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1 Introduction

Climate change poses significant challenges to urban growth both within and
beyond city boundaries(Liu et al., 2022). Cities experience the adverse effects of
climate change through impacts on human health, livelihoods, and main infras-
tructure (Lee et al., 2023). Moreover, Urban areas are susceptible to its effects,
notably through the exacerbation of the urban heat island (UHI) phenomenon.
This phenomenon is defined by elevated temperatures within cities compared
to their surrounding rural areas (Koch et al., 2020). The temperature differen-
tial can be substantial, with some urban centers experiencing up to 10 degrees
Celsius higher temperatures than their rural counterparts. Contributing factors
are the proliferation of heat-generating activities, the predominance of materials
with high thermal mass and low albedo in urban infrastructure (Galagoda et al.,
2018), and the relative scarcity of green and blue spaces within city limits. Ur-
ban structures, majorly composed of materials like concrete, asphalt, and metal,
exhibit enhanced heat absorption and re-radiation properties (Rizwan, Dennis,
and Liu, 2008). This thermal behavior is evident during nocturnal hours, when
artificial surfaces in urban environments demonstrate a markedly slower rate of
cooling compared to natural elements.

1.1 Nature-Based Solutions

To address these challenges, the concept of Nature-based Solutions has been
suggested (Liu et al., 2022). Nature-based solutions (NbS) are strategic in-
terventions that uses and connect the distinctive capabilities of natural systems
to tackle environmental, social, and economic challenges Commission, Research,
and Innovation, 2015. These solutions draw on the principles of ecological design
and sustainability. NbS stimulates the resilience of the environment, together
with human development goals and adaptability to local contexts. There is no
principal archetype or model that illustrates a typical NbS. Nevertheless, most
projects documented by the European Investment Bank (EIB) in 2023 mainly
implied the establishment of new parks and gardens, alongside retrofitting green
infrastructure on walls and roofs into existing urban environments.

Growing awareness about environmental hazards for cities has been observed
at different levels of the public and private sector (Seddon et al., 2020; Lee et
al., 2023). Despite the benefits and cost-effectiveness of NbS, governments are
facing multiple barriers. Dorst et al., 2022 identified barriers that are funda-
mental for limited implementation of NbS in The Netherlands. These include
competition for urban space among stakeholders due to high urban densities
and a lack of sufficient public resources – Although the public sector guides
the private sector in selecting locations for housing development, the plans are
predominantly short-term and involve only tasks that are considered as a high-
priority by the government (Koninkrijksrelaties, 2024). Meanwhile, NbS require
long-term planning to maintain the spaces (Liu et al., 2022). Several studies
found that local governments are subjected to technical difficulties. More spe-
cific, knowledge gaps in the use of assessment tools and data restrictions (Bush,
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2020; Dorst et al., 2022). Municipalities in The Netherlands are increasingly
seeking more sophisticated instruments to address the challenges posed by cli-
mate change (Heleen Mees and Dieperink, 2018). However, there is still a knowl-
edge gap between what these tools reveal about the impacts of climate change
on specific municipalities and the actual implementation of practical solutions.
Consequently, considering the effectiveness of green walls, development of a ro-
bust methodology for identifying suitable sites for NbS is valuable. Furthermore,
the automation of this process and applying standardised variables is impera-
tive to ensure applicability and transferability across other urban contexts in
The Netherlands. Previous studies attempting to estimate building dimensions
merely focused on calculating proportional relationships, rather than deriving
absolute measurements in standardised units of length such as meters (Zarghami
et al., 2019). This leads to the research question.

1.1.1 Research Question

To what extent can facades be correctly measured in real-world scale for apply-
ing vertical gardens?

1.2 Related work

The integration of AI-driven tools in urban planning is considered helpful in in-
forming and guiding urban policy to facilitate urban transformation (Kamrowska-
Za luska, 2021; Son et al., 2023). The conducted literature review of Kamrowska-
Za luska, 2021 demonstrates that when big data analytics and AI-related tools
are applied in urban planning, they provide a more accurate representation of
a city’s functional and spatial complexities. Notably, when AI is applied in
early stages of urban planning, it improves the chances to wider adoption (Son
et al., 2023). Depending on the task, AI-tools and data sources differ. However,
Biljecki and Ito, 2021 concluded in their research from 2021 that street view
images (SVIs) have become an important source for data collection in spatial
and urban analytics. In their analysis, they found that most of the research re-
lies on SVI data from Google. In addition, research that aimed to identify and
calculate the amount of greenery from street-level, used predominantly semantic
segmentation. In 2022, Qian et al., 2022 addressed the lack of large-scale, accu-
rate geospatial data on Roadside Noise Barriers (RNBs) in China, that hinders
effective urban planning and sustainable city development. Utilizing a geospa-
tial artificial intelligence framework and street view imagery, the researchers
created a vectorized dataset of RNBs. They employed intensive sampling of the
road network from OpenStreetMap and analyzed 6 million Baidu Street View
images using convolutional neural networks that incorporate image context (IC-
CNNs) through ensemble learning. Results from evaluation suggested that the
RNB dataset has a high quality and can be applied as an accurate and reliable
dataset for large-scale urban studies. The method provided may be useful for
this research. In 2023, Li et al., 2023 applied a computer vision technique for
mapping tree inventory in cities from street view images. Besides identifying
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the tree species, the algorithm was able to estimate the depth of each pixel in
the image to assess the physical dimensions. They concluded in their research
that the adapted method had an higher accuracy in tree recognition compared
to existing methods. Their method could be helpful in finding potential loca-
tions for NbS, particularly for urban tree placement. In their study in land
price estimation, Zhao et al., 2023 developed a new approach that implemented
deep learning to consider both streetscape and human subjective perception
factors. Land prices were estimated directly from street view images. In their
analysis, they extracted the results of semantic segmentation and perception
scores from these images and integrate them with land price data. This ap-
proach achieved an accuracy of 77.99% in predicting land prices based solely
on street views. In 2024, Sánchez and Labib, 2024 developed a methodology
to estimate the Green View Index (GVI) using open-source street view images
(SVIs). They demonstrated the applicability of freely accessible Mapillary data
for calculating GVI. In areas with limited SVI availability, they employed the
Normalized Difference Vegetation Index (NDVI) derived from satellite imagery.
Previous research regarding building detection mainly focused on the geomet-
ric shape, while semantic attributes - e.g., house number and building name -
are not attended (Sun et al., 2023). To overcome this, (Sun et al., 2023) de-
veloped a method that effectively extracts information from street-view images
and integrates it with OpenStreetMap (OSM) building footprints. This work-
flow consists of three steps: first, employing deep neural networks to recognize
information from the images; second, clustering this information to categorize
it into predefined attribute classes; and third, integrating the categorized in-
formation into OSM building footprints to enhance their semantic attributes.
This method could be useful in ensuring that potential NbS locations identified
through AI align accurately with the correct building and geographical location.
Also, this may improve the precision of urban planning initiatives.

2 Method

This study had an interdisciplinary approach by integrating computer vision,
trigonometric principles, and geospatial analysis, to address the research ques-
tion: To what extent can facades be correctly measured in real-world scale for
applying vertical gardens?

The research was conducted within a 2.22 km2 area in the eastern region of
The Netherlands, in the municipality of Zwolle. This area was selected as the
study area due to:

1. A mixed bag of building and house typologies.

2. Sufficient and reliable data sets that are also available for other Dutch
cities.

3. Architectural characteristics representative of other Dutch, historic urban
centers.
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Importantly, these factors aims to contribute to the applicability of the
methodology, as the municipality of Zwolle constitute as a representative sam-
ple for broader urban contexts within The Netherlands. This research proposed
to develop and validate a methodological framework for accurately assessing
potential vertical garden sites in urban settings, with implications for sustain-
able urban development and green infrastructure planning. Figure 1 shows a
schematic representation of the method divided in four steps. The subsequent
sections provide a detailed description of these methodological processes.

Figure 1: Flowchart representing the method in four subsequent stages

2.1 Data Retrieval & Processing

Data acquisition was conducted through the Google Maps API, with two re-
quest types. The initial phase of the process concerned utilising the API to
retrieve metadata of SVIs. This approach aided adaptive error handling with-
out exhausting quota limits, as the charging model of Google applies only to
the static SVI itself (LLC, n.d.). Moreover, this method was selected due to the
homogeneous quality, availability, and common use in similar research (Biljecki
and Ito, 2021). In addition, the functionality to query on coordinates, heading,
and field of view in the Google ecosystem improved processing efficiency for
retrieving static SVIs.

Building morphology, including shapes and height characteristics, was ob-
tained from the 3D Basisregistratie Adressen en Gebouwen (3D BAG) dataset
(Peters et al., 2022). This data was instrumental for distance calculations and
validation purposes. The road network data was extracted from OpenStreetMap
(OSM) by querying road features within the spatial extent of the study area.

2.1.1 Data Capture

An iterative method was constructed for efficiency - and avoiding prior bias -
in finding potential facades, illustrated as a data flow diagram in figure 2. Uni-
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form sampling was performed on the relevant road network of the study area.
Sample points were generated at 10-meter intervals along the roads. Each gen-
erated point was queried on the Google SVI Metadata API, and collected unique
panorama IDs, with corresponding latitude and longitude coordinates. Dupli-
cates were removed before storing the panorama metadata. Building polygons
were decomposed into individual edges that represented a potential facade. For
each SVI point, proximity analysis was performed by determining the nearest
facade. This analysis had the following steps:

1. Calculate the perpendicularity distance from the point to the facade.

2. Compute the angle between the facade vector and the point vector.

3. Assessing the centrality of the point projection along the facade.

To obtain the best point when there were multiple candidate points for
a building, a composite score was derived by assessing: (1) Distance from the
facade, (2) deviation from perpendicularity (90-degree angle), and (3) centrality
along the facade length.

2.2 Identifying masks with Grounded SAM

Identifying objects and generating masks was performed with the Grounded
Segment Anything model. It integrates the zero-shot detection capabilities -
a paradigm in machine learning wherein an AI-model is trained to recognise
and categorise objects without prior exposure to exemplars from those specific
categories (Bergmann, 2024) - of Grounding DINO with the adaptable image
segmentation functionality of Segment Anything (Ren et al., 2024). This combi-
nation simplifies the detection and precise segmentation of objects within visual
stimuli through text prompts. Regarding this research, the integrated approach
boosted efficiency since only a natural language prompt and image were needed
as input.

2.2.1 Object Detection

First, Grounding DINO was employed; an object detection model developed
by Liu et al. (2023). This model has high accuracy at identifying objects
within an image based on textual queries. In this stage, different prompts were
evaluated on their detection accuracy. While ’facade’ may be seen as a rational
input - since it is the objective of the research - better performance in detection
accuracy was achieved with the prompt ’building’. A plausible explanation for
this is the labeled training data, where ’building’ could be more common than
’facade’. Grounding DINO then analyzes the street view images and returns
valid detections as bounding boxes, with each accompanied by a corresponding
label and an accuracy score.
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Figure 2: Data flow diagram of Data Capture
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2.2.2 Image Segmentation

Following the object detection phase, bounding box outputs are pulled as inputs
for the Segment Anything Model (SAM), developed by Kirillov et al. (2023).
SAM, designed and trained to be adaptable to point, boxes and text prompts,
performs the segmentation task. It refines the initial bounding box detections
from Grounding DINO and creates precise pixel-level masks of the buildings.
The segmentation output is then used for dimensional analysis, to allocate
boundaries of each building, including architectural features.

2.3 Scale Converting & Area Estimation

Masks and attributes for building objects were initially obtained through image
segmentation. These masks represented the outline of the building within the
image. To transition from pixel-based data to real-world dimensions, a conver-
sion was established as a factor between pixel size and actual measurements.
The transformation of pixel-based measurements from images into real-world
scalar quantities requires a known reference length (Yan and Huang, 2022). As
mentioned, the coordinates of the SVI and building were used to calculate the
distance and served as a reference length. The equation for determining pixel
scale, was adapted from Calter’s ‘façade measurement by trigonometry’ method
(Calter, 2014). It was extended by considering the camera height in calculations.
Equation 1 and 2 were applied for scale conversion.

hp =
2d tan( θv

2 )

H
(1)

wp =
2d tan( θh

2 )

W
(2)

Where:

• hp, wp are the height and width of a pixel in real-world units, respectively

• d is the distance from the camera to the object

• θv, θh are the vertical and horizontal field of view in radians, respectively

• H, W are the height and width of the image in pixels, respectively

A = np · (hp · wp) (3)

Where:

• A is the total area

• np is the number of pixels in the mask (pixel count)

• hp is the height of a pixel in real-world units

• wp is the width of a pixel in real-world units
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2.3.1 Surface Estimation

Dimensional analysis commenced with the transformation of the building mask
into a binary object. This binary representation aid identification of the ob-
ject boundaries within the image. Equation 3 determined the minimum and
maximum x and y coordinates where the mask held a ’true’ value (i.e., whether
presence of the object or not). Coordinate ranges of the image, when multi-
plied by equation 1, yield the estimated height and width of the building in
real-world units. To calculate the gross area of the building, valid points were
summed within the mask (merely counting the pixels representing the build-
ing) and multiply this sum by the area of a single pixel in real-world units, as
shown in equation 3. Precision of the surface area estimation was established
by accounting for architectural elements that would not be suitable for vertical
garden. Considering image resolution and common building features, the seg-
mentation process only generated separate masks for windows and doors. By
subtracting the areas represented by these features from the gross area, the net
surface area of the building was calculated.

2.4 Constraints & Validations

The selection of a limited number of sampling points (n = 38) was driven by
significant computational constraints inherent in the processing of large-scale
image datasets. The full dataset compromises approximately 12.000 SVIs and
presents a substantial computational time when processed on conventional CPU
architecture. Iteration time of applying image segmentation, coupled with the
volume of data, would result in immoderate long processing time. The limita-
tion in computational resources led to the decision to employ a manual selection
process for sampling points. While this approach introduces potential selection
bias (Zhang and Zhu, 2018), it allows for a proof-of-concept demonstration of
the methodology within the available resources. Nevertheless, manual selec-
tion mirrored the criteria - i.e., perpendicularity to road, horizontal angle to
building - that would be applied when following the automated approach, thus
maintaining consistency with the intended methodology.

3 Results

This section presents the results obtained from the sequential stages of the study.
It is important to note that full automatic processing was implemented up to
the image segmentation phase. Subsequent results presented herein are derived
from the manually selected subset of data. This methodological approach was
bound by computational constraints, as discussed in the previous section.

3.1 Data Capturing Results

In the first step, 22.326 points were generated in the study area. After prepro-
cessing, 12.786 points that represents an SVI were returned. Figure 3 shows a
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map of the processed points as orange dots.

Figure 3: Map showing potential SVI locations as orange dots

3.2 Segmentation Results

A juxtaposition of a valid process is presented in figure 4. With (a) as original
retrieved SVI with correct orientation of an urban structure. And (b) The
processed counterpart that illustrates the application of the segmentation, with
detected building elements and estimated dimensions annotated.

Illustration of a partially valid segmentation process is in Figure 5. (a) The
original Street View Image (SVI) presenting a multi-story office building. And
(b) The result of the segmentation model. The figure exemplifies a partially suc-
cessful segmentation result. The applied trigonometry function demonstrates
accuracy in estimating the overall building height, when compared with the
object height from the 3D BAG dataset. However, it encounters difficulties
in identifying all relevant windows, which occurs more often for this type of
structures, and for all building types when distance is increased from the view-
point. Despite these constraints, the ability of the method to accurately gauge
the building height may suggests that certain volumetric estimations remain
reliable, even when finer architectural details prove elusive.
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(a) Retrieved image (b) Processed image

Figure 4: Example of a valid segmentation process

(a) Retrieved image (b) Processed image

Figure 5: Example of a partially valid segmentation process

11



3.3 Validation

The analysis reveals a positive correlation between distance and estimation er-
ror across all three height measures from the 3D BAG dataset. The strongest
correlation is observed for the maximum height error (r = 0.3012), followed by
the median height error (r = 0.2814), with the minimum height error showing
the weakest, albeit still positive, correlation (r = 0.2291). These positive cor-
relations could suggest that as the distance from the building increases, there
is a tendency for the magnitude of estimation errors to increase as well. The
strength of these correlations, while not robust, suggests a non-negligible influ-
ence of distance on estimation accuracy. Interestingly, the hierarchy of corre-
lation strengths aligns with the vertical positioning of the measured points on
the building facade. The strongest correlation for maximum height errors may
be attributed to the challenges in accurately discerning the topmost point of a
structure from increased distances. Conversely, the weaker correlation for mini-
mum height errors could be due to the relative stability of ground-level reference
points across various distances. It should be noted that, building geometry, en-
vironmental conditions, or algorithmic limitations, may also contribute to the
observed error patterns. The moderate strength of these correlations suggests
that while distance is a significant factor in estimation accuracy, it is not the
sole determinant. The analysis of height estimation accuracy across distances

Error Type Correlation with Distance

Error (Maximum Height) 0.3012
Error (Median Height) 0.2814
Error (Minimum Height) 0.2291

Table 1: Pearson correlation coefficients between distance and height estimation
errors

shows a logic and linear pattern of increasing error as the distance from the
subject building increases. Table 2 presents the Mean Absolute Percentage Er-
ror (MAPE) for maximum, median, and minimum height estimates across three
distance ranges. As evident from the data, the MAPE for all height measures
(maximum, median, and minimum) demonstrates an upward trend with increas-
ing distance. For distances between 0-20 meters, the MAPE ranges from 7.23%
for maximum height to 13.62% for minimum height. This error margin expands
for measurements taken at 20-40 meters, with MAPE values ranging from 8.15%
to 13.87%. The most pronounced errors are observed at distances exceeding 40
meters, where the MAPE reaches 9.72% for maximum height and 14.98% for
minimum height estimates. Notably, the minimum height estimates consistently
exhibit the highest MAPE across all distance ranges that may suggest a system-
atic overestimation bias for this parameter. Conversely, maximum and median
height estimates show comparable levels of error, with slightly lower MAPE
values than those for minimum height. The increasing MAPE with distance un-
derscores the importance of proximity in achieving accurate height estimations.
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This trend may be attributed to factors such as diminishing visual resolution,
increased perspective distortion, or limitations in the estimation algorithm at
greater distances. Finally, it shows the decreasing sample size as distance in-
creases, which may introduce some uncertainty in the error estimates for the
larger distance ranges.

Distance MAPE MAPE MAPE Sample
(meters) Max Height Median Height Min Height Size

0–20 7.23% 7.54% 13.62% 18
20–40 8.15% 8.40% 13.87% 13
40+ 9.72% 10.35% 14.98% 7

Table 2: Mean Absolute Percentage Error (MAPE) for height estimates by
distance range

4 Discussion

The study presents an approach to measure building facades for potential verti-
cal garden applications using a combination of street view imagery (SVI), com-
puter vision techniques, and geospatial analysis. This method demonstrates
promise in automating the process of identifying suitable locations for nature-
based solutions (NbS) in urban environments, addressing the growing need for
climate change adaptation strategies in cities (Liu et al., 2022; Lee et al., 2023).

4.1 Methodology Effectiveness

The multi-step methodology with data retrieval, image segmentation, scale
conversion, and area estimation, shows potential for large-scale urban analy-
sis. The use of Google Street View API for data acquisition proves efficient,
providing a consistent and widely available data source. The integration of
Grounded Segment Anything Model (SAM) for object detection and segmenta-
tion demonstrates high segmentation accuracy which could be useful in urban
planning applications that aligns with recent trends in AI-driven urban analytics
(Kamrowska-Za luska, 2021; Son et al., 2023).

4.2 Accuracy and Limitations

The results indicate that the method is capable of producing reasonably accurate
estimations of building dimensions for buildings at closer ranges. The analysis
reveals a positive correlation between distance and estimation error, with the
strongest correlation observed for maximum height error (r = 0.3012). This
may suggest that the accuracy of the method decreases as the distance from the
building increases.
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The Mean Absolute Percentage Error (MAPE) analysis further supports this
observation, showing an upward trend in error rates as distance increases. For
instance, the MAPE for maximum height estimates ranges from 7.23% at 0-20
meters to 9.72% at distances exceeding 40 meters.

Interestingly, the minimum height estimates consistently exhibit the highest
MAPE across all distance ranges. It could be assumed that this is a systematic
overestimation bias. This could be due to challenges in accurately identifying
the ground level in street view images which is possibly caused by obstructions
like trees, cars or perspective distortions.

4.3 Implications for urban planning

The developed method can be used as a tool within urban planning as a tool
for cost estimation of green walls per object - because of the use of real-world
scale - and the implementation of NbS. By automating the process of identifying
suitable facades for vertical gardens, this approach could greatly enhance the
chance of convincing stakeholders in urban greening initiatives. The ability to
assess large urban areas for potential green infrastructure sites could accelerate
the adoption of NbS, contributing to climate change adaptation and mitigation
efforts in cities (Commission, Research, and Innovation, 2015; Seddon et al.,
2020).

However, the observed limitations, particularly the decrease in accuracy with
distance - and computation resources needed -, suggest that the method may
be most reliable for assessing buildings in close proximity to the street. This
could potentially bias the selection of suitable sites towards buildings closer to
roads, which may not always align with optimal locations for vertical gardens
from an ecological or urban planning perspective.

4.4 Computational Challenges

The study encountered significant computational constraints, necessitating a
manual selection process for a subset of data points. While this approach allowed
for a proof-of-concept demonstration, it introduces potential selection bias and
limits the scalability of the method. Addressing these computational challenges
will be crucial for the practical application of this methodology at a city-wide
scale, a concern echoed in similar large-scale urban studies (Qian et al., 2022).

4.5 Future work

Future research could focus more on the improvement and scaling of calculation
resources that emerged during this study. Other possible improvements could
be:

• Enhance accuracy of measurements for buildings at greater distances, per-
haps through the development of distance-based correction factors or im-
proved image processing techniques.
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• Address the systematic overestimation of minimum height, which could
involve refining the ground level detection algorithms.

• Exploring ways to reduce computational demands, enabling the processing
of larger datasets and facilitating city-wide analyses.

• Developing methods to account for other factors relevant to vertical gar-
den suitability, such as sunlight exposure, wall material, and structural
integrity.

5 Conclusion

This study demonstrated an automatic approach to measure building facades for
potential vertical garden applications using street view imagery and computer
vision techniques. The methodology shows promising accuracy for buildings in
close proximity to the viewpoint, but with increasing error rates at greater dis-
tances. Limitations and potentials of the current approach can be seen in the
positive correlation between distance and estimation error, along with the in-
creasing MAPE values for greater distances. While the method offers a valuable
tool for rapidly assessing green walls with trigonometry, the segmentation of an
image takes more time, but could be improved with a more lightweight and
tuned segmentation model. The computational challenges encountered could
therefore be solved, but needs more efficient processing methods to enable city-
wide analyses. Despite these limitations, the developed methodology represents
a step towards automating the identification of suitable sites for vertical gar-
dens and other urban greening initiatives to address key barriers identified in
previous research (Dorst et al., 2022; Bush, 2020).

Future research could focus on improving measurement accuracy at greater
distances, which is useful for skyscraper building environments, like Rotterdam.
And with addressing systematic biases that improves computational efficiency.
Additionally, integrating this approach with other urban planning tools and
data sources could lead to more comprehensive and accurate assessments of
urban environments for nature-based solutions (Sun et al., 2023).

In conclusion, while further refinement is needed, the method of this study
aimed to lay a foundation for more efficient and data-driven urban greening
strategies and the implementation of nature-based solutions in cities. And,
therefore, hoping to indirect contribute to urban resilience for climate change
(Heleen Mees and Dieperink, 2018; Liu et al., 2022).
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