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Layman Abstract 

Which transportation modes people use impacts how sustainable a country or a population can be. To 

get more people to travel with more sustainable transportation modes, e.g. public transport or a bike, it 

is important to understand the reasons and dynamics that contribute to the transportation mode 

choices that people currently make. This paper explored these dynamics through agent-based 

modelling. 

In agent-based modelling it is possible to create agents with a range of characteristics, e.g. their 

transportation mode attitudes and preferences, whether they own a driver’s license and car, what other 

agents are in their social network, etc… These agents are then given behaviour rules based on 

empirical findings and data to simulate their decision-making processes. In our model, agents make 

decisions based on their preferences and their preferences are influenced over time depending on how 

crowded they perceive the mode their chose, what modes their social circle chooses, and what 

attitudes they have towards the transportation modes. Diversifying the rules of the model or the input 

characteristics that agents receive allows exploring which dynamics lead to more sustainable findings. 

These findings can then be used to inform future research and policy making on which circumstances 

would, under the assumptions of the model, lead to the desired increase in the number of people using 

sustainable transportation modes. 

Our findings suggest that when people are more sensitive to how soon they perceive a transportation 

mode as crowded, they use the car less overall. While it is difficult to influence how sensitive people 

are, it is possible to adjust the capacity that the infrastructure of the transportation mode has. For 

example, more and wider bike lanes or longer trams travelling with higher frequency would make it 

less likely that they are perceived as crowded, because less people would use that specific bike lane or 

tram. Decisions on what transportation mode infrastructure to invest in are therefore crucial to steer 

people toward more sustainable transportation choices. We also find that social norms can spread the 

use of car alternatives, but that they require a certain popularity to be spread by social norms. It may 

need other approaches to popularize less used car alternatives initially. 
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Abstract 

Passenger transportation is a significant contributor to global greenhouse gas emissions. 

Transportation modes (TMs) that individuals choose in daily life differ in their emissions, and a shift 

towards more sustainable TM usage on a societal scale is desirable. However, many people still utilize 

high-emission options, such as traveling by car. 

Here, we present an agent-based model simulating TM choices over time. We implement decision-

making mechanisms based on psychological theory on influences of social norms, environmental 

affordances, and internal attitudes. A sensitivity analysis is applied to explore which interplay of 

mechanisms could facilitate a transfer towards lower-emission TM choices. 

Our results indicate that, while the car is the most dominant mode at the start of the model, the model 

stabilizes with public transportation and car usage counts being even. Less popular TMs such as 

biking and carsharing decrease in popularity. Sensitivity analysis on the impact of social influence, 

experience of crowdedness, and internal attitudes indicates that lower tolerance towards crowdedness 

is the most relevant factor in reducing car usage. 

Our findings implicate that frequent crowdedness perception might be a key factor in reducing car 

usage, which could be relevant for policy development around reducing the infrastructure capacities 

of undesirable TMs. We further conclude that for social norms to have a positive effect on TM usage, 

the TM requires an initial popularity. Increasing societal acceptance of less popular car alternatives 

might require complementary approaches in popularizing the TM before the effects of social norms 

can apply. 

Keywords: sustainable transportation, social norm internalization, agent-based modelling, 

sensitivity analysis 
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Introduction 

The passenger transportation sector has a large impact on global greenhouse gas emissions, 

thereby making it an area of interest in efforts to mitigate climate change. Cars alone are estimated to 

cause 450 tons of CO2 emissions per year (European Commission & Transport & Environment, 

2022). However, lower-emission transportation modes (TMs) are available. While cars are estimated 

to produce about 170g of CO2/km per passenger, buses emit 97g, trams 29g (UK Government, 2022), 

and cycling only 16g (European Cyclists Federation, 2013). Despite these differences, cars are still the 

most popular mode of transport, accounting for 79.7% of passenger-kilometres travelled in the EU 

(Eurostat, 2021). These figures highlight the potential for reducing CO2 emissions by encouraging the 

use of lower-emission TMs. Therefore, to combat climate change, a societal shift of TM choices from 

car usage to more eco-friendly options would be desirable. 

To facilitate such a transition, it is crucial to identify the underlying dynamics that motivate 

people's TM choices. Many theories exist on how attitudes are shaped, intentions are formed, and how 

those may lead to adaptations in behaviour. However, less is known about how such dynamics 

develop in practice when the system is complex, and many factors interact. Agent-based modelling 

(ABM) has been proposed to model such complex interactions over time. Jager (2021) discusses the 

potential of ABMs to explore climate-related behavioural dynamics. He reasons for the potential of 

ABMs because simple behaviour rules for interaction between agents can lead to complex and 

sometimes surprising outcomes. In the context of pro-environmental behaviour, ABMs enable the 

study of dynamic interactions that could lead to desirable outcomes, such as increased pro-

environmental actions. Modelling such dynamic interactions is especially beneficial when the 

decisions of others influence the development of behaviours such as dietary preferences (e.g. 

veganism) or modality choice (e.g. cycling; Jager, 2021). 

In this paper, we present an extension of the TransportTransform ABM developed by Köckritz 

et al. (2023) on individual transportation mode (TM) choices. In their model, the authors explore the 

development of TM choices while being affected by social norms and mode crowdedness. We extend 

the model by implementing dynamic changes in TM preferences over time as a learning mechanism 

and by integrating individuals’ internal attitudes towards TMs into their learning process. 

 

Theoretical Background on Model Extensions 

In the context of passenger transportation, we argue that the main drivers of modality choice 

are an individual’s physical environment, their social environment, and their internal values. The 

physical environment is relevant because it can strongly influence the range of modality options an 

individual perceives and how they evaluate them. Kaaronen and Strelkovskii (2020) reason for this 
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dynamic with the theory of affordances. Originally published by Gibson (1979), affordance theory 

suggests that objects in our environment afford a set of actions to an organism. This set of actions is 

determined by the shape of the object and the perception of the organism. For example, a chair 

‘affords’ sitting to a human being, or a door handle ‘affords’ to be pushed or pulled. Gibson (1979) 

argues that these perceptions happen without much cognitive effort and that the ‘affordances’ of 

objects thereby guide our behaviour. Kaaronen and Strelkovskii (2020) take this approach to a macro 

level and apply it to pro-environmental behaviour that an individual’s physical environment affords. 

For example, the quality of bike lane infrastructure or how crowded public transportation is may 

determine whether a person perceives these transportation modes as an option and how they appraise 

these options. If the physical environment does not facilitate the use of lower-emission TMs, people 

may be less inclined to consider these TMs.  “There is only so much that individuals can do if 

sufficient opportunities for behaving sustainably do not exist” (Kaaronen and Strelkovskii, 2020, p. 

85). The environment can thereby enable pro-environmental behaviour, while a lack of pro-

environmental affordances could cause a gap between environmentally friendly intention and 

behaviour (Kaaronen & Strelkovskii, 2020) 

Social influence is another key driver for decision-making. People’s behaviour can greatly be 

influenced by social influence (Miller & Prentice 1996; Cialdini & Goldstein, 2004). Most people are 

part of social groups with whom they interact regularly and will adjust their behaviours to the group 

norms to reinforce their belonging to the group (e.g. Warner et al., 2022). People may also perceive 

pressure from their social environment and adjust their behaviour to comply (Cialdini & Goldstein, 

2004). These are cases of external motivation, in which individuals follow social norms because they 

fear punishment or anticipate rewards from their social environment. However, over time, individuals 

often internalise the social norms of the group, a concept called social norm internalisation. They will 

then follow the norm because it is an intrinsically desired personal goal, independently of any 

anticipated reward or punishment from their social environment (Aronfreed, 1968; Andrighetto, 

Villatoro, & Conte, 2010; Gintis, 2016). Individuals also differ on how influenceable they are by their 

social environment and may be more likely to seek and adopt a group opinion if they are less certain 

about their individual stance (Spears, 2021). These findings suggest that individuals will adopt a 

social norm as their own after extended exposure and that people differ in how influenceable they are, 

depending on how certain they are about their own position. 

In the context of TM choices, several psychological frameworks have been proposed. De Vos 

et al. (2022) present an application of the Theory of interpersonal behaviour (Triandis, 1977) and the 

model of goal-directed behaviour (Perugini & Bagozzi, 2001) in the context of TM choices. Both 

theories discuss the relevance of social norms in intention formation. Beyond social influence, 

attitudes and satisfaction are considered key drivers of intention. In line with these theories, negative 

experiences with TMs would decrease satisfaction and thereby decrease TM use intention. We base 



8 
 

our model extensions on these theories to model social norms, internal attitudes, and TM satisfaction 

as key decision-making drivers in TM choices. 

Model Extensions 

Given the theoretical frameworks above, we present a theory-driven ABM in which agents, in 

line with Köckritz et al. (2023), choose TMs based on their preferences, the choices in their social 

environment, and the perceived affordances of their physical environment. In extension to Köckritz et 

al. (2023), agents dynamically update their preferences: (dis)satisfaction with TM usage influences 

their preferences and agents internalize social norms. We also implement internal attitudes towards 

TMs, based on empirical data on attitudes towards TMs from Wolf & Schröder (2019), to moderate 

the effect of external experiences on agents’ preferences. Finally, an extensive sensitivity analysis is 

performed to investigate how model inputs and dynamics affect model outcomes. 

With our model extensions, we aim to further explore the underlying mechanisms in TM 

choice. In the context of the need for more sustainable transportation, we are especially interested in 

what dynamics and circumstances lead to model outcomes in which agents use more sustainable 

transportation, such as bikes or public transportation. Given the context of everyday transportation, 

this ultimately results in the reduction of car usage. With our extensions, we aim to answer the 

following research question: 

What (combination of) dynamics and circumstances could lead to lower car usage in 

everyday transportation and increase the adoption of lower-emission transportation modes 

such as biking, public transportation, or carsharing? 

Methods 

The model extension builds on the agent-based model on transportation choice developed by 

Köckritz et al. (2023). Further data was used from the dataset provided by Wolf & Schröder (2019). 

The model is described following the ODD protocol standard for agent-based modelling for human 

decisions (Grimm et al., 2006; Grimm et al., 2010; Grimm et al., 2020). The ODD protocol describes 

the model by Köckritz et al. (2023) with our extensions integrated. A detailed outline of the changes 

and additions made can be found in Appendix A. 

ODD Protocol 

1. Purpose and patterns 

The purpose of the model is to explore dynamics of decision making and how they could lead 

to more sustainable transportation choices. Agents represent people who make decisions about daily 
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transportation modes based on internal attitudes, influence of their social network, and experiences 

and limitations of their physical environment. Understanding the interaction of these decision-making 

drivers and how more sustainable choices are achieved in the model informs hypothesis for 

experimental research as well as policy making in a transition to a low emission mobility future. 

2. Entities, state variables and scales 

The main entity of the model are agents, which each represent a human being who chooses 

TMs. Agents have attributes which influence their decisions. For each available TM agents have a 

weight that determines their chance of picking that TM. Agents also have a habit cycle, which 

determines after how many model steps they reconsider their current TM. Two other attributes 

describes whether the agent owns a car and drivers’ licence, respectively, which determine the 

available TMs of the agent. Finally, agents have attributes describing their attitude towards each TM. 

An overview on (global) model parameters and agent parameters can be found in Table 1 and Table 2, 

respectively. 

Two other entities are the social network and the environment in which agents make 

decisions. The social network determines which agents have social connections with each other and 

thereby what subgroup of agents apply social influence on an agent. The environment is shaped by the 

global usage of TMs which influence agents experience of crowdedness. 
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Table 1 

Global Model Parameters 

Name Description Range / Options 

Soc_midpoint Proportion of social circle using one TM , at which the 

agent has a 50% of experiencing social influence 

(midpoint of sigmoid function) 

0.3 - 0.7 

Crowded_midpoint Proportion of agents using the same TM gloablly, at 

which the agent has a 50% of experiencing crowdedness 

(midpoint of sigmoid function) 

0.3 - 0.7 

Crowdedness 

_influence 

How much the TM_weight decreases when the agent 

experiences crowdedness 

0.0 - 0.3 

Social 

_Influence 

How much the tm_weight increases when an agent 

experiences social influence 

0.0 - 0.3 

Tmp_impact How strong an agent’s attitude (tmp score) affects how 

much an agent is influenced by crowdedness or social 

influence 

1 - 5 

Note1. All global parameters are static, have the data type float, and are initialised based on model 

input. 
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Table 2 

Agent parameters 

Name Description Static / 

Dynamic 

Data 

type 

Initialised 

based on 

Range / 

Options 

tm_weights Holds the weights 

determining the chance 

an agent has of picking 

each TM. 

dynamic Dic 

{str:float} 

Empirical 

data 

0,27 

car_owner Whether the agent owns 

a car. 

Static Bool Empirical 

data 

True, 

false 

License Whether the agents has 

a drivers license 

Static Bool Empirical 

data 

True, 

false 

Available_modes The TMs available to 

the agent 

Static List Car 

ownership 

and license 

Car, Bike, 

PT, Carsh 

Tmp Holds the internal 

attitude an agent has 

towards each TM 

Static Dic 

{str:float} 

Empirical 

data 

-120 - 

120 

Habit The time an agent sticks 

to a chosen habit, 

Static Int Stochasticity 5 - 10 

Habit_next The number of model 

steps left until the agent 

reconsiders their TM 

Dynamic Int Model 

events 

0 - 10 

Main_mode The TM the agent 

currently uses 

Dynamic Str Stochasticity Car, Bike, 

PT, Carsh 

experiences Experiences of 

crowdedness the agent 

had since they last re-

considered their TM 

Dynamic [int] Model 

events 

-1,1 

 

 

3. Process overview and scheduling 

During the initialisation of the model, the agent’s social network is created an all attributes are 

initialised. Afterwards, each model step can be described with 5 phases: habit check, past experience 

check, TM choice, social influence, and learning. An overview of the phases is shown in Figure 1. 
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Figure 1 

Agents’ Decision-Making Process during a Model Step 

 

Note. The figure shows the phases an agent goes through each step of the model. 

 

Habit Check 

The agents ‘check’ whether their habit cycle has come to an end (habit_next = 0). Only agents for 

whom this applies continue with the following steps.  

Past Experience 

Agents evaluate the experience with the mode they last chose. If the number of negative experiences 

outweigh non-negative experiences, the mode will not be available during the next step TM choice. 

TM choice 

The agent chooses their next TM based on their available modes with probabilities defined by the 

agents tm_weights. 

Social Influence 

Agents check which TM was most chosen by agents in their social network. If the proportion of 

agents who chose that TM exceeds the value of Soc_threshhold, the agent has a chance of 80% of 

adapting their chosen TM to the social norm.  
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Learning 

The agent’s weights are permanently changed based on their experience of crowdedness and social 

influence. If they experienced crowdedness, the agent’s weight for the TM experienced as crowded is 

reduced based on Crowdedness influence and tmp_impact. Similarly, if they experienced social 

influence, their weight of the affected TM increases based on social_influence and tmp_impact. 

4. Design concepts 

4.1. Basic Principles Agents choose TMs based on their available modes and their preferences but are 

susceptible to choices in their network. Decisions in the network represent social norms and the 

agents adaptation of their own TM preferences upon experiencing social influence represents the 

effect of social norm internalisation. Affordances of the environment are modelled as the capacities 

that TMs have, arguing that lower capacities (e.g. less bike lanes, more crowded public transportation) 

lead to less perception of TM availability and lower appraisal. Agents are therefore susceptible to 

experience of crowdedness, with negative experiences decreases the agents preferences for the 

affected TM. How susceptible agents are to both social influence and crowdedness depends on their 

internal attitudes. 

4.2. Emergence The variety of outcomes under certain conditions, specifically outcomes in which car 

is not the dominant TM. 

4.3. Adaptation Agents have a distribution of weights, which determine the chances for them to pick 

each TM. Agents adapt to crowdedness experience by avoiding a TM if their experience with that TM 

was negative during their last habit cycle. Agents also can experience social influence which would 

lead them to adapting their choice to the socially dominant TM. Finally, both crowdedness experience 

and social influence of a given TM both permanently affect the agents weights for the respective TM. 

4.4. Objectives Not applicable. 

4.5. Learning Crowdedness experience and social influence of a given TM both permanently affect 

the agent’s weights for the respective TM. If crowdedness experience is present, the weight of the TM 

that was crowded gets multiplied by 1 – c. with c being a parameter crowdedness influence (default is 

c = 0.05). Thereby a slight decrease in the agent’s internal attitude based on their experience is 

modelled and the agent’s chance of choosing that TM in the future is reduced. Similarly, presence of 

social influence leads to an improvement of the agent’s internal attitude towards the TM and the 

affected weight gets multiplied by 1 + s, with s being a parameter social influence (default is s = 0.05) 

to permanently increase the chances of the TM being picked by the agent. 

4.6. Prediction Not applicable. 

4.7. Sensing Perception of social norms, further explained in section 4.3 and in section 7. 
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4.8. Interaction Indirect interaction as agents ‘observe’ other agents decisions and potentially adapt 

their decisions and preferences. 

4.9. Stochasticity Multiple phases of the model involve stochasticity. The agents’ habit cycle length is 

determined based on stochasticity, and agents’ TM choices and their perception of social influence and 

crowdedness involve stochasticity as well. Details are described in Section 7 Submodels. 

4.10. Collectives Social networks influencing the agents perception of social norms. 

4.11. Observation Each model steps stored the number of TMs chosen and the numbers of agents that 

perceived social influence and crowdedness. 

5. Initialization 

The agent network is created using a Watts-Strogatz small-world network (Watts & Strogatz, 1998; 

Strogatz, 2001). Agents’ initial preferences and TM attitudes are based on reports on the usage 

frequency of different TMs and attitude scores in the empirical data by Wolf & Schröder (2019; see 

Section 6). Neither social influence nor crowdedness experience are present at t=0.  

6. Input data 

The data provides answers from n = 5948 respondents about their usage and attitudes towards 

transportation modes, including innovative transportation modes (e.g. autonomous driving). The data 

utilized for our model were information on how frequently respondents use the TMs car, bike, PT, and 

carsharing, and whether respondents had a driver’s license and owned a car. Further data included 

information on how respondents prioritized different values associated with transportation (e.g. safety, 

cost efficiency…) and how they rated the TMs on these values.  

85.81% reported having a license, enabling them to use the TM carsharing, and 77.08% reported 

having both a car and a license, enabling them to use both TMs carsharing and car. 

TM use was highest for car, followed by bike and public transport. 74% of respondents use the car at 

least once a week and 53% every day. Public transport is used at least once a week by 32% of 

respondence and 19% every day. For biking, these numbers are 36% and 16%, respectively. The 

TM use frequencies are shown in Figure 2 in more detail. 
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Figure 2 

Transportation Mode Frequencies 

 

Transportation modes are shown on the X axis. The colour scale indicates the reported frequency. 

The frequencies of responses are shown on the Y axis in %. 

 

Importance of transportation mode qualities was assessed with a 1-6 Likert scale from not important 

at all – very important on 7 dimensions: independence, comfort, cost efficiency, environmental 

friendliness, safety, and fun. Safety and independence were considered most important with >37% of 

respondents rating each as ‘very important’. Fun was considered least important, with only 13% 

considering this ‘very important’. Details on the distribution of importance ratings on transportation 

mode qualities is shown in Figure 3. 
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Figure 3 

Importance of Transportation Mode Qualities 

 

The different TM qualities are shown on the X axis and are sorted by importance. The colour scale 

represents the rated importance of each TM quality. The frequencies of each response are shown on 

the Y axis in %. 

 

Survey respondents also rated how much they feel that each transportation mode fulfilled their needs 

on each quality on a 1-6 Likert scale from not at all – completely. On average, bike is rated highest on 

cost efficiency (M = 5.01) and environmental friendliness (M = 5.16). Car is rated highest on the 

remaining qualities independence (M = 5.24), comfort (M = 4.84), safety (M = 4.85), fun (M = 4.56), 

and time efficiency (M = 5.05). Public Transport mean ratings range from 3.07 (independence) to M = 

4.07 (environmental friendliness & safety). Carsharing has the lowest scores overall, ranging from M 

= 1.61 (independence) to M = 2.10 (environment). More details on TM ratings are displayed in Figure 

4. 
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Figure 4 

Mean TM Quality Ratings of Individual TMs 

 

X axis shows the different TMs, Y axis shows the different TM qualities. Numbers and colour scale 

in the grid show the average rating of how much the TM fulfils the TM quality need on a scale from 

1 (not at all) – 6 (completely). 

 

With the respondents rating of each TM quality on each TM and their perceived importance of each 

TM quality, a utility score transportation mode potential (TMP) was developed to quantify an agent’s 

attitude towards each transportation mode: 

 

𝑇𝑀𝑃𝑇𝑀  =  ∑ 𝐼𝑚𝑝𝑜𝑟𝑎𝑛𝑐𝑒𝑇𝑀 𝑄𝑢𝑎𝑙𝑖𝑡𝑦 ∗ 𝑅𝑎𝑡𝑖𝑛𝑔𝑇𝑀

𝑇𝑀 𝑄𝑢𝑎𝑙𝑖𝑡𝑖𝑒𝑠

 

 

With 

 TM Qualities being the 7 TM qualities, 

 ImportanceTM Quality being the rated importance of the respective TM quality, and 

 RatingTM being the rating how the TM was assessed on the respective TM quality. 
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In this computation, each TM quality rating is weighted by how important the TM quality is 

perceived. The sum of weighted qualities yields the TMP score as a measure of the agent’s attitude 

towards the TM. The distribution of TMP scores on each TM is shown in Figure 5. 

 

Figure 5 

Distribution of TMP scores per TM 

 

Y axis shows the TMP score, X axis shows the respective TM. 

 

7. Submodels 

The submodels described in the ‘process overview and scheduling’ section are explained in more 

detail. 

Habit Check 

Agents have a habit cycle with length five to ten which indicates how often they reconsider their TM 

choices. The cycle length of each agent gets determined randomly at the initialisation of the model, as 

well as how far they are away from reconsidering TMs for the first time. Agents have an attribute 

habit_next which is initialised randomly as a number between 0 and their habit cycle length, decreases 

by 1 with each model step, and gets reset to the agent’s habit length after reaching 0. Only when 

habit_next = 0 will the agent go through the other model phases and thereby reconsider his decision. 
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The habit cycle was implemented to represent heterogeneity in people’s frequency to reconsider their 

habits. Offsetting the timing when agents re-consider their TMs is also beneficial for model results as 

it is assumed that the time when a person re-considers their TMs choice is independent of other 

agents’ timing. 

Past Experience 

During a habit cycle (whenever the agent does not reconsider their mode), agents make either 

negative or non-negative experiences with their current TM, depending how crowded they perceive 

the TM. Whether an agent experiences a TM as crowded is modelled using a sigmoid function which 

returns the probability that the agent makes a negative experience as a function of the ratio of the 

count of other users using their TM compared to the total number of agents. The probability is 

modelled with the formula: 

 

𝑃crowdedness  =
1

1 + 𝑒
−20(

𝑁
𝑀

−𝛩)
 

With 

N being the numbers of agents using the same mode globally during that time step, 

M referring to the total number of agents, and 

𝛩 being the crowdedness midpoint defined as a model input parameter. The midpoint defines 

the value, at which the agent has a 50% chance of having a negative experience. 

When the agent’s habit cycle has passed, whether the agent evaluates the TM as too crowded is 

determined with probability 

 

𝑃𝑡𝑜𝑜 𝑐𝑟𝑜𝑤𝑑𝑒𝑑  =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑟𝑜𝑤𝑑𝑒𝑑 𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝑠
 

 

If the TM is considered too crowded, it is temporarily removed from the agent’s available modes for 

their next TM choice. It will also negatively impact the weight the agent has for that TM, which will 

be elaborated on in the submodule learning. 

TM choice 

The agent chooses their next TM. The agent’s mode is randomly drawn from the agent’s available 

modes with weights defined by the agents tm_weights. 
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Social Pressure 

Agents check which TM was most chosen by agents in their social network. Should two TMs be 

equally popular, it is randomly determined which TM they consider as popular. Whether they perceive 

the number of agents within their social network choosing that TM as social pressure is modelled by a 

sigmoid function, similar to how crowdedness experience is modelled. The probability of 

experiencing social pressure is defined by 

  

𝑃social_pressure  =
1

1 + 𝑒−20(
𝑁
𝑀

 − 𝛩)
 

With 

N being the number of agents in their social network using the most used mode, 

M being the total number of agents in their social network, 

and 𝛩 being the midpoint defined by social_midpoint. 

If the agent feels social pressure, and only if the respective TM is within the agent’s available modes, 

then the agent has a chance Psocial adaptation = 80% of adapting their chosen TM to the social norm. An 

agent adjusting to the social norm will disregard the TM chosen during the TM choice phase and 

choose the social norm TM instead. Adjusting also permanently increases the agent’s weight for the 

TM, which will be further explained under learning. 

Agents’ perception of social pressure was modelled as a sigmoid function to account for variability in 

individuals’ likelihood of adapting to social trends. In line with Köckritz et al. (2023), an additional 

stochastic element was used with the 80% chance of adopting to the mode to account for various 

external reasons which could stop an agent from complying to their social environments’ choices. 

Learning 

The agent’s weights are permanently changed when they perceive a TM as too crowded or when they 

perceive social pressure. How strongly the weight of the affected TM is adjusted depends on the 

model parameter inputs social influence, crowdedness influence, and TMP impact, and on the agent’s 

TMP score for the given TM. Experiencing the TM as too crowded will lower the TM weight while 

experiencing social influence will lead to an increase. Both effects are moderated by the agents’ TMP 

score, as shown in Figure 6. 
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Figure 6 

Dynamics determining TM weight adjustments 

 

Note. TM Weight increase after experiencing social influence and decrease after experiencing 

crowdedness. The magnitude of the changes gets moderates by the TMP score, with higher scores 

increasing the positive effect of social influence and decreasing the negative effect of crowdedness. 

 

If the agent experiences social pressure for a TM, their new TM weight for that TM is calculated: 

TM Weightpressured = TM Weightold * (1 + social influence * TMP_moderator), 

With 

Social influence being determined by the model parameter input social influence, and 

TMP_ moderator = ( |tmpTM| / max_tmp) * (tmp_impact – 1) + 1 if tmpTM > 0, and 

TMP_ moderator = 1/(( |tmpTM| / max_tmp) * (tmp_impact – 1) + 1) if tmpTM < 0. 

 

With 

tmpTM being the TMP score of the pressured TM, 

And max_tmp = 120, the maximum possible tmp score. 

For the affected TM, this computation increases the TM weight based on the model parameter social 

influence. How large the increase is, is moderated by the agents tmp score and consequently the tmp 

moderator. With tmp scores having a possible range of -120 – 120, the tmp moderator yields a factor 

> 1 for tmp scores > 0 and a factor < 1 for tmp scores < 0. The model parameter input tmp impact = x 

influences the margins of the factor, with the lowest possible tmp score resulting in a tmp moderator = 
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1/x and the highest possible tmp score resulting in a tmp moderator = x. The models default value for 

tmp impact = 2 can therefore up to double the effect of social influence for a tmp score = 120 and half 

it for a tmp score = -120. 

Similarly, experiencing crowdedness decreases the agents weight of the affected TM, but higher tmp 

scores buffer the negative effect. The new TM weight is calculated with 

TM Weightcrowded = TM Weightold *  

With 

 crowdedness influence being the model parameter input crowdedness influence. 

Here, a higher value for tmp moderator decreases the value of the denominator thereby causing less of 

a decrease of the TM weight. 

This implementation fosters an interaction between the agents internal attitudes towards the TM (tmp 

scores) and external influences (social influence and crowdedness experience). Agents with more 

negative attitudes towards a TM are less affected by positive external influences compared to agents 

with positive attitudes. Likewise, more positive attitudes increase the likelihood of being influenced 

by positive external influences and make the agent more resistant to being negatively affected. 

 

Sensitivity Analysis 

We run a sensitivity analysis to identify the most relevant parameters driving model outcomes 

and assess model stability. As suggested by Broeke et al. (2016), we first run a one-factor-at-a-time 

(OFAT) sensitivity analysis to explore how individual parameters affect model outcomes. We follow 

this up with a global sensitivity analysis (GSA) to investigate interaction effects between parameters.  

For the GSA, a density-based PAWN analysis was chosen, as it is more flexible towards 

outcome distributions compared to variance-based GSA (Pianosi & Wagener, 2015; Pianosi & 

Wagener, 2018). 

Parameter Inputs 

During model development and pre-runs, a selection of parameters for variation in the 

sensitivity analyses was made based on both their impact on model outcomes and their significance on 

model interpretation and potential implications of the results. Crowdedness influence and 

crowdedness midpoint were chosen as their influence on outcomes would stress the importance of 

affordances and TM capacities of the individual’s environment. Social Influence and Social midpoint 
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would show the relevance of social norms and their internalisation, and TMP impact represent the 

impact of agents internal attitudes towards TMs. 

For these five parameters to be varied, default parameters were set as shown in Table 3. Pre-

runs also indicated that 1000 steps per model run would be needed to assess whether the model 

achieves a balanced state, if yes, what the TM counts of the final model state are. 

Table 3 

Default Model Parameter Input 

Parameter Value Input 

Crowdedness Influence 0.1 

Social Influence 0.1 

Crowdedness Midpoint 0.5 

Social Midpoint 0.5 

TMP Impact 2 

 

For the OFAT analysis, input values were chosen as shown in Table 4, leading to a total of 48 

model initiations. The GSA PAWN analysis was run based on 384 samples from parameter ranges 

shown in Table 5.  

 

Table 4 

Input Values used during OFAT 

Parameter varied Input range Steps Total initiations 

Crowdedness Influence 0.0 – 0.45 0.05 10 

Social Influence 0.0 – 0.45 0.05 10 

Crowdedness Midpoint 0.3 – 0.75 0.05 10 

Social Midpoint 0.3 – 0.75 0.05 10 

TMP Impact 1 – 4.5 0.5 8 

Note. The column ‘steps’ refers to the difference between values within the input range. 
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Table 5  

Parameter Input Ranges for PAWN Global Sensitivity Analysis 

Parameter Value Range 

Crowdedness influence 0.0 – 0.3 

Social influence 0.0 - 0.3 

Crowdedness midpoint 0.3 – 0.7 

Social midpoint 0.3 – 0.7 

TMP impact 1 - 5 

 

As primary outcomes of interest, the number of car users in the final state of the models is 

considered, as well as the variation of car user count within initiations. In the GSA as PAWN analysis 

is run on both the final car count mean and standard deviation (SD) of model initiations. PAWN 

indices indicating the relative impact of each parameter on the mean and SD, respectively. For both 

the OFAT and GSA, further testing and visualisation of individual runs will be applied in an 

explorative manner for model initiations which show deviant outcomes. 

Results 

The results with default parameter input show that the model converges into a balanced state 

after approximately 500 steps, as shown in Figure 7. During step 1 of the model, car counts (m = 

2563, iqr = 43.25, max = 2604, min = 2485) is much higher than public transport counts (m = 1638.5, 

iqr = 38.75, max = 1682, min = 1577) and the gap increases until step 40, where car counts reach a 

peak (m = 2835, iqr = 50.75, max = 2939, min = 2732). At step 500 car counts (m = 2629, iqr = 35.5, 

max = 2693, min = 2561) and public transport counts (m = 2605, iqr = 52, max = 2676, min = 2525) 

are approximately even and remain in that state for the remaining steps. The TM bike starts with a 

similar count (m = 1410, iqr = 39.25, max = 1472, min = 1353) and then decreases first steeply until it 

fades out around step 500 (m =580, iqr = 25.75, max = 616, min = 540). Carsharing has low usage 

counts throughout the model and decreases slightly from step 1 (m = 356, iqr = 30.5, max = 376, min 

= 296) to step 500 (m = 127, iqr = 17, max = 150, min = 105). After step 500, few changes in TM 

counts happen and the model remains in a balanced state for the remaining steps. 
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Figure 7 

Model result with default parameter inputs 

 

The figure displays the number of each TM chosen at each step of the model. For each TM, the 

median, maximum, minimum, and interquartile range are displayed. 

 

Results on the influence mechanisms social influence and crowdedness show that agents 

experienced both most frequently for the TM car (nsocial influence = 2715800, ncrowdedness = 2519403), 

followed by public transport (nsocial influence = 3274069, ncrowdedness = 1846000), bike (nsocial influence = 7456, 

ncrowdedness =1745) and carsharing (nsocial influence = 0, ncrowdedness = 49). 

 

One-factor-at-a-time sensitivity analysis 

 OFAT results for Crowdedness influence are shown in Figure 8. From the crowdedness 

influence = 0.0 (m =2715, IQR =43, max =2871, min =2613) to crowdedness influence = 0.45 (m 

=2219, IQR =35.25, max =2292, min = 2088) a continuous decrease in car counts can be observed 

with higher values for crowdedness influence. No significant changes in the interquartile range and 

distance between minimum and maximum values are found. 
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Figure 8 

Counts of Car Users per crowdedness influence initiation 

 

The figure displays car counts (median, maximum, minimum, IQR) of the final model step on the y 

axis, the varied parameter input is displayed on the x axis. 

 

OFAT results of social influence are displayed in Figure 9. A major increase in car counts can 

be observed between social influence = 0.0 (m =862.5, IQR = 920.75, max =1722, min =570) and 

social influence = 0.05 (m =2543.5, IQR =45.25, max =2626, min =2491). The remaining parameter 

inputs between 0.05 and 0.45 (m = 2671.5, IQR =41.75, max =2753, min =2602) yield relatively 

similar results. Similarly, the variance in outcomes for social influence = 0.0 is larger than for all other 

social influence initiations. 
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Figure 9 

Counts of Car Users per social influence initiation 

 

The figure displays car counts (median, maximum, minimum, IQR) of the final model step on the y 

axis, the varied parameter input is displayed on the x axis. 

 

Varying the midpoint of the crowdedness midpoint parameter significantly changed the model 

outcomes, as shown in Figure 10. While with crowdedness midpoint = 0.3 (m = 1716.5, IQR = 47.5, 

max =1788, min =1654) car counts are lower compared to other initiations, with crowdedness 

midpoint = 0.75 (m =4173.5, IQR = 26.5, max = 4210, min =4134), car counts are more than twice as 

high. Interquartile range and maximum and minimum values show no significant differences. 
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Figure 10 

Counts of Car Users per crowdedness midpoint initiation 

 

The figure displays car counts (median, maximum, minimum, IQR) of the final model step on the y 

axis, the varied parameter input is displayed on the x axis. 

 

Opposed to the increase in car counts with increased crowdedness midpoint parameter input, 

car counts decrease with higher inputs for the social midpoint parameter, as shown Figure 11. With 

social midpoint = 0.3, car counts have a median(m) of 2599.5, IQR = 252.5, max =2894, and min 

=1562. With the maximum input of social midpoint = 0.75, car counts are significantly lower (m = 

2165, IQR =37, max =2222, min =2102). Notably, the variance in car count outcomes gets 

significantly lower with increasing social midpoint inputs. 
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Figure 11 

Counts of car users per social midpoint initiation 

 

The figure displays car counts (median, maximum, minimum, IQR) of the final model step on the y 

axis, the varied parameter input is displayed on the x axis. 

 

The final varied parameter in the OFAT analysis is TMP impact. As shown in Figure 12, car counts do 

barely differ between TMP impact = 1 (m =2520.5, IQR = 45, max =2600, min = 2442) and TMP 

impact = 4.5 (m =2733.5, IQR = 28.75, max = 2778, min = 2682), but there is a slight increase in car 

counts with higher TMP impact inputs. 
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Figure 12 

Counts of car users per TMP impact initiation 

 

The figure displays car counts (median, maximum, minimum, IQR) of the final model step on the y 

axis, the varied parameter input is displayed on the x axis. 

 

Global Sensitivity Analysis 

The PAWN analysis on relative importance of parameters was run twice, once for the mean 

car counts and once for the standard deviation (SD) of car counts to assess the variance of model 

outcomes. The analysis yields a median PAWN index for each parameter, indicating the relative 

importance of that parameter on the model outcomes of interest (mean car counts or SD of car 

counts).  

Crowdedness midpoint is the most important parameter (PAWN index = 0.469) in determining 

the mean car counts value in a model initiation, followed by social influence (PAWN index = 0.25). 

Looking at the SD of car counts, social midpoint has the largest influence (PAWN index = 0.54). More 

details on the PAWN scores for each parameter are displayed in Table 6. 
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Table 6 

Sensitivities based on PAWN GSA Indices for Mean and Standard Deviations of Car Counts 

Parameters Index for Mean 

Car Counts 

Index for Variability (SD) of 

Car Counts 

Crowdedness Influence 0.17 0.16 

Social Influence 0.25 0.21 

Crowdedness Midpoint 0.49 0.15 

Social Midpoint 0.19 0.54 

TMP Impact 0.23 0.20 

Note. The PAWN index shows the relative importance of each parameter on the relevant outcomes 

the parameter has on the model outcome.  

 

Investigating possible interaction effect, visual analysis suggests an interaction between social 

midpoint and crowdedness midpoint, as shown in Figure 13. A higher value for crowdedness midpoint 

is associated with higher car counts, but the effect appears stronger with lower values for the social 

midpoint parameter. 
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Figure 13 

Pairwise Interactions Effect of Parameter Inputs on Car User Count 

 

The figure shows count of cars in the final model state by pairwise combination of model parameter 

combinations. Each point represents a model initiation, with the colour determining the median car counts 

and the position showing the combination of parameter inputs of the respective two parameters on the y and 

x axis. 

 

Exploratory analysis 

Based on sensitivity analyses results, specific model parameter combinations were explored 

in more detail. As observed in the OFAT on social influence, car counts were low for social influence 

= 0.0 compared to other initiations. In the absence of social influence, the TM car is initially most 

dominant. Public transport counts increase and become the most used TM for the early to mid-stages 

of the model (step 185 – 577), with car being the most used mode again during the late mid-stage of 

the model (step 577 - 777), and bike being the most used for the end stage of the model. 
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Figure 14 

Counts of car users with social influence parameter = 0.0 

 

The figure displays car counts (median, maximum, minimum, IQR) of the final model step on the y 

axis, the varied parameter input is displayed on the x axis. 

 

 Further, the parameter crowdedness midpoint had the largest influence on car counts, as 

indicated both by OFAT and GSA. As shown in Figure 15, car usage throughout the model steps is 

higher with higher values for crowdedness midpoint. For crowdedness midpoint = 0.3, all alternative 

TMs increase over time and car, public transport, and bike develop to having similar counts in the 

later stages of the model. For crowdedness midpoint = 0.45, only public transport is even with car 

counts, and for crowdedness midpoint > car is the most used TM, with higher crowdedness midpoint 

value initiations having more substantial differences between car and competing modes. 
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Figure 15 

Effects of Crowdedness Midpoint Variations 

 

Subplots display model results for crowdedness midpoint = 0.3, 0.45, 0.6, 0.75, from top left to 

bottom right. Each plot displays car counts (median, maximum, minimum, IQR) of the final model 

step on the y axis, the varied parameter input is displayed on the x axis. 

 

Discussion 

Our study implemented an agent-based model to explore dynamics that could lead to lower-

emission transportation mode (TM) choices. We advanced the TransportTransform model created by 

Köckritz et al. (2023) by implementing mechanisms in which agents learn from their experiences and 

adapt their preferences. We further implemented internal attitudes towards TMs as a moderator of 

influenceability. Finally, one factor at a time (OFAT) and PAWN global sensitivity analysis techniques 

were applied to investigate the function of model parameters and explore model outcome differences 

to answer the research question. 

Our model results with default parameters show that TM choices do change over time. While 

the car is the most frequently used mode during the starting phase of the model, over time the model 

stabilises in a state where public transport and the car are used equally frequenty. However, the 
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number of car users does not significantly decrease. Rather, bike users decrease with increasing public 

transport users, suggesting that people switch from biking to using public transport. This is a 

surprising result because overall TM attitudes from the initiation data by Wolf & Schröder (2019) 

were higher for the bike compared to public transport. By the conception of the model, this leads to 

greater increases in bike preferences compared to public transport preferences upon experiencing the 

TM as a social norm, and to smaller decreases in bike preferences compared to public transport 

preferences upon experiencing the TM as crowded. An explanation for this emergence is that during 

the first steps, public transport was the second most popular TM after car and therefore more popular 

than biking. Consequently, biking was rarely considered popular in the social environment, leading to 

few positive adjustments of agents’ preferences towards the bike. In a future model version, more 

extensive test runs with different starting preferences and TM count distributions could be performed 

to further analyse the effects of TM use distributions during the first model steps. A possible 

implication of these findings is that a TM must reach a degree of popularity before it can grow 

through the effects of social influence. In cases in which it is desired to grow an unpopular TM, 

efforts relying on other mechanisms may be needed to reach that popularity. 

Our Sensitivity analysis yielded interesting results regarding the role of TM crowdedness, 

with the varied parameter crowdedness midpoint being a key determinant of car users in the final 

model state. The crowdedness midpoint parameter can be interpreted as a measure of crowdedness 

tolerance. In our model results, lower crowdedness tolerance results in similar numbers between car, 

bike, and public transport users, as well as increases in carsharing counts. The results further show 

that use counts of the most popular TM at the model start, the car, adjust to the percentage of the 

parameter input. If the crowdedness tolerance is higher, car users continuously increase until a number 

of car users is reached with which people start perceiving the mode as crowded. This happens because 

social norms reinforce the most popular TM most until there is a reason not to use it anymore. In the 

context of the goal of decreasing the number of car users, this finding stresses the importance of 

people’s sensitivity towards crowdedness perception. While the perception of crowdedness by 

influencing people’s crowdedness sensitivity might be impractical, crowdedness perception could 

indirectly be influenced by the infrastructure capacities the TM provides. Changes in capacity were 

not a part of our model and would be an interesting option to explore in a future version. However, 

our findings stress the relevance of crowdedness perception in TM choices. Reducing the capacity for 

cars while increasing the capacities for alternative TMs would indirectly affect how soon individuals 

perceive a TM as crowded and could thereby contribute to more people considering alternatives to 

using the car. 

A related concept, the degree to which experiencing crowdedness negatively influenced an 

agent’s preferences was the parameter crowdedness influence. A small decrease in agents using the car 

in the final model step was found. Assumably because the car is the most popular mode, agents’ 
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preferences for cars were most often negatively affected. However, in comparison to changes in how 

soon agents experienced a TM as crowded (variation of crowdedness midpoint), the differences are 

negligible. These findings suggest that the frequency of crowdedness experience rather than the 

degree to which one experience affects an individual was crucial for determining car choices long 

term. 

Social norms are another factor influencing car usage in our model. Car counts in the final 

model state are rather similar for different strengths of social influence but are significantly lower in 

the absence of social influence. Considering the mechanisms of our model, this finding might be 

caused by a lack of positive reinforcement on TM weights given the lack of social influence. With 

cars being the most used TM initially, car users are most punished by the negative feedback 

mechanism of crowdedness, thereby making the TM car less preferable over time. Interpreting this 

finding, our results stressed the importance of social norms and reinforcement between car users. With 

many people frequently using the car, as evident in Wolf & Schröder (2019), it is also the social norm 

in most social circles. This interpretation is in line with our findings on varying the parameter social 

midpoint. This parameter can be interpreted as the average percentage of an individual’s environment 

that is needed to create the perception of a social norm. Lower percentages lead to higher variance in 

car users, and more model runs resulted in public transport being more popular than cars compared to 

higher percentage model initiations because more sub-populations formed that were using alternatives 

to the car. This finding suggests that if the perception of a social norm can be formed based on a lower 

(population) percentage, alternatives to the TM car have a higher probability of becoming popular. 

While it is difficult to influence an individual’s ‘threshold’ on how soon they perceive TM choices as 

a social norm, the emergence of sub-populations using alternatives might be an addressable factor in 

practice. Spreading the existence of TM alternatives and making the number of people using them as 

visible as possible, e.g. through media or advertisements, could therefore increase the positive effects 

of social norms on car alternatives and thereby reduce the use of cars. 

Limitations & Future Research 

Several limitations need to be considered when interpreting our findings. First, our model 

may be limited in modelling environmental affordances, as discussed by Kaaronen and Strelkovskii 

(2020). While having a driver’s license and owning a car afford the TMs car and carsharing, other 

affordances could be considered in people’s individual environments. For example, it could be argued 

that the distance to the next public transportation station or the availability of bike lanes in the 

neighbourhood affords public transport or biking, respectively. The lack of these mechanisms may 

have led to our model results overestimating the use of public transport and biking. 

Second, in our model, we assume that crowdedness perception equally applies to all TMs. 

Scenarios are imaginable for all TMs, such as being stuck in traffic, having to stand in an 
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overcrowded bus or tram, cycling in a busy cycling lane, or having to wait or walk further for the next 

available carsharing vehicle. However, it remains unclear if all TMs have the same function of 

becoming increasingly dissatisfying with higher numbers of people using them. Our model, assumes 

this, though a case could be made that for example biking is a TM that might be less affected by 

negative experiences due to crowdedness. 

Related to both limitations above, our model does not directly consider the capacities of TM 

infrastructures. TM capacities might be a crucial factor as physical environments significantly differ 

in the extent of the public transportation network, road and bike lane infrastructure, and carsharing 

service availability. It could be argued that capacities differ depending on the location, and tipping 

points of TMs being perceived as too crowded are affected. While adding different locations with 

different TM capacities would perhaps add (too) significant complexities to the model, not 

considering TM capacities at all could be considered an oversimplification. 

For future research and model versions, it might be interesting to include characteristics of 

different physical environments with different TM capacities and a larger selection of factors 

determining affordances. This model extension would also allow for experimenting with changes in 

capacities for specific physical environments, thereby increasing the relevance of findings for policy 

advising and TM infrastructure extension projects. 

Conclusions 

Our results indicate that reducing the number of car users is possible under the right 

circumstances. As the most popular TM, car users increase through reinforcement of social norms 

until a threshold is reached where the perception of crowdedness causes negative experiences when 

travelling by car. We show that higher sensitivity towards crowdedness perception leads more people 

to choose alternative TMs, thereby reducing the number of car users. We further stress the relevance 

of TM infrastructure capacities to influence people’s crowdedness perception of different TMs. In 

addition, social norms can foster the popularity of car alternatives in sub-populations. However, a 

certain popularity might be required for social norms to have a positive effect on car alternatives, and 

less popular TM alternatives might have to rely on other mechanisms to grow in popularity. 

Further research is needed to fully understand the mechanisms that could lead to more 

sustainable transportation choices, with TM infrastructure capacities being a crucial factor to justify 

claims for the development of sustainable transportation options. 
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Appendix A 

Main extensions and changes in the current version compared to Köckritz et al. (2023) 

Change Köckritz et al. (2023) Current Version 

TM 

preference 

initialisation 

Utilisation of 1st and 2nd preference 

based on empirical data, with 70% 

and 25% chance, respectively, and 

5% for remaining available modes 

Initialisation of TM weights based on 

reported frequencies of TM usage in the 

empirical data to more realistically simulate 

chances of picking TMs 

TM Weights Stable after initialisation Weights dynamically update, experience of 

crowdedness reduces weights, experiencing 

social influence increases weights 

Modelling 

social 

influence 

Threshold function: if more than 

50% of social environment use one 

TM, the agent has an 80% chance of 

adapting 

Sigmoid function with midpoint being 

adjustable through model parameter 

social_midpoint 

Modelling 

occupancy / 

crowdedness 

Exploration of threshold & sigmoid 

function; removal of 

occupant/crowded mode from 

available modes if more bad than 

good experiences  

Sigmoid function with midpoint being 

adjustable through model parameter 

crowdedness_midpoint to model experience, 

Removal of crowded mode from available 

modes with chance of p = 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑎𝑑 𝑒𝑥𝑒𝑟𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝑠
 

Learning No learning implemented Dynamic adjustment of TM weights based 

on model parameters social influence, 

crowdedness influence, tmp impact 

Attitudes 

towards 

TMs 

Not part of model Computation of transportation mode 

potential (tmp) score based on respondents 

rating of TMs on transportation mode 

qualities and subjective transportation mode 

quality importance, integration of tmp scores 

as moderator on the effects of social 

influence & crowdedness influence on TM 

weights 

Sensitivity 

Analysis 

Technique: visual 

Parameters varied: Occupancy 

function (threshold/sigmoid), 

Techniques: One-Factor-at-a-time & PAWN 

global sensitivity analysis 
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occupancy module on/off, social 

module on/off 

Parameters varied: social midpoint, 

crowdedness midpoint, social influence, 

crowdedness influence, tmp impact 

N agents 1000 agents for majority of analysis, 

initiation based on sampling 1000 

rows from empirical data 

Initiation with full dataset (n = 5948) 

Network 

creation 

Random Small world network1 

Note1. Credit goes to my supervisor Luja von Köckritz 

 


