARDBP as the IDR, which contains the known hotspot, circles around the ordered regions. 

This shows that IDR predictions interfere with optimal hotspot discovery. Consistent with our 

observations, AF2 recommends to not interpret the structure of low confidence regions. However, 

only taking high confidence regions into account during clustering is not a suitable solution. The 
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presence of hotspots in the IDRs of FUS and TARDBP indicates that these regions are not trivial. 

Indeed, IDRs are important in neurodegenerative diseases such as ALS (Babu, 2016; Coskuner-Weber 

et al., 2018; Santamaria et al., 2017). Variants within these regions are expected to contribute to 

disease by promoting an irreversible change in conformation that can lead to aggregation of proteins 

(Lim et al., 2016; Patel et al., 2015; Seera & Nagarajaram, 2022). Based on the involvement of these 

regions in ALS, we conclude that the reliable prediction of IDRs is the most important limitation of 

AF2 based spatial clustering methods.  

In order to prevent unreliable 3D clustering based on IDR predictions, the disordered regions could be 

considered as linear. A hybrid 1D-3D clustering method, in which 3D clustering is only applied to 

ordered regions, could be used. This way, potential 3D hotspots in ordered regions, as we have 

observed in TTC3, can still be detected while it also allows for reliable 1D hotspot detection in 

disordered regions. Despite the importance of IDRs in ALS, variants within ordered regions of SOD1 

and CFAP410 (van Rheenen et al., 2021; Yamashita & Ando, 2015) show that it is still relevant to study 

these regions as well. Still, it would be beneficial to find a method in which transient conformations 

of IDRs are taken into account. These conformations can be 3D as exemplified by the interaction 

between N- and C-terminal IDRs of FUS (Hamad et al., 2020; Loughlin & Wilce, 2019). This brings the 

known hotspot in close proximity to N-terminal variants that might together form a relevant 3D 

hotspot. Therefore, only considering IDRs as separate linear regions, with hybrid 1D-3D methods, 

could ignore disease relevant interactions and 3D hotspots. Recently developed machine learning 

approaches might be a solution for this problem. Grazioli et al. (2019) developed a method to study 

transient conformations of IDRs based on molecular dynamics simulations. All conformations that 

corresponded with a local energy minimum were used to construct graphs. These graphs, in which 

residues that are in contact with each other are connected, could also be used to obtain 3D variant 

clusters. This novel technique could lead to discovery of biologically relevant 3D hotspots within IDRs. 

New insights into these important, but relatively less studied, regions can contribute to a better 

understanding of ALS. 

4.5. Conclusion 

In our study we observed that spatial clustering methods can rediscover known ALS hotspots. The 

PSCAN method solves limitations of spherical clustering techniques. However, further improvements 

are still necessary. Graph based clustering techniques could help in the discovery of the most relevant 

variant dense regions as well as improve robustness. Furthermore, molecular dynamics simulations 

could be used to obtain reliable data on spatial variant proximity within intrinsically disordered 

regions as current AlphaFold2 models can not be used for this purpose. All in all, we conclude that 

the current 3D spatial clustering methods can only be used to identify ALS hotspots within ordered 

protein regions. This can already lead to the discovery of new hotspots relevant in ALS. However, 

improvements in 3D spatial clustering methods still have to be explored to study hotspots within 

IDRs, which are abundant in neurodegenerative diseases such as ALS. Indeed, the most important 

direction for improvement in ALS hotspot identification techniques lies in mapping IDR interactions 

and transient conformations.   
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6. SUPPLEMENTARY MATERIAL 

6.1 Supplementary methods 

Supplementary methods 1. Algorithm for Randomised protein structures. 

The algorithm used to obtain randomised structures randomly determines new 3D coordinates for 

each backbone atom (N, Cα and C). In order to find the new positions, the spherical coordinate 

system, with radius coordinates r and angle coordinates θ (value between 0 and π) and ϕ  (value 

between 0 and 2π) is used (Steiner, 2008, p.295). In this coordinate system, the radius is based on 

atom distances in the provided AlphaFold2 model (Jumper et al., 2021). With the spherical 

coordinates, and the cartesian coordinates of the previous atom, standard conversion formulas for for 

spherical and cartesian coordinate systems are used to determine the position of each subsequent 

atom (Formula I).  

𝑥𝑖 = 𝑥𝑖−1 + 𝑟𝑖sin(𝜃𝑖)cos(𝜙𝑖) 

𝑦𝑖 = 𝑦𝑖−1 + 𝑟𝑖sin(𝜃𝑖)sin(𝜙𝑖) 

𝑧𝑖 = 𝑧𝑖−1 + 𝑟𝑖cos(𝜃𝑖) 

Formula I. Conversion between spherical and cartesian coordinate system. To determine the position of the next atom 

based distance to previous position (radius), these conversion formulas are used. The position of the previous atom is 

included in the formulas since the general conversion formulas for spherical to cartesian coordinates assume that the origin 

is used as middle point, or previous position (Steiner, 2008, p.295).  

The first atom (i = 1) is always positioned at (x1 = 1, y1 = 1, z1 = 1). The second atom (i = 2) is calculated 

using one random θ2 value and one ϕ2 random value within Formula I. All subsequent points (i > 2) 

are determined by iterating over a couple of steps until the output structure has the same length as 

the input AlphaFold2 structure. Similar as before, θi and ϕi values are used as input to Formula I to 

obtain the cartesian coordinates of the next position (i). Different from before, a wide range of these 

values are used (ranges with step size of 0.1 within above defined ranges). This results in 2016 

https://doi.org/10.1093/nar/gkab1061
https://doi.org/10.1136/jnnp-2022-330504
https://doi.org/10.1186/s40035-015-0036-y
https://doi.org/10.1038/s41392-023-01381-z
https://doi.org/10.1038/s41392-023-01381-z
https://doi.org/10.1038/s41587-019-0055-9
https://doi.org/10.1002/brb3.1625
https://doi.org/10.1136/jnnp-2016-315018
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different combinations of angle values and therefore 2016 possible positions for atom i. The resulting 

list of potential new positions is filtered using bond angle and atom distance criteria.  

New positions have to be at least 2 Angstrom from other atoms (excluding the previous atom) to 

prevent overlapping atoms and bonds. Furthermore, bond angles (calculated based on positions i, i-1 

and i-2)  have to match experimentally observed results. If the next atom is a N, this angle is ~110° 

while the angle should be ~120° when the next atom corresponds to a C or Cα (Pauling et al., 1951; 

Engh & Huber, 1991). To account for observed angle variety, the calculated angles should be within a 

5° range of these values. To account for the planar structure characteristic of proteins, an additional 

step is performed after filtering on general angles has occurred when the next atom corresponds to a 

Cα atom. Most amino acids are in trans-conformation, this means that we take the new Cα position 

with maximal distance to  the previous Cα atom. A small probability (5.4% for Proline and 0.1% for all 

other residues) for cis-conformation is taken into account based on observations by Joseph et al. 

(2012). In cis-conformation. Only the position with minimal distance to previous Cα atom is chosen. 

This does not always lead to a maximal planar structure. Since multiple studies show that proteins 

can deviate quite a bit from this characteristic structure (Matthews, 2016), this is still sufficiently close 

to known limits of protein structures while taking computational efficiency into account.  

From those potential positions that remain, a random new position is chosen and the algorithm 

continues to the next iteration (i = i+1). When no potential position remains, the algorithm removes 

the position determined from the past 3 atoms and starts over from this point.  
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6.2 Supplementary tables 

Supplementary table 1. Canonical transcript and corresponding identifiers that were obtained from Ensembl and used to 

find the protein structure of interest from AlphaFold2.  

Protein Name / 
symbol  

UniProt ID Transcript ID Transcript ID version AlphaFold2 
download 

SOD1 P00441 ENST00000270142 ENST00000270142.11 January 1st 2023 

FUS P35637 ENST00000254108 ENST00000254108.12 February 1st 2023 

TARDBP Q13148 ENST00000240185 ENST00000240185.8 April 5th 2023 

KIF4A O95239 ENST00000374403 ENST00000374403.4 May 5th 2023 

UTP14C Q5TAP6 ENST00000521776 ENST00000521776.2 May 5th 2023 

TTC3 E9PMP8 ENST00000418766 ENST00000418766.6 May 5th 2023 

UNC13C Q8NB66 ENST00000260323 ENST00000260323.16 May 5th 2023 

RAC1 P63000 ENST00000348035 ENST00000348035.9 July 3th 2023 

MAP2K1 Q02750 ENST00000307102 ENST00000307102.10 July 3th 2023 
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Supplementary table 2. Structures obtained from the RCSB. The corresponding PDB ID and references of each structure is 

summarised in the table. The structures were aligned to each other and AlphaFold Google Colab predictions before they 

were downloaded. 

Protein Type Source PDB ID References 

SOD1 Wildtype AlphaFold2 AF_AFP00441F1 Jumper et al., 2021; Varadi et al., 2022 

Wildtype 
apo 

Experimental 1HL4 Strange et al., 2003b; Strange et al., 2003a 

Wildtype 
holo 

Experimental 1HL5 Strange et al., 2003c; Strange et al., 2003a 

Mutant A5V Experimental 1N19 Cardoso et al., 2002a; Cardoso et al., 
2002b 

Mutant 
I114T 

Experimental 1UXL Hough et al., 2004a; Hough et al., 2004b; 

Mutant 
G38R 

Experimental 1AZV Hart et al., 1997; 

FUS Wildtype AlphaFold2 AF_AFP35637F1 Jumper et al., 2021; Varadi et al., 2022 

TARDBP Wildtype AlphaFold2 AF_AFQ13148F1 Jumper et al., 2021; Varadi et al., 2022 

CFAP410 Wildtype AlphaFold2 AF_AFO43822F1 Jumper et al., 2021; Varadi et al., 2022 

 
Supplementary table 3. Number of reference sequences that AlphaFold Colab takes into account during each prediction. 

The number of reference sequences present in the MSA differs depending on exact structure input. Running the algorithm 

multiple times for the same sequence did not alter this result. 

Protein Mutation Unique sequences in MSA 

CFAP410 Wildtype 12740 

V58L 13218 

R172W 12722 

FUS Wildtype 10587 

P525L 10572 

TARDBP Wildtype 14141 

TARDBP G298S 14130 

SOD1 Wildtype 12105 

SOD1 A5V 12111 

SOD1 D91A 12081 

 
Supplementary table 4. Results of Spearman’s correlation test. Correlation test is performed on cluster size versus 

association test scores from PSCAN analysis. We obtain a p-value and Spearman’s rank correlation coefficient (ρ) from the 

correlation test. A strong correlation is indicated by ρ coefficients close to -1 or +1, while the absence of correlation is 

indicated by a value close to 0. 

 p-value ρ  

 Rare Ultrarare Rare Ultrarare 

SOD1 5.3x10-4 5.0x10-6 0.5 0.68 

FUS 0.01 3.7x10-2 0.28 0.26 

TARDBP 2.4x10-4 5.0x10-5 0.67 0.85 

KIF4A 5.5x10-8 7.6x10-10 0.58 0.74 

UTP14C 5.6x10-4 1.6x10-5 0.30 0.49 

TTC3 2.1x10-3 7.8x10-11 0.25 0.61 

UNC13C 4.5x10-16 1.6x10-5 0.38 0.52 

RAC1 1.4x10-12 - 0.8 - 

MAP2K1 1.8x10-17 - 0.75 - 
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Supplementary table 5. Results of permutation test. Based on the permutation test, a p-values was calculated by dividing 

the number of iterations that managed to obtained higher -log(P) values than the potential hotspot results and by the total 

number of permutation iterations (N=100). 

 PSCAN Spherical 

 Rare Ultrarare Rare Ultrarare 

SOD1 1 1 1 0.23 

FUS 0.01 0.01 0.01 0.77 

TARDBP 0.08 0.18 0.39 1 

KIF4A 0.56 0.65 0.27 1 

UTP14C 0.4 0.07 0.94 0.69 

TTC3 0.01 0.34 0.94 0.97 

UNC13C 0.09 0.72 1 1 

RAC1 1 - 1 - 

MAP2K1 1 - 0.37 - 

 
6.3 Supplementary figures 

 
Supplementary Figure 1. Comparison between AlphaFold2 structures of FUS. The confidence score (pLDDT) of the wildtype 

protein structure prediction (A) and the deformation scores between structure pairs (BC). The deformation scores are based 

on full structure alignments (B) and localised (only folded regions) alignments to filter out the deformation caused by 

disordered regions (C). The deformation score is the distance at each position between aligned structures. The position of 

the mutation is displayed by a vertical line. 

 
Supplementary Figure 2. Comparison between AlphaFold2 structures of TARDBP. The confidence score (pLDDT) of the 

wildtype protein structure prediction (A) and the deformation scores between structure pairs (BC). The deformation scores 

are based on full structure alignments (B) and localised (only folded regions) alignments to filter out the deformation caused 

by disordered regions (C). The deformation score is the distance at each position between aligned structures. The position 

of the mutation is displayed by a vertical line. 



25 
 

 
Supplementary Figure 3. Confidence score of CFAP410 structures. The confidence score (pLDDT) of the wildtype protein 

structure prediction (A) and the deformation scores between structure pairs. The deformation scores are distances at each 

position between two aligned structures. The aligned structures are based on full structure alignment (B).  

  
Supplementary Figure 4. Deformation scores for CFAP410 structures. Pairs of structures are compared using a summary 

score that represents the mean deformation score. This score is calculated by dividing the cumulative distance between the 

two structures in a pair by the protein length (A). The deformation score is the distance at each position between the two 

aligned structures within a pair (BC).  Deformation scores are calculated between V58L mutants (B) and wildtypes (C).   

 
Supplementary Figure 5. Deformation scores for SOD1 computational and experimental scores. Pairs of structures are 

compared using a summary score that represents the mean deformation score. The deformation score is the distance at 

each position between the two aligned structures within a pair. The mean score is calculated by dividing the cumulative 

distance between the two structures in a pair by the protein length. 
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Supplementary Figure 6. Most significant spheres obtained with spherical clustering for RAC1 and MAP2K1. Association 

with cancer was tested for spheres with a radius of 5Å. Only the spheres with an association score of -log(P) = 16 are 

displayed. The variant positions of the hotspots identified by Gao et al. (2017) are displayed by small black spheres. 

  
Supplementary Figure 7. Spherical clustering result for MAP2K1 and RAC1. The number of spheres with a radius of 5Å that 

reach each association score (-log(P)) is represented by grey bars (A). For the permutation test result, the number of 

iterations in which each association score was the maximal -log(P) value obtained is displayed. The maximal -log(P) value 

obtained in the non-randomised variant distribution is visualized with a green line (B). 

  
Supplementary Figure 8. Spherical clustering result for SOD1, FUS and TARDBP. Rare variant (A) and ultrarare variant (B) 

analysis results obtained for a window size of 5Å. The bars represent the number of clusters that reach each association 

score (-log(P)). The vertical dashed line represents a significant result for p-value=0.05 according to permutation testing. 
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Supplementary Figure 9. Potential hotspot locations predicted by spherical ultrarare variant analysis. For FUS and SOD1 

only clusters that reach significance during permutation testing are displayed. For TARDBP, no significance is reached and 

the spheres with the highest -log(P) are displayed instead. The colour of the spheres indicates relative -log(P) values, where 

dark red represents high values and light yellow represents low values. All spheres have a window size of 5Å. 

  
Supplementary Figure 10. Permutation test results for ultrarare variant analysis with spherical clustering. The spheres 

used during analysis have a radius of 5Å (A) and 10Å (B). The green line represents the highest -log(P) value for the real 

variant distribution, while grey bars represent the counts of highest -log(P) obtained in each iteration of randomised variant 

positions. The grey dashed line represents the significant threshold for p-value = 0.05, based on the permutation test. This 

line is only displayed when the threshold could be calculated. 

 
Supplementary Figure 11. Spherical clustering result for FUS and TARDBP. Rare variant (A) and ultrarare variant (B) analysis 

results obtained for a window size of 10Å. The bars represent the number of clusters that reach each association score (-

log(P)). The vertical dashed line represents a significant result for p-value=0.05 according to permutation testing. 
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Supplementary Figure 12 Association score of rare variants of the 5Å hotspot in FUS. The association score (-log(P)) that is 

obtained for variants from position 521 (orange), 517 (blue) and the cluster which combines all of these variants (green) is 

displayed at the their respective positions within the FUS protein. 

 
Supplementary Figure 13. Results of PSCAN based analysis for MAP2K1 and RAC1. The size of clusters, i.e. the number of 

variant positions included within the cluster, and the corresponding association scores (-log(P)) is displayed. A horizontal 

dashed line is added to show the association score obtained with ACAT-O (A). The permutation test results are summarised 

by visualizing the maximal association score obtained in each iteration as a histogram with grey bars. The association score 

of the non-randomised variant distribution is displayed by the green line on top of these permutation test results (B). 

 
Supplementary Figure 14. Association scores of PSCAN clusters for ultrarare variant analysis. The size of the tested cluster, 

i.e. the number of variant positions included within the cluster, is plotted against the association score (-log(P)). A horizontal 

dashed line is added to show the association score obtained with ACAT-O. 

 
Supplementary Figure 15. Most informative cluster for SOD1 according to PSCAN analysis. A 1D representation of the 

variants that make up the most informative cluster for rare variant (A) and ultrarare variant (B) analysis.  
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Supplementary Figure 16. Permutation test results for ultrarare variant PSCAN analysis. Grey bars represent a histogram of 

the maximal association score (-log(P)) in each iteration of the permutation test. A green line is added to the plot to show 

the -log(P) value of the potential hotspot, i.e. the cluster with the highest -log(P) value obtained in the non-randomised 

variant distribution. The grey dashed line represents the significant threshold for p-value = 0.05, based on the permutation 

test. This line is only displayed when the threshold could be calculated. 

  
Supplementary Figure 17. Association scores of PSCAN analysis with SKAT burden testing for FUS. The clusters obtained in 

rare variant analysis. The size of the tested cluster, i.e. the number of variant positions that in each cluster, is plotted against 

the association significance (-log(P)).  

 
Supplementary Figure 18. Most informative division of ultrarare variant analysis with PSCAN. A 1D representation of the 

ultrarare variants that make up the most informative clusters for TARDBP (A) and FUS (B). Each colour represents a separate 

cluster while grey coloured positions represent positions that have not been clustered. The cluster with the highest level of 

association (-log(P)) is the predicted hotspot.  

 
Supplementary Figure 19. Most informative division of PSCAN analysis results for FUS. A 1D representation of the rare 

variants that make up the most informative clusters obtained with SKAT burden testing (A) and firth burden testing on 

clusters that were made without included position 521 during clustering (B). Each colour represents a separate cluster while 

grey coloured positions represent positions that have not been clustered. The cluster with the highest level of association (-

log(P)) is the predicted hotspot. 
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Supplementary Figure 20. Analysis on the contribution of unexpected hotspot variants to hotspot results. The association 

score of a rare variant cluster with (blue) and without (orange) the unexpected variants is performed using SKAT burden 

testing. The analysis is performed for both FUS (A) and TARDBP (B).  

 
Supplementary Figure 21. Randomised structure analysis PSCAN on rare variants of FUS and TARDBP. The most 

informative division obtained with the AF2 models is displayed in grey. The results obtained with randomised structures are 

displayed with black error bars. Error bars are calculated based on the most association score (-log(P)) obtained in the most 

informative division of each randomisation iteration. Large error bars generally refer to positions that do not occur in the 

most informative division after filtering on minor allele count of 5.  

 
Supplementary Figure 22. Predicted hotspot result with PSCAN analysis. A 3D representation of the potential hotspot 

obtained with rare variant (AC) and ultrarare variant (BD) analysis for FUS (AB) and TARDBP (CD). Clusters are displayed on 

the 3D AlphaFold2 structure of the protein. Only the most significant cluster is displayed in each case.  

 
Supplementary Figure 23. Permutation test results for rare variant PSCAN analysis on candidate ALS genes. Grey bars 

represent a histogram of the maximal association score (-log(P)) in each iteration of the permutation test. A green line is 

added to the plot to show the -log(P) value of the potential hotspot, i.e. the cluster with the highest -log(P) value obtained 

in the non-randomised variant distribution. The grey dashed line represents the significant threshold for p-value = 0.05, 

based on the permutation test. This line is only displayed when the threshold could be calculated. 
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Supplementary Figure 24. Permutation test results for ultrarare variant PSCAN analysis on candidate ALS genes. Grey bars 

represent a histogram of the maximal association score (-log(P)) in each iteration of the permutation test. A green line is 

added to the plot to show the -log(P) value of the potential hotspot, i.e. the cluster with the highest -log(P) value obtained 

in the non-randomised variant distribution. The grey dashed line represents the significant threshold for p-value = 0.05, 

based on the permutation test. This line is only displayed when the threshold could be calculated. 

 
Supplementary Figure 25. Permutation test results for rare variant spherical clustering analysis on candidate ALS genes. 

Grey bars represent a histogram of the maximal association score (-log(P)) in each iteration of the permutation test. A green 

line is added to the plot to show the -log(P) value of the potential hotspot, i.e. the cluster with the highest -log(P) value 

obtained in the non-randomised variant distribution. The grey dashed line represents the significant threshold for p-value = 

0.05, based on the permutation test. This line is only displayed when the threshold could be calculated. 

 
Supplementary Figure 26. Most informative division of rare variant analysis with PSCAN for candidate ALS genes. A 1D 

representation of the ultrarare variants that make up the most informative clusters for KIF4A, UNC13C and UTP14C. Each 

colour represents a separate cluster while grey coloured positions represent positions that have not been clustered. The 

cluster with the highest level of association (-log(P)) is the predicted hotspot. 
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Supplementary Figure 27. Most informative division of ultrarare variant analysis with PSCAN for candidate ALS genes. A 

1D representation of the ultrarare variants that make up the most informative clusters for KIF4A, UNC13C, TTC3 and 

UTP14C. Each colour represents a separate cluster while grey coloured positions represent positions that have not been 

clustered. The cluster with the highest level of association (-log(P)) is the predicted hotspot. 

 
Supplementary Figure 28. Association scores of rare variant PSCAN clusters for candidate ALS genes. The size of the tested 

cluster, i.e. the number of variant positions included within the cluster, is plotted against the association score (-log(P)). A 

horizontal dashed line is added to show the association score obtained with ACAT-O. 

 
Supplementary Figure 29. Association scores of ultrarare variant PSCAN clusters for candidate ALS genes. The size of the 

tested cluster, i.e. the number of variant positions included within the cluster, is plotted against the association score (-

log(P)). A horizontal dashed line is added to show the association score obtained with ACAT-O. 


