
Master Thesis

Feature mappings for performative
predictions

Author:
Maciej Makowski (1177729)

Supervisors:
Dr.-ing. Habil. Georg Krempl
Prof. dr. Arno Siebes

External supervisor:

MSc Business Informatics
Graduate School of Natural Sciences
Utrecht University

October 20, 2024

Makowski, Maciej:
Feature mappings for performative predictions Master Thesis, Utrecht University,
2023.

Abstract

Machine learning models have become widely used in recent years. As models
are deployed and interact with real-world environments, they are susceptible to
performance deterioration due to various factors such as data drift and model-
induced changes in the surrounding environment. Addressing these challenges
requires innovative approaches to maintain model effectiveness over time.

This research focuses on devising strategies to mitigate the effects of perfor-
mative drift by exploring feature transformation techniques and robust classi-
fier training methods. Drawing inspiration from transfer learning concepts, the
study aims to find feature representations resilient to drift or capable of reversing
its effects. Additionally, it investigates the feasibility of training drift-resistant
classifiers in transformed feature spaces.

The research questions investigate the availability of performative data genera-
tors, methods for computing feature transformations, and the impact of these
transformations on data distributions. Furthermore, the study examines the
possibility of training robust classifiers independent of the strength of perfor-
mative effects and explores potential modifications to improve the effectiveness
of the proposed methods. The main innovation introduced in this paper is the
design of an architecture capable of providing drift-resistant classification and
mapping of points back to the starting distribution. The devised model is a
synthesis of a domain adversarial neural network with a generative adversarial
neural network.

The main experimental method used by this thesis is simulation, combining
performative data generators available in the literature, existing transfer learn-
ing and newly created architecture. Finally, a series of experiments has been
performed and it has been proven that under certain conditions it is possible to
train a stable classifier. Alongside that classifier, a generator network is trained.
That network with some approximation can reproduce the original form of the
dataset, which has been influenced by performative drift.

Acknowledgements

I would like to express my gratitude towards my supervisor dr. ing. Georg
Krempl for supervising this thesis. I am very grateful for many fruitful dis-
cussions and for pointing me towards interesting directions. I would also like
to thank Brandon Gower-Winter for their meticulous input and suggestions for
improvements in my work. Last but not least, I would like to thank my second
supervisor prof. dr. Arno Siebes for his helpful attitude.

Contents

List of Figures x

List of Acronyms xi

1 Introduction 1
1.1 Problem statement . 1
1.2 Research questions . 3
1.3 Literature Research Protocol . 4

2 Background and Related Work 5
2.1 Learning in non-stationary environments 5

2.1.1 Types of drift and distribution shift 5
2.1.2 Performativity . 6
2.1.3 Performative optimality and stability 7
2.1.4 Methods of minimisation of the performative risk 7
2.1.5 Performative data generators 8

2.2 Transfer learning . 10
2.2.1 Domain adaptation . 11
2.2.2 Domain adaptation methods review 12
2.2.3 Asymmetric Regularized Cross-domain transformation . 14
2.2.4 MMD-based transfer learning 16

2.3 Domain Adversarial Neural Networks (DANN) 18
2.4 Generative Adversarial Neural Networks 20

2.4.1 Conditional synthesis with generative adversarial nets . . 21
2.4.2 Pix2pix image translation 23

3 Method 25
3.1 Preliminary simulation design 25

3.1.1 Goal of the simulation 25
3.1.2 Simulation design . 26
3.1.3 Preliminary results and motivation for the architecture

design . 27
3.2 Architecture design . 29

3.2.1 Objective . 30
3.2.2 Training procedure . 32
3.2.3 Network architectures 35

3.2.3.1 Feature extractor 35
3.2.3.2 Label Classifier 35

viii Contents

3.2.3.3 Generator . 36
3.2.3.4 Discriminator 37

4 Experiment and Results 39
4.1 Perdomo generator . 40

4.1.1 Experiment setup . 40
4.1.2 Perdomo learning curves 41
4.1.3 Perdomo results . 42

4.1.3.1 Simulation with one classifier 42
4.1.3.2 Simulation with retraining 45

4.2 Izzo generator . 47
4.2.1 Experiment setup . 47
4.2.2 Izzo leaning curves . 48
4.2.3 Izzo results . 49

5 Summary 53
5.1 Conclusions . 53
5.2 Research question answers . 55
5.3 Limitations . 55
5.4 Future Work . 56

Bibliography 59

List of Figures

2.1 Exemplary Domain Adversarial Neural Network architecture source:
[14] . 18

2.2 Achitercture of a standard GAN model. 20

2.3 Summary of differences between conditional and AC-GANs. . . 22

2.4 Illustration of pairing the target data with generated/real in-
stances. Source:[21] . 23

3.1 Flowchart of the simulation process 26

3.2 Proposed architecture for classification and mapping. 29

3.3 The architecture of the feature extractor network. 35

3.4 The architecture of the generator network. 36

3.5 The architecture of the discriminator network. 37

4.1 The loss of the discriminator over training. 41

4.2 The domain accuracy over training 41

4.3 The distance loss of the generator over training 41

4.4 The adversarial loss of the generator over training 41

4.5 Learning curves of the subparts of the entire architecture 41

4.6 Results of the PCA analysis - generator Perdomo v1. 43

4.7 Linegraph of accuracies - generator Perdomo v1. 44

4.8 Correlation between accuracies and distances - generator Per-
domo v1. 44

4.9 Boxplot visualising differences between distributions - iteration 0 45

4.10 Boxplot visualising differences between distributions - iteration 9 45

4.11 Linegraph of accuracies - generator Perdomo v2. 46

4.12 Correlation between accuracies and distances - generator Per-
domo v2. 46

x List of Figures

4.13 The loss of the discriminator over training. 49

4.14 The domain accuracy over training 49

4.15 The distance loss of the generator over training 49

4.16 The adversarial loss of the generator over training 49

4.17 Learning curves of the subparts of the entire architecture 49

4.18 Results of Principal Component Analysis over the iterations. . . 50

4.19 Visualization of the cyclical nature of the drift. 51

4.20 Correlation of distance between distributions and accuracies of
the models. 52

List of Acronyms

DANN Domain Adversarial Neural Network

EA Evolutionary algorithm

GA Genetic algorithm

GAN Generative Adversarial Network

KDE kernel density estimation

MMD Maximum Mean Discrepancy

TCA Transfer Component Analysis

TL Transfer learning

xii List of Acronyms

1. Introduction

1.1 Problem statement

The rapid development of machine learning techniques has revolutionised the pro-
cess of decision-making across various domains. Plenty of research exists on how
to utilise those technologies for various tasks. A typical data science pipeline could
include data preparation, designing and training of a model, validation of the model
and lastly deployment and monitoring. In those last stages, the decision-making
algorithm is exposed to plenty of unforeseen factors that could deteriorate its per-
formance.

A machine learning model is typically trained and validated on an offline dataset
and only deployed once its performance matches the desired criteria. After that,
the key aspect is monitoring of the chosen metrics to determine if the model is still
useful. There might be multiple reasons, that stand behind the deterioration. One of
them could be a change in the environment. The environment starts producing data,
that originates in a data distribution significantly different than the one where the
model was originally trained. The machine learning community has devised plenty of
methods that can help deal with the process of deterioration. The most elementary
approach is to gather the new data and retrain the model. This option might not be
sustainable in the long term, as it would require constant monitoring to detect the
drift efficiently. Also, it could cause overhead as all the arriving data would have to
be stored and the retraining process could be costly. Another approach to dealing
with that problem is online learning, which modifies the model from a sequence of
data points, processing them one at a time [19]. Thanks to that the model can learn
continuously. This approach has proven to be effective for many applications.

Another scenario might occur. Assume a situation in which the model that is being
constantly modified induces drift on the environment itself. Such a situation could
be called model drift or performativity (section Section 2.1.2 elaborates on that
phenomenon). This can create a situation where the model’s predictions, alter the
model’s input, by influencing the environment. A feedback loop is created. The
dependence of the model on the environment is constantly increased and can finally

2 1. Introduction

lead to the creation of a self-fulfilling prophecy. This happens when the model’s
predictions change the environment in such a way, that the environment begins to
conform to those predictions. And the dependence between those two is constantly
reinforced.

This research focuses on a scenario where the data is dependent on the predictions
of any machine learning model. It attempts to find such a feature representation
that will be drift-resistant or at least will allow for modifying the feature space in
such a way that the effects of the drift are reversed. The idea for such an approach
originated in the field of transfer learning (Section 2.2), where often knowledge
inferred in one domain is transferred and utilized in another one. In this particular
case, imagine that a model has been trained offline on one data distribution. Later
its predictions influenced the new inputs to the model and the performance sunk.
The idea is to find such a transformation between the original and the drifted data
distributions that will be representative of the effects of the drift. Optimally after
the transformation is applied to the data from a new distribution, the performance
of the original model stays intact. The transformation allows for the reversal of
the drift. Assuming such a mapping is impossible to find or the complexity of the
operations is too big, another approach could be training a new classifier in the
newly computed feature space. This could lead to the deployment of a classifier
that is drift-resistant.

This thesis aims to devise a simulation that models the situation described above.
To generate the data and replicate the dependence between the model and the envi-
ronment, performative data generators available in the literature will be used. Next,
various feature transformation techniques will be computed and a couple of metrics
are going to be examined. Conclusions from those results are drawn and an archi-
tecture is devised. That newly devised model should allow for stable-classification
and mapping of the points back to their original form. Before the drift has occurred.
This architecture is evaluated in similar way the transfer learning techniques were
evaluated with a couple of additional metrics.

1.2. Research questions 3

1.2 Research questions

RQ1: What performative generators are available in the literature?

The field of performative predictions will be researched to find what methods of
generation of synthetic data are present in the literature.

SRQ1.1: What type of drift is caused by each generator?

Understanding the relationship between the model and the environment has crucial
meaning when it comes to designing the simulation. Additionally, different types of
data generation processes can induce different types of drift on the data distributions,
thus influencing the results of the simulation.

RQ2: What methods originating in the field of transfer learning can be used to
compute a feature transformation, that will diminish the effects of the drift?

The field of transfer learning will be researched to find methods that prove to be
effective in other applications and could be utilized to reverse the distribution shift.

SRQ2.1: To what degree the chosen methods are effective at providing a mapping?

The goal is to examine whether the selected methods can be used to compute such a
mapping of the data, that will inform about the direction of the drift. Additionally,
quantifying the results, the metrics used to measure the results will include the
accuracy of the model trained in the original space when predicting the data after
transformation.

RQ3: Is training a classifier that is robust towards model drift possible?

If the transformations do not manage to overcome the effects of the drift, the space
they have created may be robust towards the drift and a classifier trained in that
space could be drift-resistant.

SRQ3.1: If creating such a classifier is possible, is it independent of the strength of
the performative effects?

The simulation will aim to quantify the robustness of the drift-resistant classifier.

RQ4: How to create a method that provides both drift-resistant classification and
is also capable of providing mapping back to the starting distribution?

This question focuses on how to synthesise the transfer learning methods that have
been reviewed before to achieve both goals.

SRQ4.1: How effective is the classification provided by the created method?

SRQ4.2: How accurate is the mapping provided by the created method?

4 1. Introduction

1.3 Literature Research Protocol

Given the research questions stated in the section above, the literature research
protocol needs to be defined. The chosen method for the process of performing the
literature review is backwards and forwards snowballing. The entry point is the
paper by Perdomo et al. [39] that establishes the framework for all the research
dealing with performative effects. That paper allowed for performing a search for
performative generators and standard strategies for dealing with the distribution
shift induced by the model. This research aims to combine findings from various
fields. Starting points for the snowballing process of each field were different surveys,
which picture state-of-the-art methods in that field, or established textbooks. The
literature review provides a steady foundation for the further research.

2. Background and Related Work

2.1 Learning in non-stationary environments

2.1.1 Types of drift and distribution shift

Most of the machine learning models are designed for real-world scenarios. The
processes that occur in non-digital reality very often have random, non-linear char-
acteristics. Change is an integral part of the human world. That can be disadvan-
tageous to machine learning models, as they function well under the assumption,
that the training and testing data originate from the same distribution and feature
space. That exposes the models to plenty of deteriorating factors. One of them
is model drift. In [10] types of drifts are categorised. However, that classification
mainly focuses on intrinsic drift. This drift is caused by the changes in the environ-
ments surrounding the models and is ubiquitous, and appears in many situations.
According to the author, the drift can be split into data, concept and dual drift [10].

In literature data drift and covariate shift names function interchangeably. The
term is used to describe a difference in the distribution of an input variable between
learning and a generalization phase [48]. To formalize the notation, if x is assumed
to be the explanatory variable, P0(x) is the density of probabilities in the observed
set and P1(x) would be the corresponding value for the test set. Then, if data drift
has occurred, P0(x) ̸= P1(x).

Concept drift is also an effect of a changing environment. However, the implications
it may have on data can be different. One of the common scenarios is that the rela-
tionship between the inputs and the targets changes. Which essentially deteriorates
the performance of the model. Gama et al. provide a formal definition of concept
drift [13].

∃X : P0(X, y, t0) ̸= P1(X, y, t1) (2.1)

Where P0 denotes the joint distribution between the input variable X and the target
y at time t0, and P1 is the corresponding value at the time step t1. The authors of

6 2. Background and Related Work

the very same paper also provide a couple of reasons for the concept drift occurrence.
Mainly, a change in prior probabilities p(y), class conditional probabilities p(X|y)
or a change in the posterior probabilities p(y|X) [13].

2.1.2 Performativity

Especially important for this line of research is a special kind of drift, which origi-
nates in the model itself. The concept of performativity has been researched in the
area of policy-making [18], but in the area of machine learning is still fairly novel.
Main contributions to the field have been made by Perdomo et al. in their paper
”Performative prediction” [39]. The authors have proposed a framework to describe
the term in the context of machine learning, defined several terms such as perfor-
mative optimality, performative stability and devised two methods to minimize the
risk of the model influencing the predictions.

To illustrate the concept of performativity an example originating in the housing
market will be considered. Assume the goal of a trained model is to predict property
prices. The dataset, on which the model is trained includes numerous features. One
of them is the safety of the location district of the property. The feature can take
different values ranging from the most dangerous to the most safe. In that case,
a logical conclusion is that the predicted by the model price for the assets, which
are located in safer areas, would be higher. This could lead to a situation, where
mostly people with lower incomes purchase those properties. Statistically speaking
in districts with lower average income the probability of crime rates being high
could be increased. This might affect the safety rating of the district and finally the
model predictions in the future. This phenomenon could be treated as a self-fulfilling
prophecy. A model’s prediction influences the environment, creating a never-ending
feedback loop.

Similar processes to the one described above, appear in the real world daily. In
literature, the process is usually modelled as a Stackelberg game [45]. A game where
one player (usually the leader) moves first and the second one replies. In this setup,
the first player could be an institution deploying a classifier and the second one is
the environment which attempts to adapt to achieve a more favourable verdict. This
is the most standard way of modelling that situation. However, in their work, Zrnic
et al. prove that the follower can reverse the roles, as the agents usually possess the
ability to learn faster [54]. Nevertheless, actors responsible for deploying classifiers
usually try to act upon drift detection. One of the most commonly undertaken
actions is retraining the model on newly available data to adjust it accordingly to
the environment changes.

Perdomo et al in their paper introduce the notion of performative risk [39]. Which
is measured by a loss function l evaluating the influence of the current classifier’s
parameters on the future data distribution.

PR(θ) = E
Z∼D(θ)

l(Z; θ) (2.2)

Where θ is a vector of model parameters, Z is the observed distribution Z = (X, Y)
of input variables over the targets. D(θ) is the map of distributions of Z that are
caused by making decisions according to a model with parameter set θ.

2.1. Learning in non-stationary environments 7

2.1.3 Performative optimality and stability

The goal of supervised learning is to train such a classifier that will select the model
parameters in such a way that the expected loss, measured for the prediction task,
will be minimal. In the context of performativity, the task is very similar. The
difference is the construction of the loss function, which takes into account map-
ping between the model parameters and data distributions (Eq. 2.2). A classifier is
performatively optimal when it minimizes the expected performative risk.

θPO = argmin
θ

E
Z∼D(θ)

l(Z; θ) (2.3)

Perdomo et al define the notion of performative stability as the fixed point of risk
minimisation [39]. In other words, the data seen at the stable point does not provide
a reason to deviate from the model. However, if a model is performatively stable it
is still possible that there exists another model that would minimize the value of the
loss function. Optimal classifiers do not necessarily need to be stable and the other
way around. A formal definition, in its essence, is very similar to Eq. 2.3.

θPS = argmin
θ

E
Z∼D(θPS)

l(Z; θ) (2.4)

The difference is that instead of sampling from all models we the Eq. 2.4 will hold
once the model parameters are sampled from a space of performatively stable clas-
sifiers. The definitions provided in this section aim to provide more clarity to the
process of minimizing the performative risk, which is further described in the fol-
lowing sections.

2.1.4 Methods of minimisation of the performative risk

After introducing the concept of perfromative risk Perdomo et al. also describe
the procedure that has to be performed to minimize it and select the most suitable
classifier for the current environment state. It is called Repeated Risk Minimization,
and it illustrates the procedure where at each iteration an optimal set of model
parameters is selected. The result of the minimization is a time series of models,
that provided the best loss function values at each iteration.

θt+1 = G(θt) = argmin
θ∈Θ

E
Z∼D(θt)

l(Z; θ) (2.5)

However, to enable the process a couple of very strict assumptions need to be met.
Assumptions:

• The distribution D needs to be Lipschitz continuous. If the decisions are
made based on previously deployed models, the outcome distributions over
the instances should also resemble similarity [39].

• The loss function has to be jointly smooth

• The loss function has to be strongly convex

8 2. Background and Related Work

Once those assumptions are met, Perdomo et al. prove that the classifier only
needs to be retrained a small number of times and after that, it will converge to a
performatively stable point.

Retraining could be considered the most straightforward strategy for discovering a
stable classifier. Researchers have described many possible approaches for perform-
ing that search. Follow-up studies have covered methods such as Repeated Gradient
Descent (RGD) [39], Stochastic Optimization (SO)[27], Derivative-Free Optimiza-
tion [22, 29], Bandit Optimization [23]. RGD and SO methods perform updates of
the model, based on calculating the derivative of the performative risk function, this
implies that the function has to be differentiable, which enforces additional assump-
tions. Derivative-free optimization and Bandit optimization also require imposing
additional assumptions due to their mathematical structure.

2.1.5 Performative data generators

Gathering data, that illustrates performativity well, can be a gruelling task. It would
require an institution to comprehensively record not only the data but also, which
model was deployed at which time, how the model changed and how it influenced the
surrounding environment. Due to those factors, most of the algorithms described in
Section 2.1.4 prove their theorems on synthetic data. One of the most popular data
generators that has been widely used is based on a dataset Give Me Some Credit,
publicly available on Kaggle [8]. The generator has been devised by Perdomo et al.
and can be implemented using a Python package WhyNot [28]. The articles, which
did use that specific data simulator, include [6, 22, 27].

The Give Me Some Credit dataset has been adopted for the needs of the simulator.
Mainly, 18357 points have been sampled so that the class imbalance problem is
solved (the data represents binary classes, 45% of instances are assigned class 1,
the rest 0). Each instance possesses 11 features. The data has been scaled so that
it has zero mean and unit variance. The simulator simulates the influence of a
model on the data, by modifying three features, which are considered to be strategic
(utilization of credit lines, number of open credit lines, and number of estate loans).
The strategic response can be described in the following way.

xt+1 = x− ϵBθ (2.6)

Where B is a matrix that informs about features which are considered strategic, θ
is a vector of model parameters (in this case logistic regression), ϵ is a scalar value
and describes the performative power, so the degree to which the model influences
the environment. It is crucial to note, that in the case of this generator, the labels
originate from the GiveMeSomeCredit dataset and do not change over time.

The simulator described above is one of the only publicly available data generators
based on real-world data. Most of the other approaches focus on generating synthetic
data, that would resemble performativity. For instance, Miller et al propose a process
for generating data for linear regression [29]. The aim is to create feature label
pairs (x,y). Firstly, draw features x from a Gaussian distribution with a zero mean
and covariance matrix Σx, mathematical notation - (x ∼ N (0,Σx)). Where the
covariance matrix is subject to being a symmetric positive definite matrix with

2.1. Learning in non-stationary environments 9

operator norm equal to 0.01. Generate the labels by sampling from a conditional
probability distribution y|x ∼ g(x)+µT θ+Uy, where g(x) = βTx and beta is sampled
from a Gaussian distribution with zero mean and unit variance. Uy is white noise
generated identically. θ again depicts the coefficients of the predicting model and
ϵ = ||µ||2. Meaning that the Frobenius norm of µ is equal to the coefficient describing
how powerful the influence of the model on the environment is.

The third approach to the data-generating process is described by the authors of
[22, 27]. The approach differs from the two, that have been described above as the
researchers present themselves with the challenge of estimating the mean of Gaussian
random variable, which depends on the classifier.

x ∼ D(θ) = N (µ+ ϵθ, σ2) (2.7)

Similar to the examples above, θ symbolizes the parameters of the model and ϵ the
strength of performative effects. In their research, the authors do not attempt to
overcomplicate the data generation process, as their focus is on measuring the pace
of convergence to a performatively stable point and not analyzing the correlations
between the features. Researchers analyse only a single variable but the process
could be extended to generate a whole dataset. Furthermore, it is proven, that for
this sampling process, there exists a unique stable point as long as the performative
strength is not too powerful, strictly when ϵ < 1.

Another approach has been described by Izzo et al and attempts to model performa-
tivity in the spam detection domain [22]. The reasoning behind the data generation
process is that spammers will do their best to deceive the classifier, i.e. they will
attempt to modify their features. Meanwhile, regular users will stick to their regular
behaviour and do not modify their features to a significant degree. Based on this
observation the following idea for data generation is put forward.

x|y = 0, θ ∼ N (µ0, σ
2
0) x|y = 1, θ ∼ N (f(θ), σ2

1) (2.8)

What can be inferred from the equations above, is that the performative effect will
only apply to instances which are classified as spam (y = 1). The effect is introduced
by moving the average of the normal distribution the data is sampled from. The
shift is induced on the distribution by f(θ), the researchers define this function in a
similar way to Perdomo et al. [39]. Specifically, f(θ) = µ1 − ϵ · θ, the resemblance
with Eq. 2.6 is significant, however in the case of this data generator, all features
are modified.

10 2. Background and Related Work

2.2 Transfer learning
Transfer learning similar to many other concepts in modern machine learning origi-
nates in psychology. An example, which illustrates the idea well, could be a person
who is exceptional at snowboarding and wants to learn kitesurfing or wakeboarding.
It would probably be much easier for this person than for a person, who is inexpe-
rienced in any of those areas. Many muscle memory movements and balance could
be adopted from one sport to another. Due to the similarity of the domains, the old
experiences could benefit the process of acquiring knowledge to a great extent. This
is just an example of a real-world situation, which is only applicable to humans. In
a machine learning scenario, the outline of the problem could be defined differently.

Pan et al. [37] provide a formal definition of the term.

Definition 2.1 (Transfer learning (TL)). Given a source domain Ds and a learning
task Ts, a target domain Dt and learning task Tt, transfer learning aims to help
improve the learning of the target predictive function ft(·) in Dt using the knowledge
in Ds and Ts, where Dt ̸= Ds or Tt ̸= Ts.

Transfer learning has been widely adopted since multiple large databases for training
models have become available, such as ImageNet [41], Caltech-256 [16], Places [50].
Transfer learning can provide a solution to the problem of learning a predictive
function for a dataset with limited data or limited labels. Instead of gathering more
data or hiring an expert for labelling, a model trained on one of the huge datasets
can be fine-tuned to help with solving the task in the smaller, limited target domain.
The described situation is one particular scenario of transfer learning. Zhang et al.,
take the labelling perspective into account, and categorize transfer learning into [53]:

• transductive TL - the label is only available in the source domain

• inductive TL - the labels are available in both source and target domains

• unsupervised TL - the labels are not available for any of the domains

The latter categorization only aims to give a general perspective into the division,
more precise and accurate definitions have been provided by [37]. Another fun-
damental division of TL could be made, that division takes into account the way
of transformation of source and target domains. The categories, which could be
distinguished from it are presented below:

• Instance Weighting Approach - assigns weights to instances to adapt the
marginal distributions in source and target domains

• Feature Transformation Approach - creates a new feature representation

• Parameter Based Approach - focuses on transferring the knowledge through
model parameters

• Relational Based Approach - tries to transfer the logical rules from one domain
to another

For the line of research, described in this paper, the most crucial part of transfer
learning will be the inductive feature transformation approach.

2.2. Transfer learning 11

2.2.1 Domain adaptation

According to Pan et al. domain adaptation is a special case of transfer learning [37].
Specifically when the data in the target and source domains is different, however, the
learning tasks are identical. If two domains are related to each other, there is a large
probability that there exist factors underlying the correlation. Some of those factors
may cause the differences between data distributions, while others might capture the
intrinsic nature of the data and can be further analyzed to understand the influence
[36]. Traditional domain adaptation methods attempt to minimize the shift between
the distributions. Mottiian et al. categorize those attempts into finding a mapping
between the distribution (1), finding a shared latent space between distributions (2)
and regularizing the classifier trained on the source distribution to work well on the
target data (3)[31].

Usually, minimizing the distance between the distributions is the objective, either
in regular or higher-dimensional space. However, it is crucial to answer the ques-
tion of which data distributions should be taken into account. There exist several
approaches, to name them:

• MDA - Marginal Distribution Adaptation - needs to be performed when Ps(x) ̸=
Pt(x)

• CDA - Conditional Distribution Adaptation - assumptions are opposite to the
ones of MDA Ps(x) ≈ Pt(x), but Ps(y|x) ̸= Pt(y|x)

• JDA - Joint Distribution Adaptation - utilizes both MDA and JDA to estimate
the joint probability distribution
D(Ps(x, y), Pt(x, y)) ≈ D(Ps(x), Pt(x)) +D(Ps(y|x), Pt(y|x))

Zhao et al. have proved that considering not only marginal but also conditional
distribution might provide better results [49]. Plenty of literature sources describe
the methods of domain adaptation listed above [26, 47, 52]. However, a more flexible
approach is called Dynamic Distribution Adaptation (DDA) Eq. 2.9. This approach
can fluently adapt the importance ratio between marginal and conditional distribu-
tions [46]. This effect is achieved by the introduction of a parameter µ ∈ [0, 1]. If
the parameter is close to 0, it assigns more importance to the marginal distribution,
if its value is in proximity of 1, the conditional distribution contributes more to the
distance metric.

D(Ds,Dt) ≈ (1− µ)D(Ps(xs), Pt(x)) + µD(Ps(y|x), Pt(y|x)) (2.9)

This way of calculating the distance between distributions provides a solution to a
problem when marginal and conditional distributions do not contribute in the same
way to the overall distance metric [46].

12 2. Background and Related Work

2.2.2 Domain adaptation methods review

As mentioned above there exist multiple approaches to domain adaptation, a short
description and classification are provided in Table 2.1 and Table 2.2. The review is
not extensive, but it aims at representing different approaches. An important factor
that has to be considered is that the differences between the methods might be very
problem-specific and the preselection of one optimal method might be a challenging
task. Two of the methods will also be described in more detail in the following
paragraphs. Here a reasoning for the selection of those two methods is given. The
methods that will be described further are Asymmetric Regularized Cross-domain
transformation [42] and Transfer Component Analysis [36] or rather to be more
specific Maximum Mean Discrepancy (TCA is part of the MMD-methods). To
specify, in this section we refer only to TCA, however all MMD based methods are
similar and only differ, when it comes to the type of probability that is measured.
First of all, to be demonstrative one representative from each category of methods
had to be picked. Considering the techniques, which aim to learn feature mapping,
ARC-t is the only one that takes non-linearity into account. It also is the extension
and generalization of Regularized Cross-Domain Transform. That is why, it might
be widely applicable and suit more cases than the other methods.

Method Type Technique Description Optimization Func-
tion

Regularized
Cross-
Domain
Transform

1 Linear
transforma-
tion

Goal is to learn a linear trans-
formation W between X and Y
originating from source and tar-
get domains. Form a similarity
function and utilize it in a clas-
sification or clustering. [42]

minW r(W) +
λ
∑

i ci(X
TWY)

where ci - con-
straints functions

Asymmetric
Regularized
Cross-
domain
Transform
ARC-t

1 Non-linear
kernel trans-
formation

Extension of [42]. Kulis et al.
prove that the optimization func-
tion from a cell above can be
solved in kernel space for a wide
class of regularizers. The op-
timization is reformulated using
inner products, which are later
substituted for kernel functions
[25].

minL r(L) +

λ
∑

i ci(K
1
2
XLK

1
2
Y)

where K are ker-
nels and W =

XK
−1
2

X LK
−1
2

Y Y T

Unsupervised
subspace
alignment

1 Subspace
linear trans-
formation

Firstly for both source XS and
targetXT domains subspaces are
generated by using PCA to gen-
erate eigenvectors, which act as
bases for subspaces. Then data
from original distributions is pro-
jected into subspaces. Finally, a
linear transformationM is learnt
that aligns the source subspace
to the target one. [12]

M is learnt by
minimizing the
Bregman matrix di-
vergence presented
below F (M) =
||XSM − XT ||2F
the optimal M
solution is M∗ =
argminM (F (M))

Table 2.1: Domain Adaptation: Feature mappings methods

2.2. Transfer learning 13

If the second category (methods that find shared latent space between distributions
and optimize in it) is taken into account, TCA and DICA could be considered similar.
It is even stated by the authors of the paper, that methods are closely related [32].

Method Type Technique Description Optimization Function
Domain
Invari-
ant
Com-
ponent
Anal-
ysis -
DICA

2 Orthogonal
transform
onto a low
dimensional
subspace
that min-
imizes
the distri-
butional
variance

Finding a transformation B in H

that minimizes the distance be-
tween empirical distributions of
the original samples transformed
into H. Where H is a repro-
ducing kernel Hilbert space with
a mapping F which kernelizes
X → ϕ(X) ∈ H. The transfor-
mation does not only minimize
the variance but also preserves
the functional relationship, i.e.
X ⊥⊥ Y |B [32].

The optimization func-
tion forces the complex-
ity B to be small and
allows for finding a so-
lution, that satisfies the
objectives described in
the cell on the left, how-
ever the elaborateness of
the optimization func-
tion exceeds the scope of
this table.

Transfer
Com-
ponent
Anal-
ysis -
TCA

2 Set of
transfer
components
that project
features
onto latent
space and
later min-
imise the
distance
between
domains

Goal of this method is to find a
non-linear mapping ϕ that em-
beds both target and source do-
mains into a low-level space.
Then a matrix W is found
that minimises MMD (Maxi-
mum Mean Discrepancy) in the
subspaces. A constraint that
aims to preserve the properties of
Xs and Xt is added to preserve
the variance in the latent space
[36].

minW tr(W TKLKW) +
tr(W TW) where K is
the kernel matrix, L is
a matrix of coefficients
and W is the transfor-
mation from one sub-
space to another. The
TCA method is further
described Section 2.2.4.

Model
Trans-
fering
for DA

3 Model
Adaptation

Learning from the source model
ws by regularizing the distance
between the learned model w
and ws [3]. Aytar et al. provide a
couple of modifications of learn-
ing objectives functions for sup-
port vector machines, that can
optimize the classifier in the new
domain.

The functions used for
twisting the models are
a way of domain adap-
tation, however elabora-
tion about them is not
necessary for this line of
research.

Table 2.2: Domain Adaptation: Kernelized low-dimensional space and model
modification methods

Nevertheless, DICA focuses more on the separation of classes within each domain.
Meanwhile, TCA utilizes the Maximum Mean Discrepancy (MMD) to minimize
the distance between the shared low dimensional latent spaces, which could be a
provided angle. TCA is also adapted to a wider range of tasks.

No elaboration is provided on methods that do not try to perform domain adapta-
tion through feature modification but focus on the model parameters instead. This
thesisaims to provide more insight into how feature mappings could be utilized in a
scenario where performative predictions might occur.

14 2. Background and Related Work

2.2.3 Asymmetric Regularized Cross-domain transformation

Kulis et al. have described a method of learning an asymmetric non-linear trans-
formation, which maps points from one domain to another using labelled data [25].
Researchers were trying to extend and generalize the method of Saenko et al. [42].
Notably, they aimed to broaden and refine the technique by relaxing the constraints
imposed by the regularizer described in the preceding work. They achieved the
generalization by solving a linear optimization problem Eq. 2.10 in a kernel space.

min
W

r(W) + λ
∑
i

ci(X
TWY) (2.10)

Where W is a linear transformation matrix, X, Y represent the points in source
and target domains, ci represents loss functions over the constraints and r is a
term, which regularizes matrix W . The authors of the paper describe one particular
example, where the regularization term is a squared Frobenius norm and constraint
represent similarities between X and Y. To be exact, in the process of constraint
generation such a similarity function is used, so that the differences between same-
category pairs and different-category pairs in the source and target domains are
highlighted. The mathematical formula for constraint generation for the (x,y) pairs
from the same category.

ci(X
TWY) = (max(0, l − xTWy))2

And for pairs from different categories.

ci(X
TWY) = (max(0, xTWy − u))2

Kulis et al. provide proof, that computing the transformation is possible using only
kernel functions. They project the problem from Eq. 2.10 to a space constructed
by kernelization and show that solutions are equivalent. That holds but only if a
few assumptions hold, mainly kernels are strictly positive definite and regularizer r
is convex.

min
L

r(L) + λ
∑
i

ci(K
1
2
XLK

1
2
Y)

then

W ∗ = XK
− 1

2
X L∗K

− 1
2

Y Y T

(2.11)

Eq. 2.11 provides the optimization function in the transformed subspace. KX and
KY are the kernel matrices, applied to the points in source and target domains. The
kernel used for transformation from regular feature space to kernel space can be
arbitrary, in the paper the authors use an RBF Gaussian kernel. W ∗ is an optimal
solution to Eq. 2.10 and L∗ is an optimal solution for the equation Eq. 2.11. It is
important to note that the constraints generation also needs to be mapped to kernel

2.2. Transfer learning 15

space, for instance, the similarity function for instances from the same category
presented above would get mapped to (max(0, l − eTi K

1/2
A LK

1/2
B ej))

2.

The introduction of this method of computing the transformation matrix allows
for non-linear solutions and assures the matrix is independent of the dimensions of
the domain. To solve the optimization problem authors of the paper suggest using
Bregman’s algorithm. At the same time, they also proclaim that solving it with
simple or stochastic gradient descent approaches is possible.

16 2. Background and Related Work

2.2.4 MMD-based transfer learning

As mentioned in Section 2.2.1 the usual goal in Domain Adaptation is to minimize
the distance between 2 probability distributions. A metric, that is often used to
express this distance is Maximum Mean Discrepancy. The MMD takes advantage of
a kernel trick, it was originally used as a statistical test, that informed whether two
samples originate in the same distribution [5]. Currently, MMD methods are widely
present in transfer learning, as well as in the procedure of training adversarial neural
networks.

MMD compares the mean embeddings of two distributions in a kernel space. Let
Hk denote a reproducing kernel Hilbert space, defined by a characteristic kernel k.
dk(p, q) will denote the MMD value between two distributions p and q [46].

d2k(p, q) = ||Ex∼p[ϕ(x)]− Ex∼q[ϕ(x)]||2Hk
(2.12)

Where ϕ is the transformation function that maps data from original spaces into a
space defined by kernel k. In that case, the kernel function could be defined in the
following way. [46]

k(xi, xj) = < ϕ(xi), ϕ(xj) > (2.13)

The most popular kernel functions include linear, polynomial and Gaussian kernel.
An approach to compare two distributions in a kernel space has been described.
Recalling the Eq. 2.9, the optimization problem can be created. A key idea is to
introduce a transformation matrix A, that denotes the feature transformation in
the kernel space, the matrix A becomes the learning objective. The next step is to
compute the distances between source and target transformed data. This can be
achieved in the following way for the marginal distributions.

MMD(Ps(x), Pt(x)) = ||
1

Ns

Ns∑
i=1

ATxi −
1

Nt

Nt∑
j=1

ATxj||2H (2.14)

And in the following way for the conditional distributions. The derivation of the
marginal one is a bit more intuitive. To achieve the result below Bayes theorem is
used and the fact that P (y|x) = P (y)P (x|y) and also the conditional probabilities
take into the division of classes that is why instances representing the same category
need to be summed.

MMD(Ps(y|x), Pt(y|x)) =
C∑
c=1

|| 1

N
(c)
s

∑
xi∈D

(c)
s

ATxi +
1

N
(c)
t

∑
xj∈D

(c)
t

ATxj||2H (2.15)

If the two above equations are added together a general optimization formula is
achieved. It seems that it might be difficult to get a solution to that problem.
However, Wang et al. provide proof that it also can be reformulated and simplified
[46]. They show that the solution to the following equation provides the same result
as the solution of the optimization problem.

min tr(ATXMXTA) (2.16)

2.2. Transfer learning 17

Where tr(.) denotes the trace of the outcome matrix, X is a matrix that combines
data points from both source and target domains and M is a matrix of MMD co-
efficients (representing the constraints that stand before the summation marks in
Eq. 2.14 and Eq. 2.15), computed in the following manner.

M = (1− µ)M0 + µ
C∑
c=1

Mc (2.17)

The resemblance of the Eq. 2.9 and Eq. 2.17 is not coincidental, as the meaning of
the parameter µ in this case is identical as the meaning described in Section 2.2.1.
Additionally, M0 is filled with coefficients 1

N2
S
, 1

N2
T
and −1

NSNT
, placced in a way cor-

responding with the result of ATX. MC contains identical components but distin-
guishes the classes. Adjustments of the value of µ allow for manipulation in the
methods of distribution adaptation. For instance, if µ is set to 0 then the method
is regular TCA - Transfer Component Analysis [25], changes in the value of this
parameter will rebalance the ratio of importance between marginal and conditional
probability distributions.

The Eq. 2.16 states the problem that needs to be solved to achieve the proximity of
distributions. The optimization is still subject to constraints, mainly to maximize
the data variance in the RKHS, Wang et al introduce a centring matrix H, where
H = I − (1/n)1 [46]. The H matrix is used to compute the scatter matrix, which
enables estimating the covariances between features. The scatter matrix in the
original feature space would be computed accordingly, S = XHXT . Then the
problem of maximizing the variance in the RKHS becomes.

max(ATX)H(ATX)T (2.18)

By combining equations Eq. 2.16 and Eq. 2.18 and applying the Rayleigh quotient
to the result of this combination, it is possible to formulate the final constrained
optimization problem. That can later be solved with the Lagrangian method for
optimization [1].

min tr(ATXMXTA) + λ||A||2F ,
s.t. ATXHXTA = I

(2.19)

Solving that problem is not complicated, as when the gradient of the Lagrangian
is set to 0, the solution becomes a system of equations. Later the best solutions
to the system of equations need to be selected and that allows us to construct the
transformation matrix.

18 2. Background and Related Work

2.3 Domain Adversarial Neural Networks (DANN)

Past years have seen rapid development of deep learning techniques, that are cur-
rently applied to a wide range of tasks. Domain adaptation problems have also been
under scientists’ radar. Domain Adversarial Neural Networks are a solution that ap-
plies deep learning to deal with the issue of distribution shift between the domains.
Ganin et al. in their paper Domain-Adversarial Training of Neural Networks have
focused on designing a training process that would embed domain adaptation into
learning the feature representation. Essentially, the disparity between two distri-
butions is measured based on a deep discriminatively trained classifier [14]. The
method is distinct from the ones described in the previous sections as instead of
directly comparing the distance between distributions, it aims to train a feature
extractor, label predictor and domain classifier that together will be capable of dis-
tinguishing between the domains.

Figure 2.1: Exemplary Domain Adversarial Neural Network architecture source:
[14]
.

Figure 2.1 illustrates a possible architecture of a DANN. To illustrate the mecha-
nisms behind the architecture the following notation will be introduced. LetGf (·, θf)
denote a neural network which is responsible for extracting the features from data
(on the Figure 2.1 the green part, however, the architecture does not necessarily need
to be convolutional). Gy(·, θy) is the part of the architecture, that is responsible for
predicting the output class label (blue part). Together, green and blue networks
would constitute a fully connected neural net. The differentiating factor is the im-
plementation of the classifier computing the domain prediction output, depicted in
pink, the formal term describing it is Gd(·, θd). Now let each point in a dataset
consist of a tuple (xi, yi, di), a set of features, the label and the domain label. Then
the prediction loss and the domain loss could be denoted as follows.

Li
y(θf , θy) = Ly(Gy(Gf (xi; θf), θy), yi) (2.20)

2.3. Domain Adversarial Neural Networks (DANN) 19

To explain the notation, first each instance xi goes through the layers of the features
extractor and a new feature representation is created. Then the output of Gf (xi; θf)
passes through the fully connected layer Gy characterized by a set of parameters
θy and finally the predicted label is compared with the actual one yi and the loss
function is computed.

Li
d(θf , θd) = Ld(Gd(Gf (xi; θf); θd), di) (2.21)

The loss function for the domain classifier is constructed correspondingly. After
passing through the feature extractor every instance’s originating domain is pre-
dicted and depending on that prediction a loss function is computed. The training
process of a DANN combines Eq. 2.20 and Eq. 2.21. In the end, it is equivalent to
solving the following optimization problem.

E(θf , θy, θd) =
1

n

n∑
i=1

Li
y(θf , θy)− λ(

1

n

n∑
i=1

Li
d(θf , θd) +

1

n′

N∑
i=n+1

Li
d(θf , θd)) (2.22)

In the above Eq. 2.22 it is important to note that n denotes the number of instances
originating from the source domain, n′ denotes the instances originating from the
target domain and N = n + n′ is the sum of both. The manner of calculating the
updates of the weights of each part of the architecture is also presented on Figure 2.1.
The process resembles a classical Stochastic Gradient Descent. However, there is
one important difference in the gradients from the class and domain predictor nets
are substracts. Due to that fact, the entire model can extract features, which are
generic, not discriminative when it comes to domain. The update rule for the feature
extractor can be described with the following equation.

θf ← θf − µ(
∂Li

y

∂θf
− λ

∂Li
d

∂θf
) (2.23)

Due to technicalities, such as the implementation of Stochastic Gradient Descent in
machine learning libraries. Commonly, the update rule is replaced by the introduc-
tion of a gradient reversal layer. This reversal layer does not have any parameters.
During forward propagation, it acts as an identity matrix and in the backpropa-
gation stage the sign is reversed. The outcome is multiplication by -1. This way,
the update rule presented in Eq. 2.23 can be achieved. For a more mathematical
description of the reversal layer, please refer to [14].

20 2. Background and Related Work

2.4 Generative Adversarial Neural Networks

This section dives into a topic, that at first glance is significantly different from the
ones described above. However, as over the previous years, generative AI tools have
gained significant recognition, it would be foolish to overlook their usefulness. The
Generative Adversarial Network (GAN)s prove to be proficient at modelling high-
dimensional data distributions [9], which might be immensely beneficial in mapping
the points back to their original format and might help in finding a suitable trans-
formation.

The concept of GANs has been introduced by Goodfellow et al. in ”Generative
Adversarial Nets”, the authors put forward a adversarial framework and model it as
a two-player game [15]. The first player is the generator, whose task is to produce
an output that will resemble the desired features. Meaning that the output of
the generator will be as close to the target distribution as possible. The second
player is the discriminator, whose task is to tell apart real and fake samples and
learn how to distinguish between them. Both models are trained simultaneously
and compete with each other. During training, only the discriminator has access
to instances sampled from real distribution, which are later paired with synthetic
instances produced by the generator. In a classical setup, the input to the generator
is white noise. The Figure 2.2 illustrates the most standard scenario. The ”OR”
gate on the chart models the fact that the discriminator’s inputs are equally split
between the generated samples X ′ and points from the original distribution X.

Figure 2.2: Achitercture of a standard GAN model.

To describe the training process in more detail and formalize the notation the fol-
lowing notation, describing the loss functions, is introduced. Discriminator aims to
maximize the probability of assigning the correct label to X and X ′. Meanwhile,
the goal of the generator is to minimize log(1 − D(G(Z)). So the goal of G is to
trick D into predicting that the true label of X ′ is 1 (the instances sampled from X

2.4. Generative Adversarial Neural Networks 21

are denoted with domain source labels 1, the generated ones with zeros). The total
loss function of a GAN is often described as [15]

min
G

max
D

F (D,G) = EX∼P (X) [log(D(X))] + Ez∼P (z) [log(1−D(G(Z))] (2.24)

Due to some issues that can occur at the beginning of the training process the
updates of the weights of the components of the GAN model are usually performed
in a slightly different manner, which is still equivalent to Eq. 2.24. To be exact, the
updates are performed in the following way for the discriminator.

θD ← θD +∇ 1

n

n∑
i=1

[
log(D(x(i))) + log(1−D(G(z(i)))]

]
(2.25)

And for the generator

θG ← θG −∇
1

n

n∑
i=1

[
log(1−D(G(z(i)))]

]
(2.26)

In the present literature, one can find plenty of examples of the usage of GANs,
as well as an abundance of different types of networks. Authors of the paper [17]
attempt to classify the architectures based on their structures and applications.
They classify GANs into 3 main representative variants.

1. InfoGAN [7]- standard GAN, where the object function is extended with mu-
tual information, between the original class and the generated class.

2. Conditional GANs - cGANs [30]- that can generate examples conditioned on
class labels. Both the discriminator and generator are conditioned on extra
information y.

3. CycleGAN [51]- mostly used for image-to-image translation, in situations
where data is unpaired. Their architecture utilises additional generators and
discriminators to mitigate that issue.

Further subsections will elaborate on types of GANs specifically important for this
line of research.

2.4.1 Conditional synthesis with generative adversarial nets

The typical GAN architecture described in the section is limited to the amount of
information it can carry. Meaning that the only information that is provided to
the model is the labelling of fake and real instances and certainly the instances
themselves. Mirza et al. propose to condition the model on additional data (such
as class labels or other data modalities)[30]. The result of that is that the objective
function that has been described by Eq. 2.24 changes to the following equation.

min
G

max
D

F (D,G) = EX∼P (x) [log(D(x|y))] + Ez∼P (z) [log(1−D(G(z|y))] (2.27)

22 2. Background and Related Work

What that means for the architecture, is that both generator and discriminator
are given additional inputs y. The generator is provided with white noise and an
additional embedding that is concatenated with the white noise. That embedding
provides information to which class should the produced instance belong. The dis-
criminator is also provided with the very same information so that it can predict
whether the instance is real or fake given y, however in this case the information is
just provided as an input to the model. For the conditional network, the only differ-
ence is that labels are embedded into arbitrary form and fed to the models, which
due to that start conditioning their predictions on that additional information.

Figure 2.3: Summary of differences between conditional and AC-GANs.

Odena et al. in their paper ”Conditional Image Synthesis with Auxiliary Classi-
fier GANs” propose an extension to the conditional framework, by introducing an
auxiliary classifier [34]. They call their architecture AC-GANs, which stands for
auxiliary classifier GAN. The generator job does not change much, however, the
discriminator now is presented with the task of outputting two probability distri-
butions. One describes the probability of the instance being real or fake and the
second one that predicts the chances of an instance belonging to a certain class.
The equation Eq. 2.28 shows the dual nature of the loss of the discriminator in this
architecture.

Lsource = EX∼P (x) [log(P (S = real|x))] + Ez∼P (z) [log(P (S = fake|G(z, c))]

Lclass = EX∼P (x) [log(P (C = c|x))] + Ez∼P (z) [log(P (C = c|G(z, c)]

(2.28)

What is crucial during the training procedure of training an AC-GAN, is the fact
that the discriminator attempts to maximize LD = Lsource+Lclass and the generator
aims to maximize LG = Lclass − Lsource. This means, that both of the models work
together to optimize predicting classes, but the adversarial part, where one of them
tries to fool the other one is still present.

2.4. Generative Adversarial Neural Networks 23

2.4.2 Pix2pix image translation

Generative adversarial networks have a wide scope of applications. It is especially
common to see them applied in the area of image construction. Another interesting
application is image translation. For instance, with small architecture adjustments,
it is possible to adopt a GAN, so that it can be used to recognize edges or to
translate online maps into satellite images. Those examples seem to be very loosely
connected with finding transformation for performative predictions. However, with
justified alterations, those solutions could be implemented in theoretically simple
cases such as datasets without spatial structure.

Isola et al. devise a method, that can be used for image-to-image translations [21].
The approach is based on the idea of conditional GANs, which have been described
in the subsection above. The notation introduced in this paragraph slightly differs
from those in the preceding parts, so for clarity reasons, the following occurs.

• Standard GAN - learns a mapping from noise z to an output y,G : z → y [15]

• Conditional GAN - learns a mapping from an observed modality x and random
noise z to an output y, G : {x, z} → y [21]

The idea that the researchers have put forward is to change the inputs to the dis-
criminator. Extend those inputs by pairing the real observed data x with the tar-
get images y or the output of the generator G(x). This way the generator should
learn how to produce target images from pieces of information included in x. The
Figure 2.4 visualizes the idea of matching of the data points. As with every new

Figure 2.4: Illustration of pairing the target data with generated/real instances.
Source:[21]

architecture the objective function of the model (which originally was described by
Eq. 2.24) changes. The Eq. 2.29 models the relationship presented in the figure
mathematically.

L(G,D) = Ex,y [log(D(x, y))] + Ex,z [log(1−D(x,G(x, z))] (2.29)

24 2. Background and Related Work

It has been proven that the translation can achieve better results if the objective
function takes into account the distance between the translated image G(x, z) and
the target image y. Specifically, in [38] the researchers show that the usage of L2
distance improves the results. Isola et al. opt for using an L1 measurement, as
they argue it proves to be better for specific image cases. After the introduction
of the distance metric the optimal generator is selected by optimization of the loss
described with Eq. 3.2.

G∗ = arg min
G

max
D
L(G,D) + λLL1(G)

Where

LL1(G) = Ex,y,z[||y −G(x, z)||1]

(2.30)

λ is a regularization parameter, that regulates the strength of penalization of the
instances, which are far from the target distribution. The larger the λ the bigger
the penalty for deviations. It can be treated as an additional hyperparameter, that
needs to be tuned.

3. Method

This chapter describes the proposed framework designed to mitigate the performa-
tive drift. At first, the initial simulation design is presented, and then its prelimi-
nary results are analysed. They constitute the foundation and motivate the further
presented ideas. Section Section 3.2 depicts the components of the newly created
architecture. Later, mathematical equations describing the training procedure are
listed with explanations. Finally, we describe each component of GDAN in detail
and present the layer setups.

3.1 Preliminary simulation design

3.1.1 Goal of the simulation

The simulation aims to answer the sub-research questions by providing answers to
the following:

1. How quickly does the performance of the original logistic regression model
deteriorate when data distributions are influenced by the performative drift?

2. Is it possible to create a representation of data, that will allow for slower
deterioration than the one of the original model?

3. Is the performance of the classifier trained on the representation created by
the feature extractor superior to other methods?

4. How well does the mapping work? Visual inspection is performed. Each
method is examined whether it is capable of reversing the influence of the
performative drift.

To answer those questions, the results will be compared method to method and
then conclusions will be drawn. For each method, accuracies will be collected and
compared. Also, it is important to be able to understand what happens to the

26 3. Method

data during the transformation. Principal Component Analysis [20] will be utilized
and each data distribution will be visualized. Additionally, boxplots showing how
a stretch of each feature has changed after drift has been induced will be created.
This way the effects of the simulations can be observed with a bare human eye. The
drawn conclusions will later be used to devise a method that synthesises concepts
and extracts the best features of the examined methods.

3.1.2 Simulation design

Figure 3.1: Flowchart of the simulation process
.

Section Section 2.1.5 describes multiple data generation processes the simulation
will be performed for the generators designed by Perdomo et al.[39] and Izzo et al.
[22].

The simulation begins by generating synthetic data using performative data gener-
ators, depending on the technique it might be based on the available datasets that
mimic real-world data such as Give Me Some Credit [8] or fully synthetic. This
data from now on will be referred to as the original data distribution and serves
as the foundation. Initially, a logistic regression model is fitted to this dataset, es-
tablishing a baseline for performance evaluation. Subsequently, the trained model’s
parameters are used to influence the original data distribution. The nature of this
influence is dependent on the scheme of a data generator, however, all of them uti-
lize model parameters to move the data distribution. One iteration symbolizes one
movement, and iteration will be noted with the letter t, meaning that the original
distribution gets the symbol t0, a distribution, that has been moved once t1, twice
t2, and in the same manner for further iterations. After the new dataset, influenced
by the drift, is created, the logistic regression model is retrained on the modified

3.1. Preliminary simulation design 27

dataset to adapt to the evolving environment. Next, based on the original data
distribution and data from iteration number one, a feature transformation is com-
puted. Then another logistic regression classifier is trained in the space created by
the feature transformation. In each iteration four distribution/model combinations
are evaluated:

• Model M0 on the distribution ti

• Model M0 on the distribution tfi

• Model Mi on the distribution ti

• Model Mf1 on the distribution ti

To explain the above notation, i denotes the number of iterations or the number
of times the distribution has been moved. The subscript f means that either the
model has been trained in the transformed space or the distribution ti has been
transformed. The main metric used in the simulation is the model’s accuracy, the
accuracies are collected for all the combinations listed above and later compared.
Figure Figure 3.1 visualises the simulation process.

3.1.3 Preliminary results and motivation for the architecture de-

sign

The applied methods did not provide meaningful results, a very brief summary of
the results of the simulation described in the section above is provided in Table 3.1.
The values in the table represent the accuracies of the model M0 on the transformed
feature representation. The results were produced by performing the simulation on
a slightly adjusted Perdomo generator (described in more detail in Section 4.1.1).
The baseline accuracy for that case is around 72% and with retraining of the logistic
regression model, the accuracy can be sustained.

Iter No
Method

ARC-t JDA DANN

1 50 48.05 45.52
2 53 47.5 45.52
3 54 53 45.52
4 53 50 45.52
5 52 48.5 45.52
6 50 46 45.52
7 50 46.5 45.52
8 50 49 45.52
9 55 44.5 45.52
10 52 43.5 45.52

Table 3.1: Results of different methods over 10 iterations, evaluation of M0 on the
distribution tfi

28 3. Method

What can be inferred from the results presented in the table above is the fact that
those methods do not provide a valid transformation. Even though, Table 3.1 only
presents the accuracies, the results of the PCA analysis were also unsatisfactory.
The representation that is calculated with those methods does not help the original
logistic regression to regain its performance. It can not be understood by it. Most
of the methods are not significantly better than pure guessing, as the accuracies
oscillate around 45-55%. However, there is one method that is distinct from the
others. Both ARC-t and JDA allow only for calculating a fixed transformation.
The Domain Adversarial Neural Network also allows for the computation of a new
feature representation but also provides a classifier. That classifier is optimized to be
able to extract information from that newly created representation. The accuracies
of the label classifier compared with the accuracies of the original logistic regression
model trained on t0 are presented in Table 3.2.

Iter No
Method

Label classifier Original LR

1 72.1 71.64
2 72.09 71.14
3 72.04 70.1
4 71.99 69.1
5 71.96 68.06
6 71.95 66.96
7 71.98 66.02
8 71.91 65.19
9 71.98 64.27
10 71.93 63.2

Table 3.2: Accuracies of the label classifier predictions over 10 iterations,
corresponding to evaluating Mf1 on the distribution tfi.

Comparing the results in Table 3.1 and Table 3.2 a considerable jump in performance
can be observed. The decay in accuracy is still present, however it proceeds at a
notably slower pace. Those results can lead to the conclusion that training a classifier
that is drift-resistant with the usage of Domain Adversarial Neural Networks is
achievable. As the results presented here are only preliminary, they are not used to
draw overall conclusions. The goal is rather to create a foundation and later build
on top of it.

Even if, training a classifier immune to drift effects would be possible, that still
does not provide any information about the direction of the movement between
distributions. While training such a predictor could be considered as a strategy
to mitigate model drift, our research aims to uncover a mapping that explains the
direction of the drift in the data. Hence, the subsequent sections will build upon
the possibility of training a model proficient at handling drift and extend it with an
architecture capable of mapping points back to the original distribution

3.2. Architecture design 29

3.2 Architecture design

This section will describe an architecture, that was devised to provide both a sta-
ble classifier that would be resistant towards the drift induced on the environment
and a transformation from the newly acquired data to the original distribution, ob-
served before any models were deployed. The architecture combines concepts from
Domain Adversarial Neural Networks (Section 2.3), Generative Adversarial Neural
Nets (Section 2.4), Conditional GANs (Section 2.4.1) and models used for pixel-
to-pixel translation (Section 2.4.2). The goal of combining those notions is to use
DANN to achieve a stable, drift-resistant classifier and the GAN to provide a model
that can map the current data distribution into the original one. To combine those
architectures some adjustments are needed, which is where conditional GANs and
pixel-to-pixel translation methods come into play.

Figure 3.2: Proposed architecture for classification and mapping.

Figure 3.2 illustrates the combined architecture flowchart. Dotted lines on the figure
symbolize calculations of loss functions, and the continuous lines model input/out-
put relationships. Xt denotes a single point in time originating in data distribution
t. The index t describes how many times the distribution has been influenced by
the drift. Each point in a dataset can be described with a tuple (Xt, Dl, c), where
Xt symbolizes the feature data, Dl corresponds to t (indicating the label of the dis-
tribution the point is sampled from). The letter c is the class, the target variable of

30 3. Method

the classification process. First, each point is put through the feature extractor F .
The feature extractor should modify the point in such a way that the origin of the
point is hard to predict. So the output of the network F (Xt) should have features,
that are generic and non-domain specific. The transformed point is then used as
an input to the label classifier LC, which predicts the correct class of the instance.
That network LC is responsible for providing the stable classification process. Si-
multaneously, F (Xt) serves as the input to the generator G. The generator’s goal
is to transform the given input in such a way, that the drift that has occurred is
reversed. To put it in simpler terms, the generator aims to map the point back to
the original distribution. The final element of the architecture is the discriminator
D. It combines the two different GANs frameworks, AC-GAN [34] and pix-to-pix
translator architecture [21]. This means that 50% inputs for the discriminator are
real pairs of data points and the other half are the generated pairs. A pair con-
sists of either a point from the original distribution and its non-domain-specific
representation or a generated point and its non-domain-specific representation. The
discriminator’s task is to output two probability distributions: one predicting the
origin of the point (Dl) and the other indicating whether the point is from a real
distribution or generated by G.

3.2.1 Objective

The Section 3.2 aims to provide a general overview of the architecture and tasks of
its components. In this section, more formal notation will be introduced to provide
a stricter frame for the architecture.

The objective function of the proposed architecture is quite complex as it needs to
take into account all the components. The derivation process of that function will
now be considered. Starting by analysis of the discriminator’s task, it is necessary
to combine Eq. 2.28 and Eq. 2.29. The output of this can be described as follows.

Lsource = EXt,X0 [log(P (S = real|X0, F (Xt))] + EXt,z[log(P (S = fake|G(F (Xt)), F (Xt))]

Ldomain = EXt,X0 [log(P (Dl = dl)|X0, F (Xt))] + EXt,z[log(P (Dl = dl|G(F (Xt)), F (Xt))]
(3.1)

Lsource denotes the log-likelihood of predicting the correct source, whether the point
has been sampled from a real distribution or generated by the model. Ldomain denotes
the log-likelihood of predicting the correct domain, whether the point was sampled
from a distribution with t = 0 or t = 1. The symbol z in the subscript of the expected
value symbolizes the noise imposed on the generated form by the generator. It is also
important to note, that if I symbolizes the concatenated inputs to the discriminator,
then the discriminator output can be written as D(I) = P (S|I), P (Dl|I). Similarly
to what has been described in Section 2.4.1, the goal of the discriminator is to
maximize Lsource + Ldomain, meanwhile the goal of the generator is to maximize
Ldomain−Lsource. The generator aims to fool the discriminator by producing instances
that are hard to distinguish from real ones.

Outputs of the discriminator are not crucial by themselves, they are necessary, as
they enable the adversarial training process of the generator and discriminator.

3.2. Architecture design 31

First, let us consider the case of the generator. It has two tasks: the aforementioned
fooling of the discriminator and producing an output that is as close to the original
distribution as possible. Therefore, the generator needs to be penalized based on the
distance between the target point and the point it has generated. Mathematically,
this can be expressed as:

G∗ = arg min
G

max
D
L(G,D, F) + λLL1(G)

Where

L(G,D, F) = Lsource + Ldomain

LL1(G) = EX0,Xt [||X0 −G(F (Xt)||1]

(3.2)

Finally, let us consider the case of the feature extractor and label classifier models.
The feature extractor is trained based on the loss functions of the label classifier and
the correctness of predictions of the domain label produced by the discriminator.
Recalling the equations Eq. 2.22 and Eq. 2.23, the approach remains mostly un-
changed. The only factor that has changed is that now the discriminator is a more
complex model. So for the feature extractor update rule not the entire discrimina-
tor’s loss is taken into account, but only the part that has to deal with calculating
the Domain loss (visible on Figure 3.2).

F ∗ = arg min
F

max
D

E(θF , θLC , θD) (3.3)

The expected value of Eq. 3.3 is almost equivalent to Eq. 2.22 but with the afore-
mentioned change in the calculation of the discriminator’s loss function. The feature
extractor attempts to maximize the accuracy of the label classifier while simultane-
ously confusing the discriminator, ensuring that the extracted features are generic
and non-domain-specific.

Optimization of the label classifier is the most straightforward process. It follows
the classic supervised learning paradigm in machine learning. The label classifier’s
goal is to minimize its prediction loss, which involves adjusting its parameters to
correctly predict the class labels of the instances based on the features provided by
the feature extractor. This process ensures that the label classifier becomes highly
accurate in its predictions.

To summarize the approach, during training there are two adversarial two-player
games ongoing. The first one involves the feature extractor and the part of the
discriminator responsible for predicting the domain, and the second one is the gen-
erator vs the discriminator. These adversarial interactions are crucial for the overall
training process. They ensure that the components of the architecture—feature
extractor, label classifier, generator, and discriminator—are all optimized in a man-
ner that leads to a stable, drift-resistant classifier capable of mapping current data
distributions back to the original one.

32 3. Method

3.2.2 Training procedure

The main focus of the previous two sections was to introduce the architecture and
explain the update rules and the tasks of each component. This section will primar-
ily focus on formulating an algorithm to clarify the order of operations and provide
deeper insight into the actions executed during architecture training. The pseu-
docode of the process is summarised by Algorithm 1. The notation used therein
follows the standards introduced in previous sections.”. Additionally, θ denotes the
weights of a model, with the subscript indicating the specific model. The parameter
µ is the learning rate, again that can be model specific. λ1 and λ2 are regulariza-
tion parameters, treated as hyperparameters, regulating the degree of penalization
for a model. To summarize all of the training variables and hyperparameters the
Table 3.3 was created.

To provide more clarification symbols L in section Section 3.2.1 refer to log-likelihood.
In this case, maximization of the log-likelihood is equivalent to minimisation of the
loss function, so that is why in the Algorithm the gradients are subtracted from the
vectors of weights of the models. The L symbols used in 1 denote loss functions.
Another important detail is the fact that when calculating Lm1

source the target variable
is a vector of ones, even though the instances are produced by the generator so they
should be labelled with zeros. This means that the predictions of the discriminator
are compared against artificially supplied labels. So minimisation of this function
is equivalent to maximising a function supplied with true labels. That explains the
addition sign ”+” standing before Lm1

source.

3.2. Architecture design 33

Algorithm 1 Gradient Descent Training of Domain-Generative Adversarial Nets

Input: Number of training iterations N , minibatch size m, hyperparameter k (the
number of steps after which the updates of the generator start and updates of the
feature extractor stop)

Create a combined dataset of X0 and X1 : Xcombined, associate each point with
class labels C and domain labels Dl

for number of training iterations do

• Sample minibatch of 1
2
m examples {x(1), . . . , x(1

2
m)} from the combined

dataset Xcombined

• Arbitrarly pair each sample with a point from the original distribution X0

• Put each of the 1
2
m examples through the network components and let them

produce their outputs

• Generate a minibatch of 1
2
m examples by inputting the F (x(1

2
m)) into the

generator, assign correct domain labels, generator loss will only be calculated
based on those instances - later denoted as m1. The discriminator is trained on
both real and generated images, but the generator only on the generated ones.

if n < k then
• Update the weights of F , LC, and D according to the following:

θF ← θF − µF (
∂Lm

LC

∂θF
− λ1

∂Lm
domain

∂θF
)

θLC ← θLC − µLC(
∂Lm

LC

∂θLC
)

θD ← θD − µD(
∂(Lm

source + Lm
domain)

∂θD
)

end if

if n >= k then
• Update the weights of G and D according to the following:

θG ← θG − µG(
∂(Lm1

domain + Lm1
source + λ2LL1)

∂θG
)

θD ← θD − µD(
∂(Lm

source + Lm
domain)

∂θD
)

end if
end for
Output: Trained feature extractor F , label classifier LC, generator G and dis-
criminator D

34 3. Method

Parameter Description Type Notes Value
θD Feature extrac-

tor weights
Variable Model-specific -

θLC Label Classifier
weights

Variable Model-specific -

θD Discriminator
weights

Variable Model-specific -

θG Generator
weights

Variable Model-specific -

Lm
LC Label classifier

loss on a batch
m

Variable Batch-specific -

Lm
domain Discriminator

domain loss on a
batch

Variable Batch-specific -

Lm
source Discriminator

source loss on a
batch

Variable Batch-specific, predic-
tion whether real or
fake

-

λ1 Regularization
parameter 1

Hyperparameter Controls the im-
portance of domain
penalty

0.01

λ2 Regularization
parameter 2

Hyperparameter Controls the distance
penalty between the
generated and the tar-
get

100

µF Learning rate F Hyperparameter Model-specific 0.001
µLC Learning rate

LC
Hyperparameter Model-specific 0.001

µG Learning rate G Hyperparameter Model-specific 0.001
µD Learning rate D Hyperparameter Model-specific 0.0001
N Number of train-

ing steps
Hyperparameter Data generator spe-

cific
-

m Batch size Hyperparameter Unified for all cases 1024
m1 Batch size for

training of the
generator

Hyperparameter Unified for all cases m
2
= 512

k Training thresh-
old

Hyperparameter The number of com-
pleted steps before
the generator updates
start (the number of
updates of F and LC)

-

Table 3.3: Summary of training variables and hyperparameters

3.2. Architecture design 35

3.2.3 Network architectures

In this section, the composition of each network will be explained. A reasoning
behind the choice of layer types, activation functions, etc. will be provided. The
goal is to provide more clarity into the task that each component aims to learn.

3.2.3.1 Feature extractor

Figure 3.3: The architecture
of the feature extractor

network.

Figure 3.3 visualizes the layers the feature extractor
network is composed of. The data that this research
deals with is 1-dimensional, meaning that each point
has a certain amount of features, but it can also be
represented as a vector of size - (number of features)
x 1, in this case the number of features is equal to 11.
The goal of the network is to create a representation
with domain-invariant features, that is of the same
size as the initial representation, so it can be used
by the originally trained logistic regression classifier.
The first two layers are Transposed Convolutional
layers, their goal is to get each point to a higher
dimensionality representation [11]. The first layer
has 32 feature maps, a kernel of size 6 and an ap-
plied stride is 2, this transforms from the dimension
of (1,11,1) to (32,26,1). Second, transposed convolu-
tional layer further upsamples the data to (108,64,1),
by operating with kernel size 8 and stride 4. The goal
of projecting data to higher dimensions is to extract
patterns which might not be noticeable in its regu-
lar form. The rest of the process is downsampling
the data back to its original shape, by performing
standard convolution with kernel size 6 and stride
14. That is followed by average pooling, so taking
a rectangle of size 37x1 averaging the values in that
area and then sliding that rectangle by 20 units. The
output of that operation is again of size (1,11,1), it
gets reshaped and connected to one final dense layer
and finally, it is normalized. Additionally, batch nor-
malization layers are added after transposed convo-
lutions to make the learning process smoother [2].
After every single convolution, a rectified linear unit
is used, as that function is commonly utilised for con-
volutional neural networks [33].

3.2.3.2 Label Classifier

The task of the label classifier is more straightfor-
ward compared to the task of the feature extractor,
due to that fact, the architecture can also be more
simplistic. The label classifier is just a simple feed-
forward neural network [35] with four layers. The

36 3. Method

number of parameters follows a pattern of 256-512-64-1, each dash separates layers.
The final layer is of size one as it has to output the binary probability, the activation
function for the final layer is sigmoid, as it is commonly used for binary classifica-
tion problems [43]. After layers dense 1, dense 2 and dense 3 (so the first three fully
connected layers) the rectified linear unit function is applied.

3.2.3.3 Generator

Figure 3.4: The architecture of
the generator network.

The layers of the generator network have been
visualised on Figure 3.4, the goal of the network
is similar to the feature extractor’s aim described
above. The idea for the layers setup was inspired
by the U-Net architecture [40]. Ronnenberger et
al. devised a model that first downsamples/en-
codes the input, to locate the spatial features and
later upsamples/decodes it to create a segmented
translation of the input. Their work also utilises
skip connections to better match the features be-
tween the encoding and decoding. That solution
has been mostly applied to image segmentation
problems. In the case of this research, where we
deal with one-dimensional data the architecture
needs to be adjusted.

The concept is reversed, so first each data point
(the output of the feature extractor) will be
transformed to a higher dimension and later
transformed back to the original dimensions.
This is achieved again by the usage of first trans-
posed convolutional layers and later regular con-
volutions. Figure 3.4 shows how the dimensions
of the data point change as it is fed through the
network. Below more detailed information about
each layer parameters is presented.

• C-Transpose 2 kernel size: 4 stride: 2

• C-Transpose 3 kernel size: 4 stride: 4

• C-Transpose 4 kernel size: 4 stride: 4

• Convolution 1 kernel size: 8 stride: 4

• Convolution 2 kernel size: 6 stride: 2

• Convolution 3 kernel size: 4 stride: 2

Finally, after those operations are performed the
output is flattened and connected to one final
dense layer of size number of features x 1, in this

3.2. Architecture design 37

case (1,11,1). The activation function applied to the final output is just linear, so
the generator can replicate any values and is not restricted to a strict range.

An important detail, that is not depicted on Figure 3.4 is the fact that after each
transposed convolution or a regular convolution, to optimize the training process and
prevent vanishing or exploding gradients, batch normalization is performed. Each
one of those layers has also a LeakyRelu activation function, it is used for the same
reason. It has been proven that the usage of LeakyRelu can prevent gradient death
[24].

3.2.3.4 Discriminator

Figure 3.5: The architecture
of the discriminator network.

The discriminator is presented with two tasks as
described before (Section 3.2, it also takes two in-
puts. Due to that, the first layer concatenates
the inputted representations. What follows, is
four fully connected dense layers (characterized by
the following numbers of parameters 64-128-512-
512). Between the fully connected layers, there
are several regularization operations performed, the
aim of which is to prevent overfitting and stabilize
the training process [4]. To list them, after layer
dense 5 batch normalization. After each layer a
dropout of 25%, which means that during train-
ing random 25% of connections between layers are
treated as if they did not exist [44]. Also, during
the forward propagation of an instance each layer
uses a LeakyRelu activation function. Finally, af-
ter dense 5 the data is flattened and two output
layers are plugged in. The first one is responsible
for predicting whether the input pair originates in
the original distribution or has been generated by
the generator. The second one is responsible for
predicting the domain label. Both of the output
layers use a sigmoid activation function.

38 3. Method

4. Experiment and Results

This chapter will describe the experiment setups and show the results method de-
scribed above. To generalize the results as much as possible, the method has been
tested on three data generators. The review of generators present in the literature
has been presented in Section 2.1.5. Each generator can induce different types of
drift on the data, which is why conclusions should not only be drawn based on one
example. Additionally, as the differences between the data-generating processes are
significant, they might require different experimental setups. For instance, it might
not be feasible to match datapoint from the distribution t = i with its correspond-
ing format originating in t = 0. The table Table 4.1 presents the major differences
between the data generators. Furthermore, different training strategies may offer
better results considering the nature of the data-generating process, that fact is also
considered in the later subsections of this chapter.

The metrics that will be taken into account are the accuracy of the Label classifier,
the accuracy of the logistic regression model and the accuracy of the original logistic
regression with the data that was produced by the Generator. Apart from the
accuracies, the distances between the distributions ti, G(F (Xti)) and t0 are also
analysed. To clarify the notation, the following symbols are introduced L1(ti, t0) =∑n

j=1 |ti,j − t0,j| and L1(G(ti), t0) =
∑n

j=1 |G(ti,j)− t0,j|.As the distance metric does
not ensure the fact that the distributions are identical, PCA will be performed on
each of the above. Additionally, if it is possible a boxplot showing how the datasets
have changed will be shown. This way, it can be observed whether the generator
can reverse the effects of the drift.

Data generator Point-to-point matching Constant type of drift
Perdomo - v1 feasible yes (no retraining)
Perdomo - v2 feasible no (LR retrained)

Izzo not feasible no (LR retrained)

Table 4.1: Comparison of data generators

40 4. Experiment and Results

4.1 Perdomo generator

4.1.1 Experiment setup

Let us recall the equation Eq. 2.6, which shows the main rule behind how the new
data distributions are created. In [39] every time a new classifier is deployed the
starting distribution t0 is changed and a new dataset is created.

xt+1 = x0 − ϵBθ (Eq. 2.6)

For the sake of this research, two versions of this data generator will be tested,
to see if the model can cope with changing direction of the drift. Both of them
are based on the generator devised by Perdomo et al., which was used in multiple
papers available in the literature. The scenarios differ from each other, because
of the retraining strategy. The first one deploys just one classifier and during the
second one the predictor is retrained every iteration.

That first scenario deals with a situation, where one predictor is deployed and it
keeps influencing the environment. So still every iteration new data distribution is
created, however, the type of movement between them does not change. That is
achieved by implementing the following equation into practice. In that scenario, the
logistic regression is not retrained, so the parameter vector θ is constant.

xt+1 = xt − ϵBθ (4.1)

The second scenario is very similar just every iteration t, θ is retrained according
to the state-of-the-art method of minimizing loss of the logistic regression. A key
mechanism in both of those data-generating processes is the fact that the points are
modified. Due to that, in the stage of training, matching points one-to-one is easily
implementable. Eq. 2.6 and Eq. 4.1 include a symbol B. It denotes the matrix
(filled with 0s and 1s) that determines, which features are strategic - therefore can
be influenced by the model drift. In this research, the original approach is followed
and the strategic features are the ones with indexes belonging to [1,6,8]. Table 4.2
summarizes all parameters of the generator with their description and values.

Parameter Meaning Value
ϵ The strength of performativity 10.0
n number of features 11
B performative array

”
informs whether feature

is prone to drift
-

no samples train number of samples generated for training 18357
no samples test number of samples generated in each testing

iteration
10000

no iters number of testing iterations 10
k Table 3.3 350
N Table 3.3 100 epochs =

3500 steps

Table 4.2: Summary of the data-generation process parameters.

4.1. Perdomo generator 41

4.1.2 Perdomo learning curves

Figure 4.1: The loss of the discriminator
over training.

Figure 4.2: The domain accuracy over
training

Figure 4.3: The distance loss of the
generator over training

Figure 4.4: The adversarial loss of the
generator over training

Figure 4.5: Learning curves of the subparts of the entire architecture

This section provides more insight into how the training process ran. A difficult
part, when it comes to training the model’s architecture is the fact that it should
be performed in an adversarial manner. This means that devising a stop criteria,
such as no improvement on the loss function or non-significant improvements, is
challenging. The process was supervised differently, by analysing learning curves
after an arbitrary number of epochs and comparing the results.

Figure 4.1, Figure 4.2, Figure 4.3, Figure 4.4 illustrate either losses or accuracies
achieved over training. On all of the figures, a switch in behaviour can be noticed,
as that is when the update rule is changed (described in 1). Considering the loss of
the discriminator, it can be seen that until the 350th step, it completely overpowers
the generator as until then generator is not learning. But later once the generator
starts updating its weights and gets better at creating fake images, the loss of the
discriminator spikes rapidly. For the rest of the process, the curve fluctuates to a
significant degree, which is understandable as the two networks compete with each
other. An analogous process can be observed on Figure 4.4. It seems that in the end,
the discriminator is a bit more powerful than the generator, but not to a degree that
would harm the results. The learning rate of the discriminator is 10 times higher
than the one of the generator, however, setting that value of the hyperparameter

42 4. Experiment and Results

was the only discovered setup, in which the generator was not overpowered by the
generator. Another observation can be derived from Figure 4.2. Until the updates
of the feature extractor are not switched off the domain classification accuracy os-
cillates around 50%, meaning that the feature extractor can fool the discriminator.
That is necessary so that the created representation is domain invariant. Later the
discriminator starts to learn to tell the origin of an instance apart. Finally, as for
the distance penalty of the generator (illustrated on Figure 4.3), as soon as the gen-
erator is allowed to start learning it starts minimising that distance. The pace of
this process is very quick at the beginning and later the network starts to struggle
and it seems to be stuck close to a local optimum. That could indicate that the
model is not complex enough for the task it is presented with.

4.1.3 Perdomo results

4.1.3.1 Simulation with one classifier

This section presents the results of the experiment, where only one classifier is
deployed, meaning that θ stays constant. Figure 4.6 illustrates the results of the
Principal Component Analysis. That technique is used so that the dimensionality of
data can be reduced and it could be visualized on a 2D plot. In essence, the principal
components are the directions, that capture the most variance in the dataset. For
this analysis, the 2 directions with the largest variance are captured and visualised.
Applying this method allowed for the creation of plots like those in Figure 4.6.

The figure depicts the first, the last and the 5th iteration’s clusters. Analysing them
in depth, it can be seen that the blue and red clusters are overlapping throughout the
simulation. The reason behind that might be the fact that only three out of eleven
features of the dataset are modelled as strategic. That is why, Principal Component
Analysis struggles to show differences between the red and blue clusters. The green
clusters, which are the visualization of generated data, are not stretched enough.
It seems like they try to imitate the original distribution, but the model has not
learnt enough to be able to introduce enough variance into the created dataset. A
grasping observation is that there is no visible deterioration of the green clusters over
the iterations. The replication of the starting data seems to be similar, regardless
of the number of times, a distribution has been moved. That could suggest that,
due to the constant direction of the drift, the model can still provide meaningful
mappings even in later iterations.

Figure 4.7 depicts how the accuracies of different models on different representations
change as new data distributions are generated. The grey dotted line shows the
baseline accuracy. It symbolizes the correctness of a classifier trained on t0. This
model is used to change the data. The grey line is shown on the graph just for
reference to indicate how well the model performed initially. The red line represents
the accuracy achieved with the Label classifier, it can be observed that initially, its
accuracy is even better than the baseline. Unfortunately, it does deteriorate quickly.
After four iterations the model is practically outdated and is being outperformed
even by the original logistic regression predictor (the blue line on the graph). The
green line illustrates the performance of the original LR on the representation created
by the Generator and as can be seen even though that accuracy starts decreasing

4.1. Perdomo generator 43

Figure 4.6: Results of the PCA analysis - generator Perdomo v1.

in later iterations at the beginning it matches the baseline almost perfectly. This
means that the created mapping is sufficient for the original model to, for at least a
few iterations, maintain its performance. After four movements have occurred, the
accuracy starts to decline. However, this decline is notably less steep compared to
the other models. The retraining accuracy (orange line), is constant and at some
point outperforms all other predictors. It is important to state that this model
possesses a certain advantage, as it is retrained every iteration. Compared to the
other only being trained once at the very beginning of the simulation.

Figure 4.8 aims to show the correlations between the distances L1(G(ti), t0), L1(ti, t0)
and performance of the label classifier and the generator. The first fact, that should
be observed is that the red line depicting L1(ti, t0), has a constant slope, which shows
that indeed the changes in distance between distribution ti − t0 and ti+1 − t0 are
very similar. This shows that the drift induced in every iteration has a consistent
direction. The second observation is that the distances are not correlated with each
other. The red and purple curves seem to be diverging from each other, and the
slope of the curve picturing distance L1(G(ti), t0) is significantly less steep. Even
when the distribution ti is quite far from the distribution t0, the generator can create
a representation, that is located not far from the starting distribution. This could
indicate, that in this case the generator has learnt the direction of the drift and is
capable of reversing it throughout the simulation, regardless of the number of times
it has been induced on the data.

Finally, as the Figure 4.6 does not provide that much insight into how well the gen-
erated dataset resembles the starting distribution, boxplots visualizing each feature
of the datasets have been created. Figure 4.9 and Figure 4.10 compare present the

44 4. Experiment and Results

Figure 4.7: Linegraph of accuracies - generator Perdomo v1.

spread of each feature and compare those between t0, t1 and t9. At the same time,
they show how well the Generator reverses the drift. First of all, recalling the fact
that only three features are being drifted, the drift is only observable when looking
at features with indexes (1,6,8). The effect of the drift is most clearly visible in the
plot of feature eight. Giving this subplot a more in-depth look, in both iterations
0 and 9 the Generator pushes the median in the correct direction. Once again this
shows that it is capable of providing a meaningful mapping. However, an interest-
ing incident occurs when we look at the feature 6. In the first iteration, the created
representation is not an accurate mapping, but it seems like it should be heading
towards the correct direction. Surprisingly, in the ninth iteration, the median is
moved completely to the wrong side. This could explain why the deterioration in

Figure 4.8: Correlation between accuracies and distances - generator Perdomo v1.

4.1. Perdomo generator 45

performance is observed on Figure 4.7. Overall, the boxplot illustrates that the
model struggles with introducing variance into the created datasets. Features with
indexes two and ten are replicated more accurately, as they are less stretched and
more centred around their median. The features, which have plenty of outliers such
as features one or five, are considerably more difficult to replicate. To accompany
those statements with numbers, if taken the maximum range for features 2 and 10.
It would be [−2.5; 6] if the same operation were performed for features 1 and 5 it
would be [0; 40], which explains the differences in performance.

Figure 4.9: Boxplot visualising
differences between distributions -

iteration 0

Figure 4.10: Boxplot visualising
differences between distributions -

iteration 9

4.1.3.2 Simulation with retraining

This section shows the result of the experiment, where θ is updated every iteration.
Let us begin with the PCA metric analysis. The results achieved in this version of
the experiment are extremely similar to what has been presented on Figure 4.6, that
is why the PCA plot for this version of the experiment is not included here. The
green clusters are not elongated enough, which could mean that the complexity of
the task is too large for this architecture. And the deterioration in resembling the
starting distribution is very similar. This can be caused by the fact that even though
the logistic regression is retrained every single iteration, the parameter changes are
not so rapid, they are rather small adjustments. The result of this is that the results
are rather alike for both version of the experiment.

Figure 4.11 shows the values of accuracies of different models and representations.
The accuracies achieved by the trained architecture in this scenario are slightly less
promising than the ones achieved before. At iterations 0 to 2, both the label clas-
sifier and the generator perform reasonably well. However, as soon as the classifier
gets retrained three times and the direction of the drift changes considerably, the
accuracies start deteriorating. The pace of the drop of the performance of the label
classifier is more rapid. Compared to the original logistic regression (blue line), the
outputs of the proposed architecture still seem to provide better classification and
reasonable mappings for the first few iterations. However, in this scenario, it seems
that retraining the logistic regression might be a superior method. Throughout the
entire simulation, it almost matches the baseline accuracy, achieved at t0.

46 4. Experiment and Results

Figure 4.11: Linegraph of accuracies - generator Perdomo v2.

Moving on, the Figure 4.12 will be discussed. That figure depicts a few interest-
ing relationships, which could explain the behaviour of the model. First of all, it
is important to notice that the generator, especially at the beginning succeeds at
minimizing the distance between the distributions. On the graph, the purple line is
always significantly closer to 0 compared to the red line. The second correlation is
that as soon as the distance L1(G(ti), t0) (purple) starts to increase quicker, the pace
of decrease in performance of the original logistic regression tested on the generated
data starts accelerating. A very similar correlation can be observed between the
distance L1(ti, t0) (green) and the accuracy of the Label classifier. As soon as the
distance increases, the features extracted by the feature extractor are not understood
that well and it leads the an increased rate of misclassifications.

Figure 4.12: Correlation between accuracies and distances - generator Perdomo v2.

4.2. Izzo generator 47

Finally, if a boxplot such as the ones on Figure 4.9 and Figure 4.10 was created, the
results presented on it would be almost identical. The reason for this is again most
likely the slight changes in the parameters of the logistic regression. During the
retraining, the change in parameters only needs to account for changes in the three
strategic features and not the entire dataset. This causes the performance visualised
in the graphs above to deteriorate. However, the changes are not severe enough to
be visible either on the PCA clusters or the boxplots, which is why they were not
visualized in this section.

4.2 Izzo generator

4.2.1 Experiment setup

Let us recall the Eq. 2.8, which described the data-generating process. The main
goal is to model a real-world spam detection situation, where only one class (the
spammers) try to modify their behaviour, to deceive the predictor.

x|y = 0, θ ∼ N (µ0, σ
2
0) x|y = 1, θ ∼ N (f(θ), σ2

1) (Eq. 2.8)

That is achieved, by sampling points from two different distributions one that re-
mains unchanged over the iterations. And another one, the mean of this distribution
changes according to the vector of parameters of the currently deployed classifier -
θ. The Eq. 4.2 describes how exactly the new value of the distribution mean is
calculated, µ1 is a constant value equivalent to the mean of the starting distribution
t0, ϵ is a parameter describing performativity strength. To put it into simpler terms,
ϵ controls how severe the influence of the model is. The larger its value, the bigger
the distance between ti and ti+1.

f(θ) = µ1 − ϵ · θ (4.2)

In [22] the performed experiment was using a one-dimensional dataset (x ∈ R). For
the sake of this research that was adapted so currently, the dataset can have an
arbitrary number of features (x ∈ Rn). An additional assumption is that not all of
the features are prone to drift (similar to the Perdomo generator). This modification
is described by the following equation.

µi,n = f(θn) = µ1 − ϵ · θn ·Bn (4.3)

Eq. 4.3 shows that for the spam class, we get n means in each iteration. Bn is
a parameter that denotes whether the feature n is performative or not. In this
experiment features from where n ∈ [0, 5], are performative, so Bn = 1 for n ∈ [0, 5]
and else Bn = 0. Table 4.3 summarizes all the parameters of the generator, all the
values used during the experiment are presented in that table as well. That table is
also, extended with parameters from Table 3.3, which values are specific to the data
generator.

Another important detail is the fact that in the case of this generator, the logistic
regression model, that causes drift, is only retrained every 3 iterations. This means
that the direction of the drift does not change every single time, but those changes
are rather cyclical.

48 4. Experiment and Results

Parameter Meaning Value
µ0 The stationary mean of the non-

spam distribution
1.0

σ2
0 The standard deviation of the

non-spam distribution
0.25

µ1 The mean of the spam distribu-
tion t0

-1.0

σ2
1 The standard deviation of the

spam distribution
0.25

ϵ The strength of performativity 10.0
n number of features 11
B performative array

”
informs

whether feature is prone to drift
-

no samples number of samples generated in
each iteration

20 000

no iters number of testing iterations 20
k Table 3.3 150
N Table 3.3 50 epochs = 1950 steps

Table 4.3: Summary of the data-generation process parameters.

4.2.2 Izzo leaning curves

The goal of this section is similar to what has been presented in Section 4.1.2,
showing how each of the components of the architecture was trained and how the
training influences the results. Figure 4.17 provides snapshots of the learning curves,
illustrating the progress of the training process. The first detail, that catches the
eye’s attention is that before the 150th step (value of k from Table 3.3) all of the
curves behave differently than later. That is caused, by the switch in the update rules
described in algorithm 1. To be exact, when the generator updates are switched on,
the distance loss and the generator’s real/fake loss suddenly drop, and the opposite
happens to the discriminator’s real/fake loss and the domain classification accuracy.
The effect of changing the strategy of the updates is not visible on the loss functions
that deal with domain classification. It might seem, that later the values of the loss
functions fluctuate, which in a most standard supervised machine learning setup
would not be desired. However, those oscillations have to do with the adversarial
nature of the process, as the networks compete with each other if one of them gets
better, it is expected that the performance of the other one will deteriorate. It
has been observed that stopping the training process after 20 epochs instead of 50,
would be detrimental for the results, which are presented in Section 4.2.3. What
is also important to notice is that on the Figure 4.14 until the kth step is reached
the domain accuracy stays at around 50%, the probability of pure guess in binary
classification. That shows that the feature extractor until that time manages to fool
the discriminator and create a representation that is not determinant when it comes
to the domain, in which a point originates.

4.2. Izzo generator 49

Figure 4.13: The loss of the
discriminator over training.

Figure 4.14: The domain accuracy over
training

Figure 4.15: The distance loss of the
generator over training

Figure 4.16: The adversarial loss of the
generator over training

Figure 4.17: Learning curves of the subparts of the entire architecture

4.2.3 Izzo results

After the architecture was trained, by using the data from distributions t0 and t1,
it was evaluated by generating 20 iterations of data. The results of that evaluation
are presented below. Figure 4.18 illustrates the results of the Principal Component
Analysis. In the case of this generator, every third iteration has been captured on
the plot, as that is the time when the direction of the drift changes. Taking a closer
look at those plots, it is possible to observe that in each distribution there are 2
clusters (red - original data t0, blue - data influenced by the drift ti, green - data
generated by the model). Those clusters probably represent the two classes (spam
and non-spam). Red clusters are stationary, and the blue ones are constantly being
shifted. That occurs, because the model causing the drift is retrained. The shift by
itself is not surprising, however the directions of the movement are. It seems that
drift causes the clusters to oscillate. To show that effect, Figure 4.19 was created.
From iteration 1 (blue) to 4 (green) the clusters are being pushed away from each
other, but from 4 (green) to 7 (red) they are being squeezed together again. This
phenomenon keeps reoccurring, as the iterations progress. The effect of that event
might be that a distribution influenced a couple of times by the drift is more similar
to the starting one than one that has only been influenced once. This fact might
also have further implications, which will be discussed later.

50 4. Experiment and Results

Figure 4.18: Results of Principal Component Analysis over the iterations.

From the analysis of the Figure 4.18 it can be inferred that the generator usually
performs better at the task of reconstruction of the left cluster. The generated
clusters placed at around -15 on the scale of Principal Component 1 resemble their
corresponding red clusters in a much better way than their counterparts on the right.
They are more elongated, meanwhile, the ones placed at around 15 are much more
concentrated at one spot. This could mean that the clusters on the left represent

4.2. Izzo generator 51

the non-spammers class, which is not influenced by the drift, it would explain why
the generator is performing better at the reconstruction of those points.

Figure 4.19: Visualization of the cyclical nature of the drift.

The Figure 4.20 pictures the correlation between two distances: red - L1(ti, t0) and
purple L1(G(ti), t0) and accuracies of the accuracy of the original logistic regres-
sion model (blue) and accuracy of that same model but when the inputs are the
generated points (green). The green line stays extremely close to 1 throughout the
simulation, meaning that the created by the generator representation is perfectly
interpretable by the logistic regression and allows for accurate classification. The
blue line fluctuates to a significant degree, for the first nine iterations it stays close
to 0.5, which shows that the performance of the model has deteriorated from the
initial 100% of accuracy. What is odd, is the fact the cyclical nature of the drift
pictured on Figure 4.19 causes the accuracy to spike for 3 iterations at i = 10 and
i = 16. It can be observed that in the moments, when the accuracy of the original
LR peaks, the distance L1(ti, t0) drops to its lowest values. An explanation for that
would be that the cyclical drift caused the newly created distribution to be similar
to the starting one. As for the distances, the distance between the generated dis-
tribution L1(G(ti), t0)is always smaller than the L1(ti, t0). However, a correlation
can be observed, when the red line achieves its largest values there occurs a no-
ticeable spike on the purple curve too (it is especially visible at i = 6, 7, 8 but also
when i = 14, 19). A reasoning behind that could be, that the model is only trained
to understand one type of drift. If all of a sudden the direction of the movement
changes completely, then the generator still can provide meaningful results, but that
is mostly because it knows how the starting distribution looked like and not because
it understands the direction of the movement.

Summing up, the results achieved in this experiment still show that it is possible to
train a model, that will be able to map the points back to the starting distribution.
It has not been shown above, but the accuracies achieved by the Label Classifier
are the same as the green line on Figure 4.20, and the accuracy remains at 100%

52 4. Experiment and Results

Figure 4.20: Correlation of distance between distributions and accuracies of the
models.

for the entire duration of the simulation. So a stable, drift-resistant classifier is
provided and the mapping created by the generator also provides insight into the
direction of the movement. The results of the projection are sufficient for the original
logistic regression model to classify all instances correctly. The generator succeeds at
minimizing the distance, however, the generated distributions are still not identical
as t0.

5. Summary

An architecture, which could allow achieving both stable classification and learning
about the direction of the movement, which has been caused by model drift, has
been devised. Training of a model, which has been described in this thesis could
help mitigate the problem of dealing with the model drift. It provides an alternative
strategy to constant retraining of the deployed models. The architecture has been
evaluated by designing a series of experiments, with the usage of performative data
generators. The results show that with sufficient training time and model complexity,
the proposed architecture could provide valid results. However, as in any research,
there still is plenty of room for improvement.

5.1 Conclusions

This section aims to summarize the findings presented in Chapter 4 and to draw
conclusions from the graphs, tables and descriptions included there. The synthesis
of key results should help get a better understanding of the entire experiment.

To begin with, if the performance of the generator is taken into account. In all exper-
iments that have been performed either the PCA analysis or the analysis of boxplot
charts (that compared distributions in each iteration) have shown that the network
struggles to introduce enough variance into the newly created representation. Either
PCA clusters are not elongated enough. Or the outliers on the boxplot are omitted.
This problem can be caused by multiple factors. Those might include, feeding the
model not enough data during the training process, the training period lasting too
short, the network architectures being not complex enough, and a suboptimal choice
of hyperparameters.

Followingly, when it comes to providing stable, drift-resistant classification with the
Label classifer. In both cases, when the experiment was based on Perdomo’s data
generator, a decay in the performance of that predictor has been observed. On the
contrary, in the case of Izzo’s data generator, the performance peaked throughout
the simulation. The difference in those results could be caused by the nature of the
data generation process. In the case where the results are better a cyclical drift

54 5. Summary

occurs, in the other experiment the data is modified based on the ith (ti) and not
the starting distribution (t0. All of those facts lead to the conclusion, that definitely
in certain cases it is possible to achieve stable classification. However, the stability
depends on numerous factors such as the direction of the drift, its strength and the
way it is imposed on the environment.

Subsequently, the generator attempts to learn a mapping from a distribution, which
has been affected by the drift back to its original form. However, the problem
with this phenomenon is that the generator is a neural network, which essentially
is a black box. Meaning that it does not explain the drift in such a way that it is
understandable to humans. Moreover, in the scenario presented in this thesis, where
the architecture is trained on iterations t0 and t1, the generator should only learn one
type of drift. Assuming a scenario, where the direction of the drift changes after the
architecture is trained. Even if the results are provided by the model (what happened
in the simulations where the LR model was retrained), it is because the model has
seen the starting distribution during training and not because it understands the
drift that has occurred.

Training of the architecture described in this thesis could be computationally very
expensive. As generally, the generative networks provide better results, after being
trained for a large number of epochs and if the model architectures are complex.
Retraining a simple model could simply turn out to be less costly than devising
a rather complicated architecture, tuning it to specific circumstances. As every
experiment has shown, retraining still can be considered as the more straightforward
solution, which still proves to be effective. If the costs are a large factor in a project,
the architecture could be altered and the generator could be omitted (as the aim of
the generator is to understand and be able to reverse the drift). This way, just the
standard DANN is trained and as it has been shown after tweaking it to the right
situation, it could act as a stable classifier.

Finally, getting back to the origins of the thesis. The transfer learning methods which
have been applied to compute a new representation of the dataset did not provide
valid results, that has been described in Section 3.1.3. That leads to a conclusion,
that they should not be applied to understand or reverse the performative effects of
a drift.

To summarize the conclusions, we have demonstrated several scenarios, where the
GDAN architecture provides valid results. It can be treated as an alternative to
retraining. It comes with its limitations. The architecture is complex and requires a
larger computational cost than retraining. However, it can excel in a situation where
retraining is not feasible. For instance, because new labels arrive with delay, or no
domain expert would provide the ground truths. As for training of the architecture,
only two iterations of data are needed. The findings of this thesis could also be
simplified. Consider, a situation where no insight into the direction of the drift
is needed, then deploying only the Domain Adversarial Part of GDAN could be a
solution, providing stable classification, but less complicated than the full GDAN.

5.2. Research question answers 55

5.2 Research question answers

RQ1: A review of the generators available in the literature has been performed and
explained in detail in Section 2.1.5. The generator, which has been most widely used
is the one devised by [39]. A total of four generators have been described, alongside
the way the interaction between the environment and the model is defined.
SRQ1.1: First of all, all the mechanisms have been described, most of them utilize
the model parameters to either move the current distribution or change the base
one. Furthermore, during the experiments, the specific direction of the drift induced
on data by two generators was examined. The direction of the movement has been
visualized either by a PCA analysis or a boxplot chart.

RQ2: A few transfer learning methods have been handpicked (the motivation behind
that described in the literature review chapter) and applied. The methods, which
have been selected include, ARC-t, JDA and Domain Adversarial Neural Networks.
SRQ2.1: Unfortunately, the mappings computed with the usage of those methods
were not of any value. The results were presented in Section 3.1.3, but most methods
did not surpass the pure guess benchmark.

RQ3: Training of a stable, drift-resistant classifier is possible, however, it might be
dependent on the surrounding circumstances.
RQ3.1: An elaborate answer to this question is provided in the third paragraph of
the Section 5.1.

RQ4: A method that should allow for both stable classification and mapping the
distribution back to its original form has been devised. The proposed architecture
combines the concepts of DANNs and GANs. It was described in Section 3.2 and
later evaluated by performing a series of experiments.

5.3 Limitations

Apart from providing valid results, which allow for drawing plenty of conclusions,
there exist limitations to the method and the experiments that have been performed.
This section will elaborate on those limitations.

Synthetic data
First of all, as mentioned before collecting real-world datasets, which illustrate the
performative effects is a gruelling task. The dataset needs not only to include data
but also the model parameters, times of retraining and preferably the time when
the shift has been detected. Due to those reasons, the availability of such datasets
is very limited. That is why, for the sake of this thesis data generators have been
used. Usage of them introduces limiting factors by itself, as something created
synthetically can only attempt to mimic the real-world scenario, but will never fully
resemble the reality.

Simplifed interactions between model and environment
Another limitation is connected with the previous one. The way the interaction

56 5. Summary

between the model and the environment has been designed in the simulation is
simplified. Again the processes, which occur in everyday life can be highly non-
linear, and hardly predictable. Usage of the generators can resemble them to some
degree and definitely can show some correlations that happen. However, machine
learning models are often exposed to interaction with humans, whose behaviour
might not be logical or possible to describe with mathematical equations. Due to
that, the modelled dynamics between the model and the environment will always be
an approximation.

Limited computational power
Finally, a technical restriction occurred. The development of the architecture and
especially the training of the models is a task, that requires plenty of computational
power. All the training and evaluation have been performed on a local desktop. To
show how that limits the possibilities, an example will be provided. The trained
generator has 1,596,621 total parameters. That was the largest model, which could
have been handled by the available resources. Any other model with more param-
eters would result in crashes during training. Also, due to the size of the model,
when PCA analysis was performed points had to be subsampled to decrease the size
of the dataset. Otherwise, the available system memory would be overloaded and
the analysis would fail.

Full parameter search
The parameters of the training and setup of layers presented in earlier sections have
been selected arbitrarily, by testing and evaluating a limited amount of configura-
tions. The number of parameters allows for numerous combinations and most likely
the chosen one is suboptimal. The solution to this issue would be performing a full
parameter search, examining most of the possible scenarios.

5.4 Future Work

Due to a variety of reasons several research directions were left unexplored. There
is plenty of space for broadening the scope of this thesis. The section will attempt
to elaborate on a few of them.

Evaluation with real-world data
As mentioned before, in the limitations section, the lack of a performative dataset
is considered a setback. If possible, evaluation of the model with the usage of data
collected empirically would be beneficial and it would add even more scientific value
to the area.

Introduction of more variety into the generator
As mentioned in the conclusions, there is quite a noticeable problem when it comes
to generators replicating very diverse data points. One potential research direction
would be to explore the possible network architectures. Meaning, changing the order
of the layers, their size, and their hyperparameters. But most importantly, probably
the biggest upgrade potential could be found in trying a variety of activation func-
tions. Currently, the generator utilizes almost the simplest approach with the linear
activation function. Designing a custom equation, that would help to deal with the
problem of insufficient variety, could provide prominent results.

5.4. Future Work 57

Smoothing the training procedure
Even though a few regularization techniques were applied during this research, the
learning curves, especially in the case of the Izzo experiment, leave a lot to be desired.
Attempting a different combination of those or using a different architecture could
provide significantly better results. In the literature, there exists plenty of evidence
on how the training procedure can be bettered. Just to name a few, Wasserstein
GANs (WGAN), Boundary Equilibrium GANs (BEGAN), and dual discriminator
GANs, but the options are almost endless. Implementation of those techniques could
improve the performance of the devised architecture.

Usage of more complex models
Finally, as memory and computational power have been an issue throughout this
research, training a more complex model with similar architecture on a powerful
cluster, could also provide better results.

Explanation of the generator’s behaviour
The previous chapters have shown that even though the generator is capable of pro-
viding insightful mapping, is still a black box. This means that the transformation
it performs is just a result of the weights that have been trained. It does not provide
an explanation of how the drift occurred or in which direction it acted, which is
understandable for humans. Applying explainable AI(XAI) techniques to show how
it truly works, could provide more transparency to the process.

58 5. Summary

Bibliography

[1] (2008). Lagrange Multiplier, pages 292–294. Springer New York, New York, NY.
(cited on Page 17)

[2] Awais, M., Iqbal, M. T. B., and Bae, S. (2020). Revisiting internal covariate shift
for batch normalization. IEEE Transactions on Neural Networks and Learning
Systems, 32:5082–5092. (cited on Page 35)

[3] Aytar, Y. and Zisserman, A. (2011). Tabula rasa: Model transfer for object
category detection. In 2011 International Conference on Computer Vision, pages
2252–2259. (cited on Page 13)

[4] Badola, A., Nair, V. P., and Lal, R. (2020). An analysis of regularization methods
in deep neural networks. 2020 IEEE 17th India Council International Conference
(INDICON), pages 1–6. (cited on Page 37)

[5] Borgwardt, K. M., Gretton, A., Rasch, M. J., Kriegel, H.-P., Schölkopf, B., and
Smola, A. J. (2006). Integrating structured biological data by kernel maximum
mean discrepancy. Bioinformatics, 22(14):e49–e57. (cited on Page 16)

[6] Brown, G., Hod, S., and Kalemaj, I. (2022). Performative prediction in a stateful
world. In International Conference on Artificial Intelligence and Statistics, pages
6045–6061. PMLR. (cited on Page 8)

[7] Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., and Abbeel, P.
(2016). Infogan: Interpretable representation learning by information maximizing
generative adversarial nets. In Lee, D., Sugiyama, M., Luxburg, U., Guyon, I.,
and Garnett, R., editors, Advances in Neural Information Processing Systems,
volume 29. Curran Associates, Inc. (cited on Page 21)

[8] Credit Fusion, W. C. (2011). Give me some credit. (cited on Page 8 and 26)

[9] Creswell, A., White, T., Dumoulin, V., Arulkumaran, K., Sengupta, B., and
Bharath, A. A. (2018). Generative adversarial networks: An overview. IEEE
Signal Processing Magazine, 35(1):53–65. (cited on Page 20)

[10] Dragomiretskiy, S. (2022). Influential ml: Towards detection
of algorithmic influence drift through causal analysis. Available
athttps://studenttheses.uu.nl/handle/20.500.12932/369. (cited on Page 5)

60 Bibliography

[11] Dumoulin, V. and Visin, F. (2018). A guide to convolution arithmetic for deep
learning. (cited on Page 35)

[12] Fernando, B., Habrard, A., Sebban, M., and Tuytelaars, T. (2013). Unsuper-
vised visual domain adaptation using subspace alignment. In 2013 IEEE Inter-
national Conference on Computer Vision, pages 2960–2967. (cited on Page 12)

[13] Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., and Bouchachia, H. (2014).
A survey on concept drift adaptation. ACM Computing Surveys (CSUR), 46.
(cited on Page 5 and 6)

[14] Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette,
F., March, M., and Lempitsky, V. (2016). Domain-adversarial training of neural
networks. Journal of Machine Learning Research, 17(59):1–35. (cited on Page ix,

18, and 19)

[15] Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D.,
Ozair, S., Courville, A., and Bengio, Y. (2014). Generative adversarial networks.
(cited on Page 20, 21, and 23)

[16] Griffin, G., Holub, A., and Perona, P. (2022). Caltech 256. (cited on Page 10)

[17] Gui, J., Sun, Z., Wen, Y., Tao, D., and Ye, J. (2023). A review on generative
adversarial networks: Algorithms, theory, and applications. IEEE Transactions
on Knowledge and Data Engineering, 35(4):3313–3332. (cited on Page 21)

[18] Healy, K. (2015). The performativity of networks. European Journal of Sociol-
ogy, 56(2):175–205. (cited on Page 6)

[19] Hoi, S., Sahoo, D., Lu, J., and Zhao, P. (2018). Online learning: A comprehen-
sive survey. Neurocomputing, 459:249–289. (cited on Page 1)

[20] Hotelling, H. (1933). Analysis of a complex of statistical variables into principal
components. Journal of educational psychology, 24(6):417. (cited on Page 26)

[21] Isola, P., Zhu, J.-Y., Zhou, T., and Efros, A. A. (2018). Image-to-image trans-
lation with conditional adversarial networks. (cited on Page ix, 23, and 30)

[22] Izzo, Z., Zou, J., and Ying, L. (2022). How to learn when data gradually
reacts to your model. In International Conference on Artificial Intelligence and
Statistics, pages 3998–4035. PMLR. (cited on Page 8, 9, 26, and 47)

[23] Jagadeesan, M., Zrnic, T., and Mendler-Dünner, C. (2022). Regret minimiza-
tion with performative feedback. CoRR, abs/2202.00628. (cited on Page 8)

[24] Jiang, T. and Cheng, J. (2019). Target recognition based on cnn with leakyrelu
and prelu activation functions. 2019 International Conference on Sensing, Di-
agnostics, Prognostics, and Control (SDPC), pages 718–722. (cited on Page 37)

Bibliography 61

[25] Kulis, B., Saenko, K., and Darrell, T. (2011). What you saw is not what you
get: Domain adaptation using asymmetric kernel transforms. In CVPR 2011,
pages 1785–1792. (cited on Page 12, 14, and 17)

[26] Long, M., Wang, J., Ding, G., Sun, J., and Yu, P. S. (2013). Transfer feature
learning with joint distribution adaptation. In Proceedings of the IEEE Interna-
tional Conference on Computer Vision (ICCV). (cited on Page 11)

[27] Mendler-Dünner, C., Perdomo, J., Zrnic, T., and Hardt, M. (2020). Stochastic
optimization for performative prediction. In Larochelle, H., Ranzato, M., Hadsell,
R., Balcan, M., and Lin, H., editors, Advances in Neural Information Processing
Systems, volume 33, pages 4929–4939. Curran Associates, Inc. (cited on Page 8

and 9)

[28] Miller, J., Hsu, C., Troutman, J., Perdomo, J., Zrnic, T., Liu, L., Sun, Y.,
Schmidt, L., and Hardt, M. (2020). Whynot. (cited on Page 8)

[29] Miller, J. P., Perdomo, J. C., and Zrnic, T. (2021). Outside the echo cham-
ber: Optimizing the performative risk. In International Conference on Machine
Learning, pages 7710–7720. PMLR. (cited on Page 8)

[30] Mirza, M. and Osindero, S. (2014). Conditional generative adversarial nets.
(cited on Page 21)

[31] Motiian, S., Piccirilli, M., Adjeroh, D. A., and Doretto, G. (2017). Unified deep
supervised domain adaptation and generalization. (cited on Page 11)

[32] Muandet, K., Balduzzi, D., and Schölkopf, B. (2013). Domain generalization
via invariant feature representation. In Dasgupta, S. and McAllester, D., editors,
Proceedings of the 30th International Conference on Machine Learning, volume 28
of Proceedings of Machine Learning Research, pages 10–18, Atlanta, Georgia,
USA. PMLR. (cited on Page 13)

[33] Obla, S., Gong, X., Aloufi, A., Hu, P., and Takabi, D. (2020). Effective activa-
tion functions for homomorphic evaluation of deep neural networks. IEEE Access,
8:153098–153112. (cited on Page 35)

[34] Odena, A., Olah, C., and Shlens, J. (2017). Conditional image synthesis with
auxiliary classifier GANs. In Precup, D. and Teh, Y. W., editors, Proceedings of
the 34th International Conference on Machine Learning, volume 70 of Proceedings
of Machine Learning Research, pages 2642–2651. PMLR. (cited on Page 22 and 30)

[35] Ojha, V., Abraham, A., and Snásel, V. (2017). Metaheuristic design of feed-
forward neural networks: A review of two decades of research. Eng. Appl. Artif.
Intell., 60:97–116. (cited on Page 35)

[36] Pan, S. J., Tsang, I. W., Kwok, J. T., and Yang, Q. (2011). Domain adap-
tation via transfer component analysis. IEEE Transactions on Neural Networks,
22(2):199–210. (cited on Page 11, 12, and 13)

62 Bibliography

[37] Pan, S. J. and Yang, Q. (2010). A survey on transfer learning. IEEE Transac-
tions on Knowledge and Data Engineering, 22(10):1345–1359. (cited on Page 10

and 11)

[38] Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., and Efros, A. A. (2016).
Context encoders: Feature learning by inpainting. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 2536–2544. (cited

on Page 24)

[39] Perdomo, J., Zrnic, T., Mendler-Dünner, C., and Hardt, M. (2020). Perfor-
mative prediction. In III, H. D. and Singh, A., editors, Proceedings of the 37th
International Conference on Machine Learning, volume 119 of Proceedings of Ma-
chine Learning Research, pages 7599–7609. PMLR. (cited on Page 4, 6, 7, 8, 9, 26,

40, and 55)

[40] Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net: Convolutional net-
works for biomedical image segmentation. (cited on Page 36)

[41] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang,
Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A. C., and Fei-Fei, L. (2015).
ImageNet Large Scale Visual Recognition Challenge. International Journal of
Computer Vision (IJCV), 115(3):211–252. (cited on Page 10)

[42] Saenko, K., Kulis, B., Fritz, M., and Darrell, T. (2010). Adapting visual cat-
egory models to new domains. In Daniilidis, K., Maragos, P., and Paragios,
N., editors, Computer Vision – ECCV 2010, pages 213–226, Berlin, Heidelberg.
Springer Berlin Heidelberg. (cited on Page 12 and 14)

[43] Specht, D. (1990). Probabilistic neural networks. Neural Networks, 3:109–118.
(cited on Page 36)

[44] Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I., and Salakhutdinov,
R. (2014). Dropout: a simple way to prevent neural networks from overfitting. J.
Mach. Learn. Res., 15:1929–1958. (cited on Page 37)

[45] Von Stackelberg, H. (2010). Market structure and equilibrium. Springer Science
& Business Media. (cited on Page 6)

[46] Wang, J. and Chen, Y. (2023). Introduction to Transfer Learning: Algorithms
and Practice. Springer Nature. (cited on Page 11, 16, and 17)

[47] Wang, J., Chen, Y., Hu, L., Peng, X., and Yu, P. S. (2017). Stratified transfer
learning for cross-domain activity recognition. (cited on Page 11)

[48] Y, G., Nair, N., Satpathy, P., and Christopher, J. (2019). Covariate shift: A
review and analysis on classifiers. pages 1–6. (cited on Page 5)

[49] Zhao, H., Coston, A., Adel, T., and Gordon, G. J. (2020). Conditional learning
of fair representations. (cited on Page 11)

Bibliography 63

[50] Zhou, B., Lapedriza, A., Xiao, J., Torralba, A., and Oliva, A. (2014). Learning
deep features for scene recognition using places database. Advances in neural
information processing systems, 27. (cited on Page 10)

[51] Zhu, J.-Y., Park, T., Isola, P., and Efros, A. A. (2017). Unpaired image-to-
image translation using cycle-consistent adversarial networks. In Proceedings of
the IEEE International Conference on Computer Vision (ICCV). (cited on Page 21)

[52] Zhu, Y., Zhuang, F., Wang, J., Ke, G., Chen, J., Bian, J., Xiong, H., and He,
Q. (2021). Deep subdomain adaptation network for image classification. IEEE
Transactions on Neural Networks and Learning Systems, 32(4):1713–1722. (cited

on Page 11)

[53] Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., Xiong, H., and He, Q.
(2020). A comprehensive survey on transfer learning. (cited on Page 10)

[54] Zrnic, T., Mazumdar, E., Sastry, S., and Jordan, M. (2021). Who leads and
who follows in strategic classification? In Ranzato, M., Beygelzimer, A., Dauphin,
Y., Liang, P., and Vaughan, J. W., editors, Advances in Neural Information Pro-
cessing Systems, volume 34, pages 15257–15269. Curran Associates, Inc. (cited

on Page 6)

	Contents
	List of Figures
	List of Acronyms
	1 Introduction
	1.1 Problem statement
	1.2 Research questions
	1.3 Literature Research Protocol

	2 Background and Related Work
	2.1 Learning in non-stationary environments
	2.1.1 Types of drift and distribution shift
	2.1.2 Performativity
	2.1.3 Performative optimality and stability
	2.1.4 Methods of minimisation of the performative risk
	2.1.5 Performative data generators

	2.2 Transfer learning
	2.2.1 Domain adaptation
	2.2.2 Domain adaptation methods review
	2.2.3 Asymmetric Regularized Cross-domain transformation
	2.2.4 MMD-based transfer learning

	2.3 Domain Adversarial Neural Networks (DANN)
	2.4 Generative Adversarial Neural Networks
	2.4.1 Conditional synthesis with generative adversarial nets
	2.4.2 Pix2pix image translation

	3 Method
	3.1 Preliminary simulation design
	3.1.1 Goal of the simulation
	3.1.2 Simulation design
	3.1.3 Preliminary results and motivation for the architecture design

	3.2 Architecture design
	3.2.1 Objective
	3.2.2 Training procedure
	3.2.3 Network architectures
	3.2.3.1 Feature extractor
	3.2.3.2 Label Classifier
	3.2.3.3 Generator
	3.2.3.4 Discriminator

	4 Experiment and Results
	4.1 Perdomo generator
	4.1.1 Experiment setup
	4.1.2 Perdomo learning curves
	4.1.3 Perdomo results
	4.1.3.1 Simulation with one classifier
	4.1.3.2 Simulation with retraining

	4.2 Izzo generator
	4.2.1 Experiment setup
	4.2.2 Izzo leaning curves
	4.2.3 Izzo results

	5 Summary
	5.1 Conclusions
	5.2 Research question answers
	5.3 Limitations
	5.4 Future Work

	Bibliography

