
Revealing the Relationship between
Task Types and Query Methods through
a Comparative Analysis of Latent Space
with KNN and Direct Queries Methods

Tingting Zhang, 7278888

Faculty of Science,
at Utrecht University

Supervisors:
Dr. M. Behrisch

Prof. dr. ir. A.C. Telea

A thesis submitted for the degree of Master of Science
(MSc.) in Human-Computer Interaction

October 9, 2024

Abstract

Research based on knowledge graphs has been a hot topic in various
fields. Users can either perform direct queries using the rich semantic
information provided by the knowledge graph or search through the
latent space to complete their tasks. However, existing research lacks
a comprehensive comparison between these two query methods. This
thesis aims to clarify the relationships between these query methods
and different task types in the paper domain. Therefore, we rede-
fine a graph task classification for the paper domain, which enhances
the understanding of user intent in task categorization. We present
a Node2Vec or GraphSAGE with KNN model for queries in the la-
tent space. We evaluate the recall of the direct query’s link prediction
algorithm and the Node2Vec or GraphSAGE with KNN models on
the Cora and Movielens datasets. The experimental results show that
Node2Vec or GraphSAGE with KNN outperforms the link prediction
algorithm. Furthermore, the diversity of query results is assessed in
both the paper and movie domains. The results reveal that direct
querying performs better for Adjacency, Accessibility by Links, Com-
mon Connection, Nodes Attribute, and Hybrid tasks, while the latent
space with KNN method is better for the Explore task. These find-
ings fill a gap in current research and enhance the effectiveness of user
queries. Additionally, we design a novel dynamically updated paper
recommendation system, improving the explainability of recommenda-
tion results.

1

Contents

1 Introduction 5
1.1 Research Question and Contribution 6

1.1.1 Research Question . 6
1.1.2 Contribution . 9

1.2 Structure . 10

2 Related Work 11
2.1 Knowledge Graph Embedding 11
2.2 Knowledge Graph Recommendation 12
2.3 Research Platform for Study: Neo4j 14
2.4 Research for the Task taxonomy 15

3 Tasks in the Paper Recommendation Domain 18

4 Pipeline Data science 23
4.1 Measurement Methods of Direct Query Method’s Link Pre-

diction Algorithms . 24
4.2 Latent Space to Learn Semantic Relations and KNN to Re-

trieve Query-related Recommendations 26
4.2.1 Using Node2Vec to Get Embedding 27
4.2.2 Using GraphSAGE to Get Embedding 27
4.2.3 Using KNN to Find Node Similarity 28

5 Experiment 31
5.1 Experiment Data . 31

5.1.1 Experiment Data 1:Paper data 31
5.1.2 Experiment Data 2:Cora 35
5.1.3 Experiment Data 3:Movielens 37

5.2 Experiments Comparing the Recall of Link Prediction with
Latent Space with KNN on benchmark sets 39
5.2.1 Experiments Comparing the Recall of Link Prediction

with Latent Space with KNN on Cora 39
5.2.2 Experiments Comparing the Recall of Link Prediction

with Latent Space with KNN on Movielens 56
5.3 Experiments Comparing Direct Query and Latent Space with

KNN for Different Tasks . 60
5.3.1 Experiments Comparing Direct Query and Latent Space

with KNN for Different Tasks in the Paper domain . . 60
5.3.2 Experiments Comparing Direct Query and Latent Space

with KNN for Different Tasks in the Movie domain . . 62

6 Visualization Design 67

2

7 Discussion and Future Work 70
7.1 Answers to the Research Question 70
7.2 Findings in the Experiments 71
7.3 Limitation and Future Work 72

8 Conclusion 74

A Results of Tuning Experiments of Node2Vec with KNN
on Cora Dataset 80

B Tuning Experiments on Embedding Dimension and Mea-
sure Methods of Node2Vec with KNN on Cora Dataset 80

C Tuning Experiments on Walklength and Measure Methods
of Node2Vec with KNN on Cora Dataset 94
C.1 Results of Tuning Experiments on Walklength=10 94
C.2 Results of Tuning Walklength Experiments on Walklength=40 95
C.3 Results of Tuning Walklength Experiments on Walklength=100 96
C.4 Results of Tuning Experiments on Walklength=200 100

D Tuning Experiments on Iteration and Measure Methods of
Node2Vec with KNN on Cora Dataset 102
D.1 Results of Tuning Iteration Experiments on Walklength=100

and Iteration =30 . 102
D.2 Results of Tuning Iteration Experiments on Walklength=40

and Iteration =30 . 104

E Tuning Experiments on Initial Learning Rate and Measure
Methods of Node2Vec with KNN on Cora Dataset 106
E.1 Results of Tuning Initial Learning Rate Experiments on Initial

Learning Rate=0.001, iteration = 10 106
E.2 Results of Tuning Initial Learning Rate Experiments on Initial

Learning Rate=0.1, iteration = 10 107
E.3 Results of Tuning Initial Learning Rate Experiments on Initial

Learning Rate=0.1, iteration = 30 108
E.4 Results of Tuning Initial Learning Rate Experiments on Initial

Learning Rate=0.25, iteration = 30 109
E.5 Results of Tuning Initial Learning Rate Experiments on Initial

Learning Rate=0.5, iteration = 30 110
E.6 Results of Tuning Initial Learning Rate Experiments on Initial

Learning Rate=0.34, iteration = 30 111
E.7 Results of Tuning Initial Learning Rate Experiments on Initial

Learning Rate=0.1, iteration = 50 112

3

F Tuning Experiments on InOutFactor and Measure Meth-
ods of Node2Vec with KNN on Cora Dataset 113
F.1 Results of Tuning InOutFactor Experiments on InOutFac-

tor=3, iteration = 30 . 113
F.2 Results of Tuning InOutFactor Experiments on InOutFac-

tor=6, iteration = 30 . 114
F.3 Results of Tuning InOutFactor Experiments on InOutFac-

tor=3, iteration = 50 . 115

G Tuning Experiments of GraphSAGE with KNN on Cora
Dataset 116
G.1 Tuning Experiments on Aggregator, Activation Function and

Search Depth of GraphSAGE with KNN on Cora Dataset . . 116
G.2 Tuning Experiments on Sample Size of GraphSAGE with KNN

on Cora Dataset . 117
G.3 Results of Experiments on Initial Learning Rate =0.001 of

GraphSAGE with KNN on Cora Dataset 118

H Tuning Experiments of Node2Vec with KNN on Movielens
Dataset 119

I Tuning Experiments of GraphSAGE with KNN on Movie-
lens Dataset 121

J Quick Scan Document 124

4

1 Introduction

In today’s era of information explosion, recommendation systems are widely
applied in people’s daily lives [7]. The traditional recommendation systems
are mainly divided into three categories: content-based recommendation
systems [2], collaborative filtering-based recommendation systems [6], and
hybrid recommendation systems [45]. They have achieved good performance,
but cannot reflect the rich semantic information in the recommended items
[23]. Since Google introduced the knowledge graph concept in 2012 and used

it to enhance the capabilities of its search engine [14], the recommendation
approach combining knowledge graphs with recommender systems has be-
come a hot research topic. A knowledge graph is a graph where entities act as
nodes and relationships as edges [35]. When applying knowledge graphs to
recommendation systems, entities typically represent users or recommended
items, while edges represent the relationships between entities [33]. Users
can directly query the knowledge graph’s rich semantic relations to retrieve
desired information [35]. Alternatively, they can use the latent space to
complete their tasks. For instance, when users seek paper recommendations
within a knowledge graph of academic papers, they can use existing topologi-
cal link prediction algorithms to find users similar to themselves in the graph,
based on the principle that similar users like similar items and receive paper
recommendations accordingly. Alternatively, they can transform the prob-
lem into a latent space, searching within a latent space created by "papers",
"users", "friends "and "read", to identify the closest users to themselves and
receive recommendations in this manner.

From a logical standpoint, although exploring the latent space is slower,
the recommendations generated through this method tend to offer better
explainability. However, if a user wants to query the author of the pa-
per "Simulating the Geometric Growth of the Marine Sponge Crella In-
crustans," they can simply use the direct querying approach through the
knowledge graph’s "written_by_authors" relationship to retrieve the re-
sult. They can also search within the latent space of papers, authors, and
the "written_by_authors" relationship to find the author closest to this
paper. For this task, direct querying not only provides faster results but
also offers higher accuracy and trustworthiness. Based on these examples,
we can find the performance of different query methods varies depending on
the task type.

This thesis focuses on whether users should use latent space to perform
problem space transformations for different task types in the paper recom-
mendation domain. Currently, there is no research indicating how users
should choose between the direct query method and latent space with the
KNN method for different tasks. This study aims to fill this gap. From
a commercial perspective, it also provides direction for improving existing
paper recommendation platforms, enhancing the explainability of the recom-

5

mendations and increasing user satisfaction. Since existing task classification
methods are not specifically tailored to the domain of academic papers, this
thesis redefines the task classification method for academic paper graphs
based on established task classification frameworks. Additionally, the classi-
fication method is tested in the Movie domain to assess its generalizability.
Regarding the link prediction algorithms used for direct querying, this the-
sis selects the Adamic-Adar algorithm for the paper dataset, as it is better
suited for handling heterogeneous and imbalanced data.

For the algorithms operating in the latent space, unlike previous research
that focuses on improving algorithm accuracy [20] [25] [38], this thesis does
not prioritize precision enhancement. This is because it may lead users
into an "information bubble" and increase model training costs. With the
growing maturity of Neo4j’s algorithm library, we directly use Neo4j’s node
embedding combined with KNN to explore the latent problem space. The
node embedding algorithms provided by Neo4j are broadly classified into in-
ductive embeddings (FastPR, GraphSAGE [13], and HashGNN) and trans-
ductive embeddings (Node2Vec [12]). This thesis chooses the Node2Vec al-
gorithm because it is the only transductive algorithm available. In contrast,
GraphSAGE is selected among the inductive algorithms because the aca-
demic paper knowledge graph is a heterogeneous graph. GraphSAGE is the
only algorithm capable of distinguishing different node types and assigning
weights to different relationship types. Additionally, the performance of the
Node2Vec or GraphSAGE combined with KNN will be compared to the link
prediction algorithms on the benchmark datasets Cora and MovieLens to test
whether the proposed latent space design outperforms direct link prediction
algorithms in terms of recall.

Finally, the current 2D paper representation in virtual conference plat-
forms based on the MiniConf is often simplistic and static, like Figure 1
shown. To address the limitations, this thesis proposes a novel dynamic
updated 2D visualization that combines with recommendation algorithms.
The 2D representation of papers and users can dynamically change based
on user interest and present recommendations. This design can enhance the
explainability of recommendation results.

1.1 Research Question and Contribution

1.1.1 Research Question

The main objective of this thesis is to explore the relationship between query
methods and task types in the domain of paper recommendation. Addition-
ally, this study aims to quantitatively evaluate the accuracy of latent space
exploration methods compared to direct link prediction algorithms, to vali-
date the effectiveness of the Node2Vec or GraphSAGE combined with KNN
models. Since our ultimate goal is to recommend papers, we will focus on the

6

Figure 1: Paper’s 2D visualization of Miniconf comes from https://iclr.
cc/virtual_2020/paper_vis.html.We can find that the 2D visualizations
of the papers are static and are not combined with recommendation func-
tions. It can not give users personalised explanations for recommendations.

proportion of truly needed papers among the recommended ones, aiming to
minimize the rate of false positives. We will choose Recall as the evaluated
metric on the Cora and Movielens-1M datasets. Therefore, we propose two
main research questions:

1. Does using GraphSAGE or Node2Vec with KNN outperform
the direct use of Neo4j’s link prediction algorithm for recom-
mendations in the Cora or Movielens-1M datasets in terms
of Recall?

2. Which query methods can be used for which tasks in the
paper domain?

Based on Research Question 1, we can break it down into two sub-questions:

1. Sub-research Question 1_1:Does using GraphSAGE or Node2Vec
with KNN outperform the direct use of Neo4j’s link prediction algo-
rithm for recommendations in the Cora dataset in terms of Recall?

2. Sub-research Question 1_2:Does using GraphSAGE or Node2Vec
with KNN outperform the direct use of Neo4j’s link prediction algo-
rithm for recommendations in the Movielens-1M dataset in terms of
Recall?

For these two sub-questions, we propose the following hypotheses:

• For the Sub-research Question 1_1:

7

https://iclr.cc/virtual_2020/paper_vis.html
https://iclr.cc/virtual_2020/paper_vis.html

– H01: Using GraphSAGE and Node2Vec with KNN based on
Neo4j does not outperform the direct use of Neo4j’s link predic-
tion algorithm for recommendations in the Cora dataset in terms
of Recall with at least a 1% margin.

– H11: Using GraphSAGE and Node2Vec with KNN based on
Neo4j outperforms the direct use of Neo4j’s link prediction algo-
rithm for recommendations in the Cora dataset in terms of Recall
with at least a 1% margin.

• For the Sub-research Question 1_2:

– H02: Using GraphSAGE and Node2Vec with KNN based on
Neo4j does not outperform the direct use of Neo4j’s link predic-
tion algorithm for recommendations in the Movielens-1M dataset
in terms of Recall with at least a 1% margin.

– H12: Using GraphSAGE and Node2Vec with KNN based on
Neo4j outperforms the direct use of Neo4j’s link prediction algo-
rithm for recommendations in the Movielens-1M dataset in terms
of Recall with at least a 1% margin.

In this thesis, we will use the number of query results to represent the di-
versity of the results, serving as an evaluation metric. Additionally, we have
reclassified the tasks into six categories, with a detailed explanation provided
in Section 3. Therefore, for Research Question 2, we propose the following
hypotheses:

1. For the Adjacency task:

• H03 There is no difference in diversity between those obtained via
direct querying and those obtained via latent space with KNN.

• H13Direct querying results are more diverse.

• H23Latent space with KNN results are more diverse.

2. For the Accessibility by Links task:

• H04 There is no difference in diversity between results obtained
via direct querying and those obtained via latent space with KNN.

• H14Direct querying results are more diverse.

• H24Latent space with KNN results are more diverse.

3. For the Common Connection task:

• H05 There is no difference in diversity between results obtained
via direct querying and those obtained via latent space with KNN.

• H15Direct querying results are more diverse.

8

• H25Latent space with KNN results are more diverse.

4. For the Nodes Attribute task:

• H06 There is no difference in diversity between results obtained
via direct querying and those obtained via latent space with KNN.

• H16Direct querying results are more diverse.

• H26Latent space with KNN results are more diverse.

5. For the Explore task:

• H07 There is no difference in diversity between results obtained
via direct querying and those obtained via latent space with KNN.

• H17Direct querying results are more diverse.

• H27Latent space with KNN results are more diverse.

6. For the Hybrid task:

• H08 There is no difference in diversity between results obtained
via direct querying and those obtained via latent space with KNN.

• H18Direct querying results are more diverse.

• H28Latent space with KNN results are more diverse.

1.1.2 Contribution

The main contributions of this project are as follows:

1. Explored the performance of direct querying versus latent space with
KNN querying across different task categories. This not only fills a
gap in the existing research but also provides actionable insights for
improving the design of current paper recommendation systems. This
also improves the efficiency of user queries

2. Redefined a task classification method specifically for the paper recom-
mendation field. It increases the relevance of the classification method
to the paper domain and helps strengthen the system’s understanding
of user intent and needs.

3. Proposed a model design combining Node2Vec or GraphSAGE with
KNN for the paper recommendation. This addresses gaps identified
in the existing research. Experiments prove that our proposed model
outperforms link prediction algorithms.

4. Designed a new dynamic, user-interest-based 2D embedding visualiza-
tion. This approach not only supports personalized recommendations
but also improves the explainability of the recommendation results.

9

1.2 Structure

In Section 2, this thesis will review the literature related to this project. It
begins with a summary of the research gap that this project aims to fill.
Then, this section will be divided into four subsections: first, a discussion of
the most widely used knowledge graph-based recommendation systems; next,
a focus on key knowledge graph embedding algorithms; then, an overview of
the Neo4j platform, which is central to this project; and finally, a review of
existing task classification methods.

Section 3 will describe the process of integrating existing task classifi-
cation methods to design new tasks for this study. Section 4 will provide
an in-depth explanation of the technological pipelines used in this project,
including the algorithms and specific configurations. There are two scientific
pipelines based on the two research questions. The subsequent Section 5
will cover the datasets, parameter tuning, and analysis of the experimen-
tal results, with an explanation of the purpose of each experiment and the
decisions made throughout.

In Section 6, this thesis describes the visualization design in detail. The
Section 7 will discuss the key findings of the project, outline current limi-
tations, and suggest directions for future work. Finally, the Section 8 will
briefly restate the objectives, significance, and outcomes of the project.

10

2 Related Work

2.1 Knowledge Graph Embedding

Knowledge graph embedding techniques involve embedding KG entities and
relations into low-dimensional continuous vector spaces. Research on graph
embedding algorithms tailored to knowledge graphs has been evolving. Bor-
des [3] proposed TransE, a method that interprets relationships as trans-
lations operating on low-dimensional embeddings of entities, showing good
performance in link prediction tasks, albeit primarily applicable to one-to-
one relationships. Building upon TransE, Wang, Z [35] proposed TransH,
which models relationships as hyperplanes and performs translation opera-
tions. To address the limitation of TransE and TransH modelling within a
single semantic space, Lin, Y [22] created a method that embeds relation-
ships and entities in separate spaces, projecting entities into the relationship
space and constructing translations to learn embeddings. Ji, G [17]further
improved representation models with TranD, using two vectors to repre-
sent entities or relationships, one capturing their meaning and the other
establishing a dynamic mapping matrix. Qiu, J. [27] introduced DeepWalk,
a graph embedding algorithm based on random walks. It generates ran-
dom walk sequences of fixed lengths by randomly traversing neighbouring
nodes in the network, then maps the generated sequences of fixed-length
nodes into low-dimensional embedding vectors using the Skip-Gram model.
Similarly, Grover, A. [12]presented a graph embedding method based on
random walks, Node2Vec, as an improvement over DeepWalk. Node2Vec
adjusts parameters for breadth-first and depth-first walk strategies to ef-
fectively explore different neighbourhoods, capturing both global and local
graph structures. Hamilton, W. [13]introduced GraphSAGE, a framework
for inductive representation learning on large graphs. Unlike DeepWalk and
Node2Vec, GraphSAGE utilizes node feature attributes to generate node em-
beddings and achieves this by sampling and aggregating features of nodes’
local neighbourhoods. Wu, T. [37] proposed a context-aware dynamic knowl-
edge graph embedding method (DKFG) utilizing two attention graph con-
volutional networks, gate policies, and translation, providing two different
representations for each entity and relationship. Zhang, Q. [42]presented an
algorithm that captures relationship structure-context and edge structure-
context information through quadratic interaction to model complex rela-
tionships, better capturing implicit structural information between entities.
Khan, N. [19]introduced the Hashing-based Semantic Correlation Attribute
Graph Embedding Enhancement (H-SAGE) algorithm.

In this subsection, we describe a brief history of the development of
embedding methods for knowledge graphs, using time as a clue. From this,
we can find that the Neo4j platform’s embedding methods, Node2Vec and
GraphSAGE, which are used in this thesis, are relatively early algorithms,

11

and the platform has not yet been extended with the latest algorithms. This
may be an area for future development on the knowledge graph platform.

2.2 Knowledge Graph Recommendation

Khan, N. [18]conducted a categorical study of benchmark datasets for knowl-
edge graph-based recommendation systems from various application domains.
These benchmark datasets encompass diverse fields such as e-commerce (e.g.,
Amazon, Taobao datasets), entertainment (e.g., Movielens dataset), and gas-
tronomy (e.g., Dianping dataset). The expansion of such varied benchmark
datasets underscores the current research fervour surrounding knowledge
graph-based recommendation systems, with experts and scholars exploring
its applications across multiple domains. Knowledge graph-based recom-
mendation systems can be divided into four categories: ontology-based rec-
ommendation, linked open data (LOD)-based recommendation, embedding-
based recommendation, and path-based recommendation [7].

Figure 2: Recommendation systems based on knowledge graphs can be di-
vided into four types.

Ontology-based recommendation methods involve utilizing ontologies to
represent conceptual hierarchical structures [23]. Herein, an ontology mod-
els knowledge about items, contextual knowledge about users, and domain
knowledge [40]. In contrast to traditional recommendation systems, ontology-
based recommendation systems rely more on user, item, and domain knowl-
edge rather than user ratings. Therefore, their advantages lie in mitigating
issues such as cold start and rating sparsity [7] [29]. Zhang, Z [43]addressed
the lack of consideration for rich semantic relationships between knowledge
in existing traditional collaborative filtering algorithms in e-learning systems
by proposing an ontology-based collaborative filtering recommendation algo-
rithm. Similarly, aiming at the e-learning domain, Tarus, JK [29]conducted
a literature review study on ontology-based e-learning systems, finding that
adopting ontology-based knowledge graph recommendations improved the
accuracy and quality of recommendations compared to traditional systems.
Additionally, ontology-based knowledge recommendations have been widely
applied in the e-learning domain.

Recommendation based on linked open data involves leveraging linked
open data to acquire rich semantic information and subsequently computing
the similarity between recommended items based on this information [23].

12

While this approach partially addresses the issue of data sparsity, it tends
to overly rely on external data sources.

Embedding-based knowledge graph recommendation involves combining
low-dimensional vectors obtained from graph embedding techniques with
recommendation techniques [19]. Wang, H. [32] proposed the Knowledge
Graph Convolutional Networks (KGCN) model for recommendation. It sam-
ples and aggregates neighboring information as entity representations, and
then integrates GCN to provide recommendations. Yang, Z. [39]developed
HAGERec, a hierarchical attention graph convolutional network for inter-
pretable recommendation, which merges knowledge graphs to explore users’
latent interests from the higher-order connectivity structure of heterogeneous
knowledge graphs. After embedding users and items, it employs GCN mod-
els for bidirectional entity propagation strategies and then utilizes aggre-
gated representations of users and items with predictive-level attention over
interactions preserved in entity and neighbour network structures to make
recommendations. Zhang, F [41]introduced the Collaborative Knowledge
Base Embedding (CKE) recommendation model. It utilizes TranR to ob-
tain structural embedding expressions of nodes and then employs stacked
denoising autoencoders and stacked convolutional autoencoders to obtain
embedding expressions of text and visual information. Finally, these embed-
ding expressions are integrated with CF models to provide recommendations.
Cao, Y. [5] proposed the Translation-based User Preference model (TUP) to
better reveal users’ latent preferences through integration with knowledge
graphs. It includes TransH and a user preference component based on at-
tention mechanisms. Wang, H. [31] introduced RippleNet, a model that
integrates paths and embeddings, which can automatically iteratively ex-
pand users’ interests through relationships between entities, and then infer
user preferences. It can also represent entities through multi-hop aggregation
and merging domain information to capture users’ long-distance interests.

Path-based knowledge graph recommendation utilizes various connec-
tion patterns between entities in the knowledge graph to provide additional
information for recommendations [31]. Zhao, H [44]proposed a recommen-
dation model based on meta-graphs of heterogeneous information networks
(HINs). The model employs matrix factorization and decomposition meth-
ods to address information fusion issues. Geng, S [11]introduced the Path
Language Modeling Recommendation (PLM-Rec) framework. This model
obtains training paths through random walks, then calculates similarity us-
ing Sentence-BERT after sequence enhancement operations, and finally ex-
plains the recommended paths through Transformer and Nucleus Sampling.
Wang, X [34] created a new model named Knowledge-aware Path Recur-
rent Network (KPRN). It projects relationships between entities and their
next nodes, encodes entity and relationship sequence combinations through
LSTM, and finally provides recommendations through pooling. Xian, Y
[38]proposed a method called Policy-Guided Path Reasoning (PGPR). Based

13

on deterministic Markov decision processes, this method trains an RL agent
using reinforcement learning to navigate to potential recommended items.
Moreover, the obtained paths can serve as explanations

Figure 3: This figure is a summary of the existing embedding-based recom-
mendation algorithms and path-based recommendation algorithms based on
the literature review section. We can find that the Ripplnet algorithm com-
bines the methods of embedded recommendation and path recommendation,
in the intersection domain. The algorithms shown in blue are the ones used
in this paper.

In the second subsection, this thesis briefly introduces four classifications
of knowledge graph-based recommendation systems, with a detailed focus
on the two main types: embedding-based and path-based recommendation
systems. From the literature review, we can find that there is no research on
using node2ve or GraphSAGE combined with KNN for recommendation in
the field of paper recommendation. This project is designed to fill this gap.

2.3 Research Platform for Study: Neo4j

Neo4j is an open-source graph database software, widely regarded as one
of the most popular databases [36]. It can be used to construct knowledge
graphs, and when combined with the Cypher query language, it facilitates
semantic queries effectively. For instance, Liu, P [24]constructed a knowl-
edge graph of typhoon disasters using Neo4j, enabling a comprehensive un-
derstanding of historical typhoon disaster situations through Cypher query
language. Dharmawan, I [10]utilized Neo4j’s pattern-matching mechanism
for book recommendations. Additionally, Neo4j’s graph database includes
various algorithms to aid research and analysis. Izdihar, A. H [16] employed

14

Netflix’s movie dataset and combined Neo4j’s graph database providing Fast
Random Projection (FastRP) and the KNN algorithm for movie recommen-
dations. In the sales domain, Dermawan, F [9] analyzed user purchasing
patterns using Neo4j’s graph database and Jaccard similarity to recommend
products. In the financial sector, Patil, A [26] implemented a fraud detection
system for banking transactions using Neo4j’s graph database and its pro-
vided machine learning algorithms. However, there is currently no research
on using Neo4j’s graph database for paper recommendations.

We can find that studies of Neo4j are in many fields, but there is no
research on the paper recommendation domain. Hence, our study will focus
on the paper recommendation, which will fill the gap.

2.4 Research for the Task taxonomy

In "Task Taxonomy for Graph Visualization", Bongshin Lee [21] defined a
list of graph visualization tasks based on a set of low-level visual analysis
tasks. They categorized graph tasks into four types: Topology-Based Tasks,
Attribute-Based Tasks, Browsing Tasks, and Overview Tasks.

Table 1 below briefly describes these four categories:
From Table 1, we can observe that Bongshin Lee categorizes graph tasks

into nine subcategories. These tasks not only involve finding nodes and paths
but also include counting nodes and paths, such as determining how many
nodes are connected to a specific node. Such counting tasks might not be
frequently used in our domain of paper recommendations. Additionally, if we
consider using Cypher language for querying, there is some overlap among
these tasks. For instance, in the Attribute-Based Tasks category, the "On
the Links" task mentions finding nodes based on specific relationship types,
which is almost identical to the Adjacency and Accessibility tasks under
Topology-Based Tasks.

Moreover, the table does not fully capture some of the key points from
their research. Bongshin Lee notes that the first three task types can be
decomposed into a series of lower-level tasks. However, they do not provide
a more detailed description of their low-level task portfolio in the Overview
Task. Moreover, the Overview Task is the only one that is related to com-
plex algorithms or computations. The other three types of tasks are more
about the information contained in the knowledge graph itself, and only the
Attribute-Based Tasks contain a computation about the highest or lowest
feature value.

Matthew Brehmer and Tamara Munzner [4] also published a paper about
the classification of visualisation tasks called "A Multi-Level Typology of
Abstract Visualization Tasks". They proposed a multi-level typology of vi-
sualisation tasks to clearly distinguish the ends and means of tasks based on
Bongshin Lee [21] and Amar ’s [1] work on low-level tasks and interactions
and high-level tasks. The following Figure 4 illustrates the structure of their

15

Table 1: Graph Task Taxonomy: Categories, Tasks, and Descriptions [21]

Category Task General Descriptions

Topology-
Based Tasks

Adjacency (Direct
Connection)

Find adjacent nodes or find nodes
with maximum adjacencies.

Accessibility (Di-
rect/Indirect)

Find the set of nodes accessible
from a node or find the set of nodes
accessible from a node with the dis-
tance less than or equal to n

Common Connec-
tion

Given nodes, find a set of nodes
that are connected to all of them.

Connectivity Find the shortest path between two
nodes, find bridges, find articula-
tion points or identify clusters.

Attribute-
Based Tasks

On the Nodes Find nodes with specific attribute
values.

On the Links Given a node, find the nodes
connected only by certain types
of links. The find node is
connected by a link having the
largest/smallest value.

Browsing
Tasks

Follow Path Follow a given path.

Revisit Return to a previously visited
node.

Overview
Task

Overview A compound exploratory task to
estimate values, and identify clus-
ters, or patterns.

multi-level visualization task classification method:
Based on the Figure 4, we can clearly find that WHY refers to the pur-

pose of the task, HOW refers to the means of the task, and WHAT refers
to the input and output of the task. Their research divides the purpose of
tasks into three levels: high-level goals such as "consume" and "produce,"
mid-level goals such as "search," and low-level goals such as "query." The
methods of tasks are categorized into three types: "encode," "manipulate,"
and "introduce." By breaking down tasks through a clear process involving
task inputs, outputs, purposes, and methods, their approach greatly simpli-
fies task descriptions.

However, it is important to note that their research is mainly based on
visual task classification, whereas our research is concerned with the clas-
sification of graph-based tasks. There are differences between these two
domains. Therefore, our subsequent focus will be on the theoretical aspects

16

Figure 4: Multi-Level Typology of Abstract Visualization Tasks [4]

of classification related to the purpose of tasks ("why") rather than on the
interactive techniques discussed in their study.

In conclusion, we can summarise the task taxonomy method by Matthew
Brehmer and Tamara Munzner [4] is an abstract approach that does not tar-
get any specific domain and emphasizes the relationship between task targets
and methods. On the other hand, Bongshin Lee’s graph task classification
method [21] provides a rather coarse description of tasks requiring more algo-
rithmic integration, such as Overview Tasks. Moreover, there is currently no
direct and clear graph task classification specifically for the domain of paper
querying and recommendation. Therefore, this paper aims to redefine graph
task classification tailored to the paper recommendation field, integrating
insights from these studies, and ensuring the classification can accommodate
tasks that require more complex algorithms and computations.

17

3 Tasks in the Paper Recommendation Domain

Table 2: Redefined Graph Tasks in Paper Recommendation Domain. In the
Section 4’s Figure 6,these tasks will be as the task pipeline’s input. In the
Section 5, we will compare the diversity of the direct query and latent Space
with KNN’s results based on the redefined task classification.

Task Type Task Description Example

Adjacency Task Find the set of
nodes adjacent to
the given nodes.

Give me the
author and
keywords of
articles X and
Y.

Accessibility by Links Task Given nodes, find
the nodes connected
only by certain
types of links.

Give me articles
my friends of
friends like and
belong to short
paper type.

Common Connection Task Given nodes, find a
set of nodes that are
connected to all of
them.

Give me articles
of short article
type containing
keyword X.

Nodes Attribute Task Find the nodes hav-
ing a specific at-
tribute value.

Give me the uid
of X article.

Explore Task Given nodes, find
the nodes connected
by uncertain types
of links.

Give me some
recommendations
paper.

Hybrid Task Given nodes, find
the nodes connected
by uncertain types
and certain types of
links.

Give me some
recommendations
for a short
paper.

Existing task classifications [4] [21] have not been specifically designed
for the field of academic papers recommendations, nor do they clearly artic-

18

ulate the integration of complex algorithms. This oversight leads to a failure
in adequately expressing users’ goals and intentions in the realm of paper
recommendation. Consequently, this study aims to redefine and reorganize
these established task classifications [4] [21]. Given that our entire project
is based on knowledge graphs, it is essential to consider the specificity of
graph topology. Therefore, the method proposed in this paper categorizes
tasks primarily based on graph tasks. The following Table 2 presents our
approach to task classification:

First, we have categorized all tasks into six categories. The first cate-
gory is the Adjacency Task, which refers to finding the set of nodes
adjacent to a node. This definition is directly retained from Bongshin
Lee [21]. In the context of our paper recommendation domain, tasks re-
lated to this category could include: "Give me the author and keywords
of this article X " or "Provide articles containing the keyword Y
."

The second category is the Accessibility by Links Task, which de-
scribes the task of finding nodes connected only by certain types of
links. Unlike the first category, which focuses on direct adjacency, this cat-
egory emphasizes connections that are not necessarily direct but are made
through specified types of links. This is very similar to Bongshin Lee’s Ac-
cessibility class [21], which highlights indirect connections to known nodes
that are already present in the knowledge graph. However, in our defini-
tion, we emphasize that the connections must be specified explicitly. This
distinction is crucial to differentiate from the Explore tasks, which involve
calculating and creating new implicit connections. For example, a task in
this category could be: "Give me articles that my friends of friends
like and that belong to the short paper type."

The third type is the Common Connection Task, defined as: Given
nodes, find a set of nodes that are connected to all of them. To better il-
lustrate the distinctions between these tasks, we have visualized the three
categories mentioned: Adjacency, Accessibility by Links, and Common Con-
nection—as shown in the Figure 5 below:

Based on the Figure 5, we can observe that the Adjacency task em-
phasizes direct connections between the given nodes and the target nodes,
and the nodes and relationships of the whole process are known to the user.
In contrast, the Accessibility by Links task allows for indirect connec-
tions between the given nodes and the target nodes. From the given two
blue nodes to the red star-shaped target, a path may pass through unknown
green nodes. However, the types of relationships along the path are entirely
specified. The Common Connection task, on the other hand, also in-
volves multiple given nodes, but each of them must be directly connected to
the red star-shaped target node. Questions such as "Give me articles of
short article type containing keyword X" are the Common Connec-
tion task.

19

Figure 5: The visual representations of the first three tasks: (a) is the vi-
sualization for the Adjacency task, (b) represents the Accessibility by Links
task, and (c) illustrates the Common Connection task. In these diagrams,
the red stars represent the results obtained by the user.They are the recon-
menndations The blue circles indicate the nodes that are already given in
the task, while the green circles represent other nodes that are not related
to the task. The arrows denote specific types of relationships identified in
the task, with the direction of the arrow, indicating the direction in which
the task operates within the knowledge graph. Straight lines represent other
relationships that are not relevant to the task.

In the previous three task categories, our focus was primarily on tasks
derived from the overall topological structure. However, information such as
an article’s DOI is likely stored as feature information within the nodes of the
knowledge graph. Therefore, the Nodes Attribute task category empha-
sizes the intrinsic attributes of the nodes themselves. The task description
for this category is "Find the nodes having a specific attribute value."
In the context of academic papers, this type of task could include queries
like "Give me the DOI of X article."

The second-to-last category is the Explore tasks. The name is derived
from the "search" component of the "why" part in Matthew Brehmer and
Tamara Munzner’s typology [4], which further divides tasks into four parts:
lookup, locate, browse, and explore—based on the known and unknown as-
pects of target and location. Our focus here is specifically on the "explore"
part, which deals with unknown targets and unknown locations, emphasizing
exploratory discovery.

However, our definition of "explore" differs from Matthew Brehmer’s
study. We place more emphasis on exploring implicit relationships through
algorithms like KNN. Thus, while we retain the term "explore" as described
in "Task Taxonomy for Graph Visualization," it specifically refers to tasks
where the description is "Given nodes, find the nodes connected by
uncertain types of links." The key distinction from the Accessibility by
Links task is the need for advanced computation and algorithms to uncover
hidden connections within the knowledge graph. An example of this task

20

could be: "Give me some recommendations papers." In this example, the
given node is the User "me", but there is no direct relationship between the
user and the recommendations paper. At the same time, we also don’t know
the explicit relationship path from the given node to the recommendations
paper. In our thesis, we use algorithms to create the implicit relationships
between users in this task. This is because we choose to give recommenda-
tions based on user-to-user similarity.

The final category is the Hybrid Tasks, defined as "Given nodes,
which find the nodes connected by uncertain types and certain
types of links." From this definition, it is evident that Hybrid Tasks are
very similar to Explore Tasks. The key difference is that Explore Tasks do
not include known connections to filter, whereas Hybrid Tasks do include
known connections. For the Hybrid Tasks, we need to explore not only
the unknown relationships between the given nodes and the target result
nodes but also satisfy a portion of the known relationships. The Hybrid
Tasks can be viewed as an extension of Explore Tasks with an additional
filtering operation. A common example of a Hybrid Task is: Give me some
recommendations for a short paper.

To tackle all Table 2 tasks, we have two approaches:

1. Directly Query: Use the Cypher language to make queries based
on known relationships and node or link predictions in the knowledge
graph.

2. Latent Space with KNN : Transform the problem into latent space
combined with KNN for querying.

Table 3: Redefined Graph Tasks in the Movie Domain which will be test in
the Section 5 to confirm the general applicability of the relationships between
task types and query methods

Task Type Example
Adjacency Give me the actors of movie X and Y.

Accessibility by links Give me movies my friends of friends like
and belong to genres X.

Common connection Give me films directed by X in the genre
of Y.

Nodes attribute Give me the ID of Movie X.
Explore task Give me some recommendations movie.
Hybrid task Give me some recommendations for genres X

of movie.

A detailed introduction to these two query methods will be presented in
Section 4, followed by a comparative experimental analysis based on task

21

classification in Section 5.To verify the general applicability of this classifi-
cation method and the relationships between task types and query methods,
this project also conducted experiments in the domain of movie recommen-
dations. The Table 3 shows the tasks performed in the movie domain. The
detailed experimental procedures will be described in the Section 5.

22

4 Pipeline Data science

Figure 6: Task Pipeline: The light blue module on the left side of the diagram
is the flow for direct querying using cypher. The light green module on the
right side of the figure is the flow of the indirect method. The user selects the
projected feature space based on interest. Then use the Node2Vec algorithm
combined with KNN to give recommendations.

The Task Pipeline primarily addresses Research Question 2: Which
query methods can be used for which tasks in the paper domain?
The Figure 6 illustrates a specific workflow of the Task Pipeline.

For different tasks, such as those mentioned in the Table 2, users have
two options. The first option, illustrated by the blue module in the Figure 7,
involves directly querying the knowledge graph to obtain results. The second
option, represented by the green module in the Figure 7, requires users to
first confirm the feature space in which the problem will be projected through
feature selection. Subsequently, the Node2Vec algorithm is employed to ob-
tain node embeddings. Finally, these embeddings are combined with KNN to
produce the query results. In executing this pipeline experiment, we did not
conduct real user studies with the task pipeline. Instead, we created virtual
users in the paper dataset for experimentation. Therefore, we cannot assess
the two methods based on the accuracy of the recommendations. Instead,

23

Figure 7: Latent Space with KNN Pipeline for Explore Task: We first pro-
cess the input data through operations such as sampling and mapping, and
then construct the knowledge graph. Next, we obtain node embeddings using
Node2Vec or GraphSAGE, and then compute the similarity between pairs
of nodes using the KNN algorithm. Finally, we provide Top-K recommen-
dations based on these similarities.

we will evaluate these query methods based on the diversity of the results.
The following subsections will describe the operation of these two query

methods and the algorithms they use.

4.1 Measurement Methods of Direct Query Method’s Link
Prediction Algorithms

For querying unknown relationships in a knowledge graph likes the Explore
Tasks and Hybrid Tasks in the Table 2, the direct querying method needs
to use link prediction algorithms. The Neo4j Graph Data Science (GDS)
library allows for direct calculation of topological link prediction. Unlike
link prediction, which may utilize node attributes, topological link predic-
tion relies solely on the graph’s topology to compute the proximity between
nodes. It increases the execution speed, but the accuracy of the results is
lower than the link prediction algorithm’s accuracy. Since most nodes in
our constructed paper knowledge graph do not contain attribute informa-
tion, the impact of using topological link prediction algorithms on accuracy
is not significant. Neo4j offers six measurement methods for this purpose:
Adamic-Adar, Common Neighbors, Preferential Attachment, Re-
source Allocation, Same Community, and Total Neighbors. The
Table 4 below briefly describes these six measurement methods and their
formulas.

The table shows that the first three methods calculate closeness based on

24

Table 4: Different measurement methods and their formulas.These formu-
lations are fromhttps://neo4j.com/docs/graph-data-science/current/
algorithms/linkprediction/

Method Description Formula
Adamic-
Adar(finally
choose)

The similarity between two
nodes is equal to the weighted
sum of their common neighbors.
The weight is the inverse of the
logarithm of the neighbor node’s
degree.

A(x, y) =∑
u∈N (x)∩N (y)

1
log |N (u)|

Common
Neighbors

The more common neighbors two
nodes share, the closer they are
considered to be. The number
of common neighbors represents
the closeness between nodes.

CN(x, y) = |N (x) ∩N (y)|

Resource Al-
location

If two nodes share many common
neighbors, they are more likely
to form a connection. The fewer
connections the common neigh-
bors have, the closer the two
nodes are considered to be.

RA(x, y) =∑
u∈N (x)∩N (y)

1
|N (u)|

Preferential
Attachment

The more connections a node
has, the more likely it is to
connect to a new node. The
closeness between nodes is rep-
resented by the product of the
number of neighbors of the two
nodes.

PA(x, y) = |N (x)| ×
|N (y)|

Total Neigh-
bors

The closeness between nodes is
calculated using the union of the
neighbors of the two nodes.

TN(x, y) = |N (x)| +
|N (y)|

Same Com-
munity

The closeness is calculated based
on the principle that nodes in the
same community are more likely
to be connected.

No specific formula

the common neighbors between nodes. These methods yield more accurate
results but take longer to execute. On the other hand, theSame Commu-
nity method relies entirely on community detection to determine closeness.
Although it is highly accurate,Neo4j does not provide a clear formula for this
method, we do not plan to use it in our project.

The Preferential Attachment and Total Neighbors methods calcu-
late closeness based on the number of neighbors of the nodes themselves,
following the principle that nodes with more connections are more likely to
form new connections. These methods are heavily influenced by high-degree
nodes but have faster runtime. In this project, we aim to calculate the prox-

25

https://neo4j.com/docs/graph-data-science/current/algorithms/linkprediction/
https://neo4j.com/docs/graph-data-science/current/algorithms/linkprediction/

imity between users. Relying solely on their number of connections seems
inadequate. This is because we will create virtual users in the paper dataset,
where the number of books read by each user will be identical. In such cases,
all nodes will have the same number of neighbors, and direct queries based
on Preferential Attachment and Total Neighbors will not differentiate
between users.

Therefore, we are primarily considering the Adamic-Adar, Common
Neighbors, and Resource Allocation methods. The Common Neigh-
bors algorithm directly uses the number of common neighbors to represent
similarity. However, it does not account for the varying significance of dif-
ferent neighbors in real scenarios, which makes it unsuitable for our needs.

Our paper’s knowledge graph has an uneven degree distribution. For ex-
ample, category nodes have much higher degrees compared to other nodes,
while keywords nodes have lower degrees. Compared to Resource Allo-
cation, Adamic-Adar includes an additional logarithmic operation. This
operation helps to balance the influence of high-degree and low-degree com-
mon neighbors more effectively. Thus, despite being more complex than
Resource Allocation, Adamic-Adaris preferred for our project.

4.2 Latent Space to Learn Semantic Relations and KNN to
Retrieve Query-related Recommendations

The pipeline about "Latent Space with KNN" shown in Figure 6, primarily
focuses on the paper dataset and does not include the GraphSAGE compo-
nent. Additionally, there is no detailed explanation of the parameters used
in this process. The Figure 7 provides a more detailed illustration of the
entire Latent Space with KNN workflow for Explore Tasks as applied
in our thesis. This process will also be employed for the Cora and Movielens
datasets. In this design, we will directly utilize the Node2Vec and Graph-
SAGE algorithms available in the Neo4j Graph Data Science (GDS) library
to obtain node embeddings. We will then combine these embeddings with
the KNN algorithm to provide recommendations.

Using the paper data that we will be working with as an example, we first
need to preprocess the dataset. This includes converting the paper dataset
from JSON files to CSV files, removing special characters, and dividing key-
words as required by the project. For the subsequent experiments, such as
those using the MovieLens and Cora datasets, additional steps for data sam-
pling and comparisons are needed. For instance, the MovieLens dataset is
combined with data from DPMedia to construct a knowledge graph. There-
fore, we need to match the movie IDs from the MovieLens ratings with the
movie IDs from DPMedia.

Detailed procedures for each dataset will be described in the Section 5
of this paper.

After preprocessing the data, we will use Neo4j to build the knowledge

26

graph. It is important to note that these operations are performed on a
subgraph within Neo4j. This subgraph construction will help in selecting
user-relevant features for the recommendation system. Specifically, in Neo4j,
algorithm operations are conducted within the subgraph, so we need to care-
fully select node types and relationship types to construct the subgraph. For
example, if user interest is focused on session times, we would add the ses-
sion ID node type and the corresponding presented_in relationship to the
subgraph.

Then, we will use Node2Vec or GraphSAGE to obtain node embeddings.
Parameters such as embedding dimensions, iterations, initial learning rate,
and sample size will be set accordingly. The embeddings will be written to
the knowledge graph, and the KNN algorithm will be employed to compute
the similarity between node pairs, specifically user node pairs. Recommen-
dations will then be made based on the principle that similar users tend to
like similar items.

Next, this thesis will detail the three algorithms used in the pipeline of
latent space with KNN.

4.2.1 Using Node2Vec to Get Embedding

Node2Vec generates sequences of nodes by using random walks on a graph.
In this thesis, we use the "gds.Node2Vec.write" function provided by the
Neo4j platform to generate node embeddings and write the embeddings into
the knowledge graph. The Table 5 below shows the parameters that will be
adjusted in the subsequent experiments.

4.2.2 Using GraphSAGE to Get Embedding

Unlike Node2Vec, which is based on random walks, GraphSAGE is an in-
ductive framework that efficiently generates embeddings for new nodes by
leveraging node attribute information. It samples nodes and generates node
representations by aggregating neighborhood information. GraphSAGE can
seamlessly integrate node attribute information. The following Figure 8 il-
lustrates the workflow of the GraphSAGE algorithm. Note that this image
is from the article Inductive Representation Learning on Large Graphs [13].

From the Figure 8, we can observe that GraphSAGE first samples neigh-
bors, then aggregates the features of nodes layer by layer, and finally per-
forms downstream tasks. This paper utilizes the GraphSAGE algorithm
from Neo4j’s Graph Data Science library. First, the model is trained using
the "gds.beta.graphSage.train" function before executing the node embed-
dings. Then, the results are written back into the knowledge graph using the
"gds.beta.graphSage.write" function. In this design, we focus on tuning the
parameters of the "gds.beta.graphSage.train" function, as its configuration
is more complex and has a greater impact on the results. The Table 6 also

27

Table 5: Part Configuration of the Node2Vec Algorithm.In the Section 5.2,we
will use these configurations to do tuning parameter experiments.

Configuration Description
Embedding Dimension The size of the node embeddings, with a

default value of 128. If the embedding
dimension is too high, it significantly in-
creases training time and noise. However,
if it is too low, the resulting embeddings
may not fully capture the node informa-
tion.

Iteration The number of training iterations, with a
default value of 100. If the number of it-
erations is too low, the model may not be
adequately optimized. However, too many
iterations may lead to overfitting.

Walk Length The number of steps taken in each random
walk. A higher value allows the embedding
to capture more global structural informa-
tion.

Initial Learning Rate The initial learning rate used for training
the neural network. The learning rate de-
creases after each training iteration. If the
initial learning rate is too high, the model
may miss the optimal solution. However,
if it is too low, the training duration will
be very long, and the model may not learn
adequately.

InOut Factor Controls whether the random walk tends
towards depth-first or breadth-first explo-
ration. A higher value indicates a stronger
tendency to capture local information.

presents the configuration of the "gds.beta.graphSage.train"function.
From the Table 6 we know that the search depth is related to the sampling

step, while the choice of aggregator is related to the second aggregation step
of the GraphSAGE algorithm. The table also shows the details of these
configurations, setting the stage for subsequent tuning.

4.2.3 Using KNN to Find Node Similarity

The KNN algorithm calculates the distance between node pairs based on
node attributes. This algorithm uses various traditional similarity measures
such as Pearson correlation, Spearman rank correlation, cosine similarity,

28

Figure 8: A visual description of the GraphSAGE sample and aggregate
[13].The GraphSAGE algorithm completes the embedded representation of

nodes in the first two steps and then performs downstream tasks such as link
prediction or node classification.

Table 6: Configuration of the GraphSAGE Algorithm. In the Section 5.2,
we will use these configurations to do tuning parameter experiments.

Configuration Description
Embedding Dimension The size of node embeddings and their hid-

den layers. If the embedding dimension is
too high, it will significantly increase train-
ing time and memory usage. If the dimen-
sion is too low, the embedding may not
fully capture the information.

Sample Size The size of each sample represents one hid-
den layer. More layers allow node embed-
dings to consider further neighbors.

Search Depth The depth of random walks in each batch.
If this value is too high, it may become dif-
ficult to distinguish between similar nodes.

Learning Rate The extent to which the weights are up-
dated after each iteration.

Epoch Represents the maximum number of train-
ing cycles. It helps to limit training time
and prevent overfitting.

Activation Function Can be chosen from Sigmoid and Leaky
ReLU.

Aggregator Can be chosen from MEAN and POOL. MEAN
is simpler and faster, while POOL is more
complex but better at encoding domain-
specific information.

29

Jaccard similarity, etc. When using the KNN algorithm in Neo4j, we applied
the node embeddings obtained from Node2Vec or GraphSAGE as node prop-
erties and then used the "gds.knn.write "function to create "similar" rela-
tionships between users within the knowledge graph. The "gds.knn.write"
algorithm has many configuration options, but we mainly focused on the cal-
culation distance parameter. The following table is about the relationship
between the method of measuring distance and the type of embedding.

Table 7: Property type and Metric Configurations.In the Section 5.2,we will
use these metric to do the tuning parameters experiments.

Property Type Metric
List of Float COSINE, EUCLIDEAN, PEARSON
List of Integer JACCARD, OVERLAP

By observing the node embeddings produced by Node2Vec or Graph-
SAGE, we found that the embedding values are lists of floating-point num-
bers. Therefore, the available distance measurement methods were limited
to COSINE, EUCLIDEAN, and PEARSON.

EUCLIDEAN measures the geometric distance between two points and is
a standard metric with intuitive results, but it is generally used for two-
or three-dimensional spatial data [15]. COSINE measures the cosine of the
angle between vectors and is often used for text data. However, it only con-
siders the direction between vectors, which may introduce some errors [15].
PEARSON measures the linear correlation between two vectors and is typi-
cally used for continuous data with linear relationships, though it may fail
to detect non-linear patterns accurately [28].

Because the node embeddings we obtained are high-dimensional, non-
linear continuous data, we could not determine theoretically which distance
measurement method would perform better. Therefore, we used all three
measurement methods simultaneously to evaluate their performance in our
subsequent experiments.

30

5 Experiment

5.1 Experiment Data

In this thesis, we utilize three datasets. The Paper dataset is used to build
the actual paper recommendation system and to explore the relationship be-
tween task classification and query methods. The Cora dataset is smaller
and simpler compared to both the Paper and Movielens datasets, and it
allows for a rapid evaluation of the performance of our Node2Vec or Graph-
SAGE combined with KNN design. The Movielens dataset is very large and
complex, resembling the real-world application scenario of our model design.
Experiments conducted on this dataset provide a better assessment of our
algorithm’s performance in complex, real-life settings.

5.1.1 Experiment Data 1:Paper data

In this design, we primarily utilized the dataset of papers presented at the
2023 conference, collected from the vis-virtual website conference website.
The dataset named paper_list.json is located at sitedata/2023. The website
address is: https://github.com/ieee-vgtc/vis-virtual-website/blob/
master/sitedata/2023/paper_list.json.

This paper dataset comprises 388 papers and encompasses 28 attributes
such as authors, abstracts, and keywords, among others. Based on this
dataset, we ultimately created 7 types of nodes: authors, paper,time_stamp,
time_end,paper_type,paper_award, keywords,session_id).In the paper node,
it contains other properties such as uid,has_image and so on. And we cre-
ate 7 types of relationships. The Table 8 shows the 7 relationship types we
established.

Table 8: 7 Relationships in the Knowledge Graph

Source Node Target Node Relationship Type
paper keywords contains_keywords
paper authors written_by_authors
paper session_id presented_in_session
paper time_stamp published_at_time
paper time_end finished_at_time
paper paper_award has_award
paper paper_type belongs_to_type

However, an important issue with this dataset is that it does not con-
tain user information. Therefore, to address Research Question 2, we need
to artificially create user data within this dataset. Additionally, we will in-
troduce a new node type, "User," and create a "read" relationship between
users and papers within the knowledge graph. The ?? below presents the

31

https://github.com/ieee-vgtc/vis-virtual-website/blob/master/sitedata/2023/paper_list.json
https://github.com/ieee-vgtc/vis-virtual-website/blob/master/sitedata/2023/paper_list.json

Table 9: Detailed information about nodes and relationships.

Node Name # Nodes Relationship Name # Relationships
authors 1331 written_by_authors 1748
keywords 970 contains_keywords 1234
paper_award 2 has_award 22
paper_type 4 belongs_to_type 388
session_id 64 presented_in_session 388
time_end 103 finished_at_time 388
time_stamp 99 published_at_time 388
User 4 read 20
paper 388

assumed information for the virtual users we have created. Among others,
Dan and Matt, Matt and Jeff, and Matt and Annie are all friends with each
other.

Table 10: Virtual users and the papers read.Each user read five articles,
with Dan and Annie reading only one different article. Theoretically Dan
and Annie should be very similar. This ensures that when we use Dan as a
user to do the Explore Task experiment in the Section 5.3, there should
theoretically be no zero recommendations.

User Name Articles Read

Dan

1.Gridded Glyphmaps for Supporting Spatial COVID-19
Modelling
2.TimePool: Visually Answer "Which and When" Questions
On Univariate Time Series
3. ExoplanetExplorer: Contextual Visualization of Exo-
planet Systems
4. WUDA: Visualizing and Transforming Rotations in Real-
Time with Quaternions and Smart Devices
5.Design of an Ecological Visual Analytics Interface for Op-
erators of Time-Constant Processes

Annie

1.Gridded Glyphmaps for Supporting Spatial COVID-19
Modelling
2.TimePool: Visually Answer "Which and When" Questions
On Univariate Time Series
3.ExoplanetExplorer: Contextual Visualization of Exoplanet
Systems
4.WUDA: Visualizing and Transforming Rotations in Real-
Time with Quaternions and Smart Devices

32

5.Augmented Scale Models: Presenting Multivariate Data
Around Physical Scale Models in Augmented Reality

Matt

1.CLEVER: A Framework for Connecting Lived Experiences
with Visualisation of Electronic Records
2.Explain-and-Test: An Interactive Machine Learning
Framework for Exploring Text Embeddings
3.What Is the Difference Between a Mountain and a Mole-
hill? Quantifying Semantic Labeling of Visual Features in
Line Charts
4.Do You Trust What You See? Toward A Multidimensional
Measure of Trust in Visualization
5.Augmented Reality for Scholarly Publication of 3D Visu-
alizations in Astronomy: An Empirical Evaluation

Jeff

1.Simulating the Geometric Growth of the Marine Sponge
Crella Incrustans
2.Automatic Scatterplot Design Optimization for Clustering
Identification
3.Too Many Cooks: Exploring How Graphical Perception
Studies Influence Visualization Recommendations in Draco
4.Planar Symmetry Detection and Quantification using the
Extended Persistent Homology Transform
5.Towards Adaptive Refinement for Multivariate Functional
Approximation of Scientific Data

Dan is the user we will use as the subject of our study. This means that
if a user interacts with our recommendation system, they will automatically
take on the role of Dan. In designing this user, we hypothesized some extreme
scenarios based on the types of articles read. For example, there might be
users who have only read short papers or users who have all but one paper in
common. In our virtual user design, both Dan and Matt have only read short
papers. Annie and Dan have four same papers, with the only difference being
one paper, which in Annie’s case is of the full type. Dan and Annie should
be very similar. Then there should theoretically be no zero recommendation
when experimenting with the Explore Task in the Section 5.3. Jeff’s papers
and their types are entirely different from Dan’s. The types of papers Jeff
has read, in the order listed in the table, are short, full, full, workshop, and
associated. The reason I chose to design based on paper types is that, in the
subsequent web design, we need to visualize the latent space of nodes.

In this thesis, we opted to use PCA to reduce the dimensionality of high-
dimensional node embeddings. By applying the functions: pd.DataFrame,
PCA() and pca.fit_transform(), the high-dimensional node embeddings
are reduced to two dimensions. The choice of two dimensions is based on the
fact that users find 2D visualizations easier to understand. The horizontal
axis represents the direction of the largest variance in the node embeddings,

33

while the vertical axis represents the second-largest variance direction. After
performing PCA dimensionality reduction on the high-dimensional embed-
dings of paper data (excluding users), we observed that the paper nodes
formed four clusters. Since the paper types also fall into four categories, we
initially attempted to assign different colors to the nodes in the PCA plot
based on the paper types. It turned out that these four clusters were indeed
distinguished by paper types. The following Figure 9 shows the visualization
results after PCA dimensionality reduction. We can see that paper type is
a significant feature, so I chose to design users based on this feature.This
will amplify the distance between similar and dissimilar users even more.
Test whether the link prediction algorithm or the Node2Vec combined with
KNN algorithm can successfully give recommendations when executing the
Explore Task and Hybird Task.

Figure 9: PCA plot of paper data in 255 dimensions. Where the paper
nodes are divided into four clusters according to article type. We can find
the paper_type is the significant feature. Therefore, this thesis design users
based on paper_type

After confirming the necessary node types and relationship types for the
paper knowledge graph, we needed to preprocess our raw data. The image
below shows our preprocessing process. The left side of the image represents
the content of the JSON file obtained directly from the website. We first

34

traverse through the papers and clean the data by removing spaces and
hyphen symbols. Then, we convert all the data into comma-separated string
types. Since the dataset is relatively small, we did not do a data sampling
step.

Figure 10: Paper data preprocessing process. The content of the input json
file is used to build the knowledge graph after data cleaning, segmentation
and normalisation operations.For example, the information in the json file
for the paper "Affective Visualisation Design: Leveraging the Emo-
tional Impact of Data " shown on the left side of the figure. Then through
data segmentation and normalisation, the data of the article is stored in a
form that becomes the first row on the right side of the figure.

The preprocessed data will be directly used to build the paper knowledge
graph. The paper knowledge graph established through Neo4j is shown in
the Figure 11 below.

In the end, we established a total of 2,965 nodes and 4,576 relationships.
Among these, the authors node type is the most frequent with 1,331 in-
stances, and the written_by_authors relationship type is also the most com-
mon, totalling 1,748. However, we observed that the number of has_award
relationships is less than 388. The award node type is divided into best and
honourable. Since not all papers receive awards, the count of has_award
relationships being 22 is expected. Detailed information on the 2,956 nodes
and 4,576 relationships is shown in the Table 9.

5.1.2 Experiment Data 2:Cora

The Cora dataset consists of 2708 scientific publications and 5429 cited links.
Each paper entity can be represented by a 1,433-dimensional feature vector.
In this dataset, we take the 1,433-dimensional feature vector of a paper as
an attribute of each paper node. In the knowledge graph, it contains only
one node type i.e. paper node. As well, there is only one relation type. We
randomly select 80% of the 5,429 cite relations as our training set to build
the knowledge graph. The remaining 20% is used as a test set to go for the
link prediction task. Although the task of our overall project is a recommen-
dation task, which seems to be slightly different from a link prediction task.

35

Figure 11: Knowledge graph of paper data. The top left side shows node type
information and the bottom left side shows relationship type information.
The right side is a complete display of the paper "Affective Visualisation
Design: Leveraging the Emotional Impact of Data " , which is also
shown in the Figure 10.

But since we are making recommendations based on user-to-user proximity,
i.e., we want to predict links between users. Whereas the Cora dataset only
contains paper nodes, it seems reasonable to use our recommendation de-
sign for paper-to-paper cite relationship prediction. The Cora dataset has a
smaller data volume and a simple knowledge graph structure compared to
the Movielesn dataset we introduced later. It greatly reduces the experiment
time.

Since Neo4j’s database contains the Cora dataset, we called it directly
from within Neo4j. We randomly selected 4343 cited relations as the training
set and 1086 cited relations as the test set in the Cora_cites file. For the
file Cora_content, raw[0] is used as the ID of the paper node, and then
raw[2......1434] is used as the feature of each node. The visualisation of the
knowledge graph based on the Cora dataset in Neo4j is shown below:

Figure 12: The visualization of Cora Knowledge Graph in Neo4j

36

5.1.3 Experiment Data 3:Movielens

We utilized the MovieLens-1M dataset, combined with DBpedia, to construct
the MovieLens Knowledge Graph. In this knowledge graph, we created nine
node types: country, director, film, genre, language, user, rating, star, per-
son_or_entity_appearing_in_film and writer. Additionally, we established
12 relationship types. The following Table 11 provides a description of each
relationship type:

Table 11: 12 relationship types in the MovieLens Knowledge Graph.

Source Node Target Node Relationship Type
film director film_director
film genre film_genre
film language film_language
film writer film_writer
writer film writer_film
user film likes
director film film_director_film
actor film actor_film
film star film_star
film rating film_rating
person_or_entity
_appear-
ing_in_film

film personorentityappearinginfilm_film

film country film_film_country

Since the interactions between users and movies in MovieLens are nu-
merous, We then randomly selected 85,768 interactions. These interactions
were then split into a training set (train.txt, containing 67,814 interactions)
and a test set (test.txt, containing 16,954 interactions).

Finally, we use the traing set to create the knowledge graph. The graph
contains a total of 26,108 nodes and 131,147 relationships. Among these are
5,802 user nodes, 2,445 film nodes, 6274 actor nodes and 23 genres, among
others. The interaction information between users and films, represented
by the likes relationship, comprises 67,814 entries.The detaild information is
shown in the Table 12.

Since the knowledge graph constructed from the MovieLens dataset will
also be used to compare the performance of different query methods across
different tasks in the Section 5.3, we randomly select a user as the target
user, which the user ID is 116.

37

Table 12: Node and Relationship Information

Node Name # Node Relationship
Name

Relationship

director 1567 film_director 2581
genre 23 film_genre 5274
language 73 film_language 3135
writer 2441 film_writer 3476
film 2445 writer_film 3472
user 5802 likes 67814
actor 6247 actor_film 18254
country 11 director_film 2581
star 1251 film_country 2256
rating 5 personorentity

appearingin-
film_film

18244

personorentity
appearinginfilm

6243 film_rating 1899

film_star 2164

38

5.2 Experiments Comparing the Recall of Link Prediction
with Latent Space with KNN on benchmark sets

In this subsection, we will utilize the Latent Space with KNN pipeline men-
tioned in the Section 4.2and the link prediction algorithm discussed in the
Table 4 to conduct the precision comparison based on the Cora and Movie-
Lens datasets described in Section 5.1.2 and Section 5.1.3. In this thesis, we
will use recall as the evaluation metric.

5.2.1 Experiments Comparing the Recall of Link Prediction with
Latent Space with KNN on Cora

As mentioned in the Section 5.1.2, we will use the sampled training set to
construct the knowledge graph. We then apply Node2Vec or GraphSAGE
for graph embedding. Afterwards, we perform K-nearest neighbor (KNN)
analysis on each node pair. If a node pair in the top-K contains a pair from
the test set, it is considered a positive match. We calculate recall by dividing
the number of correctly selected node pairs by the total number of node pairs
in the test set. As a baseline, we directly use the link prediction algorithms
to create node pairs, then use the same approach to calculate recall for
comparison. In this thesis, we fix the value of K to be 10.This value is more
moderate and can be used to a certain extent without missing the similarity
relationship. the Table 5 and Table 6 in the Section 4.2 illustrates that the
Node2Vec and GraphSAGE algorithms have multiple adjustable parameters.
The Figure 13 presents the specific operational workflow on the Cora dataset,
incorporating the parameter settings shown in the Table 5 and Table 6 .

Experiments of Using Node2Vec with KNN on the Cora First, we
will introduce the experiments using the Node2Vec algorithm combined with
KNN.As shown in the Table 5, there are numerous parameters to consider
for Node2Vec. Initially, we fixed the parameters walklength=80 and itera-
tion=10 to save training time , and used the default values for other param-
eters. We then tuned the embedding dimensions. The experiments began
with an embedding dimension of 60 because this dimension is higher than the
number of feature types, placing it in the high-dimensional category while
still ensuring shorter runtime. As the dimension was gradually increased
to 65, there were no significant changes in the results. To test further, the
dimension was increased directly to 85, but the results remained similarly
unchanged. Consequently, an ultra-high dimension of 1225 was applied to
observe any further effects. The embedding dimensions varied from 60, 61,
62, 63, 64, 65, 85, 105,125, up to 1285, with the KNN distance method set
to Pearson correlation. A total of 67 experiments were conducted. Detailed
experimental results are shown in the Appendix B. The results of matching
each paper-paper pair obtained from the experiments with the test set pairs

39

Figure 13: Flowchart of running Node2Vec or GraphSAGE combined with
KNN on the Cora dataset.For the Cora dataset, this thesis will conduct
parameter tuning experiments for the Node2Vec algorithm using five pa-
rameters outlined in Table 5. Due to the complexity of the GraphSAGE
algorithm, we will perform parameter tuning based on seven parameters
listed in the Table 6. After obtaining the node embeddings, KNN will be
used to create the similarity relationships between papers. In this step, we
will primarily focus on tuning the "Calculation Distance" parameter, as
described in Section 4.2.3.

are summarized in the Figure 17 below.
From the figure, we can observe that the number of successful matches

consistently hovers around 630, while our test set contains a total of 1086
paper pairs. This indicates that our recall value is approximately 0.58. To
rule out the influence of different distance measurement methods used in
the KNN algorithm, we conducted 67 additional experiments within the
same range of dimensions, using EUCLIDEAN and COSINE distance metrics,
respectively. The area plots of the dimensions and the number of successful
matches obtained are shown below:

Then, by comparing the results of these 201 experiments, we can observe
that, overall, the method using EUCLIDEAN distance measurement performed
the best. Its maximum value reached 662, but even with this value, the corre-
sponding recall was only around 0.61. Therefore, we can confirm that, under
the parameter settings of walklength=80 and iteration=10, the embedding
dimension does not significantly impact the results. The Appendix B shows
the results of the 201 experiments. Consequently, we proceeded to adjust
the walklength parameter.

First, we reduced the walklength from its original value to 10, becasue
we wanted to test walklength from a small value. To shorten the exper-

40

Figure 14: Dimension setting line chart based on Pearson measure method.
We can find that changes in the embedding parameters have almost no effect
on the results.

iment time, we selected lower embedding dimensions, ranging from 60 to
64, and conducted experiments with all three measurement methods.The
Section C.1 shows the results of the experiment The results of these exper-
iments are shown in Figure 16a. We observed that the number of success-
ful matches significantly decreased compared to the previous experiments.
Therefore, we increased the walklength to 40, and the results are shown in
Figure 16b and Section C.2. We noticed an overall improvement compared
to the walklength=10 scenario, but it still fell short of the results obtained
with walklength=80.

Thus, we considered that the walklength should be adjusted in the di-
rection of increasing from 80. We then set the walklength to 100, and the
results are shown in Figure 16c and Section C.3. The number of successful
matches improved across all dimensions. Finally, we increased the walk-
length directly to 200, and the experimental results are shown in Figure 16d
and Section C.4. It is important to note that, to reduce experiment time,
the embedding dimensions were chosen to range from 10 to 55, with a step
size of 5.

The walklength is increased to 200 and we can see that the results of
the experiment have improved. However, the highest value is still around
667, which is not a significant improvement compared to walklength=100.
Therefore, we concluded that a walklength of 100 is a suitable value. With
walklength=100, we conducted another set of experiments focusing on the
embedding dimensions ranging from 5 to 1000 and performed 21 experiments
under each of the three distance measures. The final results are shown in

41

Figure 15: Dimension setting area chart based on three measurement meth-
ods. We find that the use of the EUCLIDEAN outperforms the other two
methods in all dimensions, and the highest value can exceed 660.

the figure below:
After conducting these 120 tuning experiments on the walklength param-

eter, we observed that the walklength value should not be too small. For
instance, when the walklength was set to 10, there was a significant decrease
in the number of successfully matched paper pairs. However, increasing the
walklength excessively did not lead to a significant improvement in results
and only added to the experiment’s runtime. Therefore, we chose to set
the walklength value to 100 for subsequent experiments. Next, we focused
on tuning the iteration parameter. Initially, with the walklength fixed at
100, we set the iteration to 30 to observe whether increasing the number
of iterations would significantly improve the results. The experimental re-
sults are shown in Figure 18. We found that when the embedding dimension
exceeded 10, there was no significant increase in the number of successful
matches. Therefore, we can assume that the limit value of the embedding
dimension is around 10. Additionally, when comparing these results to those
obtained with iteration = 10 and walklength = 100 in the Figure 16c, the
number of successful matches remained within the 640-670 range. To rule
out the influence of walklength, we also conducted experiments with itera-
tion = 30 and walklength = 40. The results of these experiments are shown
in Figure 19.

When the dimension value exceeded 260, the results began to deterio-
rate as the value increased. Overall, the maximum number of successful
matches did not exceed 650, which is consistent with the results observed

42

(a) Line chart of walklengh =10. We
can find there is not much difference
in the results of the three measures.
Moreover, there is an overall decrease
in the number of successful matches
compared to the previous results

(b) Line chart of Walklengh = 40.The
number of successful matches in-
creased, with the highest value be-
ing close to 660. and the measure-
ment method using EUCLIDEAN out-
performed the other two methods.

(c) Line chart of Walklengh =
100.The number of successful
matches increased for all three meth-
ods, with the highest value exceeding
660.

(d) Line chart of Walklengh =
200.The number of successful
matches increased for all three meth-
ods, with the highest value near 670.
and the method using EUCLIDEAN
outperformed the other two methods.

Figure 16: Line charts of the walklength tuning.There is a slow increase
in the number of successful matches as walklength increases. However, the
overall change is not significant. The number of matches is still around 660.

when iteration was set to 10. After conducting these 45 experiments, we can
preliminarily conclude that the iteration value does not have a significant
impact on the experimental results.

Next, we will tune the initial learning rate parameter. It is important to
note that in the previous tuning experiments, we did not specifically adjust
the initial learning rate parameter, so the default value of 0.01 was used. To
quickly determine the appropriate direction for tuning the initial learning
rate, we conducted experiments with an initial learning rate of 0.001 and 0.01
under the condition of iteration set to 10. Similar to the previous approach,
we conducted experiments within the embedding dimension range of 15-55
and used three different distance measurement methods. The experimental
results are shown in the figure below:

43

Figure 17: Line chart of the walklength =100 and embedding dimension from
5 to 1000. The number of successful matches did not change significantly
as the dimensions changed. Although a spike is seen in the graph. But
this could be due to the randomness of the Node2Vec algorithm. Detailed
experimental results are in the Section C.3

From the two figures, we can clearly observe that the results obtained
with an initial learning rate of 0.001 are lower across all dimensions com-
pared to those obtained with an initial learning rate of 0.01. Therefore, we
can hypothesize that increasing the initial learning rate may lead to cor-
rectly matching more paper pairs. To further test this hypothesis, we set the
iteration value to 30, as we previously assumed that iteration does not sig-
nificantly impact the experimental results. By using iteration = 30, we can
further validate our earlier assumptions. Subsequently, with the Walklength
set to 100, we conducted experiments with initial learning rates of 0.1, 0.15,
0.25, and 0.5. The experimental results are shown in the Figure 22 below:

Comparing Figure 22a with Figure 22b, the number of successfully pre-
dicted papers with an initial learning rate of 0.15 is higher than that
with an initial learning rate of 0.1 in all dimensions. Therefore, we further in-
crease the initial learning rate to 0.25 and take a very extreme value
of initial learning rate = 0.5. The results are shown in Figure 22cand
Figure 22d respectively. At initial learning rate=0.25, as the embedding
dimension increases, the number of correct predictions falls off a cliff at di-
mension 45. Also at the initial learning rate=0.5, all the values are for
347. For these two cases, it may be that there is an overlearning condition
because the initial learning rate is too high. To further explore this overlearn-

44

Figure 18: Bar chart of walklength
=100.Matching results are worst
when the dimension is equal to 5,
while the difference in matching
results is not significant as soon as
the embedding dimension exceeds
10. The limit value of the embed-
ding dimension is around 10.De-
tailed experimental results are in
the Section D.1.

Figure 19: Bar chart of walk-
length=40.The highest value of
matches is close to 650, but lower
than the highest value for itera-
tion=10 in the Figure 16b. At
dimensions starting from 260, the
matches start to decrease with in-
creasing dimensions. Finally, at
the dimension equal to 660, the
three methods get the same match
value. Detailed experimental re-
sults are in the Section D.2.

ing boundary, we chose 0.34 which is between 0.25 and 0.5 to experiment
again. The results of the experiment are shown below.

From Figure 23a, it is evident that when the initial learning rate
is set to 0.34 and the dimension is at least 25, the number of suc-
cessful predictions consistently remains at 347. This likely indicates a case
of overfitting. Based on the 105 previous experiments, we observed that the
initial learning rate of around 0.1 yields better performance, when
iteration is equal to 10. Consequently, we conducted 15 additional ex-
periments with the initial learning rate set to 0.1 and increased the
number of iterations to 50. The results are shown in the Figure 23b
However, the results showed no significant improvement with the increased
iterations. This further confirms our earlier conclusion that, for the Cora
dataset, the iteration parameter has no significant impact on the results
when running the Node2Vec algorithm in combination with KNN.

Finally, we conducted experiments focusing on the inOutFactor param-
eter, which controls the distance of a node’s random walk from the initial
node. The default value is 1.0, and a higher value implies that the nodes
tend to walk farther away. Based on previous experiments, we initially
set walklength=100, iteration=30, and initial learning rate=0.1. We
then increased the inOutFactor to 3 and 6, aiming to capture global in-
formation from the knowledge graph. After conducting 30 experiments, Fig-
ure 24a and Figure 24b show the results for inOutFactor set to 3 and 6,

45

Figure 20: Radar chart of
initial learning rate=0.001.The
Pearsonmeasurements gave better
results than the other two meth-
ods. Moreover, the result interval
is 610-635, which is the same as
the result interval obtained in the
Figure 16a at an initial learning
rate of 0.01. Detailed experimen-
tal results are in the Section E.1.

Figure 21: Radar chart of initial
learning rate=0.1.The EUCLIDEAN
measure gives better results than
the other two methods. Moreover,
the maximum value of the results
is around 665. This result is much
larger than the one presented at
an initial learning rate of 0.001
as depicted in theFigure 20. De-
tailed experimental results are in
the Section E.2.

respectively. The results with inOutFactor=3 generally outperformed those
with inOutFactor=6. When compared with the results in Figure 22a, we
observed that increasing the inOutFactor from 1 to 3 did not result in
any significant improvement overall.

To further validate the effect of the inOutFactor, we conducted 5 ad-
ditional experiments with iteration=50 and inOutFactor=3. As shown in
Figure 24c, there is an overall improvement compared to Figure 23b, but
the maximum value still did not exceed 680. Therefore, we conclude that
adjusting the inOutFactor does not significantly enhance the recall value
of the experiment.

We conducted 537 parameter-tuning experiments using the Node2Vec
algorithm combined with KNN on the Cora dataset. Through these ex-
periments, we observed that regardless of how we adjusted the parame-
ters embedding, iteration, initial learning rate, walklength, and
inOutFactor, the highest experimental results remained around 680. Con-
sequently, our recall value stayed around 0.63. This value is not particularly
impressive. To further investigate the reasons behind this, we analyzed the
loss per iteration values obtained from the previous Node2Vec experiments.
The following Figure 25 illustrate the loss per iteration for two different se-
tups: one with Embedding=325, iteration=10 and other parameters set
to their default values in the Figure 25a. Another with Embedding=35,
walklength=100, iteration=30 and other parameters set to their default
values in the Figure 25b.

46

We visualized the loss per iteration values for the results obtained from
179 different parameter settings using the Node2Vec algorithm. The loss per
iteration graph for each experiment is provided in the appendix of this paper.
Here, we only present two of these loss per iteration graphs. However, we
observed that the loss did not converge in any of the Node2Vec experiments.
This could explain why parameter adjustments did not result in significant
improvements. In the previous experiments, to save time, I set the number
of iterations relatively low. To make the experiments more convincing, I
increased the number of iterations to 10000. The Figure 26 illustrates
the results.

In this case, we set the embedding dimension to 30. This choice was
made partly because this value did not perform poorly in previous results,
but primarily to reduce runtime. With this setting, the code took approx-
imately 16 hours to run. Higher embedding dimensions would significantly
increase the time cost. As shown in the figure above, the loss did not con-
verge. Therefore, we can confirm that the primary reason for our failure to
optimize the parameters was the lack of convergence in the Node2Vec al-
gorithm on our dataset. Finally, we took the best result from these tuning
attempts, with a maximum successful match count of 680, resulting in a re-
call of 0.626 for the Node2Vec algorithm combined with KNN on
the Cora dataset.

47

(a) Radar chart of initial learn-
ing rate=0.1 and iteration =30.Com-
pared to the Figure 21, iteration in-
creases. However, the overall resul-
tant interval did not change either.
Detailed experimental results are in
the Section E.3.

(b) Radar chart of initial learning
rate=0.15.The number of successful
matches has risen, with a maximum
value of nearly 670.

(c) Bar chart of initial learning
rate=0.25.The number of successful
matches decreases. And, there is a
significant decrease in the number of
matches at dimension 45 . Detailed
experimental results are in the Sec-
tion E.4.

(d) Bar chart of initial learning
rate=0.5.The number of successful
matches has remained at the value of
347. An overlearning problem may
have occurred. Detailed experimen-
tal results are in the Section E.5.

Figure 22: charts of the initial learning rate tuning based on iteration =30.
The initial learning rate of 0.15 gives better values, but it is not better
thanFigure 21.

48

(a) Bar chart of initial learning
rate=0.34.The results obtained re-
mained stable at 347 as the dimen-
sionality increased. This indicates
that the experiment appeared to be
over-learning. Detailed experimental
results are in the Section E.6.

(b) Radar chart of initial
learning rate=0.1 and iteration
= 50.Compared to the Figure 21,
the number of iterations is increased.
However, the results do not show a
significant improvement. Detailed
experimental results are in the
Section E.7.

Figure 23: Checked experiments about initial learning rate and iteration

49

(a) Area chart of
inOutFactor=3.The highest value
for a successful match is 675. this
is not a significant improvement
over the results in the ??. Detailed
experimental results are in the
Section F.1.

(b) Area chart of
inOutFactor=6.The highest value
for a successful match is 665, lower
than the results in the ??. Detailed
experimental results are in the
Section F.2.

(c) Radar chart of iteration=50,
inOutfactor=3.The maximum value
of the obtained matching results ex-
ceeds 670. however, the results are
not significantly improved compared
to the Figure 24a. Detailed experi-
mental results are in the Section F.3.

Figure 24: Charts of the inOutFactortuning

50

(a) line chart for Embedding=325,
iteration=10 and other parameters
are default values. We can find that
the loss did not converge.

(b) line chart for Embedding=35,
walklength=100,iteration=30 and
other parameters are default values.
Like Figure 25a, we can find that the
loss also did not converge.

Figure 25: Parts of lossPerIteration charts. We can find that the loss did
not converge, regardless of the parameter settings.

Figure 26: Loss chart of itration=10000, embedding =30 and other pa-
rameters are default values. We can find the loss still did not converge.

51

Experiments of Using GraphSAGE with KNN on the Cora Next,
we will discuss the experiments involving GraphSAGE combined with KNN
on the Cora dataset. As mentioned in the Table 6, the parameters that can
be adjusted for the GraphSAGE algorithm includeembedding dimension,
sample size, search depth, epoch, learning rate, activation func-
tion, and aggregator. Based on our previous experience with Node2Vec,
we found that confirming data convergence is crucial before performing de-
tailed parameter adjustments. In Neo4j, the GraphSAGE algorithm’s train-
ing mode returns a Boolean value did converge to directly indicate whether
the training has converged. However, to more closely observe changes in loss,
we visualized Iteration Losses per Epoch to detect any significant fluctua-
tions in the model. Since didConverge directly indicates whether the data
has converged, we did not visualize epochLosses for convergence detection.

Initially, we set the parameters to learningRate=0.005, epoch =20,
batchSize=30, aggregator=POOL, searchDepth=5 and embedding Dimen-
sion=255. These initial values were chosen based on parameter settings used
in other GraphSAGE experiments. We then conducted tuning experiments
for the epoch parameter. The following Figure 27 shows the results of the
GraphSAGE algorithm with these parameter settings, including the success-
ful match values for the training set and our visualization of Iteration Losses
per Epoch.

From the Figure 27, we can immediately observe that the training did
not converge, and the number of successfully predicted papers was only 13.
Consequently, we conducted further experiments with epoch values of 3
and 40, keeping all other parameters constant. It was found that an epoch
of 3 resulted in a higher number of successful matches. Therefore, we tenta-
tively assumed epoch=3 as the optimal setting and proceeded with tuning
the Aggregator parameter. Changing the Aggregator to MEAN led to a
significant improvement in the results. Therefore, we assumed MEAN to be
the optimal Aggregator. Next, we conducted experiments on the Activation
Function. We found that switching the Activation Function to ReLU re-
sulted in a substantial improvement, with the number of successful matches
increasing from around one hundred to over four hundred. Therefore, we con-
tinued to use ReLU as the Activation Function for the Search Depth
experiments. The experiments with Search Depths of 10 and 3 revealed
that a search depth of 5 yielded the best results. The outcomes of the
seven experiments mentioned above are summarized in the Table 13.

Although we found that a Search Depth of 5 yielded better results
than a depth of 3, the difference between the two was not substantial. Con-
sidering the issue of runtime, we decided to use the Search Depth of 3 as
the basis for further parameter tuning. We then conducted experiments on
the Sample Size parameter, starting with the initial value of [10, 10]. We
tested four different configurations: [3, 3], [5, 5], [8, 8], and [15,
15]. The results, as shown in the Figure 28, indicate that the configura-

52

Figure 27: Plot of experimental results with epoch of 20. The top part is
information about the results returned using the GraphSAGE train model.
The number of matched relations in the middle intermediate part is the
number of relations predicted by the algorithm that appear in the test set.
The bottom half is a visualisation of the iteration Losses per Epoch data.
We can find the training did not converge and the number of successfully
predicted papers was only 13.

Table 13: Experimental Results for GraphSAGE in the Cora. We can find
the highest matched number is 436. Detailed experimental results are in the
Section G.1.

Epoch didConverge Aggregator Activation
Function

Search
Depth

Number
Matched

20 FALSE POOL Sigmoid 5 13
40 FALSE POOL Sigmoid 5 7
3 FALSE POOL Sigmoid 5 26
3 FALSE MEAN Sigmoid 5 129
3 FALSE MEAN ReLu 5 436
3 FALSE MEAN ReLu 10 405
3 FALSE MEAN ReLu 3 414

tion [8, 8] produced the highest number of successful matches, reaching
433. Based on this, we proceeded to tune the learning rate with the Sample
Size set to [8, 8]. Drawing on previous experience, we decided to avoid
a high learning rate to prevent overfitting. The initial learning rate

53

was 0.005, so we reduced it to 0.001 for this experiment. Given the inher-
ent randomness of the GraphSAGE algorithm, we ran the experiment twice,
with results of 588 and 613, respectively. Detailed experimental results are
in the Section G.3.

Figure 28: Bar graph of different Sample Size.We can observe that Sample
Size =[8,8] have the highest matched number,433. Detailed experimental
results are in the Section G.2.

At this point, we have conducted 13 experiments using GraphSAGE com-
bined with KNN on the Cora dataset. However, none of these experiments
showed convergence, and overall, the performance was inferior to that of
Node2Vec. From the earlier experiments, it is evident that the results from
the Node2Vec algorithm consistently exceeded 610. The reason we did not
perform as detailed parameter tuning for the GraphSAGE algorithm as we
did for Node2Vec is that we already recognized that tuning is of limited value
when the training does not converge. Finally, we conducted experiments to
assess the impact of the embedding dimension on convergence, testing di-
mensions of 255 and 25. The results confirmed that the training still did
not converge. At this stage, we decided to halt further tuning of Graph-
SAGE on the Cora dataset, as parameter tuning is ineffective when the data
does not converge, leading only to endless experimentation. Additionally,
the algorithm itself is inherently stochastic. We therefore used the highest
observed value, 613, to calculate the recall for GraphSAGE combined with
KNN, which resulted in a final recall of 0.56.

54

Experiments of Using Link prediction on the Cora In the previous
section on algorithm descriptions, we analyzed several topological link pre-
diction algorithms provided by Neo4j and ultimately decided to use Adamic-
Adar. We employed the gds.alpha.linkprediction.adamicAdar algo-
rithm to compute scores for paper node pairs regarding the CITES relation-
ship. Comparing the results with the test set, we found that the number
of correct matches was only 61, which is significantly lower than the results
obtained using Node2Vec or GraphSAGE combined with KNN. Although
we initially selected Adamic-Adar based on theoretical analysis, we also con-
ducted link prediction experiments using the other five algorithms. The
results of these experiments are summarized in the Table 14 below.

Table 14: Topological Link Prediction Results. We can find that using Total
Neighbors can get the highest number,566.

Topological Link Prediction Number of Matching Relationships

Adamic Adar 61
Common Neighbors 110
Preferential Attachment 254
Resource Allocation 110
Same Community 0
Total Neighbors 566

As shown in the table, the Total Neighbors method achieved the high-
est number of successful matches, with a total of 566. Therefore, we used
566 as the successful match result for Neo4j’s link prediction, yielding a recall
of 0.521. At this point, the experiments for the three algorithms on the Cora
dataset have been completed, and their final recall values are presented in
the Table 15. We find the Node2Vec+KNN gets the highest recall And the
recalls of latent space with KNN methods are higher than link predictions’.

Table 15: Recall Values for Different Algorithms. Using Node2Vec+KNN
gets the highest recall.

Algorithm Recall
Node2Vec with KNN 0.626
GraphSAGE with KNN 0.56
Topological Link Prediction 0.521

55

5.2.2 Experiments Comparing the Recall of Link Prediction with
Latent Space with KNN on Movielens

For the second sub-problem, we will conduct experiments on the Movielens
dataset. The overall experimental process will be similar to that used on the
Cora dataset. The key difference is that in this dataset, we need to establish
user-to-user similarity and generate user-movie recommendation pairs based
on the principle: (u)-[:similar]->(other)-[:likes]->(film) WHERE NOT
(u)-[:likes]->(film). Finally, these pairs will be compared with the test
set, which had 16,954 user-film pairs.The complete process is illustrated in
the Figure 29.

Figure 29: Flowchart of running Node2Vec or GraphSAGE combined with
KNN on the Movie dataset. Unlike the pipeline on the Cora dataset illus-
trated in the Figure 13, this thesis performs tuning experiments on only two
parameters of the Node2Vec algorithm. Also, we only tune four parameters
of GraphSAGE. This is because the Movielens dataset is very large and fewer
parameter experiments can save time and cost.

Experiments of Using Node2Vec with KNN on the Movielens As
shown in the pipeline above, we adjust the parameters for Node2Vec on the
dataset movie, mainly starting with embedding dimension and walklength.
Firstly, we set walklength=10 and embedding dimension to 25 and 26,
the loss diagram is shown below: From the two loss graphs, we can notice
that the loss does not converge. The obtained embeddings combined with
the KNN algorithm finally get the values of 5169 and 5021 for successful
matches. The subsequent choices of adjusting the walklength to 100 and 50
are again experimented with. Figure 31shows the final results of these six
experiments.

56

(a) Loss Chart of
Walklength=10,embedding
dimension=25.We can find the
loss did not converge.

(b) Loss Chart of
Walklength=10,embedding
dimension=26.We can find the
loss also did not converge.

Figure 30: Parts of lossPerIteration charts. And, the 2 loss charts both
showed that the loss also did not converge

Figure 31: Histogram of the number of successful matches at different walk-
lengths for embedding dimensions 25 and 26, each respectively.When the
walklength = 10, we get the highest number,5169.

As the Figure 31 shows, the highest number of successful matches occurs
when the walklength is set to 10 and the embedding dimension is 25.
This indicates that increasing the walk length does not lead to a higher
number of matches. Therefore, in the next step, we chose to decrease the
walklength to 3 and conducted experiments with embedding dimensions
of 25, 125, and 155. The table below summarizes the results of these
three experiments.

So far, we have performed 9 tuning experiments, but find that none of
the data converge. In this situation, the tuning parameter does not improve
the experiment greatly. Therefore, we chose to take the maximum value of
the experimental results, 5169, to represent the final Node2Vec result on
the Movielens dataset. The final recall is 0.263. Detailed results of the
nine experiments are in Appendix H.

57

Table 16: Embedding Dimension and Convergence Results based on walk
length=3

Embedding Number of Matching Relationships Convergence
25 4414 Not Converge
125 4553 Not Converge
155 4524 Not Converge

Experiments of Using GraphSAGE with KNN on the Movielens
We initially set the experimental parameters as follows: embeddingDimen-
sion=255, epoch=3, aggregator="MEAN", searchDepth=5,batchSize=10,
sampleSizes=[8,8], and activationFunction="ReLu" . As shown in the
Figure 29, we adjusted four parameters: epoch, aggregator, activationFunc-
tion, and sampleSizes.First, we experimented with four different values for
the sample size. The results are shown in Figure 32a, where the sample
size of [10,10] yielded the best results. Next, we conducted experiments
with different epoch values, as shown in Figure 32b. The highest number of
successful matches was achieved with an epoch value of 3.

(a) Bar chart of successfully matched
user-film pairs for different sample
sizes. When the sample size =10,
we get the highest number,3073.

(b) Line graph of successfully
matched user-film pairs at different
epochs.When the epoch = 3, we also
get the highest number,3073.

Subsequently, we adjusted the aggregator parameter, setting it to POOL.
Although this resulted in a significant increase in the number of successful
matches, the training did not converge. To address this, we increased the
number of epochs to 10 and conducted another experiment. Despite the
lack of convergence, the number of matches improved.

Following this, we experimented with a sample size of [30,30] and
also explored the effects of using Sigmoid as the activation function
in combination with different epoch settings. The results of these tuning
experiments are summarized in the Table 17.

After the aforementioned parameter tuning experiments, we found that
the overall best results should surpass those obtained with Node2Vec. Con-
sequently, we decided not to continue with further parameter tuning. In-
stead, we selected the highest value obtained from the experiments, which

58

Table 17: Parameter Settings and Results. The Highest Matched number is
5664. Detailed results of these experiments are in Appendix J

Parameter Settings Results
Aggregator Activation

Function
Sample
Sizes

Epoch Did Converge Matched Number

MEAN ReLu [8,8] 3 TRUE 1872
MEAN ReLu [10,10] 3 TRUE 3073
MEAN ReLu [15,15] 3 TRUE 2500
MEAN ReLu [30,30] 3 TRUE 2314
MEAN ReLu [10,10] 10 TRUE 1526
MEAN ReLu [10,10] 1 TRUE 2975
POOL ReLu [10,10] 3 FALSE 5150
POOL ReLu [10,10] 10 FALSE 5237
POOL ReLu [30,30] 10 FALSE 5664
POOL Sigmoid [30,30] 10 FALSE 5584
POOL Sigmoid [30,30] 3 FALSE 5494
POOL Sigmoid [30,30] 10 TRUE 5567

was 5664, as the number of successfully matched user-movie pairs using the
GraphSAGE combined with KNN on the Movielens dataset. This resulted
in a recall value of 0.288.

Experiments of Using Link Prediction on the Movielens Simi-
lar to the operation on the Cora dataset, but we need to create the prox-
imity relationship between users and users first, and then again based on
(u)-[:similar]->(other)-[:likes]->(film), WHERE NOT (u)-[:likes]-
>(film) to get the user-film pairs. Then Adamic Adar is utilised for link
prediction between users. At this time, algorithms that perform better on
the Cora dataset such as Toal Neighbours are not used. Because the Cora
dataset has only one node type, it can be justified by looking only at the
number of neighbours. However, Movielens has more node types and is very
unevenly distributed across node types. It would not be reasonable to use
a method that relies on the total number of neighbours or the total num-
ber of common neighbours again. Subsequently, it was found that using
gds.alpha.linkprediction.adamicAdar in Neo4j, the procedure does not
work. Further analysis revealed that the time complexity of the whole pro-
cedure is O(n2̂). We have 5802 users, and about 17 million node pairs
need to be processed. Neo4j can’t perform such a large number of calcula-
tions directly, and the program keeps breaking. The experiment also tried
to call apoc.periodic.iterate for batch processing, but it could not run
successfully either. Therefore, we believe that Neo4j’s topological link
prediction cannot be effectively applied to Movielens data.

59

5.3 Experiments Comparing Direct Query and Latent Space
with KNN for Different Tasks

We will investigate the relationship between task classification and query
methods. Simultaneously, we will develop a paper recommendation system
in the Section 6. Due to the significantly longer training time for the Graph-
SAGE algorithm, which substantially reduces real-time responsiveness to
dynamic changes on the interface and negatively affects user experience, and
considering that previous experimental results indicate that Node2Vec and
GraphSAGE perform similarly, we will use Node2Vec for node embeddings
in the subsequent experiments. Additionally, we will continue to use the
Adamic-Adar method for link prediction in the direct querying approach.

5.3.1 Experiments Comparing Direct Query and Latent Space
with KNN for Different Tasks in the Paper domain

The Table 18 below shows the tasks that we carried out inside this paper
domain. The parameters of the Node2Vec algorithm are embedding=25,
walklength=10, and iteration=30. Because this dataset does not have
real user data, it is impossible to perform tuning experiments to find the op-
timal parameters. Compared to the Cora dataset, the paper dataset is more
similar to the movie dataset. Therefore, we directly chose the parameter
settings that achieved the best results in the Movielens dataset.

For Task 1, one method is to use the known relationships: written_by
_authors and contains_keywords to directly query.In another way, we first
create a subgraph containing only paper, authors, keywords and the corre-
sponding relationships. Then, use Node2Vec to get their embeddings. Fi-
nally, construct the similar relationship between them by KNN. We use sim-
ilar relationships instead of written_by_authors and contains_keywords
for querying. Experiments found that the results obtained by these two
methods are exactly the same.

For Task 2, using Cypher for direct querying follows a similar approach to
Task 1. However, for the latent space with KNN, the main adjustment is in
the subgraph construction. This step determines how we project the problem
into a specific node type space. In this case, the similar relationship replaces
the FRIEND, belongs_to_type, and read relationships. Ultimately, the
direct querying method successfully returned five papers, whereas the other
method did not find any. Therefore, for Task 2, direct querying is the
optimal approach.

For Task 3, using the embedding method combined with KNN requires
projecting the problem onto a subgraph that only contains papers, paper
types, and keywords. The similar relationship created by KNN replaces the
contains_keywords and belongs_to_type relationships. On the other
hand, for direct querying, the query is as simple as: MATCH (article:paper)-

60

Table 18: Experimental Tasks in the Paper Domain

Task Type Tasks
Adjacency T1: Find the author and keywords

of articles "Simulating the
Geometric Growth of the Marine
Sponge Crella Incrustans" and "Do
You Trust What You See? Toward A
Multidimensional Measure of Trust
in Visualization"

Accessibility by Links T2: Find articles my friends like
and belong to the short paper type.

Common Connection T3: Give me articles of short
article type containing the keyword
Human-centered computing.

Nodes Attribute T4:Find the uid of the article
"Simulating the Geometric Growth
of the Marine Sponge Crella
Incrustans".

Explore Task T5:Recommend some papers.
Hybrid Task T6:Recommend some papers in

session_id as short6.

[:contains_keywords]->(keywords:keywords name: ’Human-centered com-
puting’), (article)-[:belongs_to_type]->(type:paper_type name: ’short’) RE-
TURN article.title. The embedding method did not successfully retrieve any
articles, while the direct query method found two. Therefore, for Task 3, the
direct querying approach proves to be more effective.

For Task 4, querying the attributes of the nodes themselves is required,
which can only be done using the direct querying method. By inputting
the following Cypher query:MATCH(article:papertitle:"Simulating the Ge-
ometric Growth of the Marine Sponge Crella Incrustans") RETURN article.
uid the result v-short-1067 is obtained.

For Task 5, we utilized the Adamic Adar algorithm for direct querying
to predict links between Dan and other user nodes. This method identified
two users similar to Dan and recommended six articles.

In contrast, using the embedding space method required treating the
entire knowledge graph as a subgraph to obtain user node embeddings. Then,
we established similarity between users through KNN. This method identified
three users similar to Dan and recommended 11 articles.

Comparing the results from both methods, the KNN-based approach
included the recommendations found by direct querying and provided addi-
tional, more diverse results. Therefore, for Task 5, the embedding-based

61

method combined with KNN is more effective in generating diverse
recommendations.

In Task 6, the direct querying method follows a similar procedure to
Task 5. This approach successfully recommended the article "Simulating
the Geometric Growth of the Marine Sponge Crella Incrustans."

On the other hand, the latent space with KNN approach required an
additional step of using the similar relationship instead of the presented_in
_session relationship. However, no recommendations were generated by this
method. Therefore, using direct querying is the most effective way
to solve Task 6.

Summarizing the results of the experiments for the various tasks, the
comparison between methods is presented in the Table 22 below. The
✓symbol indicates the best method for each task.

Task number Cypher Direct Latent Space with KNN
T1 ✓ ✓
T2 ✓
T3 ✓
T4 ✓
T5 ✓
T6 ✓

Table 19: Comparison of methods for different task types on paper domain

5.3.2 Experiments Comparing Direct Query and Latent Space
with KNN for Different Tasks in the Movie domain

To validate the generalizability of our conclusions, we conducted similar ex-
periments in the movie domain. The Table 20 presents the tasks we tested
in this domain. We will sequentially introduce the two methods used to
perform each task and the results obtained. In this experiment, we em-
ployed Node2Vec for node embeddings. The algorithm’s parameters were
set according to the optimal values obtained in our previous experiments on
the Movielens dataset, specifically: embedding=25, walklength=10, itera-
tion=30, with all other parameters set to their default values.

For Task 7, the direct query method involves inputting the following
Cypher query:MATCH (a:actorid:"4230")-[:actor_film]->(m:film) RE-
TURN DISTINCT m.id AS movieTitle.

For the KNN method, we first run the Node2Vec algorithm on a sub-
graph containing only actors and films to obtain their embeddings. We
then use KNN to establish similarity relationships between the nodes. By
executing the query MATCH (a:actorid:"4230")-[:similar]->(m:film)
RETURN m.id, we find the films most similar to the actor with ID 4230. The

62

Task Type Tasks
Adjacency T7: Which movies have the actor with ID

4230 starred in?
Accessibility by links T8: Find out what other movies the

actor with the film ID 1740 has acted in
.

Common connection T9: Find films where the actor ID is
4230 and the genre ID is 3066.

Nodes attribute T10: Find all IDs of genres.
Explore task T11: Recommend me some films.
Hybrid task T12: Recommend me some films in the

genre 2624.

Table 20: Task types and corresponding tasks.

following Table 21 shows all results of task 7.

Table 21: Task 7’s results.We can find the direct query methods finds more
results.

Task methods film ID
Direct Query "1946", "1604", "1660", "1578", "2280",

"689", "1208", "1155", "1209", "765"
Node2Vec+ KNN "1660", "1604", "1578", "1946"

Using the direct query method, we retrieved 10 movie IDs, while the node
embedding combined with the KNN method yielded only 4 movie IDs. How-
ever, all the movies identified through node embeddings were also included
in the results from the direct query. The direct query method provides a
more comprehensive set of movie IDs for this task. Therefore, for Task 7,
the direct query method is more effective.

For Task 8, the direct query method involves inputting the following
Cypher query: MATCH (a:actor)-[:actor_film]->(m:filmid:"1740") WITH a
MATCH (a)-[:actor_film]->(m1:film) WHERE m1.id <> 1740 RETURN
DISTINCT m1.id AS movieTitle.

Using the embedding combined with the KNN method, we first run the
Node2Vec algorithm on a subgraph containing only actors and films to
obtain their embeddings. We then use KNN to establish similarity relation-
ships. The process involves first identifying the actors who have a similar
relationship with the film ID 1740 and then finding films that have a sim-
ilar relationship with these actors.

The direct query returned 71 results, while the embedding and KNN
method only returned 13 results, with 7 results overlapping between the
two methods. Since the direct query method yields more results and di-

63

rectly utilizes the known knowledge from the knowledge graph, it is more
reliable. Therefore, for Task 8, the direct query method is the better
approach.

For Task 9, the direct query method involves inputting the following
Cypher query: MATCH(a:actorid:"4230")-[:actor_film]->(m:film),(m)-[:film
_genre]->(g:genreid:"3066") RETURN DISTINCT m.id AS movieTitle.

In contrast, the embedding combined with KNN method involves run-
ning the Node2Vec algorithm on a subgraph containing films, actors, and
genres. After obtaining the embeddings for these nodes, KNN is used to es-
tablish similarity relationships. By executing the query: MATCH (m:film)<-
[:similar]-(g:genreid:"3066"),(a:actorid:"4230")-[:similar]->(m:film) RETURN
DISTINCT m.id AS movieTitle, we aim to find film nodes in the latent
space that are closest to actor 4230 and genre 3066.

The direct query successfully identified 7 movie nodes, while the embedding-
based KNN approach did not identify any movie nodes. Therefore, for Task
9, the direct query method is more effective.

For Task 10, it is about the internal attributes of the node. Only direct
queries can be used. Running Match(g:genre) Return g.id got 23 out of
23 genres.

For Task 11, the direct query method utilizes Neo4j’s Adamic Adar algo-
rithm for link prediction between users. Given the large size of the dataset,
we employed the APOC library to batch-process the link prediction tasks.
The specific operations are illustrated in the figure below. Using this method,
we identified 3 users similar to user 116, and with a score threshold set at
1.5, we were able to recommend 222 movies to the user.

Figure 33: Flowchart of the direct query method for task 11

In contrast, the alternative method involved running Node2Vec on the
entire graph and using KNN to establish similarity relationships between
users. This approach identified 10 users similar to user 116 and allowed us
to recommend 50 movies. Notably, the users identified by the two methods
were entirely different, with only 22 overlapping movies between the two sets.

From the perspective of movie diversity, the direct query method yielded
a broader range of recommendations. However, from the perspective of user
diversity, the second method resulted in greater user variety. Since our rec-
ommendation is based on user similarity, user diversity should be prioritized.
Additionally, while the first method identified only three similar users, it

64

managed to recommend 222 movies that User 116 had not seen. This sug-
gests that the similarity of the users identified by the first method may not
be high. This issue likely stems from the low threshold setting used in the
Adamic Adar algorithm.

Finally, for Task 12, the direct query method is similar to the procedure
used in Task 4, with the addition of a filter to select genres with ID 2624.
This approach allows us to recommend 23 movies to User 116.

For the embedding combined with KNN method, after following the same
steps as before, we need to include genre nodes and the film_genre relation-
ship in the subgraph used to create similarity relationships. Filtering based
on the similarity between movies and genre 2624, returned no results. This
outcome highlights a potential issue with KNN: when the subgraph includes
multiple types of nodes such as movies, users, and genres, the algorithm
tends to create more similar relationships within the same node type. Con-
sequently, with a limited value of K, there are fewer cross-node-type relation-
ships established. Summarising all the task experiments above in the movie
domain, the results of the comparison of the different methods for different
tasks are shown in the Table 22 below. To summarize the results obtained

Table 22: Comparison of methods for different task types on movie domain

Task number Cypher Direct Latent Space with KNN
T7 ✓
T8 ✓
T9 ✓
T10 ✓
T11 ✓
T12 ✓

from both domains, discrepancies were observed only in the first type of
task. In the paper domain, both methods were suitable, while in the movie
domain, the direct query approach proved to be more effective. Therefore,
this paper concludes that the direct query method, which performs well in
both domains, is the best approach for the first type of task. The Table 23
below shows the answer to the preferred query methods for different tasks.

65

Table 23: Comparison of methods for different task types

Task Type Cypher Direct Latent Space with KNN
Adjacency ✓
Accessibility by Links ✓
Common Connection ✓
Nodes Attribute ✓
Explore Task ✓
Hybrid Task ✓

66

6 Visualization Design

The entire browser backend uses node.js as the server runtime environment
and the express framework to manage routes, handle HTTP requests, static
file serving, etc. In the front end, the entire web page uses d3.js to create 2D
visualisations of the knowledge graph, PCA, related interactions, etc. The
following Figure 34 show the thesis recommendation web page we designed.
The whole page is divided into three modules: a user input box, a query
result visualisation box, and a PCA interaction box between the paper and
the user.

Figure 34: The whole website page. The top part is the user input box
and has two buttons. Below that is a section for visualising the results of
nodes query. On the right, the corresponding legend is displayed. Users can
select the features they are interested in by using the three buttons under
the visualisation module. At the bottom is the 2D visualisation obtained by
performing Node2Vec and PCA dimensionality reduction using user, paper
and the features of interest to the user.

At the top is the user input box, where users can enter Cypher queries.
Below the input box are two buttons. For node-related queries, correspond-
ing to tasks 1, 2, 3 and 6 described in the Table 2, users should click the
"Run Node Query" button. For queries related to node properties, such
as task 4 described in the Table 2, users need to click the "Run Property
Query" button. The results of a node query are visualized below, with dif-
ferent node and relationship types represented by different colors. Hovering
over a node displays its corresponding name. The results of a property

67

query are displayed directly as text. The Figure 35 illustrates an exam-
ple of executing a node query. The user enters the following query in the
input box: MATCH (a:User name: "Annie")-[i:FRIEND]->(b:User)-[u:read]-
>(p:paper) WHERE NOT (a)-[:read]->(p) RETURN a, b, p, i, u. This
query searches for papers that Annie’s friends have read but she has not.
This query belongs to our "Accessibility by Links" task. The results of the
query are visualized as shown below Figure 35. By hovering over the nodes
and relationships, we can identify that one user node represents Annie, and
the other user node represents her friend, Matt. The paper nodes correspond
to the five articles that Matt has read.

Figure 35: Example diagram for executing a node query

The Figure 36illustrates an example of performing a node property query.
To retrieve the UID of a specific paper, the user enters the following query in
the input box:MATCH (article:paper title: "Simulating the Geometric Growth
of the Marine Sponge Crella Incrustans") RETURN article.uid. For this
type of task, the query results are not visualized. Instead, the results are
displayed directly as text below the input box.

Figure 36: Example diagram for executing a node property query

68

Task 5 primarily involves operations on the PCA plot. Users can select
features of interest using session_id, paper_type, and keywords. Based
on these selected features, a subgraph is generated in the background, incor-
porating both papers and users. Node2Vec is then applied to this subgraph
to obtain high-dimensional embeddings for the user and paper nodes. Next,
KNN is used to construct similar relationships between users. These embed-
dings are subsequently reduced in dimensionality using PCA and visualized.
By clicking on a user node, the following query is executed in the back-
ground: MATCH (n:User name: ’name’)-[r:similar]->(friend:User)-[:read]-
>(paper:paper) RETURN friend.name AS user, collect(paper.title) AS pa-
pers, r.score AS scoreValue. This operation retrieves similar users to the
target user and the books that these similar users have read. This approach
combines Node2Vec with KNN for recommendations as part of Task 5. The
recommendation results are visualized by highlighting the similar users and
the recommended paper nodes. Connections between similar users and the
books they have read will appear, and hovering over these connections will
display the recommendation scores for the recommended articles. These rec-
ommendation scores are the scores of similar users obtained through KNN.
The Figure 37 below shows the recommendation results for the User Matt,
focusing on the session_id feature.

(a) Show the user who uses this rec-
ommender system

(b) Show similar users obtained by
Node2Vec and KNN

(c) Present the recommended papers
(d) Present the recommended score of
recommended papers

Figure 37: The result graph of Matt’s paper recommendation on the feature
session_id.

69

7 Discussion and Future Work

7.1 Answers to the Research Question

In SectionSection 4 we first introduce the various algorithms, followed by an
explanation of the Node2Vec or GraphSAGE combined with KNN pipeline.
This helps to clarify the overall design process. The Cora and Movielens
datasets mentioned in Section Section 5 are then applied to the latent space
with KNN design described in SectionSection 4, followed by parameter tun-
ing experiments. Based on the experimental results in SectionSection 5, we
observe that the recall obtained from Node2Vec or GraphSAGE combined
with KNN is higher than that from the direct use of link prediction in the
Cora dataset. Moreover, the link prediction algorithm cannot run on large
datasets like Movielens.

Therefore, we can answer Research Question 1:Does using Graph-
SAGE or Node2Vec with KNN outperform the direct use of Neo4j’s
link prediction algorithm for recommendations in the Cora or the
Movielens-1M datasets in terms of Recall?and confirm hypotheses:

1. H11:Using GraphSAGE and Node2Vec with KNN based on
Neo4j outperform the direct use of Neo4j’s link prediction
algorithm for recommendations in the Cora dataset in terms
of Recall with at least a 1% margin.

2. H12: Using GraphSAGE and Node2Vec with KNN based on
Neo4j outperforms the direct use of Neo4j’s link prediction
algorithm for recommendations in the Movielens-1M dataset
in terms of Recall with at least a 1% margin.

In SectionSection 3, we redefined a taxonomy for graph tasks, which pro-
vides a more effective way to distinguish and generalize query tasks in the
paper domain. In Section Section 4, we introduced the task pipeline, which
includes two query methods: one involves directly querying the knowledge
graph using Cypher, and the other uses a Feature-Based Embedding com-
bined with KNN. In sectionSection 5, we applied the task taxonomy from
section Section 3 to create six types of tasks in both the paper and movie
domains. These tasks were then applied to the task pipeline described in
sectionSection 4, to determine the optimal method for each task.

Moreover, by comparing the experimental results, we observe that the
findings in the paper domain and the movie domain are consistent, which
demonstrates the generalizability of our research results. The experimen-
tal outcomes also address Research Question 2: Which query methods
can be used for which tasks in the paper domain? and validate the
hypotheses presented in the table below.

70

Table 24: the Accepted Hypotheses regard to Research Question 2

Task Type Hypothesis
Adjacency Task H13: Direct querying results are

more diverse.
Accessibility by Links Task H14: Direct querying results are

more diverse.
Common Connection Task H15: Direct querying results are

more diverse.
Nodes Attribute Task H16: Direct querying results are

more diverse.
Explore Task H27: latent space with KNN results

are more diverse.
Hybrid Task H18: Direct querying results are

more diverse.

7.2 Findings in the Experiments

• The limitations of the Node2Vec, GraphSAGE, and KNN algorithms
contribute to the lower accuracy of the model’s experiments compared
to state-of-the-art algorithms.

We observe that the Node2Vec or GraphSAGE combined with KNN model
performs better than the link prediction algorithm in the Section 5.2. How-
ever, the accuracy achieved is not as high compared to state-of-
the-art algorithms. For example, in the Cora dataset, the MTGAE model
achieves an accuracy of 0.946 for link prediction tasks [30]. In the Movielens
dataset, the GHRS model’s precision is 0.792 [8].This could be due to the
Node2Vec algorithm not capturing node attributes fully, leading
to embeddings that do not completely represent node informa-
tion. Alternatively, although the GraphSAGE algorithm can cap-
ture node information, it might not perform well in non-connected
graphs with many outliers. Additionally, the KNN algorithm can not
learn node relationships effectively when finding nearest neighbors.

• On large and complex datasets, embeddings obtained through the
GraphSAGE algorithm are better at capturing semantic information.
However, on smaller and simpler datasets, the Node2Vec algorithm
tends to perform better.

We also notice that although GraphSAGE performs worse than Node2Vec
on the Cora dataset, it performs better on the Movielens dataset. This
could be because the Cora dataset is a homogeneous graph, while Movielens
is a heterogeneous graph. The Node2Vec algorithm cannot distinguish be-
tween different nodes and relationships in a heterogeneous graph, whereas

71

GraphSAGE can. Thus, the embeddings obtained by GraphSAGE can bet-
ter represent node information.

• The recommendation results of the Node2Vec algorithm combined with
KNN on the Cora and Movielens datasets do not show significant im-
provement with changes in parameters such as embedding dimension,
walk length, initial learning rate, and iterations.

In the Section 5.2, we conducted multiple parameter tuning experiments
on the Node2Vec model combined with KNN. We found that, excluding
cases where parameters were set beyond their practical limits (e.g., initial
learning rate = 0.5 or embedding dimension = 5), the experimental re-
sults did not show significant improvement with parameter adjustments.
Further analysis of the loss function from Node2Vec revealed that it does
not converge, which indicates that the model may not be adequately
trained. As a result, the generated embeddings fail to effectively cap-
ture semantic information. This could explain the lack of noticeable
improvements in the tuning experiments conducted in the Section 5.2.

• For tasks involving the exploration of known relationships, direct query-
ing methods are more efficient. However, when the exploration in-
volves only unknown relationships, the latent space with KNN ap-
proach proves to be more effective.

It is observed that direct querying performs better in most tasks in the
Section 5.3. In particular, direct querying is more accurate for querying
known relationships. However, for the explore task, the latent space with
KNN approach demonstrates greater diversity. This is because the explore
task deals exclusively with link prediction for unknown relationships, similar
to the study of comparing the recall of link prediction with latent space
with KNN of this thesis in theSection 5.2. In theSection 5.2, we find that
the Node2Vec or GraphSAGE combined with KNN model outperforms the
direct use of link prediction algorithms.

Although the Hybrid Task also involves link prediction for unknown rela-
tionships, it includes additional filtering based on known relationships. This
reduces the effectiveness of the latent space with KNN approach in the hybrid
task compared to the Explore Task.

7.3 Limitation and Future Work

In the Section 5.2, the Node2Vec algorithm did not converge with the Cora
dataset. An experiment was conducted with 10,000 iterations, but the data
still did not converge. Due to the long experiment time, only one experiment
was performed, and the influence of other parameters cannot be ruled out.

72

Future work could involve increasing the number of iterations or conducting
more experiments with various parameter settings.

The results obtained were not from the optimal parameters in the pa-
rameter tuning experiments for the GraphSAGE algorithm. Although this
does not affect the comparison with the direct use of Neo4j’s topological link
prediction algorithm (baseline), more parameter-tuning experiments should
be conducted in the future to determine the best parameters.

In the Section 5.3, the number of tasks in each category is still insuffi-
cient, which may lead to the results being somewhat coincidental. We need
to set a larger number of tasks in the future. Additionally, in the paper
domain, we directly used the same parameter settings and lower embedding
dimensions as in the movie domain. This may affect the accuracy of the
results. Future work should include more parameter-tuning experiments.
Considering training time and other issues, we only selected the Node2Vec
algorithm for embeddings in the recommendation system, but GraphSAGE
might perform better on larger graphs.

For the recommendation part of the system, we primarily rely on the
principle that similar users like similar items. However, the design combin-
ing Node2Vec or GraphSAGE with KNN can also facilitate content-based
recommendations, such as directly recommending items adjacent to the user.
Future work could incorporate this functionality into the recommendation
system.

73

8 Conclusion

This thesis clarifies the appropriate query methods that users should adopt
for different task categories within the domain of paper recommendation. For
most tasks, direct query methods prove more effective. However, the latent
space with KNN approach is more suitable for the Explore Task. This allows
users to perform queries more efficiently. Future research can build on this
work to explore how humans can better interact with knowledge graph-based
systems. Additionally, this thesis redefines task classification methods based
on graph structures for paper recommendation, enhancing the relevance and
accuracy of task classification in this domain. This also offers a direction for
future studies on task classification methods for specialized fields.

Moreover, this thesis proposes a model design using Node2Vec or Graph-
SAGE with KNN for the paper recommendation. To validate the model’s
accuracy, it is compared against link prediction algorithms used in direct
query methods on the Cora and Movielens datasets. Experimental results
demonstrate that the proposed model performs better, offering a promising
research direction for knowledge graph-based paper recommendation sys-
tems.

Additionally, the thesis introduces a novel dynamically updated paper
recommendation system. Users can adjust features according to their per-
sonal needs, enhancing system personalization. The system presents rec-
ommendation results through dynamic 2D visualization, which improves in-
terpretability and increases user trust in the system. This work provides a
foundation and direction for future in-depth research in knowledge graph-
based recommendation systems.

74

References

[1] Robert Amar, James Eagan, and John Stasko. Low-level components
of analytic activity in information visualization. In IEEE Symposium
on Information Visualization, 2005. INFOVIS 2005., pages 111–117.
IEEE, 2005.

[2] Chandra Bhagavatula, Sergey Feldman, Russell Power, and Waleed
Ammar. Content-based citation recommendation. arXiv preprint
arXiv:1802.08301, 2018.

[3] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston,
and Oksana Yakhnenko. Translating embeddings for modeling multi-
relational data. Advances in neural information processing systems, 26,
2013.

[4] Matthew Brehmer and Tamara Munzner. A multi-level typology of
abstract visualization tasks. IEEE Transactions on Visualization and
Computer Graphics, 19:2376–85, 12 2013.

[5] Yixin Cao, Xiang Wang, Xiangnan He, Zikun Hu, and Tat-Seng Chua.
Unifying knowledge graph learning and recommendation: Towards a
better understanding of user preferences. In The world wide web con-
ference, pages 151–161, 2019.

[6] Rui Chen, Qingyi Hua, Yan-Shuo Chang, Bo Wang, Lei Zhang, and
Xiangjie Kong. A survey of collaborative filtering-based recommender
systems: From traditional methods to hybrid methods based on social
networks. IEEE access, 6:64301–64320, 2018.

[7] Janneth Chicaiza and Priscila Valdiviezo-Diaz. A comprehensive survey
of knowledge graph-based recommender systems: Technologies, devel-
opment, and contributions. Information, 12(6):232, 2021.

[8] Zahra Zamanzadeh Darban and Mohammad Hadi Valipour. Ghrs:
Graph-based hybrid recommendation system with application to movie
recommendation. Expert Systems with Applications, 200:116850, 2022.

[9] Fitrio Dermawan, Chang Hong Kwang, Muhammad Dimas Adijanto,
Nur Aini Rakhmawati, and Naufal Rafiawan Basara. Product recom-
mendations through neo4j by analyzing patterns in customer purchases.
In 2024 ASU International Conference in Emerging Technologies for
Sustainability and Intelligent Systems, ICETSIS 2024, 2024 ASU In-
ternational Conference in Emerging Technologies for Sustainability and
Intelligent Systems, ICETSIS 2024, pages 624–627, United States, 2024.
Institute of Electrical and Electronics Engineers Inc.

75

[10] I. Dharmawan and Riyanarto Sarno. Book recommendation using neo4j
graph database in bibtex book metadata. pages 47–52, 10 2017.

[11] Shijie Geng, Zuohui Fu, Juntao Tan, Yingqiang Ge, Gerard De Melo,
and Yongfeng Zhang. Path language modeling over knowledge graphsfor
explainable recommendation. In Proceedings of the ACM Web Confer-
ence 2022, pages 946–955, 2022.

[12] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning
for networks. In Proceedings of the 22nd ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 855–864,
2016.

[13] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representa-
tion learning on large graphs. Advances in neural information processing
systems, 30, 2017.

[14] Sihang Hu, Zhiying Tu, Zhongjie Wang, and Xiaofei Xu. A poi-sensitive
knowledge graph based service recommendation method. In 2019 IEEE
International Conference on Services Computing (SCC), pages 197–201.
IEEE, 2019.

[15] Anna Huang et al. Similarity measures for text document cluster-
ing. In Proceedings of the sixth new zealand computer science research
student conference (NZCSRSC2008), Christchurch, New Zealand, vol-
ume 4, pages 9–56, 2008.

[16] Awliya Hanun Izdihar, Nazriyah Deny Tsaniyah, Faraz Nurdini, Belva
Rizki Mufidah, and Nur Aini Rakhmawati. Building a movie recom-
mendation system using neo4j graph database: A case study of net-
flix movie dataset. In 2024 ASU International Conference in Emerg-
ing Technologies for Sustainability and Intelligent Systems, ICETSIS
2024, 2024 ASU International Conference in Emerging Technologies for
Sustainability and Intelligent Systems, ICETSIS 2024, pages 614–618,
United States, 2024. Institute of Electrical and Electronics Engineers
Inc.

[17] Guoliang Ji, Shizhu He, Liheng Xu, Kang Liu, and Jun Zhao. Knowl-
edge graph embedding via dynamic mapping matrix. In Proceedings of
the 53rd annual meeting of the association for computational linguistics
and the 7th international joint conference on natural language processing
(volume 1: Long papers), pages 687–696, 2015.

[18] Nasrullah Khan, Zongmin Ma, Aman Ullah, and Kemal Polat. Cat-
egorization of knowledge graph based recommendation methods and
benchmark datasets from the perspectives of application scenarios: A

76

comprehensive survey. Expert Systems with Applications, 206:117737,
2022.

[19] Nasrullah Khan, Zongmin Ma, Li Yan, and Aman Ullah. Hashing-
based semantic relevance attributed knowledge graph embedding en-
hancement for deep probabilistic recommendation. Applied Intelligence,
53(2):2295–2320, 2023.

[20] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization
techniques for recommender systems. Computer, 42(8):30–37, 2009.

[21] Bongshin Lee, Catherine Plaisant, Cynthia Sims Parr, Jean-Daniel
Fekete, and Nathalie Henry. Task taxonomy for graph visualization.
In Proceedings of the 2006 AVI Workshop on BEyond Time and Er-
rors: Novel Evaluation Methods for Information Visualization, BELIV
’06, page 1–5, New York, NY, USA, 2006. Association for Computing
Machinery.

[22] Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu.
Learning entity and relation embeddings for knowledge graph comple-
tion. In Proceedings of the AAAI conference on artificial intelligence,
volume 29, 2015.

[23] Chan Liu, Lun Li, Xiaolu Yao, and Lin Tang. A survey of recom-
mendation algorithms based on knowledge graph embedding. In 2019
IEEE International Conference on Computer Science and Educational
Informatization (CSEI), pages 168–171. IEEE, 2019.

[24] Pengcheng Liu, Yinliang Huang, Ping Wang, Qifan Zhao, Juan Nie,
Yuyang Tang, Lei Sun, Hailei Wang, Xuelian Wu, and Wenbo Li. Con-
struction of typhoon disaster knowledge graph based on graph database
neo4j. pages 3612–3616, 08 2020.

[25] Weizhi Ma, Min Zhang, Yue Cao, Woojeong Jin, Chenyang Wang,
Yiqun Liu, Shaoping Ma, and Xiang Ren. Jointly learning explain-
able rules for recommendation with knowledge graph. In The world
wide web conference, pages 1210–1221, 2019.

[26] Ayushi Patil, Shreya Mahajan, Jinal Menpara, Shivali Wagle, Preksha
Pareek, and Ketan Kotecha. Enhancing fraud detection in banking
by integration of graph databases with machine learning. MethodsX,
12:102683, 04 2024.

[27] Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Kuansan Wang, and Jie
Tang. Network embedding as matrix factorization: Unifying deepwalk,
line, pte, and node2vec. In Proceedings of the eleventh ACM interna-
tional conference on web search and data mining, pages 459–467, 2018.

77

[28] Leily Sheugh and Sasan H Alizadeh. A note on pearson correlation
coefficient as a metric of similarity in recommender system. In 2015 AI
& Robotics (IRANOPEN), pages 1–6. IEEE, 2015.

[29] John K Tarus, Zhendong Niu, and Ghulam Mustafa. Knowledge-based
recommendation: a review of ontology-based recommender systems for
e-learning. Artificial intelligence review, 50:21–48, 2018.

[30] Phi Vu Tran. Multi-task graph autoencoders. arXiv preprint
arXiv:1811.02798, 2018.

[31] Hongwei Wang, Fuzheng Zhang, Jialin Wang, Miao Zhao, Wenjie Li,
Xing Xie, and Minyi Guo. Exploring high-order user preference on
the knowledge graph for recommender systems. ACM Transactions on
Information Systems (TOIS), 37(3):1–26, 2019.

[32] Hongwei Wang, Miao Zhao, Xing Xie, Wenjie Li, and Minyi Guo.
Knowledge graph convolutional networks for recommender systems. In
The world wide web conference, pages 3307–3313, 2019.

[33] Xiang Wang, Xiangnan He, and Tat-Seng Chua. Learning and reasoning
on graph for recommendation. In Proceedings of the 13th international
conference on web search and data mining, pages 890–893, 2020.

[34] Xiang Wang, Dingxian Wang, Canran Xu, Xiangnan He, Yixin Cao,
and Tat-Seng Chua. Explainable reasoning over knowledge graphs for
recommendation. In Proceedings of the AAAI conference on artificial
intelligence, volume 33, pages 5329–5336, 2019.

[35] Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. Knowledge
graph embedding by translating on hyperplanes. In Proceedings of the
AAAI conference on artificial intelligence, volume 28, 2014.

[36] Jim Webber. A programmatic introduction to neo4j. In Proceedings of
the 3rd annual conference on Systems, programming, and applications:
software for humanity, pages 217–218, 2012.

[37] Tianxing Wu, Arijit Khan, Melvin Yong, Guilin Qi, and Meng Wang.
Efficiently embedding dynamic knowledge graphs. Knowledge-based sys-
tems, 250:109124, 2022.

[38] Yikun Xian, Zuohui Fu, Shan Muthukrishnan, Gerard De Melo, and
Yongfeng Zhang. Reinforcement knowledge graph reasoning for explain-
able recommendation. In Proceedings of the 42nd international ACM
SIGIR conference on research and development in information retrieval,
pages 285–294, 2019.

78

[39] Zuoxi Yang and Shoubin Dong. Hagerec: Hierarchical attention graph
convolutional network incorporating knowledge graph for explainable
recommendation. Knowledge-Based Systems, 204:106194, 2020.

[40] Zhiwen Yu, Yuichi Nakamura, Seiie Jang, Shoji Kajita, and Kenji Mase.
Ontology-based semantic recommendation for context-aware e-learning.
In Ubiquitous Intelligence and Computing: 4th International Confer-
ence, UIC 2007, Hong Kong, China, July 11-13, 2007. Proceedings 4,
pages 898–907. Springer, 2007.

[41] Fuzheng Zhang, Nicholas Jing Yuan, Defu Lian, Xing Xie, and Wei-Ying
Ma. Collaborative knowledge base embedding for recommender systems.
In Proceedings of the 22nd ACM SIGKDD international conference on
knowledge discovery and data mining, pages 353–362, 2016.

[42] Qianjin Zhang, Ronggui Wang, Juan Yang, and Lixia Xue. Structural
context-based knowledge graph embedding for link prediction. Neuro-
computing, 470:109–120, 2022.

[43] Zijian Zhang, Lin Gong, and Jian Xie. Ontology-based collaborative fil-
tering recommendation algorithm. In Advances in Brain Inspired Cogni-
tive Systems: 6th International Conference, BICS 2013, Beijing, China,
June 9-11, 2013. Proceedings 6, pages 172–181. Springer, 2013.

[44] Huan Zhao, Quanming Yao, Jianda Li, Yangqiu Song, and Dik Lun
Lee. Meta-graph based recommendation fusion over heterogeneous in-
formation networks. In Proceedings of the 23rd ACM SIGKDD interna-
tional conference on knowledge discovery and data mining, pages 635–
644, 2017.

[45] Bo Zhu, Remigio Hurtado, Jesus Bobadilla, and Fernando Ortega. An
efficient recommender system method based on the numerical relevances
and the non-numerical structures of the ratings. IEEE Access, 6:49935–
49954, 2018.

79

A Results of Tuning Experiments of Node2Vec
with KNN on Cora Dataset

B Tuning Experiments on Embedding Dimension
and Measure Methods of Node2Vec with KNN
on Cora Dataset

In these experiments, we set Walklength = 80 and iteration =10.

80

Embedding dimension: 65
PEARSON Mean similarity: 0.9233728321475504
EUCLIDEAN Mean similarity: 0.3635266635055204
COSINE Mean similarity: 0.9226243989682444
Number of matching relationships--PEARSON: 634
Number of matching relationships--EUCLIDEAN: 642
Number of matching relationships--COSINE: 635
[5910665.185926303, 4301002.931429181, 4260096.880017807,
4242002.855158562, 4222604.42646091, 4208896.501357112,
4201266.37568628, 4193358.1097891205, 4187036.787803177,
4182939.27973543]

Embedding dimension: 85
PEARSON Mean similarity: 0.9165036115547754
EUCLIDEAN Mean similarity: 0.35398130057657484
COSINE Mean similarity: 0.9159500043184402
Number of matching relationships--PEARSON: 641
Number of matching relationships--EUCLIDEAN: 646
Number of matching relationships--COSINE: 642
[5932929.813814331, 4298634.782672383, 4257108.753263324,
4234975.32715798, 4219960.917323061, 4206662.173559766,
4193794.500405839, 4187409.4778791843, 4174167.1543000937,
4172130.9804846374]

Embedding dimension: 105
PEARSON Mean similarity: 0.9118485023915504
EUCLIDEAN Mean similarity: 0.3485385769403139
COSINE Mean similarity: 0.9116581667473256
Number of matching relationships--PEARSON: 630
Number of matching relationships--EUCLIDEAN: 646
Number of matching relationships--COSINE: 630
[5937054.484285132, 4300487.813619261, 4255905.758508005,
4230849.235074465, 4210498.228899931, 4197279.309489971,
4188890.091984766, 4175650.1934505044, 4166483.635591659,
4166085.7479271665]

Embedding dimension: 125
PEARSON Mean similarity: 0.9094059959648279
EUCLIDEAN Mean similarity: 0.34541026640853995
COSINE Mean similarity: 0.909345950545025
Number of matching relationships--PEARSON: 626
Number of matching relationships--EUCLIDEAN: 634
Number of matching relationships--COSINE: 628
[5935239.921195822, 4297349.599975026, 4251727.231986483,
4231660.209662389, 4211979.09260286, 4197815.547968354,
4181941.807288059, 4175529.924007249, 4167577.723663356,
4162106.0706843017]

Embedding dimension: 145
PEARSON Mean similarity: 0.9081659311381893
EUCLIDEAN Mean similarity: 0.3443054391503158
COSINE Mean similarity: 0.9078708237347962
Number of matching relationships--PEARSON: 630
Number of matching relationships--EUCLIDEAN: 644
Number of matching relationships--COSINE: 631
[5970910.196869948, 4298313.798799694, 4256020.455535213,
4230134.570877044, 4210353.917978411, 4194875.992306469,
4184327.485902884, 4174974.1574592018, 4165049.5119686564,
4161340.8161650733]

Embedding dimension: 60
PEARSON Mean similarity: 0.9252205678243933
EUCLIDEAN Mean similarity: 0.3678838515035159
COSINE Mean similarity: 0.9249058524826252
Number of matching relationships--PEARSON: 638
Number of matching relationships--EUCLIDEAN: 650
Number of matching relationships--COSINE: 643
[5883856.555550681, 4304585.631791878, 4269671.14669953, 4256433.688099816, 4233671.721277088, 4231290.1593799265, 4221563.16703808,
4214189.057552348, 4206021.744658194, 4209275.253458172]

Embedding dimension: 61
PEARSON Mean similarity: 0.9254141507507956
EUCLIDEAN Mean similarity: 0.36678182976636786
COSINE Mean similarity: 0.9244149432048487
Number of matching relationships--PEARSON: 647
Number of matching relationships--EUCLIDEAN: 662
Number of matching relationships--COSINE: 646
[5911277.89638523, 4306073.039836621, 4270554.353383733,
4250197.125361699, 4234298.206486743, 4225000.442108905,
4222888.812994194, 4214311.943005538, 4207761.932237508,
4208465.706513351]

Embedding dimension: 62
PEARSON Mean similarity: 0.9246995176487166
EUCLIDEAN Mean similarity: 0.36616077486486165
COSINE Mean similarity: 0.9239937073723076
Number of matching relationships--PEARSON: 644
Number of matching relationships--EUCLIDEAN: 652
Number of matching relationships--COSINE: 644
[5894907.631453699, 4302629.742173649, 4268434.187552092,
4250588.763176569, 4235957.544739174, 4228264.488661948,
4221073.512304019, 4214024.533274744, 4207697.086006921,
4207483.535550402]

Embedding dimension: 63
PEARSON Mean similarity: 0.9236495861802883
EUCLIDEAN Mean similarity: 0.3652761243823008
COSINE Mean similarity: 0.9232815549503929
Number of matching relationships--PEARSON: 634
Number of matching relationships--EUCLIDEAN: 654
Number of matching relationships--COSINE: 637
[5887093.32450492, 4306697.9816962285, 4269489.602571646,
4247639.218362877, 4234001.51766868, 4219424.564842084,
4219054.853386553, 4211900.896945172, 4205902.008921519,
4204355.65270042]

Embedding dimension: 64
PEARSON Mean similarity: 0.9236137266173144
EUCLIDEAN Mean similarity: 0.36467069861103546
COSINE Mean similarity: 0.9233487060186254
Number of matching relationships--PEARSON: 636
Number of matching relationships--EUCLIDEAN: 651
Number of matching relationships--COSINE: 637
[5888778.37290165, 4308209.0288021285, 4267090.186353746,
4245792.86452519, 4232446.588068151, 4226858.425849916,
4217517.799135599, 4211809.790758935, 4206653.945101671,
4201570.898561442]

Embedding dimension: 165
PEARSON Mean similarity: 0.9070471657960066
EUCLIDEAN Mean similarity: 0.34311238560754054
COSINE Mean similarity: 0.9070042718636585
Number of matching relationships--PEARSON: 630
Number of matching relationships--EUCLIDEAN: 640
Number of matching relationships--COSINE: 628
[5955030.185620224, 4296279.567670797, 4256038.95718903,
4229495.948211201, 4210304.911086054, 4198024.287517422,
4183600.3191866176, 4174907.9240555903, 4162396.074199055,
4156981.9153903383]

Embedding dimension: 185
PEARSON Mean similarity: 0.9057997383782571
EUCLIDEAN Mean similarity: 0.34240795653891176
COSINE Mean similarity: 0.9061511666595143
Number of matching relationships--PEARSON: 631
Number of matching relationships--EUCLIDEAN: 640
Number of matching relationships--COSINE: 632
[5984140.605220685, 4294399.077855757, 4255473.79753522,
4227268.126113902, 4212201.88579614, 4192274.8048163485,
4181728.6108782613, 4170777.525987099, 4161531.1912871157,
4155447.1866888134]

Embedding dimension: 205
PEARSON Mean similarity: 0.9058250365264306
EUCLIDEAN Mean similarity: 0.34251087088704635
COSINE Mean similarity: 0.9059358720765333
Number of matching relationships--PEARSON: 625
Number of matching relationships--EUCLIDEAN: 642
Number of matching relationships--COSINE: 625
[5961463.942540921, 4298633.218386855, 4251445.065313152,
4230452.710666289, 4209591.993794804, 4196889.697111268,
4182475.240243969, 4173625.626637568, 4159616.1096623703,
4155115.056957082]

Embedding dimension: 225
PEARSON Mean similarity: 0.9056146199101007
EUCLIDEAN Mean similarity: 0.3421945668393787
COSINE Mean similarity: 0.9054946859971107
Number of matching relationships--PEARSON: 635
Number of matching relationships--EUCLIDEAN: 642
Number of matching relationships--COSINE: 639
[5999006.218450369, 4298662.065201526, 4257065.182225969,
4226939.262234945, 4210289.554250923, 4191032.874678534,
4181248.018702538, 4168520.8346796203, 4157338.651109587,
4155382.5791045553]

Embedding dimension: 245
PEARSON Mean similarity: 0.9051498297574425
EUCLIDEAN Mean similarity: 0.34206365862836513
COSINE Mean similarity: 0.9054610217163447
Number of matching relationships--PEARSON: 629
Number of matching relationships--EUCLIDEAN: 649
Number of matching relationships--COSINE: 630
[5987472.332110549, 4295046.427238903, 4253738.091163274,
4228727.1713688215, 4209173.391315706, 4195525.399290327,
4182718.1002478125, 4170689.676991642, 4160886.668879131,
4152301.1089664507]

Embedding dimension: 265
PEARSON Mean similarity: 0.9051923340497376
EUCLIDEAN Mean similarity: 0.3421243066801806
COSINE Mean similarity: 0.9048104741196513
Number of matching relationships--PEARSON: 630
Number of matching relationships--EUCLIDEAN: 643
Number of matching relationships--COSINE: 630
[6016393.243775175, 4295650.688343349, 4258539.491035027,
4229741.902000501, 4208788.481124451, 4194937.535816038,
4178934.174215717, 4167859.9497326566, 4161235.69634547,
4154283.3476964375]

Embedding dimension: 285
PEARSON Mean similarity: 0.9050572957386822
EUCLIDEAN Mean similarity: 0.34232179178268907
COSINE Mean similarity: 0.9051394542880037
Number of matching relationships--PEARSON: 631
Number of matching relationships--EUCLIDEAN: 644
Number of matching relationships--COSINE: 632
[5987836.095276792, 4295804.116588896, 4253499.302333847,
4225010.446652183, 4206096.968709783, 4193762.5268792207,
4184950.1549664903, 4169100.9645216265, 4160787.758461342,
4153936.964306149]

Embedding dimension: 305
PEARSON Mean similarity: 0.9045491358025916
EUCLIDEAN Mean similarity: 0.34180243469587634
COSINE Mean similarity: 0.904786703259061
Number of matching relationships--PEARSON: 633
Number of matching relationships--EUCLIDEAN: 645
Number of matching relationships--COSINE: 633
[6015802.918606155, 4295907.696272539, 4256883.425223401,
4227303.652949014, 4206071.096347203, 4192436.87910027,
4179365.624728164, 4169275.5458386955, 4160317.4801997948,
4158027.364447135]

Embedding dimension: 325
PEARSON Mean similarity: 0.9044513037497043
EUCLIDEAN Mean similarity: 0.3418868140948928
COSINE Mean similarity: 0.9044244943728651
Number of matching relationships--PEARSON: 628
Number of matching relationships--EUCLIDEAN: 645
Number of matching relationships--COSINE: 627
[6007327.683502792, 4296571.345811992, 4255359.8157536965,
4230609.443583673, 4210810.921030984, 4194474.325033717,
4179851.737953049, 4167425.5885738265, 4161127.1167471022,
4152850.8414397445]

Embedding dimension: 345
PEARSON Mean similarity: 0.9048186790995971
EUCLIDEAN Mean similarity: 0.3422074590511125
COSINE Mean similarity: 0.9046576368932006
Number of matching relationships--PEARSON: 628
Number of matching relationships--EUCLIDEAN: 640
Number of matching relationships--COSINE: 629
[6015783.18077245, 4295092.860910067, 4254006.216405518,
4229511.203192889, 4212548.671594664, 4197684.638543637,
4179819.9993094946, 4168431.747832978, 4162693.848730135,
4155654.86525385]

Embedding dimension: 365
PEARSON Mean similarity: 0.9047107997990077
EUCLIDEAN Mean similarity: 0.34261946100604057
COSINE Mean similarity: 0.9045122859396998
Number of matching relationships--PEARSON: 631
Number of matching relationships--EUCLIDEAN: 648
Number of matching relationships--COSINE: 631
[6029332.189293582, 4298173.598707879, 4251659.8328238325,
4228041.252775366, 4207325.001507165, 4196278.539890526,
4182363.7115600305, 4171101.0006345804, 4159560.0337802973,
4157007.232331264]

Embedding dimension: 385
PEARSON Mean similarity: 0.9046011311969165
EUCLIDEAN Mean similarity: 0.34223541318930056
COSINE Mean similarity: 0.9044488768810007
Number of matching relationships--PEARSON: 625
Number of matching relationships--EUCLIDEAN: 638
Number of matching relationships--COSINE: 624
[6047645.4298871625, 4300124.168977604, 4255095.997720819,
4229385.648858702, 4209058.158524428, 4193266.6566540413,
4181956.663321192, 4170302.3604599875, 4156986.9157061763,
4152326.547283041]

Embedding dimension: 405
PEARSON Mean similarity: 0.9045425113582188
EUCLIDEAN Mean similarity: 0.342423070304679
COSINE Mean similarity: 0.9044034504291755
Number of matching relationships--PEARSON: 625
Number of matching relationships--EUCLIDEAN: 643
Number of matching relationships--COSINE: 629
[6043238.909249231, 4294939.3275324935, 4252995.204146886,
4227135.580148362, 4206252.926559636, 4195594.694943711,
4181076.9013233664, 4172197.075564964, 4162302.895810322,
4157475.9144466016]

Embedding dimension: 425
PEARSON Mean similarity: 0.904744487745547
EUCLIDEAN Mean similarity: 0.3422614439199383
COSINE Mean similarity: 0.904778236546932
Number of matching relationships--PEARSON: 627
Number of matching relationships--EUCLIDEAN: 639
Number of matching relationships--COSINE: 623
[6047907.750447888, 4298119.904351442, 4252341.859147504,
4226492.077240803, 4207336.92481194, 4194959.176095729,
4179406.8563869623, 4171798.390873719, 4160889.7642436167,
4154639.7596410587]

Embedding dimension: 445
PEARSON Mean similarity: 0.9041145440218544
EUCLIDEAN Mean similarity: 0.3426036479025859
COSINE Mean similarity: 0.9044285003684648
Number of matching relationships--PEARSON: 630
Number of matching relationships--EUCLIDEAN: 638
Number of matching relationships--COSINE: 630
[6037067.9988161195, 4297875.9620246375, 4254178.059345987,
4232201.092474582, 4212048.235104669, 4193701.1271569594,
4183005.126427357, 4170166.3999308096, 4159349.1907550637,
4156267.3444333947]

Embedding dimension: 465
PEARSON Mean similarity: 0.9044833663647425
EUCLIDEAN Mean similarity: 0.3425848455865767
COSINE Mean similarity: 0.9046223596772908
Number of matching relationships--PEARSON: 625
Number of matching relationships--EUCLIDEAN: 637
Number of matching relationships--COSINE: 625
[6060632.318188168, 4297360.62128766, 4254997.658575683,
4227465.656142491, 4211264.001789518, 4194419.390492938,
4180632.4474988915, 4169798.6328645735, 4165139.7407079125,
4159508.937732628]

Embedding dimension: 485
PEARSON Mean similarity: 0.9042525349198627
EUCLIDEAN Mean similarity: 0.3425718623038761
COSINE Mean similarity: 0.9041571810115211
Number of matching relationships--PEARSON: 624
Number of matching relationships--EUCLIDEAN: 641
Number of matching relationships--COSINE: 628
[6042441.391733196, 4302110.808619763, 4252770.61083107,
4228256.840449234, 4210707.226084114, 4197568.292872887,
4185147.8808660237, 4172399.034996728, 4157194.0476633627,
4155976.5849667047]

Embedding dimension: 505
PEARSON Mean similarity: 0.9044184286097833
EUCLIDEAN Mean similarity: 0.34275821836519454
COSINE Mean similarity: 0.9041570421159708
Number of matching relationships--PEARSON: 629
Number of matching relationships--EUCLIDEAN: 638
Number of matching relationships--COSINE: 625
[6070910.912483594, 4296064.04019345, 4254004.586844532,
4229339.634868467, 4213654.614212055, 4196016.709777263,
4186576.728855772, 4167976.791724059, 4158153.627095255,
4157187.612196693]

Embedding dimension: 525
PEARSON Mean similarity: 0.9040555658157327
EUCLIDEAN Mean similarity: 0.342356286760271
COSINE Mean similarity: 0.9039920373012256
Number of matching relationships--PEARSON: 625
Number of matching relationships--EUCLIDEAN: 641
Number of matching relationships--COSINE: 625
[6052861.041067078, 4297976.564014667, 4255722.171488363,
4228264.895385503, 4208127.066681387, 4196099.026857423,
4178716.861093529, 4174312.51421974, 4157727.547897656,
4156415.7205356625]

Embedding dimension: 545
PEARSON Mean similarity: 0.9041968166740113
EUCLIDEAN Mean similarity: 0.3425536529000084
COSINE Mean similarity: 0.9042192701398886
Number of matching relationships--PEARSON: 630
Number of matching relationships--EUCLIDEAN: 640
Number of matching relationships--COSINE: 628
[6065064.140121881, 4298956.1045243, 4257359.171889935,
4226863.392922757, 4209970.135840638, 4196687.966263355,
4181341.367586384, 4168329.8861162486, 4162931.9434934426,
4156991.5537313554]

Embedding dimension: 565
PEARSON Mean similarity: 0.9044501965295969
EUCLIDEAN Mean similarity: 0.34294062829968497
COSINE Mean similarity: 0.9043921277653343
Number of matching relationships--PEARSON: 632
Number of matching relationships--EUCLIDEAN: 647
Number of matching relationships--COSINE: 634
[6076467.7290897295, 4298511.155189814, 4253589.740589268,
4225550.798996254, 4209581.7271644585, 4197053.386634201,
4180654.6082967496, 4168480.2554071415, 4161290.10006016,
4152538.4074417218]

Embedding dimension: 585
PEARSON Mean similarity: 0.9041833240841481
EUCLIDEAN Mean similarity: 0.34254822111200195
COSINE Mean similarity: 0.9039086506673117
Number of matching relationships--PEARSON: 622
Number of matching relationships--EUCLIDEAN: 641
Number of matching relationships--COSINE: 621
[6070881.172609721, 4299740.024461461, 4255357.124643056,
4227602.883821108, 4204832.268372606, 4194521.62278747,
4182205.390247991, 4169110.094398275, 4164739.5954559,
4153563.0889399014]

Embedding dimension: 605
PEARSON Mean similarity: 0.9043111412352615
EUCLIDEAN Mean similarity: 0.34272844435721417
COSINE Mean similarity: 0.9044914510436741
Number of matching relationships--PEARSON: 627
Number of matching relationships--EUCLIDEAN: 642
Number of matching relationships--COSINE: 627
[6079280.7185532795, 4297828.679747888, 4254603.873011452,
4225899.273108698, 4211245.745630354, 4193778.3134496706,
4179410.622319399, 4172160.812396765, 4159266.459933868,
4152776.252979377]

Embedding dimension: 625
PEARSON Mean similarity: 0.9045102056055336
EUCLIDEAN Mean similarity: 0.3430209597245277
COSINE Mean similarity: 0.9044384453462181
Number of matching relationships--PEARSON: 631
Number of matching relationships--EUCLIDEAN: 642
Number of matching relationships--COSINE: 631
[6079794.463033184, 4299492.771770361, 4252957.273211087,
4228866.643041185, 4210604.995095546, 4195389.5558354575,
4178447.907729198, 4170985.03285698, 4161627.865357158,
4156761.7302391664]

Embedding dimension: 645
PEARSON Mean similarity: 0.9040581014342991
EUCLIDEAN Mean similarity: 0.3431589482277852
COSINE Mean similarity: 0.9043010038322324
Number of matching relationships--PEARSON: 631
Number of matching relationships--EUCLIDEAN: 644
Number of matching relationships--COSINE: 630
[6046272.766888468, 4297268.5231854655, 4255537.899000927,
4232616.974221769, 4208232.13442828, 4194319.971546403,
4179831.917737171, 4173569.637753389, 4165330.3278582874,
4156576.2217713543]

Embedding dimension: 665
PEARSON Mean similarity: 0.9041428130697816
EUCLIDEAN Mean similarity: 0.34297051302967607
COSINE Mean similarity: 0.9043545214429035
Number of matching relationships--PEARSON: 624
Number of matching relationships--EUCLIDEAN: 636
Number of matching relationships--COSINE: 628
[6057239.079887346, 4296040.988492977, 4254983.515166098,
4229415.727639898, 4213432.682560355, 4194898.666257698,
4181670.9540884653, 4172120.330009625, 4157860.003626209,
4154130.9572446723]

Embedding dimension: 685
PEARSON Mean similarity: 0.9041062119792448
EUCLIDEAN Mean similarity: 0.3431313163948904
COSINE Mean similarity: 0.9044932513328563
Number of matching relationships--PEARSON: 633
Number of matching relationships--EUCLIDEAN: 642
Number of matching relationships--COSINE: 633
[6077977.367698334, 4300691.266976029, 4256758.398630418,
4230331.863528816, 4209899.869081589, 4196857.298368417,
4180644.908184567, 4174138.695937064, 4162331.1062220866,
4153425.1726426734]

Embedding dimension: 705
PEARSON Mean similarity: 0.9043879200471909
EUCLIDEAN Mean similarity: 0.3432816075081311
COSINE Mean similarity: 0.9043051484416471
Number of matching relationships--PEARSON: 634
Number of matching relationships--EUCLIDEAN: 643
Number of matching relationships--COSINE: 632
[6078621.119741175, 4297664.32105765, 4254738.509356653,
4230514.851650077, 4211975.324559297, 4195776.056935199,
4181868.944147008, 4166621.3591715833, 4160972.7441216097,
4159130.2542161695]

Embedding dimension: 725
PEARSON Mean similarity: 0.904324050351119
EUCLIDEAN Mean similarity: 0.34322744239908554
COSINE Mean similarity: 0.9040150032437887
Number of matching relationships--PEARSON: 629
Number of matching relationships--EUCLIDEAN: 646
Number of matching relationships--COSINE: 630
[6054934.978632934, 4302555.7856730735, 4258877.5871596,
4231990.205320817, 4210492.830086933, 4195926.146499623,
4178252.5954075246, 4169339.354357239, 4161961.811181345,
4152384.078722503]

Embedding dimension: 745
PEARSON Mean similarity: 0.9042112102536718
EUCLIDEAN Mean similarity: 0.34301038753334845
COSINE Mean similarity: 0.9040678692004881
Number of matching relationships--PEARSON: 634
Number of matching relationships--EUCLIDEAN: 652
Number of matching relationships--COSINE: 634
[6081318.391685242, 4301941.141750962, 4256038.873635068,
4231620.814291155, 4209444.178278193, 4197839.387377739,
4181073.398081734, 4165013.967642512, 4160443.7513884916,
4156606.0611438826]

Embedding dimension: 765
PEARSON Mean similarity: 0.904333028976463
EUCLIDEAN Mean similarity: 0.3432002685270774
COSINE Mean similarity: 0.9044585533649213
Number of matching relationships--PEARSON: 629
Number of matching relationships--EUCLIDEAN: 643
Number of matching relationships--COSINE: 631
[6096053.400760389, 4293959.786409268, 4254803.282621654,
4232440.9711369425, 4209484.156973254, 4196547.726843374,
4186635.575559064, 4169706.148081259, 4164553.6574242255,
4154184.1090868763]

Embedding dimension: 785
PEARSON Mean similarity: 0.9043386600218284
EUCLIDEAN Mean similarity: 0.34323085949727317
COSINE Mean similarity: 0.9041159789002277
Number of matching relationships--PEARSON: 630
Number of matching relationships--EUCLIDEAN: 645
Number of matching relationships--COSINE: 630
[6094163.825740423, 4298405.853888585, 4253984.260823085,
4227823.090787411, 4213439.037123806, 4195972.284169775,
4181889.1487724697, 4169901.1402812107, 4158370.2868055664,
4152811.7999706194]

Embedding dimension: 805
PEARSON Mean similarity: 0.9042589917316747
EUCLIDEAN Mean similarity: 0.34330837976633183
COSINE Mean similarity: 0.9043312633407344
Number of matching relationships--PEARSON: 624
Number of matching relationships--EUCLIDEAN: 643
Number of matching relationships--COSINE: 625
[6091124.48210846, 4298668.971978722, 4258220.7689286005,
4230221.095826236, 4213254.204729862, 4190291.677041627,
4181388.6875821818, 4169465.802268459, 4162745.949437316,
4152191.5099494504]

Embedding dimension: 825
PEARSON Mean similarity: 0.9040978712028379
EUCLIDEAN Mean similarity: 0.34337737239798205
COSINE Mean similarity: 0.904122399086438
Number of matching relationships--PEARSON: 624
Number of matching relationships--EUCLIDEAN: 641
Number of matching relationships--COSINE: 624
[6092737.836771482, 4304606.253793874, 4255863.229377883,
4228851.316592192, 4211353.441593712, 4193879.758830732,
4181257.442462145, 4170025.570560882, 4160899.469898176,
4152930.439842345]

Embedding dimension: 845
PEARSON Mean similarity: 0.9043675773429025
EUCLIDEAN Mean similarity: 0.34370545108350026
COSINE Mean similarity: 0.9046038682562914
Number of matching relationships--PEARSON: 633
Number of matching relationships--EUCLIDEAN: 635
Number of matching relationships--COSINE: 633
[6095437.874170452, 4298583.032647645, 4258562.9045351455,
4231660.754347186, 4207944.550826855, 4196378.376998458,
4180763.9681514, 4168954.4768050415, 4160567.4969660253,
4155542.749071468]

Embedding dimension: 865
PEARSON Mean similarity: 0.9042151883574673
EUCLIDEAN Mean similarity: 0.34365061706419003
COSINE Mean similarity: 0.9042677244020177
Number of matching relationships--PEARSON: 635
Number of matching relationships--EUCLIDEAN: 641
Number of matching relationships--COSINE: 635
[6100683.138999915, 4302714.288146027, 4253256.566211056,
4232336.046641136, 4207955.044579648, 4191921.2898756424,
4183791.4175198623, 4172981.140603363, 4161998.719066974,
4152101.780266618]

Embedding dimension: 885
PEARSON Mean similarity: 0.9042109169671243
EUCLIDEAN Mean similarity: 0.34357859824221454
COSINE Mean similarity: 0.9043222086468334
Number of matching relationships--PEARSON: 625
Number of matching relationships--EUCLIDEAN: 642
Number of matching relationships--COSINE: 625
[6078264.600293264, 4301424.031494208, 4255267.767125513,
4230637.399367019, 4211242.940501962, 4195097.446133877,
4181965.303743323, 4169266.609254282, 4164145.9040498696,
4159463.192364946]

Embedding dimension: 905
PEARSON Mean similarity: 0.9040821447330176
EUCLIDEAN Mean similarity: 0.3438437154057107
COSINE Mean similarity: 0.9041288981585595
Number of matching relationships--PEARSON: 634
Number of matching relationships--EUCLIDEAN: 646
Number of matching relationships--COSINE: 633
[6100947.541513124, 4301930.728734484, 4256522.513514657,
4227293.952128068, 4208269.286179772, 4194735.149560582,
4184974.127759196, 4169532.129029412, 4165158.6981001287,
4153984.4001714103]

Embedding dimension: 925
PEARSON Mean similarity: 0.9042460648664872
EUCLIDEAN Mean similarity: 0.3436221059351235
COSINE Mean similarity: 0.9044986879807984
Number of matching relationships--PEARSON: 632
Number of matching relationships--EUCLIDEAN: 646
Number of matching relationships--COSINE: 634
[6116206.753376877, 4296648.092167848, 4261321.977466879,
4230612.319944756, 4214238.357831754, 4194974.026685093,
4183567.9690515082, 4170752.5804949235, 4164863.0058936607,
4156939.490371226]

Embedding dimension: 945
PEARSON Mean similarity: 0.9043426905284075
EUCLIDEAN Mean similarity: 0.3438097137468076
COSINE Mean similarity: 0.9044855120615205
Number of matching relationships--PEARSON: 627
Number of matching relationships--EUCLIDEAN: 642
Number of matching relationships--COSINE: 631
[6111442.248440595, 4302150.452518694, 4252904.229430642,
4231117.436708504, 4208689.835913911, 4195652.302548449,
4179505.1606567404, 4170930.574605756, 4167105.8714216133,
4154641.853985739]

Embedding dimension: 965
PEARSON Mean similarity: 0.9044317113067762
EUCLIDEAN Mean similarity: 0.343874703693249
COSINE Mean similarity: 0.9043584178434341
Number of matching relationships--PEARSON: 629
Number of matching relationships--EUCLIDEAN: 647
Number of matching relationships--COSINE: 628
[6084608.597861104, 4298419.626675557, 4256228.053733421,
4229689.154631051, 4215309.222114534, 4200840.784709983,
4185636.508030059, 4173481.276002934, 4159241.4337971397,
4156010.188483618]

Embedding dimension: 985
PEARSON Mean similarity: 0.9042272463506926
EUCLIDEAN Mean similarity: 0.34368648902352134
COSINE Mean similarity: 0.9041986282326094
Number of matching relationships--PEARSON: 629
Number of matching relationships--EUCLIDEAN: 645
Number of matching relationships--COSINE: 633
[6112170.966420652, 4297835.252176315, 4259533.780030678,
4229740.80843689, 4209417.142964881, 4196278.340959745,
4184172.3569164504, 4171955.2516489127, 4161344.6305249343,
4157360.9703598847]

Embedding dimension: 1005
PEARSON Mean similarity: 0.9043696557049209
EUCLIDEAN Mean similarity: 0.34374307621176875
COSINE Mean similarity: 0.9045581099201693
Number of matching relationships--PEARSON: 630
Number of matching relationships--EUCLIDEAN: 640
Number of matching relationships--COSINE: 630
[6103924.723303133, 4302652.078287401, 4253493.875602235,
4227227.966322633, 4210227.853115536, 4195682.479106981,
4176885.8292162707, 4170747.837680503, 4160965.105507168,
4157071.089680046]

Embedding dimension: 1025
PEARSON Mean similarity: 0.9046057685615393
EUCLIDEAN Mean similarity: 0.344031141568498
COSINE Mean similarity: 0.9044124932901898
Number of matching relationships--PEARSON: 633
Number of matching relationships--EUCLIDEAN: 643
Number of matching relationships--COSINE: 629
[6118436.050311854, 4300082.967586911, 4255584.32080235,
4230337.084215631, 4208113.684951444, 4194436.533549336,
4179808.056638784, 4171704.1491096797, 4162156.5393342446,
4156331.3787497273]

Embedding dimension: 1045
PEARSON Mean similarity: 0.9043185381980907
EUCLIDEAN Mean similarity: 0.343687291828533
COSINE Mean similarity: 0.9041285485249326
Number of matching relationships--PEARSON: 628
Number of matching relationships--EUCLIDEAN: 627
Number of matching relationships--COSINE: 625
[6094296.057230148, 4301795.175141901, 4259295.411659789,
4231431.924648377, 4209650.091660712, 4195210.428422944,
4183404.6683308403, 4170170.95509516, 4161138.6671289774,
4154020.8475964554]

Embedding dimension: 1065
PEARSON Mean similarity: 0.9042991480411772
EUCLIDEAN Mean similarity: 0.34403521123629727
COSINE Mean similarity: 0.9042770211066242
Number of matching relationships--PEARSON: 632
Number of matching relationships--EUCLIDEAN: 644
Number of matching relationships--COSINE: 631
[6101347.366813464, 4301513.703144243, 4253182.08594501,
4227100.184120265, 4209047.111753337, 4192758.360563533,
4181400.5236672703, 4172880.751147477, 4164264.52563816,
4155991.4913080847]

Embedding dimension: 1085
PEARSON Mean similarity: 0.9043153900867728
EUCLIDEAN Mean similarity: 0.3438014310783262
COSINE Mean similarity: 0.9043325226979558
Number of matching relationships--PEARSON: 625
Number of matching relationships--EUCLIDEAN: 639
Number of matching relationships--COSINE: 626
[6117386.459819261, 4299748.628731675, 4258155.488671518,
4232078.024619526, 4213842.098293813, 4200399.43609126,
4183067.202774581, 4171284.114222489, 4160040.1582389977,
4155379.683650423]

Embedding dimension: 1105
PEARSON Mean similarity: 0.9047110570234245
EUCLIDEAN Mean similarity: 0.34405207831186946
COSINE Mean similarity: 0.9044552962220049
Number of matching relationships--PEARSON: 636
Number of matching relationships--EUCLIDEAN: 638
Number of matching relationships--COSINE: 630
[6119260.871597962, 4301030.4325865265, 4256697.876863211,
4227315.322625108, 4215638.172128886, 4194709.8717632145,
4180432.839141152, 4175267.9276078385, 4162253.9356494015,
4154928.061221025]

Embedding dimension: 1125
PEARSON Mean similarity: 0.9043129849116947
EUCLIDEAN Mean similarity: 0.3440293861456777
COSINE Mean similarity: 0.9042681154507478
Number of matching relationships--PEARSON: 625
Number of matching relationships--EUCLIDEAN: 648
Number of matching relationships--COSINE: 626
[6094799.087514361, 4299394.266384188, 4253509.502800984,
4226838.847493634, 4210806.837178803, 4193864.9105851175,
4180571.7603702545, 4172592.5274353735, 4162915.858607511,
4155901.883388365]

Embedding dimension: 1145
PEARSON Mean similarity: 0.9044267507916539
EUCLIDEAN Mean similarity: 0.3437765187667779
COSINE Mean similarity: 0.9043499638093979
Number of matching relationships--PEARSON: 639
Number of matching relationships--EUCLIDEAN: 652
Number of matching relationships--COSINE: 636
[6116559.029901898, 4299670.787803523, 4259083.923450363,
4228949.311391169, 4210564.000454803, 4198198.910720809,
4187397.140983826, 4171952.0884032506, 4159816.8927647234,
4153756.4208581736]

Embedding dimension: 1165
PEARSON Mean similarity: 0.9046056871400098
EUCLIDEAN Mean similarity: 0.34399135722015245
COSINE Mean similarity: 0.9045048002302206
Number of matching relationships--PEARSON: 634
Number of matching relationships--EUCLIDEAN: 647
Number of matching relationships--COSINE: 629
[6098939.0465518255, 4299766.359741903, 4256781.368566061,
4234441.170688384, 4215460.065482852, 4196089.967496756,
4181166.4454739895, 4170184.3292322424, 4161317.2012759773,
4155445.547845625]

Embedding dimension: 1185
PEARSON Mean similarity: 0.9040702481741744
EUCLIDEAN Mean similarity: 0.34398068804156307
COSINE Mean similarity: 0.9043254147956431
Number of matching relationships--PEARSON: 630
Number of matching relationships--EUCLIDEAN: 649
Number of matching relationships--COSINE: 631
[6130185.96538312, 4299774.004832536, 4255872.698829565,
4233315.6562060835, 4211492.791601313, 4198136.9921304835,
4183860.305617726, 4171215.7971636197, 4163839.9466139367,
4159427.6959029087]

Embedding dimension: 1205
PEARSON Mean similarity: 0.9044700309832304
EUCLIDEAN Mean similarity: 0.3442642476040996
COSINE Mean similarity: 0.9045307103076748
Number of matching relationships--PEARSON: 624
Number of matching relationships--EUCLIDEAN: 645
Number of matching relationships--COSINE: 627
[6103892.55577773, 4300207.831692472, 4257944.9200094845,
4229814.776037049, 4208690.2598094735, 4196846.394709421,
4187429.6213457026, 4170204.6389363036, 4162704.7390050734,
4155647.5655970983]

Embedding dimension: 1225
PEARSON Mean similarity: 0.9045496919482638
EUCLIDEAN Mean similarity: 0.34470626445077196
COSINE Mean similarity: 0.9045331721115676
Number of matching relationships--PEARSON: 630
Number of matching relationships--EUCLIDEAN: 643
Number of matching relationships--COSINE: 627
[6113262.915596962, 4298718.353436403, 4256779.0609127665,
4229223.699646336, 4210813.6741306335, 4196530.337983615,
4181583.6052221986, 4172335.1032256745, 4163788.170957185,
4158272.191006861]

Embedding dimension: 1245
PEARSON Mean similarity: 0.9043882832041167
EUCLIDEAN Mean similarity: 0.34427394233038716
COSINE Mean similarity: 0.9043040212183266
Number of matching relationships--PEARSON: 629
Number of matching relationships--EUCLIDEAN: 646
Number of matching relationships--COSINE: 629
[6135511.443470084, 4298306.568125915, 4262095.876658207,
4234038.63030334, 4209941.449013263, 4199405.529034329,
4180583.6379593294, 4173457.9141750485, 4163311.9992041048,
4156098.932177159]

Embedding dimension: 1265

PEARSON Mean similarity: 0.9045846584100314
EUCLIDEAN Mean similarity: 0.34439144606428274
COSINE Mean similarity: 0.9045256111787376
Number of matching relationships--PEARSON: 634
Number of matching relationships--EUCLIDEAN: 649
Number of matching relationships--COSINE: 633
[6110895.459922119, 4301575.72561925, 4254008.429722363,
4229807.132430209, 4210703.487886657, 4196422.24874567,
4184250.4459362393, 4168279.7912669512, 4164593.7389339563,
4159456.7991768736]

Embedding dimension: 1285
PEARSON Mean similarity: 0.9044869737047565
EUCLIDEAN Mean similarity: 0.3443318301500915
COSINE Mean similarity: 0.9045823586039916
Number of matching relationships--PEARSON: 623
Number of matching relationships--EUCLIDEAN: 645
Number of matching relationships--COSINE: 624

C Tuning Experiments on Walklength and Mea-
sure Methods of Node2Vec with KNN on Cora
Dataset

C.1 Results of Tuning Experiments on Walklength=10

‭Embedding dimension: 60‬
‭PEARSON Mean similarity: 0.9452529169079824‬
‭EUCLIDEAN Mean similarity: 0.4603691767378431‬
‭COSINE Mean similarity: 0.9448522407159847‬
‭Number of matching relationships--PEARSON: 615‬
‭Number of matching relationships--EUCLIDEAN: 619‬
‭Number of matching relationships--COSINE: 614‬
‭[1529867.906140164, 601438.5789261346, 269112.11179238046,‬
‭217398.74431680932, 198237.20930534246, 190256.18599948054,‬
‭182932.37692469297, 179433.19931490673, 177613.18372376647,‬
‭175501.75016469488]‬

‭Embedding dimension: 61‬
‭PEARSON Mean similarity: 0.9457667405707445‬
‭EUCLIDEAN Mean similarity: 0.4618549830100033‬
‭COSINE Mean similarity: 0.9450182952768165‬
‭Number of matching relationships--PEARSON: 612‬
‭Number of matching relationships--EUCLIDEAN: 617‬
‭Number of matching relationships--COSINE: 609‬
‭[1564180.2988345902, 604664.0506536184, 264337.11240597867,‬
‭214294.70836551668, 196750.9475817614, 189455.21369143404,‬
‭183007.27604068822, 179512.878390573, 177456.07041646083,‬
‭175283.62467056932]‬

‭Embedding dimension: 62‬
‭PEARSON Mean similarity: 0.9445096893535935‬
‭EUCLIDEAN Mean similarity: 0.4598354767133073‬
‭COSINE Mean similarity: 0.9443692366516925‬
‭Number of matching relationships--PEARSON: 624‬
‭Number of matching relationships--EUCLIDEAN: 619‬
‭Number of matching relationships--COSINE: 621‬
‭[1564654.633842849, 604809.687445015, 264870.7138816951,‬
‭215548.4600159427, 197983.3980053087, 189230.57670665183,‬
‭182825.7164378639, 179356.4957662974, 177065.29882090475,‬
‭175432.2583844047]‬

‭Embedding dimension: 63‬
‭PEARSON Mean similarity: 0.9446633309346006‬
‭EUCLIDEAN Mean similarity: 0.4595568285735002‬
‭COSINE Mean similarity: 0.9441292758530316‬
‭Number of matching relationships--PEARSON: 619‬
‭Number of matching relationships--EUCLIDEAN: 622‬
‭Number of matching relationships--COSINE: 615‬
‭[1565835.0851703547, 610335.8259257312, 264778.6894485299,‬
‭215831.007246039, 198234.61817383836, 188503.384887818,‬
‭182831.54979506732, 179645.91082443297, 176947.0292548761,‬
‭174234.8734583343]‬

‭Embedding dimension: 64‬
‭PEARSON Mean similarity: 0.9440861497707169‬
‭EUCLIDEAN Mean similarity: 0.4592918413604556‬
‭COSINE Mean similarity: 0.9437486042828468‬
‭Number of matching relationships--PEARSON: 614‬
‭Number of matching relationships--EUCLIDEAN: 613‬
‭Number of matching relationships--COSINE: 614‬
‭[3482846.9108588696, 1941366.671237366, 1898773.7391055133,‬
‭1882578.668545418, 1874236.5781358744, 1864658.3478462538,‬
‭1861520.0190446575, 1856576.2183024813, 1854685.165771622,‬
‭1854105.256607025]‬

94

C.2 Results of Tuning Walklength Experiments on Walk-
length=40

‭Embedding dimension: 60‬
‭PEARSON Mean similarity: 0.9276531382888952‬
‭EUCLIDEAN Mean similarity: 0.3813062773497453‬
‭COSINE Mean similarity: 0.927568788119926‬
‭Number of matching relationships--PEARSON: 637‬
‭Number of matching relationships--EUCLIDEAN: 643‬
‭Number of matching relationships--COSINE: 641‬
‭[3479278.339981241, 1935265.8201509216, 1900098.867934915,‬
‭1882715.974475006, 1869490.911208253, 1866334.0818388022,‬
‭1858874.7801095084, 1852882.679989125, 1852165.6295819054,‬
‭1851771.8956255594]‬

‭Embedding dimension: 61‬
‭PEARSON Mean similarity: 0.9273508401529827‬
‭EUCLIDEAN Mean similarity: 0.3808595356596097‬
‭COSINE Mean similarity: 0.9270133036806453‬
‭Number of matching relationships--PEARSON: 641‬
‭Number of matching relationships--EUCLIDEAN: 659‬
‭Number of matching relationships--COSINE: 643‬
‭[3489437.451798389, 1936816.247956731, 1901801.6626036947,‬
‭1884352.9779876722, 1873141.9984732063, 1863723.92961643,‬
‭1859816.7536442787, 1854943.3868086091, 1852845.874395678,‬
‭1852462.174152706]‬

‭Embedding dimension: 62‬
‭PEARSON Mean similarity: 0.9270636647279364‬
‭EUCLIDEAN Mean similarity: 0.37990931725044197‬
‭COSINE Mean similarity: 0.9267496599228379‬
‭Number of matching relationships--PEARSON: 640‬
‭Number of matching relationships--EUCLIDEAN: 646‬
‭Number of matching relationships--COSINE: 638‬
‭[3489653.0245607416, 1938293.2107963315, 1896816.4960180675,‬
‭1883074.9825699958, 1872567.9603032004, 1863575.694466059,‬
‭1858008.978296804, 1853881.946583526, 1850274.7107097842,‬
‭1852331.6470752964]‬

‭Embedding dimension: 63‬
‭PEARSON Mean similarity: 0.9269599018632221‬
‭EUCLIDEAN Mean similarity: 0.38012439081200466‬
‭COSINE Mean similarity: 0.9265898449558275‬
‭Number of matching relationships--PEARSON: 638‬
‭Number of matching relationships--EUCLIDEAN: 647‬
‭Number of matching relationships--COSINE: 637‬
‭[3472190.798177841, 1935051.355080307, 1899724.3876238079,‬
‭1880856.4058097443, 1872137.1575469046, 1860813.1500582458,‬
‭1857464.3969639568, 1852877.9162421878, 1852111.658308576,‬
‭1849840.2944054415]‬

‭Embedding dimension: 64‬
‭PEARSON Mean similarity: 0.9258781624685538‬
‭EUCLIDEAN Mean similarity: 0.37971023400389814‬
‭COSINE Mean similarity: 0.9260587593653353‬
‭Number of matching relationships--PEARSON: 632‬
‭Number of matching relationships--EUCLIDEAN: 641‬
‭Number of matching relationships--COSINE: 639‬

95

C.3 Results of Tuning Walklength Experiments on Walk-
length=100

‭Embedding dimension: 5‬
‭PEARSON Mean similarity: 0.997028945855235‬
‭EUCLIDEAN Mean similarity: 0.5904801308844607‬
‭COSINE Mean similarity: 0.9949498899225998‬
‭Number of matching relationships--PEARSON: 393‬
‭Number of matching relationships--EUCLIDEAN: 398‬
‭Number of matching relationships--COSINE: 462‬

‭Embedding dimension: 10‬
‭PEARSON Mean similarity: 0.9785802762300613‬
‭EUCLIDEAN Mean similarity: 0.48678765775886207‬
‭COSINE Mean similarity: 0.9768414391724715‬
‭Number of matching relationships--PEARSON: 625‬
‭Number of matching relationships--EUCLIDEAN: 622‬
‭Number of matching relationships--COSINE: 634‬

‭Embedding dimension: 15‬
‭PEARSON Mean similarity: 0.9672957734484088‬
‭EUCLIDEAN Mean similarity: 0.46143590083326513‬
‭COSINE Mean similarity: 0.9663185880314477‬
‭Number of matching relationships--PEARSON: 648‬
‭Number of matching relationships--EUCLIDEAN: 658‬
‭Number of matching relationships--COSINE: 649‬

‭Embedding dimension: 20‬
‭PEARSON Mean similarity: 0.9596218838825535‬
‭EUCLIDEAN Mean similarity: 0.4417890581809964‬
‭COSINE Mean similarity: 0.9590493992477259‬
‭Number of matching relationships--PEARSON: 652‬
‭Number of matching relationships--EUCLIDEAN: 670‬
‭Number of matching relationships--COSINE: 653‬

‭Embedding dimension: 25‬
‭PEARSON Mean similarity: 0.9526648728498857‬
‭EUCLIDEAN Mean similarity: 0.424972237160146‬
‭COSINE Mean similarity: 0.9520202107056205‬
‭Number of matching relationships--PEARSON: 656‬
‭Number of matching relationships--EUCLIDEAN: 684‬
‭Number of matching relationships--COSINE: 658‬

‭Embedding dimension: 30‬
‭PEARSON Mean similarity: 0.9477506527696438‬
‭EUCLIDEAN Mean similarity: 0.41074410696325486‬
‭COSINE Mean similarity: 0.9470599722474857‬
‭Number of matching relationships--PEARSON: 654‬
‭Number of matching relationships--EUCLIDEAN: 667‬
‭Number of matching relationships--COSINE: 656‬

96

‭Embedding dimension: 35‬
‭PEARSON Mean similarity: 0.942622460572371‬
‭EUCLIDEAN Mean similarity: 0.3990250559994178‬
‭COSINE Mean similarity: 0.9424366608680264‬
‭Number of matching relationships--PEARSON: 644‬
‭Number of matching relationships--EUCLIDEAN: 668‬
‭Number of matching relationships--COSINE: 650‬

‭Embedding dimension: 40‬
‭PEARSON Mean similarity: 0.9385986691563661‬
‭EUCLIDEAN Mean similarity: 0.3891472953813291‬
‭COSINE Mean similarity: 0.9380013943422845‬
‭Number of matching relationships--PEARSON: 647‬
‭Number of matching relationships--EUCLIDEAN: 667‬
‭Number of matching relationships--COSINE: 649‬

‭Embedding dimension: 45‬
‭PEARSON Mean similarity: 0.934621373659751‬
‭EUCLIDEAN Mean similarity: 0.38156330525610965‬
‭COSINE Mean similarity: 0.9341938221648314‬
‭Number of matching relationships--PEARSON: 646‬
‭Number of matching relationships--EUCLIDEAN: 659‬
‭Number of matching relationships--COSINE: 649‬

‭Embedding dimension: 50‬
‭PEARSON Mean similarity: 0.9321404728966942‬
‭EUCLIDEAN Mean similarity: 0.37533848542758597‬
‭COSINE Mean similarity: 0.9314320810788491‬
‭Number of matching relationships--PEARSON: 643‬
‭Number of matching relationships--EUCLIDEAN: 653‬
‭Number of matching relationships--COSINE: 643‬

‭Embedding dimension: 55‬
‭PEARSON Mean similarity: 0.9289545270505649‬
‭EUCLIDEAN Mean similarity: 0.3700033700624632‬
‭COSINE Mean similarity: 0.9283567186296426‬
‭Number of matching relationships--PEARSON: 653‬
‭Number of matching relationships--EUCLIDEAN: 671‬
‭Number of matching relationships--COSINE: 651‬

‭Embedding dimension: 60‬
‭PEARSON Mean similarity: 0.9261316017703081‬
‭EUCLIDEAN Mean similarity: 0.36521501076274293‬
‭COSINE Mean similarity: 0.9252629594225299‬
‭Number of matching relationships--PEARSON: 646‬
‭Number of matching relationships--EUCLIDEAN: 654‬
‭Number of matching relationships--COSINE: 647‬

‭Embedding dimension: 61‬
‭PEARSON Mean similarity: 0.9247604265875091‬
‭EUCLIDEAN Mean similarity: 0.36459970284071774‬
‭COSINE Mean similarity: 0.925257393458041‬
‭Number of matching relationships--PEARSON: 646‬
‭Number of matching relationships--EUCLIDEAN: 658‬
‭Number of matching relationships--COSINE: 642‬

‭Embedding dimension: 62‬
‭PEARSON Mean similarity: 0.925017176561905‬
‭EUCLIDEAN Mean similarity: 0.36324660739307035‬
‭COSINE Mean similarity: 0.9243671569373442‬
‭Number of matching relationships--PEARSON: 642‬
‭Number of matching relationships--EUCLIDEAN: 660‬
‭Number of matching relationships--COSINE: 644‬

‭Embedding dimension: 63‬
‭PEARSON Mean similarity: 0.9243072399888821‬
‭EUCLIDEAN Mean similarity: 0.3630408187032274‬
‭COSINE Mean similarity: 0.9239985436421201‬
‭Number of matching relationships--PEARSON: 642‬
‭Number of matching relationships--EUCLIDEAN: 663‬
‭Number of matching relationships--COSINE: 646‬

‭Embedding dimension: 64‬
‭PEARSON Mean similarity: 0.923887296758339‬
‭EUCLIDEAN Mean similarity: 0.36214588290655453‬
‭COSINE Mean similarity: 0.9237687968785161‬
‭Number of matching relationships--PEARSON: 650‬
‭Number of matching relationships--EUCLIDEAN: 662‬
‭Number of matching relationships--COSINE: 651‬

‭Embedding dimension: 110‬
‭PEARSON Mean similarity: 0.9101315333536844‬
‭EUCLIDEAN Mean similarity: 0.34242454385123544‬
‭COSINE Mean similarity: 0.9099470132915096‬
‭Number of matching relationships--PEARSON: 644‬
‭Number of matching relationships--EUCLIDEAN: 653‬
‭Number of matching relationships--COSINE: 645‬

‭Embedding dimension: 160‬
‭PEARSON Mean similarity: 0.9042997819458188‬
‭EUCLIDEAN Mean similarity: 0.3363883922864274‬
‭COSINE Mean similarity: 0.9046242236386726‬
‭Number of matching relationships--PEARSON: 635‬
‭Number of matching relationships--EUCLIDEAN: 653‬

‭Number of matching relationships--COSINE: 636‬

‭Embedding dimension: 210‬
‭PEARSON Mean similarity: 0.9028081572742547‬
‭EUCLIDEAN Mean similarity: 0.33498783400351045‬
‭COSINE Mean similarity: 0.9029675462573459‬
‭Number of matching relationships--PEARSON: 633‬
‭Number of matching relationships--EUCLIDEAN: 655‬
‭Number of matching relationships--COSINE: 634‬

‭Embedding dimension: 260‬
‭PEARSON Mean similarity: 0.9019825018315054‬
‭EUCLIDEAN Mean similarity: 0.3343919844887986‬
‭COSINE Mean similarity: 0.9018959177825793‬
‭Number of matching relationships--PEARSON: 637‬
‭Number of matching relationships--EUCLIDEAN: 649‬
‭Number of matching relationships--COSINE: 639‬

‭Embedding dimension: 1000‬
‭PEARSON Mean similarity: 0.9008322708715892‬
‭EUCLIDEAN Mean similarity: 0.33601611565627937‬
‭COSINE Mean similarity: 0.9007203940274621‬
‭Number of matching relationships--PEARSON: 628‬
‭Number of matching relationships--EUCLIDEAN: 649‬
‭Number of matching relationships--COSINE: 629‬

C.4 Results of Tuning Experiments on Walklength=200

‭Embedding dimension: 15‬
‭PEARSON Mean similarity: 0.9688852507395441‬
‭EUCLIDEAN Mean similarity: 0.46437369188846833‬
‭COSINE Mean similarity: 0.9677861223544821‬
‭Number of matching relationships--PEARSON: 641‬
‭Number of matching relationships--EUCLIDEAN: 657‬
‭Number of matching relationships--COSINE: 644‬

‭Embedding dimension: 20‬
‭PEARSON Mean similarity: 0.9610842649834547‬
‭EUCLIDEAN Mean similarity: 0.4458960576811076‬
‭COSINE Mean similarity: 0.9603070128087279‬
‭Number of matching relationships--PEARSON: 647‬
‭Number of matching relationships--EUCLIDEAN: 668‬
‭Number of matching relationships--COSINE: 647‬

‭Embedding dimension: 25‬
‭PEARSON Mean similarity: 0.9551431684057329‬
‭EUCLIDEAN Mean similarity: 0.4274481588135442‬
‭COSINE Mean similarity: 0.9541716531953572‬
‭Number of matching relationships--PEARSON: 639‬
‭Number of matching relationships--EUCLIDEAN: 669‬
‭Number of matching relationships--COSINE: 638‬

‭Embedding dimension: 30‬
‭PEARSON Mean similarity: 0.9490910770974096‬
‭EUCLIDEAN Mean similarity: 0.41202396184338075‬
‭COSINE Mean similarity: 0.9488883022719683‬
‭Number of matching relationships--PEARSON: 645‬
‭Number of matching relationships--EUCLIDEAN: 669‬
‭Number of matching relationships--COSINE: 641‬

‭Embedding dimension: 35‬
‭PEARSON Mean similarity: 0.9456497305076971‬
‭EUCLIDEAN Mean similarity: 0.4004575877985539‬
‭COSINE Mean similarity: 0.9446514817073038‬
‭Number of matching relationships--PEARSON: 641‬
‭Number of matching relationships--EUCLIDEAN: 667‬
‭Number of matching relationships--COSINE: 645‬

‭Embedding dimension: 40‬
‭PEARSON Mean similarity: 0.9413151852313314‬
‭EUCLIDEAN Mean similarity: 0.3904698829707226‬
‭COSINE Mean similarity: 0.9395868202784213‬
‭Number of matching relationships--PEARSON: 644‬
‭Number of matching relationships--EUCLIDEAN: 660‬
‭Number of matching relationships--COSINE: 649‬

100

‭Embedding dimension: 45‬
‭PEARSON Mean similarity: 0.9376949028567338‬
‭EUCLIDEAN Mean similarity: 0.3820394727997097‬
‭COSINE Mean similarity: 0.9369668149173348‬
‭Number of matching relationships--PEARSON: 649‬
‭Number of matching relationships--EUCLIDEAN: 667‬
‭Number of matching relationships--COSINE: 653‬

‭Embedding dimension: 50‬

‭PEARSON Mean similarity: 0.9339465075088569‬
‭EUCLIDEAN Mean similarity: 0.3757035097660307‬
‭COSINE Mean similarity: 0.9338815004469901‬
‭Number of matching relationships--PEARSON: 636‬
‭Number of matching relationships--EUCLIDEAN: 657‬
‭Number of matching relationships--COSINE: 641‬

‭Embedding dimension: 55‬
‭PEARSON Mean similarity: 0.9311196835741863‬
‭EUCLIDEAN Mean similarity: 0.3692229492097345‬
‭COSINE Mean similarity: 0.9299755547212181‬
‭Number of matching relationships--PEARSON: 640‬
‭Number of matching relationships--EUCLIDEAN: 665‬
‭Number of matching relationships--COSINE: 642‬

D Tuning Experiments on Iteration and Measure
Methods of Node2Vec with KNN on Cora Dataset

D.1 Results of Tuning Iteration Experiments on Walklength=100
and Iteration =30

‭Embedding dimension: 5‬
‭PEARSON Mean similarity: 0.9969314783679506‬
‭EUCLIDEAN Mean similarity: 0.5725288901758687‬
‭COSINE Mean similarity: 0.9951096431895584‬
‭Number of matching relationships--PEARSON: 408‬
‭Number of matching relationships--EUCLIDEAN: 387‬
‭Number of matching relationships--COSINE: 471‬

‭Embedding dimension: 10‬
‭PEARSON Mean similarity: 0.9794482195923212‬
‭EUCLIDEAN Mean similarity: 0.4761815027436971‬
‭COSINE Mean similarity: 0.9770408771238792‬
‭Number of matching relationships--PEARSON: 613‬
‭Number of matching relationships--EUCLIDEAN: 632‬
‭Number of matching relationships--COSINE: 621‬

‭Embedding dimension: 15‬
‭PEARSON Mean similarity: 0.9678268945375609‬
‭EUCLIDEAN Mean similarity: 0.4507060318612982‬
‭COSINE Mean similarity: 0.9662910974184202‬
‭Number of matching relationships--PEARSON: 635‬
‭Number of matching relationships--EUCLIDEAN: 655‬
‭Number of matching relationships--COSINE: 640‬

‭Embedding dimension: 20‬
‭PEARSON Mean similarity: 0.9591481370799122‬
‭EUCLIDEAN Mean similarity: 0.42605654513642216‬
‭COSINE Mean similarity: 0.9577709426203718‬
‭Number of matching relationships--PEARSON: 649‬
‭Number of matching relationships--EUCLIDEAN: 668‬
‭Number of matching relationships--COSINE: 649‬

‭Embedding dimension: 25‬
‭PEARSON Mean similarity: 0.951249326032585‬
‭EUCLIDEAN Mean similarity: 0.4037039504621723‬
‭COSINE Mean similarity: 0.9502292942965577‬
‭Number of matching relationships--PEARSON: 655‬
‭Number of matching relationships--EUCLIDEAN: 673‬
‭Number of matching relationships--COSINE: 653‬

‭Embedding dimension: 30‬
‭PEARSON Mean similarity: 0.9456971369958874‬
‭EUCLIDEAN Mean similarity: 0.3862984567836609‬
‭COSINE Mean similarity: 0.9447575559292093‬
‭Number of matching relationships--PEARSON: 657‬
‭Number of matching relationships--EUCLIDEAN: 669‬
‭Number of matching relationships--COSINE: 653‬

102

‭Embedding dimension: 35‬
‭PEARSON Mean similarity: 0.938786251400563‬
‭EUCLIDEAN Mean similarity: 0.37170303829311446‬
‭COSINE Mean similarity: 0.9382746838748544‬
‭Number of matching relationships--PEARSON: 657‬
‭Number of matching relationships--EUCLIDEAN: 672‬
‭Number of matching relationships--COSINE: 656‬

D.2 Results of Tuning Iteration Experiments on Walklength=40
and Iteration =30

‭Embedding dimension: 60‬
‭PEARSON Mean similarity: 0.9069633945932769‬
‭EUCLIDEAN Mean similarity: 0.321096316186857‬
‭COSINE Mean similarity: 0.9062966010066924‬
‭Number of matching relationships--PEARSON: 629‬
‭Number of matching relationships--EUCLIDEAN: 636‬
‭Number of matching relationships--COSINE: 631‬

‭Embedding dimension: 61‬
‭PEARSON Mean similarity: 0.9057157009355778‬
‭EUCLIDEAN Mean similarity: 0.31958554569340175‬
‭COSINE Mean similarity: 0.9057143024010708‬
‭Number of matching relationships--PEARSON: 633‬
‭Number of matching relationships--EUCLIDEAN: 635‬
‭Number of matching relationships--COSINE: 638‬

‭Embedding dimension: 62‬
‭PEARSON Mean similarity: 0.9052272796630859‬
‭EUCLIDEAN Mean similarity: 0.31880524260606863‬
‭COSINE Mean similarity: 0.9043874943450071‬
‭Number of matching relationships--PEARSON: 640‬
‭Number of matching relationships--EUCLIDEAN: 643‬
‭Number of matching relationships--COSINE: 641‬

‭Embedding dimension: 63‬
‭PEARSON Mean similarity: 0.9046935189950062‬
‭EUCLIDEAN Mean similarity: 0.31799183173581097‬
‭COSINE Mean similarity: 0.9037476518481662‬
‭Number of matching relationships--PEARSON: 638‬
‭Number of matching relationships--EUCLIDEAN: 646‬
‭Number of matching relationships--COSINE: 635‬

‭Embedding dimension: 64‬
‭PEARSON Mean similarity: 0.903533499702217‬
‭EUCLIDEAN Mean similarity: 0.31717951075893386‬
‭COSINE Mean similarity: 0.9034036647621955‬
‭Number of matching relationships--PEARSON: 637‬
‭Number of matching relationships--EUCLIDEAN: 649‬
‭Number of matching relationships--COSINE: 64‬

104

‭Embedding dimension: 260‬
‭PEARSON Mean similarity: 0.869560435251436‬
‭EUCLIDEAN Mean similarity: 0.286520964637993‬
‭COSINE Mean similarity: 0.8697774751851971‬
‭Number of matching relationships--PEARSON: 613‬
‭Number of matching relationships--EUCLIDEAN: 610‬
‭Number of matching relationships--COSINE: 617‬

‭Embedding dimension: 460‬
‭PEARSON Mean similarity: 0.8683519664860194‬
‭EUCLIDEAN Mean similarity: 0.28661664803588055‬
‭COSINE Mean similarity: 0.8683760599336384‬
‭Number of matching relationships--PEARSON: 605‬
‭Number of matching relationships--EUCLIDEAN: 603‬
‭Number of matching relationships--COSINE: 609‬

‭Embedding dimension: 660‬
‭PEARSON Mean similarity: 0.8682235596627217‬
‭EUCLIDEAN Mean similarity: 0.28695051877854316‬
‭COSINE Mean similarity: 0.8682482019308927‬
‭Number of matching relationships--PEARSON: 602‬
‭Number of matching relationships--EUCLIDEAN: 602‬
‭Number of matching relationships--COSINE: 602‬

E Tuning Experiments on Initial Learning Rate and
Measure Methods of Node2Vec with KNN on
Cora Dataset

E.1 Results of Tuning Initial Learning Rate Experiments on
Initial Learning Rate=0.001, iteration = 10

‭Embedding dimension: 15‬
‭PEARSON Mean similarity: 0.9701001041925112‬
‭EUCLIDEAN Mean similarity: 0.5279294964129675‬
‭COSINE Mean similarity: 0.968641717817794‬
‭Number of matching relationships--PEARSON: 630‬
‭Number of matching relationships--EUCLIDEAN: 618‬
‭Number of matching relationships--COSINE: 625‬

‭Embedding dimension: 25‬
‭PEARSON Mean similarity: 0.9622260250052109‬
‭EUCLIDEAN Mean similarity: 0.521219217618776‬
‭COSINE Mean similarity: 0.9619463575467402‬
‭Number of matching relationships--PEARSON: 631‬
‭Number of matching relationships--EUCLIDEAN: 625‬
‭Number of matching relationships--COSINE: 629‬

‭Embedding dimension: 35‬
‭PEARSON Mean similarity: 0.9586034709981133‬
‭EUCLIDEAN Mean similarity: 0.5205573848290492‬
‭COSINE Mean similarity: 0.9585333941077905‬
‭Number of matching relationships--PEARSON: 637‬
‭Number of matching relationships--EUCLIDEAN: 623‬
‭Number of matching relationships--COSINE: 629‬

‭Embedding dimension: 45‬
‭PEARSON Mean similarity: 0.9571643260240202‬
‭EUCLIDEAN Mean similarity: 0.5209165594250272‬
‭COSINE Mean similarity: 0.9570376935702483‬
‭Number of matching relationships--PEARSON: 630‬
‭Number of matching relationships--EUCLIDEAN: 621‬
‭Number of matching relationships--COSINE: 631‬

‭Embedding dimension: 55‬
‭PEARSON Mean similarity: 0.9557015045706948‬
‭EUCLIDEAN Mean similarity: 0.5221197300858829‬
‭COSINE Mean similarity: 0.9554677870284155‬
‭Number of matching relationships--PEARSON: 626‬
‭Number of matching relationships--EUCLIDEAN: 618‬
‭Number of matching relationships--COSINE: 626‬

106

E.2 Results of Tuning Initial Learning Rate Experiments on
Initial Learning Rate=0.1, iteration = 10

‭Embedding dimension: 15‬
‭PEARSON Mean similarity: 0.9673796903083385‬
‭EUCLIDEAN Mean similarity: 0.45660355813041925‬
‭COSINE Mean similarity: 0.9663991451967766‬
‭Number of matching relationships--PEARSON: 635‬
‭Number of matching relationships--EUCLIDEAN: 666‬
‭Number of matching relationships--COSINE: 641‬

‭Embedding dimension: 25‬
‭PEARSON Mean similarity: 0.9514831900772703‬
‭EUCLIDEAN Mean similarity: 0.41733582572711625‬
‭COSINE Mean similarity: 0.9514463500751175‬
‭Number of matching relationships--PEARSON: 656‬
‭Number of matching relationships--EUCLIDEAN: 670‬
‭Number of matching relationships--COSINE: 658‬

‭Embedding dimension: 35‬
‭PEARSON Mean similarity: 0.9399562618757105‬
‭EUCLIDEAN Mean similarity: 0.3873517723168017‬
‭COSINE Mean similarity: 0.9395032468539397‬
‭Number of matching relationships--PEARSON: 665‬
‭Number of matching relationships--EUCLIDEAN: 671‬
‭Number of matching relationships--COSINE: 662‬

‭Embedding dimension: 45‬
‭PEARSON Mean similarity: 0.930304851560156‬
‭EUCLIDEAN Mean similarity: 0.3662030726451113‬
‭COSINE Mean similarity: 0.9300727925941547‬
‭Number of matching relationships--PEARSON: 663‬
‭Number of matching relationships--EUCLIDEAN: 674‬
‭Number of matching relationships--COSINE: 663‬

‭Embedding dimension: 55‬
‭PEARSON Mean similarity: 0.9225073877782554‬
‭EUCLIDEAN Mean similarity: 0.3504881573568595‬
‭COSINE Mean similarity: 0.9216686037477749‬
‭Number of matching relationships--PEARSON: 660‬
‭Number of matching relationships--EUCLIDEAN: 669‬
‭Number of matching relationships--COSINE: 667‬

107

E.3 Results of Tuning Initial Learning Rate Experiments on
Initial Learning Rate=0.1, iteration = 30

‭Embedding dimension: 15‬
‭PEARSON Mean similarity: 0.9680801977611186‬
‭EUCLIDEAN Mean similarity: 0.4559773393712685‬
‭COSINE Mean similarity: 0.9670393697268149‬
‭Number of matching relationships--PEARSON: 644‬
‭Number of matching relationships--EUCLIDEAN: 659‬
‭Number of matching relationships--COSINE: 651‬

‭Embedding dimension: 25‬
‭PEARSON Mean similarity: 0.9501486810658848‬
‭EUCLIDEAN Mean similarity: 0.41090744010102626‬
‭COSINE Mean similarity: 0.9513527981463704‬
‭Number of matching relationships--PEARSON: 654‬
‭Number of matching relationships--EUCLIDEAN: 666‬
‭Number of matching relationships--COSINE: 661‬

‭Embedding dimension: 35‬
‭PEARSON Mean similarity: 0.9393122646269806‬
‭EUCLIDEAN Mean similarity: 0.3770785001391322‬
‭COSINE Mean similarity: 0.9388289314957454‬
‭Number of matching relationships--PEARSON: 659‬
‭Number of matching relationships--EUCLIDEAN: 682‬
‭Number of matching relationships--COSINE: 661‬

‭Embedding dimension: 45‬
‭PEARSON Mean similarity: 0.9281456540219013‬
‭EUCLIDEAN Mean similarity: 0.35430662811594843‬
‭COSINE Mean similarity: 0.9275366066125507‬
‭Number of matching relationships--PEARSON: 652‬
‭Number of matching relationships--EUCLIDEAN: 672‬
‭Number of matching relationships--COSINE: 657‬

‭Embedding dimension: 55‬
‭PEARSON Mean similarity: 0.9199418920181702‬
‭EUCLIDEAN Mean similarity: 0.3383824901355422‬
‭COSINE Mean similarity: 0.9190694651188139‬
‭Number of matching relationships--PEARSON: 668‬
‭Number of matching relationships--EUCLIDEAN: 674‬
‭Number of matching relationships--COSINE: 663‬

108

E.4 Results of Tuning Initial Learning Rate Experiments on
Initial Learning Rate=0.25, iteration = 30

‭Embedding dimension: 15‬
‭PEARSON Mean similarity: 0.9678859671250404‬
‭EUCLIDEAN Mean similarity: 0.458852782383275‬
‭COSINE Mean similarity: 0.9676648383654731‬
‭Number of matching relationships--PEARSON: 638‬
‭Number of matching relationships--EUCLIDEAN: 660‬
‭Number of matching relationships--COSINE: 641‬

‭Embedding dimension: 25‬
‭PEARSON Mean similarity: 0.9538220778878014‬
‭EUCLIDEAN Mean similarity: 0.4178473634593068‬
‭COSINE Mean similarity: 0.9525108700841005‬
‭Number of matching relationships--PEARSON: 653‬
‭Number of matching relationships--EUCLIDEAN: 670‬
‭Number of matching relationships--COSINE: 654‬

‭Embedding dimension: 35‬
‭PEARSON Mean similarity: 0.9408940158883438‬
‭EUCLIDEAN Mean similarity: 0.3873504613315689‬
‭COSINE Mean similarity: 0.9399894345282099‬
‭Number of matching relationships--PEARSON: 661‬
‭Number of matching relationships--EUCLIDEAN: 675‬
‭Number of matching relationships--COSINE: 660‬

‭Embedding dimension: 45‬
‭PEARSON Mean similarity: 0.8784332368363306‬
‭EUCLIDEAN Mean similarity: 0.04647278426639877‬
‭COSINE Mean similarity: 0.8771420074530507‬
‭Number of matching relationships--PEARSON: 271‬
‭Number of matching relationships--EUCLIDEAN: 168‬
‭Number of matching relationships--COSINE: 265‬

‭Embedding dimension: 55‬
‭PEARSON Mean similarity: 0.8655686244654691‬
‭EUCLIDEAN Mean similarity: 0.04662014587555382‬
‭COSINE Mean similarity: 0.614217355860565‬
‭Number of matching relationships--PEARSON: 243‬
‭Number of matching relationships--EUCLIDEAN: 151‬
‭Number of matching relationships--COSINE: 0‬

109

E.5 Results of Tuning Initial Learning Rate Experiments on
Initial Learning Rate=0.5, iteration = 30

‭Embedding dimension: 15‬
‭PEARSON Mean similarity: 0.03807502067599726‬
‭EUCLIDEAN Mean similarity: 0.04564335060964835‬
‭COSINE Mean similarity: 0.037967638779249996‬
‭Number of matching relationships--PEARSON: 347‬
‭Number of matching relationships--EUCLIDEAN: 347‬
‭Number of matching relationships--COSINE: 347‬

‭Embedding dimension: 25‬
‭PEARSON Mean similarity: 0.034831752241802356‬
‭EUCLIDEAN Mean similarity: 0.0459378528454103‬
‭COSINE Mean similarity: 0.03449330858148888‬
‭Number of matching relationships--PEARSON: 347‬
‭Number of matching relationships--EUCLIDEAN: 347‬
‭Number of matching relationships--COSINE: 347‬

‭Embedding dimension: 35‬
‭PEARSON Mean similarity: 0.033330741837246554‬
‭EUCLIDEAN Mean similarity: 0.046018737669005175‬
‭COSINE Mean similarity: 0.03316360118646213‬
‭Number of matching relationships--PEARSON: 347‬
‭Number of matching relationships--EUCLIDEAN: 347‬
‭Number of matching relationships--COSINE: 347‬

‭Embedding dimension: 45‬
‭PEARSON Mean similarity: 0.03209057220504062‬
‭EUCLIDEAN Mean similarity: 0.046372619865563985‬
‭COSINE Mean similarity: 0.031897199453244006‬
‭Number of matching relationships--PEARSON: 347‬
‭Number of matching relationships--EUCLIDEAN: 347‬
‭Number of matching relationships--COSINE: 347‬

‭Embedding dimension: 55‬
‭PEARSON Mean similarity: 0.031240796831545133‬
‭EUCLIDEAN Mean similarity: 0.04660925590481328‬
‭COSINE Mean similarity: 0.03108460850342338‬
‭Number of matching relationships--PEARSON: 347‬
‭Number of matching relationships--EUCLIDEAN: 347‬
‭Number of matching relationships--COSINE: 347‬

110

E.6 Results of Tuning Initial Learning Rate Experiments on
Initial Learning Rate=0.34, iteration = 30

‭Embedding dimension: 15‬
‭PEARSON Mean similarity: 0.9497190165554932‬
‭EUCLIDEAN Mean similarity: 0.04564676083753451‬
‭COSINE Mean similarity: 0.9191424174005911‬
‭Number of matching relationships--PEARSON: 469‬
‭Number of matching relationships--EUCLIDEAN: 221‬
‭Number of matching relationships--COSINE: 271‬

‭Embedding dimension: 25‬
‭PEARSON Mean similarity: 0.034831752241802356‬
‭EUCLIDEAN Mean similarity: 0.0459378528454103‬
‭COSINE Mean similarity: 0.03449330858148888‬
‭Number of matching relationships--PEARSON: 347‬
‭Number of matching relationships--EUCLIDEAN: 347‬
‭Number of matching relationships--COSINE: 347‬

‭Embedding dimension: 35‬
‭PEARSON Mean similarity: 0.033330741837246554‬
‭EUCLIDEAN Mean similarity: 0.046018737669005175‬
‭COSINE Mean similarity: 0.03316360118646213‬
‭Number of matching relationships--PEARSON: 347‬
‭Number of matching relationships--EUCLIDEAN: 347‬
‭Number of matching relationships--COSINE: 347‬

‭Embedding dimension: 45‬
‭PEARSON Mean similarity: 0.03209057220504062‬
‭EUCLIDEAN Mean similarity: 0.046372619865563985‬
‭COSINE Mean similarity: 0.031897199453244006‬
‭Number of matching relationships--PEARSON: 347‬
‭Number of matching relationships--EUCLIDEAN: 347‬
‭Number of matching relationships--COSINE: 347‬

‭Embedding dimension: 55‬
‭PEARSON Mean similarity: 0.031240796831545133‬
‭EUCLIDEAN Mean similarity: 0.04660925590481328‬
‭COSINE Mean similarity: 0.03108460850342338‬
‭Number of matching relationships--PEARSON: 347‬
‭Number of matching relationships--EUCLIDEAN: 347‬
‭Number of matching relationships--COSINE: 347‬

111

E.7 Results of Tuning Initial Learning Rate Experiments on
Initial Learning Rate=0.1, iteration = 50

‭Embedding dimension: 15‬
‭PEARSON Mean similarity: 0.9690167242526304‬
‭EUCLIDEAN Mean similarity: 0.4533732370576619‬
‭COSINE Mean similarity: 0.9677710883902658‬
‭Number of matching relationships--PEARSON: 649‬
‭Number of matching relationships--EUCLIDEAN: 659‬
‭Number of matching relationships--COSINE: 645‬

‭Embedding dimension: 25‬
‭PEARSON Mean similarity: 0.9507276661815108‬
‭EUCLIDEAN Mean similarity: 0.40572504518303243‬
‭COSINE Mean similarity: 0.9512493584321556‬
‭Number of matching relationships--PEARSON: 666‬
‭Number of matching relationships--EUCLIDEAN: 676‬
‭Number of matching relationships--COSINE: 667‬

‭Embedding dimension: 35‬
‭PEARSON Mean similarity: 0.9391560454488329‬
‭EUCLIDEAN Mean similarity: 0.37193044918854795‬
‭COSINE Mean similarity: 0.937670834483565‬
‭Number of matching relationships--PEARSON: 655‬
‭Number of matching relationships--EUCLIDEAN: 668‬
‭Number of matching relationships--COSINE: 655‬

‭Embedding dimension: 45‬
‭PEARSON Mean similarity: 0.9275491212988534‬
‭EUCLIDEAN Mean similarity: 0.3487669774313269‬
‭COSINE Mean similarity: 0.9270987416299794‬
‭Number of matching relationships--PEARSON: 660‬
‭Number of matching relationships--EUCLIDEAN: 674‬
‭Number of matching relationships--COSINE: 659‬

‭Embedding dimension: 55‬
‭PEARSON Mean similarity: 0.9182105941997849‬
‭EUCLIDEAN Mean similarity: 0.331989851660003‬
‭COSINE Mean similarity: 0.9179211586933896‬
‭Number of matching relationships--PEARSON: 660‬
‭Number of matching relationships--EUCLIDEAN: 668‬
‭Number of matching relationships--COSINE: 662‬

112

F Tuning Experiments on InOutFactor and Mea-
sure Methods of Node2Vec with KNN on Cora
Dataset

F.1 Results of Tuning InOutFactor Experiments on InOut-
Factor=3, iteration = 30

‭Embedding dimension: 15‬
‭PEARSON Mean similarity: 0.9641895184312649‬
‭EUCLIDEAN Mean similarity: 0.4247134794688823‬
‭COSINE Mean similarity: 0.9632573537671584‬
‭Number of matching relationships--PEARSON: 652‬
‭Number of matching relationships--EUCLIDEAN: 656‬
‭Number of matching relationships--COSINE: 659‬

‭Embedding dimension: 25‬
‭PEARSON Mean similarity: 0.945940177444165‬
‭EUCLIDEAN Mean similarity: 0.3851913529625671‬
‭COSINE Mean similarity: 0.9456144608986431‬
‭Number of matching relationships--PEARSON: 660‬
‭Number of matching relationships--EUCLIDEAN: 666‬
‭Number of matching relationships--COSINE: 663‬

‭Embedding dimension: 35‬
‭PEARSON Mean similarity: 0.9328823760129853‬
‭EUCLIDEAN Mean similarity: 0.3579145436448924‬
‭COSINE Mean similarity: 0.9321914613687129‬
‭Number of matching relationships--PEARSON: 660‬
‭Number of matching relationships--EUCLIDEAN: 675‬
‭Number of matching relationships--COSINE: 663‬

‭Embedding dimension: 45‬
‭PEARSON Mean similarity: 0.9220243008837566‬
‭EUCLIDEAN Mean similarity: 0.3387218370395362‬
‭COSINE Mean similarity: 0.9213917254697273‬
‭Number of matching relationships--PEARSON: 657‬
‭Number of matching relationships--EUCLIDEAN: 655‬
‭Number of matching relationships--COSINE: 657‬

‭Embedding dimension: 55‬
‭PEARSON Mean similarity: 0.913125826160876‬
‭EUCLIDEAN Mean similarity: 0.32512979486316135‬
‭COSINE Mean similarity: 0.912363117730776‬
‭Number of matching relationships--PEARSON: 670‬
‭Number of matching relationships--EUCLIDEAN: 671‬
‭Number of matching relationships--COSINE: 672‬

113

F.2 Results of Tuning InOutFactor Experiments on InOut-
Factor=6, iteration = 30

‭Embedding dimension: 15‬
‭PEARSON Mean similarity: 0.9610198151942018‬
‭EUCLIDEAN Mean similarity: 0.40113060562438063‬
‭COSINE Mean similarity: 0.9594406330779173‬
‭Number of matching relationships--PEARSON: 645‬
‭Number of matching relationships--EUCLIDEAN: 642‬
‭Number of matching relationships--COSINE: 654‬

‭Embedding dimension: 25‬
‭PEARSON Mean similarity: 0.9418697244483576‬
‭EUCLIDEAN Mean similarity: 0.3651013708185058‬
‭COSINE Mean similarity: 0.9403807241420098‬
‭Number of matching relationships--PEARSON: 659‬
‭Number of matching relationships--EUCLIDEAN: 654‬
‭Number of matching relationships--COSINE: 659‬

‭Embedding dimension: 35‬
‭PEARSON Mean similarity: 0.927550697890131‬
‭EUCLIDEAN Mean similarity: 0.3405140116788788‬
‭COSINE Mean similarity: 0.9268961783878208‬
‭Number of matching relationships--PEARSON: 662‬
‭Number of matching relationships--EUCLIDEAN: 654‬
‭Number of matching relationships--COSINE: 655‬

‭Embedding dimension: 45‬
‭PEARSON Mean similarity: 0.916404811740802‬
‭EUCLIDEAN Mean similarity: 0.3240914985735624‬
‭COSINE Mean similarity: 0.916127820205125‬
‭Number of matching relationships--PEARSON: 651‬
‭Number of matching relationships--EUCLIDEAN: 654‬
‭Number of matching relationships--COSINE: 655‬

‭Embedding dimension: 55‬
‭PEARSON Mean similarity: 0.9074123058572654‬
‭EUCLIDEAN Mean similarity: 0.31307687498794173‬
‭COSINE Mean similarity: 0.9074157275336532‬
‭Number of matching relationships--PEARSON: 660‬
‭Number of matching relationships--EUCLIDEAN: 653‬
‭Number of matching relationships--COSINE: 665‬

114

F.3 Results of Tuning InOutFactor Experiments on InOut-
Factor=3, iteration = 50

‭Embedding dimension: 15‬
‭PEARSON Mean similarity: 0.9651385212930654‬
‭EUCLIDEAN Mean similarity: 0.42168520578077306‬
‭COSINE Mean similarity: 0.9636697693096482‬
‭Number of matching relationships--PEARSON: 653‬
‭Number of matching relationships--EUCLIDEAN: 659‬
‭Number of matching relationships--COSINE: 657‬

‭Embedding dimension: 25‬
‭PEARSON Mean similarity: 0.9461260425111215‬
‭EUCLIDEAN Mean similarity: 0.380653515383271‬
‭COSINE Mean similarity: 0.9454999194011379‬
‭Number of matching relationships--PEARSON: 663‬
‭Number of matching relationships--EUCLIDEAN: 668‬
‭Number of matching relationships--COSINE: 661‬

‭Embedding dimension: 35‬
‭PEARSON Mean similarity: 0.931260121062376‬
‭EUCLIDEAN Mean similarity: 0.35177915451973896‬
‭COSINE Mean similarity: 0.9310552115278371‬
‭Number of matching relationships--PEARSON: 677‬
‭Number of matching relationships--EUCLIDEAN: 674‬
‭Number of matching relationships--COSINE: 673‬

‭Embedding dimension: 45‬
‭PEARSON Mean similarity: 0.921586131345222‬
‭EUCLIDEAN Mean similarity: 0.33234834234330646‬
‭COSINE Mean similarity: 0.9206820337247638‬
‭Number of matching relationships--PEARSON: 666‬
‭Number of matching relationships--EUCLIDEAN: 667‬
‭Number of matching relationships--COSINE: 668‬

‭Embedding dimension: 55‬
‭PEARSON Mean similarity: 0.9107687537391922‬
‭EUCLIDEAN Mean similarity: 0.3188113203429049‬
‭COSINE Mean similarity: 0.9107360538386876‬
‭Number of matching relationships--PEARSON: 672‬
‭Number of matching relationships--EUCLIDEAN: 664‬
‭Number of matching relationships--COSINE: 672‬

115

G Tuning Experiments of GraphSAGE with KNN
on Cora Dataset

G.1 Tuning Experiments on Aggregator, Activation Func-
tion and Search Depth of GraphSAGE with KNN on
Cora Dataset

‭batchSize=30，aggregator="POOL" searchDepth=5‬
‭activationFunction="Sigmoid"‬

‭didConverge False‬
‭ranIterationsPerEpoch [10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 1...‬
‭iterationLossesPerEpoch [[26.578063195757903, 26.57627072419955,‬
‭26.56...‬
‭ranEpochs 20‬
‭epochLosses [24.74753612616579, 22.608372509346854,‬
‭17.455...‬
‭dtype: object‬
‭[24.74753612616579, 22.608372509346854, 17.455371242311582,‬
‭15.187571670340565, 14.939775989797974, 14.999852930359754,‬
‭14.707054300212826, 15.000603704284766, 14.408599294923352,‬
‭14.48353896336844, 14.348834969366774, 14.315318934263127,‬
‭14.349448664819956, 14.335332045623607, 14.392992485390007,‬
‭14.323826669136787, 14.29078425524421, 14.29517837187679,‬
‭14.271789792633404, 14.282777729909995]‬
‭Number of matching relationships: 13‬

‭epoch=40，aggregator="POOL" searchDepth=5‬
‭activationFunction="Sigmoid"‬

‭didConverge False‬
‭ranIterationsPerEpoch [10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 1...‬
‭iterationLossesPerEpoch [[26.57801715110504, 26.574354178515687,‬
‭26.55...‬
‭ranEpochs 40‬
‭epochLosses [26.01268229185979, 24.47529654926414,‬
‭17.2691...‬
‭dtype: object‬
‭[26.01268229185979, 24.47529654926414, 17.269124168625947,‬
‭17.844523490438235, 15.659407985092216, 15.171602216736366,‬
‭14.60643849156997, 14.704857908323067, 15.007431556742128,‬
‭14.826084757855275, 14.86252330470172, 14.768374206745241,‬
‭14.525201523907015, 15.046787627448111, 14.438423879416359,‬
‭14.557421334435798, 14.512800249286986, 14.548075958025104,‬
‭14.381526653754616, 14.412599660206677, 14.410700478728334,‬
‭14.466058581586008, 14.36738081299401, 14.45112876597656,‬
‭14.428161344103781, 14.386780784022369, 14.363662862619943,‬
‭14.431476148634946, 14.381591163833297, 14.352564364329078,‬
‭14.420722070546296, 14.381645087197688, 14.378830948533857,‬
‭14.39457526080552, 14.431403924617872, 14.360805345737063,‬
‭14.35340643685374, 14.316383161660607, 14.369591644493886,‬
‭14.330696444853803]‬
‭Mean similarity: 0.9992481583858699‬
‭Number of matching relationships: 7‬

‭epoch=3，aggregator="POOL" searchDepth=5‬
‭activationFunction="Sigmoid"‬

‭didConverge False‬
‭ranIterationsPerEpoch [10, 10, 10]‬
‭iterationLossesPerEpoch [[26.578074975930928, 26.575951973216927,‬
‭26.5...‬
‭ranEpochs 3‬
‭epochLosses [25.77068087361759, 21.257657219416203,‬
‭17.621...‬
‭dtype: object‬
‭[25.77068087361759, 21.257657219416203, 17.621216803013937]‬
‭Mean similarity: 0.999494967326808‬
‭Number of matching relationships: 26‬

‭epoch=3，aggregator="MEAN" searchDepth=5‬
‭activationFunction="Sigmoid"‬

‭didConverge False‬
‭ranIterationsPerEpoch [10, 10, 10]‬
‭iterationLossesPerEpoch [[26.578405443948792, 26.57781356633784,‬
‭26.57...‬
‭ranEpochs 3‬
‭epochLosses [25.72238683578421, 20.671585665462043,‬
‭19.614...‬
‭dtype: object‬
‭[25.72238683578421, 20.671585665462043, 19.6147673905415]‬
‭Mean similarity: 0.9996308795810627‬
‭Number of matching relationships: 129‬

116

G.2 Tuning Experiments on Sample Size of GraphSAGE with
KNN on Cora Dataset

‭aggregator="MEAN" searchDepth=3‬
‭activationFunction="ReLu"sampleSizes=[10,10]‬

‭didConverge False‬
‭ranIterationsPerEpoch [10, 10, 10, 10, 10]‬
‭iterationLossesPerEpoch [[21.754560713863505, 23.26248933044796,‬
‭20.39...‬
‭ranEpochs 5‬
‭epochLosses [14.227935121332774, 13.847646488878516,‬
‭13.69...‬
‭dtype: object‬
‭[14.227935121332774, 13.847646488878516, 13.69934965483869,‬
‭12.65047489157352, 12.953638816657573]‬
‭Mean similarity: 0.9557151991648372‬
‭Number of matching relationships: 360‬

‭aggregator="MEAN" searchDepth=3‬
‭activationFunction="ReLu"sampleSizes=[3,3]‬

‭didConverge False‬
‭ranIterationsPerEpoch [10, 10, 10]‬
‭iterationLossesPerEpoch [[21.67280248604041, 21.978633549007345,‬
‭19.81...‬
‭ranEpochs 3‬
‭epochLosses [14.161219714249686, 13.643826400342164,‬
‭13.34...‬
‭dtype: object‬
‭[14.161219714249686, 13.643826400342164, 13.345073581056699]‬
‭Mean similarity: 0.94096874845609‬
‭Number of matching relationships: 387‬

‭aggregator="MEAN" searchDepth=3‬
‭activationFunction="ReLu"sampleSizes=[15,15]‬

‭didConverge False‬
‭ranIterationsPerEpoch [10, 10, 10]‬
‭iterationLossesPerEpoch [[21.702246430992016, 22.393893106745043,‬
‭19.7...‬
‭ranEpochs 3‬
‭epochLosses [14.340485521454346, 13.73461264471733,‬
‭13.351...‬
‭dtype: object‬
‭[14.340485521454346, 13.73461264471733, 13.35131493347294]‬

‭nodeCount 2708‬
‭nodePropertiesWritten 2708‬
‭preProcessingMillis 0‬
‭computeMillis 2129‬
‭writeMillis 546‬
‭configuration {'writeProperty': 'graphSAGE11', 'modelName': ...‬
‭Name: 0, dtype: object‬
‭Mean similarity: 0.9484272521566958‬
‭Number of matching relationships: 386‬

‭aggregator="MEAN" searchDepth=3‬
‭activationFunction="ReLu"sampleSizes=[8,8]‬

‭didConverge False‬
‭ranIterationsPerEpoch [10, 10, 10]‬
‭iterationLossesPerEpoch [[21.904654964588396, 22.83658392728238,‬
‭19.98...‬
‭ranEpochs 3‬
‭epochLosses [14.23767916728001, 13.725985007856622,‬
‭12.654...‬
‭dtype: object‬
‭[14.23767916728001, 13.725985007856622, 12.654825814599912]‬
‭Mean similarity: 0.956262732467764‬
‭Number of matching relationships: 433‬

117

G.3 Results of Experiments on Initial Learning Rate =0.001
of GraphSAGE with KNN on Cora Dataset

‭learningRate=0.001,aggregator="MEAN"‬
‭searchDepth=3‬
‭activationFunction="ReLu"sampleSizes=[8,8]‬

‭didConverge False‬
‭ranIterationsPerEpoch [10, 10, 10]‬
‭iterationLossesPerEpoch [[22.008286119030892, 19.313000253947074,‬
‭18.7...‬
‭ranEpochs 3‬
‭epochLosses [14.791299331888364, 14.236805479042946,‬
‭13.48...‬
‭dtype: object‬
‭[14.791299331888364, 14.236805479042946, 13.489631265801638]‬
‭Mean similarity: 0.856513860975798‬
‭Number of matching relationships: 588‬

‭learningRate=0.001，aggregator="MEAN"‬
‭searchDepth=3‬
‭activationFunction="ReLu"sampleSizes=[8,8]‬
‭didConverge False‬
‭ranIterationsPerEpoch [10, 10, 10]‬
‭iterationLossesPerEpoch [[20.653596375141724, 20.38089396969442,‬
‭20.02...‬
‭ranEpochs 3‬
‭epochLosses [18.479360185898344, 16.703690036370766,‬
‭15.56...‬
‭dtype: object‬
‭[18.479360185898344, 16.703690036370766, 15.567027167981925]‬
‭Mean similarity: 0.850995515685314‬
‭Number of matching relationships: 613‬

118

H Tuning Experiments of Node2Vec with KNN on
Movielens Dataset

‭walklength=10‬

‭Mean similarity: 0.9179394287298098‬
‭Number of matched pairs between user_movie_recommendations.csv and‬
‭test_set.txt: 5169‬

‭Mean similarity: 0.9143643395979072‬
‭Number of matched pairs between user_movie_recommendations.csv and‬
‭test_set.txt: 5021‬

‭walklength=100‬

‭Mean similarity: 0.9485307979109621‬
‭Number of matched pairs between user_movie_recommendations.csv and‬
‭test_set.txt: 4971‬

‭Mean similarity: 0.9395245605372539‬
‭Number of matched pairs between user_movie_recommendations.csv and‬
‭test_set.txt: 4977‬

‭walklength=50‬

‭Mean similarity: 0.9353859937160655‬
‭Number of matched pairs between user_movie_recommendations.csv and‬
‭test_set.txt: 4967‬

‭Mean similarity: 0.9326353849982498‬
‭Number of matched pairs between user_movie_recommendations.csv and‬
‭test_set.txt: 4987‬

119

‭walklength=5‬

‭Mean similarity: 0.8523713693888213‬
‭Number of matched pairs between user_movie_recommendations.csv and‬
‭test_set.txt: 4414‬

‭Mean similarity: 0.7380355205885119‬
‭Number of matched pairs between user_movie_recommendations.csv and‬
‭test_set.txt: 4553‬

‭Mean similarity: 0.7286615581010578‬
‭Number of matched pairs between user_movie_recommendations.csv and‬
‭test_set.txt: 4524‬

I Tuning Experiments of GraphSAGE with KNN
on Movielens Dataset

‭epoch=3，aggregator="MEAN"‬
‭activationFunction="ReLu" sampleSizes=[8,8]‬
‭didConverge True‬
‭ranIterationsPerEpoch [2]‬
‭iterationLossesPerEpoch [[26.578495437882474, 26.578495437882474]]‬
‭ranEpochs 1‬
‭epochLosses [26.578495437882474]‬
‭dtype: object‬
‭[26.578495437882474]‬
‭Mean similarity: 1.0‬
‭Number of matched pairs between user_movie_recommendations.csv and‬
‭test_set.txt: 1872‬

‭epoch=3，aggregator="MEAN"‬
‭activationFunction="ReLu" sampleSizes=[10,10]‬
‭didConverge True‬
‭ranIterationsPerEpoch [2]‬
‭iterationLossesPerEpoch [[26.578495437882516, 26.57849543788252]]‬
‭ranEpochs 1‬
‭epochLosses [26.57849543788252]‬
‭dtype: object‬
‭[26.57849543788252]‬
‭Mean similarity: 1.0‬
‭Number of matched pairs between user_movie_recommendations.csv and‬
‭test_set.txt: 3073‬

‭epoch=3，aggregator="MEAN"‬
‭activationFunction="ReLu"sampleSizes=[30,30]‬
‭didConverge True‬
‭ranIterationsPerEpoch [2]‬
‭iterationLossesPerEpoch [[26.578495437882488, 26.57849543788249]]‬

‭ranEpochs 1‬
‭epochLosses [26.57849543788249]‬
‭dtype: object‬
‭[26.57849543788249]‬
‭Mean similarity: 1.0‬
‭Number of matched pairs between user_movie_recommendations.csv and‬
‭test_set.txt: 2314‬

‭epoch=3，aggregator="MEAN"‬
‭activationFunction="ReLu"sampleSizes=[15,15]‬
‭didConverge True‬
‭ranIterationsPerEpoch [2]‬
‭iterationLossesPerEpoch [[26.57849543788246, 26.578495437882502]]‬
‭ranEpochs 1‬
‭epochLosses [26.578495437882502]‬
‭dtype: object‬
‭[26.578495437882502]‬
‭Mean similarity: 1.0‬
‭Number of matched pairs between user_movie_recommendations.csv and‬
‭test_set.txt: 2500‬

‭epoch=10，aggregator="MEAN"‬
‭activationFunction="ReLu" sampleSizes=[10,10]‬
‭didConverge True‬
‭ranIterationsPerEpoch [2]‬
‭iterationLossesPerEpoch [[26.578495437882488, 26.578495437882488]]‬
‭ranEpochs 1‬
‭epochLosses [26.578495437882488]‬
‭dtype: object‬
‭[26.578495437882488]‬
‭Mean similarity: 1.0‬

121

‭Number of matched pairs between user_movie_recommendations.csv and‬
‭test_set.txt: 1526‬

‭epoch=1，aggregator="MEAN"‬
‭activationFunction="ReLu" sampleSizes=[10,10]‬
‭didConverge True‬
‭ranIterationsPerEpoch [2]‬
‭iterationLossesPerEpoch [[26.5784954378825, 26.578495437882488]]‬
‭ranEpochs 1‬
‭epochLosses [26.578495437882488]‬
‭dtype: object‬
‭[26.578495437882488]‬
‭Mean similarity: 1.0‬
‭Number of matched pairs between user_movie_recommendations.csv and‬
‭test_set.txt: 2975‬

‭epoch=3，aggregator="POOL"‬
‭activationFunction="ReLu"sampleSizes=[10,10]‬
‭didConverge False‬
‭ranIterationsPerEpoch [10, 10, 10]‬
‭iterationLossesPerEpoch [[23.50903623353792, 23.0851805774743,‬
‭21.7992...‬
‭ranEpochs 3‬
‭epochLosses [20.144572770194024, 19.295002404139,‬
‭18.37821...‬
‭dtype: object‬
‭[20.144572770194024, 19.295002404139, 18.37821676935318]‬
‭Mean similarity: 0.9997699754663391‬
‭Number of matched pairs between user_movie_recommendations.csv and‬
‭test_set.txt: 5150‬

‭epoch=10，aggregator="POOL"‬
‭activationFunction="ReLu" sampleSizes=[10,10]‬
‭didConverge False‬
‭ranIterationsPerEpoch [10, 10, 10, 10, 10, 10, 10, 10, 10, 10]‬
‭iterationLossesPerEpoch [[22.736006176992426, 23.136325308908674,‬
‭22.9...‬
‭ranEpochs 10‬
‭epochLosses [21.478937469069088, 19.898557393304223,‬
‭19.31...‬
‭dtype: object‬
‭[21.478937469069088, 19.898557393304223, 19.315452252507118,‬
‭19.283626012199544, 18.4782996043101, 17.829936889595004,‬
‭16.176826538958327, 16.479512903452505, 15.410762672754009,‬
‭16.55733446603741]‬

‭Mean similarity: 0.9978706535634466‬
‭Number of matched pairs between user_movie_recommendations.csv and‬
‭test_set.txt: 5237‬

‭epoch=10，aggregator="POOL"‬
‭activationFunction="ReLu"sampleSizes=[30,30]‬
‭didConverge False‬
‭ranIterationsPerEpoch [10, 10, 10, 10, 10, 10, 10, 10, 10, 10]‬
‭iterationLossesPerEpoch [[24.03143906109544, 23.07006323426566,‬
‭22.240...‬
‭ranEpochs 10‬
‭epochLosses [21.36041070842736, 19.456409696101908,‬
‭19.451...‬
‭dtype: object‬
‭[21.36041070842736, 19.456409696101908, 19.45181318171054,‬
‭19.99500382299159, 17.726151012535386, 16.88280584572294,‬
‭17.87222110044179, 14.977646578400101, 15.168246856928132,‬
‭14.4433230281416]‬
‭Mean similarity: 0.9984186967849963‬
‭Number of matched pairs between user_movie_recommendations.csv and‬
‭test_set.txt: 5664‬

‭epoch=10，aggregator="POOL"‬
‭activationFunction="Sigmoid" sampleSizes=[30,30]‬
‭didConverge True‬
‭ranIterationsPerEpoch [5]‬
‭iterationLossesPerEpoch [[26.575471765680476, 26.573809890217177,‬
‭26.5...‬
‭ranEpochs 1‬
‭epochLosses [26.574290225690852]‬
‭dtype: object‬
‭[26.574290225690852]‬
‭Mean similarity: 0.999995992833287‬
‭Number of matched pairs between user_movie_recommendations.csv and‬
‭test_set.txt: 5584‬

‭epoch=3，aggregator="POOL"‬
‭activationFunction="Sigmoid" sampleSizes=[30,30]‬
‭didConverge False‬
‭ranIterationsPerEpoch [10, 10, 10]‬
‭iterationLossesPerEpoch [[26.571567974896247, 26.57495718207296,‬
‭26.57...‬

‭ranEpochs 3‬
‭epochLosses [26.576316569314447, 26.557286490361083,‬
‭26.53...‬
‭dtype: object‬
‭[26.576316569314447, 26.557286490361083, 26.53335619341953]‬
‭Mean similarity: 0.9999949564308749‬
‭Number of matched pairs between user_movie_recommendations.csv and‬
‭test_set.txt: 5494‬

‭epoch=10，aggregator="POOL"‬
‭activationFunction="Sigmoid" sampleSizes=[30,30]‬
‭didConverge True‬
‭ranIterationsPerEpoch [10, 5]‬
‭iterationLossesPerEpoch [[26.575468209947434, 26.574183958327477,‬
‭26.5...‬
‭ranEpochs 2‬
‭epochLosses [26.572613855279933, 26.5673951570246]‬
‭dtype: object‬
‭[26.572613855279933, 26.5673951570246]‬
‭Mean similarity: 0.999995745365961‬
‭Number of matched pairs between user_movie_recommendations.csv and‬
‭test_set.txt: 5567‬

J Quick Scan Document

Ethics and Privacy Quick Scan (version: 31 July 2023)

Section 1. Research projects involving human participants

 Yes No

P1 Does your project involve human participants?

This includes for example use of observation, (online) surveys,

interviews, tests, focus groups, and workshops where human

participants provide information or data to inform the research. If

you are only using existing data sets or publicly available data (e.g.

from Twitter, Reddit) without directly recruiting participants, please

answer no.

 √

If no, continue with Section 2; if yes, fill in the following questions.

Recruitment

 Yes No

P2 Does your project involve participants younger than 18 years of

age?

P3 Does your project involve participants with learning or

communication difficulties of a severity that may impact their ability

to provide informed consent?1

P4 Is your project likely to involve participants engaging in illegal

activities?

P5 Does your project involve patients?

P6 Does your project involve participants belonging to a vulnerable2

group, other than those listed above?

If the answer to all of P2-P6 is no, continue with P8.

As you are dealing with vulnerable participants (yes to one (or more) of P2-P6) a fuller

ethical review is required. Please add more detail on your participants here:

1 For informed consent people need to be able to (1) understand information provided relevant to
making the consent decision, (2) retain this information long enough to be able to make a
decision, (3) weigh the information, (4) communicate the decision.
2 Vulnerable people include those who are legally incompetent, who may have difficulty giving or
withholding consent, or who may suffer highly adverse consequences if their personal data were
to become publicly available or from participating. Examples include irregular immigrants, sex
workers, dissidents and traumatized people at risk of re-traumatization.

124

 Yes No

P7 Do you intend to be alone with a research participant or have to take

sole responsibility for the participants at any point during your

research activity?

If P7 is no continue with P8, otherwise:

As you will be alone with or solely responsible for vulnerable participants (yes to P7) a fuller

ethical review is required. You may also need a Certificate of Conduct (Dutch: VOG) from the

government. Please add more detail here:

 Yes No

P8 Does your project involve participants with whom you have, or are

likely to have, a working or professional relationship: for instance,

staff or students of the university, professional colleagues, or

clients?

If the answer to P8 is yes, please answer P9, otherwise, continue with PC1.

 Yes No

P9 Is it made clear to potential participants that not participating will in

no way impact them (e.g. it will not directly impact their grade in a

class)?

If the answer to P9 is yes, then continue with PC1, otherwise:

As participants may think that not participating may harm them (yes to P8 and no to

P9), participation may no longer be voluntary. Hence, a fuller ethical review is required. Please

provide more information here:

Consent Procedures Yes No Not

applicable

PC1 Do you have set procedures that you will use for obtaining

informed consent from all participants, including (where

appropriate) parental consent for children or consent from

legally authorized representatives? (See suggestions for

information sheets and consent forms on the website3.)

PC2 Will you tell participants that their participation is voluntary?

PC3 Will you obtain explicit consent for participation?

PC4 Will you obtain explicit consent for any sensor readings, eye

tracking, photos, audio, and/or video recordings?

PC5 Will you tell participants that they may withdraw from the

research at any time and for any reason?

PC6 Will you give potential participants time to consider

participation?

PC7 Will you provide participants with an opportunity to ask

questions about the research before consenting to take part

(e.g. by providing your contact details)?

If the answer to PC1-PC7 is yes, then continue with PC8, otherwise:

 Given your responses to the informed consent questions (a no on any of PC1-PC7), a fuller

ethical review is required. Please provide more information regarding the questions that are causing

this here:

 Yes No

PC8 Does your project involve concealment4 or deliberate misleading of

participants?

3 uu.nl/en/research/institute-of-information-and-computing-sciences/ethics-and-privacy
4 This may for example involve concealment of the study aim, of the identity of the researcher, or
subliminal messaging during the study.

If the answer to PC8 no, continue with Section 2, otherwise:

 As you plan to use concealment or misleading (yes to PC8), and this may impact participants'

rights to informed consent, a fuller ethical review is required. Please provide more information on

the concealment/misleading here:

Section 2. Data protection, handling, and storage

The General Data Protection Regulation imposes several obligations for the use of personal data
(defined as any information relating to an identified or identifiable living person) or including the use
of personal data in research.

 Yes No

D1 Are you gathering or using personal data (defined as any information

relating to an identified or identifiable living person5)?

 √

If the answer to D1 is yes, please answer the following questions; otherwise, continue with Section
3.

High-Risk Data

 Yes No

DR1 Will you process personal data that would jeopardize the physical

health or safety of individuals in the event of a personal data breach?

DR2 Will you combine, compare, or match personal data obtained from

multiple sources, in a way that exceeds the reasonable expectations of

the people whose data it is?6

DR3 Will you use any personal data of children or vulnerable individuals for

marketing, profiling, automated decision-making, or to offer online

services to them?

5 This includes people’s name, postal address, unique ID, IP address, voice, photo, video etc.
When a person can be identified by combining multiple data points (e.g. gender + age + job role),
this also constitutes personal data. When a person can be identified by a simple search online
(e.g. with the content of a tweet) this also constitutes personal data. Note that Survey tool
Qualtrics by default collects IP addresses and that the survey needs to be anonymized before
distribution to prevent this.
6 This is about the combined use of data sets that have been gathered for different purposes (so
not within one study), making the data more personal or sensitive. For example, combining
participant data with religion or ethnic statistics data from the CBS based on zip code.

DR4 Will you profile individuals on a large scale7?

DR5 Will you systematically monitor individuals in a publicly accessible area

on a large scale8 (or use the data of such monitoring)?9

DR6 Will you use special category10 personal data, criminal offense personal

data, or other sensitive personal data11 on a large scale?

DR7 Will you determine an individual’s access to a product, service,

opportunity, or benefit12 based on an automated decision or special

category personal data?

DR8 Will you systematically and extensively monitor or profile individuals,

with significant effects13 on them?

DR9 Will you use innovative technology14 to process sensitive personal

data15?

If the answer to DR1-DR9 is no, continue with DM1, otherwise:

 As high-risk data processing seems involved (yes to any of DR1-DR9), a fuller privacy

assessment is required. Please provide more information on the DR1-DR9 questions with a yes here:

7 Large scale is for example thousands of people, all visitors to a university website, data obtained
over a very large time span
8 Large scale is for example thousands of people, all visitors to the area, data obtained over a
very large time span
9 This may also include camera surveillance and use of drones
10 Special category personal data is information about a person’s health, ethnic origin, politics,
religion, trade union membership, genetics, biometrics (where used in identification), sex life or
sexual orientation.
11 Other sensitive personal data includes for instance financial data (from which people’s income,
capital position or spending patterns can be derived), location data (from which people’s
movement patterns can be derived), achievement data (e.g. outcome of course work/exams,
intelligence test; this excludes performance on tasks in a research study that are unrelated to their
study/job), and communication data.
12 Examples include: access to a mortgage, insurance, credit card, smartphone contract, course
or degree programme, job opportunity.
13 Significant effects are for example impacts on somebody’s legal rights, automatic refusal of a
credit application, automatic rejection for a job application.
14 Innovative technology includes e.g. machine learning (including deep learning), neuro
measurement (e.g. brain activity), autonomous vehicles, deep fakes, wearables, blockchain,
internet of things.
15 Sensitive personal data includes all data mentioned in DR6.

Data Minimization

 Yes No

DM1 Will you collect only personal data that is strictly necessary for the

research?

If you answered yes to DM1 continue with DM4, otherwise:

 Yes No

DM2 Will you only collect not strictly necessary personal data because it

is (1) technically unfeasible not to collect it when collecting

necessary data16, or (2) needed as a source of necessary data17?

DM3 Will you (1) extract any necessary data as soon as possible from the

collected not strictly necessary data and (2) delete the not strictly

necessary data immediately after any required extraction?18

DM4 Will you anonymize the data wherever possible?19

DM5 Will you pseudonymize the data if you are not able to anonymize it,

replacing personal details with an identifier, and keeping the key

separate from the data set?

If the answer to any of DM2-DM5 is no, see warning below, otherwise continue with DC1.

 As you do not seem to minimize data collection (no to any of DM2-DM5), a fuller privacy

assessment is required. Please provide more information on the DM2-DM5 questions with a no

here:

16 This may for instance occur when IP data is collected automatically in Qualtrics, and it is
unfeasible not to do so as other personal data such as email needs to be collected.
17 This may, for instance, occur when audio data is captured from which audio features need
extracting or a transcript needs to be produced.
18 This may for instance happen when you collect audio data, extract audio features or transcribe
an audio interview as soon as possible, and delete the original audio recording once done.
19 Possible also means given the research question. So, for example, if you have done interviews
and you need to be able to at a later date link them to performance data, it is impossible to
anonymize the interviews, and you will need to pseudonymize them. You can then answer yes to
DM4 as you are anonymizing where it is possible, and yes to DM5 if indeed you pseudonymize.
Note that in such a case you should anonymize once the linking has been done, destroying the
key that links the pseudonym to the identity of the participant.

Using Collaborators or Contractors that Process Personal Data Securely

 Yes No

DC1 Will any organization external to Utrecht University be involved in

processing personal data (e.g. for transcription, data analysis, data

storage)?20

If the answer to DC1 is yes, please complete DC2 otherwise continue with DI1.

 Yes No

DC2 Will this involve data that is not anonymized?

If the answer to DC2 is yes, please complete DC3-DC5, otherwise continue with DI1.

 Yes No Not

Applicable

DC3 Are they capable of securely21 handling data?

DC4 Has been drawn up in a structured and generally agreed

manner who is responsible for what concerning data in the

collaboration?

DC5 Is a written contract covering this data processing in place

for any organization which is not another university in a

joint research project?

If the answer to any of DC3-DC5 is no, see warning below, otherwise continue with DI1.

 As you do not seem to have appropriate processes in place for sharing data with

collaborators or contractors (no to any of DC3-DC5), a fuller privacy assessment is required. Please

provide more information on the DC3-DC5 questions with a no here:

20 You can answer No if this is only the use of online software, as long as this software has been
deemed safe by Utrecht University. See https://tools.uu.nl/tooladvisor/ for tools that are safe/not
safe to use (e.g. Microsoft Word Online Transcribe is fine, NVivo Transcription is not).
21 Secure handling includes for example: (1) only sharing data with those who legitimately need to
see it, (2) data being securely stored on password-protected employer authorized IT systems (or
in the case of non-digital data: in a secure locked location), (3) if portable devices such as USB
sticks are used then only encrypted and password protected with data deleted as soon as it is no
longer required to be portable, (4) reporting lost or stolen data immediately, (5) deleting or
disposing of data as soon as it is no longer required and in a secure manner, (6) not discussing
sensitive data in public places, (7) only carrying needed data when working off-site.

International Personal Data Transfers

 Yes No

DI1 Will any personal data be transferred to another country (including

to research collaborators in a joint project)?

If the answer to DI1 is yes, please complete DI2, otherwise continue with DF1.

 Yes No

DI2 Do all countries involved in this have an adequate data protection

regime?22

If the answer to DI2 is no, please complete DI3, otherwise continue with DF1.

 Yes No

DI3 Is a legal agreement in place?

If the answer to DI2 and DI3 is no, see warning below, otherwise, continue with DF1.

 As you do not seem to have appropriate safeguards in place for international data transfers

(no to DI2 and DI3), a fuller privacy assessment is required. Please provide more information on

intended international data transfers here:

Fair Usage of Personal Data to Recruit Participants

 Yes No

DF1 Is personal data used to recruit participants?23

22 Countries with an adequate data protection regime include EU countries, Andorra, Argentina,
Canada (only commercial organizations), Faroe Islands, Guernsey, Israel, Isle of Man, Jersey,
New Zealand, Switzerland, Uruguay, Japan, the United Kingdom, and South Korea.
23 Intended here is the direct use of personal data to target a specific person. If you are using
personal data indirectly to address a group of people, for example, sending a message via a pre-
existing Microsoft Team, Blackboard course, Discord Channel, WhatsApp group, or crowd-
sourcing platform, that is fine and will not be regarded as the use of personal data here. If you are
asking friends or family members this will also not be regarded as use of personal data here.

If the answer to DF1 is yes please answer DF2-DF4, otherwise continue with DP1

 Yes No N/A

DF2 Have potential participants provided this personal data

voluntarily to be contacted about the research or is the data

publicly available?

DF3 If contact details have been provided by a third party, would

participants expect their details to be passed on to the

university and to be used in this way?

DF4 If contact details have been gathered for a purpose other

than research, would participants expect their details to be

used in this way?

If the answers to DF2-DF4 are yes or N/A continue with DP1, otherwise:

 As there seem to be issues with your use of personal data for recruitment (no to one or

more of DF2-DF4), a fuller privacy assessment is required. Please provide more information on the

intended use of personal data for recruitment here:

Participants’ data rights and privacy information

 Yes No
Not

Applicable

DP1 Will participants be provided with privacy information?
(Recommended is to use as part of the information sheet:
For details of our legal basis for using personal data and the rights
you have over your data please see the University’s privacy

information at www.uu.nl/en/organisation/privacy.)

DP2 Will participants be aware of what their data is used for?

DP3 Can participants request that their personal data be

deleted?24

24 This only concerns requests for personal data that you still hold. If you can no longer link the
data to a participant due to anonymization, you can no longer delete, rectify or provide access to
it. This should be clear to participants in the consent form. If the data is pseudonymized and you
cannot access the key but the participant can (for example when the key is a WorkerID from a
crowd-sourcing platform), participants should be able to request deletion on the provision of the
key.

 Yes No
Not

Applicable

DP4 Can participants request that their personal data be
rectified (in case it is incorrect)?24

DP5 Can participants request access to their personal data?24

DP6 Can participants request that personal data processing is
restricted?

DP7 Will participants be subjected to automated decision-
making based on their personal data with an impact on
them beyond the research study to which they consented?

DP8 Will participants be aware of how long their data is being
kept for, who it is being shared with, and any safeguards
that apply in case of international sharing?

DP9 If data is provided by a third party, are people whose data

is in the data set provided with (1) the privacy information

and (2) what categories of data you will use?

If the answer to DP1-DP6, DP8, DP9 is yes and DP7 is no, continue with DE1, otherwise:

 As there seem to be issues with the data rights of your participants or the provision of

privacy information (no to one or more of DP1-DP6, DP8, DP9, or yes to DP7), a fuller privacy

assessment is required. Please provide more detail regarding data rights and/or privacy information

here:

Using data you have not gathered directly from participants

 Yes No

DE1 Will you use any personal data25 that you have not gathered directly

from participants (such as data from an existing data set, data

gathered by a third party, data scraped from the internet)?

If the answer to DE1 is no please continue with DS1.

 Yes No

DE2 Will you use an existing dataset in your research?

If the answer to DE2 is yes please answer DE3-DE5, otherwise, continue with DE6.

25 Defined as any data related to an identified or identifiable living person. This includes people’s
name, postal address, unique ID, IP address, voice, photo, video etc. When a person can be
identified by combining multiple data points (e.g. gender + age + job role), this also constitutes
personal data.

 Yes No

DE3 Do you have permission to do so from the owners of the dataset?

DE4 Have the people whose data is in the data set consented to their

data being used by other researchers and/or for purposes other

than that for which that data set was gathered?

DE5 Are there any contractual conditions attached to working with or
storing the data from DE2?

 Yes No

DE6 Does your project require access to personal data about participants

from other parties (e.g., teachers, employers), databanks, or files26?

If the answer to DE6 is yes please answer DE7-DE8, otherwise, continue with DE9.

 Yes No

DE7 Do you have a process in place to gain informed consent from these

participants?

DE8 Are there any contractual conditions attached to working with or
storing the data from DE5?

 Yes No

DE9 Does the project involve collecting personal data from websites or

social media (e.g., Facebook, Twitter, Reddit)?

 As there may be issues with the use of existing data (no to DE3, DE4, DE7 or yes to DE9), a

fuller privacy assessment is required. Please provide more detail regarding the use of existing data

here:

26 For example, do you get a student’s grade from the teacher, in addition to data gathered
directly in your study or data in an existing research data set?

Secure data storage

 Yes No

DS1 Will any data be stored (temporarily or permanently) anywhere

other than on password-protected University authorized

computers or servers?27

If the answer to DS1 is yes, please answer DS2, otherwise, continue with DS4.

 Yes No

DS2 Does this only involve data stored temporarily during a session

with participants (e.g. data stored on a video/audio

recorder/sensing device), which is immediately transferred

(directly or with the use of an encrypted and password-protected

data-carrier (such as a USB stick)) to a password-protected

University authorized computer or server, and deleted from the

data capture and data-carrier device immediately after transfer?

If the answer to DS2 is yes, continue with DS4, otherwise answer DS3.

 Yes No

DS3 Does this only involve data stored with a collaborator or contractor?

DS4 Excluding (1) any international data transfers mentioned above and

(2) any sharing of data with collaborators and contractors, will any

personal data be stored, collected, or accessed from outside the

EU28?

If the answer to DS2 and DS3 is no, or the answer to DS4 is yes, see the warning below, otherwise
continue with Section 3.

 As there may be issues with secure data storage (no to DS2 and DS3, or yes to DS4), a fuller

privacy assessment is required. Please provide more detail regarding data storage here:

27 OneDrive business, Qualtrics, Microsoft Forms are ok. Do not use Google
Drive/Sheets/Docs/Forms, Dropbox, OneDrive personal. See https://tools.uu.nl/tooladvisor/ for
tools that are safe/not safe to use. Bachelor and master students are authorized to use a
password-protected personal computer, as long as that computer is not shared with other people.
28 This may happen, for instance, when data is collected and stored on a Utrecht University laptop
whilst abroad.

Section 3: Research that may cause harm

Research may harm participants, researchers, the university, or society. This includes when
technology has dual-use, and you investigate an innocent use, but your results could be used by
others in a harmful way. If you are unsure regarding possible harm to the university or society,
please discuss your concerns with the Research Support Office.

 Yes No

H1 Does your project give rise to a realistic risk to the national security

of any country?29

 √

H2 Does your project give rise to a realistic risk of aiding human rights

abuses in any country?30

 √

H3 Does your project (and its data) give rise to a realistic risk of

damaging the University’s reputation? (E.g., bad press coverage,

public protest.)

 √

H4 Does your project (and in particular its data) give rise to an

increased risk of attack (cyber- or otherwise) against the University?

(E.g., from pressure groups.)

 √

H5 Is the data likely to contain material that is indecent, offensive,
defamatory, threatening, discriminatory, or extremist?

 √

H6 Does your project give rise to a realistic risk of harm to the
researchers?31

 √

H7 Is there a realistic risk of any participant experiencing physical or
psychological harm or discomfort?32

 √

H8 Is there a realistic risk of any participant experiencing a detriment to
their interests as a result of participation?

 √

H9 Is there a realistic risk of other types of negative externalities?33 √

29 For example, research that can be used for autonomous armed vehicles/drones/robots,
research on automated detection of objects, research on AI-enhanced forgery of video/audio
data.
30 For example, research on natural language/video/audio processing for automated identification
of people's identity, sentiments, or opinions.
31 For example, research that involves potentially violent participants such as criminals, research
in likely unsafe locations such as war zones, research on an emotionally highly challenging topic,
research in which the researcher is alone with a not previously known participant in the
participant's home.
32 For example, research that involves strenuous physical activity, research that stresses
participants, research on an emotionally challenging topic.
33 A negative externality is a harm produced to a third party, society in general, or the
environment. For instance, intended or unintended negative ethical (e.g. bad governance or
management practices), social (e.g. consumerism, inequality) or environmental effects (e.g. large
CO2 footprint or e-waste production) of your project.

If the answer to H1-H9 is no continue with Section 4, otherwise:

 As you replied yes to one (or more) of H1-H9, a fuller ethical review is required. Please

provide more detail here on the potential harm, and how you will minimize risk and impact:

Section 4: Conflicts of interest

 Yes No

C1 Is there any potential conflict of interest (e.g. between research

funder and researchers or participants and researchers) that may

potentially affect the research outcome or the dissemination of

research findings?

 √

C2 Is there a direct hierarchical relationship between researchers and

participants?

 √

If the answer to C1-C2 is yes, continue with Section 5, otherwise:

 As you replied yes to C1 or C2, a fuller ethical review is required. Please provide more

information regarding possible conflicts of interest and how you mitigate them here:

Section 5: Your information

This last section collects data about you and your project so that we can register that you completed
the Ethics and Privacy Quick Scan, sent you (and your supervisor) the summary of what you filled
out, and follow up where a fuller ethics review and/or privacy assessment is needed. For details of
our legal basis for using personal data and the rights you have over your data please see

the University’s privacy information. Please see the guidance on the ICS Ethics and Privacy

website on what happens on submission.

Z0. Which is your main department?

○ Information and Computing Science

○ Freudenthal Institute

○ Pharmacy

○ Other, namely:

Z1. Your full name: Tinting Zhang

Z2. Your email address:t.zhang5@students.uu.nl

Z3. In what context will you conduct this research?

○ 1. As a student on a course with course coordinator:

○ 2. As a student for my bachelor thesis, supervised by:

○ 3. As a student for my master thesis, supervised by: Behrisch Michael

○ 4. As a PhD student, supervised by:

○ 5. As an independent researcher (e.g. research fellow, assistant/associate/full professor)

In case the answer to Z3 is 2:

Z4. Bachelor programme for which you are doing the thesis:

○ Artificial Intelligence (Kunstmatige Intelligentie)

○ Computing Science (Informatica)

○ Information Science (Informatiekunde)

○ Other:

In case the answer to Z3 is 3:

Z5. Master programme for which you are doing the thesis:

○ Applied Data Science

○ Artificial Intelligence

○ Business Informatics

○ Computing Science

○ Data Science

○ Game and Media Technology

○ Human-Computer Interaction

○ Other:

In case the answer to Z3 is 1, 2, 3, or 4:

Z6. Email of the course coordinator or supervisor (so that we can inform them that you filled this out

and provide them with a summary): m.behrisch@uu.nl

In case the answer to Z3 is 2 or 3:

Z7. Email of the moderator (as provided by the coordinator of your thesis project):

Z8. Title of the research project/study for which you filled out this Quick Scan:

Design and Implementation of a Paper Recommendation System Based on Neo4j and Knowledge
Graph

Z9. Summary of what you intend to investigate and how you will investigate this (200 words max):

This research aims to integrate an intelligent recommendation system based on knowledge
graphs into the MiniConf framework, enhancing the experience of virtual academic conferences.
We will construct a comprehensive knowledge graph encompassing conference papers, authors,
topics, and details, employing an optimized graph query language to facilitate personalized
recommendations for papers, individuals, and session schedules. The system will implement user
tracking and feedback mechanisms to achieve real-time optimization. Anticipated outcomes
include a well-structured knowledge graph supporting semantic queries and a context-aware
graph query language tailored to meet the individualized needs of conference participants.
Additionally, we will employ an explainable and updated recommendation system to enhance
user experience and foster trust. Through this innovation, we aim to strengthen the
recommendation system, deliver personalized suggestions, and provide valuable insights into user
behaviour and preferences for conference organizers. Ultimately, our goal is to transform
MiniConf into a more semantically-aware platform, shaping the future of virtual academic
conferences and promoting global academic collaboration.

In case the answer to Z3 is 2 or 3:

 Yes No
Not

Applicable

Z10. In case you encountered warnings in the survey, does your
supervisor already have ethical approval for a research line
that fully covers your project?

 √

In case the answer to Z10 is yes:

Z11. Provide details on the ethical approval (e.g. ethical approval number):

	Introduction
	Research Question and Contribution
	Research Question
	Contribution

	Structure

	 Related Work
	Knowledge Graph Embedding
	Knowledge Graph Recommendation
	Research Platform for Study: Neo4j
	Research for the Task taxonomy

	Tasks in the Paper Recommendation Domain
	Pipeline Data science
	Measurement Methods of Direct Query Method's Link Prediction Algorithms
	Latent Space to Learn Semantic Relations and KNN to Retrieve Query-related Recommendations
	Using Node2Vec to Get Embedding
	Using GraphSAGE to Get Embedding
	Using KNN to Find Node Similarity

	Experiment
	 Experiment Data
	Experiment Data 1:Paper data
	Experiment Data 2:Cora
	Experiment Data 3:Movielens

	Experiments Comparing the Recall of Link Prediction with Latent Space with KNN on benchmark sets
	Experiments Comparing the Recall of Link Prediction with Latent Space with KNN on Cora
	Experiments Comparing the Recall of Link Prediction with Latent Space with KNN on Movielens

	Experiments Comparing Direct Query and Latent Space with KNN for Different Tasks
	Experiments Comparing Direct Query and Latent Space with KNN for Different Tasks in the Paper domain
	Experiments Comparing Direct Query and Latent Space with KNN for Different Tasks in the Movie domain

	Visualization Design
	Discussion and Future Work
	Answers to the Research Question
	Findings in the Experiments
	Limitation and Future Work

	Conclusion
	 Results of Tuning Experiments of Node2Vec with KNN on Cora Dataset
	Tuning Experiments on Embedding Dimension and Measure Methods of Node2Vec with KNN on Cora Dataset
	Tuning Experiments on Walklength and Measure Methods of Node2Vec with KNN on Cora Dataset
	Results of Tuning Experiments on Walklength=10
	Results of Tuning Walklength Experiments on Walklength=40
	Results of Tuning Walklength Experiments on Walklength=100
	Results of Tuning Experiments on Walklength=200

	Tuning Experiments on Iteration and Measure Methods of Node2Vec with KNN on Cora Dataset
	Results of Tuning Iteration Experiments on Walklength=100 and Iteration =30
	Results of Tuning Iteration Experiments on Walklength=40 and Iteration =30

	Tuning Experiments on Initial Learning Rate and Measure Methods of Node2Vec with KNN on Cora Dataset
	Results of Tuning Initial Learning Rate Experiments on Initial Learning Rate=0.001, iteration = 10
	Results of Tuning Initial Learning Rate Experiments on Initial Learning Rate=0.1, iteration = 10
	Results of Tuning Initial Learning Rate Experiments on Initial Learning Rate=0.1, iteration = 30
	Results of Tuning Initial Learning Rate Experiments on Initial Learning Rate=0.25, iteration = 30
	Results of Tuning Initial Learning Rate Experiments on Initial Learning Rate=0.5, iteration = 30
	Results of Tuning Initial Learning Rate Experiments on Initial Learning Rate=0.34, iteration = 30
	Results of Tuning Initial Learning Rate Experiments on Initial Learning Rate=0.1, iteration = 50

	Tuning Experiments on InOutFactor and Measure Methods of Node2Vec with KNN on Cora Dataset
	Results of Tuning InOutFactor Experiments on InOutFactor=3, iteration = 30
	Results of Tuning InOutFactor Experiments on InOutFactor=6, iteration = 30
	Results of Tuning InOutFactor Experiments on InOutFactor=3, iteration = 50

	Tuning Experiments of GraphSAGE with KNN on Cora Dataset
	Tuning Experiments on Aggregator, Activation Function and Search Depth of GraphSAGE with KNN on Cora Dataset
	Tuning Experiments on Sample Size of GraphSAGE with KNN on Cora Dataset
	 Results of Experiments on Initial Learning Rate =0.001 of GraphSAGE with KNN on Cora Dataset

	Tuning Experiments of Node2Vec with KNN on Movielens Dataset
	Tuning Experiments of GraphSAGE with KNN on Movielens Dataset
	Quick Scan Document

