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Abstract

The increasing number of sequenced proteins has fueled the development of novel computational
methods for their analysis. The emergence of deep learning models, such as Transformers, has
led to a breakthrough in the ability to predict features of proteins, such as their function and
structure. Protein language models (PLM) can be trained on diverse corpuses of protein sequences
to learn generic patterns of protein evolution, or on antibody sequences to improve receptor-specific
predictions. While PLMs have shown promise in antibody research, their suitability to help guide
affinity maturation or predict somatic hypermutations (SHM) in the context of B cell evolution
remains uncertain. This is largely due to the fundamental differences between general protein
evolution and antibody generation, selection and evolution. Understanding the antibody-specific
process of SHM and clonal selection is important for designing broadly neutralizing antibodies,
or to get insights in immune-related diseases. In this review, we describe various phylogenetic
and artificial intelligence frameworks for analyzing B cell evolution with their advantages and
limitations. We describe how these approaches are able to capture patterns of SHM and selective
pressure during B cell evolution, and aim to identify room for improvement.
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Layman Summary

The immune system is made up of different cells with different functions. B cells are important to
protect against infectious pathogens such as viruses or bacteria. Antibody molecules are created
by B cells and play a major role in this protection. Antibodies are either attached to the B cells
or float freely in the lymphoid system. These antibodies can recognise a pathogen when their
structure fits perfectly to the antigen of the pathogen. The collection of antibodies is extremely
diverse due to a process called V(D)J-recombination. During the development of B cells in the
bone marrow, three gene segments (V, D and J) are randomly joined together. Each combination
of these genes creates an antibody structure to recognise antigens. When a B cell encounters a
matching antigen, the B cell will start to replicate and divide. Many errors occur during this repli-
cation process, named somatic hypermutation (SHM). This increases the diversity of the antibodies
even more. B cells with mutations that improve the binding between the antibody and antigen
are then selected to produce more antibodies. These antibodies can neutralize the pathogen, and
other immune cells can destroy it. This process results in a strong memory of the antigen, which
is stored in memory B cells. When the pathogen infects again, memory B cells with the matching
antibody can make more antibodies quickly. Learning how the evolution of B cells work can help
by creating antibodies that are able to recognise many different pathogens or could be useful in
immune therapies. We could also use this knowledge to predict the course of an infection.

A common approach to learn B cell evolution is to create phylogenetic trees of antibody sequences.
This way one can visualize how the different antibodies are related to each other and what possible
events of SHM have occurred. These trees are very useful in studying the history of the infection,
but are not able to make predictions about the future. As an alternative, people are now looking
into artificial intelligence approaches to study B cell evolution. Neural networks such as protein
language models can be used to learn patterns of protein evolution and make predictions about
structure and function. These models study millions of protein sequences to recognise patterns and
try to predict parts of the sequence, its 3D structure, or the function. There are a lot of different
architectures of protein language models (PLM) available, all trained on different datasets and
applied to specific tasks. Some models are not trained on general protein sequences, but only on
antibody sequences. These antibody specific models can be better in making predictions about B
cell evolution. This is because the V(D)J recombination and SHM are unique to antibodies, and
therefore it is important to incorporate this process in the training of a PLM. Besides training in
antibody data, it is also possible to first train the model on general protein sequences and later
fine-tune it by adding antibody sequences. This method might be more appropriate because there
are more general protein sequences available than antibody sequences, and this way the model
could also learn some rules about natural protein evolution.

In this review we analyze a lot of different approaches to study B cell evolution. We look at
the various methods to build phylogenetic trees, and the different methods to build a PLM. We
also look at the different ways the output of the models can be useful, and how the output could
be used to make predictions about B cell evolution.
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Chapter 1

Introduction

In recent years, Transformer-based language models have gained popularity in analyzing structure
and function of proteins. Transformers are a type of neural network that is usually applied to
natural language or protein sequences. The architecture of Transformers is based on a parallel
multi-head attention mechanism to capture long-range sub-sequence dependencies. The success
of AlphaFold[1] to predict protein structure has attracted the attention of scientists, resulting in
the development of more protein language models (PLM) for other applications. PLMs can be
trained on general protein sequences (foundational PLM) and the resulting embedding represents
the context and relationship between amino acids in the sequence. For example, various ESM
models showed how the embedding of foundational PLMs can be applied beyond structure predic-
tion, such as predicting the effects of a mutation[2]. The promising results of these foundational
PLMs inspired antibody research and mutations that increased binding affinity between antibody
and antigen were predicted with PLMs[3]. However, the nature of general protein evolution and
antibody-specific evolution are intrinsically different. Evolution of proteins is usually focussed on
conserving function across generations. As a contrast, evolution of B cell receptors is focused on
searching a wide landscape of mutations and is classically assumed to select for variants that in-
crease binding affinity to an antigen. For this reason, foundational PLMs might not be the best
approach for B cell evolution and a more receptor-specific model could perform better. In this
review, we give a clear description about the methods behind foundational PLMs and provide
examples of modifications to create receptor-specific PLMs for B cell evolution. We outline their
advantages and limitations, and compare them to traditional phylogenetic methods to study B cell
evolution.

During the evolution of B cells, the B cell receptor (BCR) repertoire changes rapidly to be able to
recognize new pathogens, but also maintains populations of memory B cells to remain protective
against earlier encountered antigens. On a repertoire-wide level, a huge diversity of naive B cell
receptors is first created by V(D)J-recombination during early development in the bone marrow.
After this, the diversity increases on a lineage-specific level by iterative rounds of somatic hyper-
mutation (SHM) and clonal selection in the germinal center (GC). The sequence diversity can
potentially increase binding affinity to an encountered antigen in order to recognize and neutralize
its pathogen. But when confronted with a highly virulent pathogen, this natural process can be
too slow. Vaccines that induce antibodies of high affinity speed up the viral neutralization and de-
crease the death rate of infectious diseases dramatically[4]. But antibodies are not the only protein
sequences that are rapidly evolving. The antigenic escape of viral proteins results in strains with
increased fitness, which makes it harder for the B cell memory to keep recognizing them. Therefore,
the antibody induced by a vaccine needs to be broadly neutralizing to be prepared for future strains.

While phylogenetic trees have been able to model SHM and clonal selection, and thereby re-
construct the evolutionary relationships between antibody sequences[5][6][7], it lacks the capacity
to predict future evolutionary events. One important feature of PLMs is their competence to learn
from patterns in the protein sequences, and use this insight to make predictions. This is predom-
inantly due to their attention mechanisms, which enables the model to focus on the important
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parts of the sequence and make long distance connections between residues. Besides predictions,
the temporal change of PLM embeddings within a certain B cell lineages can provide a quantitative
description of clonal selection during B cell evolution. However, it remains unclear how exactly
these models capture signatures of antibody evolution. Especially since many contributing factors
such as regularly targeted positions for SHM, paired heavy and light chains and clonal selection
mechanisms are not considered in these models. To shed light on this uncertainty, we start with a
recap to adaptive immunity and give an overview of antibody structure, development, activation
and evolution. Next, we review various phylogenetic methods and PLMs to analyze aspects of B
cell evolution. And finally, we give a concrete example of a PLM application for antibody evolution
and synthetic antibody design.
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Chapter 2

Recap to adaptive immunity

2.1 Antibody structure

Antibodies, also referred to as immunoglobulins (Ig), are proteins produced by the immune system
to protect against foreign substances, such as viruses and bacteria. These antibodies can be soluble
or membrane bound to B cells (BCR). Each B cell contains approximately 100.000 membrane
bound antibodies that are unique per cell[8]. An Ig consists of variable (V), diverse (D) and
joining (J) gene segments. The V domain has three variable parts (CDRs), of which CDR3 is the
most variable. These CDRs are divided by four stable frameworks (FRs). When folded into 3D
structure, Ig have two identical heavy chains and two identical light chains, forming an Y-shaped
molecule. Antigens can bind with their epitopes between the heavy and light chains on both sides
of the Y molecule and these antigen binding sites are called paratopes.

2.2 B cell development

A high diversity of all the BCRs in the body (BCR repertoire) is necessary to allow recognition of
a wide range of possible antigens. This initial diversity is achieved by V(D)J recombination during
early B cell development in the bone marrow and fetal liver[9]. Here, hematopoietic stem cells
differentiate into immature B cells and selection takes place to prevent binding to self-antigens.
The rearrangement of the V, D and J gene segments in the heavy chain, and the V and J segments
in the light chain induces mutations. These mutations result in a diverse BCR repertoire with at
least 1012 variations of antibodies[10]. Recombination activating genes (RAG-1/2) are responsible
for the initial DNA double-strand break and receptor rearrangement[11], after which the DNA
is repaired with nonhomologous end-joining (NHEJ). After early development, the immature B
cells move from the bone marrow to the secondary lymphoid tissues (lymph nodes and spleen) for
functional maturation. B cells are considered mature, also referred to as naive, after two transition
stages in the spleen.

2.3 B cell activation

A mature B cell becomes activated when it binds to an antigen and usually receives help from
an activated helper T cell. An antigen-presenting cell, such as a dendritic cell (DC), can engulf
a pathogen and display its antigen on the cell surface with a MHC class II molecule. When a
helper T cell binds to this antigen, together with cytokine stimulation, the helper T cell becomes
activated and starts to proliferate. Simultaneously, this antigen can bind to a BCR together with
co-receptor such as toll-like receptors (TLRs) and complement receptors, which initiates B cell
activation. Membrane bound antigens on the B cell are internalized and peptides are displayed
on the cell surface, likewise with MHC class II. When a helper T cell with a compatible antigen
receptor binds to this BCR complex, together with cytokine stimulation or a coreceptor reaction,
the B cell becomes activated. Some antigens are T-independent and do not require a helper T cell
to activate a B cell. These antigens are usually repetitive bacterial sequences.
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The activated B cell will proliferate and differentiate in short-lived plasma cells, germinal cen-
ter (GC) B cells, and GC-independent memory B cells. Short-lived plasma cells will secrete the
first wave of antibodies to quickly neutralize the pathogen, and then undergo apoptosis. The GC
has various functions for adaptive immunity, which we will discuss in the next part. Class switch
recombination (CSR) occurs for the most part prior to GC formation[12]. During CSR, the vari-
able region of the Ig stays the same, but the constant region of the heavy chain (C) can switch
from IgM and IgD to IgA, IgE, or IgG. Through CSR, B cells can express antibodies with different
effector functions, but keep specificity for the encountered antigen. B cells exit the GC as either
memory B cells in the secondary lymphoid tissues, or antibody-secreting long-lived plasma cells
residing in the bone marrow. During a second encounter with the antigen, memory B cells can be
reactivated and will again differentiate into GC B cells or plasma cells.[8]

The ability of B cells to keep memory and be reactivated makes them crucial for long-term pro-
tection against pathogens. After each encounter with an antigen, a new generation of B cells with
specific receptors are produced. To understand how this repertoire keeps its memory and its ability
to respond to new antigens, it is necessary to know the different processes that guide this evolving
system.
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Chapter 3

B cell evolution

3.1 Germinal center

The humoral immune response is an evolutionary system due to the selective pressure during B cell
proliferation. While the antibodies secreted by short-lived plasma cells control the infection early
on, a specialized microenvironment is formed in the B follicles of the secondary lymphoid tissues.
This microenvironment, the GC, is divided into a dark and light zone. Rapidly dividing B cells
undergo somatic hypermutations (SHM) in the dark zone to search the mutational space for affinity
improving mutations[13]. The enzyme activation-induced cytidine deaminase (AID) mediates CSR
and SHM[14]. AID has a preference of converting cytosines to uracils[15], which triggers an error-
prone DNA repair mechanism and introduces additional mutations. This mechanism causes mostly
substitutions, but insertions and deletions also happen occasionally[16]. Despite the bias towards
cytosine mutation, AID can mutate all nucleotides in the Ig genes. Some motifs are more or
less frequently mutated, referred to as hotspots and coldspots (respectively). Hotspots tend to
lie in the CDRs and coldspots in the FRs[17]. After this, B cells move to the light zone where
affinity selection and clonal expansion takes place. Here, cells with a higher antigen affinity are
selected over cells with low affinity towards the antigen. When the SHM increases the strength of
the antibody-antigen binding in comparison to the germline progenitor, the cell will receive more
survival signals such as ICOS, CD40, IL-4, and IL-12[18][19].

3.2 Repertoire-wide evolution

The number of clonal families in the BCR repertoire, their relative sizes and their protein se-
quences can provide relevant information about factors such as infection history[20], age[21] and
genotype[22] of the host, but also genotypic and phenotypic convergence[23]. Even though the
central role of SHM is to increase binding affinity of a certain B cell lineage to foreign antigens,
a diverse BCR repertoire is important to protect against rapidly evolving pathogens. There are
various hypotheses about the mechanisms behind the maintenance of this diversity, despite clonal
selection. A first explanation could be that B cells evolve separately due to the GC “islands” in
different lymphoid follicles[24]. This confinement causes the evolution of distinct clones, which
together provide a higher diversity in the BCR repertoire. Another hypothesis is that the timing
of the GC output induces diversity of B cell clones. Early in the GC reaction, when diversity is
still high, more B memory cells are generated. And later, when there has been more selection,
plasma cells are generated[25]. A third hypothesis is the possibility of restricted clonal bursting,
where not all GC have one dominant clone, but rather support a more balanced clonal diversity[26].

In order to anticipate the course of infections and to improve therapeutic strategies, it is essential
to comprehend B cell evolution. This can be done by learning from previous evolutionary events,
and applying this knowledge to predict possible immune responses in the future.
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Chapter 4

Phylogenetic methods for B cell
evolution

Similarities between SHM and evolution by natural selection led to the use of phylogenetic methods
to study B cell evolution. High-throughput sequencing of the variable regions of the Ig (Ig-seq)
enables quantification of the BCR repertoire. Reconstructing the various clonal lineages over time
and studying their temporal relationships can provide valuable information about the mechanisms
behind B cell evolution. Each phylogenetic tree from an Ig-seq experiment represents a clonal
lineage from an independent V(D)J-recombination event.

4.1 Lineage assignment and clonotyping

In contrast to classic phylogenetic analysis, B cell clonal lineages do not share a common ances-
try, but each have their own root. Instead of constructing one tree, antibody sequences must be
grouped into clonal families and multiple lineage trees can be inferred. When a particular lineage
is of interest, a seeded lineage inference can be performed. Here, the algorithm will search the en-
tire repertoire for clonally related cells containing the “seed” sequence[27][28]. Contrary, unseeded
lineage inference will attempt to group all the sequences into their clonal families[28].

Correct lineage assignment is difficult due to the absence of a ground truth, but various meth-
ods have been proposed. A common approach is to align the reads to the germline sequence
and identify mutations indicative of haplotypes. Another method is to group sequences on their
germline genes. These genes should remain identical within a clonal lineage because SHM only
targets the variable regions of the antibody. Many studies only consider the V and J segment for
clustering because the D segment usually has a low alignment accuracy[6][27]. Often, a threshold
is set for the number of sequencing in a tree to distinguish noise from actual lineages. A PCR
error for example can appear as a mutation suggestive of a clonotype, but this false lineage will
contain only a minor amount of sequences. Additionally, an upper threshold can be set to prevent
a high computational demand. A potential rule to assign the correct clones to lineages is to use the
substitution-prefered nature of AID to only assign clones to a lineage when they have equal CDR3
sequencing lengths. There are various tools available for seeded and unseeded lineage assignment,
each having their own advantages and limitations regarding germline sequences, computational
demands and possible parameters. Partis is a tool for clonal lineage inference based on a hidden
Markov model (HMM) likelihood method. In this model, the hidden states are the bases of the
VDJ germline sequence and the emissions are the possible substitutions[27]. SONAR is a tool for
alignment-based lineage inference, and is capable of subsequent phylogenetic tree reconstruction[6].
Their tree inference is a wrapper around DNAML[29], also a HMM maximum likelihood method.
The tool Clonify determines clonal lineages based on hierarchical clustering of the edit distance,
and is specialized in unseeded inference[30].

During antibody clonotyping many potential complications need to be considered, but diverse
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methods circumvent these problems by taking into account antibody-specific evolutionary fea-
tures. However, most of these current tools and methods are directed towards bulk Ig-seq data
and are not yet available for single cell data.

4.2 Substitution models

A substitution model is necessary to estimate the relationship and divergence time between se-
quences. There are different substitution models with their own assumptions and parameters.
Most of these classical substitution models assume that mutations are site-independent, but this is
not the case for B cell evolution. The enzymatic nature of AID is neighbor dependent, resulting in
hot/cold spots. The absence of models dealing with this phenomenon creates a gap in the phyloge-
netic analysis of B cell evolution. An important step towards closing this gap is the HLP17 codon
substitution model[31]. Even though this model takes into account hotspots, it has computational
limitations as not all motifs cannot be accounted for simultaneously. This same group proposed a
hierarchical framework for repertoire-wide B cell evolution[5]. They assume that lineages within
a repertoire have similar substitution patterns, and therefore constrain all parameters to be iden-
tical between lineages. This approach can quantify SHM feature diversity through time within
and among individuals. They introduce the HLP19 substitution model which has significantly
less parameters than HLP17 and improved estimations. Yaari et al.[32] improved models of SHM
targeting and substitution to be selection independent by only basing them on synonymous mu-
tations. They do this to study SHM mechanisms without selection bias. They use a large high
throughput Ig-seq dataset of human blood and lymph node heavy chain sequences to model the
dependency of the four surrounding bases of a substitution (S5F). In later work[33], similar models
were created based on human and mice light chains. They confirm the neighborhood-dependent
nature of AID, and discover additional hot/cold spots.

These alternative substitution models are another discrepancy between classical evolution anal-
ysis and B cell specific evolution. Despite the efforts to create substitution models more directed
toward antibody evolution, the full complexity of SHM targeting can never be captured with these
motif-based models as targeting could be influenced by bases further up/down-stream. However,
the 5-mer model (S5F) seems to be a suitable trade-off between motif length and computational
demand.

4.3 Tree inference

There are different methods to go from an Ig-seq multiple sequence alignment (MSA) to a con-
structed tree. The distance-based method, based on pairwise similarities and neighbor joining, is
the most simple and fast one and does not require a substitution model. The Levenshtein distance
is commonly used as a distance metric and represents the minimum number of point mutations
necessary to change one sequence into another, this eliminates the need for a MSA. Another tree
inference method is maximum parsimony, which searches for the tree that explains evolutions with
the least amount of mutations. Various tools such as GCtree[34], Phylip[35], IgTree[7] are based on
maximum parsimony. In comparison to distance-based and parsimony methods, likelihood-based
and Bayesian methods are dependent on a substitution model. The parametric method of maxi-
mum likelihood allows for different substitution rates between the V(D)J segments, but is not able
to incorporate intermediate nodes and polytomie[5]. These polytomies and intermediate sequences
serving as internal nodes are another aspect where antibody trees are distinct from traditional trees.
Tools such as IgTree[7] and ImmuniTree incorporate these antibody-specific features. The Bayesian
inference method can incorporate prior biological knowledge, such as mutation-, duplication-, and
death rates. A widely used tool for this is BEAST[36]. This method has a huge computational
demand, mostly due to the use of the Markov chain Monte Carlo (MCMC) algorithm, but can
incorporate calendar time and the comparison of multiple trees.

Aside from Bayesian inference, these methods return unrooted trees. Most biologically mean-
ingful would be to use the germline V(D)J sequence as an outgroup, as this is the starting point
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of affinity maturation. However, the exact genomic composition of the germline sequence is not
always known. There is a high diversity in germline sequence between humans, which makes it
difficult to identify whether there are mutations. This diversity could also alter the inferred mu-
tation rate. BEAST infers the root sequence without germline information the same way it infers
sequences at internal nodes. Another difference between traditional phylogenetic trees and those
tailored for B cell development is the frequency component. Due to expansion, multiple B cells will
have identical sequences. This clonal frequency can be displayed in the trees by node size. This is
important information as the precursor frequency directly impacts the GC reaction[37]. Including
this clonal abundance information in the tree inference process increases accuracy in simulated
trees, this feature is included in GCtrees[34].

4.4 Quantification of B cell evolution

To draw relevant conclusions about B cell evolution from antibody trees, it is important to correctly
interpret each individual lineage tree and the collection of all trees in the repertoire. Qualitatively,
an imbalanced tree repertoire can be interpreted as a single clone outcompeting other clones. Con-
versely, a balanced tree repertoire implies that selection occurs evenly (Figure 1). Quantitatively,
a metric such as the Colless index can be used that accounts for the number of descendants at each
node. Similarly, the Sackin index represents the variance in leaf depths. Both metrics generate a
number per tree, which can be compared between lineages[28]. Since phylogenetic trees are essen-
tially open networks, graph theory metrics could also be applied. Examples of metrics to analyze
the structural properties of such graphs are betweenness centrality and clustering coefficients[38].
If a node has a high betweenness centrality, it means that the shortest path between other nodes
frequently passes through this high betweenness node. This node can be considered a potential
bottleneck and might represent an essential protein in the evolutionary pathway. The clustering
coefficients metric quantifies local connectivity in the network, and represents highly connected
proteins.

Phylogenetic approaches are able to retrospectively reconstruct B cell evolution of clonotypes
within a repertoire. But this approach does not learn from these models in order to make pre-
dictions about future evolutionary events. Additionally, it remains a challenge to study how the
repertoire-wide “forest” of antibody trees evolves as a system.

Figure 1: A schematic example of an unbalanced and balanced tree repertoire. With a balanced
selection, all trees in the repertoire have approximately the same number of descendants.
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Chapter 5

Protein language models for
immune receptors

Protein language models (PLMs) can learn patterns of evolution, both general and antibody spe-
cific. This ability could be applied to learn representations of B cell receptors and potentially
predict evolutionary trajectories. Over the last years, AI powered language models such as Chat-
GPT showed great progress in interpreting and generating text. Words in a text and amino acids
in protein sequences are both context dependent. Words in large bodies of text can refer to each
other. Similarly, amino acids can bind and interact over long sequence distances due to their
dictated 3D structure. This led to the idea to apply language models to protein sequences.

5.1 Language models

Large language models are a type of neural network in the field of artificial intelligence. Neural
networks are machine learning models composed of multiple layers to perform non-linear transfor-
mations on their input. Signals move from the input layer to the output layer through all hidden
layers, and certain layers could be traversed multiple times (Figure 2). For each neural network
there will be fixed hyperparameters and learned parameters. Hyperparameters are set before train-
ing and can for example be the number of layers and nodes, the learning rate, which activation
function transforms the data, and a loss function. Learned parameters could be token embeddings,
positional encoding, and architecture specific parameters.

Current successful language models use a Transformer[39] deep learning architecture. Transform-
ers use parallel multi-head attention mechanisms to prioritize certain tokens over less important
tokens (Figure 3). A Transformer needs a representation of the input sequences (input embedding).
Here, the input sequence is split into tokens and a positional encoding is added to describe their
position in the sequence. In the example of ChatGPT, full-length sentences can be tokenized into
individual words. Multi-head self attention layers weigh the local and distant importance of each
element to capture long range dependencies. After each self-attention layer comes a feed-forward
layer and a normalization to enable parallelism[39]. The output of a language model that uses a
Transformer is dependent on the task it was designed for. For sequence-to-sequence tasks, such
as translations, the output is a transformed sequence. These sequence-to-sequence models usually
work autoregressive, meaning it predicts one word at a time while considering the previously gener-
ated words. GPT-3[40] from the OpenAI GPT series is such an autoregressive language model that
has approximately 175 billion parameters determining the model’s behavior. Another example of
a language model that uses a Transformer is BERT (Bidirectional Encoder Representations from
Transformers)[41], which is designed for masked language modeling (MLM). BERT learns contex-
tual relationships of tokens in both directions by randomly masking some tokens in a sequence
during pre-training. The model predicts the original token that was masked, and the output is a
probability distribution of the entire vocabulary for each hidden token. Some other examples of
tasks for Transformer are classification, regression or summarization.
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Transformer models are usually preferred over recurrent neural networks (RNN), because RNNs
are not able to parallelise and struggle with long-range dependencies[42][43]. RNN processes input
data one token at a time and uses a hidden state to provide information from the previous step
to the next step (Figure 3). The information captured in the hidden state vanishes with each
step, this makes it challenging for the model to capture relationships between tokens over a long
distance. Common RNNs include the long-short term memory model (LSTM) and gated recurrent
units (GRUs) because they mitigate some of RNNs limitations. Both LSTM and GRUs use gating
to regulate the flow of information through the cell states and hidden states, and they update the
information that should be transferred between steps.[44][45][46]

PLMs are usually Transformer models trained on protein sequences. These sequences can be
extracted from databases such as UniProt[47]. On UniProt, sequences can be selected based on
clusters of identity to control redundant sequences in the training data in order to reduce computa-
tional burden. Foundational PLMs are trained on all protein sequences and receptor-specific PLMs
are usually trained on antibody sequences or T cell receptors. Most of these antibody sequences are
derived from the Observed Antibody Space (OAS)[48][49][50][51][52]. The OAS database contains
over a billion paired and unpaired human and mouse antibody sequences. An overview of some
commonly used foundational and receptor-specific PLMs can be found in Table 1. Sequences in
PLMs can be tokenized at amino acid level, but more complex tokenization schemes that include
biochemical properties or structural information are also possible. The output embedding of a
PLM gives a contextualized representation of the input sequences. These embeddings, but also
the scores of the intermediate attention heads, can be used for various downstream analyses such
as predictions about structure, function, interactions, homology, and evolutionary trajectory of
proteins.

Figure 2: A classic artificial neural network.

5.2 Protein structure prediction

A central challenge in protein biology is understanding the relationship between sequence, structure
and function. The success of AlphaFold2[1] protein structure prediction indicates how neural
networks can be useful in this sequence-structure-function problem. AlphaFold identifies conserved
regions by creating a multiple sequence alignment (MSA) of the input sequence with sequences
from various databases. Next, the model uses a Transformer pre-trained with a MLM to capture
long range dependencies. After AlphaFold, more language models for protein structure prediction
were created. ESMFold[54] showed high similarity to AlphaFold2, but was an order of magnitude
faster. Methods specific for predicting antibody structure were also proposed, such as IgFold[55]
and DeepAb[56] and demonstrated comparable accuracy with AlphaFold.
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Figure 3: Algorithm example of a Transformer model (derived from Vaswani et al.[39]) and a Recurrent
Neural Network (RNN). The transformer architecture repeats for each layer (N). The RNN repeats for

each input token (T).

5.3 Protein functional prediction

Foundational PLMs showed great promise in observing patterns related to structure and function
in general protein sequences. The output embedding of the Transformer ESM-1b[43] represents bio-
chemical properties, remote homology, and protein family alignment. Even though ProtBERT[53]
is trained on a substantially larger dataset, ESM-1b outperforms ProtBERT on residue prediction
accuracy and performs with similar accuracy on predicting cellular location. Because some of
these learned patterns from general protein sequences might differ from those of BCR sequences,
receptor-specific PLMs such AntiBERTa[49], AbLang[51] and Sapiens[52] were proposed. While
AntiBERTa is a single model trained on unpaired heavy and light chains sequences, AbLang and
Sapiens are trained on the heavy and light chain individually. AbLang outperformed ESM-1b in
residue prediction of antibody sequences. The final embedding of AntiBERTa is a combination of
the self-attention scores of the 12 attention heads in the final layer. High self-attention scores tend
to be between residues in the CDR3 region, reflecting how AntiBERTa pays attention to what’s
most variable between sequences. The AntiBERTa embedding showed a better representation of
mutational load and B cell maturation state than ProtBERT and Sapiens, based on 1000 random
BCR heavy chains[49]. Details about mentioned PLMs can be found in Table 1.

These comparisons show that the model’s performance depends on the task at hand, and the
model’s architecture and training method. B cell specific evolution is significantly different from
protein evolution. V(D)J recombination provides incredibly diverse naive B cell repertoires in
a human body, which can further undergo somatic hypermutation to an even higher number of
potential antibodies. Where antibody evolution is focused on gaining new functions, protein evo-
lution is primed to conserving function. For this reason, it is hypothesized that receptor-specific
PLMs might be better at learning and predicting B cell evolution than foundational PLMs.

This hypothesis was tested by Hie et al.[3] by guiding affinity maturation of various antibodies
with the foundational ESM-1b[43] and ESM-1v[2] models. ESM-1v is an ensemble of 5 Trans-
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Foundational PLMs Model Layers Parameters Training data
ESM-1b[43] 33 650M 250M UniRef50

ProtBERT[53] 30 420M
2122M BFD100
and 216M
UniRef100

Receptor-specific PLMs

AntiBERTa[49] 12 86M
15M light chain and
42M heavy chain
OAS

AntiBERTy[50] 8 26M
558M OAS (heavy
and light chain)

AbLang[51] 12 110M
187,068 light chain
and 14M heavy chain
OAS

Sapiens[52] 4 568,857
19M light chain and
20M heavy chain
OAS

Table 1: Some foundational and receptor-specific Protein Language Models (PLMs). Training data is
the number of sequences. M = million; BFD = Big Fantastic Database1; UniRef = UniProt Reference

Cluster[47]; OAS = Observed Antibody Space[48]

former models based on transfer learning. With transfer learning, information learned from one
task is used to solve another. In this work[3], they concluded that a foundational PLM without
task-specific training data can better guide antibody evolution towards a higher affinity than the
receptor-specific PLMs AbLang[51] and Sapiens[52]. They conclude that evolutionary likelihood is
highly associated with higher fitness, because a foundational PLM can guide affinity maturation.
But as mentioned earlier, the receptor-specific PLM AntiBERTa[49] provides a contextual under-
standing of BCR sequences. Despite only being trained on BCR sequences, the model is able to
identify naive and memory B cells. The separation between these subsets was less obvious when
processing the same set of BCR sequences with the foundational PLMs ProtBert and Sapiens.
Besides B cell maturation state and and V gene family, the AntiBERTa embedding was also able
to find a pattern in mutational load. This pattern was highly associated with maturation state,
as memory B cells showed to have an overall higher number of mutations than naive B cells. This
result is in line with the hypothesis that memory B cells have undergone more SHM than naive
B cells. These findings indicate that AntiBERTa is capable of learning B cell evolution, as more
mutations indicate a cell to be further along the evolutionary trajectory. So it appears that a
receptor-specific model might be better in capturing information related to function[49], but a
foundational PLM might be better in predicting mutations that increase fitness[3].

5.4 Fine-tuning

Language models are usually pre-trained on more general datasets in order to learn contextual
patterns. After this, a pre-trained model can be fine-tuned for a specific task. During fine-tuning,
some parameters of the pre-trained model are updated by further training on labeled data us-
ing a task-specific loss function. For example, AntiBERTa was fine-tuned for paratope prediction
by adding a binary classifier head on top of the 12th layer[49]. Known paratope residues from
the structural antibody database (SAbDab)5[57] were used for this. During fine-tuning, the self-
attention scores changed and AntiBERTa outperformed other paratope prediction methods such
as ProtBERT and Sapiens[49]. Fine-tuning of ESM-1b was performed to serve as a variant effect
predictor, its accuracy was comparable with a state-of-the-art method[43].

Most receptor-specific PLMs use a separate model for the heavy and light chains, or use a single
model with unpaired antibody sequences. Determining binding affinity and epitope position is
dependent on the combination of the heavy and light chain. Therefore, receptor-specific PLMs
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could be improved by training on paired data. Burbach et al.[58] recently tested this hypothesis by
creating two BERT-based models, one with native paired and one with unpaired sequences. They
concluded that cross-chain learning significantly improved the model’s performance on predicting
masked tokens. However, the high cost of generating a natively paired antibody dataset is a huge
limitation and the shortage of data poses a drawback on this model. As an alternative, they also
fine-tuned the ESM-2[54] model with the same dataset of paired antibody sequences. They observe
that the cross-chain attention is now focussed on immunologically relevant regions, despite ESM-2
being a foundational PLM. This result supports the idea of using a PLM trained on a large dataset
to capture general patterns of protein evolution, and fine-tuning it on a smaller dataset for task
specific purposes.
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Chapter 6

Protein language models for
protein evolution

In nature, B cell evolution searches across a huge space of possible sequences by SHMs and V(D)J-
recombination for sequences that improve fitness. Reproducing this approach for artificial evolution
is experimentally unfeasible. However, PLMs are able to learn patterns of general evolution when
trained on a variety of naturally occurring proteins.

6.1 Evo-velocity

Besides single residue mutations (local evolution), PLMs can be applied to study long evolutionary
trajectories (global evolution). The term “evo-velocity” was introduced by Hie et al.[59] and
refers to the dynamic trajectory of protein evolution. Insight in global evolution is gained by
making predictions of local evolution. Here, the foundational PLM ESM-1b[43] is used to create
an embedding and predict pseudolikelihood. First, they construct a sequence similarity graph
based on Euclidean distance between the language model embeddings and connect the nodes to
its k nearest neighbor. The pseudolikelihood for each sequence is predicted by the language model
using a MLM and calculating conditional likelihoods for certain residues. The evo-velocity score,
which is the pairwise difference in pseudolikelihood, is calculated for each edge in the graph and
provides directionality. A score above zero moving from sequence A to sequence B indicates that
sequence B evolves from sequence A, and vice versa. The vector field resulting from the graph
can be used to predict the roots and the pseudotime order, which are hypothesized to represent
evolutionary order. Additionally, mutations can be identified that correlate with the direction
of evo-velocity. This evo-velocity was able to accurately reconstruct evolution of influenza A
nucleoprotein and hemagglutinin, SARS-Cov-2 glycoprotein, eukaryotic globin protein family and
cytochrome c, and the ancient evolution of serpin and glycolytic enzymes[59]. An important
limitation of evo-velocity is the possible absence of intermediate sequences. The model relies on
observed sequences in public databases with no ground truth about the actual evolutionary order.
If there are generations between sequence A and sequence B that are not in the dataset, this
approach might not be able to estimate the correct evolutionary order. Another limitation to
consider is that this method does not consider insertions and deletions when predicting mutational
effects.

6.2 Predicting protein evolution

Evo-velocity has some advantages over traditional phylogenetic methods. Evo-velocity can analyze
larger amounts of sequences and include multiple roots. This landscape can model convergent
evolution instead of just divergent evolution. Additionally, evo-velocity can provide a notion of
uncertainty. Most importantly, where phylogenetic methods model retrospective evolution, evo-
velocity is able to predict future evolution. This ability could have major implications in predicting
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the progression of a viral outbreak and in designing broadly neutralizing antibodies. As an example,
Hie et al. used a bidirectional LSTM language model and combined the ability of a sequence to
keep infectivity but also increase fitness to predict escaping mutations[60]. In another case, Han et
al. presented MLAEP, a multitask deep learning neural network to predict mutations in the spike
receptor-binding domain (RBD) that could have high antigenic evolutionary potential[61]. They
fine-tuned the ESM-1b model to predict the binding affinity of RBD variants towards ACE2, a
crucial receptor for SARS-CoV-2 to enter cells.
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Chapter 7

Protein language models for B cell
evolution

B cell evolution can be learned retrospectively with phylogenetic methods, but is unable to provide
a prospective outlook. PLMs showed capability to learn general rules of structure and function
from sequences in order to pick up information about 3D structure, binding affinity, maturation
state and viral escape, which could all be indicative of B cell evolution. This leads us to the main
question of this review: Can PLMs predict B cell evolution? And if this is the case: Can these
learned signatures of B cell evolution guide synthetic antibody evolution?

7.1 Pre-training mechanisms

Receptor-specific PLMs don’t always outperform foundational PLMs in antibody specific tasks, but
the models can be fine-tuned to improve performance. The AnTibody Understanding Evaluation
(ATUE) benchmark further investigates the possible benefits of antibody-specific pre-training and
fine-tuning by evaluating different models on supervised tasks with a range of specificity levels for
antibody evolution[62]. They compare the pre-trained foundational PLM ESM-1b, the pre-trained
receptor-specific PLM AntiBERTa, and another pre-trained receptor-specific PLM named EATLM
where they included additional biological mechanisms. The biological mechanisms included during
EATLM pre-training are ancestor germline prediction and mutation position prediction. These
objectives could guide the model to take into account both global and local evolutionary patterns.
This benchmarking states that foundational PLMs and receptor-specific PLMs perform similarly on
antibody binding and paratope prediction. However, EATLM outperforms these models slightly.
To challenge the prediction of B cell evolution, ATUE classifies B cell mature states during evolu-
tion. For this task, receptor-specific PLMs significantly outperform foundational PLMs. This is in
agreement with the results from AntiBERTa[49]. EATLM performs even better than the receptor-
specific PLMs in function prediction. This indicates that modeling the biological mechanisms of
antibody evolution during pre-training could improve the prediction of B cell evolution.

7.2 Proof-of-principle

The receptor-specific PLM AntiBERTy[50] was created to understand the composition of an in-
dividual’s immune-repertoire, see Table 1 for details. This model was pre-trained on the OAS
database, and later applied to calculate embeddings of the immune repertoire of four donors that
developed neutralizing antibodies (VRC01) against HIV-1 gp120. Evo-velocity scores based on
the AntiBERTy embedding revealed evolutionary trajectories within the immune repertoire. The
observed trajectories between germline sequences and highly mutated sequences within each reper-
toire showed consistency with affinity maturation[50].
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7.3 Synthetic evolution

PLMs attempt to learn B cell evolution by predicting mutations that increase antigen binding
affinity, predicting B cell maturation state, and by predicting the evolutionary trajectory. These
predictions could potentially guide synthetic antibody production. This artificial evolution process
could be faster than natural evolution and therefore be clinically relevant for various diseases. Hie
et al.[3] showed that foundational PLMs were applicable in protein engineering for therapeutic
purposes by producing antibodies with an increased affinity for SARS-Cov-2, Ebola and Influenza.
Their synthetic antibodies had increased affinity and viral neutralization activity, but no significant
changes in poly-specific binding or immunogenicity. Even though the improved affinity is lower
than usually observed in in vivo evolutionary trajectories, the search space of possible mutations
was significantly narrowed down in comparison to natural SHM. They used foundational PLMs
with the hypothesis that high evolutionary plausibility would be translated into higher fitness.
Selecting an antibody with high affinity towards an antigen is one of the most important parts of
designing a broadly neutralizing vaccine. When the virus mutates frequently, the antibody must
target an antigen that is conserved over multiple strains to prevent mutational escape. And by
targeting the germline of this antibody, the maturation process can be initiated from an early
stage.
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Chapter 8

Discussion and conclusion

With its high diversity and rapid evolution, the B cell immune response is a unique evolutionary
process. The evolving dynamics of individual B cell lineages and the entire BCR repertoire are
hard to reconstruct and even harder to predict. Phylogenetic approaches with various models of
SHM, V(D)J-recombination and selective pressure have been able to infer evolutionary relation-
ships between BCR sequences. But these phylogenetic trees lack the ability to learn patterns from
input sequences and apply this knowledge for prediction tasks. The introduction of Transformer
models has brought protein language models (PLM) to a new level. The contextual embeddings
and attention mechanisms of these models are now able to predict structure, function, binding,
and evolution of proteins. This is promising for its application to antibody sequences and B cell
evolution. However, there are limitations to these models to consider. Most prominent one being
that these models need a fixed sequence length, and the memory and computational complexity
grows with longer sequences. Second, pre-training can take a longer time when including more
sequences and more layers. To deal with these shortcomings, it might be a good approach to
combine PLMs with other methods such as fine-tuning, task-specific pre-training, or components
of a phylogenetic analysis and network analysis.

Important work to show that PLMs can be used to study repertoire-wide B cell evolution is
the introduction of AntiBERTy and its observation of trajectories in the immune repertoires of
four donors where they observe key binding residues[50]. Another powerful result from a different
study was the ability of PLM learned mutations to efficiently guide artificial evolution and pro-
duce synthetic antibodies with high binding affinity[3]. A solid application of these approaches
would be to create more broadly neutralizing antibodies against viral infections. As many viruses
mutate quickly, vaccines would be more effective if the induced antibodies can bind to potential
upcoming variants. Employing artificial intelligence methods, next to experimental approaches,
can accelerate the process of identifying key mutations for a higher binding affinity. This is es-
pecially important in situations where time is of the essence, such as a pandemic or a virus that
is highly virulent. The production of high quality synthetic antibodies could also be useful for
antibody-based immunotherapy for diseases such as cancer, auto-immune diseases or allergies.

Before PLM-guided monoclonal antibodies can become clinically relevant, various potential chal-
lenges need to be addressed. It is not yet clear what kind of pre-trained model is the most optimal
to analyze B cell evolution. This is not only a trade-off between enough data and low computational
burden, but the exact architecture and biological information are of big influence on the models
performance. While Hie et al. showed that a foundational PLM without task-specific information
can guide antibody evolution[3], the ATUE benchmark showed that a receptor-specific PLM with
additional biological information during pre-training can predict B cell evolution with higher ac-
curacy[62]. Some biological mechanisms to consider are the germline sequence, the mutation and
its position, heavy and light chain pairing and the training data diversity. When assessing evolu-
tionary order of sequences, an accurate germline sequence is necessary. In some cases, especially
with lab mice or when working with in vitro data, the germline sequences can be characterized
with high accuracy. But in many cases, such as in vivo human data, the germline needs to be
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predicted. Some phylogenetic methods for lineage assignment are capable of reconstructing the
germline from an IgSeq experiment. A second challenge are the unique mutational dynamics or
antibody sequences due to SHM, clonal selection, and known hot/cold spots. Some substitution
models for phylogenetic tree inference take these mechanisms into account, but it is not known how
exactly the attention layers of receptor-specific PLMs consider these processes. An antibody needs
both its heavy and its light chain to bind to an antigen. Despite the necessity of this combination,
PLMs trained on unpaired antibody sequences are able to predict binding affinity and the mech-
anisms behind this phenomenon remain elusive. A recent study did show that fine-tuning a PLM
with paired antibody sequences increased its accuracy[58]. This leads to a fundamental aspect of
every model; what training data should be used? As stated before, general protein sequences can
be used or only BCR sequences, these can be paired or unpaired, exclusively human, mice, or other
species. Multiple identical sequences can be included, but the dataset can also be non-redundant.
And what part of the data should be used for pre-training, fine-tuning, testing, or evaluation? The
options are endless, and thus far have shown to be task-specific. Another challenge is to correctly
use the PLM embeddings to infer evolutionary relationships. The creation of a vector field based
on evo-velocity score is a huge step in the direction of identifying trajectories of B cell evolution.
But like phylogenetic trees, the absence of a ground truth is a considerable limitation. Finally,
when using synthetic antibodies to design vaccines, certain aspects of stability and safety are not
considered by PLMs. The antigens must remain effective after storage, and they should not initiate
unintended immune responses.

Despite all these uncertainties, the use of PLMs to study B cell evolution and engineer synthetic
antibodies shows great promise. With the increasing amount of sequenced proteins and compu-
tational power, the full potential of PLMs has not been reached yet. We hope this review gave a
clear overview of the different approaches to study B cell evolution, and a promising outlook on
its downstream applications.
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