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Abstract

This thesis investigates the challenges of data interoperability in data shar-
ing, highlighting the difficulty of aligning non-ontological data to ontolo-
gies used in data exchange. This issue causes businesses and organizations
to struggle to share vital data with each other. This thesis aims to reduce
the challenges of data interoperability by using language models (LMs) to
align non-ontological data and ontologies, automating a step in the pro-
cess of data interoperability and easing participation in data sharing. To
accomplish this, the thesis looks at the effectiveness of LMs when directly
aligning the non-ontological data to ontologies. The data used in this the-
sis comes from the ENERSHARE project, a European project on data in-
teroperability in different fields of the energy domain, and is aligned to
ontologies from the Semantic TreeHouse (STH), a vocabulary hub made by
TNO containing various ontologies describing the energy domain. For this
task the GPT-3.5 and GPT-4 models are used. The models receive a prompt
describing the task, and are fine-tuned on some examples to improve per-
formance. Then to analyze the results of the models, the resulting predic-
tions were analyzed on three categories: target ontology, label structure
and pilot of the labels. The results show that the method is not yet ready
to be used in the STH but it does show that the method can work and can
be improved. And with improvements of the prompt and a change in the
evaluation method the current model might perform well enough to be
used as a suggestion tool instead of a mapping tool.
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1. Introduction

This chapter will discuss the problem of data interoperability and the differ-
ent levels of interoperability that can be distinguished. Section 1.1 discusses
the problem and its relevance to artificial intelligence. Section 1.1.1 will in-
troduce TNO and the Semantic Treehouse, a vocabulary hub that aims to
improve interoperability by reusing existing ontologies. Lastly, in section
1.2 I will introduce the research questions this thesis explores.

1.1 Background

In today’s connected and data-driven world, maintaining smooth data in-
teroperability across multiple systems and platforms remains a big problem.
Causes for the lack of interoperability stem from the constant development
of different data sources, these sources use different formats creating diffi-
culties when exchanging this data. Projects tackling these difficulties (Blavin
et al., 2022; IDSA, 2024) aim to provide manual data mapping, transfor-
mation, and reconciliation operations to projects that are time-consuming,
error-prone, and resource costly. Furthermore, a lack of semantic interoper-
ability, in which data meanings and relationships are not explicitly specified
and understood, complicates the issue. As a result, organizations struggle
to fully leverage their data assets for decision-making, analytics, and in-
novation. Part of this struggle comes from the time investment it takes to
properly translate the data to the right format. Which leads to the prob-
lem that this thesis aims to solve, can language models be used to create
accurate mappings between data and ontologies creating a shared semantic
data space. Language Models (LMs) offer an exciting possibility for im-
proving data interoperability, with the capabilities of LMs we can attempt
to automate semantic understanding, mapping, and integration of hetero-
geneous data sources, allowing for seamless data exchange and interoper-
ability across multiple systems and domains. LMs are powerful tools that
are able to make accurate estimations on the semantic meaning of phrases,
which is a crucial part for the task of creating a mapping.

First we must understand what data interoperability is. According to
Pagano et al. (2013), there are multiple different data interoperability lev-
els. On an organizational level, data interoperability means that a business’
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goals and processes operate on every piece of data involved in the data ex-
change. On the technical level, it means the diversity of technology that
supports the data exchange; and on a semantic level, data interoperability
involves the understanding of the exchanged data including its contextual
information. This thesis aims to offer a method for improving the technical
and semantic level of interoperability, by creating mappings between data
formats allowing organizations to easily exchange data and attain the same
meaning behind their data.

The current European data strategy focuses on the creation of a single
market for data (European Commission, 2019). This strategy focuses mostly
on the technical and semantic levels of interoperability, but it also promotes
organizational interoperability through encouragement of collaboration of
public and private stakeholders. Data is supposed to flow freely within the
EU and across sectors through the creation of so-called data spaces. Accord-
ing to the Data Space Support Center (Robles et al., 2023), a data space is a
framework that supports data sharing within a data ecosystem, a network
that allows collaboration between independent users and organizations. Via
these data spaces it is possible to share data with other organizations, while
remaining in control over your own data. It provides a clear structure for
participants to share, trade, and collaborate on data assets in a way that is
compliant with relevant laws and regulations and ensures fair treatment for
all involved.

For more advanced levels of platform interoperability, a shared seman-
tic space is needed. This shared space can function as a joint vocabulary
into which any specific concepts and terminology can be mapped. Rehm et
al. (2020) wrote that a first step toward interoperability can be achieved by
mapping two schemes onto each other and creating a converter. However,
this method creates a new problem, for each new platform that is added to
this shared space a new mapping needs to be created. In summary, such a
method does not scale. An alternative solution could be for each platform
to add a joint ontology for their semantic metadata, but even for general
categories communities tend to use different terms for concepts. Thus the
creation of such a joint ontology is a difficult task (Labropoulou et al., 2020).

1.1.1 TNO and the Semantic Treehouse

TNO (Nederlandse organisatie voor toegepast natuurwetenschappelijk on-
derzoek) translates to Dutch organization for applied scientific research in
English. TNO is an independent and non-profit organization that through
its research aims to create a safer, healthier, and more sustainable life. Or
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1.1 Background

as the website of TNO (2023) states, "TNO’s mission is to create impactful
innovations for the sustainable wellbeing and prosperity of society."

Currently TNO has constructed a vocabulary hub called the Semantic
Treehouse (STH) (van den Berg et al., 2022), which can be seen as a data
provider: it offers a wide range of templates which can be used to represent
data. To facilitate semantic interoperability, a wizard-like component was
integrated in the vocabulary hub to further drive adoption of shared vocab-
ularies. The wizard takes a user through a series of steps to design message
schemata and API specifications based on a shared domain ontology. The
final goal is to have the wizard create a translation for the user that allows
them to translate their data to match with industry standards. The current
functionality of the wizard uses a top-down approach, by starting from the
ontologies already in the STH a profile is created that can be used to format
a users data. The functionality this thesis aims to add is a bottom-up ap-
proach, where by looking first at the data of the user a model tries to create
a mapping from the data of the user to the relevant concepts of ontologies
in the STH.

1.1.2 The issue of semantics

As mentioned above the ability of IT systems to exchange data with un-
ambiguous, shared meaning is called semantic interoperability. TNO tries
to improve the semantic interoperability between organizations in Dutch
economic sectors (e.g. flexible staffing, logistics or manufacturing indus-
try), but even in these communities where everyone uses similar concepts it
takes a lot of effort by everyone involved to use a single ‘language’ when ex-
changing data. Achieving this interoperability requires community build-
ing around a clear vision of interoperability, creating open semantic stan-
dards with that community, setting up and running open governance pro-
cesses for these standards, regular communication about new developments,
and constant implementation support services. While there have been Eu-
ropean developments in semantic standardization, some with reasonable
success, they have not been enough (Campmas et al., 2022; European Com-
mission, 2017).

1.1.3 Problem statement

Meanwhile the field of artificial intelligence has given rise to state-of-the-
art technologies such as large language models (LLMs) and other machine
learning and NLP techniques. Could these provide an opportunity to change
the way the issue of semantics has been approached in the last decades and
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boost semantic interoperability in data spaces? The problem can therefore
be specified as such: how can we harness the power of LLMs and related
technologies to foster semantic interoperability in the context of European
data spaces? The specific context in which this problem will be explored is
that of the ENERSHARE project (ENERSHARE, 2022), which aims to create
a data space for the energy domain.

1.1.4 Relevance

The lack of data interoperability is a problem in many fields of research and
work, the lack of being able to easily and accurately exchange data between
organizations costs a lot of time and resources. Instead of being able to di-
rectly exchange data with other organizations, companies have to spend a
lot of time and resources to adjust the data they send or receive. According
to Brunnermeier and Martin (2002) the U.S. automotive sector spends an es-
timated one billion dollars extra and car design times are 2 months longer
due to lack of interoperability. Similarly, Powell and Alexander (2019) de-
scribe that the lack of interoperability leads to redundant, disorganized, dis-
jointed and inaccessible medical information, and that may affect the quality
of care provided to patients and waste of financial resources. Solving this
problem can save time and money in many varying sectors. AI techniques
can help with the problem of interoperability as for example LMs are good
at understanding the semantics of a dataset, this helps to identify patterns
and overlaps which can be used to create a mapping between datasets. Fur-
thermore AI techniques might be able to overcome eventual pillarization
that might occur if individual sectors focus on interoperability within their
own sector (Folmer, 2023), pillarized solutions to data interoperability are
solutions that are very domain specific and have no effect on the problems
in different domains.

1.1.5 Further background

As discussed earlier a main cause for the lack of data interoperability is the
variety of ways in which data is formatted and represented, therefore I will
give more details on how knowledge is represented in section 2.2. I will
discuss several existing methods and models that can assist the task of data
interoperability in section 2.3, this section is mostly about different methods
for the task of ontology matching. And lastly I will discuss methods to
evaluate the ontology matching models in section 2.6.
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1.2 Research questions

1.2 Research questions

The main question for this thesis will be:

How can LMs help improve data interoperability on a semantic and
technical level, by creating mappings between data structures?

With this question I want to look at how the semantic meaning of data
can be exchanged on a technical level which is accessible to businesses and
organizations.

Sub-questions/goals:

1. How does a LM used to create mappings between ontologies fit in the
current STH architecture?

- What form of improvement does using a LM for ontology map-
ping add to the current STH architecture?

With this question and sub-question I want to see if the model experi-
mented with in this thesis has the potential to be used in a practical ap-
plication like the STH. And if not what aspects of the model/method
could help in future works.

2. Can the use of LMs for ontology/knowledge graph mapping provide
a significant improvement over existing ontology mapping methods?

- Can the same method used for ontology mapping be used to cre-
ate mappings between data that is not structured like an ontol-
ogy and ontologies, by extracting ontological structures from the
data? This would accommodate real world examples of busi-
nesses needing to digitize their data.

- What steps are made in this thesis to improve or change methods
of previous research on ontology matching?

The aim of this question is simply if the method of this thesis can make
improvements in some aspects of the task compared to existing meth-
ods. With the sub-questions aiming to investigate if the differences
are caused by the differences in method or dataset and what the dif-
ferences/improvements of the method are.

3. Can the model help with different domains in the STH structure, or is
it bound to a specific domain?

This question is important since the application is most useful when
it can cover different domains, this would show that the method is
applicable on a different domain and thus there would be no need to
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create specific models for each new domain that the model needs to be
applied to.
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2. Related work

This chapter presents more in dept information on the subjects discussed in
the first chapter. Section 2.1 gives a more detailed example of how users can
interact with the current STH architecture. Section 2.2 goes more in dept
on the representation of knowledge through knowledge graphs. Section 2.3
explains what the process of ontology matching entails. Section 2.4 shows
how an alignment can be constructed from non-ontological data to an on-
tology. Section 2.5 discusses different methods for aligning two ontologies.
Section 2.7 shows how ontology alignment methods have been evaluated
and how the methods perform. And lastly, section 2.8 looks at the different
architectures in recent language models.

2.1 Semantic Treehouse

The Semantic Treehouse (STH) is a vocabulary hub, which means that it
stores vocabularies and data standards, the STH can be used for the collab-
orative governance of the vocabularies. The first version of the STH was
released on January 1st 2018. The main principle behind the STH is to reuse
as much of an existing ontology as possible. The current STH architecture
allows users to choose multiple interaction approaches. The first is a top-
down approach, where the user creates an application profile. An applica-
tion profile is a set of rules the data format should adhere to (for example
what is required data or how many times certain label can occur), from an
ontology that already exists within the STH. This profile allows the user to
specify which parts of the ontologies in the STH are reused for their use case
(van den Berg et al., 2022). The second approach is bottom-up and lets the
user use their data to create an ontology based on some structure already
present in the STH, see figure 2.1. In the first approach, users get assistance
from a wizard tool that allows the user to pick relevant classes and extends
existing application profiles in the STH. The second approach is more dif-
ficult for laymen as it is done by hand, it requires a good understanding of
the structure and requirements of an ontology. This is where a model that
creates a mapping for the user will truly help. This model can serve as a
tool for users, increasing the ease to participate in data sharing and with it
the willingness of businesses to exchange their data.
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The Semantic Treehouse environment is applied to different domains, for
example STPE (Standaardisatie platform e-facturatie) containing ontologies
for virtual invoices or Energy contain ontologies from the energy domain,
including the ENERSHARE project. Within the STH environment, these on-
tologies can be viewed in a tree or a graph view for better visualization of
the ontologies. The STH also includes several references to external ontolo-
gies.

Figure 2.1: Semantic Treehouse Architecture

2.2 Knowledge representation

This section will take a look at how knowledge can be represented and
specifically knowledge graphs, a hierarchical data structure which is used
in for example RDF. The field of knowledge representation aims to repre-
sent information about a subject in forms that allow computers and ma-
chines to solve complex tasks. The field incorporates aspects of psychology
on how humans represent knowledge and tackle problems to create con-
ventions or formalisms, this helps to improve the construction of complex
systems. Knowledge representation can also use logic to infer additional
information from the knowledge (Schank & Abelson, 1977).

Knowledge is often represented in a graph like structure where nodes
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and edges, in the graph, represent objects and their relations. This type of
structure is called a knowledge graph or sometimes a semantic web, and
it can encode the underlying meaning relations and semantics of entities
(Ehrlinger & Wöß, 2016; Hogan et al., 2021; Noy et al., 2019; Ontotext, 2020).
An example of a knowledge graph can be found in below, figure 2.2. Within
a knowledge graph the graph structure can be deconstructed into individual
links sometimes called facts. Each fact consists of a triple representing the
relation between two nodes, each triple can be denoted as (h,r,t) ∈ F (read
as (head, relation, tail))(Ji et al., 2021; Rowland et al., 2022). The triple repre-
sentation of facts allow for simple interpretation of the facts, but also make
manipulation of the graph a difficult task. To solve this, recent research by
Q. Wang et al. (2017), focuses on the embedding of knowledge graphs into
vectors which allows for easier information retrieval and processing of se-
mantic information.

As mentioned above, a knowledge graph can be represented by a set
of triples, but this symbolic way of representing knowledge can make ma-
nipulating a knowledge graph a difficult task. When talking about knowl-
edge graphs or other forms of knowledge representation the representation
space or embedding space is a space which allows for the comparison of ob-
jects with other objects, through this embedding space it is possible to make
claims about the similarity of objects. Most studies use real-valued point-
wise spaces (e.g. matrix, tensor-spaces and complex vector spaces) as an
embedding space, while Gaussian spaces and manifold spaces are used as
well (Ji et al., 2021). With these different embedding spaces come a variety of
similarity functions, Euclidean distance, TransE and Gaussian embeddings
are among them. Recent research on knowledge graphs focuses on knowl-
edge representation learning (KRL) or knowledge graph embedding (KGE),
mapping objects and relations into vectors while maintaining their semantic
meaning (Q. Wang et al., 2017). The main idea of KRL or KGE is to embed
components of the knowledge base: objects and relations; into continuous
vector spaces, to simplify the ability to manipulate the knowledge graph
while maintaining its structure. A key issue of graph embedding is how to
learn low-dimensional distributed embeddings of objects and relations

An example of practical use of knowledge graphs is RDF. RDF, or re-
source description framework, is a data exchange standard for the Web.
RDF implements URIs, uniform resource identifiers, to name the relation-
ship between entities using the head and tail of a link, using this it expands
on the linked structure of the Web. It is important that the URIs are unique
since if two resources refer to the same URI it would cause ambiguity in the
RDF graph. This model allows for interchangeable use of both structured
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and semi-structured data. This linked structure can be viewed as directed,
labeled knowledge graph. The graph view is easy to understand and is
therefore ideal to use as an explanation tool. To put this into context, OWL
(Web Ontology Language) is a standard for defining ontologies by using
the RDF structure as a base. The OWL format is used in many of the ex-
isting models for ontology matching for both input ontologies and output
mappings.
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Figure 2.2: Example of a knowledge-graph

Figure 2.2 illustrates what a knowledge graph can look like, this particu-
lar example is based on the structure Google uses for their knowledge graph
(Singhal, 2012). The figure shows how entities (nodes) are linked together
through properties they have in common. It shows how an class is not lim-
ited to have one relation to another class, and can have different relations
(edge) to the same class (for example Alan Turing was born in the United
Kingdom and died there). Similarly, it also illustrates that entities can have
the same relation with multiple different entities (for example, Alan Turing
worked in both the field of computer science and in the field of mathemat-
ics).

A function that knowledge graphs offer is the alignment of classes also
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known as entity alignment. Entity alignment (EA) aims to combine knowl-
edge from different knowledge graphs. Given two entities from different
graphs, EA needs to find the alignment set where the two entities hold
an equivalence relation ≡. This technique is similar to ontology alignment
which will be discussed in the next section.

There are two ways to approach entity alignment, the first is to match the
names of nodes in the graphs. This process relies on the semantic similarity
of the node names to find a fitting alignment. The second approach is match
the graphs structure wise, this entails that a node is matched based on the
relationships it has within the graph, and if there is a node in the second
graph with similar relations (Fallatah et al., 2022; Gallagher, 2006).

In the paragraphs above it was mentioned that knowledge graphs can be
represented in RDF, figure 2.3 illustrates this as figure 2.2 has been translated
to RDF.

1 <#alan -turing >
2 rel:brotherOf <#john -turing > ;
3 ex:occupation ex:logician ;
4 ex:fieldOfWork [
5 ex:mathematics
6 ex:computerScience
7 ] ;
8 ex:bornIn ex:unitedKingdom ;
9 ex:diedIn ex:unitedKingdom .

10

11 <#john -turing >
12 rel:brotherOf <#alan -turing >.
13

14 <#john -t-lewis>
15 ex:occupation ex:physicist ;
16 ex:fieldOfWork ex:mathematics ;
17 ex:bornIn ex:unitedKingdom ;
18 ex:diedIn ex:ireland .

Figure 2.3: Knowledge graph on Alan Turing in RDF format

2.3 Ontology matching

Solutions to the issues of data interoperability should aim to unify compa-
rable data formats, allowing for these formats to be aligned with each other.
When this alignment process occurs between ontologies, it is also known as
ontology mapping, and this method has the potential to solve data interop-
erability issues.

To understand the problem of ontology matching we first need to de-
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fine what ontologies are, what a mapping or alignment is and how ontol-
ogy alignment methods create such mappings. Within the field of data and
computer science, an ontology is a representation of a shared understanding
or a convention of some domain interest (Euzenat et al., 2011; Feilmayr &
Wöß, 2016; Uschold & Gruninger, 1996). This representation allows a com-
puter to use abstract concepts, which they otherwise could not work with.
Within the literature on ontologies there are many articles that make distinc-
tion between types of ontologies. There are often two important categories
in which an ontology can fall. There are top- or upper-level ontologies, this
type of ontology provides a high-level of abstraction. Upper-level ontolo-
gies are ontologies that allow for definitions of concepts that are widely used
across different domains (Euzenat & Shvaiko, 2013; Mascardi et al., 2007),
an example of an upper-level ontology framework is SUMO (Niles & Pease,
2001).

The second big category in which ontologies can be classified are the
task-specific or application ontologies. These ontologies are focused on
defining knowledge of a specific domain. They encapsulate concepts, pro-
cesses and relations needed for specific tasks (Euzenat & Shvaiko, 2013;
Sadegh-Zadeh, 2012), an example of application ontologies is semantic web
service ontologies (Battle et al., 2005).

The next question is, how we can represent the mapping or alignment we
are trying to create. An alignment can be defined as a set of links between
classes or properties in an ontology. An example of a formal definition of
this link is given by Euzenat and Shvaiko (2013), here a link is defined as
the quintuple: ⟨id, e, e′, r, n⟩. Here the id is a unique identifier for the link,
e and e′ are the entities of different ontologies between which the link is
formed. r expresses the similarity relation between the two entities, and n
expresses the confidence of the method used in the link. Figure 2.4 below
illustrates what a mapping between two ontologies might look like. This
example uses an ontology for human (figure A.2) and person (figure A.3).
This mapping was made by looking for equivalence relations between the
properties of the ontologies. In this case, the human ontology consists of 4
labels while the person ontology only has 3 labels. A human is defined to
have a separate first name and last name, while the person only has a name
to accommodate for both of these labels. In a mapping, it is possible to map
different labels from the input to a single label of the target, which is how
this conflict between the ontologies can be resolved.

A general process for the matching or alignment of ontologies was de-
scribed by Euzenat and Shvaiko (2013). The goal of ontology matching is to
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create a mapping or alignment A′ between two ontologies o and o′. The pro-
cess determines whether two classes within the ontologies can be matched
by looking at their similarity, for this different similarity measures can be
used, e.g. semantic similarity. The more similar two classes are, the more
likely it is that these classes will be mapped onto each other. There are also
different parameters that can be added to this process to increase effective-
ness and efficiency. One is the use of an input alignment A, this is an align-
ment that already exists between the ontologies and is extended through
the mapping process. The second method is the addition of extra match-
ing parameters, for example weights or a threshold for the selection of links
between classes. The last method of expanding a matching method is by
making use of some external knowledge source that complements the on-
tologies, this could be some domain-specific thesaurus (Euzenat & Shvaiko,
2013; Euzenat et al., 2011).

Section 2.5 will discuss several existing models for ontology matching.

1 <map>
2 <Cell cid='1'>
3 <entity1 rdf:resource='http:// example.org/human#Human'/>
4 <entity2 rdf:resource='http:// example.org/person#Person '/>
5 <measure rdf:datatype='xsd:float '>1.0</measure >
6 <relation >=</relation >
7 </map>
8 <map>
9 <Cell cid='2'>

10 <entity1 rdf:resource='http:// example.org/human#firstName '/
>

11 <entity2 rdf:resource='http:// example.org/person#hasName '/>
12 <measure rdf:datatype='xsd:float '>1.0</measure >
13 <relation >=</relation >
14 </map>
15 <map>
16 <Cell cid='3'>
17 <entity1 rdf:resource='http:// example.org/human#lastName '/>
18 <entity2 rdf:resource='http:// example.org/person#hasName '/>
19 <measure rdf:datatype='xsd:float '>1.0</measure >
20 <relation >=</relation >
21 </map>
22 <map>
23 <Cell cid='4'>
24 <entity1 rdf:resource='http:// example.org/human#currentAge '

/>
25 <entity2 rdf:resource='http:// example.org/person#hasAge '/>
26 <measure rdf:datatype='xsd:float '>1.0</measure >
27 <relation >=</relation >
28 </map>

Figure 2.4: Mapping between ontology of a human and a person
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2.4 Data to ontology alignment

Aligning non-ontological data to an ontology differs a great deal from try-
ing to align two ontologies. Unlike a predefined ontology, non-ontological
data lacks explicit categorization and organization, making the alignment
process intricate and nuanced. This section explores several methodologies,
techniques, and considerations involved in bridging the gap between non-
ontological data and ontological structures, aiming to use every piece of in-
formation embedded within non-ontological sources for enhanced semantic
interoperability and knowledge extraction.

To create an alignment between non-ontological data and an ontology
two routes can be considered: the first is to directly create the alignment
between the data and the ontology, using a similarity measure to compare
the data labels with the labels from the ontology. The second method would
involve the construction or transformation of the data to an ontology, from
this point the two ontologies can be aligned with methods as described in
section 2.5.

The first approach involves the direct alignment of non-ontological data
and ontologies (Bousquet et al., 2019; Poggi et al., 2008). There is a differ-
ence in how similarity can be measured between data and ontologies and
ontologies and other ontologies. The main difference is that ontologies can
be seen as graphs, therefore each node or label has a context, which are a
node’s neighbors. Non-ontological data can have such a context, but it is
not always present making ambiguity of a labels name more of a problem.
An example of this ambiguity is a label like ’loading time’, if this is the only
information on the label it could mean two things namely, the time it takes
to load some object or the time at which some object was being loaded. This
ambiguity present a real problem when trying to precisely align this label
to an ontology. Ambiguity is arguably the biggest problem in all NLP tasks,
and is easiest to solve by providing more context to a label, as said before a
detailed description of each label is not available. In chapter 3 I will explain
more about the data and what information is available to the models.

The second approach requires a processing step of extracting the ontol-
ogy from the data. There are several approaches to this task: Top-down and
bottom-up. The top-down approaches focus on reusing existing ontologies,
mainly top-level ontologies, to create the coverage that is desired. Reasons
to use top-level ontologies are to improve the overall quality of the ontol-
ogy, by using principled design choices, but also to create interoperability
to ontologies that use the same top-level ontologies (Keet, 2020). As men-
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tioned earlier the current wizard tool within the STH architecture works in
a top-down fashion. It allows users to reuse an existing ontology from the
STH by picking specific elements from the ontology that get translated into
an application profile (van den Berg et al., 2022).

The second approach, bottom-up, starts with a blank slate and aims to
reuse not existing ontologies but existing data and knowledge (El Ghosh
et al., 2017). Methods to accomplish this task range from manual to auto-
mated. There are various tools that can learn ontologies from data sources.
For example Text2Onto (Cimiano & Völker, 2005) is able to extract terms,
synonyms, concepts, taxonomies and even non-taxonomic relations from
data source. It does this through linguistic processing, statistical text anal-
ysis, machine learning and association rules. By extracting all this informa-
tion it can construct a hierarchy that is used to build the ontology.

Other methods to assist in this task are ontology recommenders. On-
tology recommenders such as, NCBO ontology recommender (Martínez-
Romero et al., 2017), rank a text on the basis of the presence of text tokens.
The similarity of tokens compared to labels of ontology classes is calculated
and informs which ontology might be best suited to map the text tokens to
(Korel et al., 2023).

2.5 Ontology alignment

The subject of ontology alignment is getting increasingly popular (see ap-
pendix, figure A.1), and new methods to match ontologies are created each
year. The following section will summarize some of the prominent methods
of the past decade, results of these models on ontology alignment tasks will
be discussed in section 2.7.3. Table 2.1 show methods that will be reviewed
and which extra parameters are added to each method, these parameters
are described in section 2.3.

LOOM (Ghazvinian et al., 2009) is an algorithm for creating mappings
between two ontologies represented in OWL, returning pairs of related con-
cepts. LOOM compares names and synonyms of the ontologies, identifying
two concepts as similar if their names or synonyms are equivalent based on
a modified string-comparison function. This function removes delimiters
and compares strings based on a Levenshtein distance of one.

Logmap, proposed by Jiménez-Ruiz and Cuenca Grau (2011), addresses
scalability issues in ontology alignment methods. Many alignment meth-
ods excel with moderately-sized ontologies but struggle with larger ones.

19



Related work

Initial mapping Extra threshold Extra knowledge
LOOM ✓
LogMap ✓ ✓
AML ✓ ✓
OntoEmma ✓ ✓
DeepAlignment ✓ ✓
VeeAlign ✓
Truveta ✓
Mapper GPT ✓ ✓ ✓

Table 2.1: Existing models and which extra parameters they incorporate as
specified by Euzenat and Shvaiko (2013)

LogMap tackles this by employing optimized data structures for lexical and
structural indexing, creating initial mappings between ontologies. These
mappings are then improved through a series of iterations using a process
of mapping repair and discovery, see figure 2.5.

The repair step resolves logical inconsistencies within anchor mappings,
while the discovery step expands contexts for each anchor, leveraging class
hierarchies to create new mappings based on similarity scores calculated
using ISUB (Stoilos et al., 2005).

Figure 2.5: Architecture of LogMap (Jiménez-Ruiz & Cuenca Grau, 2011)

AML (Faria et al., 2013), an evolution of AgreementMaker, offers a solu-
tion for aligning large ontologies effectively. Its matching module, depicted
in figure 2.6, is composed of matchers, selectors, and an alignment data
structure. The matchers compare ontologies, selectors refine mappings, and
the alignment data structure finalizes mappings. Any matching method can
be used as a matcher and selectors trim mappings by excluding parts that
fall below a certain similarity threshold.

Iyer et al. (2020) criticized AML for its reliance on handcrafted rules and
manually assigned weights, hindering scalability and overlooking semantic
relatedness.

OntoEmma, introduced by L. L. Wang et al. (2018), makes use of a neu-
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Figure 2.6: Architecture of AML’s matcher module (Faria et al., 2013)

ral architecture, capable of encoding additional information when it is avail-
able. OntoEmma consists of three stages: candidate selection, feature gener-
ation, and prediction. Numerous ontologies have a large amount of classes
and properties, this makes it computationally expensive to consider all pos-
sible pairs of source and target entities. To reduce the amount of pairs to
consider OntoEmma uses the inverse document frequency (idf) of word to-
kens to select possible candidates that need to be considered during the pro-
cess. These candidates then form pairs for which a set of features is gener-
ated, these features are often measures of similarity between the pairs, fea-
tures include: Jaccard distance, root word equivalence, and other boolean
and probability values.

The last step is to predict the probability of the semantic equivalence
of two entities. This is done by first creating an entity embedding, this
embedding is created by encoding different parts of the entity separately
and concatenating these parts. After getting the embeddings they are fed to
two subnetworks, each network is a two layer feed-forward network. The
outputs are again concatenated, and then fed to one final feed-forward net-
work, after this the model estimates the equivalence between the pair, which
is saved as a link in the mapping.

Figure 2.7 shows the architecture of OntoEmma’s Siamese network and
the process of entity embedding. The figure shows that the embedding is
created by combining the name, aliases, the definition and the context of an
entity vector.

Created by Kolyvakis et al. (2018), DeepAlignment is an unsupervised
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Figure 2.7: Architecture of OntoEmma (L. L. Wang et al., 2018)

deep learning method for ontology matching. The algorithm uses extra
knowledge sources to extract synonyms/antonym relations, which are used
to refine the pre-trained word vectors. This extra knowledge source is a set
of synonyms and antonym relations extracted from semantic lexicons. Each
ontological class is represented by a bag-of-words, which is complemented
by the refined word embeddings. For the ontology matching the Stable mar-
riage algorithm is used. This algorithm calculates the one-to-one mappings
based on pairwise distances of entities. These distances are calculated using
a variant of the document similarity metric. This similarity metric calculates
the normalized average distance between the word embeddings for the pair.

Iyer et al. (2020) have created a deep learning based method for the task
of ontology matching. When Iyer et al. (2020) wrote their paper, deep learn-
ing approaches (e.g. DeepAlign) for alignment tasks were often very do-
main specific and performed worse than rule-based systems. To change this
the method called VeeAlign uses a dual-attention mechanism to compute
contextualized representations of a class to learn mappings.
VeeAlign makes use of a Siamese network that creates both positive and
negative alignment pairs. VeeAlign can make use of the context of a con-
cept, namely the neighboring concepts in the ontology, for a better similar-
ity computation. Figure 2.8 shows the architecture of VeeAlign, focusing
on the Siamese network it is visible how the entities and their context pass
through each layer to create an embedding. To do this the network first cre-
ates individual embeddings for all parts of the context and then from this
extracts a single contextualized embedding by combining the entity vector
and the weighted sum of the individual embeddings. The authors find that
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context plays an important role in creating alignments. Ontologies consist
of concepts and the relationships between these concepts. VeeAlign is based
on the computation of the representations of both a concept and its context.
In VeeAlign this context are the concepts that are connected to the concept
in the ontology, and within the context a differentiation is made between:
ancestor nodes, child nodes, nodes connected through datatype properties
and nodes connected through object properties.

Figure 2.8: Architecture of VeeAlign (Iyer et al., 2020)

Amir et al. (2023) have proposed a model called Truveta mapper for the
task of ontology matching. The proposed approach is based on zero-shot
learning and prediction, where zero-shot learning refers to the ability of the
model to make source-to-target predictions without requiring examples of
labelled ontology matching pairs, and zero-shot prediction performs end-
to-end mapping from the source to the target without any similarity calcu-
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lation across the entire/subset target ontology or post-processing like exten-
sion/repair. The model is pre-trained to learn the hierarchical structure and
semantics of each ontology, figure 2.9 shows the architecture of Truveta’s
training. Starting from a language model pre-trained, further pre-training
is done using masked language models on ontology graphs. The model is
then fine-tuned on downstream tasks, translating from the label and its con-
text to the target node path. The pre-training and fine-tuning are done in a
multitask manner. The pre-training is performed on both source and target
ontologies, and fine-tuning is done on task specific target subset ontologies.
The model is then further fine-tuned for down-stream ontology mapping
tasks. The Truveta Mapper then has the capability to translate ontologies
from an input source, and given this source the model can predict potential
candidates in the target ontology.

Figure 2.9: Training architecture of Truveta (Amir et al., 2023)

Similar to Logmap, MapperGPT is a method for improving mappings
but unlike Logmap MapperGPT relies on external models to generate the
initial mappings. It was introduced by Matentzoglu et al. (2023), and uses
ChatGPT to compare semantic differences between ontologies. The process
involves receiving a set of candidate mappings from a high recall alignment
method, for example LexMatch (Mungall, 2022) or LOOM (Ghazvinian et
al., 2009), these mappings together with the ontologies are used to create
a prompt. The prompt asks ChatGPT to estimate the relationship between
two classes of the ontologies, in terms of how similar they are, and asks how
confident the model is in the estimation. The model receives the concepts
together with a short description of the concept and some relationships this
concept has to other classes in the ontology. The estimations are then used to
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improve the candidate mapping. The method was tested with both the GPT-
3.5 and GPT-4.0 models, although GPT-4 proved to have higher precision
and recall on almost all tasks it was not a significant difference compared to
the results of the GPT-3.5 model.

To summarize, this review of existing methods shows that there are nu-
merous ways to create a mapping between ontologies, but it also shows that
these methods often make use of the extra thresholds and extra knowledge
as suggested by Euzenat et al. (2011) to make the method more efficient.
As most of these models present the model with extra information about
the ontologies, it is likely that the model that will be used in this project
would also benefit from extra knowledge as an input. Many models also
use a similarity measure to help decide which links to make, so using a sim-
ilarity measure is also recommended. The next section will discuss how to
evaluate mapping methods.

2.6 Evaluating alignments

When the model has created a mapping there needs to be a method to eval-
uate how good the mapping is. The evaluation can be done manually or
automatically. With a manual evaluation an expert can be asked to assess
the quality of the mapping. The second method is to have a computer run
a automated quantitative evaluation, the techniques used in such an eval-
uation require the computation of measures like recall and precision, and
would provide an approximation on the correctness and completeness of
the model. This evaluation also requires manual mappings that can be con-
sidered as the correct mappings. It is important to use these common per-
formance metrics to be able to easily compare different types of models.

Early efforts for the evaluation of alignment methods by Do et al. (2003)
focused mostly on comparison criteria from four areas: which test cases
were used, the matching results, quality measures and savings of manual ef-
forts. Unfortunately methods using these four criteria never became widely
used.

A second evaluation method was introduced by Sure-Vetter et al. (2004)
the measures used in their paper are precision and coverage. Precision is
a metric that indicates how well a created mapping fits the intended map-
ping. Coverage is a metric that measures how much of one ontology covers
the second ontology in the mapping, more coverage means that the method
finds a mapping that links more classes in both ontologies. Although these
measures offer a good measure on the accuracy of a mapping, these mea-
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sures are also not widely used, and thus do not offer easy comparison be-
tween existing models and new models.

Alignment methods often use a real-world scenario to show their effec-
tiveness. The use of specific cases can be an issue as the method will not per-
form similar when presented with a scenario that is different from the test
case. This makes it difficult to evaluate and compare different alignment
methods. Duchateau et al. (2007) also identified several useful properties
for evaluation methods. The first property is extensibility: the evaluation
method should be able to be expanded when new alignment methods are
created. Scalability is another important property as this allows for the cre-
ation of new scenarios on which the methods are evaluated. The final im-
portant property is that the evaluation method should be generic, it needs to
work with most available matchers and use performance metrics that apply
to all these alignment methods.

Later work by Euzenat et al. (2011), yielded the OAEI or Ontology Align-
ment Evaluation Initiative an initiative that aims to benchmark methods for
ontology matching. The OAEI tests methods by comparing the mappings
created by the methods to mappings created by human experts, to test the
accuracy and efficiency of these methods. The OAEI has gained significant
popularity and acceptance within the ontology alignment community over
the years as a result of its thorough evaluation framework, transparent eval-
uation procedure, and benchmark datasets obtained from real-world appli-
cations.

Using the method for evaluation constructed by the OAEI will allow for
a simple comparison between the method in this thesis and the established
methods of the last decade. However this measure is mainly used to mea-
sure pure performance and does not take into account any form of usability
measures that may influence the experience for users of the method. The
method also does not compare the interpretability of methods, so black-box
models could perform well, without an explanation as to how decisions are
made.

2.7 Evaluation of ontology matching models

As mentioned in the introduction there have been many efforts to create a
fitting method for the evaluation of ontology matching models, however not
all of these methods gained much traction. This section will take a deeper
look into a prominent method for the evaluation of ontology mappings.
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2.7.1 OAEI

According to Euzenat et al. (2011) on an abstract level ontology matching is a
process of finding correspondence between two ontologies. The correspon-
dence here expresses the relationship that entities within ontologies hold.
An example of this is that subject area in one ontology is similar to topic in
another ontology. The key is that corresponding entities in ontologies have
similar relationships within their respective ontologies.

The Ontology Alignment Evaluation Initiative (OAEI) (Euzenat et al.,
2011) is a collaborative effort to evaluate and improve methods for aligning
ontologies. The OAEI offers an environment for researchers and experts to
review and compare ontology alignment methods through a series of an-
nual evaluation campaigns. These campaigns include benchmark datasets,
evaluation measures, and defined evaluation processes, allowing partici-
pants to thoroughly and systematically evaluate the performance of their
ontology matching approaches. The alignment of models are compared to
reference alignments constructed by domain experts. As a result, the OAEI
has become a popular metric for evaluating ontology matching models, giv-
ing useful insights and benchmarks for determining the performance and
scalability of ontology alignment methods.

The OAEI specifies two major characteristics that ontologies need to pos-
sess for a proper evaluation of matching models. First is the complexity of
the labels, matching systems rely on heuristics to compare class labels in
ontologies, with performance heavily influenced by label types, especially
when differentiating between for example simple labels and sentence-like
labels. The ability to anchor labels to background knowledge sources like
WordNet also has a big impact on the performance. Complexity increases
when ontologies utilize specialized vocabularies, such as those in biomedi-
cal or geo-spatial applications, which may diverge from common language.

The second influence is the complexity of structures, matching systems
utilize ontology definitions to propagate similarity estimations and validate
correspondences, making ontology structures crucial in benchmark dataset
design. While RDF and OWL standardize syntax for comparing ontologies,
their usage varies widely. Lexicons and thesauri primarily rely on hierarchi-
cal structures, while more expressive ontologies incorporate class relations
constrained by axioms, enhancing matching and alignment coherence. In-
stances vary in complexity, from detailed descriptions with attributes and
relations to atomic entities lacking explicit definitions. External resources
like web pages or images linked to instances can aid matching, with web-
pages offering richer information for easier comparison compared to more
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challenging interpretation of images.

Naturally there are also some aspects that influence the evaluation re-
sults, that are to be considered when it comes to the reference alignment.
One such aspect is the type of semantic relations the alignment uses. As
discussed earlier an alignment consists of a set of relations between entities
or properties. The type of relations the reference alignment contains reflect
the type of relations the model is expected to produce. A common relation
used is the equivalence of entities, with most models being designed to pro-
duce these rules, but there are exceptions. Other relations that can be used
for comparison are subclass and disjoint relations (Guo et al., 2005; Sabou &
Gracia, 2008; Van Hage et al., 2005).

In addition to the type of relation, semantics are also an important as-
pect for a reference alignment. Specifically, we must distinguish between
more and less strict interpretations of relations. For example, the equiva-
lence relation can be interpreted as logical equivalence or, more loosely, as
a high degree of resemblance or interchangeability. Employing a strict for-
mal interpretation of semantic relations allows for the application of formal
properties on the reference alignment. For example, we can claim that the
merged model, which includes both ontologies and the alignment, should
be coherent, which means it should not contain unsatisfiable classes. Less
formal interpretations make it impossible to enforce such consistency con-
ditions.

Euzenat et al. (2011) mention a third but perhaps less obvious aspect,
which is the cardinality of a reference alignment. While there are no con-
straints on the alignment, allowing for an n-to-m relationship between en-
tities from different ontologies, practical observations show that the align-
ment connection is mostly one-to-one. Consequently, matching systems fre-
quently create one-to-one alignments. Similarly, while the degree of overlap
between the ontologies being matched is not specified, and datasets may
contain two ontologies with little or no overlap, it is generally assumed that
the two ontologies belong to the same domain. As a result, matching algo-
rithms typically attempt to construct an alignment between all elements in
the two ontologies rather than ignoring elements.

To ensure models are not over-fitted on domain-specific ontologies but
can handle any ontology the OAEI offers a wide variety of ontologies as
test cases, ranging from ontologies on anatomy and food nutrition to on-
tologies describing the domain of organizing conferences. The datasets for
these test cases fall in different categories of problems which they represent.
One of these categories is expressive ontologies, these datasets represent
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issues of realism as they are much larger, and have more complex defini-
tions. Lexicons and thesauri are another category, these datasets are weakly
constructed but large ontologies, which are currently being used in digital
libraries. The lack of sophisticated structure and the size of these datasets is
what makes them challenging for most matching models. Finally there are
the instance matching and beyond equivalence categories which focus on
different relations besides equivalence to find matches, for example exact
match and related match are popular relation types for tests.

2.7.2 Extension of the OAEI framework

A different framework for evaluation was proposed by Mohammadi and
Rezaei (2020), the framework is based on a set of performance metrics that
accommodate experts’ preferences using a multi-criteria decision-making
(MCDM) method. Determining the expert-based performance or ECP, a
survey was done among domain experts of the different OAEI tracks. These
experts were asked to rank the performance metrics that Mohammadi and
Rezaei (2020) had identified for each track. From the survey the importance
of each metric according to the experts was ranked and these weighted met-
rics form the ECP and alignment models are evaluated with this metric.

The method is similar to the method of the OAEI, and it even uses the
datasets of the OAEI as test cases. The main difference however is that this
method assigns different performance measures depending on the test case.
For each of the test cases the authors assigned performance metrics depend-
ing on the data in the test case, this combined with the weighing of the met-
rics by experts means that each test case is measure with a unique set of
metrics.

2.7.3 Results of existing models

This section compares several of the matching models discussed in section
2.5, by looking at the results they achieved during testing (shown in table
2.2).

These results show that most of these models still struggle to create per-
fect mappings. More importantly by looking at previous results for long
time participants such as LogMap and AML, we see that these models have
not booked significant improvements over the last couple of years, even de-
spite the regular changes that have been made to the models to improve
performance (Faria et al., 2021; Jiménez-Ruiz et al., 2017, 2018). LogMap
had a precision of 0.84 in 2018 and AML had a precision of 0.88, on the same
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Model Dataset Precision F-measure Recall
LogMap SNOMED (2022) 0.81 0.72 0.64

OntoEmma SNOMED (2018) 0.80 0.61 0.69
AML SNOMED (2022) 0.69 0.70 0.71

DeepAlignment Conference (2018) 0.71 0.75 0.80
VeeAlign Conference (2022) 0.74 0.70 0.66
Truveta SNOMED (2022) 0.95 0.83 0.74

Table 2.2: Evaluation results of ontology matching models on datasets of
the OAEI (Abd Nikooie Pour et al., 2022). The SNOMED dataset is part of
the large biomedical track of the OAEI, and conference refers to the confer-
ence track. Important to note is that the results of OntoEmma, DeepAlign-
ment and Truveta are reported by the authors and were not submitted to
OAEI campaigns.

task within the bio-medical track. These result might stem from the fact
that the OAEI changes and refines their evaluation tasks from time to time,
but it still shows that these established models have ways to go before they
are completely accurate. The results from the Truveta mapper seem more
promising, with a precision of 95%, but these results are not confirmed by
the OAEI.

Model Precision F-measure Recall
MapperGPT 3.0 0.50 0.49 0.48
MapperGPT 4.0 0.60 0.67 0.76

LogMap 0.46 0.53 0.62
LexMatch 0.21 0.34 0.88

Table 2.3: Evaluation results of MapperGPT model, both GPT 3.0 and GPT
4.0 variants (Matentzoglu et al., 2023). The datasets used in these test are
from the biomedical domain but are different from the OAEI sets. Note
that the results from LogMap needed to be converted to SSSOM format
(Simple Standard for Sharing Ontology mappings) (Matentzoglu et al.,
2022), in order to be compared with MapperGPT results.

The results in table 2.3 show that the usage of MapperGPT yields great
improvements over the baseline results of LexMatch, especially the version
that uses the GPT 4.0 model. This suggests that the method could also yield
performance improvements for other mapping methods.

2.8 Language models

Language models are a major part of natural language processing, giving
computers the means to understand and generate human language. At
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their core, LMs are statistical models being able to grasp the patterns and
structure of language by learning from large amounts of data (Ahn et al.,
2016; Rae et al., 2021). Language models estimate probability distributions
of word sequences in a language, giving them the ability to predict the like-
lihood of a sequence or generate a coherent sequence themselves. With the
use of both traditional statistical methods and modern deep learning struc-
tures, LMs have grown significantly, causing breakthroughs in a variety of
NLP tasks such as machine translation and text generation.

LLMs can be described in the following way: LLMs are large language
models that are pre-trained on large amounts of data without being fine-
tuned for a specific task (Jurafsky & Martin, 2021). But even without fine-
tuning, LLMs are still able to perform a multitude of tasks such as: natural
language understanding, natural language generation, knowledge-intensive
tasks, and reasoning.

There are two major types of LLMs that can be considered when choos-
ing a LLM for a task: Encoder-Decoder or Encoder-only models like BERT,
and Decoder-only models like GPT-style models.

2.8.1 Encoder-Decoder

An encoder-decoder model, also known as a sequence-to-sequence network,
is a model capable of generating contextually appropriate output sequences
of arbitrary length. The main characteristic of these models is the use of an
encoder component that contextualizes any input, this converted input is
often called the context, and a decoder component that uses this context to
generate a task-specific output (Jurafsky & Martin, 2021).

As natural language data is widely available and new unsupervised
training paradigms have been created to make better use of large datasets,
the unsupervised learning of natural language is promoted. A common un-
supervised learning method is to predict masked words by have the model
consider the surrounding context of the word. This training method allows
the model to gain a better understanding of the context of a word and the re-
lationships between words. Models trained with this masked word method
have achieved state-of-the-art results in different NLP tasks, such as named
entity recognition (Pan et al., 2024).

2.8.2 Transformer model

This section will examine the functions of the transformer model and how
it operates in the GPT models. The first step is to look at what the input
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Figure 2.10: Visualization of the encoder-decoder structure, (Britz et al.,
2017)

and the output of a transformer is. For input transformers typically take a
prompt (also called the context earlier), this prompt is given to the trans-
former as a whole. The output of the transformer depends on the goal the
model was trained on, GPT model typically outputs a probability distri-
bution for tokens/words that come after the prompt. The idea behind the
transformer is to use self-attention to encode the input sequence and pro-
duce a sequence of hidden representations (Ray, 2023). These representa-
tions can be decoded into output sequences. Self-attention gives the model
the ability to use different parts of the input with different levels of abstrac-
tion. This ensures the model can capture any long-range dependencies and
relationships from different parts of the input (Beltagy et al., 2020; Devlin
et al., 2019; Vaswani et al., 2017; Yang et al., 2019).

Within the transformer structure there are three important components.
The first is the embedding, the input of the transformer consists of a prompt
but this prompt needs to be embedded into something usable by the trans-
former. The embedded input is generated in an autoregressive manner, pre-
vious tokens serve as an input to the tokenization. The second component
consists of several blocks, these blocks perform the most critical operations
of the model. Each block contains a masked multi-head attention submod-
ule, a feed-forward network, and several layers of normalization operations.
These blocks can be put in sequence to increase the models’ complexity.
Lastly, there is the output of the transformer.

The multi-head attention unit is unit compromised of several single head
units. Each of these heads splits the input up into three separate layers.
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Two components the queries Q and the keys K are multiplied, scaled and
then turned into a probability distribution. The third layer consisting of
the values V is then multiplied with the probability distribution ensuring
the importance of each token in V. Multi-head attention then combines the
outputs from each head, it is important to know that each head has it’s own
weight.

Figure 2.11: Visualization of the transformer structure, (Vaswani et al.,
2017)

2.8.3 Decoder-only and GPT

A decoder-only model, as the name suggest, only makes use of the decoder
component that encoder-decoder models also possess. Decoder compo-
nents often use the transformer structure that was originally introduced by
Google Brain in 2017. Modern LLMs, e.g. GPT, use a variant of this structure
called the decoder-only transformer.

With GPT-3.5 the model uses 13 Transformer blocks, only the decoder
part is present in these blocks. The input to this model is a sequence of to-
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kens, that are first embedded into a continuous vector space. These embed-
ded inputs are fed to the first Transformer block that applies self-attention
and creates a sequence of hidden representations.
The remaining 12 Transformer blocks then pass the hidden representations
along each applying self-attention and feed-forward layers. The last block
outputs a sequence of hidden representations, that are then decoded into an
output using a linear projection layer and soft-max functions.

GPT-4 the latest version of the GPT model series retains the transformer-
based architecture of its predecessors, and it allows for a bigger context
and response windows (128k and 4k tokens respectively (OpenAI, 2023)).
The model also has a reduced laziness (OpenAI, 2024), where the model
wouldn’t fully complete a task or not respond in the specified way. Lazi-
ness in GPT models can come from a lack of training data, which can cause
the model to struggle to form a desired result. But the model can also ap-
pear lazy due to an over-reliance on surface-level patterns instead of looking
at the deeper meaning of the input. Laziness can reduced by fine-tuning a
model, giving it extra context, thereby overcoming gaps in the training data.
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Chapter 3 takes an in dept look at the data that is used in this experiment.
Section 3.1 explains the domain of the data and which parts will be used.
Section 3.1.1 shows an example of how a mapping can be created between
the ENERSHARE data and the STH ontologies. Lastly, section 3.2 explains
the data used to test the scalability of the model.

3.1 Description of the data

The data comes from the ENERSHARE project, the project aims to define
standard data formats for the energy sector. The data was gathered from 7
pilots of the project that work on different projects in 7 EU member states.
Each pilot focused on a different application within the energy sector. Below
is a list with descriptions of the data from each pilot.

- Pilot 1 aims for data driven innovation in the onshore and offshore
wind energy industry, the data contains measurements from wind tur-
bine substations including the gearbox, generator, pitch system and
power converter.

- Pilot 2’s objective is to assess the value of consumer-level load data to
Transmission System Operators. Data for this pilot is not available so
this pilot will not be used.

- Pilot 3 focuses on coupling heat and power systems, through co-genera-
tion or power-to-heat generation and storage. Data from this pilot in-
cludes measurements from local electrical substations and specifica-
tions of electrical wiring.

- Pilot 4’s goal is to optimize power-to-gas (P2G) planning. This pilot
has data on generation and flow of hydrogen gas as well as the distri-
bution and demand of electrical energy.

- The aim of pilot 5 is to reduce the reverse power flow (RPF) into the
distribution grid, by using measures from sensors on electrical appli-
ances. The data of this pilot contains measurements of electric vehicle
(EV) charging stations and hourly measurements on the electrical con-
sumption of water pumps.
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- Pilot 6 plans to stabilize grid frequency by measuring EV charging
stations, residential batteries, and solar panels. The data of this pilot
contains labels on measurements from an EV charging station.

- Pilot 7’s goal is to make financing schemes for renewable energy and
energy efficiency available for data spaces. And it wants to forecast
energy consumption. Data from this pilot is about energy efficiency of
houses and data on the improvement of efficiency after installing solar
panels.

These pilots each contain several CSV files with labels. These labels will
be extracted and matched with labels from ontologies in the STH (“Semantic
Treehouse”, 2024).

Label Description Value
node_id Node ID (always empty)
stn Measuring station (always ‘Station-0’) Station-0
soc Unix timestamp 1602078510
fracsec Timestamp fraction of seconds (always 0) 0
vm1 Voltage magnitude LN 230,3143921
vm2 Voltage magnitude LN 230,9148407
vm3 Voltage magnitude LN 231,7793427
im1 Current magnitude LN 5,76506E-05
im2 Current magnitude LN 3,0933E-05
im3 Current magnitude LN 4,25656E-05
vph1 Voltage phase LN -47,65739563
vph2 Voltage phase LN 72,3336704
vph3 Voltage phase LN -167,5164956
iph1 Current phase LN 52,59078663
iph2 Current phase LN -111,9896326
iph3 Current phase LN 76,26046227
f Frequency 49,98057175
df RoCof 0,063896179
vzsm Voltage zero sequence magnitude 0,378295124
izsm Current zero sequence magnitude 2,24671E-05
vzsph Voltage zero sequence phase -164,2232789
izsph Current zero sequence phase 60,14759523
digita Digital input/output (always 0) 0
analog Analog input (always 0) 0

Table 3.1: Example data from pilot 5 on the distribution of the electricity
grid

Table 3.1 shows data from pilot 5, of a 2 phase measurement on the dis-
tribution grid. This dataset includes the labels, a short description for each
label and example values for the data.
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3.1 Description of the data

There is a difference in how the labels are structured across pilots, for
example in table 3.1 there are many abbreviated labels such as vm or iph but
there are also labels that are made of full words such as Battery capacity.

The reason that this dataset was chosen is that the STH is also involved
in the ENERSHARE project and already contains several ontologies on data
related to the pilots.

The dataset contains a total of 574 unique labels, with a variety of dif-
ferent languages, the distribution of labels per pilot can be seen in figure
3.1. All pilots contain English labels but pilots 1-5 contain labels in both En-
glish and different languages. Pilot 1 contains some labels in French, pilot
3 has some labels that are Slovenian, pilot 4 has labels in Greek and pi-
lot 5 has labels in Italian. These labels will need to be translated as one of
the baseline models will be using Word2Vec, which has specific models for
each language, making it necessary to translate these labels to English. The
translation process will be done using Google Translate. the total amount of
labels that needs to be translated is 19.

Figure 3.1: Labels per pilot

3.1.1 Example mapping

This section will give an example of how a manual mapping can be made
between the ENERSHARE data and ontologies from the STH. This exam-
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ple was made according to the tutorial on SSSOM (“Basic Tutorial - a sim-
ple standard for Sharing Ontology Mappings (SSSOM)”, n.d.). The process
attempts to map labels to different ontologies in the STH (“Semantic Tree-
house”, 2024), the process is done by looking at each ontology in the STH
that matches the theme of the labels, a mapping can be replaced if a better
mapping is found in a different ontology. Here the source ID indicates the
pilot from which the labels originate.

It starts with adding all the labels that I want to map, these labels are
part of the label shown in table 3.1:

source_id source_label predicate_id target_id target_label
P5:3 soc
P5:4 fracsec
P5:5 vm1
P5:11 vph1
P5:23 digita

Table 3.2: First step in the mapping process

The next step is then to find the labels in ontologies that are the most
similar. To start I looked at an ontology containing concepts of different
types of electrical measurements the ENERSHARE property ontology. In
this ontology there is an exact match for vph1, Phase Voltage Property. Vph1
has a description namely: vphN, voltage phase LN (N ∈ 1, 2, 3). Which
aligns to Phase Voltage Property with the description: Value for phase 1 of
voltage. These labels have additional descriptions but most labels in the
mapping don’t have these descriptions. In this ontology there was also a
label for vm1 which was not an exact match but a related match Magnitude
Voltage Property. This gives the match as shown in table 3.3:

For the labels soc and fracsec there was no exactMatch, as these labels
represent measures of time with a specific format that was not used in the
ENERSHARE property ontology. For these labels a different ontology can
be found that represents the right information, resulting in the alignment
shown in table 3.4.

Sometimes there will be no label in any of the ontologies that bears
enough similarities to be a match, for example the label digita has no matches
to a label in the ontology. In this case the alignment will be empty. In the
manual mapping of the 574 labels 110 labels have no match.

For the rest of the manual mapping no descriptions were used to find
the correct match as no other descriptions were available.
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3.2 Additional data

source_id source_label predicate_id target_id target_label
P5:3 soc
P5:4 fracsec
P5:5 vm1 relatedMatch VoltageProperty:-

magnitude
Voltage:-
Magnitude
Voltage Prop-
erty

Magnitude
Voltage Prop-
erty

P5:11 vph1 exactMatch VoltageProperty:-
phase Voltage:-
Phase Voltage
Property

Phase Voltage
Property

P5:23 digita

Table 3.3: Part 1 of the second step

3.1.2 Preprocessing

Before the labels will be fed to the models the labels are processed to make
the format of each label as equal as possible. Processing the labels involves
to remove any delimiters from the labels such as for example _ and #. After
this the labels are split on capital letters, this is done to remove any extra
white spaces that were added by removing the delimiters. After this the
split parts are rejoined into one label with white spaces between each split
and the entire label is transformed to lower case letters.

3.2 Additional data

Besides the labels the pilots all have an additional file describing the context
of the pilot, an IEC context file. This file context general information on the
purpose of the pilot and what measurements were used in the pilot. This
makes these files for a good source of extra context that the model could use
to get a better understanding of the labels.

The test the scalability of the model I want to use two tracks of the
OAEI. These tracks are the conference and the biomedical track (“Ontol-
ogy Alignment Evaluation Initiative”, 2023), these datasets are intended to
be used for ontology to ontology alignment, but I want to use these to test
this model by treating one of the ontologies as non-ontological data. To do
this the labels will be extracted from the ontology and the relations from
the graph structure will not be used as context for the model. These tracks
are complete with reference alignments to use for evaluation of the model,
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source_id source_label predicate_id target_id target_label
P5:3 soc relatedMatch Time instant:-

in date-time
description:-
Generalized
date-time
description:-
second

Time instant

P5:4 fracsec relatedMatch Time instant:-
in date-time
description:-
Generalized
date-time
description:-
second

Time instant

P5:5 vm1 relatedMatch VoltageProperty:-
magnitude
Voltage:-
Magnitude
Voltage Prop-
erty

Magnitude
Voltage Prop-
erty

P5:11 vph1 exactMatch VoltageProperty:-
phase Voltage:-
Phase Voltage
Property

Phase Voltage
Property

P5:23 digita noMatch

Table 3.4: Part 2 of the second step

the reason to not use these tracks for the entire project is because of how
the non-ontological labels are structured versus how the labels in ontolo-
gies are structured. As mentioned in section 3.1 the labels from the ENER-
SHARE project differ greatly in terms of whether they are abbreviated or
not, the labels in ontologies only contain full words, so by choosing to use
this data from the ENERSHARE project I want to expose the model to more
real world scenarios and not a perfect test scenario where every label has a
similar structure. The OAEI tracks will not provide a perfect test for scala-
bility but I think they can illustrate the models effectiveness over different
domains. Note, contrary to the original planning this data was not used. As
the original experiment did not produce a model that could make accurate
enough mappings, I focused on increasing the performance of the models,
instead of testing if the models are domain specific.
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4. Method

In this chapter, I will discuss the methodology used for the experiments
in this thesis. Section 4.1 shows the general plan for the experiment and
what approaches were considered. Section 4.1.1 will explain how the data
is processed before the models use it. Section 4.1.2 introduces the different
baseline models that will be used to compare the GPT models to. Section
4.1.3 will explain what versions of the GPT models are used and how the
fine-tuning of these models is done. Section 4.1.4 explains what prompt is
used and how this prompt was created. Section 4.1.5 will discuss the metrics
used for evaluating the models as well as discuss method that could be used
to expand upon the current experiment. Lastly, section 4.1.6 explains how
the results of the models will be analyzed to make recommendations on
how the models can be improved.

4.1 Experiment plan

The goal of this thesis is to use GPT models to create mappings between
non-ontological data and ontologies from the STH, and to test the scalabil-
ity of the model I will test this model on two tracks of the OAEI dataset. Two
paths can be considered when approaching this task. The first approach is
to extract an ontology from the input data, this will transform the problem
from a data to ontology mapping task to an ontology mapping task. The
benefit of this is that the model can easily be compared to other models and
there are evaluation dataset available for ontology matching models (Eu-
zenat et al., 2011). The second approach is to try to directly map from the
data onto an ontology, in this case the model will need to semantically map
the unstructured data to the hierarchical structure of the ontology. In case
the data consists of some textual description (or if extra textual context is
provided with the data) both approaches might require steps to extract the
relevant keywords, and can then be reduced to a similar problem of map-
ping labels to an ontology. The approach that this project will take is the
second approach as the first approach requires the construction of ontolo-
gies from only labels, many of which don’t have a description, thus I think
that trying to construct an ontology from this will only result in a bad ontol-
ogy.
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Figure 4.1: Experiment plan flowchart

Figure 4.1 shows a flow chart describing the process of the experiment.
Each of the steps is described in the sections below. Step one is to manually
create mappings between the ENERSHARE data and the ontologies in the
STH, these mappings help train and evaluate the models (section 4.1.1). Step
two is to create two baseline models which help to compare the final model
to simple methods (section 4.1.2). Step three is to use GPT-3.5 and GPT-
4 to create alignments between the data and the ontologies, these models
can be fine-tuned which should boost their performance (section 4.1.3). The
final step is to evaluate the models on the mappings made in the first step
(section 4.1.5) and analyze the results of the models to see what ensured the
models performed well, section 5.3.

4.1.1 Data & preparation

The first step is to prepare the data and ontologies so the model can use
them, this involves getting the labels from the CSV files and reading the on-
tologies from their corresponding files. As mentioned in chapter 3 some of
the labels from the ENERSHARE data are in different languages these labels
will be translated. This is done as to get a fair comparison to the baseline
models that are used in this experiment, the baseline models and the trans-
lation process are described below. The relevant labels will be extracted
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from the pilots and gathered in a file containing the manual mappings, the
pilots also contain files with a general description of each pilot. This de-
scription will be used as extra context for the model. The ontologies will be
processed in such a way that both the labels and relations between labels is
still present as this graph structure is required for a later step.

For evaluation purposes manual mappings need to be made. These map-
pings will be considered as the ’correct’ way to map the labels to the ontolo-
gies available. The format that these manual mappings will use is SSSOM
(Simple Standard for Sharing Ontology Mappings). SSSOM can be repre-
sented in RDF and is able to represent semantic mapping between various
data formats and ontologies (Matentzoglu et al., 2022). The mappings will
be validated by a domain expert from the ENERSHARE project.

4.1.2 Baselines

To get a comparison for the GPT models I will first create a simple model
that tries to create mappings solely based on string similarity between la-
bels. This model will compare the labels solely on their normalized Lev-
enshtein distance, this similarity measure was chosen as it is easy to imple-
ment and effective at comparing similarities. This will be the baseline model
to compare the GPT models to. For similar reasons I will also use the longest
common sub-sequence to create mappings. I will also use a third more com-
plex baseline using Word2Vec. A model such as Word2Vec translates strings
into word vectors using a two-layered neural network (Mikolov et al., 2013).
The model can be implemented with two different architectures: the Con-
tinuous Bag of Words (CBOW) or the Continuous Skip-Gram; both designs
aim to create dense word vectors. The CBOW predicts target words from
surrounding context, the context is aggregated into a vector that can be used
to predict the target. The design still requires context so it will perform less
when this context is unavailable, but does perform well on smaller datasets.
The Skip-Gram model does the opposite of the CBOW, by predicting the
context based on a target word. This model works well with large datasets
that contain many unique words. Word2Vec also allows it to be trained on
additional data to account for new words in the data it has not seen before,
for this experiment the model will not be trained on extra examples.

To get an equal comparison between the baselines and the GPT model
the non-English labels will be translated, as Word2Vec models are sepa-
rated by language and won’t produce fair vectors if multiple languages are
present in the dataset. As described in section 3.1 the translation will be
done with Google Translate. Additionally, I will also calculate the baseline’s
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performance metrics by seeing if the predictions of the baselines are in the
path of the correct label. The path is the correct label plus its super-classes
and other relations, as the ontologies are graph structures. For example
in the platoon wind turbine ontology the node Pitch Angle Property is con-
nected by several relations to the node Blade which is a subclass of Electrical
Power System, in this case the path would include: Pitch Angle Property, Blade,
the relations connecting Pitch Angle Property to Blade and Electrical Power
System. This means that if the correct answer is Pitch Angle Property but the
model predicts up to 2 ancestor nodes/relations as the semantic similarity of
a subclass or the superclass can be drastically different and seeing all these
relations as correct would not picture an accurate picture of the baselines’
performance metrics. Limiting the amount of ancestors to 2 might cause
the models to miss some matches but it also prevents matches that are not
enough semantically related. In the case of the Pitch angle property the an-
cestor nodes/relations that are included would for example be has minimum
pitch angle and Blade when looking at figure 4.2.

4.1.3 Models & training

The models used for this task are GPT-3.5-0125 an GPT-4o, of these models
GPT-3.5-0125 allows for fine-tuning of the model which generally gives a
better performance on a task and GPT-4o is a new version of GPT-4 that
matches GPT-4-turbo in terms of performance while being faster than the
GPT-4-turbo model.

Since the dataset is relatively small, traditional training of the model
is not practical, however once the mappings are made there will be more
than 50 examples available for fine-tuning. Fine-tuning typically gives GPT
models a boost in performance and allows the model to take in additional
information besides the original context window. The GPT-4 model will be
fine-tuned on 50 examples to give the model more context and with this po-
tentially improve the precision. With GPT models there is also the option
to create a good prompt that explains the task and expected response to the
model. The reason for choosing to train the model is that prompt engineer-
ing is not easily reproducible, whereas training a model is. The outcome of a
model with prompt engineering is heavily dependent on the current version
of the model, and even if the same model is used responses from the model
can differ slightly when the same task is given. To fine-tune the model the
examples will need to be formatted to JSON, each example will contain the
following information: A system prompt specifying the task to the model,
a user prompt acting as the input from a user giving the model the task
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Figure 4.2: The relations of the node pitch angle property in the platoon
wind turbine ontology
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prompt with example inputs from the dataset and a system response which
is the desired output from the model given the examples.

Traditional training of a GPT model can be done according to the follow-
ing steps:

1. Data preparation (creating manual mappings as described above): Cre-
ating a dataset of sets of labels from the data and ontologies that cor-
respond. This step and step 7 will require some help from an external
domain expert or an ontology engineer from within TNO.

2. The input for the model is tokenized in a numerical representation, by
creating a vocabulary from the labels acquired in the data preparation
step.

3. Fine-tuning: The GPT model will be fine-tuned on the dataset of la-
beled pairs, only the training set will be used for this.

4. The training objective: classification objective (loss-function, cross-entropy)

5. Hyper-parameter optimization

6. Testing: In testing the model will receive labels from the dataset and
is tasked with giving the most suitable ontology label.

7. Evaluation will be done by comparing the generated mapping to hand-
crafted mappings, evaluation metrics used will be: accuracy, precision
and recall.

The fine-tuning of a GPT model is similar to supervised learning, for
this fine-tuning the model receives a set of examples each containing a task
prompt and the response the model is expected to give. The model will
then use these examples to adjust its weights and improve its performance
on the task. An example of a fine-tuning example is described in section
4.1.4, as the prompt used for running the models is the same as the one
used for examples of fine-tuning. The expected response used in the fine-
tuning is also described in section 4.1.4, as the prompt describes the formats
the model should use.

The task the model will receive is to respond with either an exact match
between labels, a list of related matches or give that no match could be found.
It might occur that the same label is used in different a context in the ontol-
ogy, leading to multiple exact matches. If this happens the model can look at
the context of ontology labels, ancestors or labels that point to the label in
the graph, to differentiate between exact matches. Part of the task is to also
give the confidence (between 0 and 1) of the match. Hyperparameters that
that can be experimented with are:
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1. The amount of layers of ancestor nodes the model can consider within
an ontology to use as context for a label, experiment range 0 to 3 layers.

2. The cutoff point at which matches are considered to be related or no
match, a low cutoff point means more matches are considered to be
related matches instead of no match, experiment range 0.1 to 0.5.

3. The amount of examples used for fine-tuning, experiment range 0 ex-
amples to 200 examples.

Another parameter with which can be experimented is the amount of
context the models are given in addition to the labels and ontologies. The
first hyperparameter is also part of this context, figure 4.1 shows a list of
options regarding context of the labels.

As shown in the experiment plan, figure 4.1, there are several different
levels of context and variables that can be experimented with to create a
well performing model. From this I have chosen 6 combinations to test in
this thesis.

1. The first of these is GPT-3.5 zero-shot, this model uses GPT-3.5 and
gets to see no examples to complete the task. Of the six models I expect
this model to perform the worst since it uses GPT-3.5 and has access
to minimal information, by not receiving examples in its prompt and
not getting extra context.

2. The second model is GPT-3.5 few-shot, this model receives random
examples for each batch of labels it needs to map. I expect this model
to perform better than the first model but not significantly better.

3. The third model is a GPT-3.5 model that is fine-tuned to 50 examples.
Unfortunately the OpenAI API doesn’t allow a fine-tuned model to
access a vector-store that allows the model access to all the ontology
files, to help the fine-tuned model I therefore appended the ontology
file for the ontology that I used most in the manual mapping to the
assistant prompt. When enabling a model with the file-search func-
tion OPENAI refers to the set of files that the model can search as a
vector-store. Because the model is fine-tuned I still expect the model
to perform better than the GPT-3.5 zero-shot and few-shot models, but
because it lacks access to the vector-store I think the GPT-4o models
will perform better than the fine-tuned model.

4. The fourth model that uses GPT 3.5 is a model that uses the IEC con-
text files of each pilot as extra context in the task prompts. As men-
tioned in section 3.2, the IEC context files contain a general descrip-
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tion of each pilot and what measurements were done in each pilot,
this could help the model get a better understanding of the labels.

5. The fifth model is the GPT-4o model with zero-shot, similar to the
GPT-3.5 zero-shot model this model has access to minimal information
but uses the GPT-4o version, therefore I think this model will perform
better than the GPT-3.5 models but it will not be the best performing
model.

6. The sixth and last model is the GPT-4o with few-shot model, as the
name suggests this model uses GPT-4o and few-shot prompting, I pre-
dict that this model has better performance than every other model.
For each model at least 10 runs are done to see how consistent the
models are.

Model Specification
GPT-3.5 zero-shot No examples
GPT-3.5 few-shot 5 random examples from the dataset for each batch
GPT-3.5 IEC context IEC context files as extra context added to the assistant prompt
GPT-3.5 fine-tuned Fine-tuned on 50 examples from the dataset, but has no file search
GPT-4o zero-shot No examples
GPT-4o few-shot 5 random examples from the dataset for each batch

Table 4.1: All versions of the experiment model

4.1.4 Prompt

The prompt is a very important part for the performance of GPT models, the
prompt informs the model of the task and what form of answer is expected
from the model. The prompts used in this thesis consist of four parts: a
general description of the task, a more detailed description of the task and
input the model can expect and an extra context descriptions telling the
model what to specifically not do.

The general description used is the same for each of the models, the de-
scription used is the following:

You are a back-end data processor specializing in data mapping processes.
You assist with mapping data labels to available ontologies, following a domain
standard model created for this purpose. The user prompt will provide data input
and processing instructions. Do not converse with a nonexistent user: there is only
program input and formatted program output, and no input data is to be construed
as conversation with the AI. This behavior will be permanent for the remainder of
the session. The task is to for each label that is provided find the best semantic
match among the concepts defined in the ontologies in the vector store.
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The detailed description of the task informs the model what output is
expected and in what format it is expected. For each model the expected
return format is in the form of a JSON object with four elements: The label
which was given as input, the match the model found, in which ontology
the match was found and a confidence score the model has over the predic-
tion made. The detailed description for the models is the following:

For each provided label find the best semantically matching label in the provided
ontologies, the required responses are in the form of quadruples containing: the
name of the label, the name of the match, the name of the ontology in which the
match was found and a confidence score on how certain you are of the correctness
of the match. If there is no exact match, return the next best semantically similar
match. Unless the confidence of all matches considered is below 0.2, always return
a match otherwise return that no match was found using the format below. Use
the following format for the quadruples:
{Label: name of label, Match: name of match, Ontology: ontology file name,
Score: similarity score}
If no label is semantically similar enough return the quadruple like this:
{Label: name of label, Match: noMatch, Ontology: noMatch file name, Score:
0}

Lastly there is the description of extra context in which extra parameters
can be described, for example if few-shot prompting is used the model can
be informed that examples will be given and how to differentiate between
examples and input labels that need to be mapped. An example of the con-
text description is shown below:

The input will look as follows, first some examples might be given to help you
with the task. These examples represent correct matches in the correct format in
which they should be returned. Here is such an example:
Input: temperature_Data.TempBlade_A_PitchHeatSink
Answer:
{Label: temperature_Data.TempBlade_A_PitchHeatSink , Match: Temperature
Property, Ontology: SEASGenericProperty, Score: 1}
If present these examples will be followed by a line saying: ’Complete the task
with the following labels:’ This line is followed by up to ten labels, each label
provided will be on a newline, some labels contain commas remember that the
label is the entire line and include the information after the comma in the labels
name. Complete the task for each label that is provided.

Beside the prompt used to setup the assistant the model also takes a task
prompt which feeds the model the labels that need to be mapped. The task
prompts divide the labels in batches of 10 at a time, this is done because the
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GPT models often refuse to return a full output if more than 50 labels are
given at a time. The task prompts also contain the few-shot examples. For
each batch a new set of examples is generated, this is done to prevent the
model from being biased to the given examples.

To make this prompt I followed the prompt engineering tips from Ope-
nAI (“Prompt engineering”, 2024), these include adding details about the
query, explaining the task step by step to the model and providing exam-
ples. To have the model only respond with the relevant information I in-
cluded statements saying that the model should not converse with the user,
this was done after seeing other users struggle with this problem on the
OpenAI forum. Both a full assistant and task prompt can be found in the
appendix, section A.0.1.

I also tested with a prompt that had some spelling errors, to see if the
model would perform similarly when a label or word in the task is mis-
spelled. But this yielded significant performance decrease or increase.

4.1.5 Evaluation & extension

Four performance metrics have been chosen to evaluate the models, the
metrics are: accuracy, precision, recall and mean reciprocal rank. Each met-
ric tells something different about the model. The accuracy of a model
shows what percentage of predictions made by the model is correct. Pre-
cision indicates whether the model correctly predicts a class from all pre-
dictions of that class, in this case the classes are returning a match and re-
turning no match but also predictions that return the wrong match, so the
precision for the class Match can be calculated by dividing the true positives
(instances that correctly predict a Match that is the correct match in the man-
ual mapping) by the false positives (instances that are predicted to have a
Match but are actually a noMatch or matches that predict a Match which is
not the correct match in the manual mapping) plus the true positives. Recall
also indicates if the model correctly predicts a class but from the set that are
actually that class, the recall is calculated by dividing the true positives by
the false negatives. False negatives are instances that are predicted to have
a noMatch but are actually a Match) plus the true positives. As mentioned in
section 3.1.1 around 19% of the labels in the manual mapping is mapped to
noMatch.

In addition to the standard way of determining which matches are true
positives, by looking if the predicted label and ontology match those of the
manual mapping, I also measured the accuracy of the model by including
predictions that were close to the actual match as true positives. Predictions
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are considered to be close to the actual match if the prediction is part of
the path that leads to the node of the match in the ontology, the ontologies
are graphs which have a node structure which have relations to each other,
the path is the nodes and relations between the matching label and up to
three ancestor nodes/concepts in the ontology. This path acts as a cluster
of related concepts/labels to the actual label and using this to calculate an
accuracy can indicate if the models are close in their predictions. The calcu-
lated accuracy using this path will be referred to as the path accuracy.

The last metric is the mean reciprocal rank (MRR), which is used to eval-
uate the model when it returns more the 1 suggestion. The MRR is calcu-
lated by adding the positions at which the correct responses are returned
and averaging them over the amount of total predictions, see formula be-
low. The higher this score is the better, as a high MRR indicates that the
correct responses are given in one of the first suggestions.

MRR =
1
U

U

∑
u=1

1
ranki

U, is the total number of predictions.

When all labels are matched the resulting list of matches can be trans-
lated into the SSSOM format. This ensures that the models mappings are
comparable to the manual mappings. During evaluation, the mappings
from the models (baseline and GPT models) will be compared to the manual
mappings. The models will be evaluated on accuracy, precision and recall.
The precision and recall will be calculated by dividing the predictions into
2 categories, this is done as there would be too many classes to make any
form of statement on the precision and recall if it is calculated on the predic-
tions as they are. The categories the predictions will be divided between are
no Match and Match where no Match are all the predictions of a model that
predict no Match and Match indicates that the prediction has found a match
to an ontology label. By doing this the precision will indicate how well the
models can predict when something should be a Match and the recall in-
dicates whether the models can predict a Match for every label that should
have a Match. In addition to test the scalability of the model I will test the
models on tracks of the OAEI as described in section 3.2.

To compare the model to existing methods I will use the modified OAEI
tracks as described above on existing methods such as VeeAlign and Deep-
Align. I choose to compare the models with this approach since I have not
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found any open source alignment methods that use a similar approach as
the method this thesis uses. Applying the existing methods to the task of
this thesis is likely to reduce the accuracy of the ontology-to-ontology meth-
ods as the modified dataset lacks the ontological structure for the input of
the labels, but this is the best approach to compare the models. This step is
not done in the final experiment, reasoning for this can be found in section
6.

An optional step is to incorporate a mapping improvement mechanism
as was done in MapperGPT (Matentzoglu et al., 2023). With this method I
hope to combine the strengths of the transformer structure, capturing de-
pendencies, and MapperGPT, to have an improvement step after the initial
mapping steps, which not a lot of existing methods use but which could
improve precision.

The improvement step of MapperGPT asks a GPT model to re-evaluate
the match between two labels, giving each label extra context in the form of
synonyms, this step is meant to see if the model chose the correct label from
the related matches list it returned. To implement this in this experiment I will
instruct a second model to review the related matches from the created align-
ment, and use a list of synonyms of terms in each label to see if it arrives to
the same match as the first model. The synonyms will be gathered from the
concept descriptions of each pilot and additional synonyms will be gathered
from the European terminology database (IATE, 2024).If the second model
determines that a different label is more suited for the alignment this label
will replace the original. The alignments adjusted by this process will be
evaluated in the same way as the original alignment. This extension is not
done in the final experiment, reasoning for this can be found in section 6.

The improvement or change this project brings over previous works is
that this model will create mappings between user data, which isn’t nec-
essarily an ontology or a graph-like structure and the Semantic Treehouse,
a vocabulary hub with an abundance of different ontologies for different
domains. With this project I hope to create a tool that can assist laymen
translate their data to an ontology structure that can easily be shared with
other organizations.

4.1.6 Analysis

To analyze the results of the models I will look at three different aspects of
the data and the results. Categories to distinguish between predictions.

1. Target ontology: To see if a certain model or all models perform ex-
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ceptionally well on certain ontologies.

2. Label length/structure: Does the structure of the label have a big effect
on the effectiveness of the models?

3. Pilot: Are the models better at certain pilots/contexts than others, if
so is this because of one of the previous 2 categories or some other
reason?

By looking at these categories, I want to determine which factor or which
combination of factors has the biggest influence on the results and what
type of influence it is.

In chapter 3 the example mapping made use of labels that had extra de-
scriptions to highlight the meaning of the labels. These descriptions are not
used as input for the final models as there is only 16 labels that have an ad-
ditional description and quality of the descriptions also varies heavily. For
example the labels mapped in section 3.1.1 had very clear and understand-
able descriptions, but there are also descriptions of abbreviated labels that
itself are abbreviations. For example the label rf has the description RoCoF
this type of description will likely not give the model any benefits, this in
addition to the low amount of description available made me choose to not
use these descriptions as input to the models.
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In this chapter I will show the results of the baselines (section 5.1) and the
experimental models (section 5.2). I will also discuss the results of the anal-
ysis performed on the predictions of the experimental models (section 5.3).

5.1 Baselines and parameters

Three methods were used to create baseline with which the final model can
be compared. The methods are: Levenshtein distance, longest common sub-
sequence and a pre-trained Word2Vec model. The objective of these base-
lines is to see the effectiveness of simple models at the mapping task. Com-
paring the results of GPT models to these baselines shows if the use of GPT
offers an improvement for this task and how big this improvement is.

Two parameters with which was experimented were the cutoff point and
the amount of predictions the model returns. The cutoff point is described
in section 4.1.3 and is the point in the similarity score scale at which the
model returns that the similarity is not big enough and therefore returns
that no match could be found.

5.1.1 Results - baselines

Figures 5.1, 5.2 and 5.3 show the accuracy of the 3 different baseline models.
For figure 5.1 only the best suggestion was taken into account, for figures
5.2 and 5.3, the top 3 and 5 suggestions were considered respectively when
calculating the accuracy. The figures suggest that a higher cutoff increases
the accuracy of the models, however for the path accuracy this accuracy
drops off for Levenshtein and Word2Vec if the cutoff increases too much.
For example, for Word2Vec the ideal cutoff lies around 0.6. The drop-off in
accuracy is likely due to the models becoming too strict causing them to not
suggesting any matches and only returning no Match, causing the accuracy
to drop.

Figure 5.4 depicts the MRR score of the baseline models for the differ-
ent cutoff values, this graph shows that the MRR score, like the accuracy,
increases as the cutoff value increases. This is likely due to the fact that as
the cutoff score increases the model will start to return no Match more often
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increasing the correctness of label that do not have a match according to the
manual mapping, which in turn increases both the accuracy and the MRR.

Figure 5.1: Accuracy (y-axis) of the baseline models tested for different
cutoff points (x-axis), models returned 1 suggestion. The top plot shows
the accuracy when only considering the exact label as a correct match. The
bottom plot shows the accuracy when considering the path of the label as
correct as well.
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Figure 5.2: Accuracy (y-axis) of the baseline models tested for different
cutoff points (x-axis), models returned 3 suggestions. The top plot shows
the accuracy when only considering the exact label as a correct match. The
bottom plot shows the accuracy when considering the path of the label as
correct as well.

Figure 5.3: Accuracy (y-axis) of the baseline models tested for different
cutoff points (x-axis), models returned 5 suggestions. The top plot shows
the accuracy when only considering the exact label as a correct match. The
bottom plot shows the accuracy when considering the path of the label as
correct as well.
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When looking at the accuracy measured by only comparing the predic-
tions to the correct label it shows in the figures that the best accuracy for
each baseline is approximately the same. The accuracies are barely influ-
enced by the increase of the amount of suggestions the models return, the
best accuracy for each model lies at around 0,2 or 20 percent. As figures 5.1,
5.2 and 5.3 show, the accuracies calculated by also considering the path to
the match are much better than the pure accuracies. When considering the
path to calculate the accuracies, the accuracy of Word2Vec can reach 40 per-
cent, figure 5.3, which is almost twice the performance the model had using
the best parameters for the pure accuracy. The Levenshtein and LCS mod-
els also showed an increase in performance but not as great of an increase
as Word2Ve, showing an increase of 0.07 (7%) and 0.1 (10%) for Levenshtein
and LCS respectively.

As mentioned above the MRR shows how well the baselines perform
when returning multiple suggestions. The graph for the MRR, 5.4, is similar
to the graphs for the accuracies of the baselines. It follows the same trend
of increasing as the cutoff is increased and peeking at around 0,2 for each of
the baselines.

Figure 5.4: MRR (y-axis) of the baseline models tested for different cutoff
points (x-axis).
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Figure 5.5: Precision and recall of baseline models when returning the top-
1 suggestions

The precision and recall of the baselines show how good the models are
at predicting when a label has a match and when it has no match. In figure
5.5 we can see that the recall at lower cutoffs is very high as the models
will always return a match instead of no Match, therefore the models are
good at predicting a match when something is a match but bad at predicting
no Match as the models almost never return no Match. Similarly, when the
cutoff is increased the models become very strict and will often predict no
Match, causing the recall to decrease but the precision to increase.

5.2 Results - GPT

Figure 5.1 shows the results for the different GPT models. The results of
the GPT models are all comparable to the results of the baseline models,
when not taking into account that the baseline models also returned multi-
ple suggestions. The fine-tuned GPT3.5 models perform best at the standard
accuracy, however the increase in accuracy that most of the baseline mod-
els and other GPT models show when the accuracy is calculated using the
path, is not as large for the fine-tuned model as it is for the other models. I
have calculated the variance for all the models, but this is not shown in the
table as the variance for all models is lower than 1.0e-3. A one-way ANOVA
significance test on both versions of the accuracy shows that both the fine-
tuned GPT3.5 model (F(6,8) = 17,6, p = 7,06e-10) and the GPT-4o zero-shot
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and few-shot models (F(6,8) = 11,9, p=1,59e-7) have a significantly better
performance on the standard accuracy and the path accuracy respectively.

Model and method Runs accuracy precision recall accuracy precision recall
Word2Vec (top-1, cut-
off=0.7)

- 0.167 0.3 0.254 0.275 0.306 0.159

GPT-3.5 (zero-shot) 25 0.193 0.014 0.006 0.217 0.138 0.059
GPT-3.5 (few-shot) 25 0.195 0.019 0.01 0.233 0.038 0.024
GPT-3.5 (fine-tuned) 10 0.225* 0.135 0.545 0.236 0.144 0.561
GPT-3.5 (IEC context) 10 0.181 0.017 0.016 0.215 0.221 0.097
GPT-4o (zero-shot) 15 0.187 0.065 0.106 0.267* 0.192 0.259
GPT-4o (few-shot) 15 0.198 0.035 0.077 0.267* 0.133 0.243

Table 5.1: Accuracy, precision and recall for each model. The second set of
metrics is calculated using taking the path of the mapping into account.
The ANOVA tests between the GPT models indicates that the marked
models perform significantly better than the rest of the models, confidence
of 0.05.

Model total predic-
tions

total Match pre-
dictions

total no Match
predictions

Manual mapping 574 464 110
Word2Vec (top-1, cut-off=0.7) 574 219 355
GPT-3.5 (zero-shot) 570 145 425
GPT-3.5 (few-shot) 560 157 403
GPT-3.5 (fine-tuned) 561 445 116
GPT-3.5 (IEC context) 559 232 327
GPT-4o (zero-shot) 563 308 255
GPT-4o (few-shot) 573 345 228

Table 5.2: Total matches and no Matches for each model.

The fine-tuned GPT model has a very high recall compared to the other
models, this means that it often predicts either matches where there should
be no match or that it predicts the wrong label. Looking at the prediction the
model made I can see that the latter is the case, the model predicts matches
but they are the wrong match. An example of this is the prediction for the
label pitchcontrol_pressure_a1_blade1 which is manually mapped to the label
pressure, but the model predicts the label pressure property. The semantic
difference between the labels might not be big but since the evaluation does
not account for labels that might be semantically similar the prediction is
seen as incorrect.
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5.2.1 Hyperparameters

The GPT models have two native hyperparameters that can be manipulated,
these are the temperature and the parameter called top-P. The temperature
controls the randomness of the model and can have values between 0.01
and 2, the lower this value the less random and thus more deterministic the
model becomes in its responses. The benefit of having a high temperature
would be that the model is more likely to try different approaches to find
the best answer, unfortunately a high temperature also causes the models
to be more likely to hallucinate answers or use different response formats
than the ones provided making the evaluation of the performance difficult.
Because of these factors the used temperature for all models was not higher
than 0.01, at this number the models almost exclusively use the provided
formats and rarely provided matches that are completely non-existent in
the target ontologies.

The top-P is a parameter to reduce the number of outputs that are con-
sidered, top-P ensures that the smallest possible set of outputs is considered
that together exceed the probability P. The value of top-P can range from
0.01 to 1 and the standard value of top-P is 1 which causes all possible out-
puts to be considered, lowering this value decreases the number of outputs
that are considered. Early on during the experiments I noticed that reduc-
ing the top-P value below 0.5 did not increase the performance of the model,
therefore for subsequent experiments the top-P value was not reduced be-
low 0.5. Even decreasing the value of top-P to 0.5 did not give a significant
increase in accuracy, only giving a maximum of 0.002 (0,2%) for GPT-4o
(few-shot). Given that the models will always have a little bit of random-
ness when the temperature is not zero the top-P makes sure that the pool of
answers is reduced so the model is more likely to generate a better answer.

5.3 Analysis

As mentioned in chapter 4 I will look at three different categories to see the
common strengths or weaknesses that the models have. These categories
are:

1. Target ontology, the first category to analyze is the target ontology,
meaning the ontology to which a label is mapped. This is a category
because the manual mapping does not exclusively use ontologies from
the ENERSHARE project but also some other ontologies that have
slightly different structures. With this category, I want to see if the
structure of the ontology is a determining factor for the performance
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of a model.

2. The label length and/or structure, I will also investigate the differ-
ences between the length and structure of the labels. As mentioned in
section 4.1.6, the labels can have greatly different structures, from ab-
breviated words to full sentences describing the concept of the label.

3. Pilot, and lastly I have investigated whether the predictions the mod-
els make correctly are concentrated in one of the pilots and if such an
observation is made I will explore if the labels in the pilot differs from
the other pilots.

Before comparing the models I have gathered the statistics of the three
categories for the manual mapping. For the first category, target ontology,
table 5.6 shows the three most occurring target ontologies for the manual
mapping, a full visualization of the spread of the pilots can be found in
section 3.1 figure 3.1.

Figure 5.6: Percentage of occurrence for every ontology in the manual
mapping

I predict that the target ontology does not affect the performance of the
model significantly as all the ontologies used in the manual mapping share
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a similar structure, thus individual target ontologies should not give the
model differences based on their structure. As table 5.6 shows there is a
large difference in the amount of occurrence for each pilot, this may affect
the performance of the fine-tuned model as the fine-tuned model can receive
more examples with the target ontologies that occur more.

The expectations I have before this analysis is that based on the data, the
models are likely to predict the labels from pilots 1 and 7 correct the most.
This prediction comes from the fact that for pilots 1 and 7 the average length
of the labels in these pilots is higher than the average label length of the
entire manual mapping (pilot 1 28 characters, pilot 7 39 characters). I think
that the length of the labels will give the model extra context to correctly
find the match.

To analyze the models, I ran the analysis on three sets of predictions.
First is the set of all predictions that the models made, the second set con-
tained every correct prediction of the every model and the third set con-
tained the predictions for each model that only that model had found cor-
rectly. With the second set I want to investigate what labels the model all
do correctly and with the third set I want to see if there is a set of labels
that only a specific model predicts correctly. For this set I predict that the
fine-tuned model will score quite good as the fine-tuning on the random ex-
amples will predict the unique labels as it is fine-tuned on random examples
which could help it predict some labels better than the other models.

5.3.1 Target ontology

Figure 5.7 shows which 3 ontologies the models predicted the most, we can
see that no Match is the most predicted which could mean that the models
are all very strict as almost 80% of predictions by all models are no Match. A
second explanation for the high percentage of no Match predictions is that
the models lack information about the labels to find a match. We can say
that all the models have this problem since the percentage of predictions to
no Match in the set of unique labels is very low (1.06%), this means that all
models predict approximately same set of labels as no Match. The table also
shows that the unique predictions that the models make are predictions to
actual ontologies.
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Figure 5.7: Most predicted ontologies for the set of all correct predictions
and the set of unique prediction

Figure 5.8: Most predicted ontologies for the set of all correct predictions
and the set of unique predictions, using the path as the correct label

Figure 5.8 shows similar results as figure 5.7 but here the predictions
were evaluated using the path as a correct target for the model. Here we
can see that the influence of whether the path is counted as correct or not
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does not have a large influence on if an ontology is predicted correctly more,
as the distribution of percentages is only shifted slightly.

But to see if there was an ontology for which the models were more
accurate I also measured the performance of each model on each ontology
which is visualized in figure 5.9. This figure displays the average accuracy
of the models on each of the different ontologies. Looking at this figure
and the previous two tables it is not surprising to see that the models all
perform exceptionally well when predicting no Match. The other interesting
observation that can be made from this figure is that for several ontologies
namely: ENERSHARE system, ENERSHARE property, ENERSHARE price
property and platoon wind-turbine; the models often predict matches that
are close to the actual matches, this is can be inferred from the fact that
the accuracy on these ontologies increases quite a lot when looking at the
path accuracy. This is of course also true for the ENERSHARE wind-turbine
ontology but as there is only 1 instance of this ontology being the target
in the mapping the increase in accuracy means that there is simply 1 more
model that did this prediction right. Below figure 5.9, figure 5.10 visualizes
how the accuracy of the models is build-up. The figure shows how much
of the accuracy comes from each of the ontologies, except no Match to give
a better perspective on how the ontologies contributed. The figure shows
that the ENERSHARE system, ENERSHARE property and SEAS generic
property ontologies have the biggest impact on the accuracy.

Seeing these results I decided to inspect the ontologies to see whether
there are any major differences between the ontologies the models performed
well on and the rest of the ontologies. There were some small differences
between the ontologies, like naming conventions being different (the use of
capital letters and spaces was different), but these differences should not
have an influence on the model’s performance as all the labels and ontolo-
gies formatted to the same standard before they are given to the models.
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Figure 5.9: The average accuracy of the models for each target ontology

Figure 5.10: The average contribution to the accuracy per ontology, except
no Match.
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Figure 5.11: The average accuracy of the fine-tuned model for each target
ontology

Figure 5.12: The average contribution to the accuracy per ontology, except
no Match.
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5.3.2 Label structure

Table 5.3 shows the average and median length of the correct labels per set.
And figure 5.13 shows the percentage of correct predictions that predicted
no Match for the set of all predictions. This figure shows that the models
predict no Match often when the length of the label is lower than average,
except for pilots 1 and 7 where the average label length is above average.

Manual
mapping

All pre-
dictions

All correct
predic-
tions

Unique
predic-
tions

Average label length 22 22 17 26
Median label length 20 19 12 26
Average label length
(without noMatch)

24 26 27 26

Median label length
(without noMatch)

21 24 27 26

Table 5.3: Average and median label length for the different sets of predic-
tions

Figure 5.13: Percentage of predictions of ’no Match’ per pilot, with a label
length above or below the average label length of all correct predictions

As table 5.3 shows the average and median label length of all the cor-
rect predictions is much shorter than the average and median length of the
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mapping, this undermines my prediction on why the models would per-
form well on pilots 1 and 7. In my prediction I mentioned that since the
labels in pilots 1 and 7 are on average longer than the rest of the dataset,
that this would mean that the models would perform better on labels from
these pilots. However table 5.3 shows that on average the length of a cor-
rectly predicted label is 7 characters shorter than the average. But at the
same time figure 5.13 shows that most of the predictions done by the mod-
els for all pilots except 1 and 7 predict no Match. This could mean that the
models are stricter than they should optimally be causing them to predict
no Match too often. Or the models require more knowledge about the labels
to correctly understand the labels.

5.3.3 Pilot

To see the differences between pilots, I looked at the average performance of
the models on each pilot, this is displayed in figure 5.14. This figure shows
that there is a big difference between pilots as to the effect counting the path
as correct has on the accuracy, with pilots 1 and 4 only having an increase
of 2-3% while pilots 3, 5 and 6 have an increase of nearly 20%. The accuracy
for pilot 6 almost doubles and the accuracies for pilots 3 and 5 triple. This
likely means that the models are good at predicting labels close to the target
for these ontologies but not the target itself. Table 5.4 shows two examples
of matches that were counted as correct when accounting for the path of
a label. For both of these examples the prediction is a label that is on the
manual match’s path. For the first example, the model predicted forecast
of wind energy production which according to the ontologies is a forecast
property which in turn is a wind energy production property which is the
correct label.
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Label Prediction Actual match Path
wind intraday forecast of wind

energy production
property

wind energy produc-
tion property

Forecast Of Wind
Energy Production
Property: forecasts
Property: Wind En-
ergy Production
Property

min total load has week ahead fore-
cast of minimum to-
tal electric energy
load property

forecast of electric
energy load property

has Week Ahead
Forecast Of Mini-
mum total electric
energy Load prop-
erty: Forecast Of
Electric Energy Load

Table 5.4: Examples of true positive predictions when accounting for the
path

Figure 5.14: Average accuracy of the models on each pilot, for both the nor-
mal accuracy (blue) and the path accuracy (red).
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Figure 5.15: Percentage of no Match in each pilot for the original mapping,
the set of all predictions and the set of all correct predictions.

Figure 5.15 shows that pilot 6 has the most occurrences of no Match, in
the original mapping this could also indicate that the reason the models per-
form well on the labels from pilot 6 is because we know the models overpre-
dict no Match leading to a naturally high performance on pilot 6. The reason
that pilot 6 has so many occurrences of no Match in the manual mapping
is because the pilot contained a number of labels that did not fit into the
ontologies like the rest of the labels, labels like the name of the park an elec-
trical grid is located in or the user ID which the ENERSHARE ontologies do
not have concepts for yet.
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To summarize the contents of this thesis: I used GPT models to directly
map labels from data in the energy domain to energy related ontologies in
the Semantic Treehouse environment, with the goal to create a tool that can
help users of the STH to partake easily in data interoperability efforts. As
the results have shown the method used in this thesis is still far from being
applicable in the STH environment. But I think the results and analysis do
show that the method could perform better if the model can have a more
constant amount of information it gets for each label, a standard format
each label should adhere to and the option to add and extra description of
the label, this should help to give every label a similar basis from which the
model can make a judgement about its semantic properties.

6.1 Review research questions

First the research questions, the main question of this thesis is:

How can LMs help improve data interoperability on a semantic and
technical level, by creating mappings between data structures?

To answer this question, I created a method that was simple yet powerful
enough to at least make suggestions for mappings for users of the Semantic
Treehouse. However, as the results have shown currently the methods that
were experimented with have not been successful enough to have a practical
application in the Semantic Treehouse yet.

Sub-questions/goals:

1. How does a LM used to create mappings between ontologies fit in the
current STH architecture?

- What form of improvement does using a LM for ontology map-
ping add to the current STH architecture?

As for the first sub-question, if the model were to have a better perfor-
mance it could be implemented into the STH as a mapping tool. But
even with suboptimal performance, an improvement this LM would
provide to the STH environment is that it adds functionality to the
STH that is currently not available, namely letting a model create a
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mapping from user data to a general standard used in the STH. Or
since the current performance is not yet at a level where the model
can do such a task on its own, the model could provide suggestions to
the user to assist in the manual mapping task. Improving the way in
which that users interact with the platform and transform their data
to an existing standard.

2. Can the use of LMs for ontology/knowledge graph mapping provide
a significant improvement over existing ontology mapping methods?

- Can the same method used for ontology mapping be used to cre-
ate mappings between data that is not structured like an ontol-
ogy and ontologies, by extracting ontological structures from the
data? This would accommodate real word examples.

- What steps are made in this project to improve or change meth-
ods of previous research on ontology matching?

The second sub-question is partially answered by this thesis as the
models used in the thesis show that their performance is not better
than the existing methods. The exact task that the model in this the-
sis and the discussed ontology matching methods were tested on is
slightly different, however the performance of the final models of this
thesis are definitely not practical solutions to the problem in their cur-
rent state. This thesis’ model does show that the method of mapping
labels from unstructured data sources to ontologies can be done, as the
results have shown the success is limited but the task is not impossible
using the method of this thesis.

The change that this thesis tried to make compared to existing meth-
ods is: mapping labels from unstructured data sources directly to on-
tologies, without the need to first construct an ontology to begin the
mapping process. As mentioned earlier, this change was partially suc-
cessful. The model does use this different method, but the perfor-
mance makes it not practical to use. Another change in this thesis
compared to the existing ontology-to-ontology matching methods is
the use of a generative LM, such as GPT, on the task.

3. Can the model help with different domains in the STH structure, or is
it bound to a specific domain?

The third research sub-question can be partly answered depending on
the definition of domain. As mentioned in chapter 3 all the pilots have
gathered data from projects related to the energy sector, so all pilots
can be considered to be from the same domain. However the sub-
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jects that the pilots have dealt with also show enough differences that
the pilots can be considered to be from distinct subdomains within
the larger energy domain. So as mentioned earlier, in section 4.1.5, I
did not have the opportunity to test the model on the OAEI tracks,
since the performance of the original dataset is already not as is de-
sired. Therefore applying the model to these additional datasets did
not have priority. But as the model performed quite similar on each
pilot we can say that there is at least some potential of the models to
work on multiple domains, or at least that the performance is not en-
tirely dependent on the domain of the data.

6.2 Discussion

Overall the initial results from the models have shown that the method used
in this thesis is not yet have a practical application in the STH environment.
But if the method is adapted to make the models less prone to predict no
Match for most of the prediction then that would give the models a chance
at being applied in some environment. Instead of being a perfect mapping
tool the STH environment could already benefit from a tool that can make
suggestions that are correct in 70-80% of the cases. If the performance is not
yet good enough for the model to create complete mappings than it could
serve as a recommending system, helping users to find the best match by
giving suggestions. Figure 6.1 visualizes how this suggestion tool could
function in the STH. Here the model makes multiple suggestions based on
properties of the label data battery level has, but these suggestions could also
be made based more on the semantic similarities between concepts, as was
done in this thesis. Using this tool the user still has to make the decision to
accept any suggestions the model makes.
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Figure 6.1: Example of the models functionality in the STH, where the
model suggests possible mappings to a user. Image created by Simon Ep-
skamp

The results of the analysis on the predictions have shown that the target
ontology is not a big factor whether the prediction is correct or not, the im-
portant factor is likely the structure and length of the labels to be mapped.
As the results showed the importance of the structure of the labels played a
considerable factor in the success rate of the models.

If I was to repeat this thesis I would evaluate the predictions from the
models slightly different. I would make a component that could link simi-
lar concepts in different ontologies. With this if a model predicts a similar
concept from a different ontology as the manual mapping indicates, the pre-
diction can still be evaluated as correct as long as the concept in the mapping
and the concept of the prediction are linked. I noticed when making the
mapping that there are some ontologies that define quite similar concepts
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when ignoring the neighboring nodes. It is therefore not surprising if the
model predicts a similar concept to that of the manual mapping but from a
different ontology. This is especially the case for the fine-tuned model which
has a high precision and thus a lot of false positive predictions. An example
of this for the label Turbine Control Pitch Angle Demand [deg], for this label the
fine-tuned model predicted angle property from the SEAS generic property
ontology, while in the manual mapping this label was mapped to Pitch An-
gle Property from the Platoon wind turbine ontology. Both the match from
the manual mapping and the prediction can be seen as valid matches and
therefore can be counted as correct, but because of how I chose to evaluate
only the mapping is counted as the correct match. Looking at the results
from the fine-tuned model I estimate that from the 561 predictions that this
model returned, at least 50 predictions could be counted as correct if similar
concepts from different ontologies were to be linked. This is only the case
for the predictions from the fine-tuned model, as this model returned more
false positive matches compared to the other models.

6.3 Limitations

The limitations of this thesis lie I think mainly with the prompt and the man-
ual mapping that was made for the evaluation of the models. The prompts
that were used managed to correctly instructed the models to respond ac-
cording to the provided format and what the task is. Despite this, the mod-
els still managed to occasionally produce answers using self-made formats
or forget to return a prediction for every label given. A solution to this is to
run each label through the model several times to reduce the incorrectly for-
matted and possibly non-existent responses. A different way to solve this
is to not provide the user labels in batched as was done in the experiments
but to provide the model with each label individually. When provided with
each label individually the model always provides a predictions, in this the-
sis the labels were provided in batches to reduce the computational time of
the model as providing up to 600 labels individually would increase from
approximately 5 minutes to 1.5 hours.

I have already partly discussed the limitation of the manual mapping in
section 6.2. The mapping was not checked by an external domain expert as
mentioned in section 4.1.1, but was instead checked by an ontology expert
within TNO, who did not find any differences. A second limitation to the
mapping is that the amount of data each label has is very different, as men-
tioned before some labels did have descriptions and other labels had more
information in the name itself. But as the results have shown there was no
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Conclusion

significant difference in performance between pilots that had larger labels
compared to pilots with shorter labels.

6.4 Future work

Two important things to focus on in the future are to reduce the models ten-
dency to predict no Match for most of its predictions. Making sure that the
model gets more accurate at identifying when there is a match is very im-
portant, even is the prediction is wrong, because as discussed earlier there
is a chance that with a different way of evaluating the these false positives
could actually be true positives. But if the model is implemented as a sug-
gestion tool it might be better if the model predicts more false negatives than
false positives, as users might blindly accept suggestions while if the model
returns that is no match the user is forced to think what the best match could
be. The second important aspect to change is to either force users to create
labels without abbreviations or include some component that could trans-
late from abbreviation to word given the context. Either this or making sure
the user provides a description of the label. As mentioned in chapter 3 in
the dataset used there were some labels that were provided with a descrip-
tion, but these descriptions were not used as only a small portion of the
labels have a description and some the descriptions were different versions
of abbreviations of the label. So if the user is asked to provide a descrip-
tion, this description should also follow some rules. With one of these rules
being that the description should not contain abbreviations or explain what
the abbreviations mean. A good second rule would be that the descriptions
can also not be too long and contain only information about the label they
describe, as to not confuse the model.

Another change that could be considered in the future is to include the
mapping improvement method that was talked about in section 4.1.5. This
was not included in this thesis as the model itself was already not perform-
ing well and the paper showed that the method can improve performance
but not significantly thus I chose to seek to first improve the base model
before adding this component.

Besides the use of the improvement method another change that could
be beneficial to the model would be the use of retrieval-augmented gener-
ation (RAG), to identify which ontologies are relevant for each label (Edge
et al., 2024). The use of RAG could reduce the time the model would need
to spend on looking for the relevant ontologies, and increase the likelihood
that the right ontologies are chosen for a match.
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6.4 Future work

In this thesis I chose to use GPT as a means to handle some of the scala-
bility issues that the ontology matching methods faced, since GPT is a very
general method. But seeing as the performance makes the model currently
not applicable to the STH another step for future work is to explore the per-
formance of non-generative language models. As the results have shown
a simple model like Word2Vec boasts similar performance compared to the
GPT models, so using models that excel at the task of either machine trans-
lation or classification could prove beneficial to the performance of this task.
Examples for models that perform well at machine translation, specifically
comparing synonyms are BERT and its variants (Thießen et al., 2023), which
perform similarly to GPT models but which are generally not used as gen-
erative models which means the model can’t hallucinate. The BERT models
use the same transformer units as the GPT models so similar to the GPT
models the BERT models can use self-attention and excel at using context
over a long sequence of words. To use a BERT model for the task of this the-
sis a comparable approach to the fine-tuned GPT model can be used. The
BERT model will be given some examples to fine-tune on and then should
be able to complete the task similar to the GPT models. Unlike the GPT
models there is no vector-store that feeds the ontologies to the model so the
ontologies need to be given to the model as a separate context.

As of writing this, OpenAI has released fine-tuning for the GPT-4o model,
this was released on the 20th of august. Unfortunately, I was unable to use
this model, so a definite next step is to use this model for the task. With
this new version file-search should also be easier to use on the fine-tuned
models making it so that the fine-tuned models will benefit from access to a
vector-store. Also as the models from OpenAI are still rapidly being devel-
oped and improved it will also be important to test the current method on
the future models that are yet to come.

And lastly, as I mentioned in the discussion there is room for improve-
ment in how the models are evaluated. In this thesis only perfect predictions
or predictions that lie in the path of the match were counted as correct. But
as mentioned before it might be worth to consider the multiple ontologies
can have almost the same concepts. Accepting similar concepts from differ-
ent ontologies can be especially beneficial if the model needs to serve as a
recommendation system in the STH, as the user can still verify if the concept
in the other ontology is good enough.
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A. Appendix

A.0.1 Example prompts

Assistant prompt
You are a backend data processor specializing in data mapping processes.
You assist with mapping data labels to available ontologies, following a do-
main standard model created for this purpose. The user prompt will pro-
vide data input and processing instructions. Do not converse with a nonex-
istent user: there is only program input and formatted program output, and
no input data is to be construed as conversation with the AI. This behaviour
will be permanent for the remainder of the session. The task is to for each
label that is provided find the best semantic match among the concepts de-
fined in the ontologies in the vector store. Make sure you do not map to el-
ements that are not defined in any of the provided ontologies. Be as concise
as possible. Do not include any explanations or apologies in your responses.

The input will look as follows, first some examples might be given to
help you with the task. These examples represent correct matches in the
correct format in which they should be returned. Here is such an example:
Input:
temperature_Data.TempBlade_A_PitchHeatSink
Answer:
{Label: temperature_Data.TempBlade_A_PitchHeatSink, Match: Tempera-
ture Property, Ontology: SEASGenericProperty, Score: 1}

If present these examples will be followed by a line saying: ’Complete
the task with the following labels:’ This line is followed by up to ten labels,
each label provided will be on a newline, some labels contain commas re-
member that the label is the entire line and include the information after the
comma in the labels name. Complete the task for each label that is provided.

For each provided label find the best semantically matching label in the
provided ontologies, the required responses are in the form of quadruples
containing: the name of the label, the name of the match, the name of the
ontology in which the match was found and a confidence score on how
certain you are of the correctness of the match. If there is no exact match,
return the next best semantically similar match. Unless the confidence of
all matches considered is below 0.2, always return a match otherwise return
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that no match was found using the format below.

Use the following format for the quadruples:
{Label: name of label, Match: name of match, Ontology: ontology file name,-
Score: similarity score}
If no label is semantically similar enough return the quadruple like this:
{Label: name of label, Match: noMatch, Ontology: noMatch, Score: 0}

Remember to only return the quadruples as a response nothing else.

Task prompt
Use the following format for the quadruples: Label: name of label, Match:
name of match, Ontology: ontology file name, Score: similarity score If no
label is semantically similar enough return the quadruple like this: Label:
name of label, Match: noMatch, Ontology: noMatch, Score: 0 Sometimes
similar labels can occur twice in the input, make sure to return one quadru-
ple for each label in the input, for example if ten labels are provided return
ten quadruples. Here are some example mappings:
Input: Consumption for mechanical ventilation after
Answer: {Label: Consumption for mechanical ventilation after , Match: En-
ergyConsumptionProperty, Ontology: EnershareProperty, Score: 1}
Input: Total primary energy factor - for hot water preparation
Answer: {Label: Total primary energy factor - for hot water preparation ,
Match: EnergyConsumptionProperty, Ontology: EnershareProperty, Score:
1}
Input: CO2 emission factor for cooling 2
Answer: {Label: CO2 emission factor for cooling 2 , Match: EmissionCon-
versionFactor, Ontology: EnershareSystem, Score: 1}
Input: Energy carrier for hot water preparation
Answer: {Label: Energy carrier for hot water preparation , Match: noMatch,
Ontology: noMatch, Score: 1}
Input: Energy consumption for hot water preparation in KWH/M2 per year
Answer: {Label: Energy consumption for hot water preparation in KWH/M2
per year , Match: HeatingElectricEnergyConsumptionProperty, Ontology:
EnershareProperty, Score: 1}
Remember to only return the quadruples as a response nothing else. Com-
plete the task with the following labels:
GearOilTemperature_val
GearboxOilInletTemperature_val
GearboxOilInletPressure_val
HssGearBearingGenSideTemperature_val
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GearboxRotationSpeed_val
GearboxOilPumpPressure_val
DeltaOilTemperature
RatioOilGearTemperature
Time [s]
Nacelle_Anemometer [m/s]

Figure A.1: Amount of publishments on ’Ontology Alignment’ between
2015 & 2023

A.0.2 Code

All relevant code to the project can be found here: repository

80

https://github.com/LeviAlex-uu/Master-thesis-Levi


1 <!-- Classes -->
2 <owl:Class rdf:ID="Human"/>
3

4 <!-- Data Properties -->
5 <owl:DatatypeProperty rdf:ID="firstName">
6 <rdfs:domain rdf:resource="Human"/>
7 <rdfs:range rdf:resource="String"/>
8 </owl:DatatypeProperty >
9

10 <owl:DatatypeProperty rdf:ID="lastName">
11 <rdfs:domain rdf:resource="Human"/>
12 <rdfs:range rdf:resource="String"/>
13 </owl:DatatypeProperty >
14

15 <owl:DatatypeProperty rdf:ID="currentAge">
16 <rdfs:domain rdf:resource="Human"/>
17 <rdfs:range rdf:resource="Integer"/>
18 </owl:DatatypeProperty >

Figure A.2: ontology for the definition of a human

1 <!-- Classes -->
2 <owl:Class rdf:ID="Person"/>
3

4 <!-- Data Properties -->
5 <owl:DatatypeProperty rdf:ID="hasName">
6 <rdfs:domain rdf:resource="Person"/>
7 <rdfs:range rdf:resource="String"/>
8 </owl:DatatypeProperty >
9

10 <owl:DatatypeProperty rdf:ID="hasAge">
11 <rdfs:domain rdf:resource="Person"/>
12 <rdfs:range rdf:resource="Integer"/>
13 </owl:DatatypeProperty >

Figure A.3: ontology for the definition of a person
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Figure A.4: Precision and recall of baseline models when returning the top-
3 suggestions

Figure A.5: Precision and recall of baseline models when returning the top-
5 suggestions
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