
Applying Volumetric Sampling Methods to the

Rendering of Rain Droplets

October 10, 2024

AUTHOR FIRST SUPERVISOR
Mina Spijk Peter Vangorp

SECOND EXAMINER
Alexandru C. Telea

EXTERNAL SUPERVISOR
Jacco Bikker

Department of Information and Computing Sciences
Game and Media Technology
Utrecht University

A thesis submitted in partial fulfillment of the requirements for the
degree of Master of Science



Figure 1: Cornell box with rain inside the box. The chance to hit a raindrop
has been increased to make the result more visible.

1 Introduction

Rain is a common thematic element in media. It might be used to build tension,
such as before the Battle of Helms Deep in Peter Jackson’s The Lord Of The
Rings: The Two Towers (2002). It can also be used to evoke emotions, as seen
in Disney’s The Lion King (2019). Rain is also frequently used to add a sense
of ambience and realism, often seen in open-world games such as Nintendo’s
The Legend of Zelda: Breath of the Wild (2017) or Playground Games’ Forza
Horizon 5 (2021). While live-action movies can be recorded in real rain or
simulate rain using a sprinkler system, animated movies and games need to rely
on computer-generated rain.

Although convincing techniques exist for rendering fog, rain clouds, wet
surfaces and rain splashes, any existing methods of rendering the falling rain
itself tend to appear unrealistic. This is not surprising: rain is a complicated
visual phenomenon consisting of an incredible amount of raindrops, all falling
at high speeds. Simulating every individual raindrop in a storm is infeasible,
and existing methods tend to consider only the drops closest to the viewer.

This project aims to describe a method to render raindrops at a larger scale
by applying volumetric sampling methods. These methods are already com-
monly used to render mist and smoke effects, as well as volumes for which the

2



Figure 2: Rainy scenes from various movies and games.
Top left: Peter Jackson’s The Lord Of The Rings: The Two Towers (2002). Top
right: Disney’s The Lion King (2019). Bottom left: Nintendo’s The Legend of
Zelda: Breath of the Wild (2017). Bottom right: Playground Games’ Forza
Horizon 5 (2021).

appearance is based on procedural generation. Raindrops have such a high den-
sity and large size that they cannot be treated as a volume directly, but this
project aims to show the motion blur effect seen for drops falling at terminal
velocity does allow treating a rain streak as a volume.

2 Literature Study

Information on the visual effects of rain exists across several domains, and a
number of existing techniques are capable of rendering raindrops. Several tech-
niques also exist for the rendering of effects that occur during rain that are
separate from falling raindrops. In this section, relevant literature on these
topics is discussed.

2.1 Physical properties of rain

The physical properties of rain have been researched for a number of reasons,
including meteorological research and to research the impact of rain on crops.
In this section the focus is on understanding the physical properties of which
the effect can be observed by the human eye or a standard photo camera.

2.1.1 Velocity of raindrops

The terminal velocity of an object can be calculated by equating the gravita-
tional force to the drag forces acting upon the object. Stokes’ law describes the
drag forces acting upon spherical objects falling in some medium and can thus

3



be used to calculate the terminal velocity of rigid spheres as

U =
2

9

ρ′ − ρ

µ
ga2

where U is the terminal velocity, ρ and ρ′ the density of the sphere and the
medium respectively, µ the dynamic viscosity of the medium, g the gravitational
acceleration, and a the radius of the sphere [36, p. 589]. While it may be
logical to interpret a water drop as such a sphere, the reality is that raindrops
experience deformation while falling. This makes it so Stokes’ law is not a
perfect description of the terminal velocity for all raindrops.

The terminal velocity of water drops has been measured across multiple
publications using different methods and under different circumstances, and
a large number of these can be found in a survey paper by Serio et al. [57].
Notable is the paper by Gunn and Kinzer [22] due to its influence on future
publications. The authors measure the terminal velocities of water droplets
of various mass without disturbing the motion of the droplet itself. This paper
concludes drops with a mass of less than 0.251 micrograms obey Stokes’ law, and
drops larger than 100,000 micrograms split into smaller drops when falling long
enough. The terminal velocities of drops of sizes between these two extremes
are tabulated and ranges between 0.18 and 9.17m/s, a rather broad range.
Also useful may be the observation that the terminal velocity of a drop ranges
between approximately 1600 and 4100 times its own diameter in a single second.

Foote and du Toit [14] generalise the measurements of Gunn & Kinzer, as
well as measurements by Davies [12], to convert the terminal velocity of a drop in
”standard conditions” (as used in Gunn & Kinzer’s measurements) to velocities
appropriate for a given air density and temperature.

Later papers [13, 69, 6, 2]. derive formulas fitted to Gunn & Kinzer’s data
to calculate the terminal velocity of a drop in ”standard conditions” from the
size or mass of a drop. All of these formulas are equally suited for the purposes
of this thesis, though a preference may be expressed for the implementation of
Wobus et al. [69] due to the relative simplicity of their formulas.

Montero-Mart́ınez and Garćıa-Garćıa [42] show that raindrops can fall at
speeds higher or lower than their terminal velocity when affected by wind. This
effect is significant for drops smaller than 0.7mm in diameter. Prediction of
the strength of this effect has not been sufficiently researched to simulate this
difference without complex simulations. Given the small size of the affected
drops and the difficulty with simulating this effect, replicating this effect is
considered out of scope for this project.

It can be assumed that all raindrops falling from the sky have reached termi-
nal velocity when seen by an observer. It may be desirable to be able to render
falling water drops originating from different sources, such as water dripping
from an umbrella or tree leaves, using the same techniques. Wang and Prup-
pacher [66] show that most drops fall a distance of at least 12 meters before
reaching terminal velocity.

Starik and Werman [58] suggest that due to the high terminal velocity of rain-
drops, drops can be considered temporally independent across frames. Putting

4



frames from a rain scene in a random order or flipping the frames upside-down
is shown to have no influence on human perception of rain. It should however
be noted that the videos shown on the accompanying website use a framerate of
15 frames per second as compared to the more standard 24 frames per second
for movies or 60 frames per second for video games. It is unclear whether the
conclusion of Starik and Werman holds at higher frame rates. If the conclusion
does hold, then it is acceptable for rain rendering systems to omit the continu-
ity of raindrops across frames. In other words, raindrops could be rendered at
random positions in every frame of an animation without losing realism.

Raindrops can gain a horizontal velocity due to the presence of wind, but
little research exists on this topic outside of considerations for building construc-
tion (e.g. [10]). The horizontal velocity of particles being blown around by wind
in general is better understood and can be applied to rain. Giudice et al. [21]
use a turbulence model to simulate particles being transported in wind. These
methods are often complex and implementing them is not trivial.

2.1.2 Diameter of raindrops

The diameter of raindrops in a rainstorm varies not only between different rain-
storms, but also between different raindrops within the same rainstorm. The
distribution of raindrop sizes is commonly referred to as the Drop Size Distri-
bution, or DSD.

One of the first measurements of the DSD was performed in 1895 by Wies-
ner [67], using absorbent paper covered in dye to determine the largest size of
raindrops in tropical rain. A mathematical approximation of drop size was out
of scope for this paper.

Many similar papers measuring the DSD have been published since, us-
ing different methods, under different circumstances, and in different locations.
These papers are too numerous and not relevant enough to discuss here, but
a large number of such papers is listed in a survey paper by Serio et al. [57].
One observation to make based on this data is that rain is always composed of
a significant variety in particle sizes, such that a generalisation to model only
drops of a single size is clearly an oversimplification. An example of a measured
drop size distribution as measured by Laws and Parsons [38] can be seen in
figure 3.

The survey paper by Serio et al. [57] also lists four model types for the ap-
proximation of the DSD able to be fit to the existing measurements: a lognormal
distribution, the Weibull distribution, the Marshall and Palmer distribution,
and the Ulbrich or gamma distribution. Also mentioned is an experiment by
Jiang et al. [31] where several approximation formulas are compared to data
measured in Tokyo, Japan. The Weibull distribution gives the best fit to the
data used, closely followed by the Ulbrich distribution. Both of these distribu-
tions accurately represent a peak in the distribution that shifts to larger raindrop
sizes at higher rainfall intensity. The Marshall and Palmer distribution was only
accurate at low rainfall intensities.

A paper published by Jameson and Kostinski [29] demonstrates that the

5



Figure 3: Drop size distributions measured for different rain intensities in Wash-
ington D.C. Figure reproduced from [38].

DSD should not be interpreted or used without fully understanding the meaning
behind it. The DSD represents a sample that changes over time due to the
many interactions a drop may experience during its fall. Additionally, three-
dimensional information is lost in the DSD. This means directly using the DSD
when simulating raindrops in 3D space may not be accurate to real rain. As
an example, if small drops would generally be clustered close together, this
information is lost upon the capturing of the DSD. An alternative to the DSD
that does provide detailed 3D distributions does not appear to exist at this time,
however.

2.1.3 Shape of raindrops

Raindrops deform due to experiencing drag when falling at high velocities.
Beard and Chuang [5] study the equilibrium shape of a water drop falling in a
wind tunnel, and provide equations to approximate this shape for a drop of a
given size. Figure 4 shows the cross section of a drop for a number of drop sizes.

It is unknown whether the shape of a raindrop has any significant impact on
our perception of a drop falling at high speeds, and it may provide useful insights
on this topic to compare rendered images that do account for the deformation
of a raindrop to ones that treat all raindrops as perfect spheres.

2.1.4 Refractive index of rain

For proper scattering of light, it is important to understand the refractive index
of raindrops. While rain is not pure water (see for example Sanusi et al. [55]), it is
assumed here to be pure enough that using the refractive index of water will not
result in a significant visual difference. The refraction of light in water depends
on the wavelength of light being scattered, which when viewed under the right

6



Figure 4: Drop cross-sections for diameters 1, 2, 3, 4, 5, and 6 mm. The
dashed circles are provided as reference for circles of the same diameter. Figure
reproduced from [5].

circumstances creates rainbows. Polyanskiy [53] provide a detailed database
of the refractive indices of many materials for a large number of wavelengths,
including water.

2.2 Rain in Computer Vision

Systems relying on computer vision often need to be robust against weather
effects such as rain, or need to be able to accurately detect the presence of rain.
The visual impact of raindrops on imaging systems has therefore been studied
extensively in the field of computer vision. The contents of this section are
largely based on a survey by Tripathi and Mukhopadhyay [62]

Weather conditions are generally classified into three categories for the pur-
pose of computer vision: clear weather, steady weather such as fog and haze,
and dynamic weather such as rain and snow.

Further distinction is made between the different types of videos obscured
by the rain: the background video can be static (objects in the scene do not
move) or dynamic (one or more objects in the scene are moving). The same
distinction can be made for the camera: the camera can have a static viewpoint
or can be moving.

Garg and Nayar [16] observe that camera parameters have a strong effect on
the appearance of rain. By varying exposure time, aperture size, and distance
of the focus plane, the visibility of rain could either be enhanced or reduced.
This is less effective for heavy rain or for dynamic background video. The paper
also only utilises a static camera.

Garg and Nayar [15] and the later Garg and Nayar [18] make a comprehen-
sive analysis of the visual effects of rain on imaging systems, with the latter
publication extending the first. Discussed are many physical properties as in
section 2.1 as well as more precise effects on the camera, such as the average

7



Figure 5: Standard Worley noise (left) and a modified version of Worley noise
(right). Figure reproduced from [20].

brightness of a raindrop and the observation that raindrops will always appear
as a streak when captured using a camera. A rain detection and removal algo-
rithm is suggested based on some of these properties, namely by first detecting
high intensity fluctuations between frames and then checking whether enough
such pixels align within a frame to form a streak. Detected rain can then be
removed by assigning the pixel a value based on the average value of the same
pixel in frames without rain.

Similar methods have been developed by Zhang et al. [73], Brewer and Liu
[7], Subhani and Oakley [59], Barnum et al. [4]. Zhang et al. [73] make the
additional observation that colours are affected differently due to the refractive
indices of water. Yet in the context of rain detection, the difference in brightness
across colour channels can be treated as non-existent when compared to other
moving objects in the scene. The method utilises this property to differentiate
between raindrops and a dynamic background.

2.3 Sampling functions

Raindrops are distributed uniformly throughout the scene, as described in sec-
tion 2.1. This section looks at a number of sampling strategies to cover a domain
with random values.

Perlin noise [49, 50] provides an n-dimensional deterministic noise function;
given the same coordinates, the function will always return the same random
value. Due to its deterministic nature, Perlin noise is useful in situations where
storing all sampled values in memory is infeasible. Another property of Perlin
noise is that it is continuous: coordinates located close to one another provide
a similar value for the noise function. This makes Perlin noise useful in the
generation of terrain [1], but the continuous nature of the noise function may be
unwanted when generating discrete particles such as raindrops. Later gradient-
based noise functions such as Wavelet noise [11] retain the same properties.

Worley noise [70] similarly provides a continuous n-dimensional determin-
istic noise function by using the distance to nearby random points distributed
on a grid. The pattern generated by Worley noise looks little like rain, but
modifications exist that give a closer resemblance to rain (see figure 5) and this
has been used to generate rain ripples on the surface of water [20].

8



The sampling of points on a grid as used by Worley noise is also known
as stratified jitter or stratified sampling, and cannot be traced back to any one
source. Stratified jitter can be generated by subdividing the sampling space into
equally spaced grid cells, and generating a random position or multiple random
positions within each cell. This method appears well-suited to the uniform
distribution of rain, but minimum distance between samples is not guaranteed
without information about nearby cells.

Poisson disk sampling and its three-dimensional equivalent, Poisson sphere
sampling, distributes sample points randomly with a minimum distance be-
tween points. A major downside of Poisson sampling is the memory cost: most
methods (e.g. [8, 72]) require keeping a data structure of previously generated
samples. At least one sampling strategy exists such that samples can be gen-
erated without tracking all previous samples [47], using a similar approach to
stratified jitter but using a grid of polyominoes instead of squares. This method
is however restricted to two-dimensional sampling.

2.4 Existing methods for rendering rain

Rendering rain is not a new topic. Several methods to render falling raindrops
exist with different objectives.

One family of methods is focused on generating a convincing but not neces-
sarily realistic rain effect at a real-time framerate. This behaviour is suitable for
video games, where the user may be more concerned with the responsiveness of
the game than the overall realism. Wang et al. [63] use a particle system, where
each particle represents a random but predefined rain streak. Wang et al. [64]
use a similar method but takes into account more physical properties of rain,
such as the DSD and the difference in velocity of raindrops with different sizes.
Mizukami et al. [41] similarly use particle systems, but show how non-uniform
wind can be represented. Rousseau et al. [54] use a particle system where the
surroundings of a particle are mapped onto the particle as a texture, simulating
refraction. Across all of these particle-based methods, raindrops are present
only in a small range around the observer. Tatarchuk [60] render a number of
two-dimensional rain textures in the world facing the camera, blur part of the
scene to simulate smaller and distant raindrops, and simulate water dripping off
of objects using a particle system.

A number of other methods instead focus on adding rain to existing image
or video material. Starik and Werman [58] generate a two-dimensional mask of
raindrop positions for each frame. Pixels affected by the mask are then blurred
and the pixel is brightened by an amount dependent on the original intensity,
such that a dark pixel is brightened more than an already bright pixel. This is
a simplification of the complex light scattering of a raindrop, which generally
causes a pixel to become brighter than the background by scattering light from
the sky towards the camera. The model also assumes temporal independence of
rain across multiple frames, as discussed in section 2.1.1. In other words, the rain
mask for each frame is generated without using information about the positions
of raindrops in the frame before it. Jaeger [28] utilise a similar two-dimensional

9



Figure 6: Rain streaks added to an image of a traffic light. Figure reproduced
from [17].

particle system but darken the rest of the scene in a more controlled manner.
Additionally, this method adds fog based on a depth map provided with the
scene. This allows simulating the effect of raindrops at a larger distance from
the viewer. Garg and Nayar [17] use a user-provided depth map to occlude rain
streaks, and take into account illumination from light sources in the scene.

Some methods (e.g. [23]) focus on simulating rain as it appears in sensor
data, such as seen in self-driving cars. This kind of rain is often sufficiently
realistic to test the robustness of computer vision systems, but does not neces-
sarily appear convincing to the human eye. Figure 8 shows an example of rain
generated using such methods.

2.5 Additional effects during rainy weather

Raindrops alone are only a small part of the experience of a rainy day. To help
create a convincing image, it may be useful to include a number of additional
features in a rain rendering system. This section discusses a number of possible
effects that can be employed to further increase the realism of a rainy scene.
These techniques are not further discussed or required for the method described
in this project and are provided solely to aid future implementations of rendering
comprehensive rain scenes, but a small number of techniques are demonstrated
on the Bistro scene in figure 15 and used in the final renders.

2.5.1 Wet materials

The wet appearance of streets is a major visual indicator of rain. Jensen et al.
[30] describe an appearance model for wet materials based on both the water
inside the rendered material and the thin surface layer of water on top of it. A
two-layer surface reflection model is used for the thin surface layer of water, and
a phase function model is introduced for materials with subsurface scattering.

10



Figure 7: Different kinds of rain added over an original image (top left). Figure
reproduced from [28].

Figure 8: Camera sensor data for car sensors. While (c) introduces similar
features to the data as (b), it does not appear similar to the human eye. Figure
reproduced from [23].

11



Figure 9: A rendered image of wet asphalt. The entirety of the road is more
reflective than usual, and certain parts of the road form ”puddles” that are even
more reflective. Figure reproduced from [43].

Both approaches are commonly supported by existing Monte Carlo ray tracing
software.

A number of papers focus specifically on the rendering of wet asphalt. Naka-
mae et al. [43] build an appearance model for asphalt where a wet road uses a
specular reflection component as well as a two-layer reflection model adapted to
the local geometry, such that visible puddles form. An example of this method
is shown in figure 9.

Bajo et al. [3] simulate the absorption, diffusion, and evaporation of water
inside absorbent materials to determine the humidity of the surface, and present
a number of ways to use this information to change the appearance of the
material.

Wang et al. [65] model water drops on the surface of a material using a
method inspired by fluid simulation. This allows for the rendering of small
drops that stay behind on surfaces such as leaves or umbrellas, and the method
is temporally consistent such that it can be animated for drops landing on a
material.

2.5.2 Splashes and ripples

When looking at rain, water splashes on hard surfaces and ripples in puddles or
bodies of water are a major visual clue for rain.

Garg et al. [19] record a large number of splash events under different cir-
cumstances and on different materials. Based on these recordings, a probability
distribution is suggested for splash parameters, which in turn are used to gen-
erate particles in a particle system. An example of this method can be seen in
figure 11. Splashes are measured on a limited number of surfaces, but linear
interpolation between different materials is possible or novel materials can be
introduced by estimating the parameters.

12



Figure 10: Flattened water drop resting on the surface of a leaf. Figure repro-
duced from [65].

Figure 11: Material-based splashing rendered in a backyard scene with different
materials. (a) shows the original image and selected regions. (b) shows frames
of the rendered animation with splashes. (c-f) show the image regions in (a).
Figure reproduced from [19].

13



Figure 12: Rain ripples generated using Worley noise rendered using Unreal
Engine 4. Figure reproduced from [20].

Figure 13: Photo of rain with out-of-focus raindrops on the lens of the camera.
Photo by PINKE [52].

Gawron and Boryczka [20] demonstrate a technique for generating rain rip-
ples on a surface of water by using modified Worley noise to change the normal
map of the water surface. An example is shown in figure 12.

2.5.3 Water droplets on cameras

When capturing a photo using a camera in the rain, it is possible for raindrops
to hit the camera directly and distort the camera’s view. An example of this
effect can be seen in figure 13. Although no publications appear to focus on the
effect of water on a lens, research on the effect of water on a car’s windscreen is
available for driving simulators and for testing computer vision systems.

Nakata [44] model each water drop on the windshield as a particle, such that
physical simulation of the drops is possible. Small drops can then be rendered
as a normal map on the windscreen while larger drops are rendered as pseudo-
hemispheres. An example of this method is shown in figure 14.

In comparison, Yang et al. [71] render a distortion model separately, which
is then used to distort the image of the scene appropriately.

14



Figure 14: Rain rendered on the windshield of a car. Figure reproduced from
[44].

2.6 Methods for rendering volumes

Similar to clouds and other volumes, rain consists of a large number of small
particles. For certain weather conditions such as fog, a volumetric approach is
already commonly used (e.g. [24]), and is directly applicable to the smallest
of raindrops or rain at a distance. More specifically, raindrops that are small
enough to occupy less than a single pixel in the resulting image and that are
spaced less than a pixel apart from one another could be treated as a standard
volume. Interpreting larger raindrops as a volume is not as trivial due to a
raindrop being a solid object, but may be possible when representing a rain
streak with motion blur. In this section a number of rendering techniques for
non-homogeneous volumes are discussed. A larger number of techniques are
discussed more extensively in the survey paper by Novák et al. [45].

A comprehensive equation of light reaching the camera, including light scat-
tered and absorption by participating media, was published by Kajiya [33] and
Immel et al. [27] simultaneously. These formulas are largely theoretical descrip-
tion of light transport and the rendered images shown in these publications only
consider a small part of the full rendering equation, but these descriptions of
light transport provide a foundation for later volumetric rendering techniques.

The technique of ray marching has been applied to the rendering of proce-
durally generated objects and volumes [48] and works by tracing along a ray in
regular incremental steps until a scattering event is encountered or the ray is
absorbed. Although the method works well, it is biased in that small features
may be missed due to the fixed ray step size. The step size parameter in the
method therefore provides a trade-off between the accurate rendering of small
features and the speed of the algorithm.

Decomposition tracking [34] allows for faster ray tracing in volumes with a
minimum density by decomposing the heterogeneous volume into a homogeneous
volume for the minimum density and a sparser residual heterogeneous volume.
In rain rendering, this technique could be used when some amount of the rain
consists of very small drops that form a sort of mist, or for rain at a distance
such that only the largest of drops need to be rendered using a heterogeneous
volume.

15



(a) No modifications (b) Application of a wet material over the
street surface. The wet street is simulated
by increasing the specular component of
the materials as well as using a scattering
layer over the material.

(c) A single stationary raindrop at small
distance to the camera

(d) Using an overcast skydome instead of
a sunny one.

(e) Approximately 11K raindrops dis-
tributed using Poisson spheres falling at
terminal velocity in a small range around
the viewer. Size distribution is uniformly
random between 0.039mm and 2.88mm.

(f) Zoomed-in portion of (f). Three visible
streaks have been highlighted.

Figure 15: Bistro scene under various circumstances. (a-d) rendered at 4096
samples per pixel, (e) rendered at 2048 samples per pixel.

16



A recent advance in the rendering of participating media is the null-scattering
path integral formulation of light transport by Miller et al. [40]. Not only is this
method unbiased, the method also has a known PDF and thus techniques such
as Hero Wavelength Sampling [68] can be utilised to reduce noise. Like ray
marching, the method takes steps through the volume to check for scattering or
absorption events, but the step size is determined randomly. This random step
size is influenced by the global maximum density of the volume.

An important distinction between volumetric rendering algorithms is the dif-
ference between isotropic and anisotropic volume rendering techniques. Novák
et al. [45] describe a volume as isotropic when the chance for scattering or
absorbance of light is independent of the direction the light is travelling in,
and anisotropic otherwise. While generalising volumetric rendering methods to
anisotropic volumes is possible, this remains an open challenge for some methods
[45] and is unimplemented in many existing applications.

It has been shown by Castillo et al. [9] that volume rendering techniques
can be applied to the rendering of fabric appearance, as fabric consists of a
large number of small fibers. This can be seen as proof that volume rendering
techniques can be applied to a large number of materials, so long as a sensible
description can be found to interpret the material as a volume.

The book ”GPU Gems: Programming Techniques, Tips and Tricks for Real-
Time Graphics” [26] contains a chapter on volume visualisation on the GPU.
Methods described in this book use proxy geometry, slices of transparent geom-
etry that simulate the effect of a volume, and the focus is on techniques that
can be implemented into rasterisation rendering algorithms. Proxy geometry
can be used in much the same way for path tracing algorithms that results in
a very different approach to rendering volumes than the previously described
methods. This does not appear to be a common approach for path tracing and
little research has been devoted to it.

3 Research question

This project aims to answer the following question: How can raindrops falling at
terminal velocity, which scatter light in a three-dimensional scene, seen from a
stationary camera with a non-zero integration time, be rendered using a Monte
Carlo path tracing algorithm to produce a photo-realistic image by using or
modifying existing techniques dedicated to the rendering of participating media?

To aid in answering this question, it will be useful or even necessary to
answer the following sub-questions:

• What does a ground-truth approach to the rendering of raindrops look
like, without concern for speed or noise?

• Is the visual impact of two raindrops colliding without merging significant
and frequent enough that this should be accounted for when rendering
raindrops?

17



• What sampling strategy is most suited for the procedural generation of
raindrops?

• Is it viable to generate rain as a volume on the fly, such that any 3D
coordinate can be sampled for the presence or probability that a raindrop
overlaps this coordinate at a specific point in time without storing a full
description of the volume in memory?

• If it is viable to generate rain as a volume on the fly, is this preferable over
using a motion blur approach in terms of performance, noise, and memory
usage?

• How does treating raindrops with motion blur as a volume affect the phys-
ical correctness of the image?

4 Distributing raindrops

For the purpose of this project, raindrops can be assumed to be uniformly dis-
tributed in three-dimensional space. In the case of the ground truth algorithm,
raindrop positions are calculated before ray tracing commences. This allows the
usage of both procedural and non-procedural sampling strategies. The volumet-
ric sampling algorithm will require procedural sampling strategies. The goal is
to achieve a uniform distribution of raindrops throughout the scene, such that
on average each cubic meter contains around 1000 raindrops (matching the DSD
measured by Jiang et al. [31]).

Poisson sphere sampling gives possibly the lowest discrepancy in the spread
of raindrops due to the guaranteed minimum distance between drops. This
method can be used to generate raindrops by first filling the sampling domain
with Poisson spheres of a size slightly larger than the largest raindrop that
could appear, and then randomly removing samples until the desired number of
raindrops is reached. The low discrepancy comes at the cost of memory, making
the method very costly to use for large scenes to the point that it is impractical
even for a precomputed method. This can be demonstrated with the method by
Bridson [8] for generating raindrops in O(N) time. The focus of this calculation
is purely on the memory usage of the grid itself, as the memory cost for the
samples themselves will be present for any precomputed method. For three-
dimensional samples, this method uses a three-dimensional grid with grid size
r/
√

3. Using a maximum drop size of r = 0.05m and 4 bytes of memory per grid

cell, filling a cube with edges of length x uses 4 ∗ (
x

r/
√

3
)3 = 4 ∗ (x3 ∗ 3

√
3)/r3 =

96000
√

3 ∗ x3 bytes of memory. Allowing the grid to use 8GB of memory for
generation purposes, this means an area of just under 37x37x37 meters can be
filled with raindrops. This is sufficient for scenes with limited visibility such
as the Amazon Bistro scene [39], but scenes with fewer obstructions can easily
have visible distances larger than 40 meters and memory usage experiences cubic
growth with respect to the area to be filled.

18



Stratified jitter allows faster and procedural generation, in exchange for a
slightly worse distribution. Every coordinate in the scene is assigned to a grid
cell. Whether a cell contains a raindrop, as well as the position and size of the
drop within the cell, is then determined by a random number generator that
uses the coordinates of the grid cell as a seed. A hashing function designed
for generating random numbers is ideal for this purpose. In pseudocode, this
sampling strategy can be described as in algorithm 1, where HASH is a function
that takes any number of arguments and returns a floating-point value between
0 and 1

To ensure drops never overlap with neighbouring cells in the grid, stratified
jitter as described in algorithm 1 will not generate any drops along the edges
of the grid. This might cause visible grid lines to the viewer. A variation of
stratified jitter would allow this overlap, at the cost of checking more grid cells
when sampling a coordinate for the presence of a raindrop. This approach is
shown in algorithm 2.

When allowing raindrops to overlap with neighbouring grid cells there is
also a chance that two raindrops overlap at their initial positions. This can be
prevented by checking the distance to raindrops in neighbouring cells on fixed
sides, and cancelling the generation of a drop if it would overlap.

Table 1 is a comparison of the three variants of stratified jitter in speed. For
the precomputation test, a loop was done over each grid cell to generate a list of
each raindrop in a 10-meter cube. This kind of precomputation is required for
the ground truth algorithm. For the sample test, random positions within the
same cube were sampled for the presence of a drop, resembling the sampling
done by the volumetric sampling algorithm. Drop sizes are as described in
section 5 for a rain rate of 50mm/h and the grid size was set to 1 centimeter.
This experiment was performed single-threaded with an AMD Ryzen 7 5800H
CPU and 32GB of RAM.

The difference in speed between the methods can be explained by the steps
needed to calculate them. Stratified jitter is significantly faster in sampling than
the two variants with overlap between grid cells because it only ever needs to
check a single cell for the presence of a drop, whereas the other methods need
to check the surrounding cells as well. This is not necessary for precomputa-
tion and the difference there is thus smaller; in fact, stratified jitter is slower
than the variant with overlap between the cells, because the calculation for a
position within the cell is more costly than the calculation that ignores the cell
boundaries. Checking whether a drop overlaps with other drops for the safe
overlapping variant only needs to be done when a drop is present in a cell.
This can explain why it is not significantly slower when sampling: only a small
number of samples will actually find a drop.

The stratified jitter method with safe overlapping discarded an average of
3 drops across different seeds (out of the total 1M drops). As it only prevents
drops from colliding in the initial generation and drops might still collide when
moving, the extra effort to check for collisions is only rarely worth it.

Figure 16 shows a visual comparison between stratified jitter with and with-
out overlap, rendered using the volumetric sampling algorithm that will be

19



Algorithm 1 Stratified jitter for grid size 1 cm. All distance units in cm.

function GetCell(x,y,z)
return floor(x + 0.5), floor(y + 0.5), floor(z + 0.5)

end function
function HasDrop(cx, cy, cz, chance, seed)

random← HASH(cx, cy, cz, seed, IDhasdrop)
return random > chance

end function
function DropRadius(cx, cy, cz, seed)

random← HASH(cx, cy, cz, seed, IDradius)
return . . . ▷ Described in section 5

end function
function DropPosition(xc, yc, zc, radius, seed)

max shift← 0.5− radius
xd ← max shift ∗ (HASH(xc, yc, zc, seed, IDx)) ∗ 2− 1
yd ← max shift ∗ (HASH(xc, yc, zc, seed, IDy)) ∗ 2− 1
zd ← max shift ∗ (HASH(xc, yc, zc, seed, IDz)) ∗ 2− 1
return xd, yd, zd

end function
function Sample(x, y, z, seed)

xc, yc, zc ← GetCell(x, y, z)
if HasDrop(xc, yc, zc, 0.001, seed) then

radius← DropRadius(xc, yc, zc, seed)
xd, yd, zd ← DropPosition((xc, yc, zc, radius, seed)
return xd, yd, zd, radius

end if
end function
function Precompute(xmin, xmax, ymin, ymax, zmin, zmax, seed)

for x = xmin, . . . , xmax do
for y = ymin, . . . , ymax do

for z = zmin, . . . , zmax do
xc, yc, zc ← GetCell(x, y, z)
if HasDrop(xc, yc, zc, 0.001, seed) then

radius← DropRadius(xc, yc, zc, seed)
xd, yd, zd ← DropPosition(xc, yc, zc, radius, seed)
output xd, yd, zd, radius

end if
end for

end for
end for

end function

20



Algorithm 2 Overlapping stratified jitter for grid size 1 cm. All distance
units in cm. The functions GetCell, HasDrop DropRadius, and Precompute are
identical to those described in algorithm 1

function DropPosition(xc, yc, zc, radius, seed)
xd ← cx + radius + HASH(xc, yc, zc, seed, IDx)− 0.5
yd ← cx + radius + HASH(xc, yc, zc, seed, IDy)− 0.5
zd ← cx + radius + HASH(xc, yc, zc, seed, IDz)− 0.5
return xd, yd, zd

end function
function Sample(x, y, z, seed)

xc, yc, zc ← GetCell(x, y, z)
for x = xc − 1, . . . , xc do

for y = yc − 1, . . . , yc do
for z = zc − 1, . . . , zc do

if HasDrop(xc, yc, zc, 0.001, seed) then
radius← DropRadius(xc, yc, zc, seed)
xd, yd, zd ← DropPosition((xc, yc, zc, radius, seed)
output xd, yd, zd, radius

end if
end for

end for
end for

end function

Method Time precomputation Time 100M samples
Stratified jitter 18.8s 5.6s
With overlap 18.3s 14.6s

With safe overlap 19.8s 14.7s

Table 1: Speed comparison of stratified jitter, stratified jitter with overlap, and
stratified jitter with safe overlap

21



(a) Drops are placed randomly within
the confines of the grid cell they are
generated in.

(b) The origins of drops are placed
randomly within the confines of the
grid cell, but the drops themselves
may overlap with neighbouring grid
cells.

Figure 16: Comparison between stratified jitter without (a) and with (b) overlap
between the grid cells, rendered using the method described in section 9. The
density of the medium has been increased to make the streaks clearer to see.

discussed in section 9. Notice how the visual difference is minimal, and ”grid
lines” of empty space between the drops caused by the lack of overlap between
the cells are not directly visible in this scene. Choosing to use stratified jitter
without overlap when sampling randomly is thus a good option for better per-
formance. Further comparisons between the two methods are made in section
10.

5 Size of raindrops

For each raindrop, a size should randomly be chosen with size probabilities
corresponding to the drop size distribution or DSD. As discussed in 2.1.2 a
number of approximation formulas exist for the DSD. Given that the Weibull
distribution is both accurate and easy to randomly sample from, it is a good
fit. The rest of this section will describe the DSD as a Weibull distribution and
how this distribution is sampled from.

Kızılersü et al. [35] describe the Weibull distribution as a function that tells
us how likely something is given a chance of failure over time. The Weibull
distribution can be used to describe the distribution of raindrop sizes, which
grow due to collisions until a ”failure” such as turbulence breaks them up into
smaller drops again [37, 57]. The Weibull distribution is described by two pa-
rameters: a shape parameter α that determines the shape of the distribution
and a scale parameter β that stretches the distribution across time, such that

22



W (x) =
α

β
(
x

β
)α−1 ∗ e−(x/β)α describes the probability of a raindrop having

radius x. Sekine and Lind [56] fit these parameters as α = 0.95 ∗ R0.14 and
β = 0.26 ∗R0.44 where R is the rain intensity in millimeter per hour, with 1000
drops per cubic meter.

Johnson et al. [32] show that the Weibull distribution can be transformed to
easily generate random samples on the distribution from a uniformly generated
number as

X(U) = β(−ln(U))1/α

where U is a random number in the range (0, 1] and X is a random sample
distributed according to the Weibull distribution.

It is thus possible to sample the Weibull DSD by calculating the shape and
scale parameters for the intensity of the simulated rain, generating a uniformly
random number in the range (0, 1], and using the result of formula 5 as the
radius of the drop. The shape and scale parameters of the distribution only
have to be calculated once for a given rain intensity.

It is theoretically possible for a drop to be assigned an arbitrarily large radius
when sampling using the Weibull distribution, albeit increasingly unlikely. To
prevent this causing issues during rendering, an upper bound rmax on the radius
is set and drops larger than this radius are instead assigned the radius rmax. For
comparison, Gunn and Kinzer [22] find that drops with a radius larger than 2.88
millimeters are unstable and tend to break up into smaller drops, and Sekine
and Lind [56] mention that drops with a radius larger than 2.5 millimeters are
quite rare. The choice for a larger radius was made to represent the existence of
larger drops that have collided recently and are not yet broken up into smaller
drops. Additionally, a drop with a radius of 5 millimeters fits nicely in a single
grid cell with a grid size of 1 centimeter.

6 Interpretation of density

In traditional volumetric rendering techniques, density is typically multiplied
with the cross-sectional area for absorbing and scattering particles (typically
constant across the volume), resulting in an absorption and scattering coefficient
representing the probability a ray of light gets absorbed or scattered per unit
length travelled throughout the volume [45]. When the density is spatially
varying, it can be approximated by taking local samples. This allows rain to be
rendered using existing volumetric rendering techniques by reinterpreting the
presence of raindrops as density for such a local sample. More formally, given
sample position s and time 0 ≤ t ≤ 1 where t = 0 is the time at which the
camera’s shutter opens and t = 1 the time at which the shutter closes, what is
the expected number of raindrop collisions ρ along a ray segment r of length l
through s at a random time t?

Let D be the collection of all raindrops that might possibly pass through s.
Every drop d in D has a radius r and a center position ct moving in a straight
line dependent on t. A probability pd can be calculated from this to express the

23



chance d overlaps with s, as well as ρd for the expected number of interactions
between d and r. pd and ρd are calculated in appendix A.

It is clear that if D is empty, ρ is zero. When D contains at least one drop,
ρ =

∑
d∈D ρd.

As visible from the equation given for ρd in appendix A, ρd is dependent
on the direction of the ray. This makes intuitive sense as well: a ray of light
passing through some point in a drop’s path and going in the same direction as
a drop is guaranteed to hit the drop, while a ray through the same point but
oriented directly perpendicular to the drop’s movement direction only hits it at
very specific times. This creates an anisotropic volume when using ρd, and as
discussed in section 2.6 not all volumetric rendering methods and importance
sampling methods support this.

Instead, ρd can be approximated for any ray through a point s using pd. Let
the approximation be denoted by ρ̂d. To make this generalisation, first move the
origin of the ray o to s. As s is a point on the ray, shifting the origin like this has
no effect on the final image. The generalisation of the duration a drop intersects
with a ray has already been described as pd: this can be observed by taking
r⃗ = (0, 0, 0), essentially averaging over every possible direction a ray could have.

In that case, ρ̂d =
pd

amax − amin
. Generalising the length of the ray segment that

intersects with the drop is more difficult. One option is to use ρ̂d =
pd
r

, which

gives good results but is not entirely accurate. Conceptually, it makes sense to
use the radius: the length a ray can stay within a drop logically depends on the
size of said drop. However, this approximation underestimates the length of the
ray segment for rays directly perpendicular to the movement direction of the
drop: in that case amax−amin = r when the ray also passes through any point
ct and amax − amin > r otherwise. Meanwhile, it overestimates the length of
the ray segment parallel to the movement direction of the drop, in which case

amax − amin ≥ my. Nevertheless, ρ̂d =
pd
r

gives a good enough approximation

to be indistinguishable from the real probability of scattering when used for the
volumetric sampling algorithm.

6.1 Upper bound for density

A number of volumetric rendering techniques, such as null scattering [40], re-
quire an upper bound to the absorption and scattering coefficients. With a
constant cross section, this means the maximum density for the volume should
be decided. A closer match to the true maximum density allows taking fewer
samples and thus higher rendering speeds, but if the maximum density is too
low then bias is introduced. As such the upper bound should match the largest
value ρ̂ as closely as possible, which is the maximum value of ρ̂d multiplied
by the maximum number of drops passing through a single point. The upper
bound for ρ̂d is (2 ∗ r/my)/r = 2/my. my is dependent on the size of drops and
grows larger with larger drops, thus the upper bound for ρ̂d is determined by
the smallest possible drop (see figure 17), expressed as ρ̂smallest. The number

24



Figure 17: The inverse of the terminal velocity corresponding to drop radius.
The maximum value ρ̂d for a drop is proportional to the inverse of its terminal
velocity, and thus largest for smaller drops.

of drops that might pass through a single point is equal to the number of grid
cells checked, but is practically much lower: it is incredibly unlikely for multiple
small drops to pass through the same point. An upper bound of 2 ∗ ρ̂smallest is
sufficient in nearly all situations.

With the upper bound dependent on the smallest drops and drops being
potentially infinitely small, a problem arises: what should be the practical upper
bound? The choice is made to set a minimum radius for drops rmin in addition
to the existing upper bound on the radius described in section 5. Drops below
this size are not rendered. Discarding the smallest drops has minimal impact
due to them being barely visible in the first place. An alternative for visualising
these anyway will be discussed in section 6.2.

6.2 Lower bound for density

The smallest of raindrops are nearly invisible individually. Instead, drops smaller
than rmin can be simulated as a homogeneous fog (imagine the mist visible dur-
ing a light drizzle of rain). This fog should be assigned a constant density equal
to the chance of a ray hitting any of the discarded drops.

The expected number of raindrop interactions with drops of radius x along
a ray is equal to 1000 ∗W (x) ∗ π ∗ x2 per meter. This value equals the number
of raindrops per cubic meter multiplied by the visible area of each drop. Using
the cumulative distribution function (CDF) of the Weibull distribution allows
a linear estimation of the constant density of the discarded drops. The chance
the radius of a drop is less than or equal to a certain radius x as

CDF (x) = 1− e−(x/β)α

Expressing x(i) = i∗rmin/n, the density required for the homogeneous medium

25



can be estimated in n steps as

n∑
i=0

(CDF (x(i))− CDF (x(i− 1))) ∗ 1000 ∗W (x(i)) ∗ π ∗ x(i)2

This value is constant for a given value R and can thus be precomputed before
rendering.

7 Interpretation of phase function

When a ray scatters as determined by the null-scattering algorithm, the direc-
tion is chosen by a phase function that describes the likelihood of choosing a
direction based on the original direction of the ray. For raindrops, this direction
would depend on the angle light makes with the surface of the drop, which in
turn depends on the position of the drop.

One way to do this is to create a physically accurate model of the scatter-
ing that happens inside of a real raindrop. A random position for a raindrop
can be generated by sampling a uniformly random value for t within the limits
calculated in equation A.2. The ray can then be intersected with the sphere
representing the raindrop as usual in path tracing, allowing fully accurate scat-
tering, reflection, and absorbance. This can either be done to determine the
new direction of travel for the ray (in which case sampling the medium is only
done to check for collisions) or used as a model for the phase function (in which
case the direction of the exiting ray is a sample of the phase function).

When intersecting with the discarded part of the volume simulated through
the homogeneous medium, an additional step is required for this physical model
as there is no predetermined size or position for the drop that got hit. A
radius for the drop can be chosen by first calculating the uniform number that
would generate a drop of size rmin by solving β(−ln(Umin))1/α = rmin and then
sampling the Weibull distribution (equation 5) with an input uniformly random
between 0 and Umin. Umin only has to be calculated once for a constant rain rate
and rmin. After determining the size as rsimulated, a position for the simulated
drop should randomly be chosen within a distance of rsimulated from the sample
position. At that point scattering within the drop can be modelled the same as
described previously.

A major problem when using the physical model as a phase function is the
unknown PDF: although taking a sample is relatively easy, the probability of
said sample is hard to determine due to the many possible ways light can be
reflected within the drop, the duration the ray intersects with the drop, and
the presence of discarded raindrops. Without an accurate PDF it is nearly
impossible to do any kind of importance sampling, which in turn results in a
noisy image. Reverse engineering the PDF for this model phase function is out
of scope for this project, and this phase function is therefore not used for the
volumetric sampling method described in section 9.

Replacing the physically-accurate scattering model described above with the
widely-used Henyey-Greenstein phase function [25] still gives acceptable results.

26



The phase function parameter was set experimentally, using images rendered
with the ground truth algorithm as a goal. The value g = 0.6 was found to be a
good match (see also figures 18 and 19). This value can intuitively be reasoned
to be a good match too: raindrops scatter light forward from most angles, but
it is not rare for light to be scattered at a sharp angle when hitting the side of a
drop. Reflection also occurs, but is extremely unlikely. This suggests a positive
and relatively large g-value.

A major advantage of using the Henyey-Greenstein phase function is its
common usage: most rendering software already have this phase function im-
plemented for volume rendering. Another advantage is the known PDF of the
function and thus allowing importance sampling. A major disadvantage is the
physical accuracy: the Henyey-Greenstein phase function is not accurate to
the true refraction and reflection inside raindrops, preventing the formation of
physical phenomena such as rainbows.

8 Ground truth algorithm

The ground truth algorithm is built on top of the PBRT software [51] by gen-
erating a scene with raindrops. The requirements for this implementation are
support for motion blur and dielectric materials with wavelength-dependent re-
fractive indices and absorbance. The implementation is run before rendering
starts and can be a separate program to generate a scene.

Given a set of bounds for the area to fill with raindrops and the shutter time
of the camera, the ground truth algorithm loops over every grid cell within the
bounds. Whether this cell contains a raindrop, and if so at what position and of
what size, is determined using one of the stratified jitter methods described in
section 4. The terminal velocity for the raindrop is then calculated according to
the formula by Wobus et al. [69] and multiplied by the shutter time to determine
the total distance the drop moves. A sphere is inserted into the scene with
the appropriate radius, moving from the initial position to a position that is
the correct distance down. The sphere is assigned a material matching the
parameters found by Polyanskiy [53].

Once the algorithm has passed all grid cells and raindrops have been inserted
in the correct locations, rendering can commence as usual.

8.1 Effect of colliding drops

Due to the difference in velocities for drops of different sizes, it is possible for two
drops to collide no matter which spatial distribution is used. It can be assumed
that a collision between two raindrops has a low enough visual impact in real
life that properly simulating raindrop collisions can be skipped for computer
renders: collision between raindrops was first observed by Testik and Rahman
[61] and that required the use of a high-speed optical disdrometer.

Nevertheless, improperly handling collisions might lead to artifacts in the
final render: most rendering algorithms do not distinguish between entering a

27



(a) Ground truth (8192 spp) (b) g = 0.3 (2048 spp)

(c) g = 0.6 (2048 spp) (d) g = 0.9 (2048 spp)

Figure 18: Zoomed-in comparison of rain streaks with a varying Henyey-
Greenstein parameter value. The streaks for g = 0.3 are slightly brighter than
the ground truth, while the streaks in g = 0.9 are darker. 19 shows vertical
slices from each of these images for a closer comparison.

28



Figure 19: Vertical slices from rain streaks with a varying Henyey-Greenstein
parameter value. From left to right: ground truth render, g = 0.9, g = 0.6,
g = 0.3. The streaks for g = 0.3 are slightly brighter than the ground truth,
while the streaks in g = 0.9 are darker.

29



(a) Two drops overlap-
ping, merged into a sin-
gle shape.

(b) Two drops overlap-
ping but not merged.
This introduces the
possibility for render-
ing artifacts, but none
are visible.

(c) The difference be-
tween the two ren-
ders, consisting of al-
most pure noise and
displaying no artifacts.

Figure 20: Comparison between overlapping drops when merged into a single
shape or kept as separate objects, rendered at 4096 spp. No significant difference
is visible between the two renders.

second material and exiting the first, thus overlapping geometry will be treated
as an air bubble. Using the size and distribution described in the previous
two sections, it is found that (on average) no more than five in a million drops
collide at a time. Figure 20 additionally shows a comparison between a render
of two stationary raindrops merged into a single shape (such that overlapping
geometry is removed) and a render of two stationary raindrops overlapping
without merging. The two renders are similar enough that the visual impact on
the ground truth render can safely be assumed to be negligible too.

9 Volumetric sampling algorithm

The algorithm using a simulated volume is built on top of the PBRT software
[51] as well. The requirement for this implementation is that the software sup-
ports heterogeneous isotropic volumes. The core functionality that needs to
be implemented for this algorithm is the method for acquiring a local density
sample of the volume. This type of sampling is common for many volumetric
rendering techniques, such as ray marching or null scattering. While the imple-
mentation described here is specifically implemented with null scattering, other
methods will follow roughly the same approach.

Given a position p and a seed s, the position’s cell is determined using one of
the methods described in section 4. If the method for spreading raindrops does
not allow overlap between cells, the current cell and a number of cells above it
are checked for the presence of raindrops at t = 0. If overlap is possible, the
cells directly or diagonally adjacent to these cells are checked as well. All drops
are falling in the same direction, which is aligned with one of the major axes
of the grid. If a uniform wind velocity is assigned to the drops such that they

30



move diagonally instead of straight down, this can be achieved by rotating the
grid accordingly.

The number of cells to check above the current position depends on the
shutter time, the cell size, and the velocity of the fastest raindrop relative to
its own radius. Enough cells need to be checked such that the starting cell
of a raindrop can be found if it would pass through a certain point when the
shutter closes. The fastest raindrop travels just under 10ms−1 and the maximum
number of grid cells a drop travels through can thus be calculated by 10 ∗
shutter/cell where shutter is the number of seconds the shutter is open and
cell the size of a cell in meters. With a typical shutter speed of 0.01s and a grid
size of 1cm the center of this drop would thus pass through 10 grid cells in a
single frame.

The null-scattering implementation of PBRT [51] is used to sample and
render this medium, using the Henyey-Greenstein phase function described in
section 7 for scattering. Sampling the medium coefficients is done by determin-
ing the density by summing over the value of ρ̂d for all drops in the checked
cells and adding the value calculated using equation 6.2. The upper bound for
the coefficients is as determined in section 6.1 and constant across the medium.

10 Evaluation

This section compares the visual results of the volumetric sampling algorithm
to those of the ground truth algorithm, as well as the efficiency with which
these results are produced. Timings were run with an AMD Ryzen 7 5800H
CPU (utilising 12 of the 16 available cores), NVIDIA GeForce RTX 3050Ti
GPU, and 32GB of RAM. rmin was set to 0.01 cm for the volumetric method,
corresponding to the smallest 1% of drops at a rain rate of 50mm/h. PBRT’s
”volpath” integrator is used, a uni-directional path tracing algorithm.

Four scenes are used for comparison. The first scene is the Cornell box [46]
with rain generated within a sphere fitting inside the box. The second scene uses
the same cubes and sphere as the first scene, but replaces the exterior walls and
light with an outdoor skydome. The third scene shows rain generated around a
small red light source with walls around the light source. See figure 22 for a top-
down perspective of this scene. Fourth is the Bistro scene by Lumberyard [39],
modified to use an overcast skydome and a wet street (see figure 15). Due to the
size and complexity of this scene, it is only rendered at low sample counts on the
CPU with rain limited to a small distance around the camera and the volumetric
sampling algorithm with overlapping jitter is skipped. A single render of scene 4
on the GPU is shown in figure 21 with rain extending beyond the visible area of
the scene. Precomputation timings for the ground truth method are ignored in
all cases. Accurate motion blur techniques for the GPU are rare, which makes
it impossible to run the ground truth algorithm on the GPU. This demonstrates
one of the most significant advantages of the volumetric sampling algorithm.

The following abbreviations are used: NO for renders with no rain, GT for
renders using the ground truth method, VN for renders using the volumetric

31



Figure 21: Bistro scene rendered at 256 spp on the GPU with R = 50. The red
region is displayed in the top-right corner.

Rain rate GT (CPU) VN (CPU) VO (CPU) VN (GPU) VO (GPU)
10mm/h 2.5 min 11 min 22.5 min 47 s 2.5 min
50mm/h 2.5 min 11 min 22 min 29 s 1.5 min
200mm/h 2.5 min 11.5 min 22 min 23 s 55 s

Table 2: Timings for rendering scene 1 at 64 spp. Rendering with no rain took
2.5 minutes on the CPU and 9 seconds on the GPU.

sampling algorithm with non-overlapping stratified jitter used for the distribu-
tion of rain, and VO for renders using the volumetric sampling algorithm with
overlapping stratified jitter.

With few raindrops, the ground truth method is barely any slower than
renders without any rain at all for simple scenes. The volumetric sampling
method is significantly slower on the CPU, but due to its capability to run on
the GPU it can easily outperform the ground truth method for these scenes.
Also very important is the visibility of rain: rain is barely visible at low sample
counts with the ground truth method, and remains noisy even at high sample
counts. This means that the extra performance of the ground truth method on
the CPU does not necessarily result in better images even when granted the
same amount of rendering time, as demonstrated in figure 26.

In general, rendering with non-overlapping stratified jitter is around two to
four times faster than using overlapping stratified jitter, with negligible impact
on the quality of the result.

In scenes with strong directional light, a clear difference between the ground
truth and the volumetric sampling method can be observed on the sides of

32



Figure 22: Setup of the red light scene. The dotted circle represents the sphere
within which raindrops are placed. The red sphere represents the light source,
and the gray shape the walls within the scene.

Rain rate GT (CPU) VN (CPU) VO (CPU) VN (GPU) VO (GPU)
10mm/h 42 s 7.5 min 16 min 6.5 min 26.5 min
50mm/h 42 s 7.5 min 15.5 min 3 min 8.5 min
200mm/h 45 s 7.5 min 15.5 min 52 s 3 min

Table 3: Timings for rendering scene 2 at 64 spp. Rendering with no rain took
40 seconds on the CPU and 5 seconds on the GPU.

Rain rate GT (CPU) VN (CPU) VO (CPU) VN (GPU) VO (GPU)
10mm/h 1.5 min 7.5 min 19 min 2 min 8 min
50mm/h 1.5 min 8 min 19 min 1.5 min 4.5 min
200mm/h 1.5 min 7.5 min 18.5 min 42 s 2 min

Table 4: Timings for rendering scene 3 at 64 spp. Rendering with no rain took
1.5 minutes on the CPU and 12 seconds on the GPU.

33



(a) No rain (b) GT

(c) VN (d) VO

Figure 23: Images of scene 1 at 64 spp with R = 200. The red region is displayed
in the top-left corner.

Rain rate GT (CPU) VN (CPU)
10mm/h 35 s 41 min
50mm/h 40 s 40 min
200mm/h 43 s 42 min

Table 5: Timings for rendering scene 4 at 16 spp. Rendering with no rain took
28 seconds on the CPU.

34



(a) No rain (b) GT

(c) VN (d) VO

Figure 24: Images of scene 2 at 64 spp with R = 200. The red region is displayed
in the top-left corner.

35



(a) No rain (b) GT

(c) VN (GPU) (d) VO (CPU)

Figure 25: Images of scene 3 at 64 spp with R = 50. The red region is displayed
in the top-left corner. The GPU version has more noise on the right wall,
caused by a difference in the sampling strategy PBRT uses between CPU and
GPU rendering.

36



(a) No rain (b) GT

(c) VN (d) GT (40 minutes)

Figure 26: Images of scene 4 with R = 50. a, b, c rendered at 64 spp, d
rendered for 40 minutes (the same amount of time required for rendering c).
The red region is displayed in the top-right corner.

37



Figure 27: Scene 1 rendered using the ground truth method at 1024 spp. The
red region is displayed in the top-left corner.

raindrops furthest away from the light source. This effect is clearly demonstrated
in figure 28, where drops to the left have a glint on their left side in the ground
truth (and the opposite on the right) and the same glint is not present with
the volumetric rendering technique. This is caused by the approximation of the
phase function: realistically, light is mostly refracted to the right on the left
side of a raindrop and the other way around. The Henyey-Greenstein phase
function does not make this distinction and scatters light independent of which
side of the drop a ray is passing through. The physically accurate phase function
described in section 7 would not suffer the same issue.

The volumetric sampling method also has more adjustable parameters than
the ground truth method. The medium’s density can be multiplied with an
arbitrary number to increase or decrease the visual impact of rain (like used in
figure 16), which may be useful in situations where realism is less important.
rmin provides an easy way to trade accuracy for performance by switching the
smallest drops out for a uniform medium, as demonstrated in table 6. Figure
29 shows the results of these different renders.

11 Future work

The implementation outlined in this document focused on constructing a vol-
ume with proper densities for simulating rain. Also important for the proper
appearance of a volume is the use of a correct phase function. The physically
accurate phase function described in section 7 satisfies this requirement, but
has an unknown PDF making it unusable with importance sampling methods.
Completing the PDF for this phase function or developing an alternate phase
function with better accuracy than the Henyey-Greenstein phase function used

38



(a) Ground truth (b) Volumetric sampling

Figure 28: Comparison between the ground truth and volumetric method for
scene 3, both rendered at 65K spp. The rain streaks in the ground truth have
a white glint on the side opposing the light, whereas the streaks generated by
the volumetric sampling method vary less in color.

rmin in cm Render time
0.01 14.5 min
0.02 7.5 min
0.03 5 min
0.05 4 min
0.1 3.5 min
0.15 3 min
0.2 2.5 min

Table 6: Render time for scene 3 at 512 spp using the VN method on the GPU,
at R = 50.

39



(a) rmin = 0.01 (b) rmin = 0.05

(c) rmin = 0.1 (d) rmin = 0.2

Figure 29: Comparison of different values for rmin in scene 3. All images are
rendered at 512 spp with R = 50. At a higher rain rate, fewer individual
raindrops are visible but a uniform fog begins to fill the area instead.

40



Figure 30: Scene 1 at 256 spp with exaggerated rain density using the VN
method: all rain is 3x more likely to be hit.

here will result in more accurate renders and allows real-life optical effects such
as rainbows to emerge.

The density approximation described in section 6 is close enough to the
true density to give results with minimal difference to the ground truth for
the chance to hit a drop, but the division by r is one that is not backed up
mathematically. A better alternative might exist, or it might be possible to
construct proof that the calculation for ρ̂d used in this project is indeed one of
the best approximations for ρd. Another possibility for future work is to develop
or use a rendering algorithm that supports anisotropic media to implement a
volume sampling algorithm that uses ρd directly.

The lower bound to raindrop size discussed in section 6.1 directly influences
the step size of the null-scattering algorithm. With individual raindrops further
away from the camera being harder to see, it would be logical to increase this
lower bound for samples taken further away from the camera and increase the
homogeneous component of the medium as described in section 6.2 accordingly.
Primary questions about this approach are the rate at which the lower bound
can be increased without compromising the accuracy of results, and the effect
on render times and noise.

References

[1] Travis Archer. Procedurally generating terrain. In 44th annual midwest
instruction and computing symposium, Duluth, pages 378–393, 2011.

[2] David Atlas and Carlton W. Ulbrich. Path- and area-integrated
rainfall measurement by microwave attenuation in the 1–3 cm
band. Journal of Applied Meteorology and Climatology, 16(12):1322

41



– 1331, 1977. doi: 10.1175/1520-0450(1977)016⟨1322:PAAIRM⟩2.0.CO;
2. URL https://journals.ametsoc.org/view/journals/apme/16/12/

1520-0450_1977_016_1322_paairm_2_0_co_2.xml.

[3] Juan Miguel Bajo, Claudio Delrieux, and Gustavo Patow. Physi-
cally inspired technique for modeling wet absorbent materials. The
Visual Computer, 37(8):2053–2068, Aug 2021. ISSN 1432-2315.
doi: 10.1007/s00371-020-01963-w. URL https://doi.org/10.1007/

s00371-020-01963-w.

[4] Peter C. Barnum, Srinivasa Narasimhan, and Takeo Kanade. Anal-
ysis of rain and snow in frequency space. International Jour-
nal of Computer Vision, 86(2):256–274, Jan 2010. ISSN 1573-1405.
doi: 10.1007/s11263-008-0200-2. URL https://doi.org/10.1007/

s11263-008-0200-2.

[5] Kenneth V. Beard and Catherine C. Chuang. A new model for the equi-
librium shape of raindrops. Journal of the Atmospheric Sciences, 44:
1509–1524, 1987. URL https://api.semanticscholar.org/CorpusID:

121259889.

[6] Edwin X Berry and Maarten R. Pranger. Equations for calculating the
terminal velocities of water drops. Journal of Applied Meteorology (1962-
1982), 13(1):108–113, 1974. ISSN 00218952, 2163534X. URL http://www.

jstor.org/stable/26176880.

[7] Nathan Brewer and Nianjun Liu. Using the shape characteristics of rain to
identify and remove rain from video. In Niels da Vitoria Lobo, Takis Kas-
paris, Fabio Roli, James T. Kwok, Michael Georgiopoulos, Georgios C.
Anagnostopoulos, and Marco Loog, editors, Structural, Syntactic, and
Statistical Pattern Recognition, pages 451–458, Berlin, Heidelberg, 2008.
Springer Berlin Heidelberg. ISBN 978-3-540-89689-0.

[8] Robert Bridson. Fast poisson disk sampling in arbitrary dimensions.
In ACM SIGGRAPH 2007 Sketches, SIGGRAPH ’07, page 22–es, New
York, NY, USA, 2007. Association for Computing Machinery. ISBN
9781450347266. doi: 10.1145/1278780.1278807. URL https://doi.org/

10.1145/1278780.1278807.

[9] Carlos Castillo, Jorge López-Moreno, and Carlos Aliaga. Recent advances
in fabric appearance reproduction. Comput. Graph., 84(C):103–121, nov
2019. ISSN 0097-8493. doi: 10.1016/j.cag.2019.07.007. URL https://doi.

org/10.1016/j.cag.2019.07.007.

[10] E.C.C Choi. Simulation of wind-driven-rain around a building. Jour-
nal of Wind Engineering and Industrial Aerodynamics, 46-47:721–729,
1993. ISSN 0167-6105. doi: https://doi.org/10.1016/0167-6105(93)
90342-L. URL https://www.sciencedirect.com/science/article/

42

https://journals.ametsoc.org/view/journals/apme/16/12/1520-0450_1977_016_1322_paairm_2_0_co_2.xml
https://journals.ametsoc.org/view/journals/apme/16/12/1520-0450_1977_016_1322_paairm_2_0_co_2.xml
https://doi.org/10.1007/s00371-020-01963-w
https://doi.org/10.1007/s00371-020-01963-w
https://doi.org/10.1007/s11263-008-0200-2
https://doi.org/10.1007/s11263-008-0200-2
https://api.semanticscholar.org/CorpusID:121259889
https://api.semanticscholar.org/CorpusID:121259889
http://www.jstor.org/stable/26176880
http://www.jstor.org/stable/26176880
https://doi.org/10.1145/1278780.1278807
https://doi.org/10.1145/1278780.1278807
https://doi.org/10.1016/j.cag.2019.07.007
https://doi.org/10.1016/j.cag.2019.07.007
https://www.sciencedirect.com/science/article/pii/016761059390342L
https://www.sciencedirect.com/science/article/pii/016761059390342L


pii/016761059390342L. Proceedings of the 1st International on Com-
putational Wind Engineering.

[11] Robert L. Cook and Tony DeRose. Wavelet noise. ACM Trans. Graph.,
24(3):803–811, jul 2005. ISSN 0730-0301. doi: 10.1145/1073204.1073264.
URL https://doi.org/10.1145/1073204.1073264.

[12] C.N. Davies. Unpublished rept. 1939.

[13] A. Nelson Dingle and Yean Lee. Terminal fallspeeds of raindrops. Journal
of Applied Meteorology (1962-1982), 11(5):877–879, 1972. ISSN 00218952,
2163534X. URL http://www.jstor.org/stable/26175465.

[14] G. B. Foote and P. S. du Toit. Terminal velocity of raindrops aloft. Journal
of Applied Meteorology (1962-1982), 8(2):249–253, 1969. ISSN 00218952,
2163534X. URL http://www.jstor.org/stable/26174522.

[15] K. Garg and S.K. Nayar. Detection and removal of rain from videos. In
Proceedings of the 2004 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, 2004. CVPR 2004., volume 1, pages I–I,
2004. doi: 10.1109/CVPR.2004.1315077.

[16] Kshitiz Garg and Shree K. Nayar. When does a camera see rain? Tenth
IEEE International Conference on Computer Vision (ICCV’05) Volume
1, 2:1067–1074 Vol. 2, 2005. URL https://api.semanticscholar.org/

CorpusID:206769439.

[17] Kshitiz Garg and Shree K. Nayar. Photorealistic rendering of rain
streaks. ACM Trans. Graph., 25(3):996–1002, jul 2006. ISSN 0730-
0301. doi: 10.1145/1141911.1141985. URL https://doi.org/10.1145/

1141911.1141985.

[18] Kshitiz Garg and Shree K. Nayar. Vision and rain. Interna-
tional Journal of Computer Vision, 75(1):3–27, Oct 2007. ISSN 1573-
1405. doi: 10.1007/s11263-006-0028-6. URL https://doi.org/10.1007/

s11263-006-0028-6.

[19] Kshitiz Garg, Gurunandan G. Krishnan, and Shree K. Nayar. Material
Based Splashing of Water Drops. In Jan Kautz and Sumanta Pattanaik,
editors, Rendering Techniques. The Eurographics Association, 2007. ISBN
978-3-905673-52-4. doi: 10.2312/EGWR/EGSR07/171-182.

[20] Micha l Gawron and Urszula Boryczka. Procedural rain ripples generated
using worley noise. In Adam Wojciechowski and Piotr Napieralski, editors,
Computer Game Innovations, page 39–48. Lodz University of Technology
Press, 2018.

[21] Andrea Lo Giudice, Roberto Nuca, Luigi Preziosi, and Nicolas Coste.
Wind-blown particulate transport: A review of computational fluid dy-
namics models. Mathematics in Engineering, 1(3):508–547, 2019. ISSN

43

https://www.sciencedirect.com/science/article/pii/016761059390342L
https://www.sciencedirect.com/science/article/pii/016761059390342L
https://doi.org/10.1145/1073204.1073264
http://www.jstor.org/stable/26175465
http://www.jstor.org/stable/26174522
https://api.semanticscholar.org/CorpusID:206769439
https://api.semanticscholar.org/CorpusID:206769439
https://doi.org/10.1145/1141911.1141985
https://doi.org/10.1145/1141911.1141985
https://doi.org/10.1007/s11263-006-0028-6
https://doi.org/10.1007/s11263-006-0028-6


2640-3501. doi: 10.3934/mine.2019.3.508. URL https://www.aimspress.

com/article/doi/10.3934/mine.2019.3.508.

[22] Ross Gunn and Gilbert D. Kinzer. The terminal velocity of fall for
water droplets in stagnant air. Journal of Atmospheric Sciences, 6(4):
243 – 248, 1949. doi: 10.1175/1520-0469(1949)006⟨0243:TTVOFF⟩2.0.
CO;2. URL https://journals.ametsoc.org/view/journals/atsc/6/

4/1520-0469_1949_006_0243_ttvoff_2_0_co_2.xml.

[23] Sinan Hasirlioglu and Andreas Riener. A general approach for simulating
rain effects on sensor data in real and virtual environments. IEEE Transac-
tions on Intelligent Vehicles, 5(3):426–438, 2020. doi: 10.1109/TIV.2019.
2960944.

[24] James Hegarty. Geometric and path tracing methods for simulating light
transport through volumes of water particles. XRDS, 15(1):16–20, sep 2008.
ISSN 1528-4972. doi: 10.1145/1452012.1452016. URL https://doi.org/

10.1145/1452012.1452016.

[25] Louis G Henyey and Jesse Leonard Greenstein. Diffuse radiation in the
galaxy. Astrophysical Journal, vol. 93, p. 70-83 (1941)., 93:70–83, 1941.

[26] Milan Ikits, Joe Kniss, Aaron Lefohn, and Charles Hansen. Volume render-
ing techniques. In GPU Gems: Programming Techniques, Tips and Tricks
for Real-Time Graphics, chapter 39. Pearson Higher Education, 2004.

[27] David S. Immel, Michael F. Cohen, and Donald P. Greenberg. A radios-
ity method for non-diffuse environments. In Proceedings of the 13th An-
nual Conference on Computer Graphics and Interactive Techniques, SIG-
GRAPH ’86, page 133–142, New York, NY, USA, 1986. Association for
Computing Machinery. ISBN 0897911962. doi: 10.1145/15922.15901. URL
https://doi.org/10.1145/15922.15901.

[28] Marc Jaeger. Enhancing virtual natural scenes using quick and dirty image
based recipes. In 2012 IEEE 4th International Symposium on Plant Growth
Modeling, Simulation, Visualization and Applications, pages 164–171, 2012.
doi: 10.1109/PMA.2012.6524829.

[29] A. R. Jameson and A. B. Kostinski. What is a raindrop size distri-
bution? Bulletin of the American Meteorological Society, 82(6):1169
– 1178, 2001. doi: 10.1175/1520-0477(2001)082⟨1169:WIARSD⟩2.3.CO;
2. URL https://journals.ametsoc.org/view/journals/bams/82/6/

1520-0477_2001_082_1169_wiarsd_2_3_co_2.xml.

[30] Henrik Wann Jensen, Justin Legakis, and Julie Dorsey. Rendering of wet
materials. In Rendering Techniques’ 99: Proceedings of the Eurograph-
ics Workshop in Granada, Spain, June 21–23, 1999 10, pages 273–281.
Springer, 1999.

44

https://www.aimspress.com/article/doi/10.3934/mine.2019.3.508
https://www.aimspress.com/article/doi/10.3934/mine.2019.3.508
https://journals.ametsoc.org/view/journals/atsc/6/4/1520-0469_1949_006_0243_ttvoff_2_0_co_2.xml
https://journals.ametsoc.org/view/journals/atsc/6/4/1520-0469_1949_006_0243_ttvoff_2_0_co_2.xml
https://doi.org/10.1145/1452012.1452016
https://doi.org/10.1145/1452012.1452016
https://doi.org/10.1145/15922.15901
https://journals.ametsoc.org/view/journals/bams/82/6/1520-0477_2001_082_1169_wiarsd_2_3_co_2.xml
https://journals.ametsoc.org/view/journals/bams/82/6/1520-0477_2001_082_1169_wiarsd_2_3_co_2.xml


[31] H. Jiang, M. Sano, and M. Sekine. Weibull raindrop-size distri-
bution and its application to rain attenuation. IEE Proceedings:
Microwaves, Antennas and Propagation, 144(3):197 – 200, 1997.
doi: 10.1049/ip-map:19971193. URL https://www.scopus.com/

inward/record.uri?eid=2-s2.0-0031164659&doi=10.1049%2fip-map%

3a19971193&partnerID=40&md5=4ed23c0d03c0ed18b0b9bb9180d95f88.
Cited by: 46.

[32] N.L. Johnson, S. Kotz, and N. Balakrishnan. Continuous Univariate Dis-
tributions. Number v. 1 in Continuous Univariate Distributions. J. Wiley,
1970. ISBN 9780471446262.

[33] James T. Kajiya. The rendering equation. In Proceedings of the 13th An-
nual Conference on Computer Graphics and Interactive Techniques, SIG-
GRAPH ’86, page 143–150, New York, NY, USA, 1986. Association for
Computing Machinery. ISBN 0897911962. doi: 10.1145/15922.15902. URL
https://doi.org/10.1145/15922.15902.

[34] Peter Kutz, Ralf Habel, Yining Karl Li, and Jan Novák. Spectral and
decomposition tracking for rendering heterogeneous volumes. ACM Trans.
Graph., 36(4), jul 2017. ISSN 0730-0301. doi: 10.1145/3072959.3073665.
URL https://doi.org/10.1145/3072959.3073665.

[35] Ayşe Kızılersü, Markus Kreer, and Anthony W. Thomas. The Weibull
Distribution. Significance, 15(2):10–11, 04 2018. ISSN 1740-9705. doi:
10.1111/j.1740-9713.2018.01123.x. URL https://doi.org/10.1111/j.

1740-9713.2018.01123.x.

[36] H. Lamb. Hydrodynamics. University Press, 1916.

[37] Irving Langmuir. The production of rain by a chain reaction in cumulus
clouds at temperatures above freezing. Journal of Atmospheric Sciences,
5(5):175 – 192, 1948. doi: 10.1175/1520-0469(1948)005⟨0175:TPORBA⟩2.
0.CO;2. URL https://journals.ametsoc.org/view/journals/atsc/5/

5/1520-0469_1948_005_0175_tporba_2_0_co_2.xml.

[38] JOHN O. Laws and Donald A. Parsons. The relation of raindrop-size
to intensity. Eos, Transactions American Geophysical Union, 24(2):452–
460, 1943. doi: https://doi.org/10.1029/TR024i002p00452. URL https:

//api.semanticscholar.org/CorpusID:140141884.

[39] Amazon Lumberyard. Amazon lumberyard bistro, open re-
search content archive (orca), July 2017. URL http:
//developer.nvidia.com/orca/amazon-lumberyard-bistro.
http://developer.nvidia.com/orca/amazon-lumberyard-bistro.

[40] Bailey Miller, Iliyan Georgiev, and Wojciech Jarosz. A null-scattering path inte-
gral formulation of light transport. ACM Transactions on Graphics (Proceedings
of SIGGRAPH), 38(4), July 2019. ISSN 0730-0301. doi: 10/gf6rzb.

45

https://www.scopus.com/inward/record.uri?eid=2-s2.0-0031164659&doi=10.1049%2fip-map%3a19971193&partnerID=40&md5=4ed23c0d03c0ed18b0b9bb9180d95f88
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0031164659&doi=10.1049%2fip-map%3a19971193&partnerID=40&md5=4ed23c0d03c0ed18b0b9bb9180d95f88
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0031164659&doi=10.1049%2fip-map%3a19971193&partnerID=40&md5=4ed23c0d03c0ed18b0b9bb9180d95f88
https://doi.org/10.1145/15922.15902
https://doi.org/10.1145/3072959.3073665
https://doi.org/10.1111/j.1740-9713.2018.01123.x
https://doi.org/10.1111/j.1740-9713.2018.01123.x
https://journals.ametsoc.org/view/journals/atsc/5/5/1520-0469_1948_005_0175_tporba_2_0_co_2.xml
https://journals.ametsoc.org/view/journals/atsc/5/5/1520-0469_1948_005_0175_tporba_2_0_co_2.xml
https://api.semanticscholar.org/CorpusID:140141884
https://api.semanticscholar.org/CorpusID:140141884
http://developer.nvidia.com/orca/amazon-lumberyard-bistro
http://developer.nvidia.com/orca/amazon-lumberyard-bistro


[41] Yoshiki Mizukami, Katsuhiro Sasaki, and Katsumi Tadamura. Realistic rain
rendering. In Proceedings of the Third International Conference on Computer
Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2008),
pages 273–280. INSTICC, SciTePress, 2008. ISBN 978-989-8111-20-3. doi: 10.
5220/0001095702730280.

[42] Guillermo Montero-Mart́ınez and Fernando Garćıa-Garćıa. On the behaviour of
raindrop fall speed due to wind. Quarterly Journal of the Royal Meteorological
Society, 142(698):2013–2020, 2016. doi: https://doi.org/10.1002/qj.2794. URL
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.2794.

[43] Eihachiro Nakamae, Kazufumi Kaneda, Takashi Okamoto, and Tomoyuki
Nishita. A lighting model aiming at drive simulators. In Proceedings of the
17th Annual Conference on Computer Graphics and Interactive Techniques,
SIGGRAPH ’90, page 395–404, New York, NY, USA, 1990. Association for
Computing Machinery. ISBN 0897913442. doi: 10.1145/97879.97922. URL
https://doi.org/10.1145/97879.97922.

[44] Nobuyuki Nakata. Animation of water droplets on a hydrophobic windshield.
2012. URL https://api.semanticscholar.org/CorpusID:17333937.

[45] Jan Novák, Iliyan Georgiev, Johannes Hanika, and Wojciech Jarosz. Monte Carlo
methods for volumetric light transport simulation. Computer Graphics Forum
(Proceedings of Eurographics - State of the Art Reports), 37(2), May 2018. doi:
10/gd2jqq.

[46] Cornell University Program of Computer Graphics. Cornell box data. URL
https://www.graphics.cornell.edu/online/box/data.html.

[47] Victor Ostromoukhov. Sampling with polyominoes. ACM Trans. Graph., 26(3):
78–es, jul 2007. ISSN 0730-0301. doi: 10.1145/1276377.1276475. URL https:

//doi.org/10.1145/1276377.1276475.

[48] K. Perlin and E. M. Hoffert. Hypertexture. SIGGRAPH Comput. Graph., 23
(3):253–262, jul 1989. ISSN 0097-8930. doi: 10.1145/74334.74359. URL https:

//doi.org/10.1145/74334.74359.

[49] Ken Perlin. An image synthesizer. In Proceedings of the 12th Annual Confer-
ence on Computer Graphics and Interactive Techniques, SIGGRAPH ’85, page
287–296, New York, NY, USA, 1985. Association for Computing Machinery.
ISBN 0897911660. doi: 10.1145/325334.325247. URL https://doi.org/10.

1145/325334.325247.

[50] Ken Perlin. Improving noise. ACM Trans. Graph., 21(3):681–682, jul 2002.
ISSN 0730-0301. doi: 10.1145/566654.566636. URL https://doi.org/10.1145/

566654.566636.

[51] M. Pharr, W. Jakob, and G. Humphreys. Physically Based Rendering, fourth
edition: From Theory to Implementation. MIT Press, 2023. ISBN 9780262048026.
URL https://pbr-book.org/.

[52] PINKE. Rain!, 2009. URL https://flic.kr/p/6c2454.

46

https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.2794
https://doi.org/10.1145/97879.97922
https://api.semanticscholar.org/CorpusID:17333937
https://www.graphics.cornell.edu/online/box/data.html
https://doi.org/10.1145/1276377.1276475
https://doi.org/10.1145/1276377.1276475
https://doi.org/10.1145/74334.74359
https://doi.org/10.1145/74334.74359
https://doi.org/10.1145/325334.325247
https://doi.org/10.1145/325334.325247
https://doi.org/10.1145/566654.566636
https://doi.org/10.1145/566654.566636
https://pbr-book.org/
https://flic.kr/p/6c2454


[53] Mikhail N. Polyanskiy. Refractiveindex.info database of optical constants. Scien-
tific Data, 11(1):94, Jan 2024. ISSN 2052-4463. doi: 10.1038/s41597-023-02898-2.
URL https://doi.org/10.1038/s41597-023-02898-2.

[54] Pierre Rousseau, Vincent Jolivet, and Djamchid Ghazanfarpour. Realistic
real-time rain rendering. Computers & Graphics, 30(4):507–518, 2006. ISSN
0097-8493. doi: https://doi.org/10.1016/j.cag.2006.03.013. URL https://www.

sciencedirect.com/science/article/pii/S0097849306000859.

[55] Astrid Sanusi, Henri Wortham, Maurice Millet, and Philippe Mirabel.
Chemical composition of rainwater in eastern france. Atmospheric Envi-
ronment, 30(1):59–71, 1996. ISSN 1352-2310. doi: https://doi.org/10.
1016/1352-2310(95)00237-S. URL https://www.sciencedirect.com/science/

article/pii/135223109500237S.

[56] Matsuo Sekine and Goran Lind. Raindrop shape limitations on clutter cancel-
lation ratio using circular polarization. IEEE Transactions on Aerospace and
Electronic Systems, AES-19(4):631–633, 1983. doi: 10.1109/TAES.1983.309352.

[57] Maria A. Serio, Francesco G. Carollo, and Vito Ferro. Raindrop size distribu-
tion and terminal velocity for rainfall erosivity studies. a review. Journal of
Hydrology, 576:210–228, 2019. ISSN 0022-1694. doi: https://doi.org/10.1016/j.
jhydrol.2019.06.040. URL https://www.sciencedirect.com/science/article/

pii/S0022169419305876.

[58] Sonia Starik and Michael Werman. Simulation of rain in videos. 2002. URL
https://api.semanticscholar.org/CorpusID:1305628.

[59] M F Subhani and J. P. Oakley. Low latency mitigation of rain induced noise in
images. In 5th European Conference on Visual Media Production (CVMP 2008),
pages 1–4, 2008. doi: 10.1049/cp:20081070.

[60] Natalya Tatarchuk. Artist-directable real-time rain rendering in city environ-
ments. In ACM SIGGRAPH 2006 Courses, SIGGRAPH ’06, page 23–64,
New York, NY, USA, 2006. Association for Computing Machinery. ISBN
1595933646. doi: 10.1145/1185657.1185828. URL https://doi.org/10.1145/

1185657.1185828.

[61] Firat Testik and Md Rahman. First in-situ observations of binary raindrop colli-
sions: Binary raindrop collisions. Geophysical Research Letters, 44, 01 2017. doi:
10.1002/2017GL072516.

[62] Abhishek Tripathi and Sudipta Mukhopadhyay. Removal of rain from videos:
a review. Signal, Image and Video Processing, 8, 11 2012. doi: 10.1007/
s11760-012-0373-6.

[63] Changbo Wang, Zhangye Wang, Xin Zhang, Lei Huang, Zhiliang Yang, and Qun-
sheng Peng. Real-time modeling and rendering of raining scenes. The Visual Com-
puter, 24(7):605–616, Jul 2008. ISSN 1432-2315. doi: 10.1007/s00371-008-0241-0.
URL https://doi.org/10.1007/s00371-008-0241-0.

[64] Cheng Wang, Meng Yang, Xuemin Liu, and Gang Yang. Realistic simulation for
rainy scene. J. Softw., 10:106–115, 2015. URL https://api.semanticscholar.

org/CorpusID:34152456.

47

https://doi.org/10.1038/s41597-023-02898-2
https://www.sciencedirect.com/science/article/pii/S0097849306000859
https://www.sciencedirect.com/science/article/pii/S0097849306000859
https://www.sciencedirect.com/science/article/pii/135223109500237S
https://www.sciencedirect.com/science/article/pii/135223109500237S
https://www.sciencedirect.com/science/article/pii/S0022169419305876
https://www.sciencedirect.com/science/article/pii/S0022169419305876
https://api.semanticscholar.org/CorpusID:1305628
https://doi.org/10.1145/1185657.1185828
https://doi.org/10.1145/1185657.1185828
https://doi.org/10.1007/s00371-008-0241-0
https://api.semanticscholar.org/CorpusID:34152456
https://api.semanticscholar.org/CorpusID:34152456


[65] Huamin Wang, Peter J. Mucha, and Greg Turk. Water drops on surfaces. ACM
Trans. Graph., 24(3):921–929, jul 2005. ISSN 0730-0301. doi: 10.1145/1073204.
1073284. URL https://doi.org/10.1145/1073204.1073284.

[66] P. K. Wang and H. R. Pruppacher. Acceleration to terminal velocity of cloud
and raindrops. Journal of Applied Meteorology (1962-1982), 16(3):275–280, 1977.
ISSN 00218952, 2163534X. URL http://www.jstor.org/stable/26178108.

[67] J Wiesner. Beiträge zur kenntniss des tropischen regens. Sitz Ber Math Nat Akad
Wiss Kl, 104:1397, 1895.

[68] A. Wilkie, S. Nawaz, M. Droske, A. Weidlich, and J. Hanika. Hero wavelength
spectral sampling. Computer Graphics Forum, 33(4):123–131, 2014. doi: https://
doi.org/10.1111/cgf.12419. URL https://onlinelibrary.wiley.com/doi/abs/

10.1111/cgf.12419.

[69] Hermann B. Wobus, F. W. Murray, and L. R. Koenig. Calculation of the terminal
velocity of water drops. Journal of Applied Meteorology (1962-1982), 10(4):751–
754, 1971. ISSN 00218952, 2163534X. URL http://www.jstor.org/stable/

26175683.

[70] Steven Worley. A cellular texture basis function. In Proceedings of the 23rd
Annual Conference on Computer Graphics and Interactive Techniques, SIG-
GRAPH ’96, page 291–294, New York, NY, USA, 1996. Association for Com-
puting Machinery. ISBN 0897917464. doi: 10.1145/237170.237267. URL
https://doi.org/10.1145/237170.237267.

[71] Y. Yang, X. Wang, and M. Beheshti. Blurry when wet: animating raindrop
behavior. IEEE Potentials, 24(3):33–36, 2005. doi: 10.1109/MP.2005.1502504.

[72] Cem Yuksel. Sample elimination for generating poisson disk sample sets. Com-
puter Graphics Forum, 34(2):25–32, 2015. doi: https://doi.org/10.1111/cgf.
12538. URL https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.12538.

[73] Xiaopeng Zhang, Hao Li, Yingyi Qi, Wee Kheng Leow, and Teck Khim Ng.
Rain removal in video by combining temporal and chromatic properties. In 2006
IEEE International Conference on Multimedia and Expo, pages 461–464, 2006.
doi: 10.1109/ICME.2006.262572.

48

https://doi.org/10.1145/1073204.1073284
http://www.jstor.org/stable/26178108
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.12419
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.12419
http://www.jstor.org/stable/26175683
http://www.jstor.org/stable/26175683
https://doi.org/10.1145/237170.237267
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.12538


A Calculation of Density

Let t be defined as a point in time, where 0 ≤ t ≤ 1, such that t = 0 refers
to the time at which the virtual shutter opens and t = 1 the time at which it
closes. ct refers to the center of the rain drop R at time t. r refers to the radius
of the rain drop. See figure 31 for a visual representation.

dist(a, b) is used to refer to the Euclidian distance between point a and point
b.

Let c be the initial center of the drop and m⃗ the movement vector of the
drop, with the length of m⃗ being nonzero. The center of the drop at time t is
described as ct = c + m⃗ ∗ t, and thus c0 = c.

For convenience, let us take that drops only move along the y-axis, such
that my ̸= 0 and m⃗ is zero in all other dimensions. This already holds for drops
falling down without diagonal movement in a scene where the y-axis points up.
Otherwise, the coordinate system can be rotated such that m⃗ becomes zero in
all other dimensions.

A.1 Calculation of ρd

For point ct and a ray with origin o and normalised direction r⃗, let us calculate
the range of values t such that there exists a value a for which dist(o+ r⃗ ∗a, c+
m⃗ ∗ t) ≤ r holds and divide it by the length of the ray segment intersecting
with the drop, this being the length of the range of values a such that there
exists a value t (including values of t smaller than 0 or greater than 1) for which
dist(o + r⃗ ∗ a, c + m⃗ ∗ t) ≤ r holds.

Let us define ∆x = ox− cx, ∆y = oy − cy and ∆z = oz − cz for convenience.
First, let us calculate the length of the interval of a for which dist(o + r⃗ ∗

a, c+ m⃗ ∗ t) ≤ r for any value of t. This is the case when (∆x + rx ∗ a)2 + (∆z +
rz ∗ a)2 − r2 ≥ 0. Name the minimum value of a for which this holds amin and
the maximum amax. Then

amin =
∆xrx + ∆zrz − 2

√
2∆xrx∆zrz − (r2z ∗∆2

x + r2x ∗∆2
z) + (r2x + r2z) ∗ 4r2

r2x + r2z

and

amax =
∆xrx + ∆zrz + 2

√
2∆xrx∆zrz − (r2z ∗∆2

x + r2x ∗∆2
z) + (r2x + r2z) ∗ 4r2

r2x + r2z

This makes the interval between amax and amin as follows:

amax − amin =
4
√

2∆xrx∆zrz − (r2z ∗∆2
x + r2x ∗∆2

z) + (r2x + r2z) ∗ 4r2

r2x + r2z
Next, let us calculate the length of the interval of t for which dist(o + r ∗

a, ct) = r for any value of a. This is the amount of time the ray intersects the
drop. The first collision happens at amin at the earliest, the last collision at amax

at the latest. Due to amin and amax being calculated without the constraint of

49



c, c0

c1

ct

m

r

Figure 31: Visual representation of the variables used to describe a raindrop.
c = c0 refers to the origin of the drop when the shutter opens and c1 to the
origin of the drop when the shutter closes. r is the radius of the drop. m⃗ is the
vector from c0 to c1 such that ct = c + t ∗ m⃗.

50



0 ≤ t ≤ 1 the true collision may be slightly earlier or later. As such, any value
for t calculated with these values of a does still need to be clamped in the end.

First, let us calculate the values of t such that dist(o+ r⃗ ∗amin, c+ m⃗∗ t = r
for any a.

(∆x + rx ∗ a)2 + (∆y + ry ∗ a + my ∗ t)2 + (∆z + rz ∗ a)2 ≤ r2

t =
−2∆y − 2rya±

√
(∆x + rx ∗ a)2 + (∆z + rz ∗ a)2 − r2

my

tmin =
−2∆y − 2ryamin −

√
(∆x + rx ∗ amin)2 + (∆z + rz ∗ amin)2 − r2

my

tmax =
−2∆y − 2ryamax +

√
(∆x + rx ∗ amax)2 + (∆z + rz ∗ amax)2 − r2

my

Both tmin and tmax should be clamped to clamp(tmin, 0, 1) and clamp(tmax, 0, 1)
respectively.

All in all,

ρd =
clamp(tmax, 0, 1)− clamp(tmin, 0, 1)

amax − amin

.

A.2 Calculation of pd

For point ct and a sample position s, let us calculate the range of values t such
that dist(s, ct) ≤ r holds.

First, let us calculate the values of t for which dist(s, ct) = r. dist(s, c0 + t ∗
m⃗) = r√

(sx − cx)2 + (sy − cy − t ∗my)2 + (sz − cz)2 = r
Let us define ∆x = sx − cx, ∆y = sy − cy and ∆z = sz − cz for convenience.

We then get that
√

∆2
x + (∆y − t ∗my)2 + ∆2

z = r, which can be rewritten

to t =
∆y ±

√
r2 −∆2

x −∆2
z

my
.

Thus dist(s, ct) ≤ r holds for

∆y −
√

r2 −∆2
x −∆2

z

my
≤ t ≤

∆y +
√

r2 −∆2
x −∆2

z

my

.
Note that in a single frame t only ranges between 0 and 1, and thus these

values should be clamped before use. Taking

clamp(x, a, b) =


a, if x < a

b, if x > b

x, otherwise

, we then get

clamp(
∆y −

√
r2 −∆2

x −∆2
z

my
, 0, 1) ≤ t ≤ clamp(

∆y +
√

r2 −∆2
x −∆2

z

my
, 0, 1)

51



The fraction of time dist(s, ct) ≤ r holds in a given frame is equal to the
length of the interval of t derived above:

pd = clamp(
∆y +

√
r2 −∆2

x −∆2
z

my
, 0, 1)−clamp(

∆y −
√
r2 −∆2

x −∆2
z

my
, 0, 1)

If r2 −∆2
x −∆2

z < 0, this equation has no solutions: the drop and the point
never overlap and thus pd = 0.

52


	Introduction
	Literature Study
	Physical properties of rain
	Velocity of raindrops
	Diameter of raindrops
	Shape of raindrops
	Refractive index of rain

	Rain in Computer Vision
	Sampling functions
	Existing methods for rendering rain
	Additional effects during rainy weather
	Wet materials
	Splashes and ripples
	Water droplets on cameras

	Methods for rendering volumes

	Research question
	Distributing raindrops
	Size of raindrops
	Interpretation of density
	Upper bound for density
	Lower bound for density

	Interpretation of phase function
	Ground truth algorithm
	Effect of colliding drops

	Volumetric sampling algorithm
	Evaluation
	Future work
	Calculation of Density
	Calculation of d
	Calculation of pd


