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Abstract
The transition to complex multicellularity from unicellular organisms was a major step in the life history of
animals, how this transition happened is however, not fully known. To better understand the evolution of
multicellularity, researchers study organisms that exhibit simple multicellularity, such as organisms that can
form colonies. A defining feature of these colonies is their size. Although colony size has been modeled in
various species, no model has yet focused specifically on the colonies of choanoflagellates, the closest living
relatives of animals. To gain deeper insight into the origins of multicellularity in animals, this thesis presents a
discrete stochastic model to simulate chain colonies of the choanoflagellate Salpingoeca rosetta (S. rosetta). The
model focuses on the interplay of division and breaking of cytokinetic bridges and how their underlying waiting
time distributions affect the distribution of colony sizes. These events are modeled using various probability
distributions and, through fitting to experimental colony size data, we determined that a gamma distribution
best represents the waiting times for division, while those for bridge breaks follow an exponential or gamma
distribution. Additionally, the model revealed that S. rosetta chain colonies reach a steady state in the average
number of cells per colony. We analyzed how the rates of cell division and bridge breakage influence this
steady state, finding that the division rate is inversely related to colony size, whereas the bridge break rate
follows a logarithmic relationship. Furthermore, a mathematical description of these steady states was found.
These results offer new insights into the colonies of choanoflagellates, the closest living relatives of animals, and
enhances our understanding of the origin of animal multicellularity.

Layman Summary
Choanoflagellates are single-celled eukaryotes found in aquatic environments. Even though they are unicellular, several
species of choanoflagellates can form multicellular colonies. What makes these microorganisms unique is that they
are the closest living relatives of animals, making them an interesting model organism to study various aspects of
the origin of animals. In this thesis, Salpingoeca rosetta (S. rosetta), a choanoflagellate species, is used to study the
properties of simple multicellularity. S. rosetta cells are able to form chain colonies: linear chains of cells connected
by intercellular bridges. One important aspect of these colonies is their size, i.e. how many cells are present per
colony. This thesis presents a model that describes how S. rosetta chain colonies grow and split, revealing what factors
determine colony sizes in simple multicellular colonies, leading to a better understanding of the development of more
complex multicellular organisms. The model is built on two key processes that determine the colony sizes in chain
colonies: cell division, which increases colony size, and bridge breakage, where connections between cells break,
leading to new smaller colonies. The outputs of this model include the colony sizes after specific time points and the
average number of cells per chain per time point. By doing various analyses with this model, we came to the following
conclusions: The cell division in S. rosetta cells follows a specific pattern best described by a gamma distribution,
which effectively means that division is age-dependent. We were not able to come to definitive conclusions on the
lifetimes of bridges, but we were able to conclude that this process involves some randomness and is not deterministic.
Furthermore, we found that after some time, the colonies in the simulation reach a steady state, where they stabilize
in their size. The mean colony size at which they stabilize is dependent on the bridge break and division rate. These
findings highlight how a simple model of two events can make accurate predictions on colony sizes. Our results
contribute to the knowledge on the mechanics of colonies of choanoflagellates, the sister group to animals, which
could in turn contribute to the knowledge on the transition from single-celled organisms to multicellular ones, which
was a crucial step in the life history of animals.

Keywords: Choanoflagellate, Salpingoeca rosetta, Stochastic modelling, Multicellularity, Interdivision times,
Cytokinetic bridges, Chain colonies, Steady state.
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1 Introduction
The transition from unicellular to multicellular organisms was
a crucial step in the evolution of animals [1–3]. It made the di-
vision of labor and increased specialization among cells possi-
ble, allowing for the development of more organized structures
such as tissues and organs that form the basis of modern ani-
mals. To achieve the transition to complex multicellularity, sev-
eral major steps were necessary, including cell differentiation,
cell adhesion, and cell communication [4–7]. These features
merged from organisms that portrayed simple multicellular fea-
tures, like the ability to form colonies and basic cell differenti-
ation. The driving forces behind these changes were likely evo-
lutionary benefits such as predation avoidance, stress resistance,
and increased motility [2, 8, 9].

In essence, multicellularity refers to organisms composed of
multiple cells, making colony size one of the defining character-
istics of multicellular systems. Studying colony sizes in organ-
isms that exhibit simple multicellularity could therefore provide
insight into one of the most fundamental aspects of multicel-
lularity, thereby improving our understanding on the origin of
multicellularity [9, 10].

The distribution of colony sizes and their underlying mech-
anisms have been studied within a variety of organisms includ-
ing, phytoplankton, algae, and yeast. Yet, no studies have ex-
amined this in model organisms more closely related to animals
[10–12]. To address this gap, it would be valuable to inves-
tigate the first animal. However, animals evolved 600 million
years ago, and there are no fossil records of these organisms
[13]. Therefore, choanoflagellates, as shown in Figure 1A, are
frequently used as model organisms for animal multicellularity,
as they are the closest living relative to animals [14–17].

Choanoflagellates are unicellular microbes that live in aqua-
tic environments [14, 18]. These eukaryotes consist of a cell
body, a collar made up of microvilli, and a flagellum, allowing
them to swim and create currents to trap and consume bacte-
ria [19, 20]. Due to their close evolutionary relationship with
animals, choanoflagellates are often used as model organisms
for animal multicellularity and development [14, 21, 22]. Addi-
tionally, many choanoflagellate species are able to form multi-
cellular colonies, further establishing them as a valuable model
for simple multicellularity [23]. Choanoflagellates have already
proven to be useful in studying the origin of various animal
behaviors and mechanisms, for example of collective contrac-
tility and generating action potentials [6, 24, 25]. Moreover,
multiple genes have been identified in choanoflagellates, which
were thought to be unique to animals, having led to a better
understanding of the genetics underlying the origin of animals
[5, 6, 22].

One of the most well-studied species of choanoflagellates
is Salpingoeca rosetta [21]. S. rosetta makes for an interesting
model organism due to its complex life cycle consisting of five
main states: three unicellular states (fast swimmers, slow swim-
mers, and thecate cells), and two colonial states (chain colonies
and rosette colonies) [14]. Additionally, they are able to sexu-
ally reproduce [6, 26]. S. rosetta can switch between these states

in response to environmental factors, like food scarcity, with
slow swimmers being able to transition to both colonial states.
However, in order to form rosette colonies, bacterial factor RIF
must be present in the medium [14, 27]. S. rosetta colonies
form through serial cell division, which is one of two ways
multicellular colonies can form, the other being through cell ag-
gregation [14, 22, 28–30]. More specifically, in chain colonies,
choanoflagellates divide and form a flat chain, whereas in rosette
colonies, cells change their orientation to form a spherical colony.

In S. rosetta colonies, the cells are connected through cyto-
plasmic bridges and the extracellular matrix (ECM) [14]. Cy-
tokinetic bridges are a result of incomplete cell division [28,
31]. Here, the final step of cell division, called abscission,
which should cut the bridges, is not fully carried out, leaving
the daughter cells connected [28]. These bridges can stabilize,
allowing the cells to be connected for hours to days [31]. Cy-
tokenetic bridges are conserved in many clades of life, where
they mostly function in intercellular communication and pro-
viding structure [28, 32]. The internal structure of these bridges
varies per clade [28]. In choanoflagellates, these bridges consist
of two dense plates connecting the membranes of the cells, with
one bridge connecting each pair of cells [14]. It is thought that
cytokinetic bridges have played a role in the origin of multicel-
lularity, where they likely contributed to providing stability and
structure in simple colonies [28]. Therefore, studying cytoki-
netic bridges in choanoflagellate colonies has the potential to
provide more insight into their role in the evolution of multicel-
lularity and their dynamics in simple multicellular organisms.

To summarize, studying the choanoflagellate S. rosetta has
proven to be useful for investigating the origin of multicellular-
ity in animals [23]; Their ability to form multicellular colonies
connected by cytokinetic bridges, together with the fact that
choanoflagellates are the closest living relatives to animals, ma-
kes them a valuable model organism. In this thesis, we devel-
oped a simple discrete stochastic model to better understand the
dynamics of S. rosetta chain colonies. Our model is driven by
two events: cell division and bridge breakage. We analyzed ex-
perimental data, fitted our model to this data to obtain parame-
ters, and assessed the model’s performance with different under-
lying waiting time distributions for these events. Furthermore,
we identified steady states in the average number of choanoflag-
ellates per colony and derived a mathematical description of
these states. This work aims to improve the understanding of
the mechanisms underlying colony sizes in simple multicellular
systems and specifically in choanoflagellates to further enhance
our knowledge on the origin of animal multicellularity.

2 Materials and Methods

2.1 Model
For this thesis, we developed a discrete stochastic model us-
ing Python to study the effects of cell division and intercellu-
lar bridge breaks on S. rosetta chain colony formation. In this
model, the chain colonies are represented as a dictionary: a data
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Figure 1: A) Phylogenic tree showing the evolutionary relationship between animals, choanoflagellates, filastereans, ichthyosporeans, and fungi.
The orange dot represent the last common ancestor between animals and choanoflagellates highlighting their close evolutionary relationship. B)
Simple representation of a choanoflagellate with its key structural components: the cell body, the collar made up of microvilli, and the flagellum.

C) The life cycle of choanoflagellate S. rosetta, showing the six main states: (1) Chain-colony, (2) Mating, (3) Rosette-colony, (4) Slow
swimmers, (5) Fast swimmers, and (6) Thecate cells, illustrating the possible transitions between the states [1].

type that stores data as keys and values. Here the keys corre-
spond to the chains, with values representing the choanoflag-
ellates within each chain. The cytokinetic bridges between the
cells are not explicitly represented within this dictionary, but it
is implied that each choanoflagellate in a chain has a bridge to
its left as a result of a division event, except for the first one in
the chain. This allows the bridges to be identified within the
dictionary and handled accordingly. The dictionary is updated
throughout the simulation in response to division and bridge
break events. Our model is continuous-time event-driven, mean-

ing that the model directly goes to the time where the next event
happens, instead of going through every point in time to check
if an event occurs. The timing of each event is determined by a
list of waiting times, in which each entry specifies the time until
an event occurs for each element in the chain dictionary.

If the object with the lowest waiting time in the list is a
choanoflagellate, division occurs. During this event, the sched-
uled cell is replaced by two new choanoflagellates in the chain
dictionary, along with a new bridge connecting them. For each
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Figure 2: Graphical illustration of the steps of our simulation model for choanoflagellate chain colonies, consisting of two parts: before the time
exceeds the simulation time and after the time exceeds the simulation time. The first part consists of drawing waiting times and carrying out

events, while the second part consists of analyzing and plotting data obtained from the simulation.
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new element, a waiting time is drawn and added to the waiting
list.

If the object with the lowest waiting time is a bridge, then a
bridge break event occurs. During this event, the chain contain-
ing the bridge splits into two separate chains at the choanoflag-
ellate associated with the bridge. The model produces two out-
puts: the distribution of colony sizes at the end of the simula-
tion, which can be compared to experimental distributions, and
a plot of the mean number of choanoflagellates per chain colony
over time, used to analyze steady states.

A graphical overview of the model and its steps are dis-
played in Figure 2.

2.1.1 Waiting times

As previously mentioned, a waiting time must be drawn for each
new element at the moment it originates. This waiting time
specifies the duration until the element either breaks (in case
of a bridge) or divides (in case it is a cell). The final distribu-
tion is directly influenced by the timing of the events; therefore,
the way these waiting times are drawn is very important. There
are various methods for modeling the waiting times between
events. Given the limited knowledge of the dynamics of bridge
break events, various models for stochastic as well as determin-
istic processes were explored. For division, the best model was
determined by comparing different models to available experi-
mental cell cycle data.

To model waiting times stochastically, we draw values from
a probability density function (PDF). A PDF maps a range of
values to its associated probability, such that the area under the
curve of the density function is one [33, 34]. There are sev-
eral widely used PDFs, each with distinct properties. For our
models, we incorporated exponential and gamma distributions.

Exponential distributions An exponential distribution is com-
monly used because of its memoryless property, meaning that
the occurrence of the next event is independent of when the
previous event occurred, i.e. the probability of an event tak-
ing place in the next interval does not vary through time [34].

This property is reflected in the PDF of the exponential distribu-
tion which has a long tail and is non-zero for all positive values
(Fig 3). The distribution is characterized by a single parame-
ter, the rate λ , which corresponds to the frequency that an event
happens [34]. The inverse of this rate parameter is the scale pa-
rameter φ , which corresponds to the mean of the exponential
distribution. Both λ and φ are real and positive numbers. The
probability density function is defined by:

λ ∗ exp(−λ t), t > 0 (1)

or with the scale parameter as

1
φ
∗ exp(− t

φ
). (2)

with t representing time [34]. In Figure 3A, the PDF of the
exponential distribution is plotted for different values of λ . The
exponential distribution’s simplicity, with only one parameter,
makes it straightforward for sampling waiting times.

Gamma distributions The gamma distribution is a widely
used distribution due to its versatility. This distribution can cap-
ture the chi-squared distribution and Erlang distribution as well
as the exponential distribution as special cases [34]. The gamma
distribution is defined by two parameters: the shape parameter
α and the rate parameter β , both of which are real and positive
numbers [34]. α defines the shape of PDF, with special cases
for α = 1 where the PDF is exponential, and for high values, it
approximates the normal distribution [35]. The mean of the dis-
tribution is described by α*β . The PDF function of the gamma
distribution is given by :

f (t;α,β ) =
β α

Γ(α)
tα−1e−β t , t > 0 (3)

[34] With Γ(α) as the gamma function, which is defined as

Γ(α) =
∫

∞

0
t(α−1) exp(−t)dt (4)

Figure 3: Exponential and Gamma Probability Density Functions (PDFs). The left graph shows exponential PDFs for different rates (λ = 0.5, 1,
and 2). The right graph displays Gamma PDFs for various combinations of shape and scale parameters (α = 2 β=1, α = 5 β=1, and α = 2 β=0.5).
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[36]. In Figure 3, several PDFs of the gamma distribution are
shown for different values of α and β . The gamma distribution
is more versatile and flexible than the exponential distribution
due to its two parameters, making it another interesting distri-
bution to sample waiting times from.

Deterministic The final method considered is to draw the wait-
ing times deterministically. In this approach, the time between
the origin of each element and its related event is a predeter-
mined value.

2.1.2 Inputs

The input for the model depends on what method is used to
draw the waiting times between events. However, there are pa-
rameters that are used in for each method:

• Initial population size: Initial chain colonies and single cho-
anoflagellates in the population that the simulation will start
with.

• Mean time until division: Average time until a choanoflag-
ellate divides from the time of its formation.

• Mean time until bridge break: Average time until a bridge
breaks from the time of its formation.

• Simulation time: The total duration (in hours) for which the
simulation will model the system’s dynamics.
All parameters can be adjusted separately, allowing to see

the effect of each parameters on the outputs of the model.

2.2 Experimental data
Experimental data referenced in this thesis was obtained from
the Chaigne lab at Utrecht University. For the experimental dis-
tributions of colony sizes, we received raw data of the number
of choanoflagellates per colony, starting from a dilution of 1:10
and growing for 24 or 48 hours. The data were imported into
Python and the distribution of the number of choanoflagellates
per chain was plotted. B. van Amen from the Chaigne lab also
provided the raw data on the cell cycle times of choanoflagel-
lates, which were collected through live cell imaging and ana-
lyzed using ImageJ. These data were imported into Python and
used to create a plot showing the distribution of cell cycle times.

2.3 Fitting
To quantify the goodness of fit between experimental data and
model parameters, the sum of squared errors (SSE) was calcu-
lated. This approach measures the squared distance between
experimental and predicted data [37];

SSE =
N

∑
i=1

(yi − f (xi,zi))
2 (5)

where yi is the value of the experimental data at point i, and
f (xi,zi) is the predicted value at point i [37]. To fit the gamma
distribution and the exponential distribution to the cell cycle
data, the least squares error (LSE) approach was used [38]. This

algorithm tries various parameter combinations and calculates
the SSE for each of these. The distribution that best fits the data
is the one with the least square error. To determine the opti-
mal parameters, the algorithm starts with an initial guess. After
calculating the LSE for the initial guess, the algorithm adjusts
the parameters using the Nelder-Mead method [39], which does
not require the derivative of the loss function. This method was
chosen due to the complexity of the derivative of the loss func-
tion due to the derivative of the gamma function.

3 Results

3.1 Analyzing experimental data and fitting
The first step in analyzing colony sizes of S. rosetta chain colon-
ies was to examine the experimental data provided by the Chaig-
ne lab.

3.1.1 Gamma distribution provides the best fit to S. rosetta
cell cycle durations

The Chaigne lab provided us with the cell cycle duration of S.
rosetta cells, which can be found in Figure 4A. The purpose
of using this data was to gain insight into the underlying me-
chanics of S. rosetta cell division. To do this, we rearranged
the data into a cumulative probability distribution, which indi-
cates the likelihood that a random variable will be less than or
equal to a given value, accumulating probabilities from the low-
est possible value up to the given value [40]. Next, we fitted the
cumulative distribution functions (CDFs) of the gamma and the
exponential distribution function to the experimental data. In
addition, the step function was fitted, which represents a deter-
ministic method. This fitting process was performed using the
LSE approach, minimizing the SSD. As shown in Figure 4B, the
gamma distribution, with a shape parameter of 3.37 and scale of
1.84, provided the best fit to the data. The exponential distribu-
tion, with a scale parameter of 7.57, produced an adequate fit,
while the step function, with a median of 5.83, did not align
well with the data.

Based on these results, we decided on the following com-
binations of waiting time distributions for division and bridge
breakage, resulting in four models: Exponential - Exponential,
Gamma - Exponential, Gamma - Gamma, and Gamma - Deter-
ministic. In these models, the first distribution represents the
time handling for division events, while the second corresponds
to the time handling for bridge-breaking events. We chose to
exclude the deterministic approach for division events, as it was
not a good fit to the experimental data.

3.1.2 Gamma - Exponential and Gamma - Gamma models
show the best fit to experimental colony size CDF

Next, we compared the CDF of the experimental distribution
of colony sizes (recorded after 24 hours and 48 hours) with
those produced by the simulations for each of the four models.
This analysis aimed to determine good parameters for handling
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Figure 4: Distributions of and fitting of cell cycle durations over time. (A) Histogram of cell cycle durations in hours recorded during live cell
imaging, made by Chaigne lab, n = 73 cell cycles. (B) CDF comparison of experimental cell cycle duration data in grey, with fitted gamma (shape
= 3.37, scale = 1.84) in blue, exponential (scale = 7.57) in orange, and deterministic models (median = 5.03) in red, illustrating the fit of different

models to the experimental data.

bridge break events, as well as evaluate the model outputs in
comparison to the experimental data. The SSD was calculated
between the experimental CDFs and the simulation-generated
CDFs from the different models, where the CDFs from the mod-
els are averages of 1000 simulations. This procedure was re-
peated for various mean bridge lifetimes ranging from 1 to 40
with steps of 2. As can be seen in Figure 5, for each of the mod-
els, a clear minimum could be found, except for the Gamma -
Gamma model. Interestingly, for this model, a range of different
parameter combinations seem to lead to a low SSD, indicating
that the Gamma - Gamma model is relatively robust to changes
in parameters. This flexibility could be due to the two parame-
ters that define the distribution, rather than one. We can see that
the grid exhibits an L-shape at a mean lifetime of ten to fourteen
hours and an alpha of one to two, where the lowest SSD values
are centered around. Another observation from the plots in Fig-
ure5 is that the curves vary slightly for the 24-hour comparison
and the 48-hour one for all models. The lowest SSD value and
the best corresponding parameters for each model and each dis-
tribution can be found in Table 1. Here, we can find that the
Gamma - Gamma model performs the best in each of the two

time points, followed up by the Gamma - Exponential model.
The Exponential - Exponential model performs relatively well
in the 48-hour distribution, while the Gamma - Deterministic
model does not fit well to the data compared to the other mod-
els. We chose to work with the values obtained from the fitting
with the 48-hour experimental distributions, since for the re-
mainder of this thesis we will mostly simulate the colonies for
longer periods of time, making these parameters likely more re-
liable.

Next, the obtained parameters were used in the simulation
to plot the CDFs and the colony size distributions, as can be
seen in Figure 5B-D. We can see that the graphs overlaying the
experimental data seem to match the results obtained from the
fitting: the Gamma - Exponential and Gamma - Gamma resem-
ble the experimental data the best. Interestingly, we can see
that from the 24-hour CDFs, the models seem to have smaller
colony sizes than the experimental distribution. In Figure 5C-
D, it can again be seen that the Gamma - Exponential and the
Gamma - Gamma models provide the most similar shapes to the
experimental distributions, especially in the 48-hour case.

Model (Division-Bridge
Break) SSD 24h Best parameter(s) 24h SSD 48h Best parameter(s) 48h

Exponential-Exponential 0.035 λ = 1/30 h−1 0.006 λ = 1/22 h−1

Gamma-Exponential 0.014 λ = 1/32 h−1 0.002 λ = 1/24 h−1

Gamma-Gamma 0.004 µ = 14h,α = 6 0.002 µ = 16h,α = 2
Gamma-Deterministic 0.037 t = 12 h 0.076 t = 11 h

Table 1: The sum of squared differences between the CDFs of experimental colony sizes and the CDFs of colony sizes for each model, using the
best-fit parameter combinations.
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Figure 5: Comparing the distribution of S. rosetta chain colony sizes after 24 and 48 hours grown with a density of 1:10 made by Chaigne lab to
simulation outputs for each model, averaging over 1000 simulation runs. (A) Plots of the SSD between the experimental colony size CDF after 24
and 48 hours and the simulations output performed for different values of parameters that determine the bridge break rate, done for each model:

Exponential - Exponential in orange, Gamma - Exponential in blue, Gamma - Deterministic in sea green, and Gamma - Gamma as gradient map,
where the 24 hours comparison is marked as a dotted line and the 48 hours with a continuous one. For the Gamma - Gamma model, the 24 hour
comparison is on the left and 48 hours on the right, with SSD values exceeding 3.0 in yellow (B) Comparision of the colony size CDF after 24

hours (left) and 48 hours (right) and the simulations output for the four models using the bridge break parameters related to the minimal SSD for
the 48 hours. (C-D) Comparison of experimental colony size distributions after (C) 24 hours and (D) 48 hours to the simulations output for each
model: Exponential -Exponential in orange (Division: λ = 1/7.57 h−1, Bridge Breaks: λ = 1/22 h−1), Gamma - Exponential in blue (Division: α

= 3.37 µ = 6.2 h, Bridge Breaks: λ = 1/24 h−1), Gamma - Gamma in magenta (Division: α = 3.37 µ = 6.2 h, Bridge Breaks: α = 2 µ = 16 h),
and Gamma - Deterministic in sea green (Division: α = 3.37 µ = 6.2, Bridge Breaks: t = 11 h).

3.1.3 Modelled S. rosetta colonies stabilize in the average
colony size and standard deviation

To gain further insight into the dynamics of the different mod-
els, we looked at the average and standard deviation of the num-
ber of cells per colony. This was done by comparing their tra-
jectories over time. As Figure 6 shows, both the average and
the standard deviation of the number of choanoflagellates per
chain seem to stabilize over time in each model. However, the
trajectories to this stabilization and the value at which the vari-
able stabilizes vary per model. The three methods that utilize

the gamma distribution to model the division times have similar
trajectories at the start when mostly only division events occur
but then start to diverge when bridge break events start to play
a role, while in the trajectory of the Exponential - Exponential
model diverges from the others from the start. For the average,
we can see in Figure 6A-B that all models roughly converge to-
wards the same value between 3.5 and 4.0 of choanoflagellates
per colony. This agrees with the experimental data that reads
that after 48 hours, the average number of colonies per chain
is 3.83, with the mean of the Gamma - Gamma model being
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the most similar. The trajectory of the Gamma - Deterministic
model, the trajectory is very steep at the beginning, but stabi-
lizes quickly, since then the deterministic bridge break events
stabilize. For the stochastic bridge break models, it takes longer
to stabilize as can be seen in Figure 6B. For the standard de-
viation, the Gamma - Deterministic stabilized value lies low
relative to the other methods, while the other models roughly
stabilize around the same value between 2.8 and 3.2 (Fig 6 C-
D). This again aligns with the standard deviation of the exper-
imental data of 2.9, with the standard deviation of the Gamma
- Gamma model being the most similar. The observation that
the Gamma - Deterministic model stabilizes at a smaller value
compared to the other models, can be explained by the notion
that deterministic bridge break events lead to more of the same
colonies. This is also what was seen in the distributions of Fig-
ure 5C-D, where the distribution is dense, instead of spread out.

3.2 Analyzing steady states
In the previous section, we observed stabilization in the average
number of cells per colony. In this section, this will be analyzed
further.

3.2.1 The steady state is independent of the initial popula-
tion for all models

First, we plotted the trajectories of the average number of cho-
anoflagellates per colony for different initial populations to see
if the same steady state is reached. This was done for each
model. In Figure 7, we can see that for all four combinations,
steady states in the number of cells per colony are reached inde-
pendent of the initial population. Across all models, the time to
reach a steady state varies. In the models where bridge breaks
are not modeled with the exponential distribution, the steady
states seem to be reached earlier. In the model where bridge

Figure 6: Analysis on the mean and standard deviation of colony sizes of simulated S. rosetta chain colonies, averaging over 500 simulation runs
with Exponential -Exponential in orange (Division: λ = 1/7.57 h−1, Bridge Breaks: λ = 1/22 h−1), Gamma - Exponential in blue (Division: α =
3.37 µ = 6.2 h, Bridge Breaks: λ = 1/24 h−1), Gamma - Gamma in magenta (Division: α = 3.37 µ = 6.2 h, Bridge Breaks: α = 2 µ = 16 h), and
Gamma - Deterministic in sea green (Division: α = 3.37 µ = 6.2, Bridge Breaks: t = 11 h). (A) Trajectories of the average number of cells per
chain colony over time for each of the four models. (B) The gradients of the trajectories of the mean number of cells per colony for each of the
four models. (C) Trajectories of the standard deviation in the number of cells per chain colony over time for each of the four models. (D) The

gradients of the trajectories of the standard deviation for each of the four models.
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Figure 7: Analysis of the steady state in the average number of choanoflagellates per chain colony for each model, averaging over 500
simulations with Exponential -Exponential (Division: λ = 1/7.57 h−1, Bridge Breaks: λ = 1/22 h−1), Gamma - Exponential(Division: α = 3.37 µ

= 6.2 h, Bridge Breaks: λ = 1/24 h−1), Gamma - Gamma (Division: α = 3.37 µ = 6.2 h, Bridge Breaks: α = 2 µ = 16 h), and Gamma -
Deterministic (Division: α = 3.37 µ = 6.2, Bridge Breaks: t = 11 h) (A) Trajectories of the average number of choanoflagellates per chain colony
for different initial colony sizes for the different models. (B) Parameter sweeps of the steady state value for various bridge break rates (left) and

division rates (right) for each model. (C) Trajectory of the mean colony size over time from the Exponential - Exponential model compared to the
trajectory of the mathematical description.
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lifetimes are deterministic, the path to the steady state is very
similar for all the initial population sizes, while for the other
models, the paths are less predictable due to their more stochas-
tic nature. Despite these differences, the steady state is reached
in all cases, suggesting that simulated S. rosetta chain colonies
grow towards a stable average size, independent of the initial
population size.

3.2.2 Division and bridge break rate significantly influence
the value of the steady state in S. rosetta chain colonies

Next, we analyzed how the rates affect the steady states. This
was done by performing parameter sweeps for the bridge break
rate and the division rate. Here, the parameters that determine
one of the events were kept constant while varying the param-
eters of the other. Then, we plotted this variable against the
steady state number of choanoflagellates per colony after 48
hours. The steady state is reached if there is no more than 5
percent change in the average over the past two hours. In cases
where the event is modelled with the gamma distribution, where
the distribution depends on two parameters, the ratio between
the two parameters were kept constant while varying the mean
value. The results can be seen in Figure 7. We can see that the
bridge break is log-log related to the steady state while the di-
vision rate seems to be linear for all the models. Furthermore,
it can be seen that for low bridge break rates, no steady state
is reached within 48 hours, as indicated by the absence of plot-
ted values. This is a result of the low to no number of bridge
break events happening in 48 hours for these rates, leading to
the unlimited growth of the colonies, while in cases where the
bridge break is modeled stochastically, bridge breaks can still
occur within these hours, reducing this unlimited growth.

3.2.3 Steady-state value is determined by the ratio of divi-
sion and bridge break rate

Our final aim was to see if the trajectories of the average num-
ber of choanoflagellates per colony over time could be described
mathematically and also find a description for the observed steady
states. The average number of choanoflagellates per chain can
be calculated by knowing the number of choanoflagellates and
the number of bridges by:

M =
c

c−b
(6)

with M being the average number of choanoflagellates per colony,
c the total number of choanoflagellates, and b the total number
of bridges. Here, c− b describes the number of colonies, in-
cluding single-celled ones. Furthermore, the change in c and b
per time step can be described using:

dc
dt

= ckd (7)

db
dt

= ckd −bkb (8)

with kd as the division rate and kb as the bridge break rate.

It is important to note that this description only holds when
both events are handled with an exponential distribution. Now,
by integrating these differential equations descriptions by using
the initial values c(0) = 1 and b(0) = 0, M can be found as a
function of time:

c = exp(kdt) (9)

b =
kd

kb + kd
∗ (exp(−kbt)∗ (−1+ exp(kb + kd)t) (10)

By plugging this in Equation 6, we obtain:

M(t) =
kb + kd

kb + kd exp((kb + kd)t)
(11)

In Figure 7C, the mathematical solution is plotted in the same
graph as the simulation output for the Exponential - Exponential
model, which seem to align well.

Furthermore, the steady states can be described mathemati-
cally. The steady state occurs when

dM
dt

= 0. (12)

We can find this by either using the chain rule with dc
dt and db

dt
or by directly differentiating our description of M as a function
of time. By using the chain rule, we can calculate dM

dt . Using:

dM
dt

=
dM
dc

dc
dt

+
dM
dt

db
dt

(13)

one ends up with

dM
dt

=
c2 − c∗b∗ kd −n∗b∗ kb

(c−b)2 (14)

Then with dM
dt = 0 to get the steady state we get:

Msteady =
1

1− kd
kd+kb

(15)

This solution aligns with the results from the simulation.

4 Conclusion and Discussion
Multicellularity evolved many times in all clades of life, often
starting with simple multicellular colonies. One main feature of
simple multicellular colonies is their size. In this thesis, we pre-
sented a discrete stochastic model that simulates chain colonies
of the choanoflagellate S. rosetta, the closest living relative to
animals. This model is defined by two events: division and
bridge breakage. Here, various probability distribution func-
tions were tested to draw inter-division times and bridge life-
times from. Our findings indicate that division follows an age-
dependent distribution, as opposed to a memoryless exponential
or deterministic pattern. This age-independent behavior is ex-
pected since the cell must progress through the cell cycle before
it divides. For bridge lifetimes, the results seem to rule out the
possibility that they follow a deterministic trend. Furthermore,
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it was found that this system reaches steady states in the aver-
age number of cells per chain, where the bridge break rate has a
log-log relationship with the steady-state value, and division is
linearly related. Finally, it was observed that these trajectories
and steady states can be mathematically described.

It has been described many times that there are variations in
cell cycle times between individual cells, even in cells within
the same colony [41–46]. This stochasticity is mostly attributed
to variabilities in time spent in the G1 phase of the cycle [43,
47]. Especially in small populations of cells, it is of impor-
tance that cell-to-cell variability is accounted for to accurately
describe their growth [48, 49]. In our model, we capture this
variability in inter-division times by drawing these times from
a PDF that describes a stochastic process. It was found through
fitting experimental cell-cycle times to various PDFs, that they
are best fitted by the gamma distribution (µ = 6.2 , α = 3.37).
This indicates that the division in S. rosetta is age-dependent,
with variations around the mean age. It is important to note that
due to the low availability of experimental data, the estimated
parameters are not fully reliable, and should be reevaluated with
more data. Various models agree that the cell cycle should be
modeled with the gamma distribution, while there are also other
methods described in the literature, such as with the delayed ex-
ponential model or an exponentially modified gamma distribu-
tion [45–47, 50, 51]. The results in this research indicate that
the gamma distribution is the best option to describe the divi-
sion of choanoflagellates until there is more experimental data
to compare to.

Next, we found that the experimental distribution of colony
sizes can be best fitted by the Gamma - Exponential and Gamma
- Gamma models of our simulation. In further analysis of the
mean and standard deviation of the mean colony size, we found
that these values are more aligned with the Gamma - Gamma
model, however, due to the limited experimental data and com-
puting power, we can not make definitive conclusions about the
best distribution. Moreover, it is reasonable that the gamma
distribution provides a better fit for the data, as it includes more
parameters compared to the other methods we tested. By gath-
ering more experimental data, a conclusion can hopefully be
drawn. If we find that the Gamma - Gamma model performs
best, then this indicates that the lifetime of bridges is age-de-
pendent, while if the Gamma - Exponential distribution fits best,
then the bridges are likely memoryless and break through some
other mechanisms or just randomly. Not much is known about
intercellular bridges in choanoflagellates or the lifetime of in-
tercellular bridges overall. It is known that stable intercellular
bridges can persist for long periods, hours to days, but there has
not been a clear description of their precise rate or the variabil-
ities in this time [31]. In this thesis, we found estimates for
the lifetime of bridges in S. rosetta chain colonies, which var-
ied across models but generally ranged around twenty hours.
Due to the limited knowledge of the dynamics of cytokinetic
bridges, further validating these lifetimes and finding a PDF that
describes them in choanoflagellates to broaden our understand-
ing of this mechanism in a model organism close to animals

could provide insight into these bridges in the origin of animals
[14, 28].

Finally, the results indicate that the system seems to reach a
steady state in the average number of cells per colony, indicat-
ing that the colonies seem to reach a balance in the division and
the bridge break events resulting in stabilized growth. The time
until a steady state was reached varied per model. Cases, where
the bridge breaks are modeled deterministically, reach a steady
state faster, likely due to less random fluctuations as opposed to
the more stochastic models, which take a longer time to stabi-
lize. We found that this steady state is reached regardless of the
initial colony sizes, strengthening the generality of this steady
state. Our mathematical description of this steady state shows
that their value is solely dependent on the ratio of the bridge
break rate and the division rate. Future research could focus on
imaging S. rosetta colonies for a longer period to find whether
these steady states are also observed in vitro.

In this model, colony sizes of chain colonies are determined
by division, increasing colony sizes, and bridge breaks, which
result in two separate colonies. This is a simple approach and
might neglect processes that could also potentially affect colony
size. In literature, various approaches are described to simu-
late colony growth, some taking a similar one to ours. A paper
that lies close to our model is Nanda et al, where the model
is described by: cell division, intercellular connection break-
age, and the maximum number of connections a cell can have
(the kissing number) [10]. This paper focused on modeling the
colonies of budding yeast and found similar results to the ones
described in this thesis where the system reaches the steady state
determined by the ratio between the division rate and the con-
nection breaking rate if the maximum number of links per cell
is not reached. This is consistent with our finding that colony
growth stabilizes due to a balance between division and bridge
break events, leading to a steady state in the number of cells
per colony. Despite these similarities, there are key differences
between our models that are worth highlighting, such as that
their model does not account for the variations in inter-division
times and that their model has an extra layer of complexity by
implementing the kissing number, while in the organism in our
model, there is only one bridge connecting each pair of cells,
which may limit the applicability of our model to other or-
ganisms since they usually do not grow in chains. Although
the simplicity of our model has its benefits, such as making it
straightforward to understand and easy to run, some models in-
corporate more events to describe colony sizes. So do some
models focus on the events of quiescence, proliferation, and
apoptosis to describe their sizes, which seem to perform well
to model mammalian cells [47, 52]. Another model on phy-
toplankton describes its colonies by division, stomatocyst pro-
duction, colony breakage, and colony loss, where colony loss
describes all processes that could lead to colony loss such as
sinking [53]. Incorporating other events such as quiescence,
colony loss, and cell death into our model could improve our
model.
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The main limitation is that not enough experimental data
was obtained to make claims on the exact rates and scale pa-
rameters that should be used to model choanoflagellate chain
colonies. With more data, we can validate our findings and also
obtain more reliable parameters for the waiting time distribu-
tions. Next, in the simulation, we set the initial colony size
to one choanoflagellate for convenience, while in the experi-
mental data, the colonies were grown from many single-celled
colonies. This should not matter because the cumulative prob-
ability distribution functions were used; however, when com-
paring the model to classic distributions, the initial population
parameter should be set to more single-celled colonies depend-
ing on the density of the cells measured. There are also limita-
tions with the model: the simulation can be computationally de-
manding depending on the analysis; therefore, the division rate
cannot be too high, and neither can the simulation time. This is
because the number of cells increases rapidly, and at some point,
there will be too many choanoflagellates for a normal computer
to handle and the simulation will take a long time to run. There-
fore, in our parameter sweeps, the division rate takes a maxi-
mum value of 0.20. It is unlikely that the division rate will be
higher based on our fitting of the experimental data and the liter-
ature. If you wish to set a higher division rate, this issue can be
solved by running the simulation using high-performance com-
puting (HPC). Furthermore, the simulation has limitations in its
complexity. This simulation is a highly simplified case of the
experimental and natural environmental conditions in which S.
rosetta lives. In the simulation, we only focused on two life-
cycle stages and excluded the others. Furthermore, we did not
consider environmental factors, such as food and predators.

In this thesis, we developed the first model that describes
chain colonies of the choanoflagellate S. rosetta. The results
provide a new understanding on the colonies of choanoflagel-
lates and therefore could also contribute to the understanding
of the origin of animal multicellularity and the possible mech-
anisms by which this happened [1]. Further developing this
model by including other events could build upon this insight
and also possibly make this model applicable to other organ-
isms. The results obtained by this study should be revised when
more experimental data is available to enhance them.
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