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Abstract—Precision medicine plays a crucial role for cancer
diagnosis and treatment planning. With significant advancements
in the medical imaging field, new techniques are being developed
to characterize diseases, predict treatment outcomes, and deter-
mine survival rates. In this context, the collection of image data
over time known as longitudinal imaging has become increasingly
popular in clinical oncology for its prognosis potential. Radiomics
is a widely used tool to extract features from such images to
analyze them. While traditional radiomic approaches such as
texture or shape analysis have proven to be effective, they may
lack sensitivity to certain changes, occasionally oversimplifying
the complexity of the data under study. Furthermore, these
methods are sometimes not stable enough to noise or image
artifacts, and do not generalize well, making it challenging to
compare scans over time or across different studies. In this paper,
we present a review of the use of radiomics in longitudinal
oncologic studies, specially focusing on its applications in CT
imaging. To this end, this study aims to explore three main alter-
native methods to traditional radiomics: for feature extraction,
topological data analysis (TDA), including persistent homology,
and geodesic geometry; and for data analysis, Cox and joint
statistical modeling. By capturing and analyzing more complex
features, these methods offer new valuable insights into disease
progression, making them strong candidates for the development
of more accurate treatment planning and prognostic models in
clinical oncology.

Index Terms—Radiomics, Computed Tomography, Longitudi-
nal imaging, Texture analysis, Topology, Persistent Homology,
Geodesic Geometry, Statistical Analysis, Joint models.

I. INTRODUCTION

Significant advancements in the medical imaging field have
led to the development of new and more refined methods to
evaluate and analyze medical images. By accurately decipher-
ing the clinical meaning beneath such images at an early stage,
diseases could be detected and treated with a much greater
precision [1]. Radiomics is a technique that extracts high-
dimensional quantitative information invisible to the naked
human eye by means of sophisticated and, sometimes, con-
siderably complex mathematical algorithms [2]. Countless
radiomic features can be calculated, creating lists that could
be used to create correlations between image characteristics
and the condition under study. Radiomics presents a novel
approach to gather the information from the images, helping
the progress of clinical decision-support systems, response to
treatments, and the prediction of disease evolution or even
survival rates[3][4].

Although radiomics has been applied in a variety of dis-
eases, it has found its most extended applications in oncol-
ogy. Specifically, radiomics plays a crucial role in precision
medicine for cancer diagnosis, treatment and prognosis. Com-
puted tomography (CT) has emerged as a key modality in this
field [5], where there has been a growing use of longitudinal
images to track tumor evolution over time. Contrary to using
single CT images at a certain moment, by acquiring a series
of scans at multiple time points, longitudinal studies allows
for a more continuous monitoring of the disease. Longitudinal
data presents multiple advantages to the field as it includes
further information to static scans, offers a much deeper
understanding about such tumor, and potentially admits a
superior analysis of heterogeneity changes, tumor dynamics,
and overall progression of the disease [6].

Radiomics can potentially optimize treatment planning and
monitoring of tumor dynamic factors by analysing quantitative
parameters over time. In the context of longitudinal image
analysis, traditional radiomic approaches have proven to be
of help by capturing valuable characteristics. For instance,
texture analysis examines intensity pixel variations and extract
distinct patterns from the images [7], and shape analysis can
describe geometric properties to characterize specific lesions
[8]. Nevertheless, such methodologies tend to be sensitive
to noise, image artifacts, and may not capture the com-
plete behavior of the tumor microenvironment, occasionally
oversimplifying the complexity of the time-dependent data
and misreading tumor progression [9][10]. In addition, new
statistical modeling alternatives have emerged to analyze time-
dependent data, encouraging researchers to reevaluate cur-
rently used models like the Cox proportional hazards model
for its multiple limiting assumptions that hardly hold for this
type of datasets [11]. Given the lack of consensus among the
research community for analyzing images over time, and the
limitations of the currently used methodologies, the purpose
of this literature review is to give an overview of the field
of radiomics in evaluating longitudinal images, highlighting
possible radiomic feature extraction alternatives to traditional
analytical methods, statistical models, challenges, and future
perspectives in this growing field.

The literature review is organized as follows: (II) the search
strategy followed; (III) a brief theoretical introduction of the
radiomics workflow, focusing on its applications in CT imag-
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ing; (IV) an introduction to radiomics in longitudinal image
characterization, together with the description of alternatives
for feature extraction and data analysis with real applications
in the clinical setting; (V) discussion of the current challenges
of the methodology described, and some future directions of
radiomics field; (VI) and a short conclusion.

II. SEARCH STRATEGY

For this literature review, different research strategies were
followed for paper inclusion. The base search strategy was
as follows: (radiomic*) AND (oncology OR cancer) AND
((computed tomography) OR CT OR (medical imaging)).

Depending on the methodology described, the search strat-
egy was modified as needed including the required key words
for each section. Therefore, for Section III, we included AND
(classification OR prognosis OR (treatment planning)); for
Section IV-A we included AND (longitudinal OR follow-up
OR (over time)) AND ((topological data analysis) OR TDA
OR (persistent homology) OR (topolog*)); for Section IV-B
we included AND (longitudinal OR follow-up OR (over time))
AND (geodesic* OR (geodesic geometry)); and for Section
IV-C, we included AND (longitudinal OR follow-up OR (over
time)) AND ((joint model*) OR (survival prediction) OR Cox).

The minimum publication date inclusion was set to 2014,
and the search was used in Google Scholar and PubMed. To
analyze the query results, papers were organized from most
relevant to least relevant, rejecting those corresponding to
systematic reviews, reviews, books, and from other imaging
modalities.

III. RADIOMICS WORKFLOW

Radiomics relies on a series of steps to extract the required
features from medical images and analyze them. The radiomics
workflow is summarized in Figure 1.

Fig. 1. Summary of the steps to be followed in a radiomics workflow.
Abbreviations: Region of Interest (ROI)

A. Data collection

The first step in a radiomic study is the collection of the
required images. Although this might appear like a simple step,

it involves multiple challenges concerning acquisition param-
eters such as slice thickness, dose modulation, reconstruction
algorithms, or scanning protocols [5]. Standardized imaging
protocols have proven to be essential in minimizing unwanted
variability within the datasets under study. Defeudis et al. [12]
investigated how CT standardization between multiple centers
affected radiomics workflow and radiomic feature calculation,
concluding that inter-center normalization is necessary and key
for obtaining accurate results.

B. ROI selection and image segmentation

The next step involves the pre-processing of the images,
centered in segmenting the region of interest (ROI), i.e.
delineating the region of the image where the radiomic features
will be extracted. Currently, there exists multiple image seg-
mentation tools, from manual to completely automatic ones.
While manual delineation has been the gold standard method
for image segmentation for many years, it may be prone to bias
and inconsistencies coming from the clinicians performing the
task, as well as being an extremely time-consuming process.
Because of that, automatic and semiautomatic methods have
gained interest, reducing computational time and variability
[1][13].

C. Feature extraction, feature selection and dimensionality
reduction

To effectively analyze the ROI delineated, features should be
extracted and selected. Feature extraction consists of the calcu-
lation of multiple quantitative features (properties of the tissue
under study) to uncover previously unseen characteristics on
the images. As shown in Table I, a vast number of features
can be derived from CT images. Some classical approaches
are statistical methods such as histogram descriptors to study
the spatial arrangement of gray-level intensity values [14],
or texture analysis to examine the intensity pixel variation
to characterize distinct patterns of different structures [15];
mathematical morphology methods for shape and size char-
acterization [16]; or model-based methods, modelling texture
probabilistically [17], geometrically or using basis functions
[7]. Such variations are generally related to underlying quali-
ties of the dataset under inspection, making feature selection a
key step in numerous fields. Such properties have proven to be
significantly important in the medical imaging field for diverse
tasks such as classification, segmentation, or object detection
[18]; however, not all of them are appropriate for the specific
goals of each investigation.

Feature selection is the process of reducing the number
of extracted features to achieve an optimal analysis. Dimen-
sionality reduction can be accomplished through a variety
of methods, but a universally accepted standard methodology
has not yet been established for excluding the redundant and
irrelevant features [1]. Among the most common possibilities
of feature extraction methods in CT imaging we can find
principal component analysis (PCA) [25], LASSO feature
selection [26], hierarchical clustering [27], random forest [28],
etc. In the critical reflection from Timmeren et al. [1] they
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TABLE I
FOUR EXAMPLES OF MAJOR CLASSES OF RADIOMIC FEATURES.

SUMMARY EXTRACTED FROM [19]

Radiomic Feature Class Definition Radiomic Feature Examples
Morphological features Physical properties related to shape and volume [16] Surface area, surface-to-volume ratio, sphericity [20], etc.

Statistical features
Histogram based features (First-order features) [14]

Mean, standard deviation, kurtosis, skewness, energy,
entropy, uniformity, and variance, etc.

Texture based features (Higher-order features)
Gray level co-occurrence matrix (GLCM) [21]
Gray level run length matrix (GLRL) [22]
Neighbourhood gray-tone difference matrix (NGTDM) [23], etc.

Regional features Variation intensity between regions Sub-regional partition of groups of voxels into clusters [24]

Model-based features Characterize shape complexity over scale ranges Fractal dimension [17]

presented a summary of widely used steps for dimensionality
reduction. It first involved a reproduciblility analysis, followed
by the calculation of an ”importance variable”, data layout,
cluster correlation, and final feature selection.

D. Data analysis

The final goal of radiomics is to build models and improve
clinical decision-making systems for diagnosis, prognosis, and
treatment planning, among others. Because of that, once the
most relevant features have been selected, the last step in the
workflow is to analyze them. Many tools can be used for
different purposes [28]. For instance, in classification tasks,
logistic regression [29] is the statistical model most widely
used, while other commonly applied methods include random
forest [30], support vector machine (SVM) [31], k-nearest
neighbour [32], and neural networks [33]. Moreover, apart
from classifying diseased and not diseased patients, radiomics
can also predict treatment response and survival outcomes.
For prognosis studies, the most commonly used models are
Cox’s proportional hazard models [34], alongside regression
[35], random forest [36], and SVM models [37].

Applications of Radiomics in Computed Tomography

Radiomics has become an emerging field in CT over the past
decades. Several studies have focused on proving its utility,
ranging from identifying critical risk factors to classifying
various stages of different types of cancer.

For instance, Zeng et al. [38] identified different risk factors
for the development of brain metastases (BM) in patients
with stage III non-small cell lung cancer. They extracted
from the delineated gross tumor volume multiple features,
including first-order statistical features, texture features and
morphological features, and developed three different BM
models to determine the positive prognostic value of age
and cell carcinoma type. Moreover, in another study, Aerts
et al. [39] related underlying tumor phenotypic patterns with
radiomic features, proving the prognostic quality of feature
extraction in lung and head-neck cancer patients. They devel-
oped a radiomics signature to capture tumor heterogeneity and
demonstrated once more its prognostic power, revealing a real
possibility of improving clinical decision-support systems.

In addition to predictive models, multiple studies also fo-
cused on classification tasks. For example, Gitto et al. [40]
classified cartilaginous tumors by training a machine learning
(ML) model using radiomic features, potentially serving as
guidance in preoperative tumor characterization.

IV. RADIOMICS IN LONGITUDINAL IMAGES

The usage of longitudinal imaging has become increasingly
important in clinical oncology due to its rapid advancements in
personalized medicine and treatment therapies. With the study
of time-dependent scans, additional temporal information is
introduced, enriching the analysis, but also including more
complexity to it. With these images, more precise decisions
could be made at specific time points to maximize the potential
of such images, relating the current state of the disease with
the predictions of the condition’s future status with the help
of mathematical and computational procedures [41][42].

In that context, delta-radiomics was introduced, assessing
longitudinal changes in radiomic properties and highlighting
variations of the extracted features over time. This allowed
for a more accurate evaluation of changes related to external
variables such as immunotherapies or targeted treatments that
may have contributed to morphological changes invisible to
the naked eye [41][43]. Nevertheless, limitations such as lack
of validation, generalizability, and absence of professional
background on the topic still appear [44]. Multiple advanced
analytical methods exist to capture features containing texture,
shape and size information, and associate such longitudinal
markers to occurrences at different time points. This review
focuses on the potential usage of topological data analysis
(TDA) [45], persistent homology [46], geodesic geometry
analysis [47] for feature extraction, and the latter statistical
modeling for data analysis.

A. Topological data analysis and persistent homology

As introduced in Section III-C, numerous features can be
derived from medical images, yet careful consideration is
required to ensure the selection of the most appropriate ones
for the specific task at hand. Specifically focusing on texture
analysis, challenges remain in effectively capturing global
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Fig. 2. A: Example of the evolution of simplicial complexes formation in a cloud of N=10 points sampled from a circle; B: corresponding barcode for
β1, which refers to Betti number 1 that is the total number of 1-dimensional holes (loops); and C: corresponding persistence diagram, where H0 refers to
zero-level homology features (connected components) and H1 refers to one-level homology features (loops). Birth corresponds to the value ϵ when the feature
appears for the first time, while death corresponds to the value ϵ when the feature disappears. Image adapted from [48].

and local behaviors in a reproducible way as methodologies
greatly vary between studies [49]. They may fail to accurately
discriminate complex patterns related to changes in time as
features tend to be local, sometimes missing more complex
contextual information [50].

Topological data analysis

TDA seeks to link spatial properties of a dataset in a
more global and connected manner, characterizing structures
as shapes based on topological features. This method, instead
of focusing on individual points, connects them to study how
they relate to each other. By doing so, TDA extracts valuable
information that remain unchanged even if the data is distorted,
identifying for instance how separated are different groups
(connected components), if there are any gaps (voids), or
if more complex arrangements (higher dimension structures)
appeared [45]. TDA provides different techniques to tackle
some of the main limitations in the modern data analysis field
like the high dimensionality problem, the lack of simultaneous
local and global information, or the absence of methods to
capture multivariate shapes [50][48].

Let us consider a cloud of N points sampled from a circle.
In TDA, point clouds are frequently perceived as simplicial
complexes, mathematical structures used to describe shapes.
The units that conform simplicial complexes are called sim-
plexes, which can be of different forms depending on their
connectivity as shown in Figure 3. A subset of data points
(k + 1) is known as k-simplex. In other words, a single data
point is a 0-simplex, a line formed between two data points
a 1-simplex, a triangle formed between three data points a
2-simplex, and so on [46].

Fig. 3. Simplexes summary: 0-simplex, 1-simplex, 2-simplex, 3-simplex, with
an example of a simplicial complex.

Persistent Homology

Persistent homology is a method in TDA that describes the
aforementioned extracted structures in a more intuitive manner
by characterizing the features in the dataset at different scales
[46]. This method makes use of homology, a principle that
uses algebraic computations to relate different connectivity
properties. Persistent homology looks at how features appear
(birth) and disappear (death) by modifying ϵ, a scale parameter
that describes different radii sizes around the data points [48].
As ϵ increases, so does the radii around the data, eventually
connecting points to each other to form complex arrangements,
such as holes, voids, etc.

To evaluate and study the appearance and disappearance
of such structures, the evolution need to be tracked based on
ϵ. Structures are counted in groups called Betti numbers as
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βth, where β0 is the total number of connected components,
β1 is the total number of 1-dimensional holes (loops), β2
is the total number of 2-dimensional voids (cavities), etc.
This tracking process is known as filtration, a procedure that
offers a deeper understanding of the dataset by registering the
variations in shape and texture across distances to devise the
most informative features. Topological features that are kept
constant in the filtration process are known as persistent, and
are considered to be the most significant [48].

Figure 2.A shows a visual representation of the evolution of
simplexes as ϵ increases in a simple point cloud extracted from
a circle. This specific dataset presents an example of a circular
feature β1 that persists across multiple values of ϵ, from ϵ = 0.7
to ϵ = 2. To summarize such evolution, persistent homology
is often represented in barcodes (Figure 2.B), where each bar
starts where the feature appears for the first time and ends
where the feature disappears; or alternatively, in persistence
diagrams (Figure 2.C) where the features are presented in an
Euclidean plane such that (x,y) = (birth, death). The x-axis
represents when the feature appears for the first time (birth at
ϵ = 0.7), and the y-axis when the feature disappears (death at
ϵ = 2). These birth and death of features can be extrapolated
to real applications. An example could be the study of the
presence of vessel bumps, where |death − birth| will relate
to the prominence of the bulge, i.e. the persistence of the
extracted homological feature corresponding to the bump [51].

Applications of TDA and Persistent Homology in the
clinical setting

Topology analysis and persistent homology have been
widely used to tackle diverse research questions. In a study
from Somasundaram et al. [52], topological features were
extracted from CT lung scans by examining pixel intensity
values. They implemented a TDA analysis called Cubical
complexes, successfully capturing and analyzing topological
characteristics as the image was thresholded at different pixel
values. Moreover, they also proposed a novel output visual-
ization plot by displaying 0-dimensional topological features
against distinct Hounsfield unit values, which they later related
with survival models. They demonstrated the real practical use
of topology which, together with traditional radiomics, could
greatly improve clinical decisions.

Moreover, in a study from Tanabe et al. [53], persistent
homology was used to detect and analyze 3D physiological ab-
normalities on chest CT images. Following a similar reasoning
as in the previous study from Somasundaram et al. [52], they
determined the lifetime of features by modifying threshold
values. Persistent homology was applied on 3D segmentations,
obtaining the correspondent three persistence diagrams, one
for each dimension (H0 for connected components, H1 for
holes, and H2 for voids). The results confirmed that topo-
logical analysis can successfully assess challenging structural
modifications in CT imaging, expanding possibilities for future
longitudinal data analysis of the topic.

Persistent homology has also been applied for tumor classi-
fication. For instance, Belchi et al. [54] demonstrated that TDA
can greatly improve results obtained using standard features,
such as percentage area or volume calculation, by extracting
quantitative features derived from persistent homology. They
highlighted its superior disease classification and potential
use for personalized medicine. However, they also stated that
additional research needs to be done to evaluate the direct ap-
plication in longitudinal studies. In a recent research performed
by Vandaele et al. [55], it has also been reported that TDA
has proved superiority in classifying histology, progression,
and treatment response.

In addition to those findings, Igbal et al. [56] presented state
of the art results for detection and classification of SARS-
CoV-2 using persistent homology, achieving a precision and
accuracy of 99.4%. Their study emphasized that TDA is an ap-
propriate tool to analyze CT data, even outperforming modern
deep learning algorithms. TDA generates more interpretable
features, needs less training data and attains comparable quan-
titative results to traditional radiomic approaches.

B. Geometric, shape, and geodesic analysis

We have previously discussed that topology captures global
features that remain unchanged under continuous deforma-
tions, extracting shape and texture features from the images;
however, geometric information is also crucial to achieve
a correct and complete analysis. Traditional morphological
features have been widely used to extract geometric properties
such as volume, surface area, and size [57][58][59]. Despite
this, some barriers continue to exist, specially when dealing
with longitudinal data. Classical morphological features might
fail to precisely describe small shape changes due to its
simplified methodology. For instance, volume features provide
one single number to measure the size of the tumor oversim-
plifying its shape, and potentially missing crucial information
about its heterogeneity, curvature, or local changes. More
sophisticated methods need to be included to extract additional
geometric information and provide a finer dynamic shape
analysis.

Fig. 4. Geodesics examples. A: Riemannian manifold corresponding to an
Euclidean space, a 2D plane; B: Riemannian manifold on a 3D surface, a
sphere. Geodesics displayed correspondingly in red from points A to B in
each example.
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Geodesic geometry

To extrapolate geometric analysis to more complex surface
analysis, lets define a Riemannian manifold as a smooth con-
tinuous space where Riemannian metrics can be defined. These
Riemannian metrics allow researchers to define geometric
concepts in surfaces such as tumors [60] and characterize more
advanced features. Given two points A and B in a graph, a
geodesic is defined as the shortest path between them. In other
words, a geodesic distance is the minimum number of edges
one have to travel to connect two points.

An example of such shortest trajectories is presented in
Figure 4. The simplest scenario is displayed in Fig 4.A, where
the Riemannian manifold corresponds to a Euclidean space. In
this 2D space, the geodesic distance is reduced to straight lines.
Moreover, Fig 4.B shows a similar scenario in a 3D sphere,
where the geodesics are not longer straight, but segments of
great circles.

Applications of Geodesic Geometry and Structural Anal-
ysis in the clinical setting

Such definition of geodesic distance in Riemannian mani-
folds can be extrapolated to longitudinal studies, successfully
overcoming some of the previously mentioned limitations
encountered when analyzing the data with traditional mor-
phological features. Numerous papers have used geodesic
geometry methodology for multiple applications.

Liu et al. [61] applied geodesic geometry to enclose a very
specific region of the colon called haustral loop and simplify
its geometrical complexity to extract anatomical landmarks.
More specifically, they extracted longitudinal geodesics from
the colon surface, located paired points to identify the long
and short geodesics, and generated loops from each paired
point. By leveraging geodesic methodology, they identified
approximately 92% of all haustral loops, demonstrating its
potential use for computed-aided diagnosis.

In another study, Hong et al. [62] experimented with the
usage of a hierarchical geodesic models on synthetic longi-
tudinal data to identify shape changes on a S2 Riemannian
manifold. By implementing multivariate models for intercept
and slope, and a univariate geodesic model to outline changes
for each individual subject, they constructed a multi-geodesic
framework. They showed promising outcomes, confirming the
hypothesis that time-dependent anatomical changes are closely
related to geodesic covariates. Moreover, on that same line
of research, Fishbaugh et al. [63] developed a hierarchical
geodesic model using real longitudinal data. Such model
included two types of geodesics, the first type representing
subject trajectories, and the second type capturing population
trajectories, i.e. reflecting deviations of the individual subject
trajectories from the mean.

Han et al. [64] performed several studies on the usage of
mixed-effects models to trace shape changes in longitudinal
data. Although they analyzed their models on 4D right ven-

tricular data and not in CT scans, they also validated their
geodesic model implementation with synthetic longitudinal
data, concluding that geodesic polynomials of the 3rd order
fitted the data points much better than linear geodesic models.
In subsequent work, Han et al. [65] mentioned that including
extra demographic and clinical information about the patients
could further improve the prognosis of the models under
research.

Lastly, the integration of multiple analytical methods has
proven to be useful in longitudinal data analysis. Kaji et
al. [66] evaluated CT data recorded on a 5 years period
to study the pathological physiology of lung diseases. They
combined persistent homology and geodesic distance compu-
tations to characterize the shape and topology of the trachea,
and compared the results to conventional CT lung metrics
such as volumes and ratios. As a conclusion, they confirmed
the superiority of this novel methodology for more precise
morphology estimation and greater accuracy in risk evaluation.

C. Statistical modeling for data analysis

As explained in Section III, once the radiomic features
have been extracted, the final goal is to analyze them. This
subsection will focus on statistical modeling for survival
analysis in longitudinal studies.

Time-dependent Cox models vs Joint models

Analyzing temporal dynamics within datasets has always
been a challenge in research, requiring accurate and precise
methodologies to capture the progression and behavior of
features over time. A common method involves the usage
of Cox regression models with time-dependent covariates,
however, more sophisticated approaches have been developed
in the past years, overcoming some of the limitations of the
aforementioned model. One of the most extended alternatives
is the usage of Joint models [11].

Fig. 5. Example of a collection of data over time for an unknown variable.
Data fitted with a Cox model (blue line) and with a Joint model (red line).
Data points represented with gray dots.
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TABLE II
SUMMARY OF APPLICATIONS OF RADIOMICS, TOPOLOGICAL DATA ANALYSIS, PERSISTENT HOMOLOGY,

GEODESIC GEOMETRY, AND STATISTICAL MODELING IN CT IMAGING.

Application area Reference Data type Year Main Purpose

Radiomics in CT
Aerts et al. [39] Chest and Head-and-neck CT 2014 Study radiomic features for capturing tumor phenotypic differences.
Gitto et al. [40] CT or PET-CT 2021 Development of a machine learning network for tumor classification.
Zeng et al. [38] Contrast enhancement CT 2023 Investigate clinical risk factors identification for brain metastasis.

TDA and persistent
homology

Belchi et al. [54] Chest CT 2018 Quantitative feature extraction for precise disease classification.
Somasundaram et al. [52] Chest CT 2021 Study useful clinical correlates extraction and survival prognosis.
Tanabe et al. [53] Chest CT 2021 Study physiological abnormalities influence based on structural changes.
Iqbal et al. [56] Chest CT 2021 Topology analysis for prompt detection and classification of SARS-CoV-2.
Vandaele et al. [55] Chest CT 2023 Topology analysis for accurate tumor histology classification.

Geodesic geometry

Liu et al. [61] CT colonography 2017 Study of geometric structures for structural complexity reduction and registration.
Hong et al. [62] Synthetic longitudinal data 2019 Development of hierarchical multi-geodesic model for longitudinal analysis.
Fishbaugh et al. [63] CT longitudinal data 2023 Development of hierarchical geodesic model for subject-specific study progression.
Han et al. [64] 4D Right Ventricular Data 2023 Development of hierarchical geodesic polynomial models for longitudinal analysis.
Han et al. [65] 4D Right Ventricular Data 2024 Combination of subject-specific shape models for longitudinal shape analysis.
Kaji et al. [66] CT longitudinal data 2024 Study of tubular structures by applying persistent homology and geodesics.

Statistical modeling
Baart et al. [11] Echocardiographic data 2021 Critical comparison of limitations of Cox and Joint modeling in survival analysis.
Paez et al. [67] CT longitudinal data 2023 Usage of Joint models to predict future cancer probabilities.
Balbi et al. [68] CT longitudinal data 2024 Delta radiomics. Utilized Cox modeling for survival prediction.

Time-dependent Cox models are commonly build based
on the Cox proportional hazards model [69] by extending
the already existing methodology with an assumption. Since
researchers only have access to data at hospital visits, a
hypothesis has to be made about the value of the measurement
in the intervals between observations. Time-dependent Cox
models assume such value to be constant, constructing a
step-function as illustrated in Figure 5 by the blue line. In
the graph, measurements are fixed after observations until a
new measurement (gray dot) is made. Although this approach
might seem straightforward, two main limitations arise. Firstly,
the assumed behavior overlooks possible measurement errors,
potentially leading to results that deviate from real clinical
observations. The more separated in time the measurements
are, the larger the assumed error becomes. Secondly, the
model does not consider the timing of the measurements,
either the patient’s disease status, as patients usually visit the
hospital when their condition worsens, nor the context of data
collection, including how and under what conditions the values
were extracted [11].

As a more appropriate method for analyzing longitudinal
data, joint models appeared [70]. Contrary to Cox models,
joint models develop individual regression models to charac-
terize the behavior of the individual measurements between
hospital visits, rather than assuming them constant. Joint mod-
els use mixed-effects models, integrating fixed and random
effects [11]. While the fixed effects describe the average
trajectory of the feature under study over time, random effects
account for the particular deviations from the common path of
each measurement [71][72][73]. This behavior can be seen in
Figure 5 by the red line. As all the measurements made on the
patient are endogenous, i.e. depend on events at earlier time
points, the corresponding longitudinal process is calculated
taking as a principle the joint distribution of both effects.
This approach addresses the main limitation presented in time-

dependent Cox models by calculating the whole feature tra-
jectory instead of assuming continuity between measurements.
Moreover, joint models also admit extra extensions such as the
integration of survival sub-models to tackle the possible time
imbalance related to visit times, the combination of multiple
features in the same model, or the possibility of computing
dynamic predictions including new information as it becomes
available [11].

Applications of Statistical Joint and Cox Modeling in the
clinical setting

Survival risk prediction is one of the main targets when
analyzing oncologic data, behavior that can be modeled using
different methodologies. For instance, Paez et al. [67] classi-
fied pulmonary nodules by using a deep learning algorithm,
and predicted cancer risk by fitting longitudinal data with a
mixed-effects model. Focusing on their second achievement,
they developed a joint model considering the random slope
effect to define the association between patient measurements,
the random intercept effect to characterize the variation differ-
ence between each patient measurements, and the interaction
between class groups and time. Overall, they confirmed the
superior predictive ability of joint models in estimating cancer
probability.

Moreover, Balbi et al. [68] evaluated the influence of
longitudinal variations in radiomic features and inflammatory
indices compared to single time-point measurements on cancer
survival prediction. To develop such delta-radiomics study,
they defined three different Cox based models. They concluded
that the model including delta-radiomics significantly outper-
formed the baseline-radiomics model in terms of prognostic
evaluation performance.

In another study, Baart et al. [11] directly compared the
prognostic ability of time-dependent Cox models with joint
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modeling. Although the study was carried out using echocar-
diographic images and not CT scans, it gave a clear overview
of the main differences of both models when examining
longitudinal data. Due to the multiple limiting hypothesis
made for the Cox longitudinal variant, they proposed the joint
models as the superior alternative, greatly helping to develop
more personalized treatments and monitoring.

V. DISCUSSION

Radiomics is a powerful tool that offers the possibility
of analyzing vast amounts of data, with the ultimate goal
of optimizing treatment planning and advancing personalized
medicine. However, there are currently multiple challenges and
gaps in knowledge, specially regarding the analysis of time-
dependent datasets.

In this literature review we have revised the radiomics
workflow for medical images, and presented an analysis of
its use in longitudinal CT examinations. More specifically,
we have given an overview of three alternative analytical
methods to traditional radiomics that could potentially capture
texture, shape and size features with higher precision and
accuracy. Moreover, we have also summarized the current
clinical applications of radiomics in longitudinal data inspec-
tion, with a special focus on the work that has been done
utilizing topology, persistent homology and geodesic geometry
for feature extraction, and statistical models such as COX and
joint models for data analysis.

A. Current challenges

One of the main challenges when analysing longitudinal
data relies on the selection of the most appropriate features,
i.e. selection of the features that are most informative about
changes over time. Extracting such information is not straight-
forward, and still there has not yet been a consensus in
the research community on a standardized methodology for
addressing this issue. The alternative analytical methods de-
scribed in this paper have the potential to tackle real problems
on traditional radiomics such as difficulties when detecting
complex patterns oversimplifying shapes and sizes, sometimes
missing global and local information, or complications finding
stable features over time. Despite that, these methods come
with their own limitations. Let’s address the specific topics
introduced in the review one by one.

TDA and persistent homology remain to be state-of-the-art
approaches when analyzing medical images, however, there
is still not enough validation in the field. Limited access to
other studies makes it challenging for these alternatives to
interpret biological meanings and be reproducible for different
image types. Most research in the last decade has primarily
focused on the study of physiological changes on lung CT
scans, leaving a gap in references for other diseases. There
is a need for more extensive investigation to apply TDA in
other research areas such as longitudinal studies. In that line of
work, TDA and persistent homology have shown potential to

characterize time-dependent data in cloud points [74][75] but,
while multiple papers have mentioned the possibility [54][53],
no studies using longitudinal CT scans were identified utilizing
such methodologies in this review.

Moreover, topological tools might also require specific
parameter modifications [50], such as the choice of scale
parameter epsilon ϵ, or the decision up to which Betti number
(β0, β1, β2, etc.) to calculate. Computations can easily become
highly complex as the number of simplicial complexes (nodes,
lines, triangles, etc.) increase exponentially with certain pa-
rameters. These choices could pose an important limitation
because of the insufficient literature and standard practices,
making it difficult to achieve the most optimal results of the
methodology.

Moving on to geodesic geometry analysis, the most no-
ticeable limitation would be computational complexity. A
strong foundation of mathematical, statistical, and Riemannian
geometry is required to correctly integrate geodesics into the
radiomics workflow. Geodesics have to be applied based on
several mathematical rules. For instance, to be able to use
minimization algorithms, surfaces have to be continuous, the
surface under investigation has to be tractable, that is, it has
to be defined by a discrete number of finite points creating
a mesh, vertices must be pre-computed in order to allow
for the approximation of the derivatives that fall in between
vertices, etc. In addition to that, medical image segmentations
frequently result in very intricate shapes, making the process
of finding the most accurate parameterization an extremely
difficult task [8].

In longitudinal studies, geodesic geometry has proven to be
of great use to track shape changes across time [62][63][66].
However, it may not always be the most optimal methodology
for all case studies. For instance, when dealing with rela-
tively simple datasets, the inherent complexity of the geodesic
calculations can become an obstacle, potentially introducing
unnecessary computational load and complicating the analysis
interpretability. In those cases, more simple and efficient
alternative approaches exist, such as PCA [76][25], or graph-
based methods [77].

Lastly, we must discuss some of the limitations of the statis-
tical model under consideration for data analysis in this review.
While joint modeling provides a consolidated approach for
analyzing time-to-event data, its usage also presents challenges
that go from computational demands to model decisions. As
mentioned in Section IV-C, these models describe the non-
linearity of the dataset by adding extra terms to the method-
ology. One of the main limitations come with the selection
that has to be made regarding those terms. Splines, quadratic,
or higher order polynomials [11] can be included depending
on the focus of the research. Moreover, statistical models may
also sensitive be to missing data, an issue that should also be
considered and addressed accordingly. For instance, the data
can be missing completely at random (MCAR), missing at
random (MAR), or not missing at random (MNAR) [78].
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B. Future perspectives

Based on the current literature and evolving methodologies,
the future of radiomics in longitudinal studies is very promis-
ing. In this review, we have explored some alternative ap-
proaches to traditional feature extraction methods focusing on
TDA, homology and geodesics. In addition to that, substantial
efforts have been made to enhance radiomics results through
the integration of artificial intelligence (AI). For instance, in a
study from Nasief et al. [79], they developed a machine learn-
ing model with CT-derived delta-radiomic features based on
a feed forward network to find clinical relationships between
the previously calculated features and potential pathological
reactions. Also, in another paper from Farina et al. [80],
a deep learning CNN-based was used to gather high-level
spatial characteristics related to immunotherapy response using
transfer learning.

Moreover, variational autoenconders (VAEs) have also
gained attention for their potential application in disease
progression. VAEs are deep learning models that can encode
large amounts of data (high dimensional data) into a low-
dimensional latent space. This allows them to capture intrinsic
features of the progression of the disease, study such process
in a more precise way, and trace possible changes that were not
apparent using conventional delta-radiomic methodologies. In
an article from Sauty et al. [81], they successfully developed
a VAE architecture to translate complex longitudinal image
data to a lower dimensional space with the aim of relating
patient variations with time. Similarly, Li et al. [82] described
a beta-VAE that encoded lesion sizes from lung CT scans into
a latent space, being able to predict pathological phases of the
disease.

Although these studies have already been published, their
findings serve as a solid foundation for the introduction of
emerging AI concepts into radiomic workflows, integrating
some methodologies that are still in the early stages of
exploration and development. As they continue to evolve,
their future routine incorporation in the clinical practice holds
significant potential for enhancing oncology treatment deci-
sions, improving treatment planning, and polishing prognostic
models.

VI. CONCLUSION

In this paper, we have presented an overview of the use
of radiomics in longitudinal studies, specially focusing on its
applications in CT imaging. Although radiomics have proven
to be a very valuable tool for analyzing medical images, com-
monly used feature extraction and data analysis tools present
several limitations when closely examining time-dependent
data. As an alternative, three main methodologies have been
described in this review: persistent homology and geodesic
geometry for feature extraction, and joint statistical modeling
for data analysis. Moreover, some future steps regarding ra-
diomics and deep learning networks have also been addressed.
Despite of the challenges, the integration of more sophisticated

topological, shape and statistical methods in radiomics can
offer extra valuable insights into disease progression, making
them strong candidates for the development of more accurate
treatment planning and prognostic models in clinical oncology.
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Layman’s Summary

Radiomics in CT imaging for Longitudinal Analysis in Oncology:
Emerging Complements, Advantages and Limitations

For the past decade, significant advancements in the medical imaging field have permitted the
development of more advanced methods to study the characteristics beneath medical images. Radiomics
is a technique that uses complex mathematical algorithms to extract and analyse information that could be
invisible to the naked human eye. This approach allows the calculation of many different features to find
connections between the image data and the studied condition, helping physicians make diagnoses, track
responses to treatments, or predict the survival of patients. Radiomics has been mostly applied to oncology,
where longitudinal computed tomography (CT) scans are especially useful. Longitudinal studies utilize
repeated images at multiple time points to track how the disease changes, giving a clearer picture on how
the condition might progress. Traditional radiomic feature extraction approaches such as texture or shape
analysis have the potential to monitor those changes. However, they may not always capture accurately the
complete tumor behavior because they can be sensitive to noise or image artifacts, i.e. errors or distortions
in the images. Moreover, current statistical methods are also being reevaluated for their multiple limiting
assumptions that hardly hold for these type of images. Since the research community has not yet found a
standard methodology for analysing images over time, and the limitations of the currently used strategies,
this review aims to give an overview of the field of radiomics for studying longitudinal CT images,
highlighting possible feature extraction and data analysis alternatives to traditional methods, challenges,
and future directions in the field.

Feature extraction is the process of calculating quantitative features from images. In this review we focus
on the potential use of topological data analysis (TDA), persistent homology and geodesic geometry. TDA
is a method that extracts structures (features) by connecting individual points, identifying for example how
separated are different groups, if there are any gaps between them, or if more complex arrangements are
present. Persistent homology is a method in TDA that tracks how those features appear and disappear
based on a scale parameter, allowing for a deeper understanding of the structures and texture beneath
the images. On the other hand, geodesic geometry is a type of geometric analysis that describes shapes
in complex surfaces, defining the shortest path from one point to another. Geodesics include additional
geometric details, which can help provide a more detailed analysis of how shapes change over time.

Data analysis is the process of studying the extracted features and developing systems to improve
medical decisions for diagnosis, disease prediction, or treatment planning. In this paper we discuss joint
models. Joint statistical models describe how features change over time by using mixed-models to predict
the trajectory of the features individually, allowing for more accurate and precise estimations.

Although the discussed methods have demonstrated to be strong candidates for feature extraction and
data analysis of longitudinal CT images, they have limitations. For instance, TDA and persistent homology
do not have enough validation and background studies in the medical imaging field for time dependent
data, geodesic geometry is computationally complex as it requires a strong foundation of mathematical
principles, and joint models involve making several challenging decisions. In conclusion, despite the
challenges, the integration of more sophisticated and complex methodologies for feature extraction and
data analysis offer extra valuable knowledge into disease progression, making them strong candidates for
the improvement of treatment planning and prediction models in clinical oncology.
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