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Abstract

In the context of video games, dynamic difficulty adjustment (DDA) offers a dynamic
solution to match the in-game difficulty to the player’s needs. In this study, we aimed
to assess the added value of pupillometry features in the context of DDA and player
experience modeling to predict experienced difficulty. A user study was conducted,
during which participants played nine rounds of Pac-Man at different difficulties and
for which gameplay-, game context- and pupillometry data were gathered together
with participants’ responses regarding game experience. Multiple random forest clas-
sifiers were trained on different feature subsets, with and without pupillometry fea-
tures, to predict experienced difficulty. We found that the addition of pupillometry
features did not lead to a performance improvement of the classifiers. This finding
was supported by the results of our data analysis; only for the distributions of two of
the four pupillometry features significant differences were found for the lowest and
some of the other levels of self-reported experienced challenge. No convincing in-
verted u-curve was found to describe the relation between pupil size and experienced
difficulty. A cautious inverted u-curve was found for pupil size with respect to the in-
game difficulty. Based on our results we question whether pupillometry, as objective
measure, is informative in the prediction of the subjective perception of difficulty. We
propose future directions with respect to pupillometry features, the prediction of ex-
perienced difficulty and the prediction of the optimal load, together with a follow up
study for which the constructed dataset can be reused.
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1. Introduction

The level of challenge of a video game is consistently identified as the most important
aspect of good game design [1]. Games that are too easy can be experienced as boring
and games that are too hard can lead to frustration [2]. Video games in which the level
of challenge matches the skill of the player have a higher entertainment [3]. In order to
match the level of challenge to the player’s skills, many video games offer the option
to choose from a static set of difficulty levels, e.g. easy, normal or hard. However, these
static difficulty levels are discussed to be insufficient, amongst others because they are
too coarse and broad and thereby do not suit the actual level of the player [3]–[6].

Compared to static levels of difficulty, dynamic difficulty adjustment (DDA) offers a
more dynamic solution to match the level of difficulty to the skill level of the player
[7]. A DDA procedure estimates the level of a player and automatically adapts game
elements to provide a suitable level of challenge [8], [9]. Since a suitable level of chal-
lenge results in a higher entertainment value [3], DDA has the potential to increase
a game’s enjoyment and is of interest for the entertainment industry. Furthermore, a
suitable level of challenge can result in a state of flow wherein a player is completely
immersed in a task [10], [11]. Flow is an enjoyable state with peak productivity [11]
which can be interesting in the context of health and educational games. Thus, DDA
can be relevant in the context of applied games.

Two main components of DDA systems can be viewed, namely the mechanism to as-
sess the player and the in-game difficulty adjustment mechanism to provide a suitable
difficulty [12]. Previous work provides different DDA approaches to assess the level
of a player as well as different adjustment methods together with different types of
adjusted content to adapt the in-game difficulty level [3], [13], [14]. For example, to
estimate the level of a player a technique called player modeling can be applied [15].
A player model estimates the level of a player by considering multiple types of data,
amongst others gameplay data, game context data and psychosensory measurements
[16], [17]. Gameplay data refers to all elements derived from the direct interaction
between the player and the game [17]. Game context data captures momentaneous
state of the game during play, excluding gameplay data [17]. Examples of adaptations
of game elements to offer a suitable difficulty, are the modification of the behavior of
non-player characters (NPC’s), the alteration of the game world and adaptations to the
avatars supplies like ammo and health [3], [4], [18].
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Introduction

In this research we focus on the player assessment component of DDA, more precisely
we focus on the use of pupil size measurements as input data in the context of DDA.
Recent head mounted displays (HMDs) with eye tracking technology offer great po-
tential to facilitate the use of eye-tracking metrics in the implementation of DDA [19].
Pupil dilation has been previously researched in the context of video games and game
difficulty (e.g. [20], [21]). As an indicator of load, measurements of pupil dilation can
inform a DDA system to help to identify an ideal level of challenge [22]. In the con-
text of a math educational video game, pupillary response data was found to improve
random forest classifier accuracy for the difficulty of levels [23]. Different pupillome-
try measures can be used as input features to train a model to predict the experienced
game difficulty. Commonly used pupillometry measures are peak pupil dilation (max-
imal dilation in measurement interval), peak pupil latency (elapsed time between the
stimulus and peak pupil dilation) and the mean pupil dilation [24], [25]. In the current
research we aimed to provide further insights regarding the added value of the com-
monly used pupillometry features in the context of DDA. Partly, the current research
can be viewed as a repetition of the work of Mitre-Hernandez et al. [23]. However, in-
stead of predicting two levels of difficulty we focused on the prediction of experienced
difficulty with multiclass classifiers. Additionally, we used the arcade game Pac-Man,
which we believe offers a more dynamic gameplay compared to the math educational
video game used in the study of Mitre-Hernandez et al. [23].

We aimed to answer the following main research question:

“To what extent does the addition of pupillometry features to an input feature set improve
the accuracy of a random forest classifier in predicting experienced difficulty?” (RQ1)

Furthermore, to gain a more detailed insight with respect to commonly used pupil-
lometry features in the context of DDA, we aimed to answer the following question for
each of the used pupillometry features:

“To what extent does this pupillometry feature statistically correlate to the self-reported
experienced game difficulty?” (RQ2)

An experiment was performed in which participants played multiple rounds of Pac-
Man with different difficulties. During this experiment gameplay related features,
pupillometry measurements and participant responses regarding the experienced dif-
ficulty were gathered to form a dataset. Sequentially, statistical analysis was applied
to answer RQ2 for each of the constructed pupillometry features. Furthermore, mul-
tiple feature subsets were created from the main dataset and used to train multiple
random forest models to predict the experienced difficulty. The performance of clas-
sifiers trained on feature sets with and without pupillometry features were compared
and feature importance analysis was performed.
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The main goal of this research was to map the added value of pupillometry in the
context of DDA and player experience modeling. Based on our results, reviewed in the
perspective of the experience of difficulty, we provided future directions and proposed
a follow up study for which the constructed dataset can be reused.
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2. Related work

2.1 Dynamic Difficulty Adjustment (DDA)

In this section, after a short introduction to DDA, we discuss multiple aspects related
to DDA. Firstly, to gain a better understanding of difficulty in games, we share some
background on difficulty and challenges from a game design perspective. Secondly,
we provide an overview of different types of game components that can be adapted to
alter the difficulty of a game (adaptive game components). Additionally, we view different
types of DDA classifications and types of DDA approaches, together with examples of
previous work. Furthermore, we provide an overview of different types of input for
DDA systems in order to assess the player. We end this section with a short summary
of the insights these subsections offer in the context of the current work.

2.1.1 DDA Introduction

Providing a good level of challenge for the player can be viewed as a key feature of
successful video games and as the most important aspect of good game design [1], [6].
According to the flow channel model as proposed by Csikszentmihalyi [11], the offered
level of challenge an activity offers directly relates to the performance perception, see
the diagram in Figure 2.1. Csikszentmihalyi [11] explains the flow channel using a
game of tennis to illustrate. In short, for a person new to tennis, simply hitting the ball
over the net provides a suitable level of challenge. This challenge meets the player’s
expertise and can lead to the state of flow. The state of flow refers to an enjoyable state
with peak productivity wherein a person is completely immersed in a task or activity
[11]. However, when the player’s skills improve the player can grow bored just batting
the ball over the net. On the other hand, when being new to tennis and competing with
a more practiced opponent can provide a too high challenge that might result in the
experience of anxiety. Noteworthy, according to Csikszentmihalyi [11] to get in the
flow channel not only the actual skills are of influence, but also the skills we think
we have. Similarly, “it is not only the ’real’ challenges presented by the situation that
count, but those that the person is aware of” [11].

Koster [2] incorporated the concept of flow in the context of video games. Koster [2]
stated that to keep the player in a state of flow when the player gradually improves
her skill level, the game difficulty level should be gradually heightened as well. Chen
[26] states that an interactive experience designed for a broader audience “must offer
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Figure 2.1: The flow channel model originally proposed by Csikszentmihalyi [11]. A level
of challenge that meets the player’s skill can lead to the state of flow, a too low level of
challenge can lead to the experience of boredom and a too high level of challenge can lead
to the experience of frustration [11].

Figure 2.2: “Designers adapt players’ flow experience through the choices they deliber-
ately build into the experience.” [26].

many choices, adapting to different users’ personal flow Zones” (flow channels), see
Figure 2.2. To avoid too many choices, game designers can “embed the player’s choices
into the core activities of the interactive experience”[26].

In many video games a player can choose between different static levels of difficulty
(e.g. easy, normal and hard) to select an appropriate level of challenge. However in
previous work it is argued these static levels fail to meet the actual level of the player,
amongst others by being too coarse and broad [3]–[6]. Dynamic difficulty adjustment
(DDA) offers a dynamic solution to provide a level of difficulty that matches the level
of a player. DDA is a technique in video games to automatically and in real-time adjust
scenarios, parameters and behaviors to follow the player’s level of skill and thereby
preventing boredom or frustration [14]. DDA can thus aim to keep the player in the
flow channel.
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The application of DDA in a game is not straightforward, it entails more than provid-
ing more health when the player performance drops [14]. Successful DDA systems
should maintain the internal balance and feedback mechanisms [18]. Andrade et al.
[6] proposed three basic requirements for DDA. Firstly DDA should be able to quickly
identify and adapt to a player’s initial level [6]. Secondly, DDA should fastly and
closely track and adapt to the player’s improvement or falling level [6]. Thirdly, the
adaptation process should be unperceivable for the player and the game must remain
believable. When the adaptation process of DDA is perceivable for the player, players
are known to take advantage of this adaptation.

An example of an DDA implementation that does not meet this third requirement is the
so-called rubber-banding mechanism frequently applied in racing games. This mech-
anism refers to the application of negative feedback of the player’s position relative
to the NPC opponents to prevent the gap between the player and computer oppo-
nents to grow too large, as if the player is attached to the other cars by a rubber band
([27]). Rubber-banding can be implemented by simply slowing down opponents that
are ahead of the player or speeding up opponents that are behind the player [28].
Additionally to the speed increment and decrement of opponents, in MarioKart the
awarded random power a trailing player receives after picking up a power-up has a
higher chance to be more powerful then when the player is in the lead ([27]). Players
can take advantage of the Rubber banding adaptation by lacking behind purposefully
and speeding up just before the finish in the final lap.

2.1.2 Game difficulty and challenges

Different perspectives on difficulty are presented in previous work [14]. In this subsec-
tion we share Adams’ [12] perspective on difficulty and challenges.

Adams [12] discusses three types of difficulty, namely absolute difficulty, relative difficulty
and perceived difficulty. Absolute difficulty can be determined by intrinsic skill and stress
[12]. Intrinsic skill refers to the level of skill needed to overcome a game challenge
leaving out any element of time pressure [12]. When an unlimited amount of time
is available, the skill level required of a player can be reviewed with respect to the
challenge and the type of tasks within that challenge [12]. For example, the skill level
needed to hit a target is amongst others dependent on the distance to the target and
the aiming skill of the shooter.

When a challenge includes time pressure, the factor stress is of influence to the ab-
solute difficulty [12]. Respectively, a shorter or longer time limit results in a more or
less stressful situation respectively [12]. Adams [12] provides an example of the game
Tetris. The challenges in Tetris performed without a time limit would not require a
high level of skill, thus Tetris requires a low level of intrinsic skill. It is the time pressure

8



2.1 Dynamic Difficulty Adjustment (DDA)

which makes Tetris stressful and which mainly contributes to Tetris’s absolute difficulty.

To review the absolute difficulty of a challenge, the required amounts of intrinsic skill
and imposed stress can be compared to a trivial challenge of the same type [12]. For
example, when designing an enemy, it can be compared to a trivial enemy that stands
still, can be killed with one hit and does not harm the avatar [12].

Relative difficulty refers to “the difficulty of a challenge relative to the player’s power
to meet that challenge”. Relative difficulty is dependent on the absolute difficulty and the
power provided [12]. Power provided refers to the power the game provides to the player
[12]. For example, the challenge of defeating an enemy will be easier when the game
provides the player a sword with high hit points compared to a sword with low hit
points.

The perceived difficulty is defined as “the relative difficulty minus the player’s experi-
ence at meeting such challenges [(in-game experience)]” [12]. In other words, the per-
ceived difficulty of a challenge is the difficulty that a player senses, this difficulty type
considers the player’s experience. Adams [12] combines the different factors into one
equation, see Equation (2.1).

perceived difficulty = absolute difficulty − (power provided + in-game experience)
(2.1)

Furthermore, with respect to challenges, in games a player faces several challenges at
a time and these challenges can be organized in a hierarchy of challenges (challenge
hierarchy) [12]. The topmost-level in the challenge hierarchy includes the game’s victory
condition and victory conditions for separate levels. The lowest-level consists of atomic
challenges, these are the smallest chunks of challenge that are indivisible and which
a player needs to deal with separately [12]. Examples of lowest-level challenges are
fighting an enemy that causes an instant threat and opening a locked door [12]. Both
the challenges of the topmost- and lowest-level are usually shared with the player ex-
plicitly [12]. The challenges of the intermediate-level are usually not communicated to
the player [12]. By leaving these intermediate-level challenges implicit, the player is left
to figure out what she is supposed to do, also referred to as ’the fun part’ of a game
[12]. Intermediate-level challenges can require players to develop a certain strategy [12].
Players usually face multiple challenges from different levels in the challenge hierar-
chy at the same time [12]. In short, Adams’ [12] hierarchy of challenges allows one to
review the challenges of a game at different levels; at a detail level (lowest-level chal-
lenges), in a more in an overarching way (topmost-level challenges) and on a strategic
level (intermediate-level challenges).
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Adams’ [12] perspective on difficulty and challenges was utilized in the current re-
search, to review aspects of difficulty and challenges in Pac-Man, in the context of
player assessment and in-game difficulty adjustment. We mapped a challenge hierarchy
for Pac-Man and reviewed each challenge to identify game features that can serve as
input features for our random forest models. We reviewed the intrinsic skill, stress and
power provided in Pac-Man to identify game components that can be altered in order to
adapt the difficulty (adaptive game components).

2.1.3 Adaptive Game Components

Different views on adaptive game components are shared in review papers on DDA [14],
[29]–[31]. Zohaïb’s [14] identifies parameters, behavior and scenario as adaptive game com-
ponents, but these three categories are not reviewed to a further extent. In Sepulveda
et al.’s [31] overview of recent work in the context of DDA, adaptive game components
are referred to as factors and are categorized as attributes, behaviors and events. Here,
attributes refer to values of game objects and mechanics, like traits of the character,
number of enemies, time limits and the pace of a game [31]. With behaviors Sepulveda
et al. [31] refer to the behavior of NPCs and behavior of game objects, like the pattern
of watch towers in a stealth game. The category events refer to “predefined occur-
rences that arise under certain circumstances”[31]. In Bontchev’s [30] literature review
of “adaptation in affective video games” three options for adaptive game components
are shared, namely ’adjusting level content’ similar to Sepulveda et al.s [31] attributes,
modification of artificial intelligence similar to Sepulveda et al.s [31] behavior category and
automatic level generation. An example of automatic level generation is the adaptation
fo 2D-platform levels, where amongst others the placement, size and spatial diver-
sity of gaps are adaptable [32]–[34]. In a survey of “adaptive challenges in games and
simulations” [29], five categories are presented; game worlds and its objects, gameplay me-
chanics, NPC and AI, game narrative and game scenarios and quests. This categorization
differs from the others by the explicitly distinguished last two categories, where game
narrative adaptations can be viewed as the alteration of a sequence of events serving
the story telling and game scenarios and quests adaptation as an alteration of the flow of
events and actions [29].

A more holistic view on adaptive game components is provided by Hunicke [18], by view-
ing adaptations as regulation of the game’s underlying economy. Hunicke [18] differ-
entiates between supply and demand adaptations. Supply adaptations affect the player’s
inventory by placing more or less items in the field (e.g. ammunition and health packs)
or by modifying properties of the player or items (e.g. player strength, a weapon’s ac-
curacy). Demand adaptations affect the impact of enemies, like manipulation of the hit
points and accuracy of enemies.
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2.1 Dynamic Difficulty Adjustment (DDA)

In the context of the current research, we propose a categorization of adaptive game
components of four categories, namely attributes, behavior, game level/-world layout and
events. Here, we view attributes as values of game objects including the player’s avatar.
With behavior we refer to NPC behavior. The category game level/world layout concerns
the topology and obstacle placement in a level or game world. With events we refer to
adaptations that alter the order of events. We excluded categories regarding the game
scenario and narrative, like the categories scenario [14], game scenarios and quests and
game narrative [29], since these are not relevant in the testbed Pac-Man. Also the cate-
gory gameplay mechanics [29] is left out, since alterations that fall in this category would
be perceivable for the player and thereby would not meet the third DDA requirement.

After mapping challenges of Pac-Man in a challenge hierarchy (see 2.1.2), in order to
identify adaptive game components of Pac-Man we reviewed these mapped challenges
through the lens of each of the four adaptive game components categories (attributes, be-
havior, game level/-world layout; and events). This systematic approach enforced us to
consider all types of adaptive game components that can be of influence to a challenge
and in turn the in-game difficulty. Therefore, we expected this approach to enable us
to review a broad set of adaptive game components in order to find adaptive game compo-
nents of interest in the current research.

2.1.4 DDA approaches

Different classifications of various DDA approaches are presented in review papers
about DDA [14], [29]–[31], [35], [36]. For example, Lopes and Bidarra [29] identify
two types of DDA, namely online adaptivity, referring to the ability of a game to ad-
just to its players in real time and offline adaptivity, referring to adaptations prior to
initiating the gameplay. Zohaïb [14] provides eight categories to classify DDA ap-
proaches, amongst others probabilistic methods, dynamic scripting, reinforcement learning
and affective modeling using EEG1. In the rest of this section we discuss three straight-
forward implementation methods presented by Sepulveda et al. [31] and Paraschos
and Koulouritios’s [35]classification, accompanied by examples of previous work to
provide more insight in the large range of different DDA approaches.

Sepulveda et al. [31] discuss three implementation methods that are according to them
more straightforward methods to model the difficulty faced by the player, namely, met-
rics, probabilistic methods and dynamic scripting. The metrics method consists of the appli-
cation of a multiplier to variables that change the difficulty by adapting game content.
Additionally, weights can be added to balance the relationship between the altered
variables affected by the multiplier and the variables used to evaluate the player per-

1For a full overview of all categories we refer the reader to Zohaïb’s [14] review paper.
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formance. Probabilistic methods calculate an expected future value to predict states and
events, enabling the DDA system to prevent for example a too low health before the
predicted time of death [14], [31], [37]. Within the dynamic scripting approach scripts
for NPCs are built from manually designed rulebases. The rules in these rulebases are
assigned a weight used as the probability the rule gets selected for a NPC script. The
weights are updated depending on success or failure of rules in NPC scripts during
gameplay [31], [38], [39].

Paraschos and Koulouriotis [35] proposed a classification for approaches that combine
DDA and procedural content generation (PCG), representing four different main ap-
proaches with respect to the assessment of a player’s performance, emotions or prefer-
ences and the way the DDA system is constructed. The four categories are Player perfor-
mance, Player affective state, Agents and Experience modeling [35]. The first category player
performance covers the approaches that assess player performance to balance difficulty
to the player’s skill level [35]. Approaches within this category use performance and
behavior metrics to evaluate player performance [35]. Some examples of these metrics
are “kill ratio”, “attained game score” and “number of deaths”. An example from this
category is the work of Li et al. [40] in which DDA was applied to a mobile parkour
game where the player needs to pass through obstacles in the environment and collect
as many fortunes as possible along the way. In this work, the adaptation mechanism
was designed based on the number of obstacles passed (metric) [40].

The second category Player affective state covers DDA approaches that measure the af-
fective state of a player during play. Approaches presented previous work that fall
within this category often used biofeedback devices and questionnaires for the af-
fective assessment. Other types of measurements have been previously presented,
amongst others player facial expressions. An example is the work of Blom et al. [41]
where facial expression recognition was utilized to guide an online game personal-
ization process in the video game Infinite Mario Bros. In this research the emotions
“neutrality”, “happiness” and “anger” were tracked with facial expression recognition
[41]. A Gradient Ascent Optimisation (GAO) technique was employed to optimize the
challenge levels to yield happiness and minimize neutrality and anger of the game
based on the [41].

The third category agents concern adaptation approaches that utilize decision-making
agents for tailoring the game content [35]. DDA approaches within this category em-
ploy a learning algorithm with player behavior and game state information as input,
enabling agents to learn from the past player actions [35]. The previously discussed dy-
namic scripting approach introduced by Spronck et al. [38], [39] can be placed within
this category. Another example of an approach that falls within this category is the
work of Tan et al. [42], in which ideas from reinforcement learning and evolutionary
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2.1 Dynamic Difficulty Adjustment (DDA)

computation were applied in the context of a racing game. In this approach a chro-
mosome containing probabilities for behavioral rule selection was updated after each
round and used to select a subset of behavior components for the NPC opponent [42].

The fourth category experience modeling describes approaches that utilize models trained
with machine learning algorithms to estimate player characteristics, such as skills [35].
Based on the estimations of player characteristics the game environment is adapted
to the player. In turn, feedback from the game environment is used as input of the
model’s evaluation function. Paraschos and Koulouriotis [35] identify three sub cat-
egories within the fourth category experience modeling, namely behavior and preference
models, experience models and alternative and combined models.

An example of the subcategory behavior and preference models is the work of Andrade et
al. [6], in which reinforcement learning was applied to dynamically model the players’
reactions to different difficulty conditions. This research applied DDA to a rehabilita-
tion game, where the player used a robot attached to the player’s wrist as a control
device to control a squirrel collecting nuts falling down from trees. The reinforcement
learning agent learned at runtime how the player responded to changes in the game
difficulty level [6]. The environment of the agent was defined by a simple 2D matrix
defined by two difficulty parameters, namely “nut drop rate” and “distance to nut”
[6]. The agent actions consisted of navigation through this 2D environment, moving
towards the direction of the most difficult game level, and thereby the agent actions
changed the game difficulty ). After a predefined period (2 released nuts) a perfor-
mance value was taken as an estimate of the player behavior in response to the new
game difficulty condition [6].

With respect to the subcategory, experience models, different player aspects have been
modeled to personalize game experience in previous work [35]. For example, Shaker et
al. [43] applied neuroevolutionary preference learning to train engagement, frustration
and challenge experience models with behavioral data from gameplay and player’s
visual behavior as input. Another example is the work of Yannakakis and Hallam [44]
who demonstrated a methodology for optimizing player satisfaction during a game
session.

The subcategory Alternative and combined models concern the approaches in which player
models were combined with other model types, like affective models [35]. For exam-
ple Chanel and Lopes [45] constructed deep data-driven affective models to determine
anxiety and boredom from electrodermal activity measurements (EDA) measured with
skin resistance sensors. These sensors can measure the sweat gland activity, where an
increased activity indicates the experience of arousing emotions [45]. A user evalua-
tion indicated the deep neural-network model (constructed through ensemble learning
by combining 20 networks) to be capable of effectively adjusting the overall difficulty
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during a game of Tetris. Another example within the subcategory alternative and com-
bined models is the work of Blom et al. [46], where facial expression data was used to
model player behavior and predict the player’s affective state.

When discussing different types of DDA approaches, we follow Paraschos and Koulou-
riotis’ [35] classification. However, due to ambiguity of the Paraschos and Koulourio-
tis’ [35] fourth category experience modeling and its second subcategory player experience
models we refer to the fourth category simply as player modeling. This research focused
on player modeling. We gathered data and trained multiple random forest classifiers to
estimate the player experience with respect to experienced difficulty.

2.1.5 Input data

Yannakakis and Togelius [17] identify three main types of input data of a player model,
namely gameplay data, objective data, game context data. Although Yannakakis and To-
gelius [17] describe these three types in the context of player modeling, we believe
these three types can be of interest in any DDA approach, also those that do not utilize
player models. In this subsection we shortly discuss each of these three types of input
data.

Firstly, gameplay data refers to all elements derived from the direct interaction between
the player and the game, also called player metrics [17]. In other words, these inter-
pretable measures of gameplay can concern anything that a player is doing in a game
environment [17]. These measures are either general measures like performance and
time spent on a task or game-specific measures like spatial locations of a player and se-
lected weapons [17]. An example of utilizing gameplay input is the research of Kazmi
and Palmer [47]. In this work an action recognition algorithm is developed to corre-
late particular player actions to the expertise level of a player and to adapt the game
accordingly [47].

Objective data consists of measurements of responses to game stimuli, like physiology
changes, speech and body movements [16], [17]. Psychosensory measurements allow
to monitor the player’s body alterations reflecting the player’s emotional responses to
a game [17]. Various psychosensory measurements were previously applied in DDA
research, amongst others brain computer interfaces [7], [10], [48], heart-rate and gal-
vanic skin response [49]. Another example of physiological input is pupil size. In
previous work in the area of pupillometry and game difficulty, a correlation between
pupil size and game difficulty and appraisal was found [22]. The results of this re-
search indicated the potential of the appliance of pupillometry measurements in the
context of user-adaptive interfaces in general [22].
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Game context data can be viewed as a form of game metrics, capturing momentaneous
state of the game during play, excluding gameplay data [17]. The game context can
be argued to be necessary input to detect cognitive and affective responses of a player
in a reliable manner [17]. Game context data can be argued to be necessary to interpret
gameplay data and objective data [17].

Apart from these three main types of input data, Yannakakis and Togelius [17] also
discuss static player profile information and linked data, which both could enhance the
capacity of a player model. Here, a player profile includes all information about the
player and is not directly linked to gameplay. For example, information on player
personality, general demographics and player expertise level [17]. Linked data concerns
data retrieved from web services, like social media posts, game reviews written and
relevant semantic information extracted from diverse Web content [17].

In the context of the current research the three main types (gameplay, objective and
game context data) were considered as input data. Additionally, player expertise
(player profile data) was expected to be relevant, questions regarding game experience
were included in the demographics questionnaire. We expected players with a high
player expertise to experience a lower mental workload for the same difficulty setting
compared to players with a low player expertise.

2.2 Mental workload

The concept of mental workload (MWL) has been widely discussed in the field of
human factors and ergonomics [50]–[52] and was established during the 1980s [52].
The assessment and prediction of MWL can assist in the design of complex systems
and automation [53] and has been extensively researched in the context of transport-
related applications, like aviation, air traffic control and driving [52]. WML is a multi-
dimensional construct [54], [55], however in a (too) simple manner, MWL can be viewed
as the amount of resources invested in a task. In this section we first discuss the MWL
related concepts, like mental resources, task demand, task performance before viewing the
concept of MWL to further extend.

2.2.1 Mental workload related concepts

The amount of resources invested in a task are limited by the finite capacity of hu-
man mental resources [53]. When reviewing single task performance, the invested men-
tal resources to a single task can be reviewed relatively to the operator’s capacity [56].
The deployment of resources is under voluntary control, thus the relative amount of
resources invested does not only depend on the operator’s capacity, but also on the
amount of resources an operator is willing to allocate [56].
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Figure 2.3: The 4-D multiple resource model [60].

In previous work different models are proposed to describe the limited amount of hu-
man mental resources [56], [57]. Kahneman’s [58] unitary resource model assumes a single
pool of mental resources that can be invested in different processing activities. The mul-
tiple resource model as proposed by [53], [59], [60] presents a modular view on mental
resources, it defines separate resources that can be applied to different processing activi-
ties [60], see Figure 2.3. These separate resources can be defined in terms of a set of four
dichotomies of information processing, namely stages of processing, codes of process-
ing, perception modalities and visual channels [60]. The multiple resource model can
assist in predicting resource overload in multitask performance as a result of multitask
resource requirements viewed in terms of the four dimensions of the model [60]. A
higher interference between simultaneously performed tasks is predicted if these tasks
demand the same resources, for example when both tasks demand verbal processing
(codes) [60].

The performance-resource function (RPF) relates the level of task performance to the in-
vested mental resources on a task [53], [61]. Figure 2.4 displays the RPF of two tasks,
whereas task B can be viewed as either less difficult (demanding less resources) or has
received more practice compared to task A [53]. The same amount of resources spent
results in a higher performance for task B compared to task A. At the right of point 3 on
curve B in Figure 2.4, a higher amount of spent mental resources does not lead to a higher
performance, here the task can be viewed to be data-limited, which means it is limited
by the quality of data instead of the invested resources [53], [61]. Thus, after reaching a
tasks data limit an increase in the amount of invested mental resources does not lead to a
higher performance, thereby performance does not always correlate with the relatively
invested mental resources [53], [61]. When changes in the amount of invested resources
do influence the resulting performance a task is said to be resource-limited, see the re-
gion on curve B left to point 3 Figure 2.4 [53], [61]. Mental resource capacity differs per
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Figure 2.4: “The performance resource function and practice. Task B is practiced or easy;
task A is unpracticed or difficult” [53].

individual, the same level of performance reached by two individuals does not imply
an equal allocated amount of resources, one person may have plenty of resources left
whereas the other does not [62]. Thus, when a task is resource-limited for one individual
it is not necessarily resource-limited for another individual as well.

De Waard [56] explicitly differentiates between task demand, task complexity and task
difficulty. Task demand is determined by the (subjective) goal set for task performance
[56]. Task complexity depends on the number of required stages of processing [56].
Thus, task demand and task complexity can be viewed in isolation, without consideration
of the individual operating a task, although a goal for a task can be subjectively set
[56]. Task difficulty is dependent on the processing effort required by the individual for
task performance, amongst others it is dependent upon context and capacity [56].

2.2.2 Defining mental workload

There are many varying definitions of MWL [52], [54], [63], [64], that focus on different
aspects related to MWL, like task(s) demands, the effort spent to meet task(s) demands,
the level of performance of a task(s) and the experienced expended effort [57]. Present-
ing a thorough overview of the different definitions of MWL is out of the scope of this
research, for a comprehensive overview of previously provided definitions the reader
is referred to overviews as presented in earlier work [52], [54], [63].
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To clarify the concept of MWL, Van Acker et al [63], performed a concept analysis
of MWL with the Walker and Avant [65] method. The analysis identified four ele-
mentary dimensions of MWL, namely “cognitive work demands, interacting with the
human cognitive architecture, inducing cognitive physiological processing and a cog-
nitive subjective experience” [63]. Van Acker et al [63] combined these four dimensions
in the following conceptual definition of MWL: “Mental workload is a subjectively ex-
perienced physiological processing state, revealing the interplay between one’s limited
and multidimensional cognitive resources and the cognitive work demands being ex-
posed to”.

The Walker and Avant [65] concept analysis method applied to MWL allows to dis-
tinguish its building blocks and map these to the core ( defining attributes ), the pre-
ceding elements (antecedents) and outcome elements (consequences) of the concept of
MWL [63]. The concept analysis identified Spending cognitive resources and subjec-
tive experience triggered as defining attributes , constituting the core of the definition
of MWL. In other words, MWL “implies the cognitive resources that directly attend to
cognitive work demands and the cognitive experience directly triggered by those work
demands" [63]. Cognitive work demands and cognitive architecture were identified as
the antecedents of MWL. Within concept analysis,antecedents are the elements that pre-
cede a concept, the components or situations that make the occurrence of the concept
possible [65]. Thus, cognitive work demands and cognitive architecture can be viewed
as components that proceed the subjectively experienced processing state. In previ-
ous work in the area of WML, performance is often considered as being an element of
WML, however, the concept analysis identified performance as one of theconsequences
of MWL [63]. Hence performance can be viewed as an outcome of MWL.

2.2.3 Mental workload regions

In previous work, different views have been shared on the relationship between per-
formance and task demand. In early work, the relationship between performance and
task demand has been theoretically described as a non-linear relation where a higher
task demand (eventually) results in a lower level of performance (i.e. [66]–[68], see Fig-
ure 2.5). Within this view, three regions can be identified ([66], [68], see regions A, B
and C in Figure 2.5. Region A describes low demands with high performance and can
be viewed as a low operator workload [56], [68]. Here an increase in task demand does
not lead to performance decrements because the operator has a reserve capacity and
can thus compensate [68]. In region B the demand exceeds the operators’ capability
to compensate for the higher demand, a degradation in performance follows the in-
creased workload [56], [68]. Region C describes an extremely high demand together
with performance at a minimum level [68].
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Figure 2.5: “Hypothetical relationship between demand and performance”[56].

Underload and overload are two sub-optimal workloads which can lead amongst oth-
ers to performance degradation, attentional lapses, errors, frustration, fatigue, quality
loss and time loss [69] as cited in [52], [63]. Different views exist on the concept of un-
derload and overload [52]. For example, Wickens [53] considers the reserve capacity of
resources. Wickens [53] refers to underload when an operator has a reserve capacity left
and overload when all resources are supplied [53]. In other work effects on performance
are viewed to indirectly identify the underload and overload effect [52].

In case of too little stimulation underload can occur; resources are allocated elsewhere or
otherwise shrink through underuse (cf. [70], as cited by [52]). Low demand tasks can
lead to difficulties in maintaining attention, an increased reaction time, an affected state
like boredom which results in a reduction in total capacity and impedes the allocation
of resources [54], [56].

The region of overload is captured within the theoretical relationship between demand
and performance as displayed within Figure 2.5 (region B and C) [53]. To also capture
the region of underload, De Waard [56] proposed an extended version of the demand
performance relationship, which would result in addition of a deactivation or D-region
at the left of Figure 2.5. The addition of the D-region results in an inverted-U relation-
ship between task demand and performance as visible in Figure 2.6. Noteworthy, this
inverted-U relationship shows similarities to the Yerkes-Dodson [71] as cited in [56]
relationship which describes the relation between stimulus strength and learning [56]
and the arousal theory accounting for the effects of arousal level on performance [56],
[72].

In between the regions of underload and overload there is an optimum range of mental
workload which is associated with best performance, see Figure 2.6 [52]. In previous
work this optimum range has been viewed as an optimal state that is dependent on the
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Figure 2.6: “The relationship between activation level, workload (task demand) and perfor-
mance (adapted from de Waard 1996)” [52].

balance between demands and capabilities [11]. Maintaining a state of optimal perfor-
mance does not only depend on task demand. In case demands do not meet the capa-
bilities of an operator, an operator can compensate to some extent by the investment
of additional resources [52]. The effort required to compensate in case of an underload
or overload to keep performance at a high level can be viewed as state-related effort in
case of underload and task-related effort in case of overload [56].

2.2.4 Mental workload predictions

Predictions of mental workload can help to assess the mental workload a task imposes
on an operator, which is of value in the context of operator and system performance
[53], [54]. Predictive models can predict performance breakdowns and reveal prop-
erties of task demand that lead to workload-overload, also referred to as crossing the
redline of overload [52], [73]. Because predictive models can be applied before complex
systems are built they can be applied to prevent workload-overload accidents and safe
costs [73]. Workload predictions can inform design choices with respect to demand
reduction [52], [73], [74]. Wickens [53] distinguishes between relative- and absolute
predictions, a workload and performance comparison between two or more configu-
rations and a workload estimation in an absolute manner respectively.

In previous work different predictive models have been proposed that consider differ-
ent aspects of tasks, offer different methods of computation and are of different com-
plexity [59]. An example of a more complex method is the computational multiple
resource model which “computes the amount of interference predicted between two
tasks as a function of competition of those tasks for shared resources” [59]. A more
simplistic method is the timeline analysis and prediction (TLAP) which reviews the
time required to perform a task and time available within a task sequence [59], [74].
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Figure 2.7: “Time-line analysis. The percentage of workload at each point is computed as
the average number of tasks per unit time within each time window” [53].

TLAP considers time as a quantifiable variable and can be applied to predict workload
for both single-and multi-task scenarios [52], [59], see the example in Figure 2.7. Time-
line analysis and prediction (TLAP) reviews the time required to perform a task and
time available within a task sequence [74]. The TLAP is a method to map operations
and key events of a scenario on a timeline and thereby define when tasks have to occur
and when related sequencing must start in order to complete on time [74]. Multiple
task characteristics can be considered during the TLAP, for example, “tasks that must
be performed at a critical time”, “tasks that can be slipped for earlier or later perfor-
mance”, “tasks that must be performed in a given sequence” [74]. After mapping tasks
on a timeline, workload estimates can be produced by dividing the time required by
time available [74]. According to Parks and Boucek [74] resulting values above 80%
can be considered as overload, here human operators can be expected to drop some
auxiliary tasks.

In some task scenarios quantifiable variables can be identified in the context of (multi-
) tasks performance and workload predictions, for example “the number of aircraft
“handed” by an air traffic controller at any one time, the arrival rate of customers to a
store clerk” [53]. In case of a relative prediction, a higher ’count’ of a quantifiable vari-
able often results in a lower time-sharing performance and a higher mental workload
[52], [53]. In the context of absolute predictions of MWL, quantifiable variables can be
considered to predict which ’count’ lead to overload [53], for example the redline for
working memory has been noted around at seven chunks of information [52].

In the context of the current research, the predictive model computational multiple re-
source model was viewed as too complex and expected not to add value compared to
the more simplistic TLAP method (see also [59]). We applied TLAP in a free manner,
by mapping the expected workload for our testbed game Pac-Man, whereby we con-
sidered the number of ghosts that are hunting Pac-Man and the different game states
(scatter, chase and frightened).

21



Related work

2.2.5 Mental workload measurements

MWL measurements enable the assessment of “the mental cost of performing tasks in
order to predict operator and system performance” [54]. Many different MWL met-
rics have been previously presented and these reflect the multidimensional nature of
MWL [52]. Different views exist on MWL measurement categories [55]. In most areas
three main categories are distinguished, namely performance-, subjective- and physiolog-
ical measures [52].

Performance measures consider performance as an indicator of workload, within this cat-
egory primary task measures and secondary task measures can be viewed as sub-categories
[55]. Primary task measures assess workload by measuring operator performance on the
task of interest, for example measures of error rates, performance speed, reaction time,
accuracy [54], [68]. While it is advisable to always first examine the performance on the
primary task [53], [55], primary task performance measures may be insufficient to estimate
the workload on a primary task. Wickens [53] and De Waard [56] present multiple lim-
itations of primary task performance. Amongst others, changes in primary task demand
are not always reflected in changes in performance, for example due to reserve capac-
ity of the operator, see region A in Figure 2.5 [53], [56]. In the overload region where
performance degrades, primary task measures can be viewed as important assessment
techniques [68], see region B in Figure 2.5. While performance measurements may
not reflect the operator’s workload throughout the different workload regions, in the
current research primary task measurements can be considered to complement the pupil
diameter measurements. With respect to the current research, when viewing primary
task measures in the context of DDA we see similarities to the gameplay measures that
consider the player’s performance. In the current research we gathered gameplay per-
formance data, however we did not use these as indicators of workload, but to predict
the experienced difficulty.

Secondary task measures require concurrent performance of two tasks by an operator
[68]. An estimate of workload of the task of interest (primary task) can be derived from
the performance on an additional task (secondary task). The secondary task performance is
associated with the spare capacity unused by the primary task [52], or in other words,
it is “assumed to be inversely proportional to the primary task resource demands” [53].
A secondary task needs to be designed to occupy the same resources of the primary task
but also not intrude upon or increase the MWL on the primary task [52]. Multiple limits
of secondary task measures are discussed in previous work (e.g. see [54], [56], [68]). Due
to the intrusive nature of the secondary task measurements, this type of measurements is
not considered as a valid option for the current research.
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Subjective measures, also referred to as self-assessment measures, include subjective rat-
ing scales and self-report measures (e.g. [52], [55]). A well-known subjective MWL
assessment technique is the NASA Task Load Index [75]. Some examples of limita-
tions of subjective measures are that these measures may be subject to biases, are not
well suited to continuous monitoring of workload and might not capture those facets
of workload that are inaccessible to consciousness [76]. In the context of games and
DDA we believe that subjective measures utilized as input of a model are impractical,
because these interrupt the continuous flow of the game. Although these measures
can serve as output labels to train a predicting model in the context of DDA, we prefer
player experience labels. Therefore, this measurement category was not applied in the
current research.

Physiological measures rely on the assumption that bodily responses correlate with MWL,
these measures derive workload from physiological activity of the operator [55]. Physi-
ological measures of different bodily functions exist, like measures of the brain function,
measures of the eye function, measures of the cardiac function and measures of the
muscle function [68]. These measures can be classified in three categories, namely
Autonomic Nervous system(ANS)-measures like pupil diameter and hearth rate mea-
sures, Central Nervous System(CNS)-measures like brain activity measures and pe-
ripheral responses like spontaneous muscle activity and eye movement [56]. Physiolog-
ical measures are “capable of discriminating levels of capacity expenditure in nonover-
load situations” [68]. An advantage of physiological measurement procedures is that
these do not introduce extraneous signals into the operator tasks and thereby can be
viewed as relatively unobtrusive [77]. Other advantages of physiological measures are
that these do not require an overt response by the operator and can be collected con-
tinuously [56]. A disadvantage of physiological measures is that these measures mostly
require specialized equipment [77]. Overviews of physiological measures of workload to-
gether with their disadvantages and advantages are presented by O’Donnel and Egge-
meier [68] and Kramer [77]. In the current work we researched the added value of
pupil size measures (physiological measures) in the context of DDA.

2.3 Pupillometry

The pupil size metric is a non eye-movement metric that can be used as an indicator
of workload [19]. Pupil dilation increases with increasing task demand [78], a higher
load is associated with larger pupils [19]. Because the pupil size can be affected by
external factors such as lighting conditions, this metric is not completely reliable as
an indicator of workload [19]. In this section we review the different types of pupil
responses, aspects to consider with respect to measurements like filtering and taking a
baseline and relevant previous work.
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2.3.1 Pupil responses

Pupil responses can be categorized according to three distinct kinds of stimuli. Firstly,
the pupil light response (PLR) is the pupil constriction in response to brightness and
the dilation of the pupil in response to darkness [79]. Secondly, the pupil near response
(PNR) is the constriction of the pupil in response to looking at a nearby object and
the dilation of the pupil in response to looking at a far-away object [79]. Thirdly, the
psychosensory pupil response (PPR) is a pupil dilation that occurs after an arousing
stimulus, thought or emotion, also referred to as reflex dilation, effort-related dilation
and arousal-related dilation [79].

When changing from light to dark environments the PLR can result in a pupil diameter
increase around 3 to 4 mm [24]. Compared to the PLR pupil size changes, task-evoked
pupil size changes are much smaller, around 0.1 to 0.5 mm [24] Noteworthy, differences
in pupil size at an inter-individual level exist, amongst others related to differences in
ethnicity and age [78]. Also, tiredness can indirectly affect pupil size; “spontaneous
fluctuations in pupil . . . seem to reflect fluctuations in level of arousal, and are espe-
cially pronounced when someone is tired” [80].

In the context of the current research we focused on the PPR and therefore, we discuss
this response in more depth. Within the PPR category, a distinction can be made be-
tween two types, namely an orienting response and a slower arousal-or mental effort
related response. This orienting response consists of a brief pupil dilation is elicited
rapidly after something has captured attention [79]. The orienting response “is char-
acterized by a fast pupil dilation that peaks between 0.5 and 1 s after stimulus onset”
[79]. The slower arousal- or mental effort-related responses are linked to high-level
cognition [79]. This type of response is endogenous, its size and profile reflect how
mental effort and arousal evolve over time [79].

Hess and Polt [81] claimed first that pupil dilations indicate mental effort; they ob-
served a correspondence between participant’s pupil size when solving arithmetic
problems and the problem difficulty. This correspondence between mental effort and
pupil size was later confirmed in many contexts, in a variety of studies an increase of
task demand or difficulty led to an increase of pupil size [58]. This pupillary dilation as
a function of the mental load required to perform a cognitive task is also referred to as
task evoked pupillary reflex (TERP) [82]. TERP has been obtained for a variety of cog-
nitive processes, like short-term memory, language processing, reasoning, perception,
sustained attention and selective attention [82]. In an interactive context, within an ex-
periment the pupil size of participants was reviewed while performing an interactive
task consisting of multiple subtasks and also here pupil size was found to correlate
with varying mental workloads of these subtasks [83].
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Although pupil size was found to increase “when task processing resources demands
do not exceed available resources”, conflicting results were found under conditions of
overload [84], as cited by [85], [86]. In many previous works the TERP was researched
to examine capacity-limited processing and pupil diameter was found anticorrelated
with the depletion of a limited pool of resources by cognitive processes [25]. Granholm
et al. [85] also researched pupil dilation for an excessive load in the context of a digit
span recall task, aside from a low load and moderate load. Granholm et al.’s [85] “find-
ings suggest that pupillary responses increase systematically with increased process-
ing demands that are below resource limits, change little during active processing at or
near resource limits, and begin to decline when processing demands exceed available
resources”.

Apart from pupil dilation in response to an increase of mental load, pupil dilation also
occurs in reaction to emotionally engaging stimuli, regardless of the hedonic valence
of these stimuli [87]. Pupil response is thus insensitive to the quality of the affect [88].
The pupillary reflex has been researched in different contexts with respect to emotional
arousal [88]. Xu et al. [89] researched the influence of background luminance, emo-
tional arousal and task difficulty level on pupil dilation. Luminance conditions were
found to take priority over emotional arousal and cognitive demands in pupil size
changes [89]. However, by using the difference between the average pupil size of the
first half and second half of a task interval as a feature, a significant difference for pupil
size with respect to task difficulty was found [89]. In previous work results indicated
that “cognitive demands take priority over arousal factors in affecting the pupillary
response” [90]. In this work, Stanners et al. [90] research suggests that “pupil response
will show an arousal effect only when the cognitive demands of the situation are mini-
mal”. In context of the current work we kept in mind a possible influence of emotional
arousal on pupil size with respect to pupil size metrics gathered for difficulty settings
experienced by the player as too easy. Therefore, to allow for a better understanding of
this possible confounding factor we additionally reviewed which elements and game
events in our testbed game can lead to the inducement of arousal.

To sum up, in the current research we focused on pupil dilation as an indicator of
mental workload. We stress the importance in the context of our current work to take
the influence of surrounding brightness, screen luminance and emotional arousal into
account with respect to our experimental setup and the selection of pupillometry fea-
tures.

2.3.2 Pupil-size data preprocessing

Mathôt et al. [80] provide an overview of preprocessing steps pupil size measurements
for pupillometry research. Firstly, tackling the issue of missing data, which occurs
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when an eye tracker fails to extract the pupil from the camera image, often resulting in
a pupil size of 0 [80]. Missing pupil size entries can either be replaced with interpolated
values or can be simply ignored [80]. Trials with too much missing data are sometimes
excluded from analysis [80]. Winn et al. [24] advice to drop trials when data consists
of a larger percentage of blinks ( > [15%, 25%]). In the current research we replaced
missing pupil size entries with interpolated values and excluded trails with too much
missing data.

Secondly, handling incorrectly reported pupil size values [80]. Often this occurs in
case of eye blinks which “are characterized by a rapid decrease in pupil size, followed
by a period of missing data, followed by a rapid increase in pupil size” [80]. To deal
with eye blinks, cubic-spline interpolation can be applied to replace the missing and
distorted data with a smooth line [80]. Winn et al. [24] recommend to apply interpo-
lation from 50 ms before up to 150 ms after a blink “to avoid task-uncorrelated high-
frequency changes in pupil size”. In the current research we applied interpolation to
replace data entries recorded during eye blinks and follow Winn et al. [24] recommen-
dations with respect to the interpolation window.

Thirdly, pupil size changes due to eye movements, which some trackers can distin-
guish from real pupil-size changes [80]. When a participant looks straight at the lens
of a tracker, the pupil is recorded as a near-perfect circle, when a participant for exam-
ple moves her eyes to the left this results in a lower horizontal diameter of the pupil
viewed from the perspective of the tracker. Mathôt et al. [80] offer three main ap-
proaches to deal with these eye movement artifacts. Firstly, by comparing conditions
that are matched in terms of eye position [80]. Secondly, Mathôt et al. [80] describes
data-driven correction, which uses linear regression to remove position artifacts from
pupil-size data. However, this is an unadvisable procedure according to Mathôt et al.
[80], because “not all effects of eye position on pupil size are artifactual” and therefore
“any corrective technique that assumes this is problematic” [91] (we refer the reader
to Mathôt et al. [91] for more details). Thirdly, “model-driven correction, which uses
knowledge about the relative positions of the camera, eyes, and eye tracker” [80]. In
the current research we used the pupil size from the computed pupil diameter in mil-
limeters the GP3 tracker offers which is assumed to include model-driven correction.

Additionally to the preprocessing steps advised by Mathôt et al. [80], before interpola-
tion the appliance of filters can be considered. For example, Winn et al. [24] applied an
n-point smoothing average filter. Klinger et al. (2011) found changes faster than 10 Hz
to be uncorrelated across the eyes, which justifies low-pass filtering at 10 Hz. Mannaru
et al. [92] applied a Hampel filter to remove outliers, followed by a low-pass Butter-
worth filter at 4 Hz which was justified “since most of the pupillary activity falls in the
frequency range of 0 - 4 Hz”. Additionally, pupil size measurements of left and right
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eyes can be averaged to reduce measurement noise, because “the left and right eyes
exhibit matching pupillary responses” [93]. In previous work no significant difference
was found for pupil sizes between the right and left eyes at different light amplitudes
[94]. In the current work we applied filters to our data in order to remove outliers and
remove noise and we averaged the left and right eye pupil sizes.

2.3.3 Pupil-size baseline correction

To reduce the impact of random pupil-size fluctuations between trials, baseline cor-
rection can be applied [80]. Baseline correction refers to the comparison of recordings
in the experimental state against recordings taken in a subsequent resting state; the
baseline state [95]. A baseline is commonly gathered for each trial rather than for a
whole session and is based on measurements recorded immediately before the stimu-
lus [24]. Regarding the length of the baseline period, durations range from 100 ms to
2 seconds [24], but also longer periods were used (e.g. 10 seconds [96] and 5 minutes
[97]). Mathôt et al. [80] indicate that longer periods up to 1,000 ms “have the disadvan-
tage of being susceptible to pupil-size fluctuations during the baseline period”. Short
baseline periods, like 10 ms, “have the disadvantage of being susceptible to recording
noise”. Winn et al. [24] demonstrate that “variation in the absolute baseline duration
should play no substantial role in reporting pupil dilation” (100 to 3000 ms). Accord-
ing to Winn et al. [24] a baseline period of one second is the common practice. In the
current research we applied baseline correction by comparing gameplay runs (trial) to
baseline data recorded subsequent to each run. As for baseline period length, we used
the commonly used baseline duration of one second.

Different approaches for the retrieval of a baseline pupil size are presented in previous
work. Baseline pupil sizes can be obtained in preceding periods of rest (e.g. [87]) or
while performing the same activity as during the experiment intervals but with a low
task demand (e.g. [98]). In user studies where participants view a screen, often baseline
pupil sizes are collected by letting the participants fixate on a blank screen (e.g., [96]).
Instead of displaying a blank screen, a scrambled image can be displayed, created by
scrambling all pixels in an image that represents the view displayed during the trial
[23]. A scrambled image is meaningless and thereby suited for baseline retrieval [23].
Furthermore, because a representative scrambled image has the same mean intensity
as the view displayed during a trial, screen luminance remains stable during baseline
and trial period [23]. Mitre and Hernandez [23] introduced a grid scramble filter to
generate images for baseline estimation “to better estimate baseline pupil size and to
reduce the screen luminescence effect”. To generate a grid scramble image, first a rep-
resentative image is splitted into a n x m (n columns and m rows) and sequentially
scrambling pixels per region in this grid. Grid scrambled images were found to result
in better baseline estimates compared to black, white and scrambled images [23]. With
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respect to different grid sizes no significant differences were found (86, 1010, 2020)
[23]. However, Mitre and Hernandez [23] argued a grid size of 86 “better obscures the
meaning of the in-test image”. Based on the findings of Mitre and Hernandez [23], in
the current research we displayed a grid scrambled image with a grid size of 86 (or in
our case a 68 for a portrait gameview) during the baseline period.

With respect to the appliance of baseline correction, two main approaches exist, namely
subtractive, in which pupil size is converted to an absolute difference from baseline
pupil size and divisive, the conversion to a proportional difference from baseline pupil
size [80]. These approaches are also referred to as absolute subtraction and propor-
tional transformation, where the latter “can be considered [as] an additional follow-
up step following baseline subtraction” [24]. The proportional transformation can be
viewed as unnecessary considering absolute dilation is independent of baseline size,
however, in previous work it was found relevant in the context of differences in pupil
reactions related to differences in age [24]. In the current work we therefore worked
with both subtractive and divisive baseline corrections separately. Noteworthy, divisive
baseline correctio is more susceptible for distortion due to incorrect unusually small
baseline measurements compared to subtractive baseline correction [80]. Therefore,
Mathôt et al. [80] recommend using subtractive baseline corrections instead of divi-
sive baseline correction. In case proportional change is a relevant measure, pupil size is
preferably divided “by the grand mean pupil size during the baseline period averaged
across all trials” [80].

Four other recommendations are provided by Mathôt et al. [80] which are relevant for
the current research and were taken into account. Firstly, it is advisable to perform data
preprocessing prior to baseline correction, but also, to not assume this leads to clean
data [80]. Thirdly, a visual comparison between the uncorrected data and baseline-
corrected data is advisable, to view if the correction reduced variability and did not
qualitatively change the overall results. Fourthly, baseline artifacts occur within 220
ms after a baseline period, these artifacts are thus distinguishable from real effects by
considering their timing [80]. Fifthly, it is advisable to remove trials in which baseline
pupil sizes appear as unrealistically small, because these baseline artifacts can catas-
trophically affect the overall results [80]. Unrealistic small pupil size measurements
can occur due to multiple reasons, amongst others because of noisy data, partly closed
eyes or eye blinks [80]. Because the baseline pupil size distribution varies, a fixed min-
imum threshold might not catch all problematic trials [80]. Instead of using a fixed
threshold, Mathôt et al. [80] advise to plot a histogram of baseline pupil sizes which
allows to visually determine a minimum baseline pupil size.
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2.3.4 Pupillometry measures

Commonly applied pupillometry measures are peak pupil dilation (maximal dilation in
measurement interval), peak pupil latency (elapsed time between the stimulus and peak
pupil dilation) and the mean pupil dilation [24], [25]. Other examples of pupillometry
measures are the area under the curve and the slope of the curve rise and fall periods
[25]. A single large analysis window can be used to detect main effects, multiple sepa-
rate analysis windows can be applied to separate different phases of a trial [24]. Also,
pupil size analysis can be locked to stimulus events [24].

In the current work we focused on two common measures, peak pupil dilation and mean
pupil dilation. Our trials consisted of gameplay runs and can be viewed as consider-
ably long compared to the more commonly short trials in previous work in the area
of pupillometry and mental load. We expected that multiple phases can be identified
within a gameplay run, depending on the game state and events of the testbed game.
Therefore, we aimed to apply multiple analysis windows allowing us to separate the
different phases.

Different normalization methods can be applied to compensate for individual differ-
ences in pupil size between participants. Examples of previously applied normaliza-
tion methods are expressing deviation from the baseline as “percent or proportional
change from baseline . . . [or as a] percent change of average experimental trial value
versus average control trial values”, “expressing change in pupil size as proportion
of the full dynamic range elicit by the pupillary light reflex (light-evoked range)” and
the appliance of a z-score transformation [24]. Different normalization methods have
different advantages, amongst others some methods address inter differences in vari-
ability in dilation, while other methods correct for average differences [24]. In the
current research z-standardization was applied to normalize the pupil features.

2.3.5 Pupillometry in game context

Pupil size is researched in multiple previous studies in the context of games. Köles et
al. [20] gathered pupil size measurements of participants playing the game Tetris in
multiple difficulties, where the difficulty level was altered by increasing fall speed of
the blocks. Pupil size measurements were normalized per participant through division
with the mean of the baselines recorded at the beginning and end of the procedure
[20]. A significant difference in normalized pupil diameter was found between the
very easy difficulty level and the more difficult levels, but no significant difference
was found when comparing the more difficult levels [20]. Based on their findings
Köles et al. [20] suggest that individual analysis of signals could be more informative
compared to the average values which they used during their data analysis [20]. We
wonder if the findings regarding significant differences in pupil diameters indicate that
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the participants did not reach the overload region. In our testbed game we strived to
implement a large difficulty range, including ’too difficult’ levels to try to inflict the
state of overload.

The game Tetris was also used as a testbed game in another study researching pupil di-
ameter for three game difficulties altered similarly to Köles et al. [20] by varying block
fall speed [21]. Pupil size metrics were normalized per participant by subtracting the
mean of the measurements across the three difficulties played [21]. Significant differ-
ences between the three levels were found, pupil size was found to positively correlate
with workload [21]. Noteworthy, participants were also asked to perform a secondary
task during the experiment to allow assessment of the demands of the primary Tetris
task, but no significant differences were found in secondary task performance [21]. Where
we viewed secondary measurements as too intrusive with respect to the gameplay, the
findings of Malleck et al. [21] form an additional reason to exclude secondary task per-
formance from the current research.

Strauch et al. [22] researched the pupil size of participants while playing a game of
Pong. Strauch et al. expected to find an inverted u-curve, concurrent with findings
in previous work were an inverted u-shape was found for heart rate variability ([99]
as cited by [22]) and for self-reported valence ([100] as cited by [22]). Also, the ex-
pected inverted u-shape can be viewed to be concurrent with the non-linear relation
between pupil diameter and task difficulty as found by Granholm et al. [85]. Strauch
et al. [22] reason that the linear relation between pupil size and game difficulty found
by Köles et al [20] might have been the result of “suboptimally chosen levels of dif-
ficulty”, the overload region might not have been reached and thereby the results did
not follow an inverted u-curve [22]. The results of Strauch et al. [22] do demonstrate
an inverted u-shape for the relation between pupil size and increasing difficulty [22].
Furthermore, the results indicate that the pupil diameter can serve as an indicator of
the under- optimal- and overload of a game for the player, which is strongly associated
with subjective gaming appraisal [22]. Noteworthy, for the most difficult levels the
results suggested a small to moderate correlation between a larger pupil size and the
participant’s level of engagement [22]. In the current research we built upon the previ-
ous work of Strauch by implementing difficulty levels with which we aimed to cover
the entire range from underload to overload. Our research differed with respect to the
testbed game; we deliberately chose to research pupillometry in the context of the more
complex video game Pac-Man compared to the “simple two dimensional video game”
Pong [22].

In the context of an educational video game, Mitre-Hernandez et al. [23] trained and
compared multiple Random Forest binary classifiers, predicting two difficulties (easy,
hard), using different sets of game and pupillometry features. Four different pupil fea-
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tures were gathered per measurement interval. Firstly, the mean pupil diameter change
(MPDC), which was the average pupil diameter subtracted by the accompanying base-
line average (subtractive baseline correction) [23]. Secondly, peak dilation (PD) which “is
defined as the maximal dilation obtained in the measurement interval time of the level”
[23]. Thirdly, latency to peak (LP), “the amount of time elapsed between the beginning
of the measurement interval and emergence of peak dilation” [23]. Fourthly, average
percentage change in pupil size (APCPS), which is the average of all pupil size measure-
ments subtracted with and subsequently divided by the baseline pupil size (divisive
baseline correction) [23].

Statistical differences were observed for the subtractive size-related pupillometry fea-
tures MPDC and PD [23]. No significant differences were found for the time-related
and divisive pupillometry features, LP and APCPS respectively. Multiple random For-
est classifiers were trained to predict the game difficulty [23]. The highest accuracy
(87,5%) was found for the model trained with the game features ’total errors’ and ’time
to complete a stage together with the pupillometry feature PD [23]. The MPDC (sub-
tractive baseline correction) and APCPS (divisive baseline correction) results are in line
with Mathôt et al.’s [80] recommendation to use subtractive baseline correction instead
of divisive baseline correction.

In a similar fashion to the work of Mitre-Hernandez et al. [23], we trained and com-
pared Random Forest classifiers with different feature subsets to review the added
value of pupillometry features in the context of DDA. Thus, to a certain extent the cur-
rent work can be viewed as a repetition of the work of Mitre-Hernandez et al. [23]. We
identify three main differences. Firstly, as a testbed game, we used the arcade game
Pac-Man, which offers more dynamic gameplay compared to the educational video
game in Mitre-Hernandez et al. [23]. Furthermore, Mitre-Hernandez [23] trained bi-
nary classifiers predicting two difficulty levels, while we trained multi-class classifiers
to predict the experienced difficulty.

Where the above studies in game context researched pupillometry in relation to diffi-
culty, Gutjahr et al. [88] researched pupillometry in the context of games in relation to
the affect arousal. In this study participants played a digital exercise game and pupil
size measurements were gathered and reviewed as indication of arousal [88]. The goal
of the study was “to show that active and successful interaction with a dynamic ex-
ergame triggers positive emotions to previously neutral stimuli and that measuring
pupil reactions to rewarding game events is suited to detect these emotional reactions
. . . ” [88]. In this study a between-subject design was employed for three conditions,
namely the experimental condition where participants actually played the exercise
game, a yoked control condition with the same stimuli but without actual interaction
and a control group without the game [88]. Within the experimental condition, par-
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ticipants could control the avatar’s height by varying the pedal rate of an ergometer
in order to gather flying letters [88]. Successfully catching a letter and thereby gather-
ing points was viewed as a rewarding game event for which pupil size measurements
were gathered [88]. Statistically significant pupil dilations in response to these reward-
ing game events were found [88]. Noteworthy, higher reported motivation was found
to be correlated with larger pupil dilations in response to rewarding game events.

When viewing the findings of the Gutjahr et al. [88] in context of the current work,
we expected rewarding game events that induce arousal to influence the pupillometry
features. We expected this influence to occur when a player experiences the game dif-
ficulty as (too) easy, because “pupil response will show an arousal effect only when the
cognitive demands of the situation are minimal” [90] (also see 2.3.1). In the game Pac-
Man, examples of rewarding game events are eating pellets and ghosts. We chose not
to exclude these rewarding game events from the testbed game, because our interest
lies in researching the contribution of pupillometry features in a realistic gameplay sce-
nario. However, in the original Pac-Man game, when Pac-Man eats a pellet or ghost,
the score is incremented, emphasizing these events. In our testbed game this visual
feedback, the score, could be easily left out, aiming to lower arousal and the associated
pupil response.

2.4 Pac-Man

In the current research Pac-Man was chosen as a testbed because we believe it offers
more complex gameplay compared to the testbed games in previous work in the area
of pupillometry and game difficulty (Tetris, Pong and Refraction) [20]–[23]. We argue
this allowed us to research pupil features in a more dynamic gameplay setting and
thereby hope to contribute to the findings in previous work. Within this section we
provide a short description of Pac-Man. Furthermore we discuss previous work that
utilized Pac-Man as a testbed and review the aspects of Pac-Man that are relevant in
the context of the current research.

2.4.1 Pac-Man

The goal for each level in the arcade game Pac-Man is to eat all pellets in a maze while
avoiding ghosts. The player enters the next level when the maze is cleared of all pellets
and a new round with a reset maze begins. The ghosts can capture Pac-Man, which
results in the loss of a life for Pac-Man. When Pac-Man is caught and has no lives
left the game is over. Pittman [101] provides a very thorough overview of the game
Pac-Man. Below, we review those aspects that are relevant in the context of the current
research, namely the ghost states, ghost chase strategies, the maze and Pac-Man’s pre-
turns.
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In Pac-Man three main game states can be identified, corresponding to the three be-
havioral ghost modes, namely chase, scatter and frightened. In the chase state the
ghosts hunt down Pac-Man. Each level starts in the scatter state during which each
ghost heads to its own corner. The chase and scatter states alternate at predetermined
intervals. The frightened state is activated when Pac-Man eats one of the four super
pellets that are located in each corner of the maze. During this state the ghosts ran-
domly wander during the maze for a few seconds and the roles of hunter and hunted
are swapped, Pac-Man can capture ghosts.

Each of the four ghosts have their own chase strategy. In short, the red ghost Blinky
targets Pac-Man’s current tile which results in behavior that comes across aggressive
and as if Blinky is tailing Pac-Man [101]. The pink ghost Pinky targets the tile that is
located four tiles in front of Pac-Man. Pinky comes across as if it is able to get ahead of
Pac-Man and to cut him off [101]. Clyde, the orange ghost, alters between two chase
strategies which results in seemingly unpredictable behavior at times [101]. When
Clyde is closer than eight tiles away, its scatter mode target tile located below the left
bottom of the maze is targeted. When Clyde is more than eight tiles away, it targets Pac-
Man’s tile [101]. Inky, the blue ghost, uses a more complex targeting scheme compared
to the other ghosts [101]. Inky’s target tile can be found by drawing a line between
Blinky’s current location and the tile that is two tiles in front of Pac-Man. Next, double
the length of this line and then when keeping one end of the line at Blinky’s position,
the other line end serves as Inky’s target tile [101]. We refer the reader to Pittman [101]
for a more thorough overview of the chase strategies. In subsection 2.4.2 we reflect on
ghost chase strategies with respect to difficulty.

At the beginning of a level and after the loss of a life, Pac-Man and the ghosts start at
their starting position. Pac-Man starts at the center of the bottom half. The starting
positions of Pinky, Inky and Clyde are located in the ghost house, the rectangular area
in the center of the maze. Blinky’s starting position is located directly above the ghost
house. Blinky immediately heads towards its scatter corner at the top right of the maze
and Pinky immediately follows heading for the left upper corner.

At the start of a level, the two ghosts Inky and Clyde wait in the ghost house until
Pac-Man collects a specific number of pellets (dot limit, 30 and 60 respectively in the
first level). First Inky’s dot counter is activated and when the dot counter reaches the
dot limit the ghost enters the maze, similarly then Clyde’s dot counter is activated. In
case Pac-Man does not eat any pellets till a time limit is reached the ghost next in line
to enter the maze, exists the ghost house [101] (the ghosts dot limit is not reset).

When a life is lost, a global dot counter is used instead of the personal ghost dot coun-
ters. Blinky directly exits the ghost house while Pinky, Inky and Clyde wait till Pac-
Man collects the number of pellets that matches the ghost’s personal global dot counter
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Figure 2.8: A screenshot from a browser replica of the original Pac-Man game3. The
screenshot displays the structure of the maze and the location of the pellets and super
pellets at the start of a level. Furthermore, the location of Pac-Man and the ghosts cor-
respond to their location at the beginning of a level or after the loss of a life. The green
marked zones indicate the tunnels where a speed penalty is applied to the ghosts. The red
marked zones indicate the areas where the ghosts are forbidden to turn upwards.

limits (7, 17 and 32 respectively). A captured ghost is relocated to the ghost house in
the center of the maze and exists when either the personal dot counter or global dot
counter limits are reached.

The maze in Pac-Man is static, its structure stays the same throughout the whole game2,
see Figure 2.8. At the start of a level 244 pellets and four super pellets are placed in the
maze at fixed locations. The maze contains two connecting tunnels between the right
and left edges at center height, see the red areas in Figure 2.8. These tunnels function
as teleports, teleporting Pac-Man and the ghosts from the left to the right and the other
way around. When moving through these tunnels the movement speed of the ghosts
is affected with a speed penalty, resulting in nearly half speed [101]. The areas marked
in green in Figure 2.8 are zones where the ghosts are forbidden to make upward turns.
Thus, in these zones the ghosts can only move from left-to-right and right-to-left [101].

Pac-Man can turn before reaching the center (pre-turn) or after reaching the center
(post-turn). During a pre-turn Pac-Man moves in a 45º angle towards the next tile
which results in a temporarily doubled speed [101]. Because ghosts are only able to
turn or change direction at the middle of a tile, a player can use pre-turns to her ad-

2Level 256 does differ due to a bug, which we disregard for the remainder of this work for the sake of
clarity. We refer the reader to Pittman [101] for in depth information regarding this bug.

3https://www.pacman1.net/
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vantage to put more distance between Pac-Man and ghosts, this technique is known
as cornering [101]. In the context of the current research, we expected that the occur-
rence of cornering can indicate a skilled player. Additionally, we could imagine that
a higher occurrence of post-turns occurs when a player experiences a too high mental
load. The occurrences of both were captured as an input feature for our Random Forest
classifiers.

Noteworthy, Pac-Man is discussed to a further extent in chapter 3. Amongst others,
the three ghost states are reviewed in the context of workload, we review the game
difficulty aspects intrinsic skill, stress and power provided in Pac-Man and the mapped
challenge hierarchy of Pac-Man is presented.

2.4.2 Difficulty in the original Pac-Man

As the player progresses through the game, the difficulty increases, up to level 21 after
which each level offers the same difficulty [101]. In higher levels both pac-man and
the ghosts move at a higher speed, which results in a higher overall speed [101]. Also,
the relative movement speed of the ghosts compared to Pac-Man is increased at the
higher levels [101]. Furthermore, as the levels progress the durations of the scatter and
frightened states are shortened. Also, the dot limit at the start of a level and after the
loss of a life and the timer limit, which both control the waiting time of the ghosts in
the ghost house, are lowered [101].

The difficulty also increases within a level itself. Namely, when Pac-Man almost has
cleared the pellets in the maze, Blinky becomes Elroy. Elroy moves with an increased
movement speed compared to Blinky and also targets Pac-Man within the scatter state
[101]. In the first level, when only 20 pellets remain Blinky turns into Elroy, moving at
least as fast as Pac-Man and when only 10 pellets remain Elroy speeds up again moving
faster than Pac-Man [101]. After the loss of a life, Elroy becomes Blinky again, but when
all ghosts have left the ghost house, blinky changes back into Elroy [101]. As the levels
progress, the difficulty is also influenced by an increment in the number of pellets left
that triggers the turn of Blinky into Elroy. Noteworthy, there is no designed ending in
Pac-Man, the developers “assumed the game’s increasing difficulty was sufficient to
prevent anyone from playing indefinitely” [101]. Beyond the 21st level the game every
level is identical (with exception of the 256th level which is an incorrectly displayed
level due to an overflow bug) [101].

2.4.3 Game difficulty of and game AI in Pac-Man

In this section we review previous work in the area of video game difficulty and game
AI in which Pac-Man was used as a testbed game in a chronological manner. These
previous studies offer insights with respect to game elements of Pac-Man that are of
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influence to the in-game difficulty. Additionally, performance measures and fitness
functions presented in some of these studies, provided properties that were used as
input features for our Random Forest models.

2.4.3.1 Ghost behaviors and measure of interest

Yanakakis and Hallam [102], [103] applied neuro-evolution mechanisms to a test-bed
version of Pac-Man. In [102], an off-line evolutionary learning mechanism and on-line
learning approach was applied to train ghosts against three different types of simu-
lated Pac-Man players. Yannakakis and Hallam [102] believe that the “interest gener-
ated by the opponents” to be directly related to the interest of a computer game. In
[102] a measure of interest of any predator / prey game dependent on three criteria
is introduced (interest measure). The first criterion is that a game is “neither too hard
nor too easy”, and depends on the average number of steps needed to catch Pac-Man
and the maximum number of steps in N games [102]. The second criterion is defined
as “when there is diversity in Ghosts’ behavior over the game” and depends on the
number of steps needed by Pac-Man to win a game and the minimum number of steps
needed to catch Pac-Man [102]. The third criterion “when Ghosts’ behavior is aggres-
sive rather than static” considers the extent to which ghosts cover the maze, this criteria
is dependent on the entropy of the ghosts’ cell visits [102]. For a full overview of the
interest measure and three criteria we refer the reader to Yannakakis and Hallam [102].
In the context of the current research, the elements used within the definitions of the
interest measure criteria served as input features (see 3.3).

Furthermore, in [102], three emerging ghosts’ behaviors of the off-line trained ghosts
together with three fixed behaviors were tested against the three types of simulated
Pac-Man players. With respect to performance, the three fixed behaviors, random, fol-
lowers and near-optimal, cover a distinctly different range for the three Pac-Man types.
Here, performance is a normalized measure dependent on the number of Pac-Man kills
and eaten pellets [102]. Random ghosts “randomly decide their next available move-
ment” and scored a performance value in the range of [0.400, 0.446] against the three
Pac-Man types [102]. Followers were “designed to follow PacMan constantly”, reduc-
ing the greatest of the relative horizontal or vertical distance from Pac-Man.Followers
scored a performance value in the range of [0.776, 0.839] against the three Pac-Man
types [102]. The near-optimal ghost strategy was “designed to produce attractive forces
between ghosts and Pac-Man as well as repulsive forces among the ghosts” [102]. Near-
optimal ghosts scored a performance in the range of [0.96, 1.0] against the three Pac-Man
types [102]. We argue that the performance ranges of these three fixed ghosts’ behav-
iors to be directly related to Pac-Man’s difficulty. Therefore, in the current research
these three fixed ghosts behaviors as defined and described by Yannakakis and Hal-
lam [102] were interesting in the context of difficulty adaptation of our testbed game.
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In [103] the on-line learning mechanism from [102] was tested over more complex ver-
sions of the stage (maze) “to explore the relation between the interest measure and the
topology of the stage”. In this work Yannakakis and Hallam [103] defined a complex-
ity measure that expresses complexity as inversely proportional to the average corridor
length of the stage. We considered alterations to the maze, but ultimately decided to
use the original Pac-Man maze.

2.4.3.2 Measure of flow

Beume et al. [104] propose a measure of flow that views the game from the player’s point
of view, instead of viewing the game from the game predators’ perspective [102]. This
flow measure depends on “the time-fraction in which the player is confronted with
interesting situations” [104]. The flow measure distinguishes these “situations by the
number of ghosts that are near Pac-Man and weight the situations by this number to
reflect the difficulty” [104]. Beume et al. [104] argue that Yannakakis and Hallam’s
[102] third criterion which depends on ghosts’ entropy over the maze may be mis-
leading. They reason that a maximal entropy can occur while the ghosts completely
ignore Pac-Man, which results in a high interest value but does not actually contribute
to the game’s interest [104]. Beume et al. [104] performed a user study to gather data
from participants regarding experienced fun and difficulty and compared this with the
interest measure and flow measure [104]. Both measures were found to describe the ex-
perienced level of fun, but did not capture the perceived difficulty [104]. Noteworthy,
the positive correlation between the perceived game fun and the interest measure was
found to be caused byYannakakis and Hallam’s [102] second criterion “when there is
diversity in Ghosts’ behavior over the game”. Furthermore, Beume et al. [104] found
game fun to be “much more predictable for inexperienced players than for frequently
playing probands”.

In the context of the current research, Beume et al.’s [104] flow measure was utilized
as input feature, complementing the three criterion of Yannakakis and Hallam’s [102]
interest measure as input features. Furthermore, the findings of Beume et al. [104]
regarding the difference between inexperienced and experienced players informed us
to gather relevant related aspects per participant in a questionnaire, like a participant’s
gaming frequency and gaming skill.

2.4.3.3 Trees to control ghosts

Monte-Carlo for Trees can be trained to control the ghosts in Pac-Man, a longer simula-
tion duration results in a higher ghost win rate [105]. Thereby, the simulation duration
can be used as property to adjust the difficulty of the game [105]. However, because of
the computational intensiveness of Monte-Carlo method, it is not satisfactory to apply
this method to the ghosts in Pac-Man [105]. Instead, Liu et al. [105] trained multi-
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ple less computational intensive artificial neural networks (ANNs) with data created
by the Monte-Carlo Trees for different multiple simulation times. The data was opti-
mized by only using data from games won by the ghosts [105] For the resulting ANNs
a fixed win rate was measured [105].

Similarly to the Monte-Carlo for Trees in [105], Upper Confidence bound for Trees
(UCTs) can be trained to control ghosts in Pac-Man [106]. For UCTs a longer simula-
tion duration also results in a higher ghost win rate [106]. Like the Monte-Carlo for
Trees in [105], UCTs are computational intensive and therefore not suitable in the con-
text of DDA [106]. Where Liu et al. [106] used optimized data (data from games won
by ghosts only), in [106] data from all games was used to train ANNs. Li et al. [106] rea-
son that the performance of an ANN is dependent on the quality of the training data,
“without enough occurrences for a certain path, the ANN cannot be trained well”. And
vice versa, as “simulation time grows, the UCT collected data becomes more and more
precise, which results in better trained ANN” [106]. The results in [106] indeed indicate
that by using UCTs created data with different UCT simulation times, multiple ANNs
with different levels of performance can be created. By loading ANNs with different
levels of performance for the control of the ghosts in Pac-Man, different levels of game
difficulty can be offered [106].

The approach of Li et al. [106] is very interesting in the context of the current research,
as it would allow us to create a set of multiple ANNs for the ghost control that result
in different levels of difficulty. We believe this approach to be more time consuming
compared to the three fixed ghosts’ behaviors introduced by Yannakakis and Hallam
[102] which also offer different levels of difficulty. Due to the limited scope of the cur-
rent research our preference therefore went to implementing Yannakakis and Hallam’s
[102] three fixed ghosts’ behaviors to control the difficulty. Still, in future work, the
approach of Li et al. [106] could allow for a more precise difficulty adaption, since the
UCT simulation duration can be tuned as needed to in turn tune the ANNs perfor-
mance.

2.4.3.4 Game factor analysis

Fraser et al.’s [107] introduced a methodology for evaluating the impact of game factors
on a set of player experience response variables4 and applied this to the game Pac-Man.
The set of factors in Pac-Man consisted of generic agent and fruit factors, together with
more specific factors for both two Pac-Man algorithms and two ghost algorithms. Nine
metrics of performance goals were selected, namely score, number of steps, number of
close calls, number of repeated steps, number of fruits collected, number of tokens collected,
number of power-pellets collected, number of ghosts eaten and number of levels completed.

4For a full overview of this methodology we refer the reader to [107].
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These nine response variables offer insights at a more granular level compared to for
example Yannakaki s and Hallam’s [102] interest measure and Beume et al. [104] measure
of flow. Therefore, these nine response variables were interesting as input features in
the context of the current research.

Regarding the results of Fraser et al. [107] we here review the results of a subset of
response variables and factors which we consider most relevant in the context of the
current research. We reason that a more difficult game results in a lower score, in a
lower number of tokens collected and lower number of levels completed. We also review a
subset of factors below, namely only the factors that can be applied regardless of the
implemented agent algorithms. These factors are the set of bonus factors and generic
ghost factors. The bonus factors are “the number of steps the bonus item is available”
(fruit time), “the perceived value of the bonus item” (perceived value of fruit) and “the
frequency in steps at which the bonus will be generated” (fruit frequency). The generic
ghost factors are “Manhattan distance of the vision range” (ghost vision), “number of
steps in the flee and death state time” (flee time, death time respectively).

In Fraser et al. [107] the influence of the factors on the response variables was measured
for the paired combinations of the two Pac-Man algorithms and two ghost algorithms
(four pairs in total). Per pair, the results are shared for those factors for which a statisti-
cally significant effect on a response variable was found, indicated as either positive or
negative influence [107]. For the fruit frequency factor no statistically significant influ-
ences were found on all response variables [107]. Only in one of the four Pac-Man and
ghost pairs a few response variables were significantly affected by the fruit time and
perceived value of the fruit, however the response variables in our subset of focus (score,
number of tokens collected and number of levels completed) were significantly unaffected
[107]. Informed by these results, in the context of the current research we believed that
bonus fruit factors were not suitable as difficulty parameters.

The ghost vision factor had a significant negative influence on all response variables in
our subset of focus, the results for this factor “suggest a vast improvement in the effi-
ciency and performance of the ghosts” [107]. In the current research, the implemented
ghost behavior did not depend on the ghost vision factor and was found irrelevant.

For all Pac-Man and ghost pairs in Fraser et al.’s [107] experiment, the ghost factors flee
time and death time showed a significant positive influence on all response variables in
our subset of focus, except for one pair where no significant influence on the number
of levels completed was found for the factor flee time. In other words, these two ghost
factors can be viewed to decrease the level of difficulty. Noteworthy, these factors can
only affect the difficulty during the ghost frightened game state and not during the
chase and scatter game states (see 2.4.1). We expected many players to experience the
frightened game state as a minor break from the chase state. We therefore also expected
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that when a participant is asked to either rank or rate Pac-Man gameplay runs the focus
is placed on the difficulty of the chase states. Thus, although these two factors could
serve as a difficulty parameter, in the context of the current research our preference
went to difficulty parameters that either affect difficulty in an overall manner or during
the chase state.

2.4.3.5 Player feedback to estimate player’s skill

Ebrahimi and Akbarzadeh [108] proposed “a self-organizing system (SOS) to adjust
the difficulty level of games” and applied this to Pac-Man. ANN together with Inter-
active Evolutionary Algorithms were used to evolve NPCs online. In the context of the
current research, the off-line and on-line training approaches are of interest. However,
due to the limited scope of this research we are not planning to implement a neuro-
evolutionary controller for ghosts. Therefore, here we do not fully review the learning
approaches of the SOS as proposed by Ebrahimi and Akbarzadeh [108]. Nonetheless,
the fitness function of the online training in [108] is relevant to review with respect
to input features in the current research. During the online training the fitness func-
tion is replaced by human evaluation; the player’s skill level is estimated by using the
player’s feedback. Noteworthy, in the performed experiment no human participants
were involved, during the online training phase three Pac-Man types were simulated
representing players with different skills [108]. The fitness is calculated per time frame
of ten steps and is a combination of three types of player feedback, namely number of
keys pressed, number of times to switch between keys and the number of times that
Pac-Man hits the walls [108]. For each of these three feedback types the measured value
is compared against an ideal value given Pac-Man start position and end position in
the specific frame. To illustrate, for the number of pressed keys, the delta number of
steps between the position of Pac-Man at the beginning and end of a time frame is
compared to the measured number of keys.

In the context of the current research, we believe player feedback types can serve as
input features. The three player feedback types as presented in [108] can be comple-
mented with other types of player feedback. For example, the timing of Pac-Man’s
turning by measuring the occurrence of pre-turns and post-turns in relation to the to-
tal number of turns within a frame (see 2.4.1).

2.4.3.6 Facial expressions

In one of the experiments in [46], perceived in-game difficulty was predicted by analyz-
ing players’ facial expressions in the game Pac-Man. In this experiment the participants
played three versions of Pac-Man in which the difficulty was altered by changing Pac-
Man’s speed. In these versions, Pac-Man’s speed compared to the ghosts’ speed was
slower (version a), higher (version c) and similar as in the original Pac-Man (version
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b). In the context of the current research the findings of Blom et al. [46] regarding the
experienced difficulty are of interest. Version c was expected to be experienced as less
difficult, since Pac-Man’s speed was higher than the ghosts’ speed. However, Blom. et
al. [46] observed that a higher level of game-playing skill was required to keep up with
this fast version C and only experienced players rated it at a lower difficulty. Based on
these findings, we expected that the effect of alterations of speed on the experienced
difficulty differs per person and depends on the player’s experience. Therefore, in our
experiment we included player experience input features, like estimated skill level and
player experience in the context of 2-d maze and prey/predator games. Noteworthy,
in [46], “the player was granted an unlimited number of lives in order to avoid un-
necessary frustration for some levels”. Frustration is a negative high arousal and the
induction of either positive or negative high arousal can lead to a pupil response [79],
[87]. In order to minimize pupil responses other than task-evoked pupil responses, we
excluded the visual feedback of the number of lives in our experiment.

2.4.3.7 Player frustration prediction

In [109] the game Pac-Man was used as a testbed in the context of the prediction of
player frustration. Wolterink and Bakkes [109] performed a user study in which par-
ticipants played five levels of a modified Pac-Man game. While playing, after intervals
of 30 seconds the participant was asked to rate her overall experienced level of frus-
tration for the preceding gameplay interval. Also, participants were asked about the
absence or presence of five components of frustration. Recorded game features and user
behavior together with the participant responses formed a dataset which was used to
train multiple random forest classifiers to predict player frustration [109]. Feature im-
portance analysis was applied to map the importance of the input features [109]. Four
of the five components of frustration scored relatively high in feature importance, with
“repeatedFailures” scoring highest by far [109]. Random forest classifiers that were
trained to predict frustration component responses yielded a relatively mediocre ac-
curacy [109]. As a possible explanation, Wolterink and Bakkes [109] mention that the
set of gameplay features might not accurately reflect when the frustration components
are triggered. Additionally, regarding the “repeatedFailures” component, Wolterink
and Bakkes [109] suggested another possible explanation for the mediocre accuracy;
frustration might not be caused by actually repeatedly failing, but by the perception of
repeatedly failing.

The findings in Wolterink and Bakkes [109] were interesting to review in the context
of the current research to minimize the experience of frustration to prevent workload
unrelated pupil responses. We reviewed which elements can lead to the perception of
failing, for example, the feedback of the score in Pac-Man and Pac-Man’s lives. How-
ever, we believed it was not feasible to fully exclude or alter elements that lead to the
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perception of failing. To elaborate, we expected the perception of failing can also be
dependent on personal goals set by the player and by repeatedly failing these, for ex-
ample “first clear the right quartile of pellets”. We could not track such personal goals.
Furthermore, although the set of gameplay features implemented by Wolterink and
Bakkes [109] was created in the context of the prediction of frustration, it offered a
good starting set for our experiment.
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In the current work we were interested in task-evoked pupillary response in the context
of the complex and dynamic gameplay Pac-Man offers. An available off-the-shelf Pac-
Man testbed implementation did not meet our requirements. The codebase of this im-
plementation was built around Unity’s 2d movement functionality, which does not en-
tirely suit the arcade grid based movement of Pac-Man thereby resulting in unsmooth
control. In the context of our research we wanted to avoid unsmooth control since this
can be expected to lead to the experience of frustration (negative high arousal) and
thereby lead to a pupil response unrelated to workload [79], [87]. We expected a cus-
tom build from scratch resulted in less time spent compared to a full refactor of the
available codebase, therefore we started from scratch with a new implementation in
Unity.

Four main parts can be distinguished in our testbed implementation. Firstly, the im-
plementation of the game itself. Secondly, the implementation of gameplay and game
context data output that serve as data to calculate the input features for our random
forest models (game features). Thirdly, the implementation of adaptable game compo-
nents in order to alter the game difficulty (adaptive game components). The last part
consisted of an implementation that arranged the connection to the server of the used
eye tracker on a separate thread in order to retrieve pupil data.

The actual implementation of the first three parts were preceded with consciously
made design choices, which were informed by systematic reviews of multiple aspects.
These design choices and their substantiation are described within this section to a fur-
ther extent. In short, with respect to the implementation of the game part, we applied
minor adaptations to the original Pac-Man game aiming to minimize workload unre-
lated pupil responses. With respect to the implementation of the data output, we first
gained insight into the possible relevant game features which the output data serves.
Finally, with respect to the implemented adaptive game components we identified which
game components can be adapted in order to adjust the difficulty and prioritized these
before selecting our set.

43



Design of the Pac-Man testbed game

3.1 Adaptations to the original game

3.1.1 Minimize non workload related pupil responses

Our research focused on workload related pupil responses, therefore we wanted to
prevent workload unrelated pupil responses. We aimed to minimize the pupil light
response by implementing our testbed game in grayscale colors only. In the original
game the ghosts switch between their personal color and dark blue when switching
from chase state to frightened state. Within a grayscale version the differences between
the chase state and frightened state are minimized which in turn minimizes the impact
of this switch to the pupil light response.

Furthermore, we wanted to prevent pupil responses in reaction to emotionally en-
gaging stimuli that induce the experience of arousal and frustration (see 2.3.1). We
therefore made three additional adaptations to the original Pac-Man game. None of
the adaptations described below alter the essential gameplay. Based on findings in
previous work, we can expect rewarding game events like gathering points to induce
arousal to influence the pupillometry features (see 2.3.5). Within the video game Pac-
Man we view the feedback of Pac-Man’s score, normally visualized on the screen, as
the central element with respect to the communication of the gathered points. By
excluding this from our customized game we intend to decrease the inducement of
arousal and the corresponding pupil response. Since the gathering of bonus fruit is
solely related to scoring points and becomes redundant when excluding the feedback
of the score, we also refrained from implementing the bonus fruit mechanic.

Additionally, we can expect the experience of failure to induce frustration (see 2.4.3.7)
and to affect the pupillometry features. Within the video game Pac-Man we view Pac-
Man being captured by a ghost as the main failure event of the game. Since our interest
lies in researching the contribution of pupillometry features in a realistic gameplay
scenario, we will keep this mechanic included. However, we did choose to exclude the
feedback of Pac-Man lives which would be visualized on the screen when following
the original Pac-Man game. Pac-Man’s death is emphasized by this feedback of Pac-
Man’s lives. We hope that by excluding the feedback of Pac-Man lives, the sense of
failure when Pac-Man dies is minimized, specifically when otherwise the number of
lives would have run out.

3.1.2 Chase-, scatter- and frightened state

During both the chase- and scatter states the ghosts take on the role of predator and can
capture Pac-Man. These roles swap during the frightened state. During the chase- and
scatter states avoiding ghosts is necessary to stay alive, while during the frightened
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state Pac-Man can move freely and can even capture ghosts. Therefore, the chase- and
scatter states can be viewed as being more difficult compared to the frightened state.
Furthermore the level of difficulty of the chase state compared to the scatter state can be
viewed higher, because during the chase state the ghosts purposefully chase Pac-Man,
while in the scatter state they chase their own scatter tile in one of four corners of the
maze. In other words, the frightened state can be viewed as a minor break from being a
prey and the scatter state can be viewed as a minor break from being chased. Thereby,
we expect players will answer questions regarding the experienced difficulty mainly
with the chase state in mind. With respect to predicting the experienced difficulty, our
main interest lies in game- and pupillometry data collected during the chase state.

Rounds of Pac-Man can progress in different ways over time, for example different
orders of states can occur because eating a super pellet triggers the frightened state.
Figure 3.1 displays an estimation of the relative workload during a round of pacman,
inspired by time-line analysis (see 2.2.4). We expect that the experienced workload
highly depends on the number of ghosts that chase Pac-Man. At the beginning of a
run, only Blinky is outside the ghost house in scatter mode, moving to the upper right
corner. The player can mainly focus on the collection of pellets, therefore we expect
a low workload. Pinky immediately leaves the house and moves towards the upper
left corner; an expected increase in workload. Sequentially, Inky and Clyde leave the
ghost home after Pac-Man has eaten 30 and 90 pellets respectively. Around the same
time that Inky leaves the house, the ghosts enter chase mode, resulting in an increase
in expected workload. In one round multiple occurrences of similar curves are to be
expected, since after dying the level restarts and Pac-Man will be chased again. The
same applies after a temporary break of being chased (frightened- and scatter state and
after using a teleport).

Since we are mainly interested in the chase state, it is interesting to heighten the dura-
tion of the chase in order to gather more data regarding this state. We heightened the
relative duration of the chase state by excluding the scatter state. Although the exclu-
sion of the scattered state does alter the gameplay of Pac-Man, we believe it does not
affect the essential gameplay of the prey predator mechanism. Excluding the scatter
state simply simplifies the behavior of the ghosts as predators; the ghosts always chase
down Pac-Man.

3.1.3 Game round duration limitation

Because of the exclusion of Pac-Man lives, it was necessary to implement another way
to limit the duration of a round of Pac-Man. To prevent boredom and fatigue during
the experiment, we aimed for a round’s duration between 30 to 90 seconds per round.
However, to ensure data collection each round had to be long enough that even when
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Figure 3.1: Our prediction of the workload during a run in the original Pac-Man. When
the number of ghosts that are actively chasing Pac-Man in the maze increases, the pre-
dicted workload increases as well. Then, after varying amounts of time different scenarios
can occur. Namely, Pac-Man can eat a super pellet, triggering the frightened state, Pac-
Man survives the chase state and then the game switches to scatter state, Pac-Man uses a
teleport and thereby shakes off the ghosts on his tail or a player can simply die. Then the
cycle repeats again.

a player repeatedly quickly dies still enough chase states could be utilized for data
collection. When the duration of the round exceeds one minute a round is stopped
after dying 5 times.

3.2 Pac-Man challenge hierarchy

Since challenges are directly related to game difficulty, we believe that the challenges
in Pac-Man serve as a good starting point for mapping a set of game features that can
be used to predict the experienced game difficulty and workload. In order to gain a
good overview of the challenges in Pac-Man, we mapped the challenge hierarchy for the
original Pac-Man (also see 2.1.2).

The topmost-level in a challenge hierarchy includes the game’s victory condition and
victory conditions for separate levels [12]. The goal of a level within the game Pac-Man
is clear, namely, to clear the maze of dots. However Pac-Man has no designed ending
(see 2.4.2) [101]. In other words Pac-Man has no game victory condition that can be
viewed as the main goal. We believe this absence leaves room for a player to choose
a self determined game victory condition (personal main goal). For example, a player
can view beating a (personal) high score as winning the game. Or a player might focus on
a more achievable and more short-term main goal, for example collect as many pellets.
We grouped the gathered personal main goals in four self-defined categories, namely
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Ghost survival and capture, Progression goals, Collection goals, Highscore goals, see Table 3.1.
This mapping of personal main goals enabled us to map the challenge hierarchy to a
further extent, compared to when we would have focussed on the designed level goal
Clear the maze of dots only. Worthy of mention, since this mapping is based on reasoning
only, we do not expect to have covered the full possible set of personal main goals that
a player can adopt within the game Pac-Man. Also noteworthy, within this step we
reviewed the original game of Pac-Man, thus a game including the feedback of Pac-
Man’s lives and the score and the bonus fruit mechanic.

Table 3.1: The gathered personal main goals a player can adopt in Pac-Man, assigned to
the four self-defined categories.

Ghost survival and
capture Progression goals Collection goals High score goals

Survive as long as
possible Reach a high level Collect as many

pellets Beat high score

Capture as many
ghosts

Set a new personal
level record

Collect as many
fruits

Set a new personal
high score

Create as many
ghost combos

We reviewed the gathered personal main goals a player can adopt (Table 3.1) in or-
der to identify challenges at lower levels. For example, considering the personal main
goal Beat high score, amongst others we identified the atomic challenges Eat bonus fruit,
(Consecutively) eat ghosts. Some personal main goals can be connected to the same chal-
lenges at lower levels, for example the main goal Capture as many ghosts also leads to
the atomic challenge (Consecutively) eat ghosts. Due to this shared connectivity, display-
ing our set of personal main goals and their connections to other challenges within the
challenge hierarchy would lead to an unclear overview. Instead, for the sake of clarity,
the challenge hierarchy displayed in Figure 3.2, only shows a selection of personal main
goals.

3.3 Game features

To gather gameplay and game context data (game features) that can serve as input fea-
tures for our random forest models (see 2.1.5) we performed four main steps, namely,
gathering game features applied in previous work (Step 1), gathering game features for
challenges within the created challenge hierarchy (Step 2), gathering game context game
features (Step 3) and combining these sets of game features (Step 4).
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Figure 3.2: The mapped challenge hierarchy, displaying the top-level challenges, the
intermediate-level challenges and atomic challenges together with the actions a player
can perform. Because of the shared connectivity between the personal main goals a player
can adopt and other challenges in the hierarchy, this figure only shows a selection of per-
sonal main goals for the sake of clarity.
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3.3.1 Step 1 - Game features in previous work

In order to gather game features that were discussed in previous work in which Pac-
Man was used as a testbed, we looked at the previous work discussed in section 2.4.3
(namely: [46], [102]–[109]). See Appendix A for a full overview of the set of gathered
features.

3.3.2 Step 2 - Game features abstracted from challenges

Next, we gathered game features for each challenge within the created challenge hierar-
chy. Firstly, we reviewed which challenges were irrelevant in our customized game (in
which the feedback of the score and Pac-Man’s number of lives and the bonus fruit me-
chanic are excluded), see Appendix B. Sequentially, for each element deemed relevant
we mapped possible game features. During this process, we identified two different cat-
egories, namely event and state, with which we refer to the standard game terms game
event and game state. Some examples of event game features are # of direction switches,
# of teleports. Examples of state game features are # times chasing ghosts and percentual
standing still duration.

The distinction between event and state game features enabled us to review the game
features in a more generic manner. Thereby, we gained a more structured set of gathered
game features. This in turn enabled us to identify additional event and state game features
that were not related to the challenge hierarchy. Namely, game features related to the
events death and Pac-Man visits a tile (event), Ghost visits a tile (event, per ghost) and
state Pac-Man is being chased. See Appendix D for all gathered event and state game
features.

Furthermore, the distinction between events and states was used to design separate
data set formats in order to store occurred events and states. These data sets formed
the format for the csv output data. In our testbed game both the occurred events and
states are stored in separate csv output files per game session. See Appendix C for an
overview of the generic event and state data sets.

3.3.3 Step 3 - Game context game features

To map game context game features, we first reviewed which elements of the game
change over time and which can differ per game session. The game attributes that
change within a game are the game state (e.g. chase mode or frightened), the positions
of all five entities, the number of existing regular pellets and each of the four super
pellets existence. The difficulty setting can differ per game session. This data formed
the essential game context data set, see Appendix C.
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Sequentially we reviewed which related overarching elements depend on this essential
game context data set in order to identify game context game features. For example, we
identified the average number of ghosts that are in chase mode as a game feature (exclud-
ing ghosts that are in the ghost house). Although this value can be calculated based
on the ghosts’ positions and game state, it was easily extracted from ghosts’ in-game
attributes and therefore added to the game context data set, see Appendix C.

Other examples of identified game context game features are distance related game fea-
tures. For example, we believe a game session in which the ghosts are mainly spread
out in the maze results in a different game experience for the player compared to a
game session in which the ghosts move close together. Due to this we identified the
average inner distances between all ghosts and the average distance between the ghosts and
Pac-Man. Another example, when viewing the ghosts as a group, the distance be-
tween the group viewed as a whole and Pac-Man could be of influence to the game
experience. We identified the average distances between the ghosts and their centroid and
the average distance between Pac-Man and the ghosts’ centroid as game features. For a full
overview of all game context game features see Appendix D.

3.3.4 Step 4 - Combining all game features

At this step we noticed that the resulting set of game features gathered in step 2 and 3,
was far more extensive compared to the gathered set of game features applied in previ-
ous work (step 1). Only a few relevant game features from our overview of game features
applied in previous work were not yet covered in the set of game features resulting
from step 2 and 3. Namely, level completion time [109], entropy of the ghosts’ cell visits
(see 2.4.3.1) [102], [103] and measure of flow (see 2.4.3.2) [104]. Additionally, Yannakakis
and Hallam [102], [103] used the sum of the delta distance between a ghost and Pac-
man as input for their online learning fitness function within the training process of
the ghosts’ AI, in order to promote ghosts that move toward Pac-Man. We included
this value as a game feature in our experiment. For a full overview of all game features
see Appendix D.

3.4 Mapping adaptive game components

To gather game- and pupillometry data to predict the experienced difficulty, we let
participants play multiple rounds of Pac-Man with different levels of game difficulty
(within subject design, see 4.2.1). The difficulty was altered by adapting game com-
ponents that affect the level of challenge (adaptive game components) (see 3.5). Some
component adaptations affect the difficulty during the full period of the chase state,
for example the adaptation of the overall speed. Some component adaptations will not
always affect the difficulty during the full period, for example an addition of teleports
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at the top and bottom of the maze. Such additional teleports would lower the difficulty
because they offer the player another escape route when being chased by the ghosts.
However, this additional escape route would only be relevant to a player when Pac-
Man is near the teleport and in case a player is aware of this escape strategy. Therefore,
this example illustrates that some component adaptations would not necessarily result
in a different experienced difficulty.

In identifying and selecting adaptive game components to be implemented in our testbed
game, we went through a systematic process consisting of the following seven steps,
to a further extent discussed in the rest of this section. As mentioned we focused on
the impact of difficulty during the chase state, our main state of interest (see 3.1.2).

We started by mapping the adaptive game components applied in the original Pac-Man
game (step 1, also see 2.4.2). Then we mapped adaptive game components applied in
previous work Pac-Man testbed games (step 2, also see 2.4.3). Step 3 consisted of map-
ping the adaptive game components by reviewing the game difficulty aspects intrinsic
skill, stress and power provided in Pac-Man (also see 2.1.2). We mapped adaptive game
components by looking through the lens of our custom selection of four categories of
adaptive game components, namely attributes, behavior, game level/-world layout and
events (step 4, also see 2.1.3). We then combined all identified and relevant adaptive
game components from the first four steps (step 5). We evaluated and prioritized the
resulting list (step 6) of adaptive game components based on multiple preconditions and
valuations. Finally, we selected three high ranking adaptive game components of the re-
sulting prioritized list (step 7).

3.4.1 Step 1 - Adaptive game components in original Pac-Man game

We first mapped adaptive game components in the original Pac-Man game. Due to the
clear overview presented by Pittman [101], this step turned out to be quite straight-
forward. We thoroughly reviewed Pittman’s [101] overview in order to map adaptive
game components in the original Pac-Man game. For the resulting set of adaptive game
components, see Appendix E.

3.4.2 Step 2 - Adaptive game components in previous work

To map adaptive game components applied in Pac-Man testbed games in previous work,
we looked at the previous work discussed in section 2.4.3 Game difficulty of and game
AI in Pac-Man (namely: [46], [102]–[109]. For each identified adaptive game component
we reviewed its relevance in the context of this work. For example, for the identified
adaptive game component ghost behavior we found different strategies. For some of these
strategies we found clear information in previous work about the ghost performance
specifically related to game difficulty. We viewed these as relevant options for the
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ghost behavior adaptive game component while the others were marked as irrelevant. See
Appendix F for the outcome of this step.

3.4.3 Step 3 - Review of intrinsic skill, stress and power provided

We also identified adaptive game components by reviewing Pac-Man from the perspective
of the game difficulty aspects intrinsic skill, stress and power provided (also see 2.1.2).
In this section we will share our reasoning with respect to each of these three game
difficulty aspects.

3.4.3.1 Intrinsic Skill

As mentioned in 2.1.2, Intrinsic skill refers to the level of skill needed to overcome a
game challenge leaving out any element of time pressure [12]. Since Pac-Man is a con-
tinuous game, meaning all entities perform actions simultaneously, viewing Pac-Man
without any elements of time pressure, can only result in an imaginative turn-based
version of Pac-Man. In a turn-based game entities perform actions in turns instead of
performing actions continuously. Thus, in order to view the game Pac-Man without
the element of time pressure, we have to imagine a turn based version of Pac-Man.
Within this imaginative turn-based version of the game Pac-Man we view the outcome
of a player’s turn as the choice to which adjacent tile Pac-Man should move. In such
a turn-based version of Pac-Man a player can take all the time necessary to decide on
Pac-Man’s next direction. This enables a player to carefully plan and execute a route
through the maze, in order to escape / capture ghosts (in the chase / frightened state
respectively), to collect pellets and to collect bonus fruit. Here, we view navigation
through the maze, consisting of route planning and execution, as a central skill in the
game Pac-Man. Thereby, intrinsic skill of the original Pac-Man game can be viewed
as navigation as well. Examples of adaptive game components that we expect to be of
influence to required level navigation skill are maze topology, regular pellet locations and
bonus fruit locations. For a full overview of the adaptive game components of influence to
the required navigation skill see Appendix G.

3.4.3.2 Stress

As mentioned in 2.1.2, when a challenge includes time pressure, the factor stress is of
influence to the absolute difficulty [12]. Since we aim to identify adaptive game compo-
nents that can possibly be relevant for our testbed game by viewing aspects related to
the game difficulty, we are not interested in mapping the absolute difficulty of Pac-Man
itself. Therefore, we leave absolute difficulty out of scope. However, we do review el-
ements of Pac-Man that are related to time pressure and thereby of influence to the
factor stress.
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We believe that the time-pressure a player experiences during the chase state is mainly
related to the ghosts moving continuously and trying to capture Pac-Man. Here, the
speed of the ghosts matters. When comparing a higher ghost movement speed to a
lower speed, a higher speed leaves the player less time to plan and execute a route
through the maze. Therefore, we identify relative movement speed of ghosts (compared to
movement speed Pac-Man) as adaptive game component. Additionally, when comparing
a higher Pac-Man movement speed to a lower speed, the time window to perform a
move action at a corner or junction is shorter at a higher speed. Since an alteration of
Pac-Man’s movement speed also alters the relative movement speed of ghosts (compared
to movement speed Pac-Man), instead we indicate an adaption of all movement speeds,
namely overall movement speed as adaptive game component.

We identify four scenarios during which a player can experience the opportunity to
collect pellets without being chased for a short moment of time, which can be experi-
enced as a less stressful moment. Firstly, at the start of a game and after a loss of a life,
the ghosts wait in the ghost house before entering the maze. Similarly, after a ghost
is captured, it returns to the ghost house, sometimes waiting shortly before entering
the maze again in chase mode. Thirdly, during the scatter game state ghosts traverse a
repeating path in their own corner aiming for their personal scatter tile. Lastly, during
the frightened game state, a player is granted a small window of time to chase and
eat ghosts. The waiting time in the ghost house in the first two scenarios depends on
the ghost dot limit and ghost personal global dot counter threshold (see 2.4.1) and which we
therefore both identify as adaptive game components. Additionally, we identify scatter
game state duration and frightened game state duration as adaptive game components.

When nearing the end of the frightened state, a blinking animation of the blue ghosts
informs the player that the frightened state is almost over. We imagine this blinking
animation can induce a heightened experience of time pressure. Therefore, we also
identify blinking ghosts animation duration as an adaptive game component. See Ap-
pendix G for the overview of the adaptive game components related to stress.

3.4.3.3 Power provided

As discussed in 2.1.2, power provided refers to the power the game provides to the player
[12]. We argue that the relative movement speed of Pac-Man compared to the ghosts
can be viewed as a power provided to Pac-Man. Since, when Pac-Man moves faster
than the ghosts, Pac-Man can more easily escape the ghosts during the scatter and
chase state and can more easily capture ghosts during the frightened state. In turn,
completing the level by collecting all pellets will be more easy. Also with respect to
power provided we identify relative movement speed of ghosts (compared to movement speed
Pac-Man) as an adaptive game component.
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We can also view the warp tunnels in the perspective of power provided. Only ghosts
receive a movement penalty within the warp tunnels. Therefore, when ghosts tail Pac-
Man through these tunnels, the relative movement speed of Pac-Man compared to
the ghost(s)s is heightened. Additionally, when ghosts are near Pac-Man at one of
the two sides of the maze in the center, Pac-Man can use the warp tunnels to teleport
to the other side. Ghost do not use the teleport in such a controlled manner, they
teleport after entering a warp tunnel but do not use the teleport mechanism in their
path planning. Therefore, we view the teleport mechanism as power provided to the
player. Successively, we identify the ghost speed penalty in warp tunnels, number of warp
tunnels and number of teleports as adaptive game components.

When Pac-Man eats a super pellet, the frightened state is activated and the roles of prey
and predators are swapped, enabling Pac-Man to hunt down ghosts. Within this state
Pac-Man is given the opportunity to collect pellets without being chased by ghosts. We
therefore view super pellets as a power provided to the player and identify the number of
super pellets as adaptive game components.

Finally, when Pac-Man is captured by ghosts, Pac-Man loses a life. When no lives are
left, the player is game over. Pac-Man’s lifes can thus be viewed as a power provided to
the player. We identify the number of Pac-Man lifes as an adaptive game component. See
Appendix G for an overview of the adaptive game components related to power provided.

3.4.4 Step 4 - Review of adaptive game components categories

We reviewed the mapped challenges in our mapped challenge hierarchy (see 3.2) through
the lens of each of the four adaptive game components categories (attributes, behavior, game
level/-world layout; and events). For example, for the atomic challenge (Consecutively) eat
ghosts we identified the adaptive game components number of ghosts, ghost speed, Pac-Man
speed and Frightened state duration within the category attributes. Furthermore, for this
challenge we identified ghost behavior during frightened game state within the behavior
category. Additionally, within the adaptive game component category game level /-world
layout we identified maze topology, maze complexity and captured ghosts relocation. For a
full overview of the within this step mapped adaptive game components see Appendix H.

3.4.5 Step 5 and 6 - Overview of all adaptive game components

The outcome of the first four steps was merged in a combined list with all identified
relevant adaptive game components (step 5). Additionally, we performed three steps in
order to prioritize the gathered adaptive game components, which are discussed to further
extent below. In short, we reviewed all adaptive game components with respect to the
DDA requirements, their impact on the difficulty during the chase state, the expected
impact to the game difficulty and the expected implementation complexity.
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3.4.5.1 DDA Requirements

We reviewed the adaptive game components with respect to the DDA requirements. We
formulated these DDA requirements shared by Andrade et al. (2005) (also see 2.1.1) as
follows: “1. A DDA system implementing this adaptation is able to quickly identify
and adapt to a player’s initial level”; “2. A DDA system implementing this adapta-
tion is able to fastly and closely track and adapt to the player’s improvement or falling
level.”; “3. The adaptation is unperceivable by the player and the game must remain
believable.”. For each adaptive game component we indicated if it meets the require-
ment, indicated by a number in the range [1, 5] referring to [not probable, very probable]
respectively.

Noteworthy, during this step we noticed that for some adaptive game components the
timing of the adaptation matters. In these cases we reviewed three options with respect
to timing, namely immediately, after Pac-Man dies and after level completion. For example,
we expect that an alteration of the number of super pellets during the gameplay is
quite perceivable and thus does not meet the third requirement. However, after the
completion of a level we expect it will be noticeable but a player can also assume it is
part of the setting newly reached level design. Considering the timing of the adaptive
game components led to a different ranking with respect to the DDA requirements.

Finally, we excluded the adaptive game components that scored either not probable or some-
what improbable for at least one of the DDA requirements. For the remaining adaptive
game components we calculated the mean of the three assigned DDA requirement val-
ues. The results can be found in Appendix I.

3.4.5.2 Impact on difficulty

Firstly, since we expect participants to rank the experienced difficulty mainly based
on their experience during the chase state (see 3.1.2), the adaptive game components for
which we do not expect any to impact the difficulty during the chase state were ex-
cluded for further reviewing. Next, we indicated the expected impact to the game
difficulty in range from [1, 5] referring to a [low, high] impact respectively. Noteworthy,
for some adaptive game components reasoning about the possible impact on the difficulty
did not lead to a clear estimation. We marked these as ”unpredictable”. An example
is the adaptive game component “dynamic starting location: in quartile with the most
pellets vs. in quartile with the least pellets”. We reasoned as follows.

“In case all the pellets from some of the quartiles are collected, positioning Pac-Man’s
start location in the quartile with the most pellets saves Pac-Man a trip to this quartile.
However, in our experience it is often the case that near the end of a level multiple quartiles
still contain a few pellets. In this case, when starting in the center of the quartile with the

55



Design of the Pac-Man testbed game

most pellets, Pacman still needs to navigate to the other quartiles with only a few pellets
left in order to complete the level. Therefore, we can not estimate if it actually matters
if Pacman starts at the quartile with the most pellets or in a quartile with less pellets.
Instead of aiming to make the game more easy by positioning Pac-Man within the quartile
with the most pellets, we can also imagine the opposite, namely making the game more
easy by positioning Pac-Man within the quartile with the least number of pellets. Because,
locating a player inside the quartile with the least number of pellets allows her to focus on
finishing this quartile first enabling her to afterwards focus on a smaller part of the maze,
which in turn could heighten her focus and make the game slightly easier.”

We excluded all adaptive game components that scored low and those which we indicated
as unpredictable regarding their impact to the difficulty. The results can be found in
Appendix I.

3.4.5.3 Expected implementation complexity

In order to map our expectations with respect to the implementation complexity of the
adaptive game components, we assigned a number in the range [1, 7] corresponding with
[very low, very high] complexity respectively. We used the range [1, 7] instead of [1, 5]
simply because we noticed a higher granularity was beneficial for our mapping. Due to
the limited scope of the project, we excluded adaptive game components that scored 5 or
higher, thus for which we expected a relatively high implementation complexity. This
resulted in only one exclusion, namely the exclusion of “switching between multiple
neural networks to control ghosts, with different performance, dependent on the UCT
simulation time of which the data is used to train the neural networks”, an identified
adaptive game component applied in the research of Li et al. [106]. The other remaining
adaptive game components were thus deemed doable within the scope of this research.
The results can be found in Appendix I.

3.4.6 Step 7 - Selection adaptive game components

Appendix J displays the resulting list of adaptive game components. This list is sorted
based on to which extent the adaptive game components were indicated to meet the DDA
requirements and the estimated impact on difficulty from high to low. We selected
the top 4 adaptive game components for our testbed game, whereby the first two Ghosts
- movement speed and Pac-Man - movement speed are combined into one, namely relative
movement speed of the ghosts compared to Pac-Man. This resulted in a set of three adap-
tive game components. Namely, relative movement speed of the ghosts compared to Pac-Man,
increase vs. decrease speed (relative speed), game speed - overall movement speed, increase
vs. decrease speed(overall speed), Ghost - chase behavior, switching between the three fixed
ghost chase strategies as described in Yannakakis and Hallam [102], [103], namely ran-
dom, followers and near-optimal (ghost behavior).
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3.5 Difficulty settings

The three selected adaptive game components were implemented in our testbed game.
For each of the three components we created an easy, medium and hard difficulty set-
ting. These three settings of the ghost behavior adaptive game component correspond to
the three fixed ghost chase strategies random, followers and near-optimal respectively
[103]. The three settings of the relative speed and of the overall speed were set and tuned
in an iterative manner. The settings were tested multiple times by both an inexpe-
rienced gamer and an experienced gamer who plays quickly paced games weekly.
Noteworthy, these two components’ settings were further tweaked during the pilot
study (see 4.1).

The resulting difficulty space is displayed in Figure 3.3 and consists of 27 different
combinations of difficulty settings. Since an experiment with 27 rounds of Pac-Man
would be too lengthy duration wise, we selected a smaller set of combinations. First,
we excluded the combinations with opposite settings per axis, thus sets of settings with
both hard and easy, for example ghost behavior: hard, overall speed: hard and relative speed:
easy. This resulted in a diminished set of 15 combinations. Next, since we still deemed
15 rounds as too much, we further downscaled our set. Because we can imagine play-
ers getting frustrated when ghosts move quicker compared to Pac-Man, we found this
setting of least interest. Therefore, we viewed the central set of combinations to consist
of different settings regarding the ghost behavior and overall speed and the relative speed
as a way to further intensify the most difficult settings. In other words, within 7 of the
9 combinations the relative speed was set to medium and only in two combinations too
easy and hard to further intensify the combination of ghost behavior: easy, overall speed:
easy and ghost behavior: hard, overall speed: hard respectively. The numerical order as dis-
played in Figure 3.3 expresses our expectations regarding the chronological increase in
terms of the difficulty level.
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Figure 3.3: The difficulty space as implemented in the testbed game, consisting of three
difficulty settings easy, medium and hard for the three adaptive game components ghost behav-
ior, relative speed and overall speed. The three settings of ghost behavior in chronological or-
der correspond to the three fixed ghost chase strategies random, followers and near-optimal
respectively [103]. The three settings of the relative speed and of the overall speed were set
and tuned in an iterative manner. A set of nine combinations was selected, in this figure
depicted by the nine numbers of which the numerical order corresponds to the expected
chronological difficulty increase.

58



4. Method

A user study was performed in which participants played multiple rounds of Pac-
Man with different levels of difficulty in order to gather data and create a dataset.
Within the user study the participants played a practice round of Pac-Man in order to
allow the participant to familiarize with the game and the controls. Sequentially the
participants played nine rounds of Pac-Man at different difficulties. For each round,
gameplay, game context and pupillometry data were collected together with partici-
pant responses regarding game experience in order to form a dataset. Further below
we elaborate on the experimental design and the procedure of the experiment.

Following the experiment, a statistical analysis was applied to analyze the relation
between the features in the dataset and participant’s answers regarding game experi-
ence. Multiple random forest models were trained on subsets of the created dataset
to predict the participants’ game experience responses. The accuracy of these trained
classifiers was analyzed and feature importance analysis was performed in order to
map the added value of the used pupillometry, gameplay and game content features.

4.1 Pilot study

Before arriving at the final experimental setup as described in the following subsection,
4.2.4, we performed a small pilot study in order to tune the initial experimental setup
we had in mind. Within this pilot study we performed the full procedure three times
fully and one time only partly by focussing on the level of clearity questionnaire ques-
tions only. We applied the PMI thinking tool of Edward de Bono [110], which enabled
us to perform a structured scan1, see Appendix K.

Because the first round of our pilot study already provided us with some useful in-
sights, we decided to immediately alter minor parts in order to be able to test the
slightly adapted experiment again. For an overview of the outcome of the PMI and the
minor changes to our experiment setup see Appendix L. Changes made to the testbed
game based on the pilot study findings were the increasing of the absolute speed of

1De Bono’s [110] PMI is an attention-direction tool with which you first focus on gathering the Plus
Points (P), then toward the Minus points (M) and lastly the Interesting points (I) [110]. The first step
consists of gathering these three types of points, which should be done in a disciplined manner in only
two to three minutes [110]. Sequentially, within the second step of the PMI thinking tool one can ob-
serve and react to the outcome of the first step [110].
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the game and the relative speed of the ghost with respect to Pac-Man. Furthermore, in
the game sessions with the highest speed settings the controls did not always react fast
enough, we therefore heightened the frame rate from 30 fps to 60 fps which solved this
issue.

Other adaptations mainly concerned survey questions and information shared with
the participants. For example, some changes regarded sentence constructions to im-
prove clarity of questions. Also, we switched from a 5-point likert scale to a 7-point
likert scale. Our initial choice for a 5-point likert scale was based on findings that a
5-point likert scale can be experienced as more quick and easy to use compared to a 7-
point likert scale [111]. During the pilot study we noticed “For the two questions about
the experienced difficulty and effort cost, most given answers were located around the
middle of the likert scale, slightly more answers at the left side”. We therefore choose
to switch to the 7-point likert scale in order to offer a more granular scale, which has
also been found to be more accurate [112].

4.2 Experimental design

4.2.1 Experimental conditions

We applied a within subject design in which each participant played nine rounds of
Pac-Man with different difficulty settings, excluding the practice round. In order to
minimize the influence of a possible learning curve, we applied a simplified version of
the latin square. Due to the nine different difficulty levels a full application of the latin
square would have required a multiple of nine participants. We expected a sample
size of 20 and chose a suitable strategy mimicking the rotation of conditions of a Latin
Square.

Based on our own experience with the selected nine combinations of difficulty settings
(see 3.5), we expected that the settings of the overall speed would be most consciously
noticed by the participants. We therefore constructed the nine difficulty combinations
from this perspective. See Figure 4.1, we can identify three groups with respect to the
overall speed setting, namely (1, 2, 4), (3, 5, 7) and (6, 8, 9). When starting in the middle
of the nine sets and then continuing to a next set of difficulty settings by adding 4
(wrapping values > 9), we get the order 5, 9, 4, 8, 3, 7, 2, 6, 1. Within this order we can
distinguish three groups of three combinations, each group starting with a different
overall speed setting ((5, 9, 4), (8, 3, 7) and (2, 6, 1)). Furthermore, the sequence contains a
consistent difference between the sequential combinations, the difference is always 4 or
5 steps. There is one occurrence in this sequence where a combination follows another
that uses the same difficulty setting for overall speed, namely 3 and 7. However, since
these two combinations use easy and hard for ghost behavior, we expect the difficulty to
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Figure 4.1: On the left, the order of the experimental conditions spread amongst the three
participant groups A, B and C. With this we aimed to mimic the rotation of a Latin Square.
To illustrate, the order of group B is 8, 3, 7, 2, 6, 1, 5, 9, 4. Here, the condition numbers refer
to the difficulty settings that consist of a combination of three settings for ghost behavior,
relative speed and overall speed, displayed in the difficulty space on the right (also see Fig-
ure 3.3).

be sufficiently divergent.

The participants were divided in three groups (A, B and C), whereby each group
started at a different subset of three combinations. Thus, all participants played nine
rounds with the nine difficulty combinations, starting at difficulty combination 5, 8 or
2, see the experimental condition order in Figure 4.1. For example, a participant as-
signed to group B played nine rounds with the difficulty sequence 8, 3, 7, 2, 6, 1, 5, 9, 4.
Noteworthy, the practice round was always played at level 5, in which all three adaptive
game components were set to medium. Thereby, the difference between the practice level
and either one of the three starting levels was kept lowest.

4.2.2 Questionnaire

Three questionnaires were composed, namely a demographics questionnaire, a short
questionnaire asked after each round of Pac-Man which consisted of three questions
regarding the experienced difficulty and a questionnaire at the end with questions re-
lated to the overall game experience.

4.2.2.1 Demographics questionnaire

The demographics questionnaire consisted of questions regarding the participants’
gender and age. Since tiredness can affect pupil size indirectly (see 2.3.1), the ques-
tionnaire also included the shortened fatigue questionnaire (Verkorte Vermoeidheid
Vragenlijst: VVV) [113] in order to capture the degree of fatigue of participants. Ad-
ditionally, we wanted insight into the participants’ skill level. In order to sort partici-
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pants into gamer skill categories, often “hours per week” is used as an indicator [114].
However, self-chosen gaming skill questions appear to be a stronger metric compared
to gaming frequency [114]. We therefore implemented questions regarding both gam-
ing frequency to capture previous familiarity with video games and questions regard-
ing gaming skill in order to capture expert/non-expert demographics. Both types of
questions were asked with respect to gaming in general, arcade games and Pac-Man.
See Appendix M for the demographics questionnaire.

4.2.2.2 Pac-Man experience questionnaire

Three questions were asked after each round of Pac-Man asked the participants to
estimate the experienced challenge, the felt competence and the invested workload.
The first question, regarding the experienced challenge, was based on the MiniPXI
Challenge construct question “The game was not too easy and not too hard to play”
with a 7-point likert scale ranging from strongly disagree to strongly agree [115]. Since
we were interested in the experienced challenge instead of if the experienced challenge
suited the participants, we adapted this statement to “The last game was very hard to
play.” (CHAL).

The second question reviewed the experienced competence. The MiniPXI Mastery con-
struct bears resemblance to related constructs of Competence in Self-Determination
Theory [115]. The statement “I felt I was good at playing this game” was adapted to “I
felt I was very good at playing the last game.” (COMP) in order to emphasize the ques-
tion referred to the last round of Pac-Man. Noteworthy, since the MiniPXI Mastery con-
struct was recognized as a multidimensional construct, the single-item measure may
serve to generally screen for Mastery, but not accurately reflect its multi-dimensionality
[115].

The third question reviewed the experienced workload, since in the current work we
focus on workload related pupil responses. To the authors knowledge, no standard-
ized question exists to capture an estimation of the invested workload in the context
of games. Instead we based our question on a statement from the in-game version of
the Game Experience Questionnaire [116], namely “I had to put a lot of effort into it”
of the component Challenge. We adapted this statement to “I had to put a lot of effort
into the last game.” (WRKL), again in order to emphasize the question referred to the
last round of Pac-Man.
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Noteworthy, we are aware that comparing rating-based responses across participants
neglects the existence of interpersonal differences regarding the rating scale. In com-
parison, pair-wise ranking minimizes the effects of self-reporting subjectivity biases
[17] and could therefore be viewed as more suitable. However, we chose a rating-
based experience questionnaire for two reasons. Firstly, we consider the duration of
the game rounds of about one minute to be too long for pair-wise ranking. Secondly,
we view the implementation and corresponding processing of pair-wise ranking is out
of the scope of this project.

4.2.2.3 Overall game experience questionnaire

At the end of the experiment the participants were asked to fill in one last question-
naire. This questionnaire consisted of statements about the participants’ experience
and gaming behavior in all games of the entire experiment. These questions were con-
structed based on the relevant challenge hierarchies top-level- and intermediate-level
challenges in order to gain insight in the participants’ possible self determined game
victory conditions and applied strategies respectively. For example, the intermediate-
level challenge Save up super pellets was reflected in the question “I consciously saved
up super pellets so that I could use them later at a convenient time.”. Another example
is the intermediate-level challenge Stand still at end of path which was covered in the
question “I consciously tried to shake off ghosts by standing still at the end of paths.”.

Additionally, we added questions that concerned the speed of the game and the ef-
fect of the ghosts, both related to the implemented adaptive game components. The two
questions regarding game speed were “I found the slow paced levels more easy com-
pared to the quick levels.” and its mirrored version “I found the quick paced levels
more difficult compared to the slower levels.”. The questions were mirrored to keep
participants engaged. The questions regarding ghosts and the experienced stress were
“I found the game stressful when the ghosts were near me.” and “I found the game
stressful when the ghosts were enclosing me.”. We expected that the measure of flow,
which percentually represents the number of ghosts nearby Pac-Man [104], to turn out
to be an important game feature in predicting challenge and workload. Therefore, we
were interested in the participants’ experiences regarding ghosts nearing and enclos-
ing Pac-Man. Noteworthy, we gathered answers to these questions since we expect
that these can offer valuable insights, amongst others in perspective to the challenge
hierarchy. However, due to the limited scope of the current work we postpone detailed
analysis of the answers to future work.
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Figure 4.2: On the left, a screenshot of the maze taken at the start of Pac-Man round. The
added red lines on top indicate the 6x8 grid used to create the grid scrambled image that
was used as baseline image, displayed on the right.

4.2.3 Data collection

4.2.3.1 Baseline recordings

Each round of Pac-Man was preceded with a baseline period of 8 seconds during which
the participants watched a grid scrambled image (also see 2.3.3). Custom written meth-
ods in python were used to scramble an image of the beginning of a level of our Pac-
Man testbed2. We applied a grid of 6 columns and 8 rows, see the left of Figure 4.2
with red lines indicating the grid and the resulting grid scrambled image on the right.

4.2.3.2 Pac-Man data collection

During all rounds of Pac-Man, including the practice rounds, we collected gameplay-,
game content- and pupillometry data (see Appendix C). While our focus with respect
to data analysis lay on the chase state, we also recorded data during the frightened
states for possible later reviewing. In order to differentiate between the states, the
game data also includes the game states. To synchronize the pupillometry data coming
from the eye tracker server and the gameplay- and game content data coming from the
game engine, we included clock time ticks. This synchronization was verified during
the final development phase.

2To generate a scrambled image, the image data was loaded and stored with the python image library
Pillow, also referred to as PIL.
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4.2.4 Experimental procedure

The experimental supervisor (supervisor) used a checklist to ensure each step of the
procedure was executed, see Appendix N. Upon arrival at the experiment location,
the participants were asked to take a seat behind the desk in the darkened room. The
supervisor explained that the room was darkened because recordings would be made of
the pupil size and she shared that no video was recorded, only data would be stored.

Next, the participants read written information on screen regarding the experiment
and were asked for their consent. Sequentially, they filled in the demographics ques-
tionnaire (see Appendix M). After this the supervisor switched between the Unity ap-
plication and eye tracker software in order to calibrate. The calibration process itself
was discussed on forehand and the participant was asked “Are you comfortable? Try
to maintain this position in terms of distance from the camera while playing.”. The
supervisor further explained that some movement was alright. This also became visible
by looking at the footage from the eye tracker camera, which is displayed in the win-
dow of the eye tracker software, participants could see their eyes move offscreen when
they moved approximately more than 15 cm forwards and 15 cm backwards.

After the calibration the supervisor provided a recap of the essential mechanics in Pac-
Man (all participants were at least slightly familiar with Pac-Man), also see the items
in Appendix N below “Practice”. Furthermore, the supervisor explained the purpose
of the practice round, namely to get used to the Pac-Man gameplay and the controls.
Sequentially, the participants read written information on screen about the scrambled
image (also shown on screen) that would be displayed before each round. The partici-
pants were asked in this text to simply relax and only look at the grid scrambled image.
After the practice round the supervisor went through the three survey questions with
the participants and asked the participants to take enough time after each round to
(re)read and answer the questions. Furthermore, the participants were explicitly asked
to keep the order of the answers in mind, with the negative answer at the left and the
positive at the right of the answer scale.

Next, another calibration was performed after which the participant continued with
the nine rounds of Pac-Man. Each round was preceded by a progress bar showing the
progress of the nine rounds and was preceded by baseline recording of 8 seconds dis-
playing the grid scrambled image. Each round of Pac-Man was followed up with the
three questions regarding the game experience within that round (see Appendix O).
See Figure 4.3 for these four sequential screens. At last, a final questionnaire was pre-
sented to the participants, containing game experience questions regarding all rounds
of Pac-Man together (see Appendix P).
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Figure 4.3: The four screens that were repeated sequentially for the nine rounds of Pac-
Man central to the experiment. slightly zoomed in for clarity. Starting with a progress bar
(top left), continued by the grid scrambled image (top right), the Pac-Man game (bottom
left) and the three game experience questions (bottom right).
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4.3 Materials and apparatus

The relatively low-cost eye-tracker Gazepoint GP3-HD was used with a 60 Hz sam-
pling frequency. We chose this eye-tracker hardware because of its low cost and the
accompanying open standard API. The testbed game was implemented in Unity and
was extended with a custom build module that connected with the server of the Gaze-
point GP3-HD eye-tracker in order to retrieve and record pupil data. Data retrieval
was turned on and off before and after each baseline recording and game session. A
27 inch screen was used, with a resolution of 2560 x 1440 on a Windows desktop com-
puter. The experimental setup is displayed in Figure 4.4.

To avoid pupil dilation caused by fluctuations in naturally present daylight, we set
up our hardware in a completely darkened room. A RGB light bulb was set to a low
intensity of red light to enable vision in the room. Since high intensity blue light can
result in a sustained constriction for many minutes, due to the post-illumination pupil
response [80], we chose a red color which does not contain blue light.

Apart from the calibration of the eye tracker, the full experiment was implemented
in Unity, consisting of shared written information, multiple questionnaires, baseline
recordings and the testbed game. The calibration of the eye tracker was thus the only
part that required a switch between the Unity build and the software of the Gazepoint
GP3-HD eye-tracker. The thoughts behind the design decision to implement the rest
of the experiment in one Unity project were that by minimizing the need to switch be-
tween different applications, the chance to make procedural mistakes was minimized.
Additionally, implementing all in one unity project enabled full control regarding the
visual style of the application used throughout the experiment. For example, we could
use a questionnaire in a full screen mode with a black background, white font and
without distracting menu’s of other applications, which we deemed relevant to mini-
mize pupil light responses. Furthermore, to minimize the pupil light responses during
the switch to the Gazepoint GP3 software for calibration, the windows environment
was turned to dark mode.

Both the game data and pupillometry data were processed and transformed into fea-
tures in the programming language R3. Since in our experience the Scikit Learn offers
more options and a more convenient interface with respect to tuning random forests
hyperparameters compared to R packages like tuneRanger and RandomForest, the
Scikit Learn package was used to perform the actual training and statistical analysis
[117].

3https://www.r-project.org/ R is a language and environment for statistical computing and graph-
ics. R provides a wide variety of statistical (linear and nonlinear modelling, classical statistical tests,
time-series analysis, classification, clustering, . . . ) and graphical techniques, and is highly extensible.

67

https://www.r-project.org/


Method

Figure 4.4: Photo to showcase the experimental setup, with the eye tracker placed beneath
the screen slightly tilted upwards to capture the eyes and the red light. Noteworthy, for
creating the picture extra daylight was let into the room.

4.4 Participants

The experiment was carried out by 32 participants. The data recorded for three par-
ticipants was excluded based on observations. Two of these three participants did not
succeed in finishishing the practice round. For both of these participants, controlling
Pac-Man smoothly through the maze, even without considering the ghosts, already
seemed to be quite a challenge resulting in distinctly different gameplay from the other
participants. The third one accidentally mirrored the answer scale a few times of the
questions after each round, this was verbally verified. Furthermore, due to a high
number of invalid samples in the pupillometry recordings, data recorded for 10 other
participants was excluded as well (also see 4.5.2.1 and 4.5.2.2).

The final feature set was constructed with data recorded from 19 participants, of which
16 regarded themselves as male and 3 as female. Table 4.1 shows the distribution with
respect to age. When considering the middle of each age group as the group’s mean
value, the mean age of the participants was approximately 26. With respect to games
most participants played video games on a weekly (7) or daily basis (5), while quickly
paced 2D games are played less often. All participants played Pac-Man at least once,
most participants (11) played it more than 10 times. None of the participants viewed
themselves as an expert in Pac-Man, most participants viewed themselves as slightly
beginner (6) or intermediate (5). For an overview of the answers to the demographics
questions, see Appendix Q.

No participants had to be excluded when considering the fatigue score of the partic-
ipants (see 4.2.2.1). Since most participants were students we interpreted the scores
for the category students and although 8 had an above average score, none had a high
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fatigue score.

Table 4.1: The age distribution of the participants.

4.5 Finalizing feature set

4.5.1 Game features

Before finalizing our feature set (consisting of both game features and pupillometry fea-
tures), we processed insights gained during our experimental procedure. For example,
as expected we noticed some participants tended to save up super pellets; we saw
them collecting the pellets around a super pellet but leaving the super pellet itself.
Some of the participants did this in a secure manner by collecting all pellets surround-
ing the super pellets, others simply did not take the paths of the super pellets. Instead
of considering the junctions around super pellets as initially planned, we believed the
percentage of super pellets divided by the percentage of all pellets provide a better
representation and therefore added this feature.

Furthermore, we reviewed the generic type of each feature. We recognised features
representing a frequency, a percentage and an average. For features representing an
average, like the average distance between the ghost centroid and Pac-Man, we added
another feature representing the standard deviation.

Furthermore, we excluded some of the initial features. Some of these were mirrored
features, for example the percentage of successful chases correlates with the percentage
of unsuccessful chases (succesPercentages = 1 − unsuccesPercentage). Others required
some extra manual processing to calculate and were more specific versions of other
features. For example, when reviewing it turned out that the death event was not
correctly stored in the game code. With additional functions this was easily retrievable
from the data, however the more specific features combining death with the number of
nearby ghosts were excluded due to the limited scope of the project. Noteworthy, we
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also decided to exclude the difficulty settings and participant id features. We wanted
to prevent the classifiers to distinguish participants and to focus on settings.

Finally, for some of the features the overall speed difficulty setting was of influence. For
example, to compare the feature frequency of the number of times Pac-Man was chased
at a lower overall speed to the same feature at a higher speed, a correction is neces-
sary. Therefore, all features that were impacted by the overall speed setting were cor-
rected. The final set of features together with the excluded features can be found in
Appendix R.

4.5.2 Pupillometry features

4.5.2.1 Pupillometry data preprocessing

The GP3 eye tracker data contains the left and right eye pupil diameter in millimeters
together with two flags indicating if the left and right pupil diameter data is valid.
Also, a blink ID is available, with a value 0 for samples wherefore no blink was detected
and a unique value indicating blinks. This data required preprocessing before we could
extract pupillometry features. We applied six preprocessing steps in the programming
language R.

The first step consisted of indicating invalid pupil size samples based on samples in-
dicated as blinks and marked as invalid in the raw data. The pupil data recorded with
the GP3 eye tracker required a different approach compared to our initial plan to fol-
low the Winn et al.’s [24] recommendations to apply interpolation from 50 ms before
up to 150 ms after a blink. First of all, when reviewing the data we noticed that during
a blink ID the valid flags for both the left and right eye were also set to invalid. Further-
more, we found the pupil size data to start a decrease of value 4 to 3 samples before the
occurrence of a blink, corresponding at 60 hz to roughly 67 ms and 50 ms respectively.
The same decrease in value was also found for pupil samples marked as invalid apart
from blinks. Therefore, instead of excluding 3 samples (50 ms) before blinks only, we
excluded 4 samples before invalid indicated samples (thus including blinks). Further-
more, after reviewing the data of multiple recordings, we found excluding 150 ms after
blinks to be a too long period. Possibly task-uncorrelated high-frequency changes in
pupil size after blinks occur during the periods indicated as blinks in the GP3 data.
Instead of 150 ms, an exclusion of 67 ms corresponding to 4 samples was also enough
to remove peaks and dips after blinks and invalid samples. To sum up, we set the
samples indicated as invalid together with the 4 preceding and tailing samples to the
valueNA4. Additionally, as a second step, we excluded all rounds of Pac-Man record-

4In the language R, NA is a value that can be assigned to numeric data and is referring to “not a num-
ber”.
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ings (trials) which contained 25% or a higher amount of NA samples (on average 24%
of the samples were invalid).

The third and fourth steps were based on the data preprocessing as described in Man-
naru et al. [92], (see 2.3.2), namely the appliance of a Hampel filter and a lowpass
Butterworth filter. Before we could apply these filters, the NA values in the pupil size
data were temporarily replaced by applying linear interpolation. The Hampel filter
was applied to remove outliers, using the default window size of 13 (K = 6, thus 6
samples before and samples after the reviewed sample) and a sigma value of 1.5 since
the default of 3 did not remove outliers thoroughly enough. In the appliance of the
second-order lowpass Butterworth filter we used a cutoff frequency of 4, “since most
of the pupillary activity falls in the frequency range of 0 - 4 Hz” [92].

Fifthly, after restoring the NA values we applied cubic spline interpolation in order to
interpolate the missing pupil size values indicated as NA (in the R na.spline function
the method was set to monoH.FC to prevent oscillating). In our final step, we averaged
the pupil size measurements of left and right eyes to reduce measurement noise.

4.5.2.2 Baseline correction

Before calculating the baseline, the pupillometry data recorded during the baseline
period was preprocessed as described in 4.5.2.1. Pupillometry data preprocessing.
Sequentially, in R we calculated the baseline by taking the average pupil size of one
second of contiguous samples from the end of the data. Where we planned to apply
a threshold of 25% with respect to the allowed percentage of invalid samples (regu-
lar applied thresholds are in the range of [15%, 25%], [24]). However, after reviewing
baseline recordings that did not meet the 25% threshold, we found recordings with
approximately 35% or less invalid samples in the last part of the recording still to be
valid. Therefore, we increased our threshold for the baseline to 35%.

Furthermore, in some recordings the requirement of the threshold was not met due to
multiple short repetitions of invalid samples (e.g. a blink) at the end of the recording,
an example is provided in the plot at the bottom of Figure 4.5. After reviewing, we
believed these recordings to be valid as well. We implemented a function that allowed
the window to move sample by sample back in time (thus away from the end) with a
maximum offset of one second, until the window contained sufficient valid data. We
chose one second as a maximum offset from the end in order to consider the last 2
seconds of the data only. We believed that allowing the window to move even further
away from the end could lead to an unrepresentable baseline, because of a possible
present pupil light response due to the change in light intensity between the baseline-
and preceding screen. Additionally, at the beginning of the baseline period, the par-
ticipants often showed a small reaction (moment of shock, sitting up straight, staring
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Figure 4.5: Two plots of preprocessed absolute pupil sizes recorded during the baseline
period preceding rounds of Pac-Man. In the plot at the top the number of invalid samples
in the last second is beneath the threshold of 35%. Here, the last second was used to cal-
culate the baseline size. In the plot at the bottom the number of invalid samples in the last
second is above the threshold of 35%. Here, the one second window used to calculate the
baseline size, is moved forward in time in order to base the baseline on enough valid sam-
ples.

unnaturally) and sometimes looked down while placing their fingers on the arrow
keys, which both also may have caused fluctuating pupil sizes mainly in the beginning
of the baseline recordings.

Noteworthy, instead of heightening the threshold, we could have chosen to consider a
smaller window, but we decided against this option. In some baseline recordings the
pupil sizes fluctuated at the end of the recordings and therefore we preferred taking the
average of one second instead of a shorter period, to decrease the impact of recording
noise.

Furthermore, as advised by Mathôt et al. [80] we reviewed the final baselines to pre-
vent inclusion of unrealistically small baselines. Herefore, we reviewed the two low-
est found baselines and compared these with the sequential pupil size measurements
corresponding rounds of Pac-Man. We did not indicate these baselines as unrealistic
small.

We applied subtractive and divisive baseline corrections separately, to reduce the impact
of random pupil-size fluctuations between trials (see 2.3.3). The subtractive baseline
correction was calculated by subtracting the calculated baseline of the correspond-
ing round of Pac-Man. For the divisive correction, we used the average baseline of
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all rounds, as advised by Mathôt et al. [80]. However, we diverted from the advice
of Mathôt et al. [80] to take the average of all samples recorded during the baseline
periods per participant. Instead, we took the average of the calculated baselines, thus
considering one second of the end of the baseline recordings only. Reason for this was
the noticeable pupil size fluctuations at the beginning of many of the baseline record-
ings. The divisive baseline correctio was applied by dividing the preprocessed pupil
size data with the averaged baselines of the nine rounds of Pac-Man per participant.

4.5.2.3 Initial pupillometry features

We planned to consider the peak pupil dilation and mean pupil dilation (see 2.3.4). We
wanted to review the chase and frightened state separately. We wanted to calculate the
mean pupil dilation by taking the average of all pupil sizes recorded during chase states.
Furthermore, we imagined that the moment in the game with the most ’heat’ is of
influence to the player when answering the questions regarding the game experience
of that trial. Therefore, we also planned to utilize the mean pupil dilation for the chase
state with the highest mean pupil size as a separate pupillometry feature.

4.5.2.4 Pupillometry data synchronization issue

In order to share our final pupillometry features we have to share a very impactful
issue that arose after the experiment. Prior to the execution of our experiment we
verified that the timeticks of the clock available within the unity engine used for the
game data corresponded to the timeticks of the clock used in the eye tracker software.
However, after the execution of our experiment we noticed a discrepancy between
the timeticks in the game data and pupillometry data. We thoroughly reviewed all
data with respect to this discrepancy and found that the data was valid, since amongst
others the discrepancy growed and corresponded to the time between the experiments
and the time between the data of different rounds of Pac-Man corresponded to in both
the game data and pupillometry data. However, the synchronization of the data was
a lot more complicated than if we could have simply synchronized the data based on
timeticks values.

Regarding possible solutions of the ’timetick-issue’, we did consider other options in
order to synchronize the data. We figured we could not simply align the start of both
types of data, because a delay occurs when starting sending the server a request to
start collecting. Also, the pupillometry data is recorded on a separate thread which
in between recordings sleeps with intervals of 1 second, thus an additional fluctuating
delay occurs at the start of a round of Pac-Man. However, we do think it would be
possible to synchronize the data by working backwards from the end of the both types
of data, by amongst others considering multiple aspects regarding the timing of the
end. But in the limited scope of this research, we found this such a time consuming
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step and therefore decided against it.

4.5.2.5 Final set of pupillometry features

After noticing the synchronization issue we redesigned our set of pupillometry fea-
tures with respect to the mean pupil dilation features. Since, due to the synchronization
issue, we could not only consider the mean pupil dilation of the chase states. In search
of a different strategy, we reviewed plots of the pupil size data to gain a better view of
the measurements and noticed regions with lower pupil size values. After reviewing
the corresponding gameplay data we found that the start of these parts approximately
coincided with Pac-Man’s death, see the example provided in Figure 4.6. This simul-
taneous occurrence is no coincidence. After Pac-Man is captured by the ghosts, a fade
animation of one second and successively a new countdown of 3 seconds is triggered,
resulting in a minor break from the active gameplay. The lower pupil measurements
coinciding with these minor breaks indicate a lower workload as could be expected.
We viewed these lower measurements to be unrepresentable with respect to the in-
vested workload during the active gameplay and decided to only consider the active
gameplay.

In order to only consider the active gameplay, we were interested in a percentage of the
highest pupil sizes, since the lower ones could indicate inactive gameplay. To pinpoint
a percentage threshold for the highest pupil sizes, we first reviewed the percentages of
active gameplay for each trial. Per trial we calculated the percentage of active game-
play by subtracting the sum of animation durations (consisting of the animation at the
start and after each death) from the round’s duration and then sequentially dividing
the result by the round’s duration. The lowest found percentage of active gameplay
was 34%. We rounded this percentage down 30% and used this to filter the 30% highest
pupil sizes per trial. Next, we took the average of these highest pupil sizes, resulting
in the measure highest pupil dilations. Additionally we still considered the peak pupil
dilation as a feature as well.

4.5.2.6 Pupillometry feature normalization

In order to allow for comparison between participants, we normalized the pupillom-
etry features. We applied z-standardized normalization within participants across the
nine rounds of Pac-Man. Herefore, we could only consider trials of participants of
which all trials were indicated as valid. The other trials were excluded. To sum up, the
final features of the pupillometry dataset consisted of the z-standardized highest pupil
dilations and peak pupil dilation for both the subtractive and divisive corrected pupil sizes
(sub_highest, sub_peak, div_highest, div_peak).
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Figure 4.6: The time of Pac-Man deaths and preprocessed absolute pupil sizes recorded
during a round of Pac-Man.

4.6 Data analysis

In order to answer our main research question “Does the addition of pupillometry features
to an input feature set improve the accuracy of a random forest classifier in predicting expe-
rienced difficulty?” (RQ1), we trained multiple random forests with feature sets with
and without pupillometry features and compared their performance. Random forests
(RF) were introduced by Breiman [118]; “Random forests are a combination of tree
predictors such that each tree depends on the values of a random vector sampled in-
dependently and with the same distribution for all trees in the forest”. In other words,
a random forest is a collection of decision trees constructed from different parts of the
data. The prediction of a forest is the average of the predictions of all its trees. We used
a classification RF because the targets of our dataset are constructed from likert scale
answers, where the intervals between the answers are not necessarily equal, thus our
targets are ordinal.

There are three combined reasons why we choose RF as a learning method. First of all,
it suits our dataset, for which we expect a non-linear relationship between the input
features and predicted classes, either experienced challenge, competence and invested
workload. Secondly, a RF is also robust when training on high dimensional datasets,
since our dataset consists of 190 samples and 134 features, we can consider our dataset
to be quite high dimensional. Thirdly, we can review variable importance of a trained
RF model [119], [120]. Although we want to compare models trained on different fea-
ture sets, with and without our pupillometry features, variable importance provides
further insights in the possibly added value of the use of pupillometry features as in-
put features to predict the experienced challenge.
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Also, we applied statistical analysis in order to analyze the relation between the fea-
tures and the participant’s answers regarding the experienced game difficulty. Hereby,
amongst others we review the correlation between pupillometry features and the re-
ported experience of the game difficulty in order to answer our second research ques-
tion “To what extent does this pupillometry feature statistically correlate to the self-reported
experienced game difficulty?” (RQ2). Both the results and the process of the statistical
analysis and of the trained RFs are described in section 5 Results.
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5. Results

5.1 Participant responses

5.1.1 Response distribution

The distribution of the level of agreement responses for the experienced challenge
statement “The last game was very hard to play.” (CHAL) are displayed in Figure 5.1.
This distribution can be viewed as slightly negatively skewed. These results corre-
spond with the observations made during the experimental procedure, where we no-
ticed people tended to use only part of the scale and often the “strongly agree” answers
were seemingly ignored for CHAL. We took this imbalance into account while training
our RFs, by applying a stratified split, stratified K-fold cross validation and by consid-
ering the F1 weighted average to review the classifier’s performance.

5.1.2 Demographics and responses correlation

To gain more insight into possible associations between demographics and the level of
agreement CHAL responses we performed a chi-square test. We only found significant
differences for the levels of experience with Pac-Man (“How often did you play Pac-
Man? (estimation)”), p-values 0.042 respectively. Noteworthy, no significant difference
was found for the responses to the experience statements across the self-estimated skill
level for Pac-Man (p-value 0.249). All other p-values can be found in the table “Chi-

Figure 5.1: The percentage distribution of the level of agreement responses for the CHAL
game experience statement (“The last game was very hard to play”) for all participants.
The level of agreement x-axis labels refer to “strongly disagree” (ST_D), “disagree” (D),
“slightly disagree” (SL_D), “neutral” (N), “slightly agree” (SL_A), “agree” (A), “strongly
agree” (ST_A).
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Figure 5.2: The percentage distribution of the level of agreement responses provided for
the CHAL game experience statement (“The last game was very hard to play”), shown
for four groups of participants with different self estimated levels of experience with Pac-
Man.

square p-values for demographics and experience classifiers” in Appendix S.

The distributions of CHAL responses plotted per self estimated level of experience
with Pac-Man are displayed in Figure 5.2. Roughly viewed, the participants with
a higher experience with Pac-Man provided lower level of agreement responses for
CHAL. We further reviewed the self estimated level of experience with Pac-Man by
comparing it to the feature death_freq, which represents the frequency of Pac-Man
deaths in a game round which we believe can be viewed as a simplistic performance
measure. A Kruskal-Wallis test did not show a significant difference in death_freq val-
ues across the groups defined by the provided experience with Pac-Man answers (p
value = 0.72).

5.1.3 Difficulty levels

For Pac-Man difficulty levels 7 and 8, on average lower CHAL responses were received
in comparison to the responses for difficulty level 5 and 6, see Figure 5.3. The relative
speed difficulty setting for these four levels was constant, set to medium, while the other
two difficulty settings differed. The overall speed difficulty setting for difficulty level
5 and 7 was medium and hard for difficulty level 6 and 8. The ghost behavior difficulty
setting was set to hard for difficulty level 7 and 8 and set to medium for difficulty level 5
and 6. The ghost behavior hard corresponds to the near-optimal ghost behavior and medium
to followers. In other words, for the levels with the near-optimal ghosts (level 7 and 8) on
average lower CHAL were received in comparison to the levels with the followers (level
5 and 6), at relative speed set to medium. A chi-square test was performed to examine
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Figure 5.3: On the left, boxplots of the level of agreement responses provided for the
CHAL game experience statement (“The last game was very hard to play”) per diffi-
culty level. The level of agreement x-axis labels refer to “strongly disagree” (ST_D), “dis-
agree” (D), “slightly disagree” (SL_D), “neutral” (N), “slightly agree” (SL_A), “agree” (A),
“strongly agree” (ST_A). On the right, the difficulty space as implemented in the testbed
game, with the nine selected combinations. Their numerical order corresponds to the ex-
pected chronological difficulty increase.

the relationship between the difficulty level and CHAL responses and a significant
association was found (p-value 1.51e-22).

5.1.4 Participant groups

Because more than a third of the data was excluded (see 4.5.2.1 and 4.5.2.2) the data of
the participant groups A, B and C, for which a different order of level difficulty was
implemented, are not represented equally. The features of group A are constructed
with data of four participants, group B is constructed with data of seven participants
and group C is constructed with data of eight participants. To review if the order had
an impact on the responses for CHAL, we plotted in chronological order of appearance
the differences of level of agreement between each group and the other two groups for
the same difficulty level, see Figure 5.4. Here, we also plotted the responses for COMP
and WRKL, in order to gain a wider overview which could assist in identifying a pos-
sibly present influence of the experimental order. Noteworthy, the level of agreement
responses are ordinal for which the distances between labels are not necessarily equal
and can thus not be treated as numeric values. However, in Figure 5.4 these distances
are considered to be equal, only in order to review a possible impact of the three dif-
ferent experiment condition orders on the responses.

The average differences per group for CHAL and WRKL slightly differ, whereby group
A differences are mostly negative, group B is mostly positive, and group C displays
a lower range of differences around zero. The differences for COMP are seemingly
inverted, higher average difference values for group A and lower values for group B.
A more detailed view of the level of agreement responses per group per difficulty level
is provided by the boxplots in Appendix S. The plotted lines do not follow a horizontal
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Figure 5.4: For each of the three participants groups which followed a different order of
difficulty levels, the difference between the group’s average level of agreement and that
of the other two groups for the same level of difficulty is displayed. These differences are
displayed in the chronological order of the rounds of Pac-Man per group. Whereas the
difficulty order for group A was 5, 9, 4, 8, 3, 7, 2, 6, 1. The difficulty order for group B was
8, 3, 7, 2, 6, 1, 5, 9, 4. The difficulty order for group C was 2, 6, 1, 5, 9, 4, 8, 3, 7. The three
plots per group represent the level of agreement for CHAL (“The last game was very hard
to play.”), COMP (“I felt I was very good at playing the last game.”) and WRKL (“I had to
put a lot of effort into the last game.”).

tendency. Thus, no clear consistent pattern can be seen across all three groups.

To further review a possible presence of influence of the experiment condition order on
the responses to the game experience statements, a chi-square test was performed. No
significant p-values were found for the comparison of responses across the three par-
ticipant groups per game experience statement (p-value experienced challenge 0.278,
p-value estimated competence 0.660, p-value estimated workload 0.388).

5.1.5 Pupillometry features

As discussed in 4.5.2.5, the final features of the pupillometry dataset consisted of the
z-standardized highest pupil dilations and peak pupil dilation for both the subtractive and
divisive corrected pupil sizes (sub_highest, sub_peak, div_highest, div_peak respectively).
The boxplots in Figure 5.5 capture the pupillometry features against the level of agree-
ment responses to the three game experience statements. A cautious inverted u-curve
can be seen, most visible for div_highest. However, when viewing plots of the div_high-
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Figure 5.5: The z-standardized subtractive and divisive highest and peak pupil size features
are captured in boxplots per level of agreement responses for the CHAL game experience
statement (“The last game was very hard to play.”). The level of agreement responses con-
sist of “strongly disagree” (ST_D), “disagree” (D), “slightly disagree” (SL_D), “neutral”
(N), “slightly agree” (SL_A), “agree” (A), “strongly agree” (ST_A).

est value across the level of agreement responses for CHAL per participant, for many
participants no inverted u-curve is visible, see the left plot in Figure 5.6. Additionally,
for some participants the data can come across as random. When aggregating both
outer two and the middle three response labels into three groups, we can distinguish
an inverted u-curve for six of the participants, see the right plot in Figure 5.6. For three
participants, not all aggregated response labels are present in the data.

When viewing the pupil feature div_highest against the difficulty levels, an inverted
u-curve can be seen for 17 out of 19 participants, although for some only cautiously,
see the right plot in Figure5.7. For these 17 participants div_highest was lower for dif-
ficulty level nine in comparison to its value for either or both level five and six. For
some of these participants the decline measured for difficulty level nine is cautious in
comparison to the maximum div_highest at either difficulty level five or six.

A Shapiro-Wilk test indicated that not all pupillometry features met the normality data
requirement of the ANOVA test. Instead, the Kruskal-Wallis test was performed on the
four pupillometry features across the level of agreement CHAL responses. For both
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Figure 5.6: The average div_highest values (z-score) per participant plotted across the level
of agreement responses for CHAL. In the plot on the left, all level of agreement responses
are displayed separately and each color represents a participant. In the plot on the right,
the level of agreement responses are aggregated, whereby both two outer responses and
the three middle responses are aggregated into three groups. The level of agreement x-
axis labels refer to “strongly disagree” (ST_D), “disagree” (D), “slightly disagree” (SL_D),
“neutral” (N), “slightly agree” (SL_A), “agree” (A), “strongly agree” (ST_A).

Figure 5.7: The div_highest values (z-score) per participant plotted across the difficulty
levels. In the plot on the left, all difficulty levels are displayed and each color represents
a participant. In the plot on the right, the difficulty level 7 and 8 are excluded due to the
unexpected lower CHAL responses in comparison to level 5 and 6.
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the div_highest (p-value 0.00021) and div_peak (p-value 0.0031) significant differences
in medians were found, but no significant differences were found for sub_highest (p-
value 0.22) and sub_peak (p-value 0.37). The sequentially performed post hoc Dunn’s
test on div_highest and div_peak indicated that only some of the distributions were sig-
nificantly different (< 0.05) (see Appendix T for the results). Namely, for div_highest the
“strongly disagree” distribution was found to significantly differ from the other distri-
butions with exception of “disagree” and “strongly agree”. For div_peak, the “strongly
disagree” was found to significantly differ from “slightly agree”.

5.2 Random forest classifiers

In this section, not only the results of our final RF classifiers are described, but also
the process of selecting and tuning RF hyperparameters and feature selection. The
provided description of the process was created with reproducibility in mind. The hy-
perparameter selection and tuning process was performed multiple times. Firstly, the
process was performed to train a RF to predict the 7 original categories (the partici-
pants’ responses ranging from “strongly disagree” to “strongly agree”). But also, the
process was performed to train RF classifiers to predict aggregated labels, this process
was performed multiple times to predict different subsets of features. The first sub-
section describing the hyperparameter selection and tuning process is written more
elaborately, compared to its subsequent sections. Noteworthy, we trained all RFs on
part of our data; we splitted our data set into a training set (75%) and test set (25%), by
applying a shuffled stratified split due to our imbalanced dataset. For the final results
that concern the stated research questions RQ1 and RQ2, we advise the reader to skip
to 5.2.4

5.2.1 Random forest classifiers original categories

5.2.1.1 Benchline prediction

In order to compare the RFs to a benchline, we created a benchaline prediction,
whereby we assigned the highest occurring answer as prediction for all samples and
calculated the corresponding accuracies (micro, macro and weighted). In our RF re-
sults we viewed the F1 weighted average (F1w_avg) instead of accuracy to take the im-
balanced response distribution into account (see 5.1.1). The F1w_avg of the benchline
prediction for CHAL is 0.1988 (see Appendix U for the micro and macro accuracies).
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Figure 5.8: The OOB error plotted against the number of trees for RF from the Scikit Learn
package with the parameter max_features, the maximum number of features to consider for
a split, set to the values sqrt, og2 and None. With 1710 trees the three OOB error plots were
estimated to approximate the corresponding OOB error rate stabilization levels.

5.2.1.2 RF with default hyperparameters

First, we trained a RF using the Scikit-learn RF classifier with the default settings which
correspond to the advise of Hastie et al. [119] to use sqrt(number o f f eatures) for the
number of features to consider when splitting nodes (max_features) and 1 for the mini-
mum terminal node size (min_samples_leaf ) for a classification task [117]. Furthermore,
we set the Scikit-learn RF class_weight parameter to balanced to take the imbalance dis-
tribution into account, this resulted in a F1w_avg of 1.00 for the train set and 0.41 for
the test set.

5.2.1.3 RF number of trees

According to Probst and Boulesteix [121] the number of trees (n_estimators) should be
sufficiently high, more trees are better and for stable feature importance generally more
trees are required. In order to find a sufficient number of trees, a plot of the OOB error
rate against the number of trees (OOB_plot) can provide insight at which n_estimators
the OOB error stabilizes [119]. To illustrate, Figure 5.8 displays the OOB error rate
curves for the Scikit-learn max_features settings sqrt, log2 and None. A non-monotonous
pattern can be seen for max_features sqrt and log2, with lower regions of error rates
before stabilizing at a higher error rate. This can occur in case of classification, but also
then a large value for n_estimators for which the OOB error is stabilized is preferred
compared to tuning n_estimators [121]. We estimated the settle down error for each of
the three plotted error curves, see Figure 5.8 and selected 1710 for n_estimators in our
RFs. A RF with default settings, n_estimators set to 1710 and class_weight parameter to
balanced resulted in the F1w_avg of 1.00 for the training set and 0.42 for the test set.
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5.2.1.4 RF randomized search

Aiming to prevent overfitting the training set, we performed multiple random
searches. All conducted searches were performed with a repeated stratified K-fold
cross validation, with 5 repetitions and 3 folds. Noteworthy, we used 3 folds instead
of the generally used 5 or 10 folds, due to our small sample set. The hyperparameter
search spaces were constructed based on insights shared by Probst et al. [122] regard-
ing hyperparameter tuning. For tuning we selected by Probst et al. [122] discussed
hyperparameters max_features, min_samples_leaf, the “minimum number of samples
required to split an internal node” (min_samples_split) together with “the number of
samples to draw from X to train each base estimator” (max_samples) [117]. Notewor-
thy, the maximum depth of the tree (tree_depth) is tuned in some other previous work
(for example [123], as cited by [109], [119]). However, since the hyperparameters min_-
samples_leaf and min_samples_split already are of influence to the tree depth we did not
separately include tree_depth as tuning parameter.

In total, we performed five random searches and one grid search to find suiting hyper-
parameters in order to prevent overfitting the training set. For each of these searches,
the search distributions together with the hyperparameters and the weighted accu-
racies for the best found RFs are displayed in Table 5.1 to illustrate these steps (the
regular and macro average accuracies can be found in Appendix V).

The first four searches focused on different hyperparameter search distributions, based
on insights regarding hyperparameter tuning shared in previous work. Firstly, we per-
formed a randomized search with a broad search distribution for the selected hyper
parameters (1. Broad search). Additionally, we performed a randomized search with a
range for max_features limited to lower values than the default sqrt(number o f f eatures)
(2. Low max_features), to allow less influential variables to be chosen for splits instead
of only the strongest influential variables [124], as cited by [122]. We also performed
a randomized search with the max_features range limited to high values (3. High max_-
features), because Goldstein et al. [25], as cited by [122] observed lower error rates
for higher max_features values for high dimensional data (for both classification and
regression) similar to findings of Segal [123] regarding data with noise features. Ad-
ditionally, we performed a search with the min_samples_split range limited to higher
values compared to the default (4. High min_samples_split), based on findings of Segal
[123]; higher node sizes can result in performance gains for data with noise variables.

The search distributions for the last two searches were based on insights gained from
the results of the first four searches. Firstly, because the 2. Low max_features search
led to a higher F1w_avg, we performed a search with low values for max_features, but
then not only in combination with a range for max_samples, but also with a search
range for both min_samples_leaf and min_samples_split (5. low max_features). Finally, we
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performed a grid search (6. final grid search) with a small range of hyperparameters
covering a range around hyperparameters of the best found models scoring highest on
the test set (4. High min_samples_split and 5. low max_features), resulting in a model with
a F1w_avg of 0.85 on the train set and 0.44 on the test set.

Table 5.1: The hyperparameter search distributions together with the hyperparameters
and weighted accuracies for the best found RF models for each performed search. Here,
# f and # s refer to the number of features and number of samples in the train set respec-
tively. For all searches, the parameter n_estimators was set to 1710.

Table 5.2 and Figure 5.9 display the classification report and confusion matrix respec-
tively of the best performing model found in search 6. Final grid search (7_categories_-
model). The F1 score is lowest for the three middle classes (representing the answers
“Slightly disagree”, “Neutral” and “Slightly agree”), whereas the F1 score of the mid-
dle class is zero (“Neutral”). When reviewing the confusion matrix, roughly three clus-
ters can be distinguished, namely the first two classes, the middle three classes and the
last two classes.

5.2.2 Random forest classifiers aggregated categories

Because of our final model’s relatively low weighted accuracy for the test set and the
varying model performance for the different classes, we aggregated the seven cate-
gories into three categories. The three clusters distinguishable in the confusion matrix
displayed in Figure 5.9, informed this aggregation. We combined “strongly disagree”
and “disagree” into the new class “disagree”. The classes “slightly disagree”, “neutral”
and “slightly agree” were combined into “neutral” and “agree” and “strongly agree”
into “agree”.
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Figure 5.9: The confusion matrix of the 7_categories_model applied to the test set.
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Table 5.2: The classification report of the 7_categories_model applied to the test set.

The same steps as described in the previous subsection were applied. Firstly, we
mapped the benchline predictions for challenge, competence and workload, result-
ing in the F1w_avg of 0.46, 0.45 and 0.48 respectively (see Appendix U). Sequentially, a
RF with default parameters and n_estimators based on an OOB_plot (2780), resulted in
a weighted accuracy of 1.00 for the train set and 0.76 for the test set. Nextly, we per-
formed the same four searches as described in 5.2.1.3 RF randomized search, namely
1. Broad search, 2. Low max_features, 3. High max_features, 4. High min_sample_split.
Again sequentially, the search distributions for the last two searches were based on in-
sights gained from the results of the first four searches (see Appendix V for the search
distributions, hyperparameters and accuracies).

As to be expected, the aggregation resulted in models with a significant performance
increase compared to the models found for the original seven categories described in
the previous subsection. For the best performing model found in search 6. Final grid
search (aggregated_model), a weighted accuracy of 0.92 was found for the train set and
0.83 for the test set. Table 5.3 and Figure 5.10 display the classification report and
confusion matrix respectively of our aggregated_model. The f1 scores of class one and
two are 0.90 and 0.84 respectively. However, the f1 score of the third class is lower,
namely 0.67, with a precision of 1.00, but half of the samples in the test set are assigned
class 2, resulting in a recall of 0.50.

5.2.3 Feature selection

5.2.3.1 Feature selection based on Spearman rank-order correlations

In order to find the importance of features we performed RF feature importance analy-
sis with 30 repeats on our aggregated_model. Only accuracy decreases were found for the
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Table 5.3: The classification report of the aggregated_model applied to the test set.

Figure 5.10: The confusion matrix of the aggregated_model applied to the test set.

four features died_at_end, pellet_eaten_count, PM_is_chased_unsucces_perc, and death_freq.
Noteworthy, only part of their permutations resulted in an accuracy decrease, some-
times permutations actually led to a small accuracy increase, see Figure 5.11. These
results can be explained by the many collinear features in our dataset, because the per-
mutation of a collinear feature does not highly affect performance while its correlated
feature offers the same information [125].

In order to apply permutation feature importance analysis in a meaningful manner,
we applied feature selection. We performed hierarchical clustering on the Spearman
rank-order correlations. The dendrogram which visually represents the found hierar-
chical clustering results, is displayed in Figure 5.12. Manual selection of one feature
per cluster using a threshold of 0.35 resulted in a set of roughly 50% of the original fea-
tures. We also created feature sets based on the dendrogram with the thresholds 0.15,
0.25 and 0.45. While selecting the features for the set with threshold 0.45 we noticed it
became quite difficult to choose between features in a cluster. Due to this, we decided
to continue with the feature set resulting from the 0.35 threshold (for the 62 selected
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Figure 5.11: A plot of the permutation feature importance analysis results of the four fea-
tures that resulted in the decreases in accuracy, with 30 permutations per feature.

features see Appendix W).

5.2.3.2 Feature selection based on feature importance

We performed the same steps to train another RF with aggregated labels and with the
subset of 62 features (subset_aggregated_model) as the steps that were performed for the
training of the 7_categories_model and aggregated_model (see 5.2.1 and see Appendix V
for the search distributions, the found hyperparameters and all accuracies). The per-
formance of the new subset_aggregated_model was found to be equal to our aggregated_-
model, with a weighted accuracy of 0.92 for the train set and 0.83 for the test set and
also the same classification report and confusion matrix, see Table 5.3 and Figure 5.10

Because the Gini feature importance analysis has been shown “to be strongly biased”
[126] as cited by [122], here we focus on the results of the performed permutation fea-
ture importance, see Figure 5.13. We created two small subsets. Firstly, a subset with
features for which the permutation analysis of our subset_aggregated_model resulted in
decrease in accuracy above 0 (PI_PART), consisting of all features displayed in Fig-
ure 5.13. Secondly, a subset with features for which the median’s decrease in accuracy
in the permutation analysis of our subset_aggregated_model was above 0.005 (PI_MED),
consisting of the eight features highlighted in pink Figure 5.13.

For both subsets we trained models by performing multiple searches. We followed
the same training process as described previously, but with less searches by applying
insights gained in previous searches (see Appendix V for the search distributions, the
found hyperparameters and all accuracies). The model for the PI_MED subset (pi_-
med_model) outperformed the model for the PI_PART subset on the test set, with F1w_-
avgs of 0.83 and 0.80 respectively. Because the performance on the set did not decrease
compared to the subset_aggregated_model trained on 62 features, we selected the PI_-
MED as our final subset used to perform a final analysis of the possible contribution of
the pupillometry features.
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Figure 5.12: The dendrogram visually representing the results of the hierarchical cluster-
ing performed on the Spearman rank-order correlations.
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Figure 5.13: The results of the permutation feature importance analysis on the train- and
test set, with 30 permutations per feature. The plots only display the features for which at
least one permutation resulted in a decrease in accuracy. The features highlighted in pink
font indicate the features for which the median’s decrease in accuracy score is above 0.005.

5.2.4 Feature importance of pupillometry features

As a final step, we extended the PI_MED subset twice, once with the sub_highest and
div_highest features (PI_MED_PUP_HIGHEST) and once with sub_peak and div_peak
(PI_MED_PUP_PEAK). We did not combine the highest and peak features in one set
because of the high correlation between these.

Again, performed multiple searches, following the same training process as described
previously (also see Appendix V). The F1w_avg for the final models found for the sub-
sets PI_MED_PUP_HIGHEST (pi_med_pup_highest_model) and PI_MED_PUP_PEAK
(pi_med_pup_peak_model ) together with the pi_med_model found for the unextended
subset PI_MED are displayed in Table 5.4. The F1w_avgs of the performance of these
three classifiers on the test set are 0.83. We found the same F1w_avgs for both the ag-
gregated_model and subset_aggregated_model for the performance on the test set.

Table 5.4: The hyperparameters of the best found models for the pi_med_model, pi_med_-
pup_highest_model and pi_med_pup_peak_model together with the F1 weighted average on
the train and test set.
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5.2 Random forest classifiers

Figure 5.14: The confusion matrix of the pi_med_model, pi_med_pup_highest_model and pi_-
med_pup_peak_model applied to the test set.

Not only the found F1w_avgs were equal, also the classification reports and confusion
matrices for the performance of pi_med_model, pi_med_pup_highest_model and pi_med_-
pup_peak_model on the test set were identical, see Table 5.5 and Figure 5.14. Noteworthy,
differences in predictions on the test set can be found when comparing the classifica-
tion report and confusion matrix with those of the aggregated_model and subset_aggre-
gated_model displayed in Table 5.3 and Figure 5.10. The final three models slightly per-
form less well in predicting label 2 (the “neutral” category), correctly assigning 90% to
2 instead of 95% and incorrectly assigning 10% to label 1 instead of 5%. However, the
final three models perform better in predicting label 3, namely 62.5% percent compared
to 50% is assigned the correct label, with 37.5% compared to 50% incorrect assignments
to label 2. To sum up, the F1w_avgs for the performance on the test set is equal for the
final three models, aggregated_model and subset_aggregated_model. But correct predic-
tions on the test set are slightly more evenly distributed amongst the three labels for
the final three models compared to aggregated_model and subset_aggregated_model.

Table 5.5: The classification report of the pi_med_model, pi_med_pup_highest_model and pi_-
med_pup_peak_model applied to the test set.
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We performed a permutation feature importance analysis for all three final models (pi_-
med_model, pi_med_pup_highest_model, pi_med_pup_peak_model), the results are shown
in Figure 5.15. For each feature a description is provided in Table 5.6.

The most noticeable is the death_freq feature, for which the decrease in accuracy scores
(DA_scores) are highest in all plots. In other words, the permutation of death_freq has
the highest impact on the accuracy of all models, thus it can be viewed as the most im-
portant feature. Furthermore, the DA_scores found for avg_dist_pacman_gcentroid_avg
and sd_avg_change_dist_ghosts_pacman are positive as well in all plots, apart from some
zero values and can be viewed to form the second and third most important features.
Remarkably, avg_turn_index’s DA_scores are positive for the train set, but negative for
the test set for all models. For the other four non-pupillometry features, move_turn_-
freq, existing_pellets_end, run_dur_sec and PM_perc_visits_quartile_Q1 the found DA_-
scores are roughly viewed all near zero for the train set. Noticeably, their DA_scores
ranges are more diverse on the test set, whereby existing_pellets_end and run_dur_sec
DA_scores are higher for all models.

Finally, reviewing the pupil features. The found DA_scores of the pupil features sub_-
highest, div_highest and sub_peak are zero or positive applied on the train set and for
div_peak also negative DA_scores were found. For the test set, only for the div_highest
pupil feature, all DA_scores except for one outlier are zero or higher. Thus in compari-
son to the other pupillometry features, div_highest results in the highest DA_scores. The
DA_scores of div_peak in comparison to sub_peak on the test set are higher as well.

Table 5.6: The description of the features that are part of the final three feature sets
PI_MED, PI_MED_PUP_HIGHEST and PI_MED_PUP_PEAK.

Features Feature description

death_freq The frequency of the occurrence of Pac-Man’s deaths.

avg_dist_pacman_gcentroid The average of the distance between Pac-Man and the centroid of the ghosts’
locations.

sd_avg_change_dist_ghosts_pacman The standard deviation of the differences between the average distances be-
tween the four ghosts and Pac-Man for each snapshot and the previous snap-
shot. The displacement after dying is excluded.

avg_turn_index The average of the turn index. The turn index corresponds to values in the
range [0, 7], indicating the timing of a turn; values < 3 correspond to pre-turns
and values > 4 to post-turns.

move_turn_freq The frequency of the occurrence of correct moves, referring to either turns or
direction switches. Incorrect user input is excluded.

existing_pellets_end The number of pellets at the end of the game round.

run_dur_sec The duration of the active gameplay in a round in seconds. The countdown and
death animations are excluded.

PM_perc_visits_quartile_Q1 The percentage of the number of times Pac-Man visits a tile in the top-left quar-
tile compared to all tile visits of Pac-Man.

sub_highest The average of the z-standardized, subtractive corrected, highest pupil dilations.

div_highest The average of the z-standardized, divisive corrected, highest pupil dilations.

sub_peak The z-standardized, subtractive corrected, peak pupil dilation.

div_peak The z-standardized, divisive corrected, peak pupil dilation.
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Figure 5.15: The results of the permutation feature importance analysis on the train- and
test set, with 30 permutations per feature, performed on the three final models, pi_med_-
model, pi_med_pup_highest_model and pi_med_pup_peak_model.
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6. Discussion

6.1 Pupillometry features in respect to predicting experi-
ence difficulty

6.1.1 Added value of pupillometry features in predicting the experi-
enced difficulty (RQ1)

To ensure a relevant base set of features in order to review the added value of pupil-
lometry features, we first applied feature selection. We validated the resulting set of
eight features by comparing the pi_med_model trained on this set, to the two models
trained on the larger feature sets (aggregated_model, subset_aggregated_model). The F1
weighted average was equal, thus, no decrease in performance was found. Notewor-
thy, the pi_med_model did result in more evenly distributed correct predictions, which
can be explained by the reduction of noisy and irrelevant features. We then used this
feature set to review the added value of pupillometry features. For the final models
trained with and without pupillometry features, both the F1 weighted average and
the confusion matrices were all equal. Thus, no difference in performance was found.
This equal performance indicates that the pupillometry features do not improve the
accuracy of a RF in predicting the experienced difficulty, thereby answering RQ11.

6.1.2 Correlation between pupillometry features and experienced
difficulty (RQ2)

To answer RQ22 for the pupillometry features sub_highest and sub_peak, no significant
correlation was found. For the pupillometry feature div_highest the “strongly disagree”
response distribution was found to significantly differ from the distributions of the
responses ranging from “slightly disagree” to “agree”. For the pupillometry feature
div_peak the “strongly disagree” response distribution was found to significantly differ
to “slightly agree” only.

1“To what extent does the addition of pupillometry features to an input feature set improve the accuracy of a ran-
dom forest classifier in predicting experienced difficulty?”

2“To what extent does this pupillometry feature statistically correlate to the self-reported experienced game diffi-
culty?”
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6.2 Results reviewed in perspective to the experience of difficulty

In the context of predicting the experienced difficulty with a RF classifier, the results
of our statistical analysis indicate that only the div_highest and div_peak are informative
with respect to identifying the “strongly disagree” to some extent only. The aggrega-
tion of the RF target classes, whereby the “strongly disagree” and “disagree” response
categories were aggregated, which lowered the informative value of div_highest and
div_peak. This lowered informative value together with the nonsignificant differences
between the other distributions for div_highest and div_peak can explain why the addi-
tion of pupillometry features did not result in an accuracy improvement for our RFs.

6.2 Results reviewed in perspective to the experience of
difficulty

In this section we review three of our results in perspective to the experience of diffi-
culty. Firstly, to further gain insights with respect to which gameplay experiences are of
influence to the level of experienced difficulty, we reviewed the three features that can
be viewed as most informative with respect to predicting the experienced difficulty.
The permutations feature importance analysis performed on the final three models
indicated death_freq, avg_dist_pacman_gcentroid_avg and sd_avg_change_dist_ghosts_pac-
man as the top three most informative features. The feature death_freq represents the
frequency of the occurrence of Pac-Man’s deaths. This feature was selected in the first
step of our feature selection, based on the used distance threshold when reviewing the
dendrogram of the hierarchical clusters of the Spearman’s correlations it was found to
be correlated with four other features. We believe that death_freq, together with the two
correlated features number of deaths (death_count) and the percentage of unsuccessful
chases of Pac-Man by ghosts (PM_is_chased_unsucces_perc) can be related to the ’expe-
rience of failure’ (PM_is_chased_unsucces_perc is the inverse of successful chases). The
two other features correlated to death_freq, were the measures of the second and third
ghosts’ activity in the maze (G2_maze_activity and G3_maze_activity3). To explain this
correlation, a death of Pac-Man leads to repositioning ghosts two, three and four in the
ghost house where they again wait before restarting the chase on Pac-Man. Thereby, a
death of Pac-Man can be expected to be of influence to the ghosts’ maze activity.

With respect to the other two most informative features, the second informative fea-
ture avg_dist_pacman_gcentroid_avg captured the average of the distance between pac-
man and the centroid of the ghosts locations. The third informative feature sd_avg_-
change_dist_ghosts_pacman refers to the standard deviation of the differences between
the average distances between the four ghosts and Pac-Man for each snapshot and its

3With maze activity we refer to the entropy of cell visits in a game [102]
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previous snapshot4 (the displacement after dying was excluded). Both features were
not found to be correlated with other features, based on the used distance threshold
when reviewing the dendrogram of the hierarchical clusters of the Spearman’s corre-
lations. We believe both of these features can be related to the ’experience of being
chased’.

Secondly, the followers resulted in a more difficult experienced level in comparison to
the ghost strategy near-optimal This is against our expectations which were based on
the findings of Yannakakis and Hallam [103], where the near-optimal ghosts performed
better in experiments against different Pac-Man AI’s. We believe that the near-optimal
ghosts actually impose a higher task demand, because these ghosts provide a higher
navigational challenge in comparison to the followers ghosts. Since, when the followers
ghosts are tailing Pac-Man, Pac-Man can simply continue eating pellets while being
followed by a tail of ghosts, while the near-optimal ghosts tend to not allow Pac-Man
to escape. Based on our observations, we would describe the behavior of the followers
ghosts in comparison to the near-optimal ghosts to be more directly aiming for Pac-Man.
We wonder if this seemingly higher aggressiveness of the followers in comparison to
the near-optimal ghosts led to a higher experience of being chased and thereby led to a
higher level of experienced difficulty.

At the start of this research, we expected the experienced challenge responses to reflect
the in-game difficulty relative to the participant skills. These expectations were in line
with Adam’s (2014) view on perceived difficulty; “the relative difficulty minus the
player’s experience at meeting such challenges”. However, after reviewing the results
in the perspective of experience, we wonder if the challenges that are most clearly
noticeable are of extra influence on the experience of difficulty. This is reminiscent of
Csikszentmihalyi [11] view on flow; “it is not only the ’real’ challenges presented by
the situation that count, but those that the person is aware of”.

Another result we believe is relevant to review with respect to the experience of dif-
ficulty, is that of the found significant differences of CHAL distributions across the
levels of experience with Pac-Man (“How often did you play Pac-Man? (estimation)”).
A small side note, we did not find a significant difference for the estimated skill level
in Pac-Man, we assume participants were being modest. Participants that estimated a
higher experience with Pac-Man provided lower level of agreement CHAL responses
in comparison to participants that estimated their experience with Pac-Man lower.
Also, we did not find a significant difference in performance when reviewing the fre-
quency of Pac-Man’s deaths, thereby no indication of an actual higher skill level was
found. Thus, it could be that participants who estimated to have played Pac-Man more

4A snapshot was taken each 5 frames at a framerate of 60 frames per second.
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often, actually experienced the Pac-Man rounds overall lower regarding CHAL com-
pared to participants with lower Pac-Man experience. Therefore, we wonder if not the
actual skills, but the skills we think we have are of influence to the experience of diffi-
culty. Again we are reminded of Csikszentmihalyi’s (1990) view on flow, this time; to
get in the flow channel not only the actual skills are of influence, but also the skills we
think we have.

To sum up, reviewing some of our results in perspective of the experience of difficulty,
has led us to question whether two subjective aspects were of influence to the experi-
enced difficulty. Firstly, could it be that the experienced difficulty is not dependent on
the ’real’ challenges provided by the game, but those challenges the player is (mostly)
aware of? Secondly, is the experience of difficulty influenced by the skill we think we
have, instead of our actual skill? If this indeed the case, we would question if pupil-
lometry features, which can provide an indicator of mental workload, can serve as an
informative feature for the prediction of experienced difficulty.

Following from this, one final chain of thoughts. We imagine the pupillometry fea-
tures, as indicators of mental workload, to be more informative in a RF classifier
predicting in-game difficulty in comparison to predicting the experienced difficulty.
Firstly, because an inverted u-curve was found more present for div_highest against
difficulty than for div_highest against experienced difficulty. Secondly, when reviewing
a RF classifier predicting the in-game difficulty from the perspective of MWL, a rela-
tionship can be identified between in-game difficulty, pupillometry features and game
features. Here, in-game difficulty can be viewed as task demand (antecedents of MWL),
the pupillometry features can be viewed as indicators of the core of MWL and the
game features can be viewed as representatives of performance (consequences of MWL).
When this relationship can be further substantiated in future work with RFs predict-
ing in-game difficulty, then pupillometry features can serve a DDA system aiming to
provide an optimal load to a player.

6.3 Limitations

The results of both the statistical analysis and the found decrease in accuracy scores
for our four pupillometry features for the pi_med_pup_highest_model and pi_med_pup_-
peak_model suggest that div_highest is the most informative pupillometry feature with
respect to predicting CHAL, followed by the div_peak pupil feature. Thus, with respect
to our data, the divisive baseline correction resulted in more informative pupillometry
features in comparison to the subtractive baseline correction. For our divisive baseline
correctio we used the average of all baselines as recommended by Mathôt et al. [80],
while for the subtractive baseline correction we used the baseline corresponding to each
trial (see 4.5.2.2). Our results could indicate that the found fluctuations in the baseline
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recordings resulted in distorted subtractive pupillometry features, which can be viewed
as a limitation with respect to these features.

When viewing the div_highest pupil feature per participant across the aggregated self-
reported experienced difficulty, an inverted u-curve was found present for six out of 19
participants. When considering the subtractive measure of difficulty as representative
of increasing task demand, this could indicate that not all participants reached a state of
overload. However, when viewing the div_highest pupil feature per participant across
the difficulty levels, the inverted u-curve was found present for 17 participants, even if
it was only cautiously for some. For the two other participants for which no inverted u-
curve was visible, we assume these participants did not reach the overload state. There-
fore, for these participants it could be that the pupil measures do not reflect the full
dynamic task evoked dynamic range (TERP). Furthermore, for some participants the
decline in pupil size occurred cautiously at difficulty level nine, while for others this
decline is larger and also present for difficulty level six. These differences lead to dif-
ferent balanced distribution of the pupil measures. In turn, the z-standardized nor-
malization could have led to a distortion of the data, which could have lowered the
informative value of our pupillometry features. With respect to future work, we be-
lieve it would be interesting to apply the cognitive evoked normalization proposed by
Winn et al. [24], whereby normalization is based on the dynamic range of the task
evoked response.

Another limitation could be the possible low level of immersion that pacman evoked
in (some) players/participants during our experiment. We believe one can question
to what extent a participant goes when playing an arcade game in a darkened room
with a red light for an experiment. Since, the theory of mental workload states that
the deployment of resources is under voluntary control [56], it could be possible some
participants did not choose to allocate the full required amount of mental resources for
all levels. Some observations made during the experiment substantiate this view. Dur-
ing the procedure, one participant shared by thinking out loud that he simply stopped
spending effort on the game when they noticed that the ghosts were faster in com-
parison to Pac-Man (level 9). Some other participants were openly figuring out the
differences between levels for some of the levels, thereby possibly spending extra men-
tal resources of influence to the pupil size. This could explain seemingly partly random
data and outliers in the div_highest plots and the less consistent inverted u-curves for
some with respect to the difficulty levels. Furthermore, this could have influenced and
thereby lowered the informative value of our pupillometry features. In previous work,
a higher engagement and motivation was already found to correlate with a higher
pupil size [22], [88]. Due to our resultings and previous findings we believe a repeti-
tion of the current research with a game with high immersion would be interesting in
future work.
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Participants that estimated their experience with Pac-Man (“How often did you play
Pac-Man? (estimation)”) higher in comparison to other participants overall provided
lower level of agreement responses for the CHAL experience statements. This could
not be explained by a difference in performance. With respect to limitations, for these
participants, gameplay, game context and pupillometry features similar to that of other
participants, could be reflected by lower CHAL responses. If so, this could have low-
ered the maximum achievable accuracy of classifiers to predict CHAL. Such influence
of interpersonal differences in ratings is a known limitation of rating-based reporting
[17]. In future work, a repetition of the current work with pairwise ranking instead
of rating-based reporting could be interesting in order to minimize the influence of
interpersonal differences.

The beforehand estimated order of difficulty of the nine implemented difficulties was
found to differ from the experienced order of difficulty based on the CHAL responses.
This could have led to a less balanced order in the three groups’ experimental con-
ditional orders. The comparison of the averaged responses per group with respect
to those of the other groups, showed that group A and B provided lower and higher
answers for some levels respectively. However, we could not distinguish a clear pat-
tern across the responses per group in comparison to the other groups. Therefore, we
did not identify a specific impact of the groups’ condition order on the reported game
experience. Because no significant differences for the responses across the three par-
ticipant groups were found, we expect that the order had no high influence on the
overall CHAL responses. It is however noteworthy as a limitation of this research, also
because of the unbalanced spread of participants amongst the three groups due to the
exclusion of data.

Due to the unforeseen synchronization issue between the clocks used by the unity en-
gine and eye tracker server we could not focus on data of the chase state only. Instead,
we based two pupillometry features on the 30% highest pupil sizes per round of Pac-
Man. We believe this was a good alternative strategy. But we imagine pupillometry
features extracted from the chase states to be higher correlated to task demand and pos-
sibly also to the experienced difficulty. We believe it is interesting in future work to
reuse our data and then synchronize with to be written custom functions to retrieve
pupillometry features reflecting the chase state only.

6.4 Future work

Our results indicate that pupillometry features, which were found to be informative
with respect to task demand and mental workload in previous work, are less informa-
tive with respect to experienced difficulty. However, the shared limitations (see 6.3)
could have led to less informative pupillometry features and / or experienced chal-
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lenge responses, resulting in no found added value of pupillometry features in pre-
dicting experienced difficulty. Therefore, as a first step to gain further insight into the
potential value of pupillometry features in the context of predicting difficulties, we be-
lieve it is interesting to perform a small follow up study reusing the current data and
taking insights gained into account to minimize the influence of the shared limitations.

In this follow up, new pupillometry features can be constructed that only reflect the
chase state. Similar to our application of divisive baseline correction, the averaged base-
line can be also used for the subtractive baseline, to minimize a possible impact of the
found fluctuations in the baseline recordings. Furthermore, cognitive evoked normal-
ization can be applied instead of applying z-standardized normalization, by only using
the data of 17 participants for which an inverted u-curve was found. Since the pupil
size recordings of these participants can be expected to reflect the full TERP range per
participant, these pupil size recordings can be used for cognitive evoked normaliza-
tion.

Furthermore, in this proposed pilot study it would be interesting to also train RF classi-
fiers to predict the in-game difficulty. This in-game difficulty could be based on the av-
eraged CHAL responses for each nine difficulty settings, assuming linearity between
the labels on the likert scale. This would then allow for a comparison between the
pupillometry features as indicator of in-game difficulty (task demand) versus as indica-
tor of the experienced difficulty. Additionally, a RF classifier predicting in-game diffi-
culty could provide further insights with respect to the relationship between in-game
difficulty (MWL antecedents), pupillometry features (core of MWL) and game features
(MWLconsequences).

Additionally, in the current work we did not construct features from other recorded
eye tracker measurements like gaze position and number of blinks. This data is avail-
able in our data set and can be considered as well in the proposed follow up study.
Similarly, in the current work we did not fully review the participants’ COMP and
WRKL responses. We imagine extended data analysis of these responses could offer
additional insights with respect to experienced difficulty and the in-game difficulty.

Apart from the proposed follow up, a repetition of the current work using a game
with high immersion as a testbed game with pairwise ranking would be interesting.
We expect a game with higher immersion to lead to a higher engagement, leading to
more representative pupillometry features. As a side note, a higher engagement could
also lead to a higher arousal which is also of influence to the psychosensory pupil
response, which should be accounted for. Pair-wise ranking could lead to both more
representative experienced difficulty labels, since these are found to be less biased in
comparison to the applied rating-based reporting in the current work.
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As a final note with respect to future work, we here share a brief reflection on the
applied step-by-step processes in the selection of game features and adaptive game com-
ponents (See 3.3, 3.4 and 4.5.1). Where the final three selected adaptive game components
can be viewed as pretty straightforward and would maybe not have required such a
thorough selection process, we experienced the step-by-step feature selection process
as extremely valuable. We believe we would not have constructed some of the fea-
tures that were part of our final set without this step-by-step process. For example,
the avg_turn_index’s feature, which represents the timing of turn and was correlated
with sd_turn_index, was constructed by reviewing our mapped challenge hierarchy of
Pac-Man. Another example is that of a feature based on the delta distance used in the
online learning fitness function in Yannakakis and Hallam [102]. Due to our step-by-
step process, we not only considered the average delta distance between the ghosts
and Pac-Man (avg_avg_change_dist_ghosts_pacman), but also the sd, which resulted in
sd_avg_change_dist_ghosts_pacman, part of the top three informative features. In future
work, it could be interesting to further develop the applied step-by-step process into a
design guide for feature selection.
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7. Conclusion

In this research, we aimed to provide insights regarding the added value of the com-
monly used pupillometry features to predict self-reported experienced difficulty. A
user study was conducted during which participants played multiple rounds of Pac-
Man at different difficulties. Gameplay-, game context- and pupillometry data were
collected together with participants’ responses regarding game experience amongst
which experienced difficulty. Based on this data a feature set was constructed, with
amongst others four pupillometry features. Namely, both the subtractive and divisive
corrected average of the 30% highest measured pupil sizes (sub_highest, div_highest)
and both the subtractive and divisive corrected peak pupil size (sub_peak, div_peak).

Multiple random forest classifiers were trained on different feature subsets, with and
without pupillometry features, to predict experienced difficulty. We found that the
addition of pupillometry features did not lead to a performance improvement of the
RF classifiers. These results are supported by the results of our data analysis, whereby
no significant relationship was found for the sub_highest and sub_peak features across
the self-reported experienced difficulty. For both div_highest and div_peak, the response
“strongly disagree” was found to significantly differ from some of the other responses.

Although our results did not confirm an added value of pupillometry in predicting ex-
perienced difficulty, we do believe the research to be valuable in the context of DDA. A
review of our results in perspective of the experience of difficulty has led us to question
whether two subjective aspects were of influence to the experienced difficulty. Our re-
sults suggest pupillometry features to be more informative with respect to predicting
in-game difficulty. Based on our findings, we can see that an important next step is to
further research the difference between pupillometry features as informative features
in predicting experienced difficulty versus the prediction of task demand viewed as in-
game difficulty. We provided insights that can inform such future work and proposed
a follow up study for which our data can be reused.

Pupillometry features might not turn out to be informative for a DDA system that aims
to keep the player in the channel of flow. Still, we can imagine pupillometry features
to be informative for a DDA system that aims to challenge the player to the maximum
effort. We foresee applications of pupillometry features in a training setting for esports
gamers, education- and rehabilitation games.
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