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Abstract  

 

Anthropogenic impacts, including rising temperatures from fossil fuel emissions, widespread 

air and water pollution, and land use changes for farming and urbanization, have led to 

extensive destruction and degradation of critical landscapes. Bogs, in particular, are at risk, as 

they provide essential ecosystem services such as water purification, flood control, carbon 

storage, and recreation. The loss of these areas can be disastrous, releasing significant 

volumes of terrestrial carbon and undermining climate action efforts. In the Netherlands, 

restoration initiatives have been ongoing to try recover some of the once-extensive peatlands 

in the northern regions, where now only small fragments remain. Effective monitoring of 

these restoration techniques is vital for evaluating their success and informing future 

applications. 

This study investigates the impact of innovative restoration methods, specifically peat 

inversion, on Sphagnum recovery and Molinea reduction in the Fochteloërveen bog remnant. 

Utilizing drone surveying combined with Random Forest classification, two sites that 

underwent peat inversion in 2000 and 2023 were compared with a control site. The 

classification accuracy reached 88%, effectively distinguishing fine-scale vegetation features. 

Results indicated that the 2000 inverted site did not have more Sphagnum or less Molinea 

cover when compared to the control, although biomass density in the 2000 inverted site was 

higher. The 2023 inverted site predominantly consisted of open water and high levels of dead 

Molinea due to the recent peat inversion so no conclusive results could be drawn from it. 

Hydrological data revealed stable water levels in both inverted sites, suggesting ideal 

conditions for Sphagnum recovery. 

Ultimately, this research confirms that the monitoring of bog restoration efforts using drones 

and modern classification techniques can be accurate and effective. Thus, aiding in the 

improvement of restoration efforts to give the best opportunity for Sphagnum expansion and 

the return of peatland dynamics which are central in carbon sequestration and the continued 

provision of ecosystem services.  

 

Keywords: Wetlands, Restoration,  Bogs, Peat, Random Forest, Drone Survey, 

Classification, Peat Inversion, UAS, Sphagnum, Molinea 
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Glossary: 
• Acrotelm: The upper layer of peat, consisting of partially decayed plant material that 

retains water. 

• Anaerobic Conditions: Environments that lack oxygen.  

• Anthropogenic Climate Change: Climate change driven or influenced by human 

activities. 

• Atmospheric Nitrogen Deposition: The accumulation of nitrogen compounds in 

ecosystems from the atmosphere. 

• Biodiversity: The variety of life forms within an ecosystem, including species 

richness and genetic diversity. 

• Bog: A type of wetland characterized by acidic waters, peat accumulation, and 

specialized plant communities. 

• Carbon Sequestration: The process through which carbon dioxide (CO2) is captured 

and stored in biomass and soils, thereby reducing atmospheric carbon levels. 

• Carbon Sink: A natural or artificial reservoir that absorbs and stores carbon from the 

atmosphere 

• Catotelm: The lower layer of peat composed of more heavily decomposed plant 

matter, typically more stable and anaerobic. 

• Damming: The construction of barriers in wetland areas to retain water and raise 

water tables.  

• Decomposition: The biological process through which organic matter is broken down 

into simpler substances by microorganisms. 

• Ecosystem Engineer: A species that significantly modifies its environment, thereby 

creating or maintaining habitats for other species. 

• Ecosystem Services: The benefits that humans derive from ecosystems. 

• Eutrophication: The process by which water bodies become enriched with nutrients. 

• Feedback Loops: Processes in which the output of a system influences its own 

operation. 

• Hydrological Gradients: Variations in water availability across a landscape. 

• Hydrology: The study of water movement, distribution, and quality within 

ecosystems. 

• Microforms: Specific small-scale landforms within bogs that create distinct habitats 

and affect water retention and plant communities. 
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• Microtopography: The small-scale variations in the surface elevation and features of 

an area, such as mounds and depressions. 

• Non-parametric Classifier: A type of classifier that does not assume a specific 

distribution for the underlying data, allowing for greater flexibility in data analysis. 

• Nutrient Dynamics: The movement and transformation of nutrients within an 

ecosystem 

• Peat Inversion: A restoration technique that involves turning over the upper layer of 

soil. 

• Peat: Accumulated organic material, primarily composed of decomposed plant 

matter, that forms in wetland environments under anaerobic conditions. 

• Random Forest Classification: A machine learning algorithm that builds multiple 

decision trees to classify data based on various features. 

• Remote Sensing: The use of satellite or aerial technologies to collect data about the 

Earth's surface. 

• Restoration Techniques: Methods employed to rehabilitate degraded ecosystems. 

• Spatial Autocorrelation: The degree to which a set of spatial data points correlates 

with each other, influencing the accuracy of statistical analyses. 

• Spectral Reflectance: The amount of light reflected by a surface at different 

wavelengths, used in remote sensing to analyze vegetation types. 

• Tipping Points: Critical thresholds at which a small change in environmental 

conditions can lead to significant and often irreversible changes in ecosystem 

structure and function. 

• Unmanned Aerial Systems (UAS): Drones or aerial vehicles operated without a 

human pilot on board. 

• Vascular Plants: Plants that have specialized structures (roots, stems, leaves) for 

transporting water and nutrients. 

• Wetlands: Ecosystems characterized by high water levels, either permanently or 

seasonally, which supports aquatic and semi-aquatic vegetation. 
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1. Introduction  

 

1.1 Wetlands  

Climate change represents an urgent and critical global issue, significantly impacting 

numerous ecosystems that provide essential ecosystem services (Salimi et al., 2021). The loss 

of these systems and their associated services has only recently come to the attention of the 

public and policymakers, making now an opportune moment to invest in conservation and 

restoration efforts to cease further losses (Antala et al., 2022; Salimi et al., 2021). Wetlands 

are one such unique ecosystem which provides vital ecosystem services, including water 

retention, climate regulation, flood control, recreation, and carbon sequestration (An & 

Verhoeven, 2019; Regan et al., 2019; Steenvoorden & Limpens, 2023a). Despite covering 

only 1-2% of the earth’s surface, wetlands sequester over 20% of the global organic carbon 

(Müller & Joos, 2021; Steenvoorden et al., 2022; Temmink et al., 2022). Since the Industrial 

Revolution, 46% of global wetlands (Zou et al., 2022) and 21% of European wetland (Fluet-

Chouinard et al., 2023) have been degraded due to drainage, deforestation, agriculture, 

urbanisation, and, most recently, anthropogenic climate change (Fluet-Chouinard et al., 2023; 

Green et al., 2017; Zou et al., 2022). Destruction and degradation of these systems have 

several negative environmental impacts, including increased wildfires in drained regions 

(Shepard et al., 2023), loss of biodiversity (Regan et al., 2019), reduced water retention 

exacerbating local flooding (Fluet-Chouinard et al., 2023), changes to regional microclimates, 

and a switch from carbon sinks to carbon sources (An & Verhoeven, 2019; Günther et al., 

2020). Recent estimates indicate that approximately 276.4 +/- 175.5 Giga Tonnes of Carbon 

Dioxide (CO2) have been released into the atmosphere from degraded wetlands over the past 

71 years (Zou et al., 2022). These emissions contribute to climate change, leading to further 

degradation as higher temperatures dry out wetland areas (Green et al., 2017; Müller & Joos, 

2021; Salimi et al., 2021). Thus, creating a positive (self-perpetuating) feedback loop: as 

peatlands dry, they release stored CO2, accelerating global warming, further drying peatlands 

and releasing more CO2  (Müller & Joos, 2021; Qiu et al., 2020). Every 100 Gt of Carbon 

released from peatlands could cause a warming of about 0.2 °C (Müller & Joos, 2021).  

Bogs, a wetland subtype, exhibit resilience, typically withstanding various perturbations due 

to the interdependencies among wetland vegetation types, hydrology, topography, and 

climate, which collectively establish beneficial conditions like a high-water level and acidic 

pH (Dise, 2009; Steenvoorden & Limpens, 2023a). However ongoing climate stressors and 

land use changes are undermining these self-preserving dynamics and eroding this resilience 
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(Salimi et al., 2021). Continued disturbance could trigger tipping points, resulting in an 

abrupt transition of vegetation and ecosystems to a degraded state (Dise, 2009; Green et al., 

2017; Müller & Joos, 2021). Projections indicate a decline in wetland areas, particularly 

bogs, across Western Europe due to climate change, with further warming potentially 

converting these areas to net carbon sources (Dise, 2009; Qiu et al., 2020). 

 

1.2 Bogs & Peat Dynamics 

Bogs are characterised by a high-water table, sustained by rainwater, and the accumulation of 

decay-resistant plant matter (Sahar et al., 2022). Resulting in a nutrient-poor but organic 

carbon-rich soil called peat, which grows and expands over millennia to form peatlands 

(Sahar et al., 2022). Anaerobic and low pH conditions within bogs inhibit decomposition, 

allowing the gradual build-up of organic material to form peat over extended periods 

(Shepard et al., 2023; Temmink et al., 2022; Treat et al., 2019). This results in high rates of 

carbon accumulation, leading to carbon densities of 1000-2000 MG C ha-1 (mega-grams of 

carbon per hectare) in peat (Temmink et al., 2022). Bogs support unique biodiversity, 

fostering specialised flora and fauna that contribute to peat formation and provide ecosystem 

services like carbon storage, flood control, water retention, and climate regulation (Bhatnagar 

et al., 2021; Regan et al., 2019). Bog plant types are organised along hydrological and 

topographical gradients, creating micro topographical features (microforms)  (Sahar et al., 

2022; Steenvoorden & Limpens, 2023a).  

Three commonly occurring microforms in bogs include hummocks, lawns, and hollows. The 

vegetation type and associated microforms are strong indicators of peatland functions, as they 

1) reflect hydro-physical properties like water flow and nutrient dynamics, 2) significantly 

influence carbon sequestration rates through the promotion of plant growth and 

decomposition, 3) maintain carbon sink function by encouraging plant diversity, and 4) 

enhance ecosystem resilience through reorganisation of plant types in response to changing 

precipitation and groundwater levels under climate change (Steenvoorden & Limpens, 

2023a). The development and persistence of microforms are driven by feedback interactions 

between vegetation and abiotic factors (pH, light, water depth, nutrients, and temperate) 

(Steenvoorden et al., 2022; Temmink et al., 2022).  
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A key plant species in temperate bogs is peat moss (Sphagnum), which possesses self-

regulating properties that enhance its environment, facilitating its survival and expansion by 

creating acidic, nutrient-poor, cold, and anoxic conditions (Lamers et al., 2000; van Breemen, 

1995). Sphagnum plays a crucial role in microform development and influences the 

composition of co-existing plant species, as only certain species can co-exist in the acidic, 

waterlogged conditions it creates (Antala et al., 2022; van Breemen, 1995). Furthermore, 

Sphagnum is central to peat formation (Joosten, 1993) , and the acrotelm, the uppermost layer 

of peat, is comprised of partially decayed plant material (Smolders et al., 2003). Sphagnum is 

highly sensitive to fluctuations in water level, expanding during periods of high water levels 

and compacting during low water conditions (Couwenberg & Joosten, 1999; Joosten, 1993). 

Extended periods of low water can lead to desiccation and death of Sphagnum patches, 

halting peat creation and carbon storage (Couwenberg & Joosten, 1999). Therefore, 

immediate and effective action is essential to ensure the protection of existing bogs and the 

restoration of degraded areas.  

 

1.3 Restoration  

Successful restoration of bogs hinges on the vegetation composition, which is central to peat 

formation and ecosystem resilience, but is facing increasing risks from land-use changes and 

increasing temperatures (Antala et al., 2022; Robroek et al., 2017). Bogs have been drying up 

for centuries due to drainage for peat extraction, agriculture, and urbanisation; the remaining 

areas are now under heightened pressure from climate change and nitrogen deposition  

(Müller & Joos, 2021; Steenvoorden et al., 2022). Drainage poses a particular threat to bogs, 

as it leads to peat compaction due to water removal, reducing the surface porosity and 

complicating recovery efforts (Joosten, 1993). The pore spaces which once reattained water 

become oxygenated, triggering aerobic decomposition of the organic carbon stored in the 

peat, which is subsequently released as carbon dioxide (Joosten, 1993; Jurasinski et al., 

2020). Bog degradation has resulted in a loss of essential ecosystem services, and predictions 

indicate further increases in degradation if immediate action is not taken (Jurasinski et al., 

2020; Müller & Joos, 2021; Salimi et al., 2021). Muller & Joos forecast a median loss of 61% 

for Northern peatland areas by 2300 under the most severe climate change scenarios, with 

even moderate scenarios predicting a median loss of 18% (Müller & Joos, 2021). These 

simulations link higher future emissions to increased loss of bogs, underscoring the urgent 

need for emissions reductions  (Müller & Joos, 2021) and to conserve and restore bogs’ 



 10 

carbon-dense peat, which takes centuries to rebuild (Temmink et al., 2022). Restoring carbon 

sink capacity is a time-consuming process, and it may not return to previous levels, thus 

highlighting the necessity of protecting the remaining peatlands (Joosten, 1993; Loisel & 

Gallego-Sala, 2022).  

Restoration efforts encompass a variety of techniques, the most common being rewetting 

(Renou-Wilson et al., 2019; Zou et al., 2022) This involves increasing an areas water table to 

encourage the reestablishment of bog plant species (Robroek et al., 2017; Smolders et al., 

2002). Recently implemented strategies include soil inoculation, which entails the 

introduction of living matter from an intact target ecosystem to a degraded system, providing 

it with an intact microbial community and propagules for plant recovery (Shepard et al., 

2023).  Damming is often employed to maintain the raised water level after rewetting, dykes 

are installed in an area, and a window of opportunity is created for the recovery of bog 

species (Temmink et al., 2022). In Germany, an experimental study investigated the removal 

of the topsoil layer in a degraded bog prior to rewetting; this approach aimed to eliminate the 

previously cultivated vegetation and create more optimal conditions for bog plant species 

(Huth et al., 2022). Results demonstrated that topsoil removal caused a shift to a more 

nutrient-poor and acidic state, benefiting target species such as Sphagnum (Huth et al., 2022). 

A novel restoration technique is peat inversion, which involves flipping over the top layer of 

peat to disrupt the expansion of undesirable species, such as grasses which spread quickly 

and outcompete other plants, and facilitate the establishment of target plant types, including 

Sphagnum (de Bruin et al., 2023). Ongoing restoration efforts must be assessed and refined to 

enhance carbon sink capacity and bolster bogs’ resilience to future disturbances (Loisel & 

Gallego-Sala, 2022). These restoration initiatives also represent a cost-effective and reliable 

mitigation strategy for policy makers (Qiu et al., 2020). 

 

1.4 The Dutch Context 

Historically, extensive areas of Northern Europe were covered in bogs; of the 59,372,700 ha, 

46% have been degraded or destroyed (Hu et al., 2017; Jurasinski et al., 2020). In The 

Netherlands, approximately 180,000ha of bogs existed at the beginning of the 17th Century 

(Tomassen et al., 2010). However, centuries of drainage for agriculture have led to only 

isolated fragments (Brouns et al., 2016; Mathema, 2005; Quik et al., 2023). By 1900, only 

around 90,000ha remained, which declined to approximately 3,600ha today (Tomassen et al., 
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2010). These areas are estimated to contain only 5ha of undisturbed, peat-forming raised bog 

(Tomassen et al., 2010). The remaining bog remnants are now exposed to elevated levels of 

atmospheric nitrogen deposition resulting from agricultural practices, primarily livestock 

farming  (Andersen et al., 2017; Brouns et al., 2016; Mathema, 2005) and are increasingly 

threatened by drainage, pollution, and excavation (van Beek et al., 2023). Another issue is 

nitrogen and phosphorus from agricultural activities accumulating on the surface of the bog 

water, leading to eutrophication (Casparie, 1993) and algae growth (van Duinen et al., 2006).  

One of the most significant remaining peatland remnants is the Fochteloërveen in Friesland, 

The Netherlands, which is recognised as a protected area under the European Union’s Natura 

2000 project (Quik et al., 2023). This region encompasses 1700ha of peatland with 50-200cm 

thick peat (Altenburg et al., 1993). This peat formed 6000-7000 years ago and remained 

largely untouched until the 16th Century, when minor peat extraction occurred, although it 

was not a significant fuel source at the time (Altenburg et al., 1993). However, considerable 

damage was caused in the 18th century when buckwheat was cultivated in the area, leading to 

the excavation of ditches and canals to drain the peat (Altenburg et al., 1993). The top layer 

was burned annually to create ash for fertilisation, resulting in nearly a meter of peat loss 

(Altenburg et al., 1993). The drying out and enrichment of the top layer has destroyed the 

acrotelm and facilitated the dominance of purple moor grass (Molinea Caerulea), whose deep 

roots allow access to the lowered water level, overshadowing and reducing the coverage of 

raised bog species, particularly Sphagnum (Altenburg et al., 1993; Smolders et al., 2002; 

Tomassen et al., 2010). The Fochteloërveen is managed by Natuurmonumenten, a Dutch 

conservation organisation focused on nature and biodiversity preservation (Altenburg et al., 

2017). The management aims to maintain the open raised bog landscape and restore 

associated bog communities (Altenburg et al., 1993).  

Restoration efforts in the area have included rewetting and damming to retain rainwater and 

sustain high water levels (Altenburg et al., 1993). To aid in rewetting the area, dams were 

constructed in two phases, 1982-84 and 1999-2002, this split the Fochteloërveen into first ten 

compartments and then forty (Altenburg et al., 1993; Mathema, 2005). This rewetting 

initiative aimed to encourage the spontaneous re-establishment of Sphagnum, which requires 

stable groundwater levels that are not too deep to permit light to penetrate and are maintained 

year-round (Mathema, 2005; Tomassen et al., 2010). The rewetting successfully raised the 

water level, however the problem of Molinea dominance persists in the area (Altenburg et al., 

2017). Peat inversion was also implemented in sections of the Fochteloërveen, involving the 
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excavation and turnover of the top layer of peat to counteract the expansion of Molinea (de 

Bruin et al., 2023). This was carried out in 2000 and 2023 in separate sections. A study 

conducted in 2005 by Mathema noted a reduction in Molinia tussocks (an area of higher 

clumped grass) and an increase in Sphagnum-dominated patches (Mathema, 2005).It is 

unknown what the effect of this restoration is long-term. 

 

1.5 Remote Sensing  

Remote sensing is a valuable monitoring technique, allowing for the regular collection of 

detailed data over large areas (Bhatnagar et al., 2021). Traditionally, bog monitoring relied on 

in-field surveys, which were time-consuming, costly and often unable to cover the entire 

region due to uneven and waterlogged terrain (Jeziorska, 2019). Advances in remote sensing 

technology have improved the ability to survey across various landscapes, particularly bogs, 

allowing for rapid assessment of large areas and access to areas that are otherwise difficult to 

reach on foot (Guo et al., 2017; Jeziorska, 2019; Rasanen et al., 2020; Sahar et al., 2022). 

Unmanned aerial systems (UASs), such as drones, effectively capture the fine-scale 

heterogeneity of peat microforms and plant types (Bhatnagar et al., 2021; Jeziorska, 2019; 

Steenvoorden et al., 2023). Unlike traditional fieldwork, drone surveys do not disturb the 

delicate ecosystem, minimizing potential damage to plants (Beyer et al., 2019). Numerous 

studies have demonstrated the utility of drone surveying for wetland mapping, showing it to 

be time- and cost-effective for providing high-resolution images of vegetation types and 

distribution across small to large areas (Buznego, 2023; Diaz-Delgado et al., 2018; Guo et al., 

2017). However, challenges remain, as drone operations are highly weather-dependent and 

cannot carry much weight (Bhatnagar et al., 2021; Guo et al., 2017; Jeziorska, 2019; 

Steenvoorden et al., 2023).  

 

1.6 Random Forest Classification  

 

The classification of ecosystems by plant type or functional group provides insights into their 

health, functionality, and utility (Antala et al., 2022; Simpson et al., 2024). In peatlands, the 

plant type and distribution can serve as indicators for monitoring biodiversity, carbon storage 

potential, ecosystem dynamics, and changes resulting from climate change, land use change 
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or hydrological fluctuations (Renou-Wilson et al., 2019; Simpson et al., 2024). Historically, 

classifying peatlands was labour-intensive, requiring in-field identification and 

documentation of individual plants (Bhatnagar et al., 2021; Steenvoorden & Limpens, 

2023a). Data collected with drones can now be classified swiftly using publicly available 

platforms like ArcGIS (Bhatnagar et al., 2020). Over the last decade, several classification 

techniques have been developed and refined, leading to more accurate and efficient 

classifications (Amoakoh et al., 2021). The Random Forest method, an ensemble learning 

technique that utilises multiple algorithms to enhance prediction accuracy, has gained 

prominence in recent land cover classification studies (Berhane et al., 2018; Millard & 

Richardson, 2015). This method constructs multiple decision trees based on training data to 

determine the most likely class for a given area or object. Several studies have successfully 

employed Random Forest for wetland classification, yielding favourable results (Amoakoh et 

al., 2021; Berhane et al., 2018; Simpson et al., 2024). Classifying wetlands poses challenges 

due to their homogenous vegetation cover, requiring fine detail to differentiate features in 

satellite and drone images (Berhane et al., 2018; Simpson et al., 2024). Random Forest has 

outperformed other wetlands classification methods due to its ability to process large datasets 

and capture intricate details (Amoakoh et al., 2021; Berhane et al., 2018). There is an 

opportunity to integrate modern machine learning techniques, such as Random Forest, into 

the monitoring of restored bogs to streamline vegetation mapping and process data efficiently 

and accurately.  

 

1.7 Knowledge Gap & Aim 

 

Bogs are critical ecosystems that necessitate immediate attention to ensure their protection 

and restoration, thereby preserving essential ecosystem services (Salimi et al., 2021). 

Restoring specialised bog plant species, particularly Sphagnum mosses, is vital for 

reestablishing ecosystem health (Robroek et al., 2009; Smolders et al., 2002). Current 

restoration efforts often fail to achieve the desired outcomes in promoting Sphagnum 

expansion; therefore, innovative restoration methods must be implemented and monitored in 

the coming decades to evaluate their effectiveness (Crowley et al., 2021; Renou-Wilson et al., 

2019). Using drones and classification tools can enhance monitoring efficiency, making it 

quicker, more affordable, and more precise (Bhatnagar et al., 2020; Steenvoorden & 

Limpens, 2023b). There is a current lack of research into the classification of plant cover in 

restored bog areas to assess the impacts of novel restoration strategies. 
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How do the restoration methods, specifically soil inversion, impact the cover of target 

species in the Fochteloërveen? To investigate this a drone surveying was combined with the 

Random Forest classification technique to compare two sites at a peatland remnant in The 

Fochteloërveen. These sites underwent a new soil inversion restoration technique in 2000 and 

2023 to encourage Sphagnum expansion and reduce Molinea cover. The sites were compared 

to a control site to test the accuracy of the classification method, the cover of each plant type 

in the sites, how the plant biomass compares across the sites, how the hydrology of the sites 

has changed over the past decades and what impact this may have had on the vegetation, and 

finally did the peat inversion improve the cover of target species over the 20 years since its 

application. 

 

 

1.9 Hypothesis 

 

A drone survey and the Random Forest classification method are hypothesised to yield 

accurate study area plant-type classification maps. From these, it is hypothesised that the peat 

inversion restoration will have led to an increase in Sphagnum and a decrease in Molinea 

cover compared to the control area.  
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2. Theory 

This section further explains the theoretical framework underlining this study, providing a 

comprehensive understanding of vegetation dynamics in bogs, restoration methodologies, and 

the application of remote sensing and modern classification techniques to facilitate the 

recovery of degraded bogs.  

 

2.1 Vegetation 

 

Current rates of climate change are unprecedented, representing the most accelerated 

environmental shift in the past 20 million years (Antala et al., 2022). Most European peat 

formed approximately 6000-8000 years ago and have never experienced environmental 

change of this magnitude (Antala et al., 2022; Casparie, 1993). These ecosystems exhibit 

limited capacity to adapt to such rapid alterations, resulting in a reduction in their functional 

services, particularly carbon sink capacity (Antala et al., 2022). Peat's high carbon 

accumulation potential depends on the presence of specialised plant species and specific 

habitat conditions- namely, a low pH and low nutrient and oxygen availability created by 

high water levels (Crowley et al., 2021; Schouwenaars & Gosen, 2007). 

 

Water level and nutrient content fluctuate along topographical gradients, giving rise to the 

formation of unique habitats known as microforms within bog systems (Robroek et al., 2017; 

Steenvoorden et al., 2023; Steenvoorden & Limpens, 2023a). These microforms include 

hummocks, lawns, and hollows, as illustrated in Fig 1. Hummocks are typically associated 

with dry-adapted Sphagnum species, graminoids (grasses), lichens, and dwarf shrubs 

(Steenvoorden & Limpens, 2023a). Hollows exhibit a higher water table and are 

characterised by aquatic Sphagnum and occasional graminoids and sedges (Steenvoorden & 

Limpens, 2023a). Lawns represent the transitional area between hummocks and hollows, 

comprising more drought-adapted Sphagnum species (Schouwenaars & Gosen, 2007) and 

some graminoids, shrubs, and forbs (woody herbaceous plants) (Steenvoorden et al., 2022).  

 

Sphagnum is an ecosystem engineer in bog ecosystems, facilitating the formation of these 

microforms (Steenvoorden et al., 2022). Sphagnum exhibits self-perpetuating dynamics by 

retaining moisture in an area and enhancing favourable conditions for its own growth 

(Steenvoorden et al., 2022; van Breemen, 1995). It can modify its environment to create wet, 
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acidic conditions advantageous to them but detrimental to other plants; consequently, only 

specific vascular plants, which have root systems adapted to waterlogged conditions, can 

coexist (Antala et al., 2022; Lamers et al., 2000). As a primitive plant devoid of roots or 

specialised water conducting tissue, Sphagnum is particularly sensitive to fluctuation in water 

levels (Antala et al., 2022). Nutrients are absorbed through the whole surface area of the 

moss, while water is taken in by capillary action (Antala et al., 2022). They are resilient 

plants once they have sufficient water and will continue to grow unless frozen (Antala et al., 

2022).  

Furthermore, Sphagnum is instrumental in the formation of the acrotelm, the spongy top layer 

of peat that retains water and protects the underlying catotelm layer, which consists of more 

heavily decomposed plant matter (Couwenberg & Joosten, 1999; Smolders et al., 2003). The 

acrotelm is a critical component of peatlands as it stores water and facilitates carbon retention 

by inhibiting decomposition (Smolders et al., 2003). Projections under climate change 

scenarios indicate a decline in Sphagnum populations and an increase in vascular plants in 

bogs due to temperature rises, reduced water availability, and more frequent drought events 

(Scholz & Salimi, 2021). This decline would adversely affect peat production, carbon 

storage, and water retention, all of which rely on Sphagnum (Schouwenaars & Gosen, 2007; 

van Breemen, 1995). Thus, fostering the resurgence and expansion of Sphagnum in degraded 

bogs is a key part of restoration efforts. 

 

 

 

Fig 1. Conceptualisation of hummock and hollow microtopography (Shi et al., 2015) 
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2.2 Restoration 

Conserving the remaining bog is imperative, as these ecosystems and associated services 

require centuries to develop and establish their interdependent dynamics (Loisel & Gallego-

Sala, 2022; Salimi et al., 2021; Zou et al., 2022). In instances where bogs have been 

destroyed or degraded, restoration efforts such as rewetting, damming, soil inoculation, and 

peat inversion must be employed to restore natural ecosystem cycles and promote the return 

of typical bog plants and microforms (Loisel & Gallego-Sala, 2022; Zou et al., 2022). Current 

and historical restoration efforts have predominantly focussed on rewetting and maintaining 

high surface water levels to facilitate the return of peat-forming Sphagnum (Andersen et al., 

2011; Robroek et al., 2009, 2017; van Duinen et al., 2006).  

 

However, areas that have undergone rewetting alone have experienced stagnated recovery of 

target plant species (Rasanen et al., 2020; Robroek et al., 2017; Sahar et al., 2022). A 

comprehensive study of 71 peatlands in Germany that underwent rewetting found that typical 

peatland plants returned to only half of the sites, with some species remaining absent even 

after 30 years (Andersen et al., 2017). Conversely, other studies conducted in rewetted Irish 

bogs saw reduced short-term CO2 emissions and predicted a long-term increase in carbon 

sequestration (Andersen et al., 2017). Notably, rewetting can also lead to short-term increases 

in methane emissions (Andersen et al., 2017; Jurasinski et al., 2020), particularly in the 

context of rising temperatures (Müller & Joos, 2021). Nevertheless, the long-term benefits of 

carbon sequestration and ecosystem restoration outweigh these temporary increased 

emissions (Günther et al., 2020) 

 

European bog vegetation is characterised by a limited number of species with complex 

interrelationships and offers contrasting responses to climate change (Antala et al., 2022). 

Thus, restoring all relevant plant types is important for bog restoration and resilience (Antala 

et al., 2022). The presence of certain species and their abundance in the restored bog indicate 

the success of the restoration (Robroek et al., 2017; Simpson et al., 2024). Encouraging 

Sphagnum growth and expansion should be a priority, as it is an ecosystem engineer that 

sustains peat formation and system dynamics (Temmink et al., 2022; van Duinen et al., 

2006). To ensure restoration work yields the desired environmental conditions, rigorous long-

term monitoring is essential.  

 

2.3 Remote Sensing 
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Remote sensing technologies, including drones, satellites, and sensors such as lidar, provide 

crucial data for monitoring bog health (Buchsteiner et al., 2023; Rasanen et al., 2020). They 

enable researchers to track vegetation types and ecosystem recovery across inaccessible or 

large bog areas (Steenvoorden et al., 2023). The presence of specific plant types serves as a 

strong signifier of ecosystem health and productivity; thus, monitoring these variables can 

quantify an area’s recovery (Rasanen et al., 2019; Simpson et al., 2024; Steenvoorden et al., 

2022, 2023). Recent advancements in remote sensing technology have enhanced the 

feasibility of vegetation classification and the monitoring of fine-scale objects  (Bhatnagar et 

al., 2021).  

 

Given that bog vegetation occurs at fine spatial scales, distinguishing and classifying them 

using satellite data is challenging (Diaz-Delgado et al., 2018; Steenvoorden & Limpens, 

2023a). Satellite resolution is generally 10x10m (Bhatnagar et al., 2021), while peatland 

microforms and vegetation range from 0.1 to 1m (Steenvoorden et al., 2023), making it 

nearly impossible to capture them accurately. Drones are an effective intermediary between 

satellite surveying and manual field work, allowing for efficient coverage of large areas while 

capturing high-resolution images (Bhatnagar et al., 2021; Rasanen et al., 2019; Steenvoorden 

& Limpens, 2023a). The resolution of drones can have spatial resolution as low as 1.8cm, 

thus allowing for the easy capture of fine scale details (Bhatnagar et al., 2020). Modern 

drones can be outfitted with various sensors and scanners, including thermal, infrared, and 

laser-scanning capabilities, increasing their potential uses (Diaz-Delgado et al., 2018; 

Jeziorska, 2019). The resulting data can then be utilised to isolate the unique optical (spectral 

reflectance and colour) and structural (height and shape) features of individual plants or 

groups, facilitating identification during later analyses (Räsänena et al., 2019).  

 

However, the size and weight of extra equipment is a limiting factor, as currently available 

drone models cannot carry excessive weight and are limited by battery capacity, necessitating 

frequent recharging for prolonged flights (Bhatnagar et al., 2021; Guo et al., 2017; Jeziorska, 

2019). Furthermore, drones are also highly weather-dependent and cannot operate in windy 

conditions or capture accurate images during rain, mist, or snowfall (Bhatnagar et al., 2021; 

Guo et al., 2017; Jeziorska, 2019; Simpson et al., 2024). Additionally, variations in light and 

shadows in the study area can adversely affect the quality of images, leading to potential 

misclassifications (Buchsteiner et al., 2023). It is thus recommended that surveys be 

conducted at midday when the sun is at its highest to minimise the occurrence of shadows 

(Barbosa et al., 2019; Bhatnagar et al., 2021). Despite these limitations, drones represent an 



 19 

ideal tool for rapid and cost-effective mapping of bogs, with many models capable of being 

pre-programmed with flight plans to optimise surveying efficiency (Jeziorska, 2019). 

 

2.4 Random Forest Classification  

 

Numerous classification methodologies have been employed to classify bog vegetation, 

including support vector machine learning (Amoakoh et al., 2021), K-nearest neighbour 

(Bhatnagar et al., 2020), maximum likelihood, and artificial neural networks (Berhane et al., 

2018). Peatlands are characterised by high spatial heterogeneity and temporal hydraulic 

variability, rendering them among the most challenging ecosystems to classify (Berhane et 

al., 2018; Beyer et al., 2019). The diverse plant types are fine-scale and spectrally similar in 

drone images, complicating differentiation and classification (Steenvoorden et al., 2023). 

Recent studies have demonstrated that the automated image classifier, Random Forest, is an 

effective and accurate method (Bhatnagar et al., 2020; Rasanen et al., 2019; Steenvoorden et 

al., 2023) that reduces human error and facilitates the production of reproducible land cover 

maps (Amoakoh et al., 2021; Berhane et al., 2018). It has been used in several recent peatland 

vegetation and microforms classification studies, showing its accuracy even with such fine-

scale data (Amoakoh et al., 2021; Berhane et al., 2018; Corcoran et al., 2013; Millard & 

Richardson, 2015; Steenvoorden & Limpens, 2023b) 

 

The Random Forest algorithm is a machine learning approach that employs multiple 

classification trees, as illustrated in figure 2 below, and derives a final classification decision 

based on a majority vote (Badda et al., 2023; Berhane et al., 2018; Millard & Richardson, 

2015; Räsänena et al., 2019). The classifier is trained on a sample set from the original 

dataset, which identifies unique spectral and spatial features of various classes (Millard & 

Richardson, 2015). The algorithm subsequently processes the original data, utilising the 

training data to allow each tree to determine the most probable class for each segment of the 

original dataset (Beyer et al., 2019).  

 

Random Forest, a nonparametric classifier, is not limited by the distribution of predictor 

variables, allowing the use of randomised sample sets (Berhane et al., 2018). However, it is 

sensitive to the characteristics of the training data, such as sample size, class proportion, and 

spatial autocorrelation. Therefore, ensuring the data is high quality and accurate is important 

(Millard & Richardson, 2015). Ideally random samples would be used to better represents the 

proportion of each plant type in an area and to minimise human bias during data collection 
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(Millard & Richardson, 2015). That said, verifying random sample points can be challenging 

or impossible depending on the study area, so increasing the number of samples can help 

maintain classification accuracy (Millard & Richardson, 2015). The classifier is adaptable 

and can be customised to various classification requirements based on the input data and 

parameters (Badda et al., 2023). While Random Forest has been used effectively to classify 

healthy peatland areas, it has not been employed in restored regions to aid in monitoring and 

vegetation tracking.  

 

 

 

Fig 2. Workflow of the Random Forest classifier (Bhatnagar et al., 2020) 
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3. Methods 

To answer the research question, a drone survey was conducted, after which the data was 

processed into maps using Metshape and then further processed in ArcGIS to prepare and 

optimise them for classification. The methods are based on several papers which undertook 

similar studies (Corcoran et al., 2013; Berhane et al., 2018; Beyer et al., 2019; Bhatnagar et 

al., 2020, 2021; Steenvoorden et al., 2023; Simpson et al., 2024) however, to simplify the 

process all processing, excluding creating the maps, was carried out on ArcGIS pro. Other 

studies used a few different plat forms and alternative methods. Using one platform 

simplified and streamlined the process as ArcGIS had all the necessary tools required for the 

analyses. 

 

3.1 The Study Area 

The study was conducted in The Fochteloërveen, a bog remnant situated at the border 

between the provinces of Drenthe and Friesland in the north of the Netherlands (coordinates: 

53.00443, 6.37070). It is the largest bog remnant, with 1700 ha, in the Netherlands and is 

representative of peatlands in the region, making it an ideal study area (Mathema, 2005; Quik 

et al., 2023; van Beek et al., 2023). Geographically it is located on the western edge of the 

Drenthe Plateau, which is underlain by glacial till deposits and aeolian cover sand (Altenburg 

et al., 1993; Quik et al., 2023). The average temperature in January is 5.2 C, while in July, it 

is 17.5 C. The area received an average annual rainfall of 837mm, with a potential 

evapotranspiration of 566mm recorded for 2023 (KNMI, 2024). A 50ha area of the 

Fochteloërveen was selected for the survey, this comprised three sites separated by dams. 
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Fig 3. .The Fochteleorveen, North Netherlands (van Beek et al., 2023) and Google earth, 2024. 

 

Historically, the Fochteloërveen was utilised for buckwheat cultivation, which resulted in 

significant drainage and the excavation of deep ditches throughout the area (Altenburg). 

Coupled with the annual burning of the area for fertilisation, this has led to substantial loss of 

the upper peat layer, the acrotelm (Altenburg et al., 2017). Current vegetation cover in the 

study area is dominated by Molinea Caerulea, which poses a robust root system and rapid 

growth rate, thereby overshadowing and reducing the coverage of other plants, particularly 

Sphagnum (de Bruin et al., 2023).  The presence of Juncus effuses, a type of rush, is 

attributed to agricultural phosphorus residue despite it being uncommon in the area 

(Andersen et al., 2017) . Additionally, algae blooms have been observed around the periphery 

of each site, where the dams were installed in 1999, likely causing stagnation and nutrient 

enrichment from nitrogen and phosphorus runoff (Altenburg & van der Veen, 2003; van 

Duinen et al., 2006). Native plant species further include Sphagnum mosses, such as S. 

magellanicum, S. papillosum, and S. rubellum, as well as vascular plants typical of the 

ombrotrophic conditions, such as Eriophorum vaginatum, Andromeda polifolia and 

Vaccinium oxycoccos (Quik et al., 2023).  

The Fochteloërveen also supports several protected bird and animal species, such as cranes 

and the large heath butterfly (Oosterwerld & van den Brink, 2010). The primary threats to 

conservation in the area originate from atmospheric nitrogen deposition and habitat 

desiccation due to the intense drainage (Quik et al., 2023). Restoration efforts undertaken by 

Natuurmonumenten aim to increase the coverage of Sphagnum species, such as S. 

magellanicum, S. palustre, or S. rubellum, to restore self-regulating dynamics within the 
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peatland (de Bruin et al., 2023). Previous interventions, including rewetting and damming, 

successfully raised the water level and increased the abundance of target species like 

Sphagnum (Altenburg et al., 2017). However, they failed to reduce the dominance of Molinea 

significantly  (Altenburg & van der Veen, 2003; Jongman, 2021) . Peat inversion has been 

implemented in specific sites of the Fochteloërveen to try to reduce the Molinea coverage (de 

Bruin et al., 2023). This peat inversion work was conducted in 2000 on an 8-ha Site (Site A) 

and in 2023 on a 17-ha Site (Site B), as shown in figure 4 (de Bruin et al., 2023). A third Site 

(Site C) was used as a control area for comparative analyses. All three sites were part of a 

single compartment, divided in 1999 with the installation of wooden dams (Altenburg & van 

der Veen, 2003). The longevity of the wooden dams has been a concern for several years as 

leaks became more frequent (Altenburg et al., 2017), so currently, all dams at the 

Fochteleorveen are undergoing renewal to replace and reinforce them. A report from 2021 

indicated an increase in Sphagnum cover to 25-50% in certain sampled plots since 2014, 

although Molinea cover remained high at 52% in most plots (Jongman, 2021).   

 

 

Fig 4. soil inversion taking place in site B in 2023, photos by: J, de Bruin, 2023 

 

3.2 Drone Survey 

 

To investigate the three study sites, drone imagery was collected on March 6th, 2024. The DJI 

Phantom 4 multispectral drone was deployed over the sites and captured images in the visible 

red, green, and blue spectral bands, red-edge, and near-infrared (NIR) bands. The total area 

surveyed encompassed approximately 50 hectares. Prior to the flight, ground control point 

(GCP) markers, pictured in figure 5, were laid out at the four corners of the area, and four 

more were placed along the tracks between the sites (Simpson et al., 2024; Steenvoorden & 
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Limpens, 2023a). A Trimble global navigation satellite system (GNSS) was employed to 

obtain the precise Differential Global Positioning System (DGPS) coordinates and elevation 

for each of the eight markers.  

 

 

 

Fig 5. The ground control points are marked with red circles on the map (left) and the outlined sites (right). The 

site turned in 2000 (Green), the Site Turned in 2023 (Blue), and the Control Site C (Orange). Also, note the 

visible ditches and channels from the buckwheat cultivation in the 18th Century. 

 

 

An automated flight plan was designed using the DJI Ground Station Pro before the survey, 

which was subsequently adjusted on the day of the flight to accommodate the large area and 

ensure sufficient detail was captured by reducing the flight speed. Prior to flight, the drone 

photographed the calibration reflectance panel, seen in figure 6. to later calibrate the images 

to the reflectance on the day. The survey took place in the morning on a clouded day to 

reduce shadows and reflection on the sites (Simpson et al., 2024). The drone was flown at an 

altitude of 50 meters above ground level (approximately 62m Normaal Amsterdams Peil, 

NAP, elevation), with a 75% frontal and a 60% side overlap (Steenvoorden et al., 2023). The 

drone was stopped periodically to change the battery; in total, eight were used. During this 

flight, RTK (real-time kinetic positioning) was employed to correct common errors in the 

satellite positioning. The location data for the final images were highly accurate, with a 

theoretical max error for this flight was X:1.3 cm, Y:2.0cm, Z:3.2cm. The data was collected 

in the Rijksdriehoeksmeting Normaal Amsterdams Peil (RDNAP2018) geodata reference 

system, which is the standard Dutch national system.  
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Fig 6. A Ground control marker (top left) and Trimble GNSS system (top right) DJI Phantom 4 multispectral 

drone with calibration reflectance panel (bottom left) and control panel (bottom right) showing a section of the 

flight plan, Photos by J. O’Donovan. 

 

 

3.3 Ground Truthing Data 

 

To create the training samples for classification (Simpson et al., 2024), ground truthing data 

was collected on March 11th, 2024. This took place as close to the time of the drone survey as 

possible to ensure samples could accurately be matched to the drone images. Samples were 

taken of ten different plant types- Sphagnum (n = 26), Molinea (n = 18), Juncus grass (n = 

15), Bare peat (n = 17), Open water (n = 18), Algae (n = 5), Heather (n = 10), Cranberry (n = 

3), Dead Molinea (n = 9) and examples of mixed areas- Molinea/Sphagnum (n = 5) and 

heather/ Sphagnum (n = 3), pictured in figure 7 below. A hand-held Garmin GPS was used to 

record the coordinates, while the coordinate ID name and the corresponding plant type for 
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each were noted in a waterproof notebook. Additionally, a waterproof camera was used to 

take pictures of representative plots. 

 

  

Patch of Peat Moss Purple Moor Grass 

  

Open water Bare peat 

  

Algae Juncus grass 

  

Heather Cranberry 

Fig 7.The 8 Classes of vegetation collected during the fieldwork, Photos by R, Temmink, 2024. 

 

Where feasible, a target of 15 samples was taken for each class, although some classes, such 

as cranberry, were under-sampled due to sparse coverage and inaccessible areas. Due to these 
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accessibility challenges from uneven terrain and high-water levels, the majority of samples 

were collected from the edge of the Sites, as shown in figure 8. 

 

 

 

 

Fig 8. showing inaccessible conditions in Site B (left), Photo by: R, Temmink 2024, and map of sample points, 

ArcGIS 2024. 

 

3.4 Pre-Processing of Drone Data 

 

Creation of orthomosaic maps in Metashape  
In total, the drone captured 3,386 images for the Red, Green, and Blue (RGB) spectrum and 

16,970 for the Multispectral (MS) spectrum. Due to the extensive size of the data, a high-

powered processor was required to generate the orthomosaic raster layer. The term 

‘orthomosaic’ refers to a comprehensive image constructed from multiple images, while a 

‘raster layer’ denotes a grid of pixels organised into rows and columns, which can be 

processed and analysed in ArcGIS and other mapping platforms (ERSI, 2024). An Earth 

Simulations Lab (ESL, Utrecht University) technician was engaged in constructing the 

orthomosaiced raster layers as neither a standard laptop nor the university computers had the 

requisite processing capacity. The drone images were uploaded to Agisoft Metashape, where 

the cameras were aligned. Points that did not appear in more than two drone images, had too 

high a reconstruction uncertainty (10+), or a reprojection error of 0.5+ were removed. 

Camera optimisation was run between these checks to ensure optimal quality. A point cloud 

was generated, with all the points exhibiting a confidence of 5 and lower being removed. A 
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point cloud is a set of data points in a 3D coordinate system. A Digital Elevation Map (DEM) 

was generated with thorough filtering to remove any floating points, providing topographical 

information for the area (Steenvoorden et al., 2023). Subsequently, orthomosaic maps were 

created based on the DEM for both the MS and RGB datasets. The RGB raster consisted of 

three spectral bands, which produce images within the visible spectrum, while the MS raster 

included five bands (Red, Green, Blue, red-edge, and Near Infrared (NIR)). All maps had a 

resolution of 5cm. 

 

Alignment and defining of maps in ArcGIS Pro 

The maps were imported into ArcGIS Pro (Buchsteiner et al., 2023) with the coordinate 

system set to Rijksdriehoeksmeting Normaal Amsterdams Peil (RDNAP2018). The following 

three steps were taken:  

1. Ground Control Points (GCPs) 

GCPs ensured that the processed maps contained reference points with known coordinates, 

thereby facilitating alignment with the study area (Simpson et al., 2024; Steenvoorden et al., 

2023). The GCPs were added to the raster layer by manually locating the ground control 

markers on the image and assigning the corresponding coordinates to each. These were then 

saved, and the map was adjusted to align the GCPs with their GPS coordinates (Bhatnagar et 

al., 2021; Buchsteiner et al., 2023; Simpson et al., 2024). 

 

2. Site definition  

A shapefile of each site was created to delineate them for later analyses. Shapefiles are vector 

data storage formats that store geographic features, such as location, shape, and attributes. A 

polygon shapefile was used to differentiate the sites, shown in figure 9. A comprehensive 

shapefile was also generated to encompass all three sites and exclude 12,6 metres 

surrounding the dams at the site borders to remove the road and unwanted sites. This 

shapefile was used to clip the rasters to the correct size for classification, so only the target 

areas were classified. The site shapefiles were later revised to exclude marginal areas around 

each site due to certain classes being removed. 
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Fig 9. The shape files that defined each site, 2000 inverted site (green, 2023 inverted site (blue), and 

control site (orange).  

 

3. Clipping & segmenting 

The RGB raster was clipped using the previously made shapefile to encompass just the three 

sites. The segment mean shift tool was then used to group pixels into objects and regions 

based on similar spatial and spectral characteristics (Dronova, 2015; Steenvoorden et al., 

2023). This pre-processing step was performed to enhance processing efficiency during 

classification. Spectral detail was prioritised by setting the parameter to the highest value 

(20), enabling improved differentiation of spectrally similar features. The spatial detail 

parameter was similarly set to 20, given the small and clustered nature of the features of 

interest. The minimum segment size was set to 1 to preserve detail for training samples and 

classification (Steenvoorden et al., 2023), as shown in figure 10. 
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Fig 10. Section of Site A before segmenting (left) and after (right). 

 

3.5 Vegetation Classification  

 

Organising the data 

The collected ground truthing data were organised by uploading the coordinates to Garmin 

Base camp, converting them to a CVS file and then adding this to an Excel sheet. Each 

coordinate was matched to its corresponding class type based on the field notes, and the 

Excel file was imported into ArcGIS, converting the data into point features using the table-

to-point tool. The sample manager tool was utilised to create a classification schema of the 

collected classes. A 1x1m square grid was overlaid on the raster layer, and square polygons 

of 1m² were manually drawn around each sample point to add it to the correct class 

(Amoakoh et al., 2021, Steenvoorden & Limpens, 2023), as shown in figure 11. Some points 

were not precisely aligned with the correct class due to accessibility issues or human error, so 

some polygons were placed on the nearest correct class, as shown in Figure 11.  
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Fig 11.. 1x1m Polygons were drawn around the samples collected during fieldwork (left). Some points were not 

directly over the correct class, so the nearest correct area was used (right). 

 

 

A training sample set was generated from the ground truthing data and processed through the 

classification wizard tool in ArcGIS, utilising the RF classifier with default setting (50 trees, 

30 tree depth, max 1000 samples). Each tree within the classier used the training data to 

predict the most probable plant class, with the most frequently predicted class being assigned 

to each object (Millard & Richardson, 2015). The number of trees influences the final 

classification decisions, with an average of all the decisions taken as the definitive 

classification. The tree depth determines the branching complexity, with more branches 

allowing for a greater variety of outcomes; however, given the limited number of outcome 

classes in this study, a high depth was deemed unnecessary. 

 

The initial classification results indicated considerable confusion between visually similar 

classes, such as algae and submerged Sphagnum, as well as Juncus and elevated Sphagnum 

patches. After the dams' creation, increased nutrient levels at the site's edges led to sporadic 

algae blooms and Juncus patches, as shown in figure 12 below. Due to this, the site shapefiles 

were revised to exclude 3-4m around each site to remove these misclassification issues from 

the results. After revising the sites, algae and Juncus were removed as classes as they were no 

longer relevant. Classes with insufficient sample points, such as Sphagnum/Heather and 

Molinea/Sphagnum, were also removed. 

 

Additionally, a new class was created for submerged Molinea grass, which was visually 

distinct from standard Molinea patches but had not been sampled in the field. Samples were 

identified in the drone imagery and added to the training sample data. Cotton grass was 
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similarly added as a class as it is significant in the study area but grows deeper in the sites 

and was overlooked during fieldwork. Instances of cotton grass were identified from drone 

imagery based on their prominent yellow flowers and corroborated with a 2020 vegetation 

analysis of the area (Jongman, 2021). Cranberry and heather were grouped into a single shrub 

class as they were visually similar and belonged to the same plant family, Ericaceae.  

  

  

Fig 12. Algae (turquoise areas in the water) and Juncus (dark green patches) are growing around the edges of 

the Control Site (top left) and the 2000 inverted Site (top right). Picture Cotton Grass with distinctive yellow 

flowers (bottom left) (J.O’donovan, 2024) and water/Molinea class in the 2000 inverted site (bottom right). 

 

Reducing the number of samples enhances the accuracy of the classifier and diminishes 

visual confusion (Badda et al., 2023; Berhane et al., 2018; Dronova, 2015), thus the final 

number of classes was condensed to Eight: Sphagnum, Molinea, Open Water, Peat, Cotton 

Grass, Dead Molinea, Shrubs, and Open Water/Molinea.  

                                          

Creating training samples reference samples 

Different training sample sets were created with 25, 50, 75, and 100 samples per class 

(Millard & Richardson, 2015). The original field samples were retained for reference data. 

Further samples of each class were identified manually in the drone images from areas close 

to the original data. Each sample set was processed through the classification wizard on 

ArcGIS Pro using the Random Forest classification with the default settings (50 trees, 30 

depth) to facilitate accurate comparison. Some classes, like shrubs, cotton grass, and dead 
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Molinea, were less common in the sites, complicating the identification of more samples as 

the sample set size increased. Incorporating more samples improved the classifier’s accuracy 

when comparing the classified layer to the original RGB image. Ultimately, a sample set of 

80 samples per class was determined to be optimal, resulting in a total of 640 samples being 

used to train the classifier. This sampling strategy may not accurately reflect the field 

proportions of each class, as certain classes, like shrubs, were only sporadically observed, 

while others, such as open water, were more prevalent throughout the study area. Given the 

uncertainty surrounding exact class proportions in the field, an equal number of samples per 

class was selected to avoid overrepresentation, albeit this approach could result in the over 

classification of less common classes (Millard & Richardson, 2015). 

 

A reference sample set was created using the original field data and consisted of 160 separate 

samples, 20 per class. These samples were not included in the training sample set, thus 

enabling a more accurate evaluation of the classifier's performance. A confusion matrix was 

generated following each classification run (Dronova, 2015; Tian et al., 2016), illustrating the 

agreement between the classified and reference datasets through binary classification, as 

depicted in figure 13. The matrix calculated the ratios of true positives (TP), false positives 

(FP), true negatives (TN), and false negatives (FN). High TP and TN rates characterise an 

effective model alongside low FP and FN rates (Suresh, 2020). Metrics such as precision (the 

proportion of accurate positive predictions among all positive predictions) and recall (the 

proportion of true positive predictions relative to all class instances) were derived from the 

confusion matrix (Buchsteiner et al., 2023; Steenvoorden & Limpens, 2023a). The F1 score 

was also computed, which evaluates the balance between precision and recall. An F1 score of 

1 indicates perfect predictions, while scores ranging from 0 to 100 reflect the likelihood of 

correct classifications (Steenvoorden et al., 2023, Buchsteiner et al., 2023). In conjunction 

with overall accuracy scores, these metrics facilitated the evaluation and comparison of 

different tests to determine the most effective classification methodology. 
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Fig 13. Confusion matrices binary classification, (Suresh, 2020) 

 

Testing the classifier 

To ascertain the optimal inputs and parameters for the Random Forest classifier, a series of 

tests were conducted using the finalised training sample set and reference dataset (Amoakoh 

et al., 2021; Bhatnagar et al., 2021; Millard & Richardson, 2015; Steenvoorden et al., 2023). 

Each test was done four times to ensure reliability, and the average results were computed in 

Excel to account for any variability across the runs. The evaluation metrics of accuracy, 

precision, recall, and F1 scores were calculated for each test and subsequently compared to 

establish which inputs and parameter values yield the most accurate classification. 

 

Layer combinations: To improve the classification, the RGB raster layer was combined with 

additional raster's that contained topographical data (DEM raster) and plant biomass data 

(normalised difference vegetation index -NDVI raster) (Amoakoh et al., 2021; Corcoran et 

al., 2013). NDVI is explained further below in the multispectral data section. These 

combination rasters provided the classifier with more distinctive information on each object 

for differentiation(Amoakoh et al., 2021; Dronova, 2015). First, the DEM and NDVI rasters 

were resampled, Using the ‘resample’ tool to ensure they had the same spatial resolution and 

could be combined without issue (Corcoran et al., 2013). The layers were combined using the 

‘Combine Bands’ tool in ArcGIS. The classification was run with the RGB data, then the 

RGB combined with the DEM data, the RGB combined with the NDVI data and finally, all 

three layers combined. Each raster was clipped to the dimensions of the study area and 

segmented into objects. The default Random Forest setting (50 trees, 30 depth) was used for 

classification. The configuration yielding the most accurate results was then used for the 

subsequent analyses. 

Further optimisation of the Random Forest classifier was achieved by varying the number of 

trees used in the classification parameters (Beyer et al, 2018). Tests were run using the 
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following tree counts: 50, 100, 200, 300, and 400 while maintaining the tree depth at the 

default setting of 30. Additionally, the impact of tree depth on classification accuracy was 

assessed by running the classifier with a fixed number of trees (50) while varying the depths 

to 20, 30, and 40. 

 

To improve the differentiation among objects within the RGB imagery, a colour enhancement 

technique was employed using the stretch function in ArcGIS. The sigmoid stretch method 

emphasises moderate pixel values while preserving contrast between extreme values. This 

reduces contrast in very bright or dark areas while enhancing contrast in more homogeneous 

regions. Strength levels 1 and 2 were tested as going higher caused the classifier to 

malfunction. Additionally, the Minimum- Maximum stretch was also tested; this distributes 

the pixel values of a raster across the image’s range of values, brightening and increasing the 

image's contrast, resulting in more distinguishable features. Each stretch was applied to the 

RGB raster using the stretch function available in the raster functions tab, resulting in a new 

raster that was then combined with the DEM and NDVI rasters as determined by the earlier 

combination tests. The combination raster was then clipped to the appropriate size and 

classified using the default Random Forest parameters. 

 

Final process 

The results of the tests were analysed by comparing the overall accuracy of each test using a 

confusion matrix. The most accurate result from each was used in the finalised set of inputs 

and parameters for the classification. To ensure consistent results, the classifier was run four 

times to compare the precision, recall, F1 score, and class cover.  The class cover statistics for 

each Site were taken from the classified layers using the zonal statistics to the table tool and 

copied into Excel. The percentage covered by each class was calculated per site, and the 

results were compared, first to a 2020 vegetation survey (Jongman, 2021)of the study area to 

assess changes and then between each site to compare coverage.  

 

 

3.6 Multispectral data 

A normalised difference vegetation index (NDVI) raster layer was generated to analyse the 

multispectral data (Amoakoh et al., 2021; Berhane et al., 2018; Tian et al., 2016). NDVI 

serves as an indicator of vegetation presence and health across an area, allowing for 

comparison between the restored sites and the control. Robust and abundant vegetation 
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reflects strongly, yielding high positive NDVI values, while sparse or stressed vegetation 

results in lower values (Berhane et al., 2018, Tian et al., 2016). Water bodies are assigned 

negative NDVI values, while bare soil and ground typically yield values near zero (Berhane 

et al., 2018). The NDVI is calculated using the formula: (NIR - R) / (NIR + R), where NIR 

denotes near-infrared reflectance and R represents red reflectance. The resulting raster layer 

assigns a value ranging from -1 to 1 to each pixel, indicating vegetation health, with 1 

representing maximum productivity and -1 indicating inactivity. The NDVI layer was 

subsequently clipped to the dimensions of each site and reclassified using the reclassify tool 

to establish six categories denoting various levels of vegetation densities: 

 

1. -1 to 0.2: None 

2. 0.21 to 0.4: Low  

3. 0.41 to 0.6: Medium  

4. 0.61 to 0.8: High  

5. 0.81 to 1: Very high  

 

The statistics for each Site were extracted using the zonal statistics to table tool and uploaded 

to Excel to calculate the area covered by each productivity level for comparative analyses. 

 

3.7 Hydrological Data 

 

Water level is a critical factor influencing bog development and plant community 

composition, particularly Sphagnum. Consequently, hydrological data from the study area 

were analysed to assess their potential impact on vegetation growth. Groundwater and surface 

water level data were recorded by automated measurement stations and accessed via the 

water web database. The data was organized in Excel, structured by month and year using 

pivot tables, and comparisons were made across the three sites to elucidate potential 

correlations between water levels and vegetation development. The data covered the period 

from 2000 to 2022 for the 2000 inverted site and the control site, however the measuring 

station for the 2023 inverted was only installed after the inversion so the data only covered 

November 2023 to March 2024.  

Initially, the three sites operated as a single compartment, which was subsequently divided 

through the installation of wooden dams in 1999 (Altenburg et al., 2003). Data from older, 
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non-operational stations was also reviewed to compare pre-damming water levels with those 

measured post-installation. This covered the period from 1985 to 2000. 

 

 

 

 

Fig 14.The study area with the groundwater measurement station marked by red circles, surface water 

measurement stations marked by red triangles, and stations marked with a black X no longer operate but 

contain historical data on the Sites.  

 

 

 

 

 

4. Results 
The results of the analyses are presented below, first the conclusion from the Random Forest 

classification tests will be laid out, along with the accuracy figures and class coverage of the 

final classification process. Then the multispectral data analyses will be presented and finally 

the hydrological data.  
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4.1 The Random Forest Classification 
 

The results of the various tests on the inputs and parameters for the random forest classifier 

are summarised as follows: 

The combination raster had a notable increase in overall classification accuracy as shown in 

figure 15. below. The RGB image alone had an overall accuracy of 75% which dropped to 

74% with the addition of the DEM. The combination of RGB & NDVI achieved an overall 

accuracy of 77% while the combination of all three layers yielded the highest accuracy of 

87%. This raster was subsequently used for the remaining tests. The results are present in 

figure 16 below where a sample from each site is presented to visually compare the various 

combinations. The addition of the DEM aided in differentiating areas of different elevation, 

while the NDVI caused green areas more to be more accurately classified. The control site 

saw the least drastic changes over the combination tests while the two inverted sites had clear 

classification changes.  

 

 

Fig 15. Overall accuracy for the raster combination tests. 
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Fig 16. Raster combination tests , showing the RGB image and the classified RGB , RGB and DEM,  RGB and NDVI, and RGB, DEM, and NDVI

 RGB RGB classified RGB and DEM Classified RGB and NDVI Classified RGB, DEM, and NDVI Classified 

2000 

Inverted Site 

 
     

2023 

Inverted Site 

 

     

Control Site 

      



 40 

 

The Random Forest number of trees tests demonstrated consistent overall accuracy across all 

variables, with the lowest accuracy being 85% with 300 trees and the highest being 87% for 

both 50 and 400 trees. The Random Forest tree depth variables also exhibited similar overall 

accuracy, with depths 10 and 40 having the lowest accuracy of 85% and depths 20 and 30 

having the highest at 87%. The stretch tests yielded equivalent overall accuracy for both the 

sigmoid level one and level two tests at 87%, while the minimum-maximum stretch was 

marginally higher at 88%. 

 

 

 

 

 

Fig 17.The overall accuracy for each variable in the Stretch, Random Forest number of tree, and Random forest 

Depth tests. . 
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Final classification 

Based on the results of the tests, the optimal raster for the classification was determined to be 

the combination of RGB, DEM and NDVI, with the contrast of the RGB raster enhanced 

using the minimum-maximum stretch prior to combining. The optimal parameters for the 

Random Forest classifier were determined to be 50 trees and a tree depth of 30. These inputs 

were run several times to ensure consistency. 

Figure 18 below shows the Minimum- Maximum stretch applied to the RGB raster, thus 

increasing the contrast. Yellow and green areas appear brighter and easier to distinguish from 

one another. The water also appears brighter, however, in Site B, it better highlighted the 

submerged peat in the water, which caused some misclassification. 

 

 

 

Fig 18. Section of Site C showing how the Minimum- Maximum stretch 2 increased the contrast of the RGB 

image (left). 

 

 

The final classification achieved a high accuracy of 88%, effectively differentiating between 

the finer details. In the 2000 inverted site, the classifier successfully separated patches of 

floating and submerged Sphagnum from the mass of vegetation. In the 2023 inverted site the 

classifier accurately delineated areas of dead Molinea both above and below the water level. 

In the control site the classifier precisely outlined the various channels and dips in the site, as 

shown in Fig 19. below. 
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RGB Image Classified Image  

  

  

  
Fig 19. A section in the site inverted in 2000 (top), The site inverted in 2023 (middle), and the control site 

(bottom), showing the RGB image (left) and the Classified image (right) 

 

In figure 20 below, graph 20 A illustrates the precision, the true positive classifications out of 

all positive classifications made by the classifier. Precision was consistent across all classes, 

with peat and open water having the highest precision rates, at 95% and 94% respectively, 

indicating that these classes were straightforward for the classifier to identify. The other 

classes showed reasonable high precision between 75-90%, suggesting that the classifier 

made a few misclassifications overall. Sphagnum had the lowest, 75%, showing that the 

classifier made more misclassifications. Graph 20 B displays the Recall, the positive 

classification out of all the class instances. Recall was also consistent across each class, with 

only slight variations. Both open water and bare peat had the highest recall, at 94%, thus 

confirming that the classifier has few issues correctly identifying this class. Other classes had 

a recall between 85-90%, demonstrating overall positive classification across all. However, 
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water/ Molinea  had the lowest recall, at 84%, indicating that several misclassifications 

occurred. Graph 20 C presents the F1 score, the agreement between the precision and recall 

for each class. The score was consistent across the analyses, showing good agreement 

between precision and recall for the classification with results ranging from 80% to 95%. The 

highest score was for open water and bare peat, at 95% for both, confirming these classes had 

the best classification accuracy. The lowest score was recorded for Sphagnum, 80%, 

consistent with its low precision score.  

 

 

 

 

Fig 20. Precision, Recall, and F1 score for the final classification 
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Class cover 
Figure 21 below illustrates the percentage cover of each vegetation class over the three sites. 

The 2000 inverted site exhibited the highest cover of water/ Molinea with 53%, alongside 

similar levels of cover of Sphagnum, 9%,  Molinea, 14%, open water, 7%, shrubs, 7%, and 

cotton grass, 10%. Total Molinea cover in this site would be approximately 40% as water/ 

Molinea cover was roughly 50/50. The site contained no bare peat or dead Molinea.   

The 2023 inverted site was predominantly classified as open water, 43%, with large patches 

of dead Molinea, 38%, and small patches of bare peat, 5%, and Sphagnum, 3%. The site 

showed negligible levels of Molinea, shrubs and cotton grass, <1%. The control site had the 

highest cover of Molinea, 32%, shrubs, 22%, and open water, 16%. The site had a similar 

cover of Sphagnum, 10%, and water/ Molinea, 9%, alongside low levels of bare peat, 5%, 

and cotton grass, 5%. Total Molinea cover for this site would be roughly 36% when 

accounting for half the water/ Molinea cover. The site inverted in 2000 and the control site 

both had no Dead Molinea cover, consistent with field observations.  

 

Fig 21. the percent cover of each class in the final classification over each Site. 

 

The inversion work carried out in 2023 would have drastically changed the plant cover 

since the 2020 vegetation survey so the total cover of just the 2000 inverted and control site 

was also calculated. Figure 22 below shows the overall coverage of each class over the 

entire study area. The majority comprises open water, 25%, with large areas of Dead 

Molinea, 17%,  water/ Molinea, 18%, and Molinea, 11%. Sphagnum and bare peat each 

made up 5% of the cover while cotton grass only constituted 3%. When just the 2000 

inverted and control sites are exampines the cover alters slightly to less open water, 12%, 
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and more water/ Molinea, 26%, Shrubs, 19%, and Molinea, 18%. Sphagnum increased to 

7% and cotton grass to 6%, while bare peat dropped to 4%.  

 

 

 

Fig 22. the percentage cover of each class in compartment 14 as a whole, and just in the 2000 inverted site and 

control site. 
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Comparison with 2020 vegetation survey 
 
The 2020 survey reported a Sphagnum cover of approximately 23%, Molinea was 

approximately 44% when combining three of the sub groups- species poor Molinea, gully 

forms and half of the Molinea/ Sphagnum patch cover, and the final significant plant type, 

cotton grass had 10,2% cover.  

 

Fig 23. 2020 vegetation survey by Jongman et al, 202, Translated by Google translate from Dutch to English. 

Pipe grass is the colloquial term for Molinea. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.2.The Multispectral data 
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The analyses of the NDVI data, as shown in figure 24 below, accurately identified areas of 

dense and sparse biomass in the study area. Reclassifying each site successfully grouped the 

pixel values making the different biomass density levels clearer. 

 

Fig 24. shows the RGB, NDVI, and NDVI reclassified images from each Site. The dark green areas are healthy 
and have dense vegetation, while the red areas have no vegetation.
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The graph in figure 25 below, illustrated the percentage cover of each biomass density level 

over each site. The 2000 inverted site exhibited the highest biomass density cover, with over 

66% of its area having medium to very high density, although less than 0.5% had very high 

density. The 2023 inverted site had the lowest biomass density cover, with 99% identified as 

having none to medium density and less than 0.5% having very high density. The control site 

also reflected low density, with 88% having none to medium density. The 2000 inverted site 

and the control site displayed similar levels of high density, with the former having 11.1% 

and the latter 10.7%.  
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Fig 25. the percentage cover of each biomass density level over the three Sites. 

 

4.3 Comparing Classification and NDVI 
 
In Figure 26 Below some classified areas of each site are compared to the original RGB 
image and the reclassified NDVI image. Areas classified as having vegetation cover align up 
exactly with areas identified as having medium to high biomass densities.  
 
 
 

 RGB Image Classified Image NDVI Re-classified Image 
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Inverted Site 

 

   
2023 

Inverted Site 

   
Control Site 

   
 

Fig 26. showing the RGB, Classified, and NDVI Re-classified Images for area of each site. 
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4.4.Hydrological data 
 

Fig 27. shows the historical water level data for compartment 14 before it was split into the 

three sites in 1999. The original dam was constructed in 1984/85, and the water level was 

raised to 9.3m above NAP. There was an initial dip in water level following the rewetting but 

over time the level raised again to 9.4m above NAP in 2000. There were some dips, 1989, 

and spikes, 1987-88 and 1998, over the time period due to periods of low or high-water level. 

Overall, the water level stayed consistent over the study period and did not increase 

dramatically. 

 

 
Fig 27.  showing the historic water level data from compartment 14 from 1985 to 2000. 

 
 

Figure 28 below shows the water level from the 2000 inverted site is shown from 2000 to 

2022. There was no data available past this period, site management was unsure why. In 2000 

the site was split from compartment 14 by the instillation of wooden dams to increase the 

water level. This was successful as the compartment water level in 1999 was 9.4m NAP and 

for the site it was 10.5 m NAP after rewetting. The site also underwent the peat inversion 

restoration method in 2000 which could also have increased the water level. The level has 

remained consistent over the twenty-two-year period, increasing slightly to 10.8m NAP with 

a few fluctuations up, 2012, and down 2018, due to periods of increased or decreased rainfall.  
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Fig 28. water level for the 2000 inverted site from 2000 to 2022 

 

 
 
Figure 29 shows the water level data for the control site from 2000 to 2022. Again, no recent 

data was available. The site has had a stable water level throughout the recorded period with 

little variation, from 0.4m NAP at most. The water level has not increased significantly since 

the instillation of the newer dams in 1999, there were some minor dips, 2018, and spikes, 

2010, due to periods of low and high rainfall.  

 

 

 
Fig 29. the water level in the control site from 2000 to 2022. 
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the period of data is from November 2023 to March 2024. The water level has remained 

consistent at 10.3/10.4m NAP. It is too soon to tell if the inversion has had a major impact.  

 

 

 
 

Fig 30. the water level in the control site from November 2023 to March 2024. 

 
 
 

5. Discussion 

 

5.1.Random Forest classification 

 

Overall Accuracy of the Classification 
The results of the classification were satisfactory; the overall accuracy of 88% achieved by 

the final classification method is comparable to similar studies which produced accuracy 

values of 90-95% (Berhane et al., 2018; Beyer et al., 2019; Bhatnagar et al., 2020, 2021; 

Corcoran et al., 2013). The final classification maps effectively captured much of the fine-

scale features and vegetation types in the study area. The incorporation of additional rasters, 

DEM, and NDVI, which were combined with the RGB image, added significantly more 

spatial and spectral information for the classifier to work with, improving the accuracy 

considerably from 71% to 85%. Previous studies that combined raster layers also found this 

positive effect on accuracy (Amoakoh et al., 2021; Corcoran et al., 2013). The classifier 

consistently and accurately identified areas of bare peat and water due to their unique spatial 

and spectral features, making them distinct in the study area (Beyer et al., 2018). 
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However, it is important to note that these studies focused on healthy raised bog, which had 

not undergone the level of degradation and restoration work of the study area. As such they 

contained well-developed microforms and clear topographical features, which aided in the 

classification (Amoakoh et al., 2021; Corcoran et al., 2013.; Beyer et al, 2018). In contrast, 

our study area lacked clearly defined microforms due to the past buckwheat cultivation, 

which disrupted the peat surface (Antala et al., 2022). While the ditches and channels from 

past drainage in the control site provided topographical differences that aided classification, 

they did not represent the target microtopography typical of raised bogs. Furthermore, the 

2000 inverted site did not have sufficient time to develop microforms, so the use of 

topographical data for classification was limited. The 2023 inverted site, having undergone 

inversion so recently, exhibited negligible topographical features, although they did aid in 

differentiating submerged areas of peat (Figure 16).  

 

The NDVI data also had a noticeable impact on the classification. The higher reflectance of 

green areas aided in the more accurate identification of Sphagnum (Tian et al., 2016; 

Amoakoh et al, 2021). It was notable in the drone images that algae blooms were not 

exclusive to the border areas of the 2023 inverted site, as it was with the other two. Instead, it 

was also observed in areas around floating peat and dead Molinea patches. While this could 

have also been areas of submerged Sphagnum, the colour in the images was more in line with 

the algae seen around the periphery. This caused the classifier to identify these areas as 

Sphagnum. However, when the NDVI raster was included, it did not identify any dense 

vegetation in these areas, so the classification was corrected to dead Molinea and open water. 

It also corrected the misclassification of water/ Molinea in the 2000 inverted site, some areas 

of which have been identified as dead Molinea. As such, the addition of the NDVI raster 

highlighted the difference in reflectance between the two classes and corrected the 

misclassification (Tian et al., 2016; Amoakoh et al., 2021). 

 

The timing of the survey most likely influenced classification accuracy. In March, Molinea 

patches are a distinctive yellow colour during the transition from Winter to Spring. This 

differentiated it clearly from the other classes. In comparison the cotton grass was flowering 

for spring and had dark green foliage, which caused some confusion between it and 

Sphagnum, the yellow flowers present at the time aided in identifying samples but maybe 

were not spectrally different enough for the classifier. Areas of shrub vegetation appeared 

dark brown at the time of the survey, leading to misclassifications of areas of bare peat as 

shrub. This was a particular issue in the control site where small dips and holes in the site, 
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which contained peat, shaded water or Sphagnum, were identified as shrubs, as seen in Figure 

16 in the results.  

 

Sphagnum and cotton grass were particularly similar in the RGB images, which caused the 

classifier to misclassify them on several occasions. This issue was less pronounced in the 

control site, where the elevation data from the DEM likely aided the classifier in 

differentiating the two as cotton grass predominantly occupied the higher ground while 

Sphagnum populated the ditches and gullies caused by the previous agrarian land use 

(Amoakoh et al., 2021; Corcoran et al., 2013.; Beyer et al, 2018). In the 2000 inverted plot, 

the elevation data was not as informative for the classifier as typical bog microforms have not 

yet developed so there were more misclassifications between Sphagnum and cotton grass 

there.   

 

Comparing the Class Cover Between Sites 
Both the 2000 inverted site and the control had similar Sphagnum and Molinea cover. This 

was surprising as it was expected that the 2000 inverted site would contain more Sphagnum 

and less Molinea than the control, due to the peat inversion and higher water level in the 

former site. This unexpected result could be due to misclassification as the classifier 

struggled to accurately classify Sphagnum and particularly submerged areas of Sphagnum, 

which could have been distorted in the images due to water. Much of the Sphagnum in the 

control site was observed in the ditches and gullies, these areas were often overshadowed by 

Molinea and shrubs (Altenburg et al., 1993; Tomassen et al., 2010), causing them to appear 

darker on the images and to subsequently be misclassified (Buchsteiner et al., 2023).  

The Molinea cover in the 2000 inverted site was predominately from the water/Molinea class 

for which the proportion of Molinea to water was estimated, some areas contained more or 

less Molinea. This could have been overestimated, impacting the results. Much of the control 

site was classified as Molinea with even small patches being precisely identified from 

surrounding water or vegetation. This is in line with what was observed during fieldwork, 

where the site looked to be entirely covered in Molinea with some areas of shrubs, patches of 

sphagnum could only be seen in ditches or areas with more open water. As previously 

mentioned, this caused difficulties in accurately identifying the full sphagnum cover. 

The 2023 inverted site, having undergone recent inversion, showed minimal vegetation cover. 

It was positive to see some Sphagnum cover on the site, and with the high-water table and 

absence of live Molinea, conditions look optimal for its expansion in the coming decades 

(Huth et al., 2022). 
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Comparison to the 2020 Vegetation Survey 
Comparing this classification result to the 2020 vegetation survey provided valuable insights 

into the classification’s success. The cover of all plant types had decreased, most likely due to 

the inversion of the site in 2023, which drowned its vegetation cover. Even when this site was 

excluded and just the 2000 inverted site and control site were utilised, the cover of the target 

species, Sphagnum, was significantly less than was recorded in the 2020 survey. This is 

unexpected as conditions have not been so adverse in the area that cover would reduce to this 

degree. The reduction is likely due to misclassification as Sphagnum did have the lowest F1 

score of all the classes. This was probably caused by many patches being partially submerged 

underwater in the 2000 inverted site, which can confuse the classifier, especially in water-

land boundary areas (Tian et al., 2016; Buchsteiner et al., 2023). Sphagnum also populated 

many ditches in the control site which were often overshadowed by Molinea (Altenburg et 

al., 1993; Tomassen et al., 2010), causing misclassification issues as discussed earlier. These 

conditions were observed during fieldwork. Cotton grass coverage also appeared to have 

decreased but this is most likely due to the 2023 inversion work. Molinea cover had not 

changed much, the 2020 survey reported a similar cover as was classified in this study. This 

was unexpected as the inversion work was implemented to reduce Molinea coverage. 

Misclassifications could be to blame or the estimations of coverage, as the water/ Molinea 

class varied in its Molinea density so future surveys should more accurately estimate the 

proportions. However, the inverted sight is still in the early stages of development so while 

lack of clear reductions in Molinea may not be visible yet, future surveys may yield more 

positive results.  

 

Overall, few conclusions can be drawn from the 2023 inverted sight. The work was carried 

out so recently that the site has not had time for vegetation to regrow or the target species, 

Sphagnum, to re-establish or expand. Based on the Sphagnum cover of the site inverted two 

decades ago there are positive signs that cover can re-establish quickly. The 2023 site is more 

than double the size of the 2000 site so future surveys comparing the recovery of the two will 

be insightful. 

 

5.2.Analyses of the Multispectral Data 

 

The 2000 inverted site had the highest cover of high-density biomass indicating the 

widespread coverage of vegetation present. This outcome was anticipated, as dense green 
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areas of vegetation were observed on the site during fieldwork. At the time of the survey the 

Molinea in the site was a distinctive yellow colour, which likely resulted in lower reflectance 

than denser green areas (Tian et al., 2016; Amoakoh et al, 2021). This would have caused its 

density to be underestimated, but did allow for a focus on Sphagnum and cotton grass 

coverage which were both bright green at the time of the survey and so would have reflected 

well. The control site was noted to have high Molinea, and shrub cover during field work, 

which was yellow and brown at the time and so would have a lower reflectance (Tian et al., 

2016; Amoakoh et al, 2021). Therefore, the NDVI scores for both were under classified on 

the site. While in the 2000 inverted site this aided in identifying dense green areas of 

Sphagnum and cotton grass, the control site had such extensive Molinea and Shrub, that 

Sphagnum patches were overshadowed and so not picked up by the NDVI calculation. The 

2023 inverted site showed the lowest cover of dense biomass, as anticipated, due to the recent 

restoration work that submerged all existing vegetation, thus there would be minimal 

reflectance.  

 

5.3.Hydrological data 

 
The hydrological data showed little increase since the instillation of the original dams in 

1984/85, staying stable with only minor fluctuations until 1999 when the new dams were 

installed and the compartment divided into the three sites. This caused a significant increase 

in the water level of the 2000 inverted sight. This successful rewetting would have aided in 

the reestablishment and expansion of typical bog plant species, particularly target species like 

Sphagnum (Crowley et al., 2021; Günther et al., 2020). The 2023 inverted site also showed a 

heightened water level compared to the historical data, although since this measurement 

station was installed after the peat inversion work it doesn’t give details on the water level 

post 1999 dam instillation. The current high-water level is a positive sign that should lead to 

the quick recovery and expansion of typical bog plant species in the site (Renou-Wilson et 

al., 2019; Huth et al., 2022) and prevent Molinea from dominating once again. The control 

site had the lowest water level of the three which could explain why there was still much 

Molinea coverage despite the installation of new dams to maintain a high-water level. 

Increased water levels should encourage typical bog plant species to grow while creating 

adverse conditions for domineering species like Molinea (Huth et al., 2022), but the water 

level in the control site has only increase marginally since the addition of new dams in 1999. 

The areas uneven topography, from the buckwheat cultivation, could be exacerbating the 

issue as rainwater drains quickly into the ditches and isn’t retained in elevated areas to 
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encourage Sphagnum growth (Clymo, 1973). Molinea possess deep roots which can tap into 

water deep in the ground, thus it can thrive even when water levels are low (Altenburg et al., 

1993; Tomassen et al., 2010).. That paired with its extensive cover in the control site mean a 

new approach may be necessary to speed up restoration and achieve the goals of 

Natuurmonumenten (Altenburg et al., 2017).  

 

 

 

5.4.Future research 

 

To improve future classification of the study area it is recommended to ensure all equipment 

is in working order. During processing of the drone images, it was noticed that the calibration 

plate had been marginally off due to a sticker on the back that could not be seen in person but 

showed through on the calibration images. This could have thrown off the calibration of the 

final drone images when adjusting them for the reflectance and light at the time of the survey.  

 

The final sample set for this survey was taken from certain areas around the periphery of the 

study sites that were accessible by foot, this constrained the training and sample data as a 

randomised sample set would more accurately represent the proportion of each class. The 

number of samples was increased to account for this and ensure accurate results, but future 

classification could try a more randomised set to reduce possible bias.  

 

Due to the time-consuming nature of collecting samples manually in field the original ground 

truthing data contained five to twenty-six samples per class, which is a significant difference. 

Therefore, all the samples used for the training data set were manually identified on the drone 

images, efforts were made to take samples from a variety of examples of each class and to 

ensure each was correct but human bias could have been introduced. Future analyses should 

ensure enough time for sample collection or plan extra field days.  

 

Undertaking the survey in March aided the classification as classes were more 

distinguishable, Molinea was a distinctive yellow colour. However other classes like cotton 

grass were quite spectrally similar to Sphagnum, which resulted in some misclassification. 

Future studies should gather and layer data from across the year to provide more information 

to the classifier.  
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6. Conclusion 

 
In conclusion, this study aimed to investigate how the peat inversion restoration technique 

has impacted the cover of target species in the Fochteloërveen, particularly Sphagnum and 

Molinea. A drone survey and the Random Forest classification were used to classify the plant 

types of present, this yielded accurate classification maps of the area which could 

differentiate between the homogenous fine details of the peatland vegetation cover. When the 

class cover was analysed, it revealed that the 2000 inverted site had similar levels of 

Sphagnum and Molinea cover compared to the control site, which was unexpected given the 

anticipated improvements from the peat inversion and higher water levels in the former. This 

result was likely due to misclassification issues, particularly with submerged Sphagnum 

areas, which were distorted in the imagery by water. 

The 2023 inverted site showed little vegetation recovery as it had recently undergone 

inversion, yet the presence of some Sphagnum cover and the absence of live Molinea indicate 

promising conditions for future expansion. Comparing the classification results with the 2020 

vegetation survey highlighted a decrease in Sphagnum cover across the study area, suggesting 

that the inversion work has temporarily impacted the overall plant cover of the study area. 

While the study gives valuable insights into the current state of bog restoration efforts, it also 

underscores the need for further monitoring and research. The application of modern drone 

surveying and the Random Forest classification method allows for the efficient analyses and 

creation of comparable vegetation maps of the sites. Continued refinement and study will 

only improve these results. As the 2023 inverted site has not yet had sufficient time for 

vegetation to regrow or for Sphagnum to re-establish and expand, future surveys will be 

crucial in assessing the long-term effectiveness of restoration strategies. Overall, this research 

emphasizes the necessity of adaptive management in peatland restoration and the potential for 

rapid recovery of Sphagnum when optimal conditions are established.
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Photo of floating sphagnum patches Temmink, R, 2024. 

 
 
 
 
 
 
 
 
 
 
 
 
 

9.Appendix 
 



 72 

Appendix A- Final Map Rasters 

 

 
A1. Final RGB Raster Map (left) and Multispectral Raster Map (right) 

 
 

 

 
A2. Final DEM Raster Map, Value in meters 

 
 
 
 



 73 

 
A3. Final combination maps, RGB and DEM (left) and RGB, DEM, and NDVI (right) 

RGBDEMNDVI 
 

 

 
A4. Final NDVI Maps before reclassification (left) and after (right) 
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A5. Final classified Map, cause of green bars unknown.  

Appendix 2- Precision and Recall for the classification tests 
 
Precision results  
 
Combination tests 
 

RGB Sphagnum Molinea Open 
water 

Bare 
peat 

Cotton 
Grass 

Dead 
Molinea 

Shrubs Water/Molinea 

Test 1 0.52 0.86 0.76 0.90 0.67 0.95 0.71 0.71 

Test 2 0.52 0.71 0.86 0.90 0.67 0.86 0.67 0.57 

Test 3 0.57 0.81 0.81 0.95 0.71 0.81 0.67 0.43 

Test 4 0.48 0.90 0.81 1.00 0.76 0.76 0.81 0.81 

Average 0.52 0.82 0.81 0.94 0.70 0.85 0.71 0.63 

 

RGB & 
DEM 

Sphagnum Molinea Open 
water 

Bare 
peat 

Cotton 
Grass 

Dead 
Molinea 

Shrubs Water/Molinea 

Test 1 0.62 0.81 0.81 1.00 0.57 0.76 0.71 0.86 

Test 2 0.48 0.76 0.71 0.95 0.62 0.90 0.67 0.43 

Test 3 0.67 0.71 0.76 1.00 0.57 0.76 0.71 0.62 

Test 4 0.71 0.81 0.76 0.95 0.76 0.76 0.86 0.67 

Average 0.62 0.77 0.76 0.98 0.63 0.80 0.74 0.64 
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RGB & 
NDVI 

Sphagnum Molinea Open 
water 

Bare 
peat 

Cotton 
Grass 

Dead 
Molinea 

Shrubs Water/Molinea 

Test 1 0.62 0.71 0.71 1.00 0.86 0.76 0.62 0.76 

Test 2 0.71 0.86 0.86 0.95 0.76 0.86 0.67 0.71 

Test 3 0.76 0.71 0.76 0.95 0.71 0.90 0.81 0.71 

Test 4 0.67 0.71 0.81 0.90 0.67 0.86 0.67 0.67 

Average 0.69 0.75 0.79 0.95 0.75 0.85 0.69 0.71 

 
RGB, 

DEM, & 
NDVI 

Sphagnum Molinea Open 
water 

Bare 
peat 

Cotton 
Grass 

Dead 
Molinea 

Shrubs Water/Molinea 

Test 1 0.71 0.81 0.90 0.95 0.81 0.81 0.81 0.90 

Test 2 0.71 0.81 0.95 0.95 0.90 0.81 0.86 0.90 

Test 3 0.76 0.81 0.95 0.90 0.81 0.90 0.90 0.90 

Test 4 0.81 0.86 0.95 1.00 0.95 0.86 0.86 0.90 

Average 0.75 0.82 0.94 0.95 0.87 0.85 0.86 0.90 

 
 
 
Stretch Tests 
 

Sigmoid 
Level 1 

Sphagnum Molinea Open 
water 

Bare 
peat 

Cotton 
Grass 

Dead 
Molinea 

Shrubs Water/Molinea 

Test 1 0.62 0.76 1.00 0.95 0.71 0.95 0.90 0.90 

Test 2 0.67 0.90 0.90 1.00 0.81 0.95 0.90 0.86 

Test 3 0.81 0.95 0.90 0.95 0.71 0.95 1.00 0.90 

Test 4 0.67 0.76 0.95 0.95 0.86 0.76 0.81 0.95 

Average 0.69 0.85 0.94 0.96 0.77 0.90 0.90 0.90 

 

Sigmoid 
Level 2 

Sphagnum Molinea Open 
water 

Bare 
peat 

Cotton 
Grass 

Dead 
Molinea 

Shrubs Water/Molinea 

Test 1 0.71 0.76 0.95 0.90 0.90 0.76 1.00 0.95 

Test 2 0.81 0.71 0.90 1.00 0.86 0.81 0.90 0.86 

Test 3 0.62 0.81 0.95 0.95 0.86 1.00 0.81 0.95 

Test 4 0.67 0.90 1.00 1.00 0.71 0.86 0.90 0.95 

Average 0.70 0.80 0.95 0.96 0.83 0.86 0.90 0.93 

 
Min-
Max 

Sphagnum Molinea Open 
water 

Bare 
peat 

Cotton 
Grass 

Dead 
Molinea 

Shrubs Water/Molinea 

Test 1 0.67 0.86 0.95 0.95 0.76 1.00 0.86 0.95 

Test 2 0.76 0.81 1.00 0.95 0.95 0.86 0.81 0.86 

Test 3 0.81 0.95 0.90 0.95 0.71 0.95 1.00 0.90 

Test 4 0.67 0.86 1.00 0.90 0.71 0.90 0.86 0.95 

Average 0.73 0.87 0.96 0.94 0.79 0.93 0.88 0.92 

 
 
 
Random Forest Depth Tests 
 

Depth 
10 

Sphagnum Molinea Open 
water 

Bare 
peat 

Cotton 
Grass 

Dead 
Molinea 

Shrubs Water/Molinea 

Test 1 0.81 0.86 0.90 0.86 0.71 0.95 0.86 1.00 

Test 2 0.81 0.90 0.86 0.90 0.76 0.95 0.81 0.86 

Test 3 0.67 0.86 0.81 1.00 0.86 0.76 0.76 0.95 

Test 4 0.76 0.81 0.90 0.90 0.57 0.86 0.86 0.90 

Average 0.76 0.86 0.87 0.92 0.73 0.88 0.82 0.93 
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Depth 
20 

Sphagnum Molinea Open 
water 

Bare 
peat 

Cotton 
Grass 

Dead 
Molinea 

Shrubs Water/Molinea 

Test 1 0.71 0.81 0.95 1.00 0.76 0.90 0.86 0.95 

Test 2 0.81 0.90 0.95 0.95 0.76 0.76 0.90 0.90 

Test 3 0.81 0.90 0.95 0.95 0.76 0.76 0.90 0.90 

Test 4 0.76 0.90 1.00 0.95 0.81 0.95 0.81 0.81 

Average 0.74 0.88 0.98 0.98 0.79 0.86 0.85 0.88 

 
Depth 

30 

Sphagnum Molinea Open 
water 

Bare 
peat 

Cotton 
Grass 

Dead 
Molinea 

Shrubs Water/Molinea 

Test 1 0.71 0.90 0.95 0.86 0.71 0.76 0.95 0.95 

Test 2 0.76 0.86 0.86 1.00 0.90 0.86 0.90 0.81 

Test 3 0.76 0.90 1.00 0.86 0.86 0.90 0.90 0.95 

Test 4 0.67 0.81 0.90 1.00 0.86 0.95 0.90 0.90 

Average 0.73 0.87 0.93 0.93 0.83 0.87 0.92 0.90 

 

Depth 
40 

Sphagnum Molinea Open 
water 

Bare 
peat 

Cotton 
Grass 

Dead 
Molinea 

Shrubs Water/Molinea 

Test 1 0.86 0.86 0.90 0.95 0.71 0.90 0.86 0.86 

Test 2 0.62 0.86 0.90 0.86 0.81 0.81 0.90 0.86 

Test 3 0.90 0.81 0.90 0.95 0.76 0.81 0.90 0.86 

Test 4 0.81 0.86 0.95 0.90 0.86 0.71 0.90 0.90 

Average 0.80 0.85 0.92 0.92 0.79 0.81 0.89 0.87 

 
 
 
Random Forest Number of trees tests 
 

50  Trees Sphagnum Molinea Open 
water 

Bare 
peat 

Cotton 
Grass 

Dead 
Molinea 

Shrubs Water/Molinea 

Test 1 0.71 0.81 0.90 0.95 0.81 0.81 0.81 0.90 

Test 2 0.71 0.81 0.95 0.95 0.90 0.81 0.86 0.90 

Test 3 0.76 0.81 0.95 0.90 0.81 0.90 0.90 0.90 

Test 4 0.81 0.86 0.95 1.00 0.95 0.86 0.86 0.90 

Average 0.75 0.82 0.94 0.95 0.87 0.85 0.86 0.90 

 
 

100 
Trees 

Sphagnum Molinea Open 
water 

Bare 
peat 

Cotton 
Grass 

Dead 
Molinea 

Shrubs Water/Molinea 

Test 1 0.86 0.90 0.86 0.95 0.67 0.86 0.95 0.90 

Test 2 0.71 0.81 0.90 1.00 0.67 0.81 0.95 0.95 

Test 3 0.81 0.86 0.86 1.00 0.76 0.76 0.95 0.95 

Test 4 0.76 0.90 1.00 1.00 1.00 0.71 0.86 0.76 

Average 0.79 0.87 0.90 0.99 0.77 0.79 0.93 0.89 

 
 

200 
Trees 

Sphagnum Molinea Open 
water 

Bare 
peat 

Cotton 
Grass 

Dead 
Molinea 

Shrubs Water/Molinea 

Test 1 0.76 0.86 0.81 0.90 0.71 0.95 0.86 0.90 

Test 2 0.81 0.86 0.95 0.90 0.86 0.81 0.95 1.00 

Test 3 0.86 0.86 0.90 1.00 0.76 0.81 0.90 0.95 

Test 4 0.67 0.90 0.90 0.86 0.81 0.76 0.90 0.90 

Average 0.77 0.87 0.89 0.92 0.79 0.83 0.90 0.94 

 



 77 

300 Trees Sphagnum Molinea Open 
water 

Bare 
peat 

Cotton 
Grass 

Dead 
Molinea 

Shrubs Water/Molinea 

Test 1 0.67 0.86 1.00 0.95 0.67 0.86 0.86 0.86 

Test 2 0.81 0.90 1.00 0.90 0.76 0.90 0.86 0.86 

Test 3 0.71 0.95 0.90 0.95 0.81 0.86 0.95 0.90 

Test 4 0.76 0.86 0.95 1.00 0.86 0.86 0.81 0.95 

Average 0.74 0.89 0.96 0.95 0.77 0.87 0.87 0.89 

 
400 Trees Sphagnum Molinea Open 

water 

Bare 
peat 

Cotton 
Grass 

Dead 
Molinea 

Shrubs Water/Molinea 

Test 1 0.76 0.86 0.95 0.95 0.81 0.86 0.86 0.90 

Test 2 0.86 0.86 0.90 0.95 0.86 0.86 0.95 0.95 

Test 3 0.76 0.86 0.95 0.95 0.90 0.81 0.81 0.86 

Test 4 0.76 0.86 0.95 1.00 0.86 0.86 0.81 0.95 

Average 0.79 0.86 0.94 0.96 0.86 0.85 0.86 0.92 

 
 
Recall results  
 
Combination tests 
 
 

RGB & 
DEM 

Sphagnum Molinea Open 
water 

Bare 
peat 

Cotton 
Grass 

Dead 
Molinea 

Shrubs Water/Molinea 

Test 1 0.68 0.77 0.89 0.91 0.67 0.89 0.68 0.67 

Test 2 0.91 0.76 0.71 1.00 0.59 0.86 0.58 0.33 

Test 3 0.78 0.75 0.80 0.95 0.57 0.89 0.63 0.52 

Test 4 0.79 0.77 0.89 0.91 0.76 0.76 0.82 0.61 

Average 0.79 0.76 0.82 0.94 0.65 0.85 0.68 0.53 

 
 

RGB & 
NDVI 

Sphagnum Molinea Open 
water 

Bare 
peat 

Cotton 
Grass 

Dead 
Molinea 

Shrubs Water/Molinea 

Test 1 0.72 0.71 0.88 0.95 0.82 0.73 0.65 0.62 

Test 2 0.83 0.78 0.95 1.00 0.94 0.75 0.70 0.56 

Test 3 0.84 0.74 1.00 1.00 0.85 0.83 0.86 0.86 

Test 4 0.85 0.90 1.00 0.88 0.95 0.86 0.86 0.90 

Average 0.82 0.83 0.98 0.90 0.85 0.82 0.90 0.86 

 

RGB, 
DEM, 

& 
NDVI 

Sphagnum Molinea Open 
water 

Bare 
peat 

Cotton 
Grass 

Dead 
Molinea 

Shrubs Water/Molinea 

Test 1 0.71 0.85 0.95 0.87 0.85 0.81 0.94 0.76 

Test 2 0.88 0.85 0.95 0.87 0.76 0.77 0.95 0.90 

Test 3 0.84 0.74 1.00 1.00 0.85 0.83 0.86 0.86 

Test 4 0.85 0.90 1.00 0.88 0.95 0.86 0.86 0.90 

Average 0.82 0.83 0.98 0.90 0.85 0.82 0.90 0.86 

RGB Sphagnum Molinea Open 
water 

Bare 
peat 

Cotton 
Grass 

Dead 
Molinea 

Shrubs Water/Molinea 

Test 1 0.92 0.82 0.94 0.86 0.70 0.77 0.68 0.56 

Test 2 0.85 0.71 0.95 0.86 0.52 0.82 0.70 0.50 

Test 3 0.80 0.77 0.85 0.83 0.60 0.85 0.54 0.56 

Test 4 0.83 0.83 0.85 0.91 0.70 0.89 0.65 0.74 

Average 0.85 0.78 0.90 0.87 0.63 0.83 0.64 0.59 
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Stretch Tests 
 

Sigmoid 
Level 1 

Sphagnum Molinea Open 
water 

Bare 
peat 

Cotton 
Grass 

Dead 
Molinea 

Shrubs Water/Molinea 

Test 1 0.76 0.94 0.95 0.91 0.83 0.80 0.95 0.70 

Test 2 0.88 0.76 0.86 0.91 1.00 0.87 1.00 0.78 

Test 3 0.81 0.95 0.90 0.95 0.94 0.91 0.91 0.83 

Test 4 0.70 0.94 0.87 0.91 0.78 0.84 0.94 0.77 

Average 0.79 0.90 0.90 0.92 0.89 0.86 0.95 0.77 

 

Sigmoid 
Level 2 

Sphagnum Molinea Open 
water 

Bare 
peat 

Cotton 
Grass 

Dead 
Molinea 

Shrubs Water/Molinea 

Test 1 0.83 0.89 0.87 0.95 0.83 0.89 0.95 0.77 

Test 2 0.85 0.83 0.95 0.88 0.86 0.89 0.90 0.72 

Test 3 1.00 0.77 0.91 0.87 0.82 0.84 0.89 0.91 

Test 4 0.82 0.83 0.91 0.91 0.83 0.90 0.90 0.87 

Average 0.88 0.83 0.91 0.90 0.83 0.88 0.91 0.82 

 
Min-
Max 

Sphagnum Molinea Open 
water 

Bare 
peat 

Cotton 
Grass 

Dead 
Molinea 

Shrubs Water/Molinea 

Test 1 0.93 1.00 0.95 0.87 0.89 0.75 0.95 0.77 

Test 2 0.89 0.85 1.00 0.91 0.80 0.78 0.94 0.86 

Test 3 0.81 0.95 0.90 0.95 0.94 0.91 0.91 0.83 

Test 4 0.93 0.86 0.95 0.79 0.83 0.83 0.86 0.83 

Average 0.89 0.91 0.95 0.88 0.86 0.82 0.92 0.82 

 
 
 
Random Forest Depth Tests  
 

Depth 
10 

Sphagnum Molinea Open 
water 

Bare 
peat 

Cotton 
Grass 

Dead 
Molinea 

Shrubs Water/Molinea 

Test 1 0,81 0,95 0,90 0,90 0,94 0,91 0,86 0,75 

Test 2 0,85 0,86 1,00 0,86 0,94 0,83 0,81 0,75 

Test 3 0,74 0,95 0,94 0,81 0,86 0,76 0,89 0,77 

Test 4 0,76 0,85 0,95 0,79 0,86 0,78 0,82 0,79 

Average 0,79 0,90 0,95 0,84 0,90 0,82 0,84 0,77 

 
 

Depth 
20 

Sphagnum Molinea Open 
water 

Bare 
peat 

Cotton 
Grass 

Dead 
Molinea 

Shrubs Water/Molinea 

Test 1 0,75 0,94 0,95 0,88 0,89 0,83 0,95 0,80 

Test 2 0,77 0,86 1,00 0,91 0,84 0,80 0,90 0,86 

Test 3 0,78 0,90 0,88 0,91 0,77 0,74 1,00 0,90 

Test 4 0,89 0,83 0,95 0,87 0,85 0,83 0,94 0,85 

Average 0,80 0,88 0,95 0,89 0,84 0,80 0,95 0,85 

 

Depth 
30 

Sphagnum Molinea Open 
water 

Bare 
peat 

Cotton 
Grass 

Dead 
Molinea 

Shrubs Water/Molinea 

Test 1 0,83 0,86 0,91 0,82 0,88 0,84 0,83 0,83 

Test 2 0,89 0,82 1,00 0,95 0,83 0,78 0,95 0,77 

Test 3 0,89 0,95 0,91 0,90 0,90 0,90 0,86 0,83 

Test 4 0,93 0,89 0,90 0,88 0,86 0,77 0,95 0,86 

Average 0,89 0,88 0,93 0,89 0,87 0,82 0,90 0,83 
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Depth 

40 

Sphagnum Molinea Open 
water 

Bare 
peat 

Cotton 
Grass 

Dead 
Molinea 

Shrubs Water/Molinea 

Test 1 0,82 0,82 1,00 0,91 0,68 0,90 0,95 0,86 

Test 2 0,81 0,82 0,90 0,95 0,77 0,71 0,90 0,78 

Test 3 0,83 0,89 1,00 0,91 0,73 0,89 0,90 0,78 

Test 4 0,81 0,82 0,95 0,86 0,86 0,83 0,90 0,86 

Average 0,82 0,84 0,96 0,91 0,76 0,84 0,92 0,82 

 
 
 
Random Forest Number of trees tests 
 

50  
Trees 

Sphagnum Molinea Open 
water 

Bare 
peat 

Cotton 
Grass 

Dead 
Molinea 

Shrubs Water/Molinea 

Test 1 0,71 0,85 0,95 0,87 0,85 0,81 0,94 0,76 

Test 2 0,88 0,85 0,95 0,87 0,76 0,77 0,95 0,90 

Test 3 0,84 0,74 1,00 1,00 0,85 0,83 0,86 0,86 

Test 4 0,85 0,90 1,00 0,88 0,95 0,86 0,86 0,90 

Average 0,82 0,83 0,98 0,90 0,85 0,82 0,90 0,86 

 
 

100 
Trees 

Sphagnum Molinea Open 
water 

Bare 
peat 

Cotton 
Grass 

Dead 
Molinea 

Shrubs Water/Molinea 

Test 1 0,86 0,86 0,86 0,87 0,88 0,86 0,87 0,90 

Test 2 0,88 0,77 1,00 0,91 0,74 0,74 0,95 0,83 

Test 3 0,81 0,90 0,95 0,88 0,84 0,80 0,95 0,83 

Test 4 0,76 0,95 0,91 0,95 0,81 0,79 0,95 0,89 

Average 0,83 0,87 0,93 0,90 0,82 0,80 0,93 0,87 

 
 

200 
Trees 

Sphagnum Molinea Open 
water 

Bare 
peat 

Cotton 
Grass 

Dead 
Molinea 

Shrubs Water/Molinea 

Test 1 0,81 0,89 0,91 0,79 0,84 0,78 0,85 0,80 

Test 2 0,79 0,86 0,95 0,95 0,83 0,87 0,86 0,84 

Test 3 0,81 0,86 0,88 0,83 0,80 0,79 0,94 0,90 

Test 4 0,88 0,78 0,95 0,91 0,88 0,77 0,95 0,76 

Average 0,82 0,85 0,92 0,87 0,84 0,80 0,90 0,83 

 

300 
Trees 

Sphagnum Molinea Open 
water 

Bare 
peat 

Cotton 
Grass 

Dead 
Molinea 

Shrubs Water/Molinea 

Test 1 0,84 0,75 0,94 0,90 0,94 0,83 0,90 0,73 

Test 2 0,85 0,86 0,95 0,95 0,95 0,94 0,91 0,78 

Test 3 0,90 0,86 1,00 0,91 0,76 0,81 0,95 0,87 

Test 4 0,70 0,95 0,95 0,90 0,77 0,76 0,86 0,83 

Average 0,82 0,85 0,96 0,92 0,85 0,84 0,91 0,80 

 
400 

Trees 

Sphagnum Molinea Open 
water 

Bare 
peat 

Cotton 
Grass 

Dead 
Molinea 

Shrubs Water/Molinea 

Test 1 0,78 0,78 0,95 0,87 0,74 0,86 0,90 0,82 

Test 2 0,89 0,86 0,91 0,90 0,94 0,86 0,90 0,75 

Test 3 0,79 0,95 1,00 0,87 0,94 0,86 0,87 0,79 

Test 4 0,84 0,86 0,95 0,88 0,78 0,90 1,00 0,87 

Average 0,83 0,86 0,95 0,88 0,85 0,87 0,92 0,81 
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