
UTRECHT UNIVERSITY

Department of Information and Computing Science

Artificial Intelligence Master’s Thesis

Interactive evolution: interactive genetic algorithms for

addressing popularity bias in music recommender

systems

First examiner:

Eelco Herder

Second examiner:

Jeroen Ooge

Candidate:

Jip Sierksma

Student number:

6564275

Version: September 25, 2024

Abstract

Within recommender systems, there is a well-known bias called popular-

ity bias, where these systems tend to recommend more popular items, over

items in the so-called long-tail, which refers to the vast number of less pop-

ular items that collectively make up a significant portion of the total data.

Popularity bias causes problems for both users and artists, such as limited

exposure for niche or undiscovered artists and a lack of variety in users’

music consumption habits. To address this issue, we developed an interac-

tive genetic algorithm (IGA) for music recommendations, which evolves a

population of recommendations based on user feedback. Our method im-

proves on previous approaches by incorporating mutation, as well as dy-

namic crossover and mutation rates. We benchmarked our method against

a previous approach using simulated users. Results show that our method

shows similar feedback scores across all users as the benchmark. How-

ever, the convergence rate was higher, meaning optimal solutions were

found more quickly. Moreover, our method improves feedback scores sig-

nificantly for users with more niche interests, showing a 150.85% improve-

ment from the initial to the final generation, whereas the benchmark shows

a statistically lower increase of 107.27%. For users with traditional pref-

erences, our system showed similar performance to the benchmark. The

results suggest potential for the real-world applications of IGAs for music

recommendations, as well as show the impact of incorporating mutation

and dynamic genetic operation rates into IGAs.

Contents

1 Introduction 4

2 Literature review 10

2.1 Previous work in recommendation 10

2.1.1 Content-based filtering 10

2.1.2 Collaborative filtering 11

2.2 Evolutionary computing and genetic algorithms 16

2.2.1 Evolutionary computing 17

2.2.2 Genetic algorithms . 17

2.2.3 Selection mechanisms for genetic algorithms 21

2.2.4 Interactive genetic algorithms 22

2.3 Data sources for music recommender systems 25

2.4 Popularity bias and the long-tail problem 27

2.5 Impact of the popularity bias 30

2.5.1 Impact on artists . 32

2.5.2 Impact on users . 33

2.6 Popularity bias metrics . 34

2.7 Investigating popularity bias in algorithms 35

2.8 Mitigation of the popularity bias 35

2.8.1 Traditional popularity bias mitigation 36

2.8.2 Popularity bias mitigation using Interactive Genetic

Algorithms . 38

3 Methodology and motivation 40

3.1 Motivation . 40

3.2 Research questions . 42

3.3 Methodology . 43

3.3.1 Dataset . 43

3.3.2 Algorithmic development 46

3.3.3 Platform, environment and package details 57

3.3.4 Evaluation measures . 58

2

CONTENTS CONTENTS

4 Results 60

4.1 Dataset and Experimental Setup 60

4.1.1 Dataset Description . 60

4.1.2 Experimental Setup . 63

4.2 Algorithm performance . 64

4.2.1 Performance over Generations 64

4.2.2 Performance for Different User Classifications 66

4.3 Comparison to Other Methods 67

4.3.1 Performance over Generations 67

4.3.2 Performance for Different User Classifications 69

4.4 Comparison of different parameters 71

4.4.1 Population size per generation 71

4.4.2 Mutation rate . 72

4.4.3 Crossover rate . 73

5 Discussion 75

5.1 Interpretation of results . 75

5.1.1 Research Questions . 78

5.2 Comparison to existing literature 79

5.3 Limitations of Study . 80

5.4 Future research directions . 82

6 Conclusion 84

A Appendix 86

A.1 Tables . 86

Bibliography 94

3

1. Introduction

Before the internet, music consumption was limited by the medium it was

consumed in. Vinyl, cassette tapes, CDs and other physical formats de-

fined the way people accessed and listened to music. For music discov-

ery, people relied on the radio, recommendations from family and friends,

or serendipitous encounters at record stores. The constraints that physical

mediums bring, not only shaped the listening experience, but also the width

of music exposure. When online stores came along, the music consumption

landscape changed. Online stores still sold the same physical formats, but

consumers were no longer limited by the amount and diversity available

in their local record store. However, having a large amount of items avail-

able, as is possible in these online stores, can cause information overload for

users[1]. This can result in difficulties in selecting items for consumption.

Music recommendation systems

With the increasing availability of personalized music purchasing and lis-

tening, starting with online stores that specialize in selling single songs,

such as iTunes, and followed by music streaming services such as Spotify

and Apple Music, usage of music recommendation systems has skyrocketed[2].

Research has shown that consumers today are facing a problem of informa-

tion overload for music data[1], and this is the case with modern methods

of consumption such as streaming as well[3]. This overload occurs when in-

dividuals are presented with an overabundance of music choices, making it

difficult for them to make informed decisions about what to listen to. This

information overload is why the need and desire for music recommenda-

tion algorithms exists. People want to find music that is tailored to their

tastes, and in a world where there is more and more music every day, music

recommendation algorithms help information overload, by curating music

that a user is expected to enjoy.

4

In 1999, the theory of Information Foraging was introduced by Pirolli

and Card[4]. This theory is an approach of understanding how people seek

and consume information. The theory states that people will, when possi-

ble, (try to) maximize their rate of gaining information. Individuals, much

like animals foraging in the wild, will seek out an environment where their

so-called "information scent" can be maximized. The information scent is

the perceived value of the information compared to the cost of obtaining it.

In the context of music consumption, this theory suggests that users engage

in behavior that allows them to discover music that aligns with their tastes

while minimizing the effort required to find it. Music recommendation sys-

tems help with this, by maximizing the information scent, lowering the cost

of finding information (music), and having the information be of a higher

perceived value since it aligns with their taste.

However, as music consumption keeps evolving, so do the challenges as-

sociated with information overload and recommendation algorithms. While

recommendation systems can help with the information overload found in

modern music services[3] by offering personalized suggestions, they can

also contribute to filter bubbles and echo chambers[5], where users are only

exposed to a limited range of content that aligns with their existing prefer-

ences.

Music recommendation systems (MRS) are a subfield of recommender

systems. The objective of a music recommender system is to provide users

with suggestions for music based on their preferences, which are inferred

from the users’ history and other factors such as the user’s listening history

and how the user’s history compares with that of others, as well as contex-

tual information such as time of day and season, and, in the case of some

recommenders, even mood and emotion[6].

Genetic algorithms

One promising new avenue for personalized recommendation is genetic al-

gorithms. These algorithms are based on principles of evolution in nature.

Items are selected for reproduction to the next generation based on their fit-

5

Introduction

ness. This fitness is a measure of how well the output of the system fits the

goals of the genetic algorithm.

One of the goals a recommender system can have is accuracy, or match-

ing the users’ tastes as closely as possible. However, having this goal might

not always be desirable. It has been shown that satisfaction in recommender

systems is also influenced by the diversity of recommendations[7]. It is easy

to imagine that repeatedly getting extremely similar items recommended

would not lead to a high satisfaction rate, even though it might be highly

accurate. Because of the deviation from focusing on accuracy, literature in

the recommender space has developed several different metrics to measure

performance. This allows the recommender system to improve metrics that

account for both accuracy and diversity, as well as other metrics for measur-

ing implied satisfaction such as novelty, or how much the item differs from

the user’s history. This can lead to more balanced recommendations that

better satisfy users’ needs for diversity in their recommendation.

Since recommendation is therefore no longer only focused on optimiz-

ing accuracy, recommendation has become a multi-objective optimization

problem (MOP). Genetic algorithms are able to find so-called Pareto opti-

mal solutions to these multi-objective optimization problems[8]. This means

that the algorithm tries to find a solution that scores well on all metrics. Se-

lecting the items that have the highest fitness for the next generation allows

these algorithms to "evolve" solutions to problems that satisfy multiple cri-

teria, such as is the case for recommender systems.

This is also the case for interactive genetic algorithms (IGAs), which are

a type of genetic algorithm, where the fitness is determined by a user. This

means that there are no explicit goals for the algorithm to try and reach, but

the outcome is determined by choices users make during the process of the

run. This solves a problem with genetic algorithms, where the output of the

algorithm is very sensitive to what fitness function is chosen.[9][10] The fit-

ness function in a genetic algorithm is the function that is used to calculate

the fitness. Interactive genetic algorithms do not have a clear fitness func-

tion, since user feedback is what steers the algorithm in the right direction

6

instead of a fitness function. In the IGA, the user’s preferences shape the

outcomes, since the feedback determines in which direction the algorithm

evolves. This means that the algorithm is able to follow any goals that the

user thinks are important, including getting diverse recommendations.

Navigating music as a recommendation item

Music recommendation can be considered a special case within recommen-

dation systems. Music is very personal, and there exist a lot of types of

music. The success of a recommender system lies in its ability to capture the

nuances of individual taste, considering factors such as genre preferences,

mood and cultural influences. Compared to systems for movies or TV, mu-

sic recommender systems experience much higher interaction rates, as users

engage with more individual tracks than they do individual movies or TV

shows. Another factor that needs to be considered is a user’s preference for

more mainstream or more obscure music. Temporal dynamics can also play

a role in shaping the preferences a user has, as user preferences can change

over time, based on the time of year (holiday music, summer tunes, etc.)

and even the time of day and the activity (relaxing music in the evening, en-

ergetic music for exercise, etc.). Interactive genetic algorithms can respond

to these constantly changing preferences by taking current user preferences

into account and evolving a population of music to suit the users’ current

needs.

Bias within recommender systems

As mentioned previously, music recommender systems have the task of ac-

curately modeling a user’s individual taste. This does however not come

without additional challenges. One of these challenges is popularity bias.

This bias has been shown to affect recommender systems in general. It

refers to the phenomenon where recommender systems tend to favor popu-

lar items over less popular ones. This bias can lead to an over-representation

in the output of these systems of already popular hits or established artists,

overshadowing emerging artists or genres that might better align with a

user’s preferences.

7

Introduction

Within the framework of Information Foraging Theory, popularity bias

is a distortion in the information-seeking of users, skewing their exploration

towards more popular music at the expense of less popular songs. Using a

recommendation algorithm decreases the cost of obtaining new information

for the user, and therefore increases the information scent of this informa-

tion. However, this ignores the idea that outside of the popular mainstream,

there is information that will provide the user with stronger increases in the

information scent, which is not shown by the recommendation algorithm.

Therefore, information from recommender systems that have a larger de-

gree of popularity bias has the possibility of increasing the information cost

for users, in comparison to information from algorithms with a lesser degree

of popularity bias.

This work will focus on the mitigation of the popularity bias through

the use of interactive genetic algorithms. User interaction is what shapes

the outcomes in an IGA. By incorporating user feedback into the system,

the user is able to "steer" the system towards music that fits their tastes. Ab-

dollahpouri et al. (2019)[11] discussed that user’s preference for popularity

is reflected in the kind of items they want to interact with. Having users

influence their own recommendations with feedback allows them to receive

more personalized recommendations by actively steering the selection to-

ward items that align with their preferences.

To overcome the popularity bias and give satisfactory recommendations,

the IGA needs to dynamically adjust to user feedback. This will allow the

user to create their own recommendation list, which should match their

tastes in music. To measure the popularity bias, we intend to explore evalu-

ation measures such as long-tail coverage. Moreover, to assess the effective-

ness of our method, we will compare it to preexisting methods, looking at

changes in average feedback scores for multiple users.

The rest of this thesis is structured as follows: Chapter 2 contains a re-

view of the existing literature on recommender systems and genetic algo-

rithms, as well as on popularity bias and its mitigation. Chapter 3 contains

the motivations, as well as outlining the methodology used for the devel-

8

opment and testing of the IGA. Chapter 4 presents the results of the exper-

iments, and chapter 5 discusses the findings, limitations and future work.

Finally, chapter 6 contains a conclusion to the research by summarizing the

contributions and implications.

9

2. Literature review

This section will provide the necessary background to understand the prob-

lem the thesis is going to address. By looking at the existing knowledge,

this section aims to identify gaps in the current understanding and lay out

the basis for the proposed research. Firstly, previous work in recommen-

dation will be discussed, including methodologies for content-based and

collaborative filtering. Then, genetic and evolutionary algorithms will be

discussed. Thereafter, the popularity bias will be discussed and how it can

be mitigated.

2.1 Previous work in recommendation

In this section, previous approaches to recommendation will be discussed.

As discussed in the introduction, consumers today are facing an informa-

tion overload of music data[1]. This challenge is where music recommen-

dation algorithms come into play. These algorithms are helpful to their

users, as they present them with items that match their tastes. It has been

shown that recommender systems are able to help people find the items

they need effectively[12], thereby possibly enhancing user satisfaction with

services that employ them.

2.1.1 Content-based filtering

The earliest music recommendation algorithms were basic rule-based sys-

tems that often relied on genres, pre-defined artist similarities, and user

ratings, i.e. so-called "content-based filtering". These content-based filtering

algorithms would select items for user’s consumption based on the correla-

tion between the user’s history, and the content of items[13]. As an example,

a user could like the song "Holiday" by Madonna. Based on this preference,

a content-based filtering algorithm might recommend other songs such as

10

2.1 Previous work in recommendation

"Girls Just Want to Have Fun" by Cyndi Lauper due to their similarities in

genre, musical style, and other metadata such as release year. One advan-

tage of using this system is that content-based recommender systems are

able to recommend items for which there is no rating data. This is because

the system only looks at the content of the items, and whether the user has

enjoyed them, and does not need data about other users[14]. This has the

benefit of being able to recommend even items that are not well known,

or more niche. These content-based approaches have limits however, as

they struggle to capture the nuances of users’ preferences, as well as hav-

ing the limitation of needing to have the content of the items be in some

way machine-parseable[13]. Content-based filtering will also not result in

serendipitous discoveries when the algorithm works as intended. Due to

the similarity-based nature of the algorithm, the recommended items will

always be similar to the users’ history. To address these limitations, collab-

orative filtering recommendation algorithms emerged, which analyze user

behavior, and draw insights from a larger user group, instead of just the

users’ individual preferences.

2.1.2 Collaborative filtering

There exist different versions of collaborative filtering. User-based collab-

orative filtering algorithms compare the preferences of a target user to the

preferences of users who share similar tastes. Item-based collaborative fil-

tering recommends items based on their similarity to those that the user

has shown interest in. There also exist hybrid versions of these two. These

forms of collaborative filtering fall under the umbrella of neighborhood-

based models, which are based on computing the relationships between

users or items directly from the raw data. The other form is model-based

collaborative filtering, which uses machine learning (ML) to predict miss-

ing ratings in the user-item matrix.

2.1.2.1 User-based collaborative filtering

One of the earliest implementations of collaborative filtering-based recom-

mender systems is Tapestry by Goldberg et al. (1992)[15]. This system relied

11

Literature review

on the explicit opinions of a group of people known by the users, which

were used in tandem with the user’s preferences to generate the recommen-

dations. However, recommender systems employed in large systems, such

as music recommenders within large music streaming services, cannot de-

pend on all users knowing each other.

In 1995, Shardanand and Maes[16] introduced Ringo, a recommendation

algorithm that specializes in recommending music albums and artists. This

system is one of the first music recommendation systems. The system gath-

ers user preferences through email, after which it compares them to other

users of the system, to generate personalized suggestions based on the users’

preferences. Various functions are used to calculate similarities between

users for the purposes of recommendation, including mean squared differ-

ence, Pearson correlation and constrained Pearson correlation. These simi-

larity scores are then used to recommend artists and albums.

However, user-based collaborative filtering approaches to recommenda-

tion, such as Ringo, come with some drawbacks. If a new item appears in

the database, like is often the case with new music, there is no way it can

be recommended to users until another user interacts with it. Thus, if the

number of users is small (like it is with Ringo) or if the volume of informa-

tion is high (like it is in modern music streaming services), there is a danger

of the coverage of ratings becoming very sparse. This thins the collection

of recommendable items[17]. Secondly, if a user’s tastes do not align closely

with the rest of the population, there will not be any users who are similar,

leading to poor recommendations.[17] This sparsity problem is therefore a

significant challenge for user-based collaborative filtering recommenders.

2.1.2.2 Item-based collaborative filtering

Sarwar et al. (2001)[18] evaluated several collaborative filtering algorithms.

According to them, in addition to the sparsity problem, user-based collab-

orative filtering algorithms are also difficult to scale. Limits in computing

power made it so that scaling to a website that recommends items to mil-

lions of users proved to be difficult. Moreover, the authors note that it was

12

2.1 Previous work in recommendation

also proving to be a challenge to improve the quality of recommendations

for users. These two challenges are therefore in some ways at odds with

each other, as the less computing power used by a user-based collaborative

filtering algorithm to look for neighbors, the more scalable it will be, but

this will most likely also negatively affect the quality of the recommenda-

tion. Therefore, they propose item-based collaborative filtering algorithms,

which avoid these two challenges by recommending items based on items

that are similar to other items the user has liked. Item-based collaborative

filtering therefore has a reduced computational overhead, as the number of

comparisons for user-based collaborative filtering grows exponentially as

the number of users grows. Item-based collaborative filtering doesn’t have

this problem, as it only needs to compare items and not users. It also has

better performance, as in real-world scenarios, user-item interaction data is

sparse, as users interact with only a subset of all available items. Item-based

collaborative filtering doesn’t have this data sparsity problem, as it focuses

on similarities between items, which makes it perform better. However,

this can still lead to data sparsity in other ways. Users interact with only

a small subset of items, causing the model to miss out on items that don’t

have large similarities with users’ previous choices. Consequently, users

end up receiving items that are similar to those they have already chosen,

decreasing satisfaction.

Item-based collaborative filtering and content-based filtering are related,

but different. Content-based recommendation, as discussed, focuses on the

similarity between items, returning items that are similar to those the user

has liked. Item-based collaborative filtering focuses on the similarity be-

tween user interactions with items, drawing on user data to infer relevant

items. As an example, consider an online store selling technology, where a

customer is looking at an iPad. A content-based recommender would ana-

lyze the specific details of the product, such as its functionality as a tablet.

Based on these details, it might recommend a different iPad or Samsung

Galaxy Tab, as these are also tablets with similar features. In contrast, an

item-based collaborative filtering approach would look at purchasing pat-

terns for users who have bought iPads. As a result, the item-based collab-

13

Literature review

orative filtering recommender could recommend screen protectors, cases or

Apple Pencils, as other users who bought iPads also bought these items. It

could also recommend other Apple products like iPhones or MacBooks, or

even seemingly unrelated items that are popular among iPad buyers, such

as specific headphones or smart home devices.

2.1.2.3 Hybrid collaborative filtering

Wang et al (2006)[19] also found methods to unify these two collaborative fil-

tering algorithms. According to the authors, this addresses the issues of data

sparsity found in both user-based and item-based collaborative filtering, by

reformulating the collaborative filtering problem within a “generative prob-

abilistic framework”. This means that the individual user-item ratings are

used as indicators for predicting missing ratings. The final rating is esti-

mated by combining predictions from three sources; predictions based on

ratings of the same item by other users (user-based collaborative filtering),

predictions based on different item ratings made by the same user (item-

based collaborative filtering) and ratings predicted based on data from other

but similar users rating other but similar items (combination of user- and

item-based collaborative filtering). Like other collaborative filtering meth-

ods, however, this method still has issues. One of these is the "cold start"

problem, as discussed by Camacho and Souza (2018)[20], where the recom-

mender has difficulties making recommendations when there is insufficient

data available. This arises for new users who have not rated or interacted

with enough items, or for new items that have not yet been interacted with

by users.

Cano et al. (2006)[21] investigated the topology of several music recom-

mendation networks. The authors showed that despite sharing certain char-

acteristics such as small-world properties, diverse network features emerged

such as the link degree distribution among different recommendation net-

works. The link degree distribution refers to the distribution of the number

of connections (links) that each node in the network has. In simpler terms,

it describes how many connections each item has within the network. This

difference is notable, as this means that the way a recommender system is

14

2.1 Previous work in recommendation

built influences the recommendations. The authors specifically note that the

recommendations can be biased towards popular items in systems that are

based on collaboration, such as collaborative filtering. This shows us that

the architecture of a network can influence its bias towards popular items.

2.1.2.4 Model-based collaborative filtering

Model-based collaborative filtering is a technique that uses machine learn-

ing methods to create individual predictions. In the previously seen neighbourhood-

based models, the predictions are specific to individual instances. In con-

trast, model-based methods create summarized models upfront and sepa-

rate the training phase from prediction[22]. This allows for a representation

of the rating matrix in a much more compact way, resulting in a higher pre-

diction speed and thus better scalability. Several methodologies explore dif-

ferent machine learning models to use for this task, which show higher ac-

curacies than neighbourhood-based models[23]. Furthermore, model-based

collaborative filtering algorithms have several notable advantages over neighborhood-

based approaches. Firstly, they exhibit superior space efficiency by gener-

ating significantly smaller learned models compared to the original rating

matrix. This leads to reduced storage requirements, a crucial factor, espe-

cially in large-scale systems[24]. Additionally, in terms of training and pre-

diction speed, model-based systems outperform their neighborhood coun-

terparts. The pre-processing phase in neighborhood methods often scales

exponentially with the number of users or items, whereas model-based sys-

tems streamline this process, resulting in faster training and prediction[24].

Model-based collaborative filtering can however suffer from lessened in-

terpretability, as the created summarized model is a complex abstraction

of user interactions and item characteristics, making it difficult to interpret

what is driving the recommendations.[25]. Moreover, due to their capacity

to model patterns in the data, these models can overfit the data. This means

the algorithm can become too specific to the training data, capturing specific

patterns that do not generalize well to unseen data.

Since the demand for music recommender systems is so high, as dis-

cussed in the introduction, there have been numerous more modern de-

15

Literature review

velopments in the space of content-recommender systems, as well as mu-

sic recommender systems specifically. In their research, Saini and Singh

(2024)[26] propose a recommender system that combines stacked long short-

term memory (LSTM) and an attention-based auto-encoder. They note that

the results of the proposed method are more accurate than other approaches

on the validation set, therefore theoretically increasing accuracy in real-

world recommendations. This technique combines the strengths of LSTM

networks in capturing sequential dependencies and the attention mecha-

nism’s ability to focus on relevant parts of the input. By using these compo-

nents, the model can better learn patterns within the data. However, despite

the advancements in the accuracy of recommendation algorithms, popu-

larity bias remains a significant challenge. Most state-of-the-art systems,

including those using LSTM and attention mechanisms, still tend to favor

popular items due to the underlying data distributions they are trained on.

Lin et al. (2024)[27] showed how dimension collapse, as the creation of a

summarized model in model-based methods is also called, can exacerbate

biases in data. They found that this collapse emphasizes the principal spec-

trum, referring to the most significant parts of the data, capturing the most

significant variations in the dataset. This tends to disproportionately repre-

sent popular items, as the dimension reduction process prioritizes the most

prominent features, increasing the prominence of popular items. As a result,

the recommendation outputs of model-based recommendation systems be-

come skewed towards popular items.

2.2 Evolutionary computing and genetic algorithms

Recent methods have also shown the use of evolutionary computing to

solve several problems in an efficient and (near) optimal way. These algo-

rithms are inspired by biology and natural selection. In this section, we will

discuss some evolutionary computing methods, and look at the use of ge-

netic algorithms in research on recommender systems, as well as look into

one specific form of a genetic algorithm, an interactive genetic algorithm

(IGA).

16

2.2 Evolutionary computing and genetic algorithms

2.2.1 Evolutionary computing

Evolutionary computing is a branch of artificial intelligence, which encom-

passes a range of techniques. As previously discussed, this type of com-

puting is inspired by principles of evolution in nature and is created to

solve problems for which it is not possible to find an optimal solution or

a solution within a bound of the optimum within a reasonable amount of

time[28]. There exist several different techniques that fall under the um-

brella of evolutionary computing. One example is Ant Colony Optimization

(ACO), which mimics how ants find the shortest path to food by depositing

pheromones and following paths with stronger pheromone concentrations

to solve routing problems[29]. Another example is Artificial Immune Sys-

tems (AIS) which mimic the human immune system using mechanisms such

as clonal selection, immune memory, and negative selection to solve pattern

recognition problems, such as anomaly detection in network security[30]. As

a final example, Particle Swarm Optimization (PSO) simulates birds or fish

schooling behavior to find solutions to problems based on its experience

and that of its neighbors[31] to find solutions to problems such as image seg-

mentation, allowing for the extraction of features and analysis of the image

data[32]. These techniques encompass a wide range of domains, showing

the usefulness of evolutionary computing across a range of applications.

2.2.2 Genetic algorithms

One of the main uses of evolutionary computing is genetic algorithms (GAs).

These algorithms are a form of evolutionary algorithm where populations

evolve over generations. Genetic algorithms use mechanisms such as se-

lection, crossover, and mutation to evolve solutions to problems. The basic

version of the genetic algorithm is represented in figure 2.1. The algorithm

starts with an initialization, which can either be random or guided by other

methods such as historical data or representative sampling[33]. Then, a pop-

ulation of candidate solutions, often referred to as individuals, is evaluated

based on a fitness function. After the evaluation, individuals are selected for

reproduction based on their fitness, with fitter individuals having a higher

17

Literature review

Figure 2.1: General scheme of an evolutionary algorithm[37]

chance of being selected. This selection process mimics the principle of "sur-

vival of the fittest" in natural evolution.[34] Once the individuals are selected,

they undergo genetic operations to produce offspring solutions. These ge-

netic operations help explore the solution space and introduce diversity into

the population. This is done in two main ways: mutation and crossover.

Crossover (or recombination) is the operation of combining two parent so-

lutions to generate new offspring to produce potentially better solutions.

Mutation is the operation of modification of individuals to help maintain di-

versity, and avoid getting stuck in local optima, to be able to generate more

effective solutions over time.[35] These genetic operations typically have as-

sociated rates that control their frequency of application. The crossover rate

determines how often crossover occurs, while the mutation rate determines

how often and how much individual solutions are altered. These values are

usually found through trial and error. Hong et al. (2002)[36] proposed a dy-

namic genetic algorithm (DGA) that utilizes multiple crossover and muta-

tion rates. In their approach, the crossover and mutation rates are not static

but change dynamically based on the evaluation results of the offspring in

the subsequent generation. The newly created solutions are then evaluated,

and this cycle continues until a termination condition is met, such as reach-

ing a satisfactory solution, exceeding a predefined computational budget or

reaching a set number of generations.

18

2.2 Evolutionary computing and genetic algorithms

2.2.2.1 Fitness function

Genetic algorithms work on a population of candidate solutions. Each solu-

tion has a fitness value, that indicates its closeness to the optimal solution for

the problem that the genetic algorithm is trying to solve. This fitness value

is calculated using the task-specific fitness function. The solutions with a

higher fitness value than others are selected for survival to the next gener-

ation. For this next generation, GAs produce better offspring by combining

selected solutions, or mutating existing solutions.[37] However, genetic al-

gorithms have been found to be sensitive to the selection of the fitness func-

tion. The performance of a GA is closely tied to the quality and design of

this fitness function. As a writer on a book on genetic algorithms puts it:

"the population’s evolution will ruthlessly exploit all boundary conditions

and subtle defects in the fitness function"[9]. The fitness function needs to

be more nuanced than only classifying solutions as "good" or "bad". There

should be an accurate score for the fitness across the spectrum, allowing

for the distinction between a somewhat complete solution and a complete

one.[9] A well-designed fitness function uses this sensitivity of the algorithm

to guide towards optimal solutions for the problem. However, a poorly

designed fitness function can lead to sub-optimal results. Even with well-

designed fitness functions, the outcome of the resulting solution can still

be over-specialized or overly adapted to the variables chosen in the fitness

function. This is a risk that has been found in genetic algorithms, due to the

algorithm’s built-in sensitivity to the fitness evaluation[10].

2.2.2.2 Examples of genetic algorithms

The first genetic algorithms were designed to solve optimization problems.

They were first discussed by J.H. Holland in 1975.[38] He introduced GAs

to simulate the process of natural selection and evolution in order to find

optimal solutions to problems. Since then, GAs have been applied to a wide

range of fields, including engineering, economics, biology, and artificial in-

telligence.

One of the first practical examples of the application of GAs to real-life

19

Literature review

problems is in the optimization of control systems in the 1970s. Here, re-

searchers used GAs to optimize the parameters of controllers for complex

systems where traditional methods struggled due to non-linearity or un-

certainty in the models.[39] In the 1980s and 1990s, GAs were applied to

a broader range of fields. For example, in economics, they were used to

model adaptive behaviors in market participants and to solve complex fi-

nancial optimization problems.[40] GAs were also employed in other artifi-

cial intelligence tasks to evolve neural networks and create adaptive learn-

ing algorithms.[41] They were also used for applications in bioinformatics for

tasks such as protein structure prediction and DNA sequence alignment.[42]

Genetic algorithms have also been used to improve traditional recom-

mender systems. They do this by re-evaluating the items the traditional

system outputs, to focus on other metrics, such as diversity, novelty, cov-

erage and serendipity[43]. For example, Alhijawi and Kilani (2020)[44] intro-

duced the BLIGA system, which leverages a genetic algorithm to optimize

recommendation lists, by evaluating entire lists of recommendations. The

genetic algorithm represents each potential recommendation list as an in-

dividual within a population. These individuals are then evaluated using

three distinct fitness functions. The first fitness function assesses the seman-

tic similarity between items, ensuring that the items in the recommendation

list are "semantically cohesive" and relevant. Semantic cohesion in this case

refers to the idea that songs in a recommendation list should be related in

terms of content, theme, or other meaningful characteristics that make them

logically connected to one another. The second fitness function measures

the similarity in satisfaction levels between users, aiming to match users

with items that others with similar preferences have enjoyed. The third fit-

ness function focuses on predicted ratings, selecting the list that is expected

to yield the highest user satisfaction based on historical rating data. How-

ever, this methodology is still reliant on historical data, making it subjective

to popularity bias within the recommended items.

Stitini et al. (2022)[45] discuss a recommender system, which is designed

to mitigate a problem called the "over-specialisation problem". This is a

problem where items that are recommended to a user are too similar to

20

2.2 Evolutionary computing and genetic algorithms

their already existing profile, and therefore lack novelty. This is related but

different from popularity bias, as in popularity bias, the recommender sys-

tem tends to recommend popular items regardless of the user profile, while

over-specialization focuses on items with strong correlations to a user’s in-

teraction history. Both result in a lack of diverse recommendations, but

the origin is different. In their method, Stitini et al. use a GA to generate

new recommendations for users based on their preferences and interactions

with items. The genetic algorithm in their system focuses on optimizing the

recommendation process based on existing user-item interactions and pref-

erences. While the genetic algorithm approach proposed aims to mitigate

the over-specialization problem by diversifying recommendations, it does

not directly address the popularity bias. Since the genetic algorithm used

in their system primarily focuses on user preferences and item interactions,

items with strong correlations to the user’s history can still be popular. Pop-

ular items are often interacted with by many users, increasing the chance of

correlation with a user’s profile, and therefore also increasing the chance

that the item gets recommended.

2.2.3 Selection mechanisms for genetic algorithms

To determine which individuals continue on to the next generation, genetic

algorithms can use several techniques for selection. These mechanisms in-

troduce pressure to select individuals with higher fitness, which is how they

mimic the process of natural selection.

Roulette wheel selection is built on the idea of a roulette wheel where

each slice’s size is proportional to an individual’s fitness. A higher fitness

gets a larger slice, giving it a higher chance of being selected for reproduction.[46]

In truncation selection, the candidate solutions are ordered by fitness,

and some proportion of the fittest individuals are selected and reproduced.

The higher the proportion, the more items are selected for reproduction.[47]

In tournament selection, a small group of individuals (e.g., 2 or 3) is

chosen randomly, and the one with the highest fitness within that group

becomes a parent. This process is repeated to select multiple parents.[48]

21

Literature review

Rank-based selection has individuals ranked based on their fitness, with

the best individuals receiving a higher rank. Selection probability is then

assigned based on this ranking, with higher-ranked individuals having a

greater chance of being chosen.[46]

Steady-state selection removes a small number of the least fit individuals

in each generation, and these are replaced with new offspring from higher-

fitness parents. The rest of the population remains unchanged.[46]

These selection mechanisms have been evaluated by researchers. For in-

stance, Pandey et al. (2016)[49] compared roulette wheel selection and rank-

based selection, and found that the rank-based method outperformed the

roulette wheel in terms of the total number of generations required to reach

the optimum. However, rank-based selection was found to be faster, more

robust, and more certain towards the optimum. In the same study, tourna-

ment selection was also compared with roulette wheel selection, and it was

found that the tournament selection method was superior as it provides

better exploration and exploitation balance in the search space compared

to roulette wheel selection. It is however important to note that the selec-

tion pressure, if not selected appropriately, can lead to slow convergence

rate and premature convergence. Therefore, the choice of selection method

needs to be made with consideration of the problem at hand.

2.2.4 Interactive genetic algorithms

For recommender systems, one option on how to use genetic algorithms is

an algorithm that responds to user preferences. This style of genetic algo-

rithm is called an interactive genetic algorithm (IGA)[50]. These algorithms

are genetic algorithms where the fitness values are calculated based on the

evaluations of users according to their own preferences. This allows users

more freedom in their exploration of the available items, granting users the

ability to discover new items they enjoy and get more. Moreover, this solves

the problem of genetic algorithms being highly sensitive to the parameters

that calculate fitness.

Kim et al.[51] (2010) used interactive genetic algorithms to recommend

22

2.2 Evolutionary computing and genetic algorithms

music. The proposed algorithm lets users evaluate the fitness value of each

music track, which is done in the way of assigning their rating scores ac-

cording to subjective user preferences. This user evaluation data is used

to recommend new items. The authors show that over time, the scores

for each generation generally increase. While this method does incorpo-

rate user feedback, it’s important to note that mitigating popularity bias

wasn’t a goal in this research, and therefore remains a gap in current knowl-

edge. This research used BLX-α crossover. BLX-α crossover is a method

for crossover where each item feature for a child is chosen as an interval

between the two parents, with an α that determines how far outside the

two parents’ features the interval can be chosen. However, only using BLX-

α crossover can lead to limited exploration, generating new recommenda-

tions that are only marginally improved, especially if the initial population

has low-rated initial selections. This can result in slow convergence, po-

tentially causing user frustration if satisfactory recommendations are not

quickly found. Moreover, this research did not incorporate the common

genetic operation of mutation. Developing a method for genetic mutation

within an interactive genetic algorithm is therefore a potential area for fu-

ture research. The reasoning given for this omission is that mutation causes

deviation from the "common pattern discovered by the evolution process",

and therefore it should be omitted. However, this reasoning overlooks the

potential benefits of mutation in search space exploration within the rec-

ommendation space and enhancing diversity within the recommendation.

Mutation introduces variations that can help escape local optima, where the

algorithm might otherwise become stuck on a narrow set of similar items.

By allowing for controlled deviations, mutation can discover new and po-

tentially more suitable tracks that align with user preferences not yet fully

captured by the existing recommendations.

The authors of Kim et al. (2010) expanded their system in subsequent

works, including Kim et al. (2011)[52], Kim and Ahn (2012)[53], and Kim et

al. (2014)[54], by incorporating additional music features and data grouping

techniques to improve the quality and speed of their recommendations[55].

However, these improvements still do not address the possibility of popu-

23

Literature review

larity bias in the recommendation, nor the lack of a mutation mechanism.

Similarly, the use of IGA by Kant and Bharadwaj (2013)[56], uses reclu-

sive methods (RMs) and interactive genetic algorithms to recommend items.

Their approach begins by providing users with a set of initially recom-

mended items, ranked based on predicted relevance based on earlier user

ratings. The user then evaluates these items by rating their relevance, and

this feedback is used to update similarity scores and refine recommenda-

tions. The IGA evolves these recommendations through iterative processes,

applying genetic operators (selection and crossover) to improve item rele-

vance over generations. However, their research also did not explore the

potential benefits of incorporating mutation operators, which could intro-

duce greater diversity and mitigate issues such as avoiding local optima.

The authors cite the same reason as Kim et al.(2010)[51] as to why mutation

is unsuitable for IGAs, namely that it causes the recommendations to devi-

ate from the common pattern discovered by the evolution process. More-

over, they also use the same selection method, as well as the same crossover

method as Kim et al (2010)[51]. Their approach adds a fuzzy theoretic ap-

proach based on reclusive methods to match a newly created crossover track

to an existing track in the dataset.

In a more recent paper, Saito and Sato-Shimokawara (2023)[57] also pro-

pose a music recommender system that utilizes an interactive genetic al-

gorithm to tailor music recommendations based on user evaluations. They

base their method on Kim et al. (2010)[51]. They note that their method also

employs BLX-α crossover as an alternative to mutation, which impacts the

exploration and convergence dynamics of the algorithm. However, simi-

larly to Kim et al. (2010)[51], the use of BLX-α crossover and no mutation can

lead to limited exploration, generating new recommendations that are only

marginally improved. Additionally, without mutation, the algorithm risks

falling into a local optimum of "least disliked" items, rather than discovering

truly liked music. The lack of mutation may also lead to reduced diversity

in recommendations, as variations are primarily constrained to the initial

set of items. The difference between their method and Kim et al. (2010)[51]

is that Saito and Sato-Shimokawara’s approach incorporates multiple mu-

24

2.3 Data sources for music recommender systems

sic selection criteria, which considers changes in music selection criteria of

users and utilizes them to recommend the most suitable music for users.

Moreover, it uses a more diverse set of features from Spotify, which includes

valence, energy, popularity and release date.

Future research could address these issues by incorporating mutation

to enhance exploration and diversity, potentially improving the algorithm’s

ability to escape local optima and provide more diverse and satisfying rec-

ommendations.

The common theme in these previous works on interactive genetic al-

gorithms in recommendation is therefore that none of them take popularity

bias into account specifically, or do not address it. Moreover, no approaches

have found suitable mutation operations for evolving new generations, or

have deemed them irrelevant. This therefore remains a gap in the current

knowledge.

2.3 Data sources for music recommender systems

A music recommender system can use multiple data sources, used to de-

duce preferences and generate music recommendations for users. Different

data sources can be used for different types of recommender systems. This

section will look at what data sources have been used in the literature, split

up into three main categories; content-based data, user behavior data and

contextual data.

2.3.0.1 Content-based data

Content-based data is a data source generated using the data from the mu-

sic itself. One example of this is the use of audio features.[58] Using various

methods, low-level features like tempo and pitch, as well as high-level fea-

tures such as genre and energy are extracted from the music itself.[59] More-

over, metadata of the music can be used. This can include information such

as artist details, album release year, and other song attributes.[60]

25

Literature review

2.3.0.2 Contextual data

Contextual data as a source for music recommender systems refers to the

information that is gathered about the user’s environment or situation. This

information can then be used to make more relevant recommendations,

based on information such as their location, time of day, weather, and phys-

ical activity.[61] This type of data can be acquired explicitly, implicitly, or

inferred through methods such as machine learning. For example, Lee et

al. (2017) developed a smartphone-based system that uses machine learn-

ing to recognize human activity and then makes music recommendations

based on this contextual information.[62] Contextual data can enhance the

relevance of recommendations provided by a music recommender system,

by considering the context in which a user consumes the music.

2.3.0.3 User behaviour data

User behavior data is another data source to infer a user’s listening pref-

erences from within music recommender systems. Music recommendation

systems can tailor their recommendations based on user input, using both

individual user preferences and the collective listening habits of similar

users, as is the case for collaborative filtering recommenders. This can be

done through explicit feedback, such as ratings, reviews and liking[63], or

implicit feedback, such as listening history, skipped tracks, and time spent

on a particular song or artist.[63] Recent methods have focused mostly on

implicit feedback, as this is easier to obtain on a large scale, with users hav-

ing to take no actions themselves to generate the feedback[64][65]. However,

explicit feedback also still has its place. Music can be consumed as off-

screen content, meaning the user can be doing something else with their

time while listening to music. This means that an implicit metric such as

uninterrupted consumption does not always have to correlate with enjoy-

ment of the content. Therefore, explicit feedback remains valuable in cap-

turing user preferences and improving the accuracy of music recommender

systems. In interactive genetic algorithms, the feedback given by users is

inherently explicit, as users give feedback on the previous generation. This

26

2.4 Popularity bias and the long-tail problem

means the algorithm can infer what type of music the user wants in that

specific run, meaning the user can take the contextual information into ac-

count that they deem to be relevant, such as selecting energetic music to

create recommendations for exercise. The IGA can then use the indicated

preferences to recommend music.

2.4 Popularity bias and the long-tail problem

Because of the quantity of music being produced now and the amount of

music that has already been produced in the past, as a listener, you will

never be able to listen to all music that has ever been made. This shows

the value of music recommendation systems, where they can help with this

information overload. Music as a medium is inherently social, as shown by

Woodruff and Cross (2009)[66], and some music is more popular than others.

This popularity causes even more popularity through means such as word-

of-mouth, social media sharing and top charts. This leads to a mainstream

that contains the most popular genres. Because of this, there will always

be music that is listened to more than other music. This mainstreamness is

hard to define, but several researchers have created measures to define what

it means for music to be mainstream. This mainstreamness can then help an-

alyze the items that a recommender system outputs, and draw conclusions

from them.

Bauer and Schedl[67] describe quantitative measures to describe the prox-

imity of a user’s music preference to the music mainstream. They also de-

scribe the difference between a global music mainstream and a country-

specific mainstream and define measurements at these two levels. This re-

sults in a framework of six measures to quantify what the mainstream is.

The measures rely on two metrics for artist popularity; artist playcounts

(APC) and artist listener counts (ALC). The measures are further divided

into distribution-based and rank-based methods, which compare user pref-

erences based on either the distribution of artist popularity or the rank-

ordering of artist preferences, respectively. This results in 6 total measures,

with 3 country-specific measures, and 3 global measures. The authors also

27

Literature review

analyzed the difference between countries in terms of their mainstreamness,

outliers in country-specific popularity and the difference between countries

listening preferences related to popular music artists. Additionally, the au-

thors show the applicability of their research to improve music recommen-

dation systems, which they do by tailoring preferences for a user by using

the six mainstreamness measures.

Müllner (2019)[68] used unsupervised clustering and classification to iden-

tify non-mainstream music styles. Subsequently, these styles were used to

link users to a certain style, and therefore obtain different user groups of

styles. They found that there are distinct preferences between user groups,

as well as different demographics between user groups. The author also

notes that there were distinct types of non-mainstream users, which they

name, such as Festival or Complex listeners. Certain groups of users were

found to listen to certain genres more than others, with festival listeners lis-

tening to punk and hard rock, and relax listeners listening to ambient and

post-rock genres. This shows us that there are different types of music lis-

teners, who have distinct preferences, and want to listen to music that aligns

with their tastes.

In music recommendation algorithms, the more popular an item is, the

more people are listening to it, reviewing, or rating it, and generating data

on it. This, in turn, results in more popular music having more occurrences

in music-listening datasets, which are used for the creation of algorithms.

This fact contributes to algorithms favoring the recommendation of the most

popular items, while less popular items receive fewer recommendations.

This discrepancy between more and less popular items is also called the

“popularity bias”. Items at the most popular level occur orders of mag-

nitude more often than items that are more niche. This is also called the

“long tail problem”. This term was coined by Chris Anderson in an article

in 2004[69]. When depicting the occurrence of items in a chart, sorted by the

amount of occurrences, the most popular items have extremely high occur-

rences, while less popular items have exponentially fewer occurrences, lead-

ing to a figure that is large in the beginning, and drops off quickly. In Figure

2.2, a representation of the long-tail, shown in logarithmic scale, can be seen

28

2.4 Popularity bias and the long-tail problem

Figure 2.2: The long-tail problem illustrated in the LFM-1b dataset, with the
artists ranked by the number of listeners on the x-axis, and the number of lis-
teners for that artist on the y-axis (scaled logarithmically)[70]

based on a widely used music listening dataset, the LFM-1b dataset[70].

As can be seen, the most popular artists, also have the most listeners

by far, while a few less popular artists have significantly fewer listeners.

It has been found that listeners prefer variety and a mix of familiar and

new music[71], implying that the recommendation algorithms need to give

recommendations that match the users’ tastes, while also introducing them

to novel music.

The popularity bias in music recommender systems is a widely studied

topic, with researchers focusing on causes, as well as mitigation techniques.

People listen to music for all kinds of reasons, and music can carry an emo-

tional load with it. This means that simply using collaborative filtering can

be lacking, as this does not include this kind of data. This is also something

that content-based models are better at addressing by focusing on features

rather than musical history.

This leads to the paper by Song et al.[72] They describe how more user-

centric approaches have been getting increasing attention, which are context-

based and emotion-based models. In emotion-based models, the user’s cur-

rent emotional state is queried, and this is used for music recommenda-

tion. One example is Musicovery, which uses a 2D valence-arousal emotion

29

Literature review

model, where the users locate their own perceived emotion in 2D space.

Here, the users are therefore directly influencing the generation of their

recommendations, by locating their own perceived emotions. The authors

also discuss context-based information retrieval, which is recommendation

based on public opinions, based on document mining to filter out important

information to support problems like artist similarity, genre classification,

emotion detection and semantic space. This work can offer potential ideas

to address the popularity bias by considering user input to shape recom-

mendations.

Regression towards the mean is a statistical phenomenon that describes

the tendency of extreme values to move closer toward the average over time

with subsequent measurements.[73] For music, this therefore means that mu-

sic listeners who listen to more music from within the long tail, tend to drift

towards more popular items. This tendency can be both strengthened by

music recommender systems, by recommending more popular music and

falling into the popularity bias, or the tendency can be weakened, by ensur-

ing that recommendations are diverse, and serendipitous discoveries can be

made. A study by Schedl et al.[74] warns of these exact effects in the context

of music recommendation systems. The authors emphasize that while mu-

sic recommender systems can effectively recommend songs based on histor-

ical behavior, there’s a risk of homogeneity, where the recommender system

recommends music that aligns with what the user or a group as a whole has

already heard. This limits the diversity of suggestions and can cause users

to not be exposed to novel songs and artists, therefore causing popularity

bias.

2.5 Impact of the popularity bias

When the consumption of music through the internet was first getting started,

many expected the creation of a more equitable marketplace for music. One

of these is the author of the article that first coined the term "Long tail", Chris

Anderson[69]. In retail stores, shelf spaces are limited and therefore a lim-

ited amount of physical music can be made available for consumption. In

30

2.5 Impact of the popularity bias

online music stores and streaming services, there is almost unlimited space

for music, and therefore these would create a more equitable marketplace

for music.

However, it has been noted that this might be less the case than first

hoped. Music magazine Rolling Stone noted that The top 1% of artists ac-

count for 90% of all music streams on Spotify, and the top 10% of artists for

the top 99.4% of all music streams. When compared to physical album sales

in the same period, the top 1% of all artists accounted for 54% of all physical

album sales[75]. This means that currently, streaming is actually less equi-

table than physical album sales. There are many reasons that can be given

for this inequity in streaming services, one of which is the subjectability of

music recommender systems to the popularity bias. This has impact on both

users and artists.

Figure 2.3: In repeated training, several algorithms are shown, highlighting
the trend that users who experience losses in utility also have higher homoge-
nization, as presented by Chaney et al.[76]

The impact of the popularity bias is even greater when the data from

users’ listening behavior that already has been exposed to algorithmic rec-

ommendations by recommender systems is used. Recommendation sys-

tems trained or evaluated on this "tainted" data can fall into a feedback loop,

where algorithms are trained on data that has algorithmic bias, from which

the data is again used to train a new algorithm. This increases homogene-

ity for the resulting recommendations. Using simulations, Chaney et al.

(2018)[76] showed that this was the case, and warned that this "algorithmic

confounding" does not correspond to increased utility for users. The au-

thors also showed that these losses to utility are not distributed equally and

that users whose true preferences are not captured well by user preferences,

31

Literature review

i.e. users already less well served by the recommendation algorithm, expe-

rience lesser improvements and even decreases in utility when the homog-

enization occurs as a result from the feedback loop. This effect can be seen

across algorithms, as shown in Figure 2.3, where the change in the Jaccard

index (as an index for user behavior) is compared to the utility, as relative

to the ideal utility. The Jaccard index measures the similarity between two

sets. These sets here are user behavior patterns, indicating how homoge-

nous user interactions become. Higher values of the Jaccard index suggest

increased homogenization of user behavior.

This reinforcement effect could enhance biases already found in the orig-

inal recommendations, which could create a feedback loop where these bi-

ases are amplified over time. This then could limit recommendation diver-

sity and potentially create filter bubbles.

This reinforcement effect can possibly be mitigated using genetic algo-

rithms. In IGAs, unlike in traditional recommender systems, the user is in

direct control of the selection process. This user feedback then iteratively

refines the recommendations, where user-liked items are prioritized. This

iterative process allows the user to "steer" the recommendations away from

unwanted effects, allowing for recommendations that are more in line with

the preferences of the user.

2.5.1 Impact on artists

The popularity bias can have a large impact on artists. For artists, out-

side of a select few extremely popular ones, it is challenging to gain visi-

bility and recognition. The unequal distribution of streams found by Blake

(2021)[75], as discussed in section 2.5, means that less popular artists face dif-

ficulties breaking through and reaching a larger audience. The popularity

bias found in recommender systems can worsen these difficulties for less

popular artists, leading to economic consequences for artists who rely on

music as their primary source of income.

Additionally, popularity bias can then influence the type of music artists

produce. In a system where only a small number of popular artists domi-

32

2.5 Impact of the popularity bias

nate streams, there may be motivation for artists to create music that is better

suited to mainstream tastes to enhance their chances of visibility. This could

cause a decline in musical creativity, as artists feel compelled to produce

content that aligns with popular trends to reach larger audiences.

2.5.2 Impact on users

The popularity bias that is observed in recommendation systems can affect

users in many different ways. A minority of artists has been found to at-

tract the majority of streams.[75] This can result in users having a harder

time finding artists and genres that align with their specific tastes. Users

might turn to recommendation systems to find music that aligns with their

tastes. However, the recommendation algorithms that are built into most

streaming services tend to make this issue worse, as they are susceptible to

popularity bias. This reinforces the cycle, which could cause musical tastes

to become more similar and foster a reduced exploration of more niche gen-

res.

The overall user experience is shaped by the concentration of streams on

a select few extremely popular artists. This could limit the variety and more

positive experience for users that a fairer recommendation system could

offer.

Abdollahpouri et al.[11] studied the popularity bias and its inherent un-

fairness in their work. Their work focused on the user-side of the popularity

bias, and how the popularity bias causes the recommendations of a music

recommender system to deviate from what the users expect to get from their

recommender system. They defined three distinct groups of users in accor-

dance with their interest in popular items and showed the impact of the

popularity bias on users of each group. The results of their method showed

that many recommendation algorithms would recommend popular items,

even if a user is interested in the long-tail and non-popular items, showing

the strong tendency for recommendation algorithms to fall into the popu-

larity bias. This is therefore something a recommendation system should

address.

33

Literature review

2.6 Popularity bias metrics

To define to what degree the output of a music recommendation algorithm

could be subject to popularity bias, there are several metrics.

• Delta Metrics Lesota et al. (2021)[77] talk about Delta Metrics, which

are metrics that show the percentage difference between the mean, me-

dian, variance, skewness, or kurtosis of the popularity distributions of

the user’s listening history and the recommendation list. However,

when there is no previous user history to base this metric on, this met-

ric is not suitable.

• User Popularity Deviation This metric was proposed by Abdollah-

pouri et al. (2021)[78], to quantify the deviations of the recommen-

dations’ popularity distributions from that of the user’s listening his-

tory. This metric reflects the extent of miscalibration among users and

the recommendations, serving as an indicator of how well recommen-

dations align with the interest in popular items for users. A perfect

value for this metric would therefore indicate that the recommenda-

tions mirror the users’ preferences perfectly. When users submit their

preferred popularity, it inherently aligns the recommendations with

their popularity preferences, rendering this metric less critical. This

user-submitted popularity constraint ensures that the recommended

items correspond to the users’ preferred popularity, contributing to

fairer recommendations. Similarly to Delta Metrics, when there is no

previous user history to base the metrics on, this metric cannot be

used.

• Average Percentage of Long Tail Items (APLT) This metric, also used

by Abdollahpouri et al. (2019)[79], measures the average percentage of

the amount of long-tail items in the recommended list. APLT is cal-

culated by taking the average fraction of long-tail items in each user’s

recommendation list and then averaging this fraction across all users.

A higher APLT value indicates that the recommendation system is

promoting higher music diversity by including more long-tail items,

34

2.7 Investigating popularity bias in algorithms

thus mitigating popularity bias more.

• Intra-List Similarity (ILS) Metric Ziegler et al. (2005)[80] proposed the

Intra-List Similarity (ILS) metric to assess the diversity of items within

a recommendation list. The ILS metric measures the average pairwise

similarity between all items in a user’s recommendation list, where a

lower ILS value indicates higher diversity.

The suitable metrics can be used to evaluate the performance of algo-

rithms in their ability to recommend items from the long tail.

2.7 Investigating popularity bias in algorithms

Different algorithms have shown varying levels of subjectability to the pop-

ularity bias. For example, MultVAE[81] has been shown to yield high levels

of popularity bias in its recommendations, while ItemKNN[18] shows rela-

tively low levels of popularity bias in its recommendations[77].

Kowald et al. (2020)[70] investigated the popularity bias for six methods,

including 3 baselines (Random, MostPopular and UserItemAvg and 3 to-be-

evaluated methods, namely UserKNN, UserKNNAvg and Non-Negative

Matrix Factorization (NMF). They found the popularity bias to differ be-

tween the algorithms, with the popularity bias being not as strong in the

case of NMF, and being the strongest for UserKNN for all users. These

results show us that the popularity bias can vary throughout different al-

gorithms’ recommendations, indicating the need for research into an algo-

rithm that is less prone to popularity bias.

2.8 Mitigation of the popularity bias

As discussed, the popularity bias is a widespread issue within music rec-

ommender systems. Because of the prevalence of this issue, a lot of music

recommender systems research has been done on the addressing of the is-

sue.

35

Literature review

2.8.1 Traditional popularity bias mitigation

Karboua et al. (2022)[82] did an empirical analysis of different mitigation

techniques, to provide an overview of the state-of-the-art techniques for

popularity bias mitigation. The authors discuss in-processing techniques,

as well as post-processing techniques. These methods aim to address the

popularity bias by modifying the recommender system’s algorithm, or post-

processing the output of the recommender to contain less popularity bias.

2.8.1.1 In-processing techniques

In popularity bias mitigation, in-processing techniques are techniques that

are added to the recommender systems themselves, in the form of penalties

or other steering mechanisms that have the final goal of helping the algo-

rithm recommend more diverse items.

Karboua et al. (2022)[82] discuss these in-processing techniques. One

example given is variational autoencoders (VAE) and adversarial training.

VAEs are Multi-Layer Perceptron-based generative models that are a method

for building Collaborative Filtering recommenders. Adversarial training is

a technique where an adversary network creates a penalty for a base rec-

ommender model that steers the model in a certain direction. This method

proposed by Borges et al.[83], proposes adding a penalty constraint to the de-

coder to boost the visibility of unpopular items. This penalty term has the

effect of lowering the score of the most popular of all items while keeping

the niche items at their initial score.

Krishnan et al.[84] propose a method where an adversary network learns

the implicit relation structure of items through feedback data and, using this

relation structure, correlates niche item recommendations of the base rec-

ommender with popular items in the user’s history. The base recommender

model is concurrently trained with the adversary network to replicate these

associations while avoiding the adversarial penalty.

36

2.8 Mitigation of the popularity bias

2.8.1.2 Post-processing techniques

Post-processing techniques for popularity bias mitigation take the output

of a recommendation algorithm and use several methods to diversify the

results.

One option for post-processing popularity bias mitigation is diversifica-

tion. Antikacioglu and Ravi (2017)[85] discuss this method in their work. In

their approach, they applied diversification after the recommendation algo-

rithm had generated its results. This post-processing step involved optimiz-

ing the diversity and rating quality of the recommendations by selecting a

subgraph from a pool of potential recommendations. By formulating the

recommendation system design as a subgraph selection problem and using

minimum-cost network flow methods, they were able to optimize for diver-

sity while maintaining high rating quality. This post-processing technique

allowed them to enhance the diversity of recommendations without altering

the initial recommendation generation process, making it a valuable strat-

egy for addressing popularity bias in recommendation systems.

Karboua et al.[82] also discuss post-processing techniques, one of which

is the calibrated popularity, as proposed by Abdollahpouri et al. (2020)[86]

Here, the distributional discrepancies in the groups to which items that are

recommended belong are measured. The idea of calibrated popularity is

that the recommended items should have the same percentage of popular

and less-popular items as the to-recommend-to user has in their history.

This is done by weighting relevance and calibration of a base recommended

list and then taking the maximum. Multiple studies have been done on

the use of calibrated popularity, with another study by Abdollahpouri et

al. (2021)[78] using the technique to research the effect the popularity bias

has affected users with various levels of interest regarding popular items.

They found that, in addition to affecting all recommendations, popularity

bias tends to impact users differently. Users with a lesser interest in popular

items are more affected by this bias, and their recommendations deviate

from the range of popularity levels they expect to receive.

Both in-processing and post-processing techniques have made signifi-

37

Literature review

cant strides in the mitigation of popularity bias. However, they often rely

on static data, and pre-determined metrics, which can limit their flexibility

in changing user preferences. They also do not use the potential of real-

time user interaction to adjust the recommendations. Abdollahpouri et al.

(2021)[78] also discuss limitations of existing popularity bias mitigation tech-

niques. They discuss how many of the existing metrics for evaluating pop-

ularity bias are mainly item-centered, and they ignore that different users

have different degrees of interest in popular items. The calibrated pop-

ularity post-processing technique does account for this, taking the user’s

preference for popularity in their history into account. However, inferring

the user’s preference from their listening history could be a pitfall, as their

listening history could contain more popular items than the user would ac-

tually like to listen to.

As discussed earlier, the majority of music streams go to a small amount

of extremely popular artists[75]. However, some users have preferences for

music that is less popular, as shown by Abdollahpouri et al. (2019)[11], and

they might not be able to find music that suits their tastes. Therefore, using

an algorithm where user feedback shapes the recommendations in an iter-

ative cycle could help these groups of users find recommendations that are

closer to their taste.

2.8.2 Popularity bias mitigation using Interactive Genetic

Algorithms

Popularity bias mitigation can also be done through the use of interactive

genetic algorithms. In comparison to traditional methods based on histori-

cal data, IGAs engage users directly in the recommendation process through

their feedback. This can be useful for popularity bias mitigation, as users

are able to actively seek out or avoid popular items. The recommendation

in IGAs is mostly based on the content of the items, therefore avoiding any

popularity bias that might come from collaborative data.

Existing IGA implementations, such as Kim et al. (2010)[51], Kant and

Bharadwaj (2013)[56] and Saito and[57] lack a crucial element: the mutation

38

2.8 Mitigation of the popularity bias

operator. Mutation introduces random variations within the recommenda-

tions, which can help escape local optima where recommendations become

too focused on a set of similar items. By integrating mutation into the IGA,

the recommender system could maintain diversity and adapt more effec-

tively to unique user preferences, overcoming the popularity bias more ro-

bustly, as well as improving the chances for serendipitous discoveries.

Liang and Willemsen (2019)[87] focus on how recommender systems can

support users in developing new preferences outside of their current tastes.

Their approach explores how users can use recommendation algorithms to

explore more niche music to expand their musical horizons. IGAs can be a

good approach for discovery, as users can choose their own path through

the recommendations, actively engaging in their own recommendations.

Moreover, because of the feedback obtained from users in the IGA and the

content-based recommendation style, these algorithms do not suffer from

the same cold start problem as other recommendation systems do, as dis-

cussed in Camacho and Souza (2018)[20].

The proposed research therefore aims to explore the integration of mu-

tation within an IGA for music recommendation. Moreover, we intend to

include dynamic crossover and mutation rates, as discussed by Hong et al.

(2002)[36]. This will enable user feedback to influence recommendations in

real-time, enhancing both the diversity and personalization of recommen-

dations as compared to other IGA methodologies, while directly addressing

the limitations of traditional methodologies, such as the cold start problem.

39

3. Methodology and motivation

3.1 Motivation

Music recommender systems have revolutionized music consumption, of-

fering personalized suggestions based on listening history and user prefer-

ences. However, one pervasive issue found within these systems is popu-

larity bias, where a recommender system will tend to recommend the most

popular items within the data. Popularity bias within recommender sys-

tems poses a significant challenge, as it can lead to a concentration around a

popular mainstream, instead of aligning better with items that might better

suit individual users. This bias perpetuates a popular mainstream obtained

from training data, and therefore limits the exposure to varied music, creat-

ing market homogenization.

The motivation behind exploring popularity bias stems from the need to

address the challenges associated with popularity bias within recommender

systems. As we have seen, music consumption habits have evolved over

time and the usage of recommender systems has grown. This growth in

usage must also be paired with research into the mitigation of negative im-

pacts of these systems.

The negative impact of popularity bias comes from different sources. For

one, it narrows down the music users are exposed to, which might limit

their chances to discover new genres and styles. Moreover, new artists

can struggle to gain recognition and audience exposure, possibly hinder-

ing their creative and financial success. The problem of popularity bias and

its implications and impacts have been studied widely, with several metrics

and mitigation techniques having been studied. One metric, Average Per-

centage of Long Tail Items (APLT) as used by Abdollahpouri et al. (2019)[79]

provides a valuable tool for quantifying this bias in recommendations. The

40

3.1 Motivation

formula for the APLT can be found in equation 3.1. As mentioned earlier,

this metric is a tool to measure the prevalence of popularity bias in recom-

mendation systems. It specifically focuses on the proportion of long-tail

items that appear in user recommendations. By analyzing the APLT, we can

understand how well a recommendation system avoids popularity bias. A

higher APLT indicates recommendations that are higher in long-tail items,

therefore including less popular items.

APLT =
|L ∩ Γ|
|Γ| (3.1)

where:

• (L) is the set of all long-tail items,

• (Γ) is the set of items recommended to the user,

• (L ∩Γ) represents the long-tail items in the recommendation set.

The APLT metric, therefore, provides a measure of how often long-tail

items appear in the recommendations for the target user. To adapt this met-

ric to our structure, the recommended long-tail items for each run will be

calculated by calculating a popularity threshold. For each generation within

a run, we determine the intersection of the recommended items and the

long-tail set identified for that run. The precision is then calculated by com-

puting the fraction of recommended long-tail items out of the total long-tail

items for each generation. Finally, these results are aggregated to calculate

the mean APLT across all runs.

Interactive genetic algorithms are uniquely positioned to address the is-

sue of popularity bias. By having users express their preferences through

an IGA, they can ensure that the recommendations are tailored to their spe-

cific tastes. The angle of interactive genetic algorithms for popularity bias

mitigation has not been explored in the literature, and is, therefore, an inter-

esting research avenue. Current methodologies, such as Kim et al. (2010)[51]

focus on the improvement of feedback scores, which is something that our

41

Methodology and motivation

system will also focus on. The ability of the system to mitigate popularity

bias is enabled by the iterative interaction that is inherent to the interactive

genetic algorithm, allowing the user to select items that are to their tastes.

Moreover, research into IGAs has not explored the possibilities of mutation

to enhance the quality and diversity of the recommendations. In previous

methodologies, this has been omitted. The lack of a mutation mechanism

could restrict the exploration capabilities of the algorithm, and we expect

this will lead to more predictable, lower quality recommendations. When

there is no mutation, the algorithm might fall into a local optimum of "least

disliked" songs, instead of actually finding music the user actually enjoys.

Moreover, by incorporating mutation into the methodology of the IGA, we

believe we can enhance the chance of serendipitous discoveries. Mutation

can also help overcome the convergence to popular items, helping counter

the popularity bias that persists in many recommendation algorithms.

Another avenue where an IGA could be relevant and useful is in the ex-

ploration of new music genres. The authors of the paper "Personalized Rec-

ommendations for Music Genre Exploration" (Liang and Willemsen, 2019)[87],

talk about how users might have the goal to develop new preferences away

from their original ones. The interactive genetic algorithm would enable

users to discover new music they might enjoy, by honing in on preferences

they selected and expanding their view of that new avenue, enhancing the

exploration of new genres.

3.2 Research questions

There are several unanswered questions that our methodology will seek to

address. The main research question is as follows:

Does the use of mutation in an interactive genetic algorithm improve

user music recommendations and address popularity bias?

This research question is supported by several sub-questions. These are

as follows:

1. How effective is the interactive genetic algorithm recommender with

42

3.3 Methodology

mutation in increasing feedback scores over generations in general?

2. How effective is the interactive genetic algorithm recommender with

mutation in increasing the feedback scores for users with niche prefer-

ences?

3. How does the use of an interactive genetic algorithm with mutation

impact the popularity bias of recommended music, as expressed in

the Average Popularity of Long-Tail Items (APLT)?

3.3 Methodology

This research will be split up into two parts. The first part will be focused

on the creation of the interactive genetic algorithm. This involves the inte-

gration of a rating system to determine fitness, the selection of songs for the

next generation, as well as the integration of mutation and crossover. The

second part will involve the testing of this algorithm, through the utilization

of simulated user interactions and comparisons to other interactive genetic

algorithms in the data.

3.3.1 Dataset

The dataset used for this research is a modified version of the LFM-1b dataset,

created by Schedl (2016)[88]. This is a dataset that has been used exten-

sively for music recommendation research, because of its scale and diver-

sity. The LFM-1b dataset contains user listening histories gathered from

Last.fm, a popular music streaming service. It includes a large number of

tracks, which is useful for our cause of recommending music.

The user listening history that this dataset includes, can be valuable for

developing collaborative filtering algorithms. However, using these events

directly in our method, for the purpose of recommending music, could in-

fluence the IGA to choose items with more occurrences and therefore could

lead to popularity bias in recommendations. This is because popular items

are more likely to be present in a larger number of user histories, creating

a higher probability of overlap between popular songs and a large number

43

Methodology and motivation

of songs in the data. Because popular songs have a higher chance of over-

lap with other tracks, algorithms can recommend popular songs more often,

even if those items might not align perfectly with a specific user’s individ-

ual taste. Therefore, to mitigate popularity bias and ensure a diverse range

of recommendations, we will incorporate audio features and genre infor-

mation into our recommendation model. Audio features are quantitative

measures that describe various characteristics of a song, such as danceabil-

ity, energy, tempo, and valence. Incorporating these extra features means

we have to expand the original LFM-1b dataset. This is done in two ways,

which will be discussed shortly. Furthermore, occurrences within the LFM-

1b dataset were used to quantify popularity. This approach involved cal-

culating the popularity of each song based on its stream frequency relative

to the maximum streams observed for a single song in the dataset. By nor-

malizing the number of streams a song received against the highest stream

count recorded across the entire dataset, we obtained a measure that reflects

the relative popularity of each track within the context of the dataset’s user

listening histories.

In addition to the original LFM-1b dataset, which was used as the base

of the dataset through the use of its tracks, an extension for this dataset was

used, the LFM-1b User Genre Profile (UGP) dataset. This dataset builds

upon the foundation of the LFM-1b dataset by incorporating additional in-

formation related to music genres. Specifically, it includes genre annotations

for artists, encompassing both specific and broad genre categories. This

dataset was created by Schedl and Ferwerda (2017)[89].

The LFM-1b UGP genres are derived from two sources, Allmusic and

Freebase. Allmusic is a comprehensive online music database that provides

information about artists, albums, songs, and genres. It is known for its

genre categorization system, which covers a wide range of musical styles.[90]

Freebase, on the other hand, is a large collaborative knowledge base that

contains structured data on various topics, including music.[91] It offers a

more granular and diverse set of genre labels compared to Allmusic, in-

cluding niche genres and subgenres. In this dataset, only the broad genres

were used. Through exploration of the dataset, it was found that the user-

44

3.3 Methodology

annotated Freebase genres were more detailed in more popular artists, and

not all artists had associated genres. Even though the methodology will not

make use of these genres to recommend music, only the Allmusic genres

were added, to later make testing of the algorithm more fair.

Moreover, the Spotify API was used to expand the dataset. The Spotify

API is a set of tools and protocols that allow developers to interact with

Spotify’s vast music catalog and analyses. It provides access to information

such as track details, artist information, audio features, and user playlists.

By leveraging the Spotify API, we can enrich our dataset with additional

metadata and features that are not available in the original dataset. The

Spotify API was used to retrieve audio features for each track in the dataset.

These features provide valuable insights into the musical style and mood of

a track, and they can be used to enhance the accuracy and personalization of

music recommendations. Features include danceability, valence and energy,

which are algorithmically determined by Spotify.[92]

The process of expanding the dataset involved retrieving the Spotify

track ID for each track in the LFM-1b dataset. This was done by querying

the Spotify API using the track name and artist name as search terms. Once

the Spotify track ID was obtained, we could then use the API to fetch the

corresponding audio features in batches. Because of limitations in comput-

ing power, the number of tracks in the final was limited to 20,000. In table

3.1, the attributes per item of the dataset can be seen, and each attribute is

described. Moreover, Figure 3.1 shows a comprehensive overview of the

dataset creation process.

Figure 3.1: Comprehensive Overview of Dataset Creation

45

Methodology and motivation

Table 3.1: Attributes of an item in the dataset

Name Description

Artist

Information

artist_id: Unique identifier in LFM-1b dataset (e.g., 8)

artist: Name (e.g., Amon Amarth)

genres: Associated genres from LFM-1b UGP dataset (e.g., ’heavy metal’)

Song

Information

song_title: Title (e.g., Where Silent Gods Stand Guard)

track_id: Unique identifier in LFM-1b dataset (e.g., 3111)

duration_ms: Length of the song in milliseconds

time_signature: Estimated number of beats per measure (range: 3 to 7)

popularity: Popularity of the track in LFM-1b dataset, based on occurrences (range: 0 to 1)

Audio

Features1

danceability: How suitable a track is for dancing (range: 0 to 1)

energy: Perceptual measure of intensity and activity (range: 0 to 1)

key: The estimated main key of the track (0 = C, 1 = C#/D♭, etc., range: 0 to 11)

loudness: The relative loudness of the track (range: -60 to 0 dB)

mode: Indicates whether the track is major (1) or minor (0) (range: 0 to 1)

speechiness: Presence of spoken words in the track (range: 0 to 1)

acousticness: Measure of whether the track is acoustic (range: 0 to 1)

instrumentalness: Predicts whether a track contains no vocals (range: 0 to 1)

liveness: Detects the presence of an audience in the recording (range: 0 to 1)

valence: Musical positiveness conveyed by a track (range: 0 to 1)

tempo: The overall estimated tempo of the track in beats per minute

Spotify

Metadata1

type: The object type, typically "audio_features".

id: The Spotify ID for the track, different from the LFM-1b track ID.

URI: The Spotify URI for the track.

track_href: A link to the Web API endpoint providing full details of the track.

spotify_id: Spotify ID, part of the URI, but does not identify the type of resource.

analysis_url: An HTTP URL to access the full audio analysis of this track.

preview_url: A link to a 30-second preview (MP3 format) of the track.

3.3.2 Algorithmic development

This section describes the algorithm’s development and highlights choices

made that could affect its performance. For this research, an interactive

genetic algorithm (IGA) was created, with the purpose of recommending

1Spotify API Documentation can be found here

46

https://developer.spotify.com/documentation/web-api/reference/get-several-audio-features

3.3 Methodology

music in a way that is agnostic of the popularity of said music. This IGA

iteratively refines a selection of music for a user, with subsequent gener-

ations having a more refined item set, meaning the recommendations are

better fitted to the users’ tastes.

3.3.2.1 Amount of items and generations

To understand the algorithm’s mechanics, we first need to consider the

structure of its evolutionary process. Each generation of the IGA contains

a predetermined number of items. During initialization, the user or re-

searcher can set the number of generations, directly impacting the duration

of the refining process. A higher number of generations and items per gen-

eration typically leads to a longer refinement process, as more items need to

be rated over more iterations.

3.3.2.2 Algorithm details

This section will detail the development of the algorithm, going into the

functions that make up the algorithm, as well as the choices made. The

pseudocode for the algorithm can be seen in Algorithm 1.

3.3.2.2.1 Initial generation The initial population for the IGA is gener-

ated by randomly sampling a number of individuals from the dataset, to

create a population of tracks for the first generation. This random sam-

pling of the dataset was used for two reasons. Firstly, it ensures that no

specific songs or artists are favored from the start, as this could introduce

a bias towards these songs. Representative sampling could favor certain

songs in genres with smaller numbers of songs. As will be discussed later,

not all genres are represented equally in the data. Moreover, if we were

to use a more sophisticated methodology such as collaborative filtering as

a starting point to generate the first generation, it could reinforce existing

patterns in the data, as well as reinforcing existing user preferences. Col-

laborative filtering suffers from popularity bias, as we have seen, making

it a bad fit for the initialization phase of the IGA. This brings us to the sec-

ond reason. Random sampling in the initialization phase allows the user of

47

Methodology and motivation

Algorithm 1 Interactive Genetic Algorithm for Music Recommendation

Require: individuals
1: function INTERACTIVEGENETICALGORITHM(individuals,

crossover_rate, mutation_rate)
2: population← RANDOMSAMPLE(individuals, pop_size)
3: f eedback_history← [], population_history← []
4: for gen← 1 to generations do
5: for individual in population do
6: if individual.rating is None then
7: individual.rating← GETFEEDBACK(individual)
8: f eedback.append(individual.rating)
9: f eedback_history.append(f eedback)

10: population_history.append(population)
11: if gen < generations then
12: population ← CREATENEWGENERATION(population,

f eedback, pop_size, crossover_rate, individuals, mutation_rate)
13: return f eedback_history, population_history
14: function CREATENEWGENERATION(population, f eedback, pop_size,

crossover_rate, individuals, mutation_rate)
15: parents ← SELECTPARENTS(population, f eedback, pop_size ×

crossover_rate)
16: new_population← [], used_songs← {}
17: while |new_population| < pop_size do
18: parent1, parent2← RANDOMSAMPLE(parents, 2)
19: if RANDOM < crossover_rate then
20: child1, child2 ← CROSSOVER(parent1, parent2, individuals,

used_songs)
21: else
22: child1, child2 ← COPYPARENTS(parent1, parent2,

individuals, used_songs)
23: for child in {child1, child2} do
24: if RANDOM < ADJUSTEDMUTATIONRATE(mutation_rate,

f eedback[parent]) then
25: child← MUTATE(child, individuals, used_songs)
26: if |new_population| < pop_size then
27: new_population.append(child)
28: used_songs.add(child)
29: return new_population
30: function CROSSOVER(parent1, parent2, individuals, used_songs)
31: child_ f eatures← BLENDFEATURES(parent1, parent2)
32: return FINDSIMILARSONGS(child_ f eatures, individuals, used_songs)
33: function MUTATE(individual, individuals, used_songs)
34: mutated_ f eatures ← APPLYRANDOMMUTA-

TION(individual. f eatures)
35: return FINDSIMILARSONG(mutated_ f eatures, individuals,

used_songs)
48

3.3 Methodology

the IGA to discover avenues that they otherwise wouldn’t have. This aligns

with the goal of the IGA of mitigating popularity bias, as users consider all

sorts of songs. In this context, an "individual" represents a music track char-

acterized by various attributes such as artist, song title, genres, and track

features obtained from the Spotify API. The function generate_population

also ensures that the population size does not exceed the number of avail-

able individuals. This population will be rated by the user, after which a

new generation will be created.

3.3.2.2.2 Fitness evaluation The first step in creating a new generation is

evaluating the fitness of the individuals in the previous generation. Fitness

evaluation is performed by gathering feedback from the user or a simulated

user model. For the purposes of this research, simulated users were used,

which will be discussed later. The feedback is in Likert-scale formatting,

ranging from 1 (strongly dislike) to 5 (strongly like) for each individual in

the population. This feedback is critical as it directly determines the fitness

score of each individual. The fitness score, as discussed, is the value genetic

algorithms use to determine how close a solution (in this case, a song) is to

the optimum. The function evaluate_fitness sorts the individuals based

on the received feedback, making sure higher-rated tracks are prioritized.

Then parents are then selected from this sorted list. This method of selec-

tion is known as truncation-based selection, as discussed in the literature

review. This ranking influences the selection of parents for the next gener-

ation, ensuring that only the best-performing individuals contribute to the

next generation.

3.3.2.2.3 Creation of a new generation After the individuals have been

sorted, the parents are selected for the next generation. The selection of par-

ents is based on the fitness scores that were obtained from the user. The indi-

viduals in the population of the previous generation are ranked by their fit-

ness. As discussed, this fitness is the score given by the user indicating how

well they meet user preferences and is the same as the feedback score re-

ceived. The number of parents is chosen by a predetermined base crossover

rate. This crossover rate reflects the fraction of the previous generation that

49

Methodology and motivation

will be selected as parents. The base crossover rate is then combined with

the average feedback to create a final crossover rate. This final crossover

rate is therefore higher when the average feedback is high, meaning a larger

part of the previous generation is selected for the next generation. This was

done to allow the algorithm to exploit good solutions, while reducing the

exploitation when the population is bad. This is inspired by research done

by Hong et al. (2002)[36], where the authors varied the crossover and muta-

tion rates based on the evaluation results in each generation. The function

to calculate the final crossover rate is as follows:

crossover_rate = base_crossover_rate×
(

average_feedback
5

)

Through preliminary testing, a base value of 0.7 was found to perform the

best. Base crossover rates from 0 through 1, in steps of 0.1, were tested with

simulated users, and a value of 0.7 consistently showed the most balanced

performance in terms of generating high-quality songs while maintaining

diversity within the population. Higher values inhibited diversity, while

lower values had significant amounts of good solutions not contribute to

the next generation. An analysis of the effects of different crossover rates

will be discussed in the results. When feedback is high, a large portion

of high-fitness individuals is retained, while still allowing space for more

solutions. The new generation is then created by sampling from the se-

lected individuals. Until the population size is met, two parents will be

selected from the previous generation. The crossover rate will then deter-

mine whether crossover will take place. If it does not, the children in the

new generation will be copied over directly from the parents to the next

generation. If it does, similarly to Kim et al. (2010)[51], we make use of

BLX-α crossover. This function combines the features of two parent songs

to create new offspring. In BLX-α crossover, as discussed in the literature

review, the value of a feature is calculated by taking a value in between the

values of the parents. This non-existent song will then be passed onto the

find_similar_song function, which will be discussed later, to find an ex-

50

3.3 Methodology

isting song in the dataset that matches the newly created song. After the

potential crossover, the mutation rate will be compared to a randomly gen-

erated number, and if this number is lower, mutation takes place. When

this happens, the children will be mutated to find new individuals. This

mutation will be discussed in a later section. During the creation of a new

generation, a list of songs that are already in the new generation is updated

continuously, to ensure that there are no songs that appear multiple times

in a generation. Crossover ensures that parents are selected in such a way

that desirable traits, characterized by high-performing songs, are retained

in the next generations, leading to the user getting similar individuals with

high-fitness traits recommended. Desirable traits in this context specifically

refer to song characteristics that align closely with the user’s indicated pref-

erences, such as specific genres and audio feature preferences. These traits

are considered desirable as they match individuals that the user finds ap-

pealing. For example, when a user indicates strong preferences for high

energy and high danceability songs, individuals with these traits would be

considered desirable, making high energy and high danceability desirable

traits.

3.3.2.2.4 Similarity calculation To perform meaningful crossover and mu-

tation, the algorithm needs to be able to find the most similar song for a

certain input. This is done by calculating track feature-based similarities.

The find_similar_song function is what is responsible for this operation.

The function first extracts the track features from the individual, namely

the danceability, the valence and the energy. While testing, these track fea-

tures were found to most meaningfully differentiate different songs. Other

track features had large clusters of individuals with extremely similar val-

ues, making them less suited, or did not have an effect on the overall sound

of a song (e.g. duration). The distribution of track features will be shown

later in the dataset analysis. The function then calculates the pairwise Eu-

clidian distance between these features and the features of all songs in the

data. This is to ensure that the function works for the purposes of crossover

and mutation, where the song that is inputted does not exist, and a similar

51

Methodology and motivation

song needs to be found. The function for calculating the distance looks like

this:

Euclidian Distance(p,q) =
√
(dp − dq)2 + (vp − vq)2 + (ep − eq)2

where d is the danceability, v the valence and e the energy of either indi-

vidual p or q. The distance is then computed between the input and all

individuals in the data. This is then sorted based on the most similar songs,

and the outputted song is randomly chosen from the top 5 most similar

songs. This ensures that the output matches the inputted song, while still

creating some randomness for diversity. The use of track features for simi-

larity calculations was in line with research by Barone et al. (2017)[93]. This

research showed that the acoustic features of a listener’s preferred genres

significantly influence their track choices within non-preferred genres. To

illustrate the effectiveness of the find_similar_song function, several songs

by well-known artists and their similar songs are shown in table 3.2.

Title Artist Genres Danceability Energy Valence
Blue Jeans Lana Del Rey pop, alternative, jazz, rock, blues, electronic, folk 0.553 0.828 0.504
The Missing Deerhunter rock, alternative 0.585 0.826 0.514
A Whisper Coldplay alternative, pop, electronic 0.277 0.797 0.260
No Cars Go Arcade Fire alternative, rock, folk, pop 0.324 0.772 0.291
English Chamber Orchestra - C Wolfgang Amadeus Mozart classical 0.175 0.058 0.040
Begluckt darf nun dich (Tannhauser) Richard Wagner classical 0.163 0.046 0.061
I Am the Walrus The Beatles rock, pop, alternative, folk 0.401 0.556 0.654
Plastic Fantastic Lover Jefferson Airplane rock, folk, alternative, blues 0.410 0.505 0.714
Halo Beyoncé pop, rap, jazz, rnb, electronic, alternative 0.508 0.720 0.472
Utakata Kagrra, rock, alternative, folk 0.479 0.714 0.502
Electioneering Radiohead rock, electronic, pop 0.201 0.888 0.329
Promise R a p h a e l rock 0.254 0.859 0.342
Goodbye Yellow Brick Road Elton John rock, easy listening, alternative, blues 0.559 0.473 0.397
I Want to Be the Boy to Warm Your Mother’s Heart The White Stripes alternative, blues, punk, folk, pop 0.522 0.465 0.394

Table 3.2: Comparison of Original and Similar Songs

3.3.2.2.5 Mutation The mutation operation in this algorithm plays a large

role in helping users find preferred songs and introducing diversity into the

population. This part of the methodology is novel, as other implementa-

tions for IGAs for music recommendation do not include this. In biologi-

cal mutation, small changes are made in an organism’s DNA, which might

make them better suited to their environment. Selection pressure then en-

sures the individuals best suited for their respective environments survive

and reproduce. Since individuals in the population are individual songs,

52

3.3 Methodology

mutation of the "DNA" of these tracks is not possible, as we cannot edit the

genres and track features and obtain a new song.

Therefore, we must use a different methodology for obtaining new indi-

viduals. To do this, mutation is performed on an individual’s track features,

to create a song with modified features that do not exist in the data. This is

done by modifying the track features to introduce variations. This mutation

is done in a uniform manner over all track features, based on the mutation

strength. The mutation strength is calculated as a function of both the mu-

tation rate and the user feedback. This mutation rate was set to 0.5, as it was

found to strike a balance between exploration and exploitation within the

algorithm. The effect of different mutation rates will be discussed in the re-

sults section. The user feedback was used to strengthen the mutation when

the feedback is low, and weaken it when feedback is high, similarly to Hong

et al. (2002)[36]. This ensures that highly-rated songs are kept over time and

low-rated songs are replaced with new ones, increasing the chance of find-

ing a better match in the next generation. The formula for the mutation was

based on the highest and lowest feedback scores and is as follows:

Mutation Rate = Base Mutation Rate× Feedback Factor

The feedback factor scales from 0.95 when feedback is the lowest, to 0.05

when the feedback is the highest. After mutation is performed, the new

non-existent individual’s features are compared to the full dataset using

the find_similar_song function, and a song that closely matches the non-

existent individual created by mutation is chosen. This therefore results in a

new individual, mutated from the original in such a way that it introduces

diversity.

To illustrate how the mutation function works, an example will be given

for the mutation of a single song. For this demonstration, mutated songs

will be based on Wolfgang Amadeus Mozart’s "Ave verum corpus, K. 618

(Arr. Spindler for English Horn, Strings and Organ)", with various feed-

53

Methodology and motivation

back, to see what the outputted songs will be like. This song was chosen as

a demonstration example. The track and its features in the dataset can be

seen in Table 3.3. The full table of mutated songs for each feedback score

can be seen in the Appendix. The idea is that when the feedback is high,

similar songs will be chosen, while when feedback is low, very dissimilar

songs will be returned.

Wolfgang Amadeus Mozart Ave verum corpus, K. 618 (Arr. Spindler for English Horn, Strings and Organ) ["classical"]

danceability energy speechiness acousticness instrumentalness liveness valence tempo

0.175 0.0578 0.0422 0.913 0.895 0.0906 0.0395 68.005

Table 3.3: Audio Features of Wolfgang Amadeus Mozart’s ’Ave verum corpus,
K. 618 (Arr. Spindler for English Horn, Strings and Organ)’

When the feedback rating is high, the mutate function returns songs that

are expected to be similar to the Mozart song, such as "The Lake In The

Moonlight" by Tchaikovsky. Both pieces share similarities in their classical

instrumentation and structural qualities. However, one surprising item to

come from the mutation of the Mozart song is the song "Eon Bleu Apoc-

alypse" by Tool. At first glance, this song would seem like a bad fit for

someone who rates the Mozart song highly. The categorized genres are "al-

ternative", "rock" and "heavy metal". However, when looking at the audio

analysis, the song is also a quiet song, with similar values for danceabil-

ity, energy, speechiness, and acousticness to the Mozart piece. This shows

the mutation function’s focus on musical features, in line with the research

by Barone et al.[93], which says musical feature preferences transfer over to

other genres. The song is a relatively quiet instrumental song, meaning that

users who like classical music, may also enjoy this track.

When the feedback rating is low, the mutate function returns songs dis-

similar from the input song, to increase exploration within the data. When

the feedback on the Mozart song is low, one example is the song "The world

is my land" by Jupiter and Okwess International, a band from Kinshasha

in the Democratic Republic of the Congo[94]. This choice shows the sys-

tem’s ability to broaden user exposure to diverse musical styles. Jupiter and

54

3.3 Methodology

Okwess International are known for their unique fusion of traditional Con-

golese rhythms with modern rock influences[94], making it a song that is

very dissimilar from the Mozart song inputted.

3.3.2.2.6 Final algorithm These functions are put together in a larger func-

tion, the interactive_genetic_algorithm function. This function is used

to orchestrate the entire process of evolving a population of music accord-

ing to user preference. The function begins by setting the number of gener-

ations and the population size, which are determined by the user or set to

testing values for simulated users. The population is generated using the

generate_population function. For each generation, several steps are per-

formed. Firstly, the feedback is collected from the users. Once feedback is

collected for all individuals, the algorithm will calculate the average feed-

back score over that generation, for later analysis. After this, a new gener-

ation is created using the create_new_generation function. This function

selects the top-performing individuals from the current generation based

on their fitness scores, and then creates new individuals by combining ge-

netic material from these selected parents through the crossover and mu-

tation operations discussed previously. This newly generated population

will then again be rated, and this completes the cycle. This repeats until the

preset number of generations is reached. Over time, the algorithm aims to

converge towards a set of music recommendations that align closely with

the user’s preferences.

3.3.2.3 Simulated users

For the evaluation of the algorithm, both real users and simulated users

could have been used. Due to time constraints, a real user evaluation of the

interactive genetic algorithm was not feasible. However, simulated users

were created to replace regular users in evaluating the individuals in the

IGA. The simulated users were designed to emulate a user’s music pref-

erences and evaluate songs based on specific criteria, which will be dis-

cussed later. This evaluation is based on a consideration of both the genre

of the song and its specific track features. This allows the simulated users to

55

Methodology and motivation

closely mirror real user behavior.

To simulate a user, the function begins by initializing a neutral rating

(3) for a given individual. This starting point is based on an assumption of

indifference, reflecting that the simulated user has no prior bias towards or

against any song. This is done such that later adjustments to this rating are

effective and reflect human behavior. This rating is then adjusted based on

several factors, starting with the song’s genres. The simulated users have

predefined genre preferences categorized into highly preferred, preferred,

neutral, disliked, and highly disliked genres. If a song belongs to one of

the highly preferred genres, the rating increases with 2. On the other hand,

if the song is in a highly disliked genre, the rating decreases with 2. This

ensures that the simulated user returns a rating that reflects its preferences.

The change in rating is also done for the liked and disliked genres, with a

less significant change of adding 1 or subtracting 1 respectively. In addition

to genre preferences, the simulated user has preferences for specific audio

features, which include danceability, energy, and valence. The features of an

input song are compared to the preference. For instance, if a song’s dance-

ability exceeds the user’s preferred level, the rating is increased by 0.5; oth-

erwise, it is decreased by 0.5. Similar adjustments are made for energy and

valence until finally a final rating is obtained for the song. The incremen-

tal adjustments reflect the idea that users’ preferences typically manifest in

subtle, rather than drastic, changes in their perception of a song. The choice

of genres and audio features as primary factors is based on empirical stud-

ies, such as Karnop (2019)[95], which demonstrated the impact of personal

factors on music selection behavior and the corresponding audio features of

self-selected music, using the same audio features as were used in our sys-

tem. As mentioned in the section 3.3.1, the algorithm does not make use of

genre information to make recommendations. However, as is discussed in

this section, the simulated users do. Track features were found to be good

predictors of genre information, and this provided a more fair comparison

to existing methods, also focused on track features, while providing inter-

pretable simulated users.

As an example, we have created a person who likes to listen to classical

56

3.3 Methodology

music. This was done by setting the highly preferred genre as "classical".

All others were left empty, and the highly disliked genres were set to all

other genres available. The track feature preferences were set by taking the

median values of the musical features for all classical songs in the data. Af-

ter these preferences were set, the simulated user rated the entire dataset.

Tracks with a rating of 1, 3 and 5 were saved and were randomly sampled

to obtain the tracks seen in table 3.4.

Rating Track Name Artist Genres Danceability, Valence, Energy

5 A Thousand Years Sting pop, jazz, alternative, easy listening, folk, blues, reggae, classical 0.605, 0.33, 0.437

5 Settler Balmorhea classical, electronic, folk 0.274, 0.244, 0.425

5 Fritz Lang Chapelier Fou classical, alternative 0.571, 0.392, 0.606

5 Wait For Me Vangelis new age, classical, easy listening 0.471, 0.172, 0.363

5 I Let You Down 365daband pop 0.531, 0.308, 0.677

3 Drawing the Line Porcupine Tree rock, alternative 0.519, 0.45, 0.553

3 COLORS -OZ- rock, alternative 0.551, 0.171, 0.279

3 Scars Blackfield rock, alternative, pop 0.397, 0.494, 0.477

3 Last Conversation Veronica Falls pop, alternative, rock, folk 0.234, 0.412, 0.626

3 The Hour Of Need Mind’s Eye rock 0.469, 0.292, 0.349

1 Content To Play Villain dälek rap, electronic, alternative 0.484, 0.107, 0.68

1 Slaughtered Pantera heavy metal, rock 0.239, 0.53, 0.964

1 Stay MNDR electronic, pop, alternative, world 0.688, 0.77, 0.907

1 Turquoise Hexagon Sun Boards of Canada electronic, alternative 0.567, 0.0445, 0.754

1 Iron Ensiferum folk, heavy metal 0.205, 0.387, 0.942

Table 3.4: Evaluation of Tracks by Simulated Classical Music Listener

3.3.3 Platform, environment and package details

This section will detail the platform and packages used to enhance repro-

ducibility. The code for this research was written in Python, using the Google

Colab platform. This platform provides a Jupyter notebook environment,

allowing for easy testing and development of separate parts of code. Co-

lab was chosen for its familiarity and its access to powerful computational

resources.

3.3.3.1 Packages used in the initialization

Several packages were used for the development of the IGA. Firstly, the

requests library was used to communicate with the Spotify API, using HTTP

requests to get the token for API requests, as well as the track features and

other relevant information such as the Spotify URI.

57

Methodology and motivation

3.3.3.2 Packages used in the IGA

In the IGA itself, three well-known packages were used. Random was used

for random sampling, such as in the sampling of the dataset to create the

initial population, as well as with the creation of randomized preferences

for simulated users. Moreover, the random library was used to random-

ize some parts of the genetic process itself, such as getting a random num-

ber to compare to the mutation and crossover rates, to figure out if mu-

tation should happen, which is standard practice. If the mutation rate is

higher, the chance of getting a random number that is smaller than this mu-

tation rate gets lower. The math package is used for mathematical oper-

ations within the IGA. One example is calculating the Euclidean distance

between two individuals’ track features. The copy package is used to create

copies of the track_features of an individual in the mutate function. This

ensures that the original’s features are not altered. In Python, when you

assign a value to a variable, you are not creating an independent copy, you

are instead creating a reference to that same data. Therefore, if we were

to do mutated_features = individual.track_features, and then modify

the mutated_features, the originals track_features will also be edited.

3.3.3.3 Packages used in the reporting and testing

In the reporting and testing of the algorithm, other packages were used.

Some are well known, such as SciPy.stats for statistical tests, matplotlib for

data visualization, including histograms, bar charts and pie charts, as well

as NumPy for numerical operations. NumPy, for example, is used to calcu-

late the mean, as well as the pairwise Euclidean distance in song similarity

calculations.

3.3.4 Evaluation measures

To evaluate whether the IGA achieves its goals of increasing feedback scores

over generations and mitigating popularity bias, evaluation measures are

needed. Moreover, these feedback scores not only need to reflect increases

in satisfaction through the increase of feedback scores for users. The evalua-

58

3.3 Methodology

tion measures need to also compare the algorithms featured to each other on

measures such as diversity and popularity bias. Here, we will summarize

proposed measures for evaluating the IGA.

1. Average feedback score: This metric measures the mean feedback

score across generations. An increasing trend here indicates that the

algorithm is successfully learning user preferences and outputting more

satisfactory results. Moreover, this allows the comparison between

different sets of users, for example, those with niche interests.

2. Average Percentage of Long Tail Items (APLT): Described in equation

3.1, this metric measures the proportion of long-tail items in recom-

mendations. A higher APLT indicates better mitigation of popularity

bias.

3. Convergence Rate: This measure tracks how quickly the algorithm

converges to high-quality recommendations. It can be assessed by an-

alyzing the rate of improvement in feedback scores across generations.

4. Intra-List Diversity: This metric, based on Ziegler et al. (2005)[80],

evaluates how diverse the recommendations are in a recommenda-

tion list by looking at the pairwise similarity between tracks. Instead

of comparing the diversity of the entire recommendation, we can use

it for the evaluation of the IGA by looking at the diversity of songs

within the first and within the final generation.

Using these metrics, a good overview of the performance of the IGA can

be obtained, and compared to other existing methodologies.

59

4. Results

In this section, the outcomes of the interactive genetic algorithm for music

recommendation are presented. Firstly, the dataset and experimental setup

will be shown, along with choices made. Afterwards, the performance of

the algorithm will be evaluated based on a variety of metrics, and the evo-

lution of the performance across generations will be shown. The results

are also compared to baseline methods, and the robustness of the algorithm

across different simulated user preferences will be shown.

4.1 Dataset and Experimental Setup

4.1.1 Dataset Description

As described earlier, the dataset that was used for the interactive genetic

algorithm is a combination of various different sources. The dataset is made

up of tracks from the LFM-1b dataset. The information available for these

tracks is then expanded using the Spotify API, as well as with the LFM-1b

User Genre Profile dataset. The final dataset contains 18,953 items, after

removing items for which genres or track features were not available. This

section contains descriptions of the features of the data in the dataset, as

well as showing the distribution of these features within the data.

The distribution of genres in the dataset is shown in Figure 4.1. The

dataset contains 19 different genres, with the genres with the most occur-

rences being rock, alternative and pop. The genres with the least occur-

rences are spoken word, vocal and new age. The distribution of genres

shows a skew towards certain genres while having fewer available items

in others.

60

4.1 Dataset and Experimental Setup

Figure 4.1: Distribution of Genres in the Dataset

The distribution of track popularity in the dataset is depicted in Fig-

ure 4.2. As can be seen, the popularity follows a long-tail distribution, in-

dicating that a small number of tracks have very high popularity, while the

majority of tracks have relatively low popularity. As described earlier, this

is a pattern often observed in datasets for music recommendation systems.

Figure 4.2: Track popularity in the dataset, sorted from high to low

In figure 4.3, the distribution of track features for songs in the dataset

can be seen. One interesting thing to note here is the distribution of time

signatures. As described by Hardman and Talarczyk (2021)[96], the most

common time signature in Western music is 4/4, and we can indeed see that

this is also the case for the songs in our dataset as well. Danceability follows

roughly a normal distribution around 0.6, indicating moderate danceability

for most songs. Energy is skewed towards higher values, indicating that

there are many high-energy tracks in the dataset. Loudness shows a normal

distribution peaking around -5 dB. This is consistent with the trend identi-

61

Results

Figure 4.3: Distribution of track features within the dataset

fied by Haghbayan et al. (2019)[97], which shows that music has been getting

progressively louder over time. Speechiness is strongly skewed towards

lower values, reflecting minimal spoken words in most songs. Acousticness

and instrumentalness are both highly skewed towards lower values, sug-

gesting that the majority of tracks are non-acoustic and vocal, respectively.

However, instrumentalness does show a small increase near the higher end

of the plot, implying that there are some tracks that are totally instrumen-

tal. Liveness indicates low values for most tracks, implying most tracks are

studio recordings. Valence distribution is relatively uniform with a slight

peak in the middle, showing a wide range of emotional tones. Tempo fol-

lows a normal distribution centered around 120 BPM, which is common in

music.[98] Duration peaks between 200,000 and 300,000 milliseconds (3 to 5

minutes), aligning with typical song lengths. Finally, the key distribution is

relatively uniform across the 12 keys, with slight prevalence in some.

62

4.1 Dataset and Experimental Setup

4.1.2 Experimental Setup

The experiments were conducted with a population size of 20, over 10 gen-

erations. These numbers were chosen to achieve a balance between realism

and giving the algorithm the room to generate results. Using too small pop-

ulation sizes leads to less effective exploration of the solution space, whereas

using too large population sizes makes the simulation less representative of

real-world conditions, as well as being more computationally taxing. We

will explore the impacts of different population sizes later in the results.

The algorithm was run on the Python 3 Google Compute Engine backend,

where one run of the algorithm, using a simulated user that rates 20 individ-

uals over 10 generations took approximately 15-30 seconds, depending on

the amount of crossover and mutation applied during the run. Because of

the way the system is designed, the crossover and mutation rates are higher

with lower ratings, and lower with higher ratings. Therefore, when there

are low ratings, more calculations need to be made. Simulated user prefer-

ences were configured based on predefined genre categories and preferred

audio features, randomized for each run, giving an accurate picture of the

increase in feedback scores over time. The algorithm will be run repeatedly,

to account for variability in mutation, simulated user preferences and initial

population generation.

To compare our methodology with other methodologies, we will sim-

ulate a large number of runs of the algorithm, looking at the evolution of

feedback scores over time. This gives a frame of reference for comparison

to other methodologies, as well as decreasing the likelihood that increases

in feedback scores are due to random chance. Specifically, we will com-

pare the method of Kim et al. (2010)[51] to our methodology, looking at

the various evaluation measures established earlier. This choice of point of

comparison was chosen because the other existing IGAs for music recom-

mendations base their methodology on this paper, making it a foundational

work and good point of comparison. In the experimental framework, we

will classify users based on their feedback ratings for the initial generation.

The motivation for this is that users with more niche tastes will rate the first

63

Results

generation of the algorithm more lowly, giving us a frame of reference for

what users have more traditional preferences, as well as those having more

niche preferences, and seeing how these users are able to improve their rec-

ommendations over time. This allows the comparison of the results of these

groups of users, and draw conclusions from the comparison between the

results of our method and other methodologies.

4.2 Algorithm performance

In this section, we will report the performance of our methodology, based on

tests using randomized user preferences. The effectiveness of our algorithm

will be tested using the performance indicators established earlier. First,

we will give a general overview of the performance of the algorithm. After

this, we will categorize two user groups, based on the feedback scores in the

initial generation, and compare the performance across these to show the

adaptability of the algorithm to both. After this, we will report in a similar

manner on the performance of Kim et al. (2010)[51], given the same tests. We

will then compare the performance of both, looking at the categorized user

groups.

4.2.1 Performance over Generations

The performance of our algorithm was evaluated using simulated users.

The feedback scores were averaged for all users for each generation, to ob-

tain a representative overview of the evolution of feedback scores. Figure

4.4 shows the average feedback score progression over the 10 generations

for all runs. 100 runs were conducted, with each having a new randomized

simulated user profile.

64

4.2 Algorithm performance

Figure 4.4: Average Feedback Evolution Across Generations for Simulated
User with Randomized Preferences for Our Method

As can be seen in the graph, there is an upward trend in average feed-

back scores over the generations, meaning that the algorithm can success-

fully adapt to user preferences. The average feedback score increased from

2.99 in the initial generation to 4.82 in the final generation. This represents

a 61.20% improvement from the first to the last generation. The standard

deviation in the first generation was 0.86, while in the final generation it

was 0.45. It should be noted that, from the third generation onwards, the

increases as an average for all runs are quite low. In the third generation,

the average feedback score is 4.58, representing a 5.24% increase to the final

generation. However, the standard deviation in the third generation is 0.69,

showing less consistency as compared to the final generation. Out of 25000

items over all generations and all runs, 23163 were considered to be part of

the long tail. This means that the APLT is 92.65%. Items were considered

to be in the long-tail when their popularity was under 0.1, meaning they

received a maximum of 10% of the amount of listens than the most popular

song. This was based on the distribution, as seen in Figure 4.2. A popular-

ity value of 0.1 separates the "head" of the distribution (the most popular

tracks) from the "tail" (the less popular tracks). The average intra-list diver-

sity between the tracks in the first generation is 0.0949, whereas it is 0.0597

in the final generation. This means that there is a higher degree of similarity

between the tracks in the final generation.

65

Results

4.2.2 Performance for Different User Classifications

To assess the performance of the algorithm for different user types, users

were categorized based on their initial feedback scores. Users with average

feedback scores in the initial generation more than one standard deviation

below the mean were classified as having "niche" preferences, while those

with an average initial population feedback score one standard deviation

above the mean were classified as having "traditional" preferences. Lower

average initial scores indicate that that has preferences that don’t line up

with the randomized initial generation, meaning the preferences likely do

not align with the dataset distribution. This means they are more likely

to enjoy items that have preferences that occur in lower levels in the data,

meaning they are more niche. The comparison between more niche and

more traditional users can be seen in Figure 4.5. In this case, out of 100 runs,

23 were considered "niche", while 22 fell into the "traditional" category.

Figure 4.5: Average Feedback Evolution Across Generations for Simulated
User with High and Low Rated First Generations

These results show that for users with traditional preferences, repre-

sented as a high-rated first generation, the algorithm starts with a relatively

high baseline. This shows that the initial recommendations already align

well with their tastes. The second generation nears perfect scores for these

users. This continues in later generations. This can be attributed to the

mechanism of dynamic mutation when feedback is high, leading to little

mutation to songs in the previous generation to create the previous gener-

ation. The initial generation for this group of users had an average feed-

back score of 4.17, while the final generation had an average feedback score

66

4.3 Comparison to Other Methods

of 4.99. This represents a 19.66% increase. This means that the increase is

lower than the average for all users, but the overall scores are higher. This

is logical, as starting from a higher score and increasing to close to the max-

imum, represents a lower increase than when starting with lower feedback

scores. For the users with feedback scores 1 standard deviation lower than

the mean initial feedback scores, the initial generation had a significantly

lower average score of 1.75, meaning the average score for a song in the first

generation for this group was very low. The final generation had a rating of

4.39, which is an increase of 150.85%. This is a much larger increase than for

traditional users, more than doubling the original feedback score average.

4.3 Comparison to Other Methods

The algorithm proposed by Kim et al. (2010)[51] serves as a point of compar-

ison to our methodology. Due to the unavailability of the code, the method-

ology was reconstructed for use in this paper using the methodology sec-

tion of their paper. They specified several algorithmic parameters, such as a

crossover chance of 0.5, which we adopted for consistency. To evaluate the

performance of the method proposed by Kim et al. (2010)[51], we conducted

similar experiments using simulated users with randomized preferences.

4.3.1 Performance over Generations

Figure 4.6 shows the average feedback of Kim et al.’s method. Similarly to

our algorithm, the feedback scores for this method show an upward trend,

indicating that their method also adapts to preferences over time.

Figure 4.6: Average Feedback Evolution Across Generations for Simulated
User with Randomized Preferences for Kim et al. (2010)

67

Results

The initial average score for all simulated users for Kim et al.’s method

is 2.99, which is similar to our method. The feedback score increased to an

average of 4.60 in the last generation, meaning an increase of average scores

of 53.85%. The error bars in this graph do show that the averages for Kim

et al.’s method have a larger spread, meaning that the performance of their

method is more variable across different simulated users. In the first gener-

ation, the standard deviation is 0.92, whereas it is 0.63 in the final genera-

tion. The APLT for this method was 90.34%, which is not a large deviation

from our method, where it was 92.65%. The average intra-list diversity be-

tween the tracks in the first generation is 0.0796, whereas it is 0.0320 in the

final generation. Similarly to our method, the intra-list diversity decreases,

meaning that the tracks in the final generation are more closely related.

To statistically compare the feedback scores of the final generations of

both methods, an independent t-test was considered. For this test, multiple

assumptions need to be met. The first one is the independence assumption,

where the samples from both methods need to be independent of each other.

Since we are comparing feedback scores of simulated users, this assumption

is met. Moreover, the data for both methods should be normally distributed.

This can be checked using the Shapiro-Wilk test, which in our case results

in a p-value of <0.05 for both results, meaning neither outcome is normally

distributed. Additionally, we conducted a Levene’s test to check if the vari-

ances between the two groups were not significantly different. The result of

this test is a p-value of 0.8180, meaning the variances are not significantly

different.

Because our results do not meet the normality assumption, we used a

Mann-Whitney U test. The result of this test is a statistic of 91.0 and a p-

value of 0.138. This shows us that the difference in performance between

our method and that of Kim et al. is not statistically significant. Since the

p-value is higher than the commonly used threshold of 0.05, we can state

that our method does not significantly outperform Kim et al.’s method for

all users when using simulated users with randomized preferences.

68

4.3 Comparison to Other Methods

Figure 4.7: Kim et al. (2010)[51] Feedback Evolution for Low and High Initial
Feedback Scores

4.3.2 Performance for Different User Classifications

User classification was identical here to the tests conducted using our method,

meaning initial generations are considered to be niche when the average of

the initial generation is at least one standard deviation lower than the aver-

age for all runs, and they are considered to be traditional when the feedback

score average is higher than at least one standard deviation. The compari-

son between these can be seen in Figure 4.7.

As can be seen, the difference between the high and low-rated initial gen-

eration groups is higher than with our method. For the traditional users, the

average feedback scores approach perfect scores in the final generation. The

first generation for this group has an average feedback score of 4.05, which

increases to 4.97 in the last generation. This is an increase of 20.62%. The

standard deviation for this group is 0.31 in the initial generation, and 0.17

in the final generation. For the more niche users, the increase is noticeably

worse. The initial population has an average feedback score of 1.83. This

increases to 3.79 in the final generation, meaning the feedback increases by

107.27%. The standard deviation is 0.18 in the first generation, and 0.84 in

the final generation.

While final results for all users are similar, as discussed in section 4.3.1,

the results for users considered to be niche were higher for our method than

with Kim et al.’s method, with the final generation having an average feed-

back rating of 4.39, as compared to 3.79 using Kim et al.’s method. To statis-

tically test the difference, we used the same Mann-Whitney U test as in the

69

Results

previous comparison. Here, we found a p-value of 0.0088, with a statistic

of 85.0. This means that for users with niche tastes, the difference between

feedback scores for our method and Kim et al.’s is statistically significant.

To make our analysis complete, we can compare the results for traditional

users, to determine if this increase in performance from our method comes

at the cost of the results of the more traditional listeners. Our method had

a final feedback score of 4.99, whereas Kim et al.’s method achieved a fi-

nal score of 4.97. The Mann-Whitney U test resulted in a p-value of 0.8815,

with a statistic of 45.0. This indicates that there is no significant difference

between the two groups, and therefore for users that are considered tradi-

tional, there is no significant difference between feedback scores.

The convergence rate between both methods was also calculated. This

is a measure that measures the difference in mean score each generation.

This indicates the speed at which the algorithm is able to converge to well-

performing solutions. Both algorithms have similar initial and final scores

overall randomized simulated users, meaning that the convergence rate will

most likely also be similar. This is indeed the case, with our method having

an average convergence rate of 0.189, and Kim et al.’s method having an av-

erage convergence rate of 0.179. A plot of the convergence rate for each gen-

eration can be seen in Figure 4.8. Here, we can see the difference between

both methodologies. For Kim et al.’s method, the maximum convergence

rate was 0.489, whereas our method showed a much higher maximum con-

vergence rate of 1.148.

Figure 4.8: Convergence Rate of Average Feedback for both Kim et al. (2010)
and Our Method

70

4.4 Comparison of different parameters

Metric Our Method Kim et al. (2010)
Average Feedback Improvement 61.20% 53.85%

Average Score in Final Generation 4.82 4.60
Standard Deviation in Final Generation 0.45 0.63

APLT 92.65% 90.34%
Convergence Rate in Initial Generation 1.148 0.489

Average Convergence Rate 0.189 0.179
Final Generation Intra-List Diversity 0.0597 0.0320

Table 4.1: Comparison of Key Metrics between our method and Kim et al.
(2010)

In Table 4.1 we show the differences between the method from Kim et

al. (2010)[51] and our method. As can be seen, Kim et al. (2010) excels in

catering to traditional users, but struggles with more niche users.

4.4 Comparison of different parameters

In this section, we will compare the performance of the algorithm under

various parameters. In each section, we will report the results of a simula-

tion using the same algorithm as discussed in section 4.2, while varying one

parameter. This will provide a better understanding of how the parameters

influence the evolution of the feedback scores.

4.4.1 Population size per generation

The population size of each generation determines the number of individu-

als in each generation. Varying this number can influence multiple factors

that determine the outcome. When there are too few items per generation,

the algorithm has lower chances of evolving the population to a state that

is satisfactory to the user. With too many items in the generation, the al-

gorithm could develop better, more sophisticated solutions, at the cost of

the amount of items that need to be rated. When real users are considered,

having many items per generation could lead to fatigue and make the user

experience worse, as well as being more computationally intensive. It is

therefore important to achieve a balance between both. In figure 4.9, three

population sizes can be seen, 5, 20 and 50.

71

Results

(a) Population size: 5 (b) Population size: 20 (c) Population size: 50

Figure 4.9: Comparison of different population sizes

The results indicate that a small population size can lead to evolutionary

stagnation, as there are too few individuals to generate significant mutations

or foster the evolution of better solutions using crossover. Moreover, having

a very large population brings diminishing results, where the results for the

feedback score are only slightly better than a smaller population size, but

there are many more items to rate each generation. This large number of

items is computationally costly when using simulated users, and unrealistic

when using real users.

4.4.2 Mutation rate

The mutation rate is a parameter that controls the variation that is intro-

duced in each generation by modifying the individuals. The mutation rate

needs to be high enough to allow for an increase in exploration, while not

disrupting convergence. When the mutation rate is too low, the algorithm

could get stuck in local optima of "least disliked" individuals, instead of

finding actual preferences. In figure 4.10, results of the algorithm with 3

mutation rates are shown, 0, 0.5 and 1. These were chosen to show low,

optimal and high rates of mutation, respectively. A low mutation score is

already represented by the results of Kim et al. (2010)[51], which performed

relatively well for the average user, while having no mutation. However,

our method provides other advantages, such as the addition of a dynamic

crossover rate, which could still affect the outcome.

As can be seen in Figure 4.10, high mutation causes good solutions to

be mutated away, therefore leading to less high scores for users. There is

still a generally upward trend for this, but many optimal solutions are still

mutated away, meaning the optimum is difficult to find for the algorithm.

72

4.4 Comparison of different parameters

(a) Mutation rate: 0 (b) Mutation rate: 0.5 (c) Mutation rate: 1

Figure 4.10: Comparison of different mutation rates

Figure 4.11: Mutation rate: 0 for Users with Traditional and Niche preferences

Low mutation, similarly to Kim et al. (2010)[51], causes the algorithm to

plateau after a certain point. This plateau is more drastic for users with

niche interests, as can be seen in Figure 4.11.

This strengthens our findings that the inclusion of mutation helps es-

pecially these users, while not harming more traditional users. Here, the

improvement of our method over Kim et al. (2010)[51] can also be seen, with

regards to the convergence rate. Even though the feedback scores for niche

users in the final generation are similar for their method versus ours with-

out mutation (3.79 vs 3.73), our method achieves a relatively close score in

the third generation, whereas their method does so in the sixth generation.

4.4.3 Crossover rate

The crossover rate defines how likely it is that two parent solutions are com-

bined. Low crossover rates will make the population static, changing very

little each generation and throwing away many individuals from the pre-

vious generation. A high crossover rate will cause too many sub-optimal

solutions to be kept, leading to stagnation of the results. To compare the

73

Results

effects of a differing crossover, it is necessary to also set mutation to 0. If

this is not done, the mutation operator will still cause the algorithm to ex-

plore the solution space for optimal solutions, and the effects of crossover

will not be clear. We demonstrate low and high crossover rates, 0.1 and 0.9

respectively. We used a crossover of 0, as a crossover of 0 and a mutation of

0 will lead to a static population where no new individuals are generated.

The results of the experiment can be seen in figure 4.12.

(a) Crossover rate: 0.1 (b) Crossover rate: 0.9

Figure 4.12: Comparison of crossover rates

The results show that a crossover rate that is too high, will lead to a

stifled growth rate. Each generation keeps a large percentage of individu-

als from the previous generation, having a high likelihood of keeping low-

quality solutions. A low crossover rate seems to do relatively well for all

users. However, when looking at the performance for users with low initial

feedback scores, the improvements quickly plateau, as can be seen in Figure

4.13. This is because there are no good parent solutions to keep for the next

generation or to cross over into new solutions.

Figure 4.13: Crossover rate: 0.1 for Low and High Initial Feedback Scores

74

5. Discussion

In this section, we will discuss the implications of the results and answer the

research questions based on the results. Moreover, we will put the findings

in the broader context of the literature. Additionally, limitations to the study

will be discussed that could have an effect on the interpretation of the result

and future research directions will be proposed.

5.1 Interpretation of results

In this section, we will interpret the results found in the experiments per-

formed. The results of our experiments indicate that our method is effec-

tive in improving recommendation quality over multiple generations. This

is consistent with previous methods, where feedback scores also improved

over time.

The average feedback score in our method increased from 2.99 to 4.82,

which is a 61.2% increase. This increase suggests that our IGA is able to

effectively learn and adapt to user preferences, as these were randomized.

The decrease in standard deviation from 0.86 in the first generation to 0.45

in the final generation, representing the spread of averages of each genera-

tion across runs, indicates greater consistency for all users over time as the

algorithm adapts to user preferences. This could be due to the inclusion

of adaptive mutation and crossover rates, that vary based on the feedback

scores. This is an improvement over previous methods.

Comparing our method to the baseline of Kim et al. (2010)[51], we ob-

serve that both methods improve recommendations over time. Kim et al.’s

method performed generally on par for all users as compared to our method,

with scores in the final generation of 4.60 as compared to 4.82 for our method.

This is a difference of 4.78%. This implies that the inclusion of mutation does

not significantly harm or improve recommendation quality for the average

75

Discussion

user.

Our method achieved an APLT of 92.65%, which indicates an agnostic

approach to recommendation. This is logical, as the methodology is based

on the content of the items. Similarly to content-based recommenders, this

ensures that the recommendations are not based on occurrences in the data,

making sure that the recommendations are not affected by popularity bias.

What an interactive genetic algorithm improves as compared to a regular

content-based recommender is its ability to evolve and adapt to user feed-

back dynamically over multiple iterations. Moreover, the cold start prob-

lem, as discussed in the literature review, can be addressed using an IGA.

IGAs can address this problem more effectively by rapidly adapting to ini-

tial feedback, whereas traditional content-based systems can struggle with

a limited user history.

The convergence rate in the earlier generations was significantly higher

in our method than in Kim et al.’s method. For our method, the initial gen-

eration improved with a score of 1.148, whereas Kim et al.’s method has

a lower convergence rate of 0.489, where they both averaged roughly the

same starting point. This could be attributed to the improvements made

to the system, both in the addition of mutation functionality, as well as the

dynamic crossover and mutation rates, helping exploit good solutions to

recommend more effectively to users. Other experiments, where the muta-

tion was set to 0, showed that this higher convergence rate was most likely

due to the dynamic genetic operation rates. The results also show the ad-

vantage of our method in speeding up the initial improvements, without

compromising long-term performance. This could make our method more

suitable as an application to address the cold start problem than comparable

methods.

One of the main contributions of our method is the increase in feedback

scores for simulated users whose ratings in the initial generations are more

than one standard deviation lower than the median. The feedback score for

our method increased from 1.75 in the initial generation, to 4.39 in the final

generation, which represents an increase of 150.85%. Kim et al.’s method in-

76

5.1 Interpretation of results

creased feedback scores from 1.83 in the initial generation to 3.79 in the final

generation, which represents an increase of 107.27%. Our method there-

fore outperformed Kim et al.’s method, when looking at the final feedback

scores. The difference between these final scores (4.39 vs 3.79) was found to

be statistically significant with a p-value of 0.0088 using a Mann-Whitney

U test. This implies that the contributions of our method are statistically

significant in increasing the feedback scores of simulated users who rate the

first generation lowly. Because this increase in feedback scores for niche

users does not hold when the mutation component of our system is turned

off, we can attribute the rise in feedback scores for niche users to the inclu-

sion of mutation. Therefore, this could imply that for real users interested in

more niche items, the additions of mutation and dynamic crossover and mu-

tation rates could also improve the recommendation quality significantly.

It is notable to mention that these improvements for niche users did not

come at the cost of users that are considered "traditional". The difference

between the final feedback scores for this group using our method and Kim

et al.’s method (4.99 vs 4.97, respectively) was not statistically significant

with a p-value of 0.8815 using the same Mann-Whitney U test. Based on

these results, we can say that our method offers significant advantages for

niche users, without negatively impacting users with traditional interests.

This highlights the capabilities of mutation in interactive genetic algorithms

for recommendations.

Even though these performance gains for niche users were substantial, it

should be noted that the APLT of the recommended sets of music is similar

using both our method, as well as the baseline. Our method achieved an

APLT of 92.65%, whereas Kim et al. (2010)[51] achieved an APLT of 90.34%.

This means that, while both methods ensure a high level of agnosticism to

popularity in their recommendations, the increase in feedback scores for

niche users in our method was not due to an increase in the recommenda-

tion of popular songs. This is expected, as both methods are content-based

recommenders that recommend songs based on the content, and not on col-

laborative data.

77

Discussion

5.1.1 Research Questions

In this section, we will go over the research questions posed in Section 3.2,

and connect findings found in the results to these questions to try and an-

swer them.

How effective is the interactive genetic algorithm recommender with mu-

tation in increasing feedback scores over generations in general?

The results of our experiments showed that the IGA with mutation is highly

effective in increasing feedback scores over generations. The average feed-

back score across all users increased by 61.2%, from 2.99 in the initial gener-

ation to 4.82 in the final generation. This performance in increasing is on par

with previous studies, which was confirmed by statistical tests. Addition-

ally, the convergence rate of our method was found to be superior to that of

the analyzed baseline, achieving faster improvements in earlier generations.

How effective is the interactive genetic algorithm recommender with mu-

tation in increasing feedback scores over generations for users with niche

preferences?

The results of our experiment show that the inclusion of mutation signifi-

cantly benefits users with niche preferences. For these users, initial feedback

scores were much lower for both our method and the baseline. However, by

the final generation, the feedback score for this group of users, the feedback

scores for our method increased by 150.85%, as compared to 107.27% in the

baseline. The difference between the feedback scores for this group of users

was statistically examined, and it was found to be statistically significant,

indicating that mutation is a key component for enhancing recommenda-

tion quality for niche users. Further tests where the mutation rate was set to

0 for our method confirmed these findings, as the results were comparable

to those of the baseline.

78

5.2 Comparison to existing literature

How does the use of an interactive genetic algorithm with mutation im-

pact the popularity bias of recommended music, as expressed in the Av-

erage Popularity of Long-Tail Items (APLT)?

The interactive genetic algorithm with mutation was designed to potentially

address the popularity bias in music recommendations. However, the use of

the IGA with mutation did not lead to a decrease nor an increase in popular-

ity bias in the recommendations, as is evident by the APLT values found for

both our method and the baseline. The APLT for our method was 92.65%,

whereas the baseline had a similar APLT of 90.34%.

5.2 Comparison to existing literature

In this section, we compare the findings of our methodology to the existing

literature. Our main point of comparison is Kim et al. (2010)[51]. As dis-

cussed, both methods show the ability to improve recommendations over

successive generations. However, our method contains multiple improve-

ments over the previous approaches. The most notable difference is the

inclusion of mutation in the methodology. This allows the algorithm to ex-

plore the solution space more effectively, leading to improvements for users

with more niche interests. Moreover, the inclusion of adaptive mutation and

crossover rates allows for a more flexible evolutionary process, exploiting

good solutions while still allowing the exploration of less good solutions.

Another improvement our system made is in the convergence rate in the

initial generations. Our method improved the feedback scores in the ini-

tial generation with more than Kim et al.’s method. One problem identified

with recommender systems is the cold start problem. IGAs could serve as

a good starting point for further refinement, leading to better recommenda-

tions. The enhanced performance in the initial generations in our method as

compared to Kim et al., has implications for the potential user experience.

When users receive more relevant recommendations from the start, they

are more likely to trust and continue using the system, as shown by Shin

(2020)[99]. This could lead to higher use rates of the system, which could

79

Discussion

lead to the exposure of a wider range of artists because of the popularity-

agnostic nature of the algorithm.

Moreover, our approach aligns well with the findings discussed in Liang

and Willemsen (2019)[87]. They found that recommenders can facilitate the

exploration of new genres. The use of interactive genetic algorithms for this

purpose is promising, as users themselves can select avenues to drive the

recommendations towards. While Liang and Willemsen emphasize mixed

recommendation methods to enhance the user exploration of unfamiliar

genres, our method uses interactive genetic algorithms to possibly enhance

this user exploration. Our method, because of the use of mutation, can be

particularly suitable for this "user preference development". By incorpo-

rating tracks that may initially seem less aligned with the established user

preferences, our method could facilitate more serendipitous discoveries, al-

lowing users to develop preferences away from their original ones.

5.3 Limitations of Study

While the results of this study are promising, several limitations should be

considered when interpreting them. In this section, we will highlight iden-

tified limitations, and discuss what future studies could have improved.

The use of simulated users with randomized preferences is useful for the

testing and evaluation of the algorithm. However, these simulated users

cannot fully represent human behavior. Real users have tastes that are per-

sonal to them, and the reasoning is not always based on the musical compo-

nents of the song, but also on the feelings towards the artist, the lyrics and

the cultural context. Moreover, in real-world scenarios, user preferences

can change over time. These dynamic preferences are something that the

algorithm needs to adapt to. Future studies could evaluate either dynamic

simulated users or have real users to evaluate each generation.

In addition, the track features obtained from the Spotify API that our

methodology bases its recommendations on are predominantly calculated

algorithmically. Due to the lack of transparency in the way Spotify calcu-

80

5.3 Limitations of Study

lates these values, it is difficult to determine whether this introduces any

bias toward certain items in the dataset. According to Spotify, they utilize

machine learning techniques to analyze audio, where a music expert classi-

fies some sample songs, and these rules are then extended to other songs[92].

This process could lead to biases if sample songs are not representative of

the entire music catalog.

Moreover, like Kim et al. (2010)[51], the analysis in our results focused

mostly on feedback scores as the main performance indicator. This is a

valuable metric to consider, as it provides quantifiable data on how well

the algorithm fits the user’s preferences. However, this metric alone can not

fully reflect satisfaction. User engagement and enjoyment are also impor-

tant in gaining an understanding of the user experience. Future research

could consider evaluating multiple metrics to better capture user satisfac-

tion.

The main point of comparison to our methodology was Kim et al. (2010)[51].

However, due to the original code not being available at the time of devel-

opment or writing, the code was recreated. This lack of access to the original

code raises the possibility of implementation errors, where our implemen-

tation of the methodology differs from their intent. Even though we took

care to recreate the methodology as closely as possible, these possible vari-

ations in our approach might influence the comparability between the two

methods.

Additionally, the dataset in this research is smaller than is used in other

methods. This was done due to computational constraints, and the amount

of testing that needs to be done when developing a new system. However,

with larger datasets, the responsiveness of the algorithm could suffer. Es-

pecially the mutation and crossover functions cost large amounts of com-

putational power. The non-existent song that results from these functions

needs to be compared to all songs in the data to find one that is most closely

aligned. This means that the number of comparisons that need to be done

increases linearly with the number of songs in the dataset. When consid-

ering use with real users, this larger computational power required could

81

Discussion

elongate the time it takes to create a new generation after rating. This could

hinder the applicability of the method in real-world situations.

The simulated users in this research have randomized preferences. How-

ever, in real-life scenarios, users do not have an equal chance to have a cer-

tain preference over another. Genres such as pop are assumed to have larger

audiences than more niche genres such as world. This means that the sim-

ulated users in this study could be less representative of real users than

simulated users who account for varying audience sizes and preferences.

5.4 Future research directions

In this section, we will discuss directions that future research could take,

based on this research. With this, we identify key areas that could benefit

from further exploration to expand the understanding of the findings.

One direction for future research could be incorporating user feedback

from real users. This could provide insights into how the algorithm per-

forms outside of simulated users. Conducting an evaluation of the method

in a real-world environment with actual users would be beneficial in ob-

taining data regarding the algorithm’s practical efficacy. This research used

simulated users, which cannot capture the full complexity of human behav-

ior. When using real users, the IGA’s performance under real conditions can

be evaluated.

Moreover, applying the IGA to other datasets, including those from dif-

ferent music streaming platforms or more user demographics than the LFM-

1b dataset, could validate its generalisability and robustness. This would

also provide insights into how the algorithm performs across various con-

texts. This could help identify any necessary adaptations for specific datasets

or user groups. Moreover, the algorithm could also be expanded to rec-

ommend items other than music, for example for product recommendation

purposes on e-commerce websites or in social media recommendation on

platforms such as YouTube and TikTok, or other platforms with recommen-

dation.

82

5.4 Future research directions

Another potentially interesting avenue for future research is the explain-

ability of the method. With our current implementation, real users would

not get any feedback on why certain recommendations were made. Devel-

oping methods that explain the reasoning behind specific recommendations

could possibly enhance satisfaction, as well as increase user trust.

Finally, future research could look into a scalability analysis. Since this

research was based on a relatively small dataset, an analysis of the scalabil-

ity of our method could help in real-world applicability. This could be in

the form of investigating how the performance changes as the dataset size

increases, as well as possible optimizations of the current method, such as

a more efficient data structure in the dataset, or parallel processing for the

creation of a new generation.

83

6. Conclusion

In this paper, we presented a novel approach to an interactive genetic algo-

rithm (IGA) for music recommendation, by including mutation in the ge-

netic operations, as well as adding dynamic cross-over and mutation rates

based on feedback. We hypothesized that these inclusions would improve

the adaptability to user preferences and enhance recommendations for users

with more interest in niche items. This could help overcome popularity bias

and help regular users explore their tastes as well.

Our method was benchmarked against a methodology proposed by Kim

et al. (2010)[51]. Our results show that the proposed IGA consistently im-

proves feedback scores for all users, in a similar manner as the benchmark.

Our method had a 61.20% increase in feedback scores, while the benchmark

achieved 53.85%. However, the method is particularly effective in improv-

ing recommendations for users with interests that are considered "niche".

For these users, which were categorized based on whether their feedback

in the initial generation was 1 standard deviation lower than the mean,

the method improved feedback scores by 150.85%, while the benchmark

increased them by 107.27%. For "traditional" users, categorized based on

whether the initial feedback scores were one standard deviation higher than

the mean, our method did not increase nor decrease the feedback scores.

Statistical analyses confirmed that, while overall the performance of both

methods was similar, our method outperformed the benchmark in increas-

ing feedback scores for "niche" users, while "traditional" user feedback scores

were not significantly affected.

These results are promising, but several limitations need to be consid-

ered. Firstly, our method used simulated users to analyze the performance

of our method, as well as the baseline. However, the use of simulated users

does not fully capture human behavior and is an oversimplification of real-

world conditions. Future work should analyze the effects of mutation in

84

an IGA using real users. Additionally, we focused on feedback scores as

the primary metric for comparison, whereas other additional metrics might

better represent user satisfaction. Additionally, the baseline used as a com-

parison had no code available at the time of writing. For this reason, the

code was recreated, but this could bring small variations in implementation

that could affect comparability. Moreover, the dataset in this study was rel-

atively small in the context of other recommender systems research. Larger

datasets could increase the time it takes to generate a new generation, as the

mutation function is especially computationally intensive. Future research

could look into a scalability analysis to test the effects of larger datasets on

the performance of the proposed IGA.

85

A. Appendix

A.1 Tables

Table A.1: Mutated songs based on feedback on English Chamber Orchestra

Feedback Title Artist Genres Danceability Energy Valence
5 The Lake In The Moon-

light (Swan Lake)
Pyotr Ilyich Tchaikovsky [’classical’] 0.193 0.080 0.0384

5 Eon Blue Apocalypse Tool [’alternative’, ’rock’,
’heavy metal’]

0.158 0.045 0.0699

5 Mother Believe [’rock’, ’alternative’] 0.201 0.037 0.0353
4 The Funeral Of A Friend Tuxedomoon [’electronic’, ’alternative’,

’jazz’, ’punk’, ’rock’]
0.285 0.250 0.0385

4 Peace Paul Kelly [’folk’, ’rock’, ’pop’,
’country’, ’jazz’, ’alterna-
tive’]

0.469 0.043 0.202

4 Anak Xuefei Yang [’classical’, ’world’] 0.402 0.094 0.201
3 East Hastings Godspeed You! Black

Emperor
[’alternative’, ’rock’,
’electronic’]

0.152 0.368 0.0448

3 Requiem 99RadioService [’rock’] 0.088 0.0034 0.334
3 Degree Zero of Liberty Porcupine Tree [’rock’, ’alternative’] 0.314 0.013 0.0861
2 Alive Daft Punk [’alternative’, ’rock’,

’pop’]
0.723 0.716 0.0748

2 VI. (Ysobel) - Andantino Sir Edward Elgar [’classical’] 0.150 0.0044 0.0393
2 Safeway Cart Neil Young [’rock’, ’folk’, ’country’,

’blues’, ’alternative’,
’pop’]

0.703 0.224 0.135

1 The Yellow Windows of
the Evening Train

Porcupine Tree [’rock’, ’alternative’] 0.103 0.034 0.036

1 The world is my land Jupiter & Okwess
International

[’world’] 0.101 0.016 0.162

1 Wildlife Analysis Boards of Canada [’electronic’, ’alternative’] 0.155 0.020 0.278

86

Bibliography

[1] Y. Hijikata, K. Iwahama, and S. Nishida, “Content-based music fil-
tering system with editable user profile,” in Proceedings of the 2006
ACM symposium on Applied computing, 2006, pp. 1050–1057.

[2] P. Darshna, “Music recommendation based on content and collabo-
rative approach & reducing cold start problem,” in 2018 2nd interna-
tional conference on inventive systems and control (ICISC), IEEE, 2018,
pp. 1033–1037.

[3] H.-C. Wang, S.-W. Syu, and P. Wongchaisuwat, “A method of music
autotagging based on audio and lyrics,” Multimedia Tools and Appli-
cations, vol. 80, pp. 15 511–15 539, 2021. DOI: 10.1007/s11042-020-
10381-y.

[4] P. Pirolli and S. Card, “Information foraging.,” Psychological review,
vol. 106, no. 4, p. 643, 1999.

[5] Q. Areeb, M. Nadeem, S. S. Sohail, et al., “Filter bubbles in recom-
mender systems: Fact or fallacy—a systematic review,” Wiley Inter-
disciplinary Reviews: Data Mining and Knowledge Discovery, vol. 13,
2023. DOI: 10.1002/widm.1512.

[6] R. D. Prisco, A. Guarino, D. Malandrino, and R. Zaccagnino, “In-
duced emotion-based music recommendation through reinforcement
learning,” Applied Sciences, 2022. DOI: 10.3390/app122111209.

[7] T. Likhitha and S. Pulari, “Diversity in recommender systems: A
closer look,” Journal of Computational and Theoretical Nanoscience, vol. 17,
pp. 222–227, 2020. DOI: 10.1166/jctn.2020.8654.

[8] S. B. Selçuklu, “Multi-objective genetic algorithms,” in Handbook of
Formal Optimization, A. J. Kulkarni and A. H. Gandomi, Eds. Sin-
gapore: Springer Nature Singapore, 2023, pp. 1–37, ISBN: 978-981-
19-8851-6. DOI: 10.1007/978- 981- 19- 8851- 6_31- 1. [Online].
Available: https://doi.org/10.1007/978-981-19-8851-6_31-1.

[9] K. E. Kinnear Jr, “A perspective on the work in this book,” Advances
in genetic programming, pp. 3–19, 1994.

[10] J. Bradshaw and J. Miles, “Using standard fitnesses with genetic
algorithms,” Advances in Engineering Software, vol. 28, pp. 425–435,
1997. DOI: 10.1016/S0965-9978(97)00016-1.

[11] H. Abdollahpouri, M. Mansoury, R. Burke, and B. Mobasher, “The
unfairness of popularity bias in recommendation,” arXiv preprint
arXiv:1907.13286, 2019.

[12] A. Borchers, J. L. Herlocker, and J. Riedl, “Ganging up on informa-
tion overload,” Computer, vol. 31, pp. 106–108, 1998. [Online]. Avail-
able: https://api.semanticscholar.org/CorpusID:10056380.

87

https://doi.org/10.1007/s11042-020-10381-y
https://doi.org/10.1007/s11042-020-10381-y
https://doi.org/10.1002/widm.1512
https://doi.org/10.3390/app122111209
https://doi.org/10.1166/jctn.2020.8654
https://doi.org/10.1007/978-981-19-8851-6_31-1
https://doi.org/10.1007/978-981-19-8851-6_31-1
https://doi.org/10.1016/S0965-9978(97)00016-1
https://api.semanticscholar.org/CorpusID:10056380

Bibliography

[13] U. Shardanand, “Social information filtering for music recommen-
dation,” Ph.D. dissertation, Massachusetts Institute of Technology,
1994.

[14] Content-based filtering advantages & disadvantages, Jul. 2022. [Online].
Available: https://developers.google.com/machine-learning/
recommendation/content-based/summary.

[15] D. Goldberg, D. Nichols, B. M. Oki, and D. Terry, “Using collabora-
tive filtering to weave an information tapestry,” Communications of
the ACM, vol. 35, no. 12, pp. 61–70, 1992.

[16] U. Shardanand and P. Maes, “Social information filtering: Algo-
rithms for automating “word of mouth”,” in Proceedings of the SIGCHI
conference on Human factors in computing systems, 1995, pp. 210–217.

[17] M. Balabanović and Y. Shoham, “Fab: Content-based, collaborative
recommendation,” Communications of the ACM, vol. 40, no. 3, pp. 66–
72, 1997.

[18] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Item-based collab-
orative filtering recommendation algorithms,” in Proceedings of the
10th international conference on World Wide Web, 2001, pp. 285–295.

[19] J. Wang, A. P. De Vries, and M. J. Reinders, “Unifying user-based
and item-based collaborative filtering approaches by similarity fu-
sion,” in Proceedings of the 29th annual international ACM SIGIR con-
ference on Research and development in information retrieval, 2006, pp. 501–
508.

[20] L. Camacho and S. N. A. Souza, “Social network data to alleviate
cold-start in recommender system: A systematic review,” Inf. Pro-
cess. Manag., vol. 54, pp. 529–544, 2018. DOI: 10.1016/j.ipm.2018.
03.004.

[21] P. Cano, O. Celma, M. Koppenberger, and J. M. Buldu, “Topology of
music recommendation networks,” Chaos: An interdisciplinary jour-
nal of nonlinear science, vol. 16, no. 1, 2006.

[22] C. C. Aggarwal, Recommender Systems. Jan. 2016. DOI: 10.1007/978-
3-319-29659-3. [Online]. Available: https://doi.org/10.1007/
978-3-319-29659-3.

[23] M. Fu, H. Qu, D. Moges, and L. Lu, “Attention based collaborative
filtering,” Neurocomputing, vol. 311, pp. 88–98, 2018. DOI: 10.1016/
j.neucom.2018.05.049.

[24] C. C. Aggarwal et al., Recommender systems. Springer, 2016, vol. 1.
[25] B. Abdollahi and O. Nasraoui, “Using explainability for constrained

matrix factorization,” in Proceedings of the eleventh ACM conference on
recommender systems, 2017, pp. 79–83.

[26] K. Saini and A. Singh, “A content-based recommender system us-
ing stacked lstm and an attention-based autoencoder,” Measurement:
Sensors, vol. 31, p. 100 975, 2024.

[27] S. Lin, C. Gao, J. Chen, et al., How do recommendation models amplify
popularity bias? an analysis from the spectral perspective, 2024. arXiv:

88

https://developers.google.com/machine-learning/recommendation/content-based/summary
https://developers.google.com/machine-learning/recommendation/content-based/summary
https://doi.org/10.1016/j.ipm.2018.03.004
https://doi.org/10.1016/j.ipm.2018.03.004
https://doi.org/10.1007/978-3-319-29659-3
https://doi.org/10.1007/978-3-319-29659-3
https://doi.org/10.1007/978-3-319-29659-3
https://doi.org/10.1007/978-3-319-29659-3
https://doi.org/10.1016/j.neucom.2018.05.049
https://doi.org/10.1016/j.neucom.2018.05.049

Bibliography

2404.12008 [cs.IR]. [Online]. Available: https://arxiv.org/abs/
2404.12008.

[28] I. Boussaïd, J. Lepagnot, and P. Siarry, “A survey on optimization
metaheuristics,” Information Sciences, vol. 237, pp. 82–117, 2013. [On-
line]. Available: %5E1%5E.

[29] J. E. Bell and P. McMullen, “Ant colony optimization techniques for
the vehicle routing problem,” Adv. Eng. Informatics, vol. 18, pp. 41–
48, 2004. DOI: 10.1016/j.aei.2004.07.001.

[30] P. Saurabh and B. Verma, “An efficient proactive artificial immune
system based anomaly detection and prevention system,” Expert
Syst. Appl., vol. 60, pp. 311–320, 2016. DOI: 10.1016/j.eswa.2016.
03.042.

[31] M. H. Yar, V. Rahmati, and H. D. Oskouei, “A survey on evolution-
ary computation: Methods and their applications in engineering,”
Mathematical Models and Methods in Applied Sciences, vol. 10, p. 131,
2016. DOI: 10.5539/MAS.V10N11P131.

[32] H. Li, H. He, and Y. Wen, “Dynamic particle swarm optimization
and k-means clustering algorithm for image segmentation,” Optik,
vol. 126, no. 24, pp. 4817–4822, 2015, ISSN: 0030-4026. DOI: https:
//doi.org/10.1016/j.ijleo.2015.09.127. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S003040
2615011961.

[33] H. Maaranen, K. Miettinen, and A. Penttinen, “On initial popula-
tions of a genetic algorithm for continuous optimization problems,”
Journal of Global Optimization, vol. 37, pp. 405–436, 2007. DOI: 10.
1007/S10898-006-9056-6.

[34] S. Katoch, S. S. Chauhan, and V. Kumar, “A review on genetic algo-
rithm: Past, present, and future,” Multimedia tools and applications,
vol. 80, pp. 8091–8126, 2021.

[35] A. Dockhorn and S. Lucas, “Choosing representation, mutation, and
crossover in genetic algorithms,” IEEE Computational Intelligence Mag-
azine, vol. 17, no. 4, pp. 52–53, 2022.

[36] T.-P. Hong, H.-S. Wang, W.-Y. Lin, and W.-Y. Lee, “Evolution of ap-
propriate crossover and mutation operators in a genetic process,”
Applied intelligence, vol. 16, pp. 7–17, 2002.

[37] A. E. Eiben and J. E. Smith, Introduction to evolutionary computing.
Springer, 2015.

[38] J. H. Holland, Adaptation in natural and artificial systems: an introduc-
tory analysis with applications to biology, control, and artificial intelli-
gence. MIT press, 1975.

[39] C. Onnen, R. Babuška, U. Kaymak, J. Sousa, H. Verbruggen, and R.
Isermann, “Genetic algorithms for optimization in predictive con-
trol,” Control Engineering Practice, vol. 5, pp. 1363–1372, 1997. DOI:
10.1016/S0967-0661(97)00133-0.

89

https://arxiv.org/abs/2404.12008
https://arxiv.org/abs/2404.12008
https://arxiv.org/abs/2404.12008
%5E1%5E
https://doi.org/10.1016/j.aei.2004.07.001
https://doi.org/10.1016/j.eswa.2016.03.042
https://doi.org/10.1016/j.eswa.2016.03.042
https://doi.org/10.5539/MAS.V10N11P131
https://doi.org/https://doi.org/10.1016/j.ijleo.2015.09.127
https://doi.org/https://doi.org/10.1016/j.ijleo.2015.09.127
https://www.sciencedirect.com/science/article/pii/S0030402615011961
https://www.sciencedirect.com/science/article/pii/S0030402615011961
https://doi.org/10.1007/S10898-006-9056-6
https://doi.org/10.1007/S10898-006-9056-6
https://doi.org/10.1016/S0967-0661(97)00133-0

Bibliography

[40] F. Allen and R. Karjalainen, “Using genetic algorithms to find tech-
nical trading rules,” Journal of financial Economics, vol. 51, no. 2, pp. 245–
271, 1999.

[41] A. Abraham, “Meta learning evolutionary artificial neural networks,”
Neurocomputing, vol. 56, pp. 1–38, 2004.

[42] S. B. Rout, S. Mishra, and D. K. Swain, “Application of genetic al-
gorithm in various bioinformatics problems,” International Journal
of Innovative Research in Technology, vol. 4, no. 9, 2018.

[43] R. Vanhaesebroeck, “Music recommendation using genetic program-
ming,” 2020.

[44] B. Alhijawi and Y. Kilani, “A collaborative filtering recommender
system using genetic algorithm,” Inf. Process. Manag., vol. 57, p. 102 310,
2020. DOI: 10.1016/j.ipm.2020.102310.

[45] O. Stitini, S. Kaloun, and O. Bencharef, “An improved recommender
system solution to mitigate the over-specialization problem using
genetic algorithms,” Electronics, vol. 11, no. 2, 2022, ISSN: 2079-9292.
DOI: 10.3390/electronics11020242. [Online]. Available: https:
//www.mdpi.com/2079-9292/11/2/242.

[46] D. E. Goldberg and K. Deb, “A comparative analysis of selection
schemes used in genetic algorithms,” in Foundations of genetic algo-
rithms, vol. 1, Elsevier, 1991, pp. 69–93.

[47] W. Wieczorek and Z. Czech, “Selection schemes in evolutionary al-
gorithms,” in Intelligent Information Systems 2002. Advances in Soft
Computing (Advances in Soft Computing), M. Kłopotek, S. Wierz-
choń, and M. Michalewicz, Eds., Advances in Soft Computing. Hei-
delberg: Physica, 2002, vol. 17. DOI: https://doi.org/10.1007/
978-3-7908-1777-5_19.

[48] J. Zhong, X. Hu, J. Zhang, and M. Gu, “Comparison of performance
between different selection strategies on simple genetic algorithms,”
in International conference on computational intelligence for modelling,
control and automation and international conference on intelligent agents,
web technologies and internet commerce (CIMCA-IAWTIC’06), IEEE,
vol. 2, 2005, pp. 1115–1121.

[49] H. M. Pandey, A. Shukla, A. Chaudhary, and D. Mehrotra, “Evalu-
ation of genetic algorithm’s selection methods,” in Information Sys-
tems Design and Intelligent Applications: Proceedings of Third Interna-
tional Conference INDIA 2016, Volume 2, Springer, 2016, pp. 731–738.

[50] S.-B. Cho, “Towards creative evolutionary systems with interactive
genetic algorithm,” Applied Intelligence, vol. 16, pp. 129–138, 2002.

[51] H.-T. Kim, E. Kim, J.-H. Lee, and C. W. Ahn, “A recommender sys-
tem based on genetic algorithm for music data,” in 2010 2nd In-
ternational Conference on Computer Engineering and Technology, IEEE,
vol. 6, 2010, pp. V6–414.

[52] H.-T. Kim, J.-H. Lee, and C. W. Ahn, “A recommender system based
on interactive evolutionary computation with data grouping,” Pro-
cedia Computer Science, vol. 3, pp. 611–616, 2011.

90

https://doi.org/10.1016/j.ipm.2020.102310
https://doi.org/10.3390/electronics11020242
https://www.mdpi.com/2079-9292/11/2/242
https://www.mdpi.com/2079-9292/11/2/242
https://doi.org/https://doi.org/10.1007/978-3-7908-1777-5_19
https://doi.org/https://doi.org/10.1007/978-3-7908-1777-5_19

Bibliography

[53] H.-T. Kim and C. W. Ahn, “An interactive evolutionary approach
to designing novel recommender systems,” Int. J. Physical Sciences,
vol. 7, no. 15, pp. 2327–2338, 2012.

[54] H.-T. Kim, J. An, and C. W. Ahn, “A new evolutionary approach to
recommender systems,” IEICE TRANSACTIONS on Information and
Systems, vol. 97, no. 3, pp. 622–625, 2014.

[55] T. Horváth and A. C. de Carvalho, “Evolutionary computing in rec-
ommender systems: A review of recent research,” Natural Comput-
ing, vol. 16, pp. 441–462, 2017.

[56] V. Kant and K. K. Bharadwaj, “A user-oriented content based rec-
ommender system based on reclusive methods and interactive ge-
netic algorithm,” in Proceedings of Seventh International Conference on
Bio-Inspired Computing: Theories and Applications (BIC-TA 2012) Vol-
ume 1, Springer, 2013, pp. 543–554.

[57] T. Saito and E. Sato-Shimokawara, “Music recommender system
considering the variations in music selection criterion using an in-
teractive genetic algorithm,” in International Conference on Computer
Information Systems and Industrial Management, Springer, 2023, pp. 382–
393.

[58] Q. Li, S.-H. Myaeng, and B.-M. Kim, “A probabilistic music recom-
mender considering user opinions and audio features,” Inf. Process.
Manag., vol. 43, pp. 473–487, 2007. DOI: 10.1016/j.ipm.2006.07.
005.

[59] A. Jamdar, J. Abraham, K. Khanna, and R. Dubey, “Emotion analy-
sis of songs based on lyrical and audio features,” ArXiv, vol. abs/1506.05012,
2015. DOI: 10.5121/ijaia.2015.6304.

[60] D. Wang, S. Deng, X. Zhang, and G. Xu, “Learning music embed-
ding with metadata for context aware recommendation,” in Pro-
ceedings of the 2016 ACM on International Conference on Multimedia
Retrieval, 2016, pp. 249–253.

[61] A. Lozano Murciego, D. M. Jiménez-Bravo, A. Valera Roman, J. F.
De Paz Santana, and M. N. Moreno-García, “Context-aware recom-
mender systems in the music domain: A systematic literature re-
view,” Electronics, vol. 10, no. 13, p. 1555, 2021.

[62] W.-P. Lee, C.-T. Chen, J.-Y. Huang, and J.-Y. Liang, “A smartphone-
based activity-aware system for music streaming recommendation,”
Knowl. Based Syst., vol. 131, pp. 70–82, 2017. DOI: 10.1016/j.knosy
s.2017.06.002.

[63] G. Jawaheer, M. Szomszor, and P. Kostkova, “Comparison of im-
plicit and explicit feedback from an online music recommendation
service,” in proceedings of the 1st international workshop on information
heterogeneity and fusion in recommender systems, 2010, pp. 47–51.

[64] R. Katarya and O. P. Verma, “Efficient music recommender system
using context graph and particle swarm,” Multimedia Tools and Ap-
plications, vol. 77, pp. 2673–2687, 2018.

91

https://doi.org/10.1016/j.ipm.2006.07.005
https://doi.org/10.1016/j.ipm.2006.07.005
https://doi.org/10.5121/ijaia.2015.6304
https://doi.org/10.1016/j.knosys.2017.06.002
https://doi.org/10.1016/j.knosys.2017.06.002

Bibliography

[65] K. Gupta, N. Sachdeva, and V. Pudi, “Explicit modelling of the im-
plicit short term user preferences for music recommendation,” in
Advances in Information Retrieval: 40th European Conference on IR Re-
search, ECIR 2018, Grenoble, France, March 26-29, 2018, Proceedings 40,
Springer, 2018, pp. 333–344.

[66] I. Cross and G. E. Woodruff, “77Music as a communicative medium,”
in The Prehistory of Language, Oxford University Press, Apr. 2009,
ISBN: 9780199545872. DOI: 10.1093/acprof:oso/9780199545872.
003.0005. eprint: https://academic.oup.com/book/0/chapter/
162797023/chapter-ag-pdf/44910607/book_12719_section\
_162797023.ag.pdf. [Online]. Available: https://doi.org/10.
1093/acprof:oso/9780199545872.003.0005.

[67] C. Bauer and M. Schedl, “Global and country-specific mainstreami-
ness measures: Definitions, analysis, and usage for improving per-
sonalized music recommendation systems,” PloS one, vol. 14, no. 6,
e0217389, 2019.

[68] P. Müllner, “Studying non-mainstream music listening behavior for
fair music recommendations,” Ph.D. dissertation, Ph. D. Disserta-
tion. Graz University of Technology, 2019.

[69] C. Anderson, “The long tail,” en-US, WIRED, 2004. [Online]. Avail-
able: https://www.wired.com/2004/10/tail/.

[70] D. Kowald, M. Schedl, and E. Lex, “The unfairness of popularity
bias in music recommendation: A reproducibility study,” in Ad-
vances in Information Retrieval: 42nd European Conference on IR Re-
search, ECIR 2020, Lisbon, Portugal, April 14–17, 2020, Proceedings,
Part II 42, Springer, 2020, pp. 35–42.

[71] J. H. Lee, B. Bare, and G. Meek, “How similar is too similar?: Ex-
ploring users’ perceptions of similarity in playlist evaluation.,” in
ISMIR, vol. 11, 2011, pp. 109–114.

[72] Y. Song, S. Dixon, and M. Pearce, “A survey of music recommen-
dation systems and future perspectives,” in 9th international sympo-
sium on computer music modeling and retrieval, Citeseer, vol. 4, 2012,
pp. 395–410.

[73] J. Bland and D. G. Altman, “Statistics notes: Some examples of re-
gression towards the mean,” BMJ, vol. 309, p. 780, 1994. DOI: 10.
1136/BMJ.309.6957.780.

[74] M. Schedl, H. Zamani, C.-W. Chen, Y. Deldjoo, and M. Elahi, “Cur-
rent challenges and visions in music recommender systems research,”
International Journal of Multimedia Information Retrieval, vol. 7, pp. 95–
116, 2018.

[75] E. Blake, “Data shows 90 percent of streams go to the top 1 percent
of artists,” en-US, Rolling Stone, Sep. 2021. [Online]. Available: https
://www.rollingstone.com/pro/news/top-1-percent-streaming-
1055005/.

[76] A. J. Chaney, B. M. Stewart, and B. E. Engelhardt, “How algorith-
mic confounding in recommendation systems increases homogene-

92

https://doi.org/10.1093/acprof:oso/9780199545872.003.0005
https://doi.org/10.1093/acprof:oso/9780199545872.003.0005
https://academic.oup.com/book/0/chapter/162797023/chapter-ag-pdf/44910607/book_12719_section_162797023.ag.pdf
https://academic.oup.com/book/0/chapter/162797023/chapter-ag-pdf/44910607/book_12719_section_162797023.ag.pdf
https://academic.oup.com/book/0/chapter/162797023/chapter-ag-pdf/44910607/book_12719_section_162797023.ag.pdf
https://doi.org/10.1093/acprof:oso/9780199545872.003.0005
https://doi.org/10.1093/acprof:oso/9780199545872.003.0005
https://www.wired.com/2004/10/tail/
https://doi.org/10.1136/BMJ.309.6957.780
https://doi.org/10.1136/BMJ.309.6957.780
https://www.rollingstone.com/pro/news/top-1-percent-streaming-1055005/
https://www.rollingstone.com/pro/news/top-1-percent-streaming-1055005/
https://www.rollingstone.com/pro/news/top-1-percent-streaming-1055005/

Bibliography

ity and decreases utility,” in Proceedings of the 12th ACM conference
on recommender systems, 2018, pp. 224–232.

[77] O. Lesota, A. Melchiorre, N. Rekabsaz, et al., “Analyzing item pop-
ularity bias of music recommender systems: Are different genders
equally affected?” In Proceedings of the 15th ACM Conference on Rec-
ommender Systems, 2021, pp. 601–606.

[78] H. Abdollahpouri, M. Mansoury, R. Burke, B. Mobasher, and E.
Malthouse, “User-centered evaluation of popularity bias in recom-
mender systems,” in Proceedings of the 29th ACM Conference on User
Modeling, Adaptation and Personalization, 2021, pp. 119–129.

[79] H. Abdollahpouri, R. Burke, and B. Mobasher, “Managing popu-
larity bias in recommender systems with personalized re-ranking,”
arXiv preprint arXiv:1901.07555, 2019.

[80] C.-N. Ziegler, S. M. McNee, J. A. Konstan, and G. Lausen, “Improv-
ing recommendation lists through topic diversification,” in Proceed-
ings of the 14th international conference on World Wide Web, 2005, pp. 22–
32.

[81] D. Liang, R. G. Krishnan, M. D. Hoffman, and T. Jebara, “Variational
autoencoders for collaborative filtering,” in Proceedings of the 2018
world wide web conference, 2018, pp. 689–698.

[82] S. Karboua, F. Harrag, F. Meziane, and A. Boutadjine, “Mitigation of
popularity bias in recommendation systems,” in Tunisian-Algerian
Joint Conference on Applied Computing, 2022.

[83] R. Borges and K. Stefanidis, “On mitigating popularity bias in rec-
ommendations via variational autoencoders,” in Proceedings of the
36th annual ACM symposium on applied computing, 2021, pp. 1383–
1389.

[84] A. Krishnan, A. Sharma, A. Sankar, and H. Sundaram, “An adver-
sarial approach to improve long-tail performance in neural collabo-
rative filtering,” in Proceedings of the 27th ACM International Confer-
ence on information and knowledge management, 2018, pp. 1491–1494.

[85] A. Antikacioglu and R. Ravi, “Post processing recommender sys-
tems for diversity,” in Proceedings of the 23rd ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, 2017,
pp. 707–716.

[86] H. Abdollahpouri, M. Mansoury, R. Burke, and B. Mobasher, “Ad-
dressing the multistakeholder impact of popularity bias in recom-
mendation through calibration,” arXiv preprint arXiv:2007.12230, 2020.

[87] Y. Liang and M. C. Willemsen, “Personalized recommendations for
music genre exploration,” in Proceedings of the 27th ACM Conference
on User Modeling, Adaptation and Personalization, ser. UMAP ’19, Lar-
naca, Cyprus: Association for Computing Machinery, 2019, pp. 276–
284, ISBN: 9781450360210. DOI: 10.1145/3320435.3320455. [On-
line]. Available: https://doi.org/10.1145/3320435.3320455.

93

https://doi.org/10.1145/3320435.3320455
https://doi.org/10.1145/3320435.3320455

Bibliography

[88] M. Schedl, “The lfm-1b dataset for music retrieval and recommen-
dation,” in Proceedings of the 2016 ACM on international conference on
multimedia retrieval, 2016, pp. 103–110.

[89] M. Schedl and B. Ferwerda, “Large-scale analysis of group-specific
music genre taste from collaborative tags,” in 2017 IEEE Interna-
tional Symposium on Multimedia (ISM), IEEE, 2017, pp. 479–482.

[90] D. Nosowitz, “The story of allmusic, which predates the world wide
web,” en, Vice, Jan. 2015. [Online]. Available: https://www.vice.
com/en/article/ypwezy/the-internets-most-complete-guide-
to-music.

[91] H. Bast, F. Bäurle, B. Buchhold, and E. Haußmann, “Easy access to
the freebase dataset,” in Proceedings of the 23rd international confer-
ence on World Wide Web, 2014, pp. 95–98.

[92] E. V. Buskirk, Plotting music’s emotional valence, 1950-2013, Spotify
Insights, Accessed: 2024-07-28, 2013. [Online]. Available: https://
web.archive.org/web/20160324094747/https://insights.spoti
fy.com/us/2013/11/05/musics-emotion-over-time/.

[93] M. D. Barone, J. Bansal, and M. Woolhouse, “Acoustic features in-
fluence musical choices across multiple genres,” Frontiers in Psychol-
ogy, vol. 8, 2017. DOI: 10.3389/fpsyg.2017.00931.

[94] Jupiter & Okwess, Official website: Biography (english), n.d. [Online].
Available: https://jupiterandokwess.fr/#bio.

[95] C. Karnop, “Prediction of audio features of self-selected music by
situational and person-related factors,” 2019.

[96] G. Hardman and P. R. Talarczyk, “The effects of odd time signatures
on pop song enjoyment,” Journal of Student Research, 2021. DOI: 10.
47611/jsrhs.v10i4.1968.

[97] H. Haghbayan, E. Coomes, and D. Curran, “Temporal trends in the
loudness of popular music over six decades,” Journal of General In-
ternal Medicine, vol. 35, pp. 394–395, 2019. DOI: 10.1007/s11606-
019-05210-4.

[98] Aug. 2021. [Online]. Available: https://www.masterclass.com/
articles/music-101-what-is-tempo-how-is-tempo-used-in-
music.

[99] D. Shin, “How do users interact with algorithm recommender sys-
tems? the interaction of users, algorithms, and performance,” Com-
puters in human behavior, vol. 109, p. 106 344, 2020.

94

https://www.vice.com/en/article/ypwezy/the-internets-most-complete-guide-to-music
https://www.vice.com/en/article/ypwezy/the-internets-most-complete-guide-to-music
https://www.vice.com/en/article/ypwezy/the-internets-most-complete-guide-to-music
https://web.archive.org/web/20160324094747/https://insights.spotify.com/us/2013/11/05/musics-emotion-over-time/
https://web.archive.org/web/20160324094747/https://insights.spotify.com/us/2013/11/05/musics-emotion-over-time/
https://web.archive.org/web/20160324094747/https://insights.spotify.com/us/2013/11/05/musics-emotion-over-time/
https://doi.org/10.3389/fpsyg.2017.00931
https://jupiterandokwess.fr/#bio
https://doi.org/10.47611/jsrhs.v10i4.1968
https://doi.org/10.47611/jsrhs.v10i4.1968
https://doi.org/10.1007/s11606-019-05210-4
https://doi.org/10.1007/s11606-019-05210-4
https://www.masterclass.com/articles/music-101-what-is-tempo-how-is-tempo-used-in-music
https://www.masterclass.com/articles/music-101-what-is-tempo-how-is-tempo-used-in-music
https://www.masterclass.com/articles/music-101-what-is-tempo-how-is-tempo-used-in-music

	Introduction
	Literature review
	Previous work in recommendation
	Content-based filtering
	Collaborative filtering

	Evolutionary computing and genetic algorithms
	Evolutionary computing
	Genetic algorithms
	Selection mechanisms for genetic algorithms
	Interactive genetic algorithms

	Data sources for music recommender systems
	Popularity bias and the long-tail problem
	Impact of the popularity bias
	Impact on artists
	Impact on users

	Popularity bias metrics
	Investigating popularity bias in algorithms
	Mitigation of the popularity bias
	Traditional popularity bias mitigation
	Popularity bias mitigation using Interactive Genetic Algorithms

	Methodology and motivation
	Motivation
	Research questions
	Methodology
	Dataset
	Algorithmic development
	Platform, environment and package details
	Evaluation measures

	Results
	Dataset and Experimental Setup
	Dataset Description
	Experimental Setup

	Algorithm performance
	Performance over Generations
	Performance for Different User Classifications

	Comparison to Other Methods
	Performance over Generations
	Performance for Different User Classifications

	Comparison of different parameters
	Population size per generation
	Mutation rate
	Crossover rate

	Discussion
	Interpretation of results
	Research Questions

	Comparison to existing literature
	Limitations of Study
	Future research directions

	Conclusion
	Appendix
	Tables

	Bibliography

