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Abstract

Generative artificial intelligence is gaining popularity and becoming more ac-
cessible to students in higher education. Students learning programming can
use code-recommender systems such as GitHub Copilot to help them code. Ed-
ucators worry students might become over-reliant on these types of systems.
To gain more insight into how GitHub Copilot is used in higher education this
study aims to find typical behavior of students while they use Copilot to solve
an object-oriented programming problem. A think-aloud study was conducted
to observe students while using Copilot. Observations focused on identifying
whether students used fundamental programming skills and how this affected
their performance. I found that when students planned their solution well they
used Copilot as a beneficial tool. While students who did not plan their solution
did not benefit from using Copilot.
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1 Introduction

Generative artificial intelligence models have improved and become more acces-
sible over the last few years and will continue to do so in the future [5]. Essays
can be written with GPT-3, a large language model by OpenAI, without being
detected as such [26]. Also, GPT-4, which is an improved version of GPT-3, was
recently able to pass the bar exam, a notoriously difficult exam all US lawyers
must pass [15]. Another significant advancement is ChatGPT, a conversational
agent developed by OpenAI, which uses mentioned GPT models to generate
human-like text responses [20]. With these models becoming more accessible,
students are discovering how to use them in their education. Students can do
this in a way that helps them learn, but they can also have the models do their
work for them. Students’ use of these models worries teachers, which makes it
necessary to adapt education to the availability of these models [24, 5, 21].
Besides text, these generative large language models can also produce code.
OpenAI’s Codex model can solve many small programming problems [9]. This
model has been used to create GitHub Copilot, which integrates Codex’s code
generation abilities into popular code editors and IDEs [13]. Since program-
ming is seen as a difficult skill to learn [6] and novice programming students
often do not feel confident in their skills [14], students can use these tools to
help them with programming. While the use of learning tools can be of help to
programming students [8, 2, 4], tools such as Copilot are not developed specif-
ically for education and can give incorrect suggestions. That does not mean
they cannot be used in education at all. For example, Codex can be used to
generate programming problems [25] and examples of code created with Codex
can help students learn [12, 5]. The Codex model has also been used to create a
helpful tool to show more understandable error messages [17]. While educators
worry about students using these systems, there is not yet a lot of research on
how students typically use them in practice for larger programming problems.
Therefore, this thesis aims to answer the following questions:

1. How do students typically use GitHub Copilot while working on object-
oriented programming problems?

2. What fundamental programming skills do students use while working on
object-oriented programming problems with Github Copilot?

In the related work, I will highlight several fundamental programming skills,
focusing on skills needed when first learning (object-oriented) programming. I
will also highlight related work on Copilots abilities and which programming
problems it can solve. Subsequently, the methods section will explain the think-
aloud study on the use of Copilot by university students. In the results section, I
answer the research questions by showing common participant behavior from the
think-aloud study and the skills students use to achieve this behaviour. Finally,
in the discussion, future research is discussed, and a conclusion is composed.
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2 Background and related work

In this section I first explore related work on how students learn object-oriented
programming, and how tools can help them with this. Next I explore the abilities
of GitHub Copilot by looking at OpenAI’s large language model Codex, which
is responsible for Copilot’s code generation. I also explore Copilot’s usability
and how Copilot can be used in education.

2.1 Learning programming

2.1.1 Knowledge and skills

When students first learn to program, Yuen found that their knowledge and
skills go through different stages [31]. He says that students start with auto-
matic knowledge: they know what their instructor told them, but do not truly
understand what it means. When they progress, they connect programming
concepts such as arrays or loops. However the students do not fully understand
the relationships between them. For example: students realise arrays and loops
are often used together in their exercises, but do not understand what the exact
relationship between them is.
After working with these concepts more, students will develop a deeper un-
derstanding, and use the concepts more effectively in practice. The type of
knowledge a student has of a particular programming concept will show once
they implement it.
Yuen links the mentioned stages of knowledge to stages of skills [31]. The first
stage is “need to code”. When students have only automatic knowledge of the
concepts they are working with they feel like they need to start writing code
immediately after reading an exercise. In the second stage they will focus on
the syntax before thinking about the structure of their code. As students start
connecting concepts, they start generalizing; they might not know how to solve
an exercise fully, but are able to think of what type of loop they want to use,
or whether to use recursion or not. This means students can abstract from the
exercise and find the general idea of the solution, even though they might not
understand how to fill in the details. The final stage of learning to program
according to Yuen is when students are able to plan out a solution fully be-
fore they start coding. They will also be able to think about the efficiency of
their solution. Knowing and understanding what stages novice programmers go
through while learning can help prevent misconceptions, and help instructors
give students better guidance in applying their theoretical knowledge in their
programming exercises.
McCracken et al. suspected that many students do not learn some of the fun-
damental programming skills in their first year of programming education [18].
They made a framework of first-year learning objectives to clarify what they
would expect from students after a year. This framework consists of a list of
five steps needed to solve a programming problem: abstracting a problem from a
description, dividing a problem into sub-problems, solving these sub-problems,
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combining them to solve the complete problem, and finally, testing and revising
the solution. When first-year students were tested on these skills, they did not
meet these expectations. McCracken et al. found three reasons why students
failed: 1) students handed in an empty program file, 2) students started pro-
gramming right away without a plan, or 3) students started with a plan and
structure but still failed to find a solution to the problem. Students of type 1
and 2 have a problem finding out where to start. These students are not able
to abstract the problem from the description and divide the problem up into
sub-problems. The students of type 3 are planning and structuring their code
but have problems with creating the sub-solutions, combining these, or testing
and revising. In the end, the most common problem for students is their lack
of skill in abstracting the problem from the description.

2.1.2 Abstraction and generalization

Both McCracken et al. and Yuen emphasize the importance of abstraction and
generalization in solving programming problems. Teaching students to abstract
and generalize can be done with the help of examples, according to Zander et
al. [32]. When instructors want students to solve a programming problem with
a certain technique, they often use code examples that solve a similar problem
with that same technique. Students will then have to work out which parts of
the example code they can reuse to solve their problem. This forces students
to look at code and problem descriptions in a more general way, and think
about how to solve a problem before starting to code. Examples can also be
used at other stages of learning. For example, when students are learning a
new programming language, example code can help them learn the syntax [5].
When students are learning a difficult concept, or are making a lot of mistakes
with certain concepts, giving students well-written example code to play around
with can give them a deeper understanding of these concepts [32].

2.1.3 Object-oriented programming

The previously described skills are needed for programming in general, inde-
pendent of the programming language or paradigm being used. However, when
learning object-oriented programming, additional skills are needed. Some fun-
damental concepts for object-oriented programming are objects and classes.
According to Xinogalos, students often misunderstand the relationship between
these concepts [30]. Some misconceptions students might have are that there
is no difference between objects and classes, or that classes are collections of
objects. Xinogalos found that when students do not have these misconceptions,
it does not mean they have a full understanding of classes and objects. For
example, students often understand a class as an entity in the code and part
of its structure, and an object as a piece of code. Although this is not exactly
wrong, these students do not understand the concepts, or their relationship,
fully. These students are focused on the static code and are not looking at the
bigger picture of how parts of the code interact. Xinogalos shows that almost
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half of his students have a good understanding of classes and objects. They see
objects as entities of a real-world phenomena or objects, and a class as a model
describing kinds of objects. Almost all students recognise that classes play an
important part in the structure of the code.
From interviewing students, Stamouli et al. [28] confirm that when students
start learning object-oriented programming, students are mostly focused on the
syntax of the object-oriented language they are learning. At this point, students
believe that learning the syntax of that language is what constitutes learning
object-oriented programming. The more students learn, the more their view
changes. They start to realise learning programming constructs, writing struc-
tured programs, learning to think a certain way, learning problem solving, and
finally, learning a new skill, is what constitutes learning object-oriented pro-
gramming.

2.1.4 Programming tools

Programming tools, such as tools for static code analysis (linting), syntax high-
lighting, debugger tools, code completion, and so on have all become standard,
or at least common as integrated tools in IDEs. These tools can be of great
use to novice programmers. In addition, tools are specifically being designed
for novice programmers, such as those showing clearer error messages. All these
tools can be used to address and prevent misconceptions for students according
to Qian et al. [23]. For example, programming environments that highlight
syntax errors or use understandable error messages can reduce cognitive load
for students. This will help them focus on the problem at hand and understand
and learn from their mistakes.
For tools to be helpful to novice programmers, they should be well integrated
into an IDE [16]. This makes it is easier to learn how the tool works, and the
use of the integrated tool causes less cognitive load than a separate tool. The
integration of a tool will also make it a possibility for the tool to have access to
the code the student is working on.

2.2 GitHub Copilot

Generative large language models are machine learning models trained on very
large amounts of unlabeled text. They are able to predict what text would
most likely be produced based on their training data. These models are able to
produce any text, including code, as long as this type of text was included in
the training data.
With the release of GPT-3 to the public, this technology has become better and
much more accessible. Numerous tools have started to appear using this tech-
nology. As large language model based tools keep becoming better at predicting
and generating language and code, students start using them more to help them
with their work. GitHub Copilot is one of these tools. It is an extension for
IDEs or code editors that suggests lines of code, or entire functions to you as
you work. As seen in Figure 1, it suggests code while typing, which can be
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accepted pressing tab. The multi-selection pane is shown in Figure 2, where
you can view up to ten code suggestions for where you are currently working in
the document and choose if you want to accept one. The multi-selection pane
does not open by itself, only when prompted.
GitHub Copilot uses OpenAI’s Codex, which is a fine-tuned GPT-3 (Third-

Figure 1: A suggestion from Copilot. All gray code was suggested at once.

generation Generative Pre-trained Transformer) model. Codex has been trained
on 159GB of Python code from public GitHub repositories (preprint)[9]. In the
Copilot tool, Codex is responsible for the code generation, while Copilot extends
its usability by integrating into IDEs and code editors. This integration makes
Copilot easy to use while working, as there is no need to switch to a separate
tool. Copilot also adapts code suggestions to the file you are working in, and to
neighbouring files [13].

2.2.1 Codex

To evaluate Codex, Chen et al. have created their own evaluation set, which
they called HumanEval (Preprint)[9]. They did this because Codex was trained
on publicly available GitHub code, and so, commonly used benchmark problems
could have very well been included in the training data. HumanEval is a set
of 164 programming problems handwritten for this evaluation. Every problem
comes with a function signature, docstring, body, and several unit tests. Figure
3 shows two examples of problems from HumanEval. To evaluate Codex, the
model was given each HumanEval problem one by one, where the models output
was tested on the problems’ unit tests. A problem was counted as solved when at
least one of Codex’s 100 code samples passed the unit tests. With this method,
Codex solves 70.2% of the HumanEval problems successfully.

Sobania et al. compared the performance of Copilot’s code generation to
that of tools with a genetic programming approach [27]. When tested on stan-
dard program synthesis benchmarks, GitHub Copilot could solve the same type
and amount of problems as tools with a genetic programming approach. How-
ever, when analysing the produced solutions, Sobania et al. found a big differ-
ence between the code produced by Copilot and that produced with a genetic
programming approach. They decided the purely functional evaluation was in-
sufficient in this comparison, as Copilot’s code had better readability. Its failed
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Figure 2: The Copilot multi-suggestion pane

attempts were also often easy to adjust into a correct answer. With genetic
programming approaches, code was often not easy to comprehend. This makes
Copilot far more helpful to programmers, even though the functionality of pro-
duced code was similar with both approaches.
Naser Al Madi confirms that Copilot’s code has good readability; he found it
comparable to the readability of human-written code [1]. In the same study, he
compared how well students read the code written by other students when pair
programming to how well they read the code written by using Copilot to pair
program. He found that students read other students’ code more carefully than
they read Copilot’s code. Some students were observed accepting large pieces
of Copilot’s code at once, which would take a long time to read well. Not read-
ing Copilot’s code carefully could indicate over-reliance on Copilot. It would
also cause problems because Codex has some weaknesses. According to Chen
et al. Codex has trouble with more high-level programming problems and with
longer text prompts. Its problem with longer prompts remains when Codex can
solve the subproblems of the exercise separately. Another weakness of Codex is
keeping track of many different variables in one prompt. Overall, Codex does
better when given step-by-step prompts [9].
Finnie-Ansley et al. found that Codex outperforms novice computer science
students on novice programming problems. However, they noted that the for-
mulation of a programming problem can significantly affect how well Codex
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Figure 3: two problems from the HumanEval evaluation set (Preprint)[9]

solves it. Specifically, Codex struggles when an exercise does not explicitly
state what to do with edge cases [12].

2.2.2 Copilot use

GitHub markets Copilot as an AI pair programmer [13], and taking Codex’s
weaknesses into account, Copilot’s abilities greatly depend on how it is used.
Cipriano and Alves (2023) directly address limitations in the use of GPT-3 for
object oriented programming. They raised issues such as failing to apply inher-
itance best practices and suggesting solutions with code duplication [10]. Their
findings reinforce the idea that Copilot’s abilities could greatly depend on the
person using it.
Barke et al. found that when professional programmers use Copilot their in-
teractions with it can be categorised into two modes [3]. Programmers either
use Copilot to accelerate their work, meaning they know how to proceed, and
Copilot suggests just that, saving them the time to type it out themselves. The
other mode is exploration, where a programmer needs inspiration on how to
proceed. In exploration mode, they often use the multi-suggestion pane (Figure
2), where they might take some lines out of different suggestions or accept one
and adjust it. Programmers also use the multi-suggestion pane to give them a
general idea of how to solve a problem and write their own solution.

Mozannar et al. extended this work by developing a taxonomy of code-recommender
user programming states (CUPS) [19]. This CUPS taxonomy includes twelve
programming states in a hierarchical structure, as seen in Figure 4. In this
study, twenty-one participants were screen-recorded while they each worked on
one out of eight different programming tasks. Subsequently, they labeled this
recording with the CUPS labels. This labeling was done in a very specific way.
First, the whole recording was divided into telemetry segments. In Figure 4,
the telemetry segments can be seen in the timeline. One telemetry segment
happens from t0 to t1, one happens from t1 to t2, and so on. There are two
types of telemetry segments: one consists of the moment between a suggestion

10



Figure 4: The Cups taxonomy and telemetry segments [19]

being shown by Copilot and it being rejected/accepted (the user before action),
the other consists of the moment between rejection/acceptance and a new sug-
gestion being shown (the user typing or paused). Once the recording is divided
into telemetry segments, the participants labeled their own segments according
to Figure 4: in a user typing or paused segment, the labels for typing or paused
can be used. In a user before action, all but one of the paused labels can be
used (not waiting for suggestion). Every individual telemetry segment was given
one CUPS label by the participant. In these labeled recordings, Mozzanar et
al. found some common patterns of programming states for developers. One
such pattern was programmers rejecting many suggestions while prompt crafting
and while writing new functionalities. Another was verifying a suggestion both
before and after accepting it. Mozzanar et al. also found many instances of de-
velopers accepting suggestions before verifying them. Developers likely do this
because they want to look at the suggestion with syntax highlighting or verify
multiple suggestions as a whole instead of as separate lines of code. Mozzanar
et al. revealed that developers might spend half their time on Copilot-related
activities when programming with Copilot. Because developers spend a signifi-
cant amount of time waiting for suggestions, Mozzanar et al. suggest improving
Copilot by reducing latency. They also suggest that if users can indicate their
current programming state, Copilot can more effectively meet their needs. For
example, it could avoid providing distracting suggestions when a user is actively
typing.
Vaithilingam et al. compared how programmers used Copilot to how they used
Intellisense, a code completion tool [29]. They found that even though their par-
ticipants solved fewer exercises using Copilot than they did using Intellisense,
they still found Copilot more helpful than Intellisense. Participants used Copi-
lot suggestions as a starting point when they did not know how to start by
themselves, or they used Copilot for suggestions instead of looking something
up online. They found Copilot untrustworthy when it suggested large pieces of
code at once and did not want to read, test, and debug that code.
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2.2.3 Codex in programming education

Most research evaluating Codex and Copilot uses programming problems sim-
ilar to those used in computer science education, but does not go further into
the implications of Copilot on computer science education.
Becker et al. believe that we must urgently consider these implications and
address the opportunities and challenges of tools like Codex in computer sci-
ence education [5]. They emphasise that tools like Codex will only improve and
become more easily available in the future.
Becker et al. see opportunities in using these tools to provide example code:
solutions to problems when students get stuck, multiple solutions that use dif-
ferent methods to solve a problem, and examples of specific concepts for an
instructor to use. They also see opportunities in using Codex for generating
programming exercises and code explanations. The Codex model can be used
to power other tools and students can start learning higher-level concepts ear-
lier, using Codex to fill in the simpler parts of code.
Becker et al. see challenges as well: students can use these tools to cheat with-
out being detected and they can become over-reliant on these tools. They also
worry that the style of Codex’s code is inappropriate for novice programmers,
as it is based on mostly professional code. Other challenges they see are in
establishing the owner of the code produced by these tools, their sustainability,
harmful biases in generated code, and insecure generated code.
Finnie-Ansley et al. address the challenges and opportunities of Codex in pro-
gramming education [12]. They see some of the same opportunities and chal-
lenges as described in Becker et al.’s paper: the opportunity of providing stu-
dents with many example solutions and the challenge of students becoming
over-reliant on Codex. Although Finnie-Ansley et al. see examples generated
by Codex as an opportunity, they fear that Codex will provide buggy code,
causing confusion and misconceptions in students. They agree with Becker et
al. that students using Codex to do their work is a challenge, and add to it that
it will remain a challenge even when Codex cannot successfully solve a student’s
programming problem. They fear that even though Codex’s code may contain
mistakes or not solve the entire problem, students might still get a passing grade
for the partial solution. Finnie-Ansley et al. believe we cannot ignore tools such
as Codex and must adjust computer science education to these challenges.
Prather et al. [22] wanted to know how students use Copilot in practice and
how students perceive the use of Copilot. They observed students working with
Copilot on a typical introductory programming assignment and subsequently
interviewed them about their experiences. They discuss their results based on
the four themes they saw emerge during observation and interviews: Interac-
tions, Cognitive, Purpose, and Speculation. The interactions theme is about
participants using Copilot: coding with it, accepting/rejecting, and their gen-
eral experience interacting with Copilot. The second theme, cognitive, is about
the cognitive state the user has: confused, thinking about their thought pro-
cess, positive, and negative. Next, purpose is about why users are using Copilot.
This could be Copilot guiding the user, the user outsourcing work to Copilot, or
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Copilot helping speed up the coding process. Lastly, the theme of speculation
is about users thinking about Copilot in a broader sense, like whether Copilot
has intelligence or knowledge, or what the future will look like with tools such
as Copilot.
The theme of purpose also came up in other research discussed in this section.
Prather et al. themselves note that accelerations v.s. exploration from Barke et
al. [3] is similar to the theme of purpose, where there is speeding up (accelera-
tion), and guiding (similar to exploration). They find that students use both of
these modes while using Copilot.
From the interaction theme, Prather et al. found two new modes of Copilot use:
shepherding and drifting. In shepherding, students type slowly to try and get
a (specific) suggestion from Copilot. In drifting, students accept copilot code
when they are not sure about it, maybe change it a bit, before deleting the code
and starting again.
In terms of student perception of Copilot, Prather et al. look mostly to the cog-
nitive and speculation themes. While students generally found copilot helpful,
its suggestions could be confusing for students, sometimes leading them away
from their solution. This could cause students to be frustrated. Students did
find it helpful to describe their problems to Copilot and found it less intimi-
dating to approach a problem when they knew they had Copilot’s help. When
students talk about Copilot in general, they can be excited, but also fearful
about how Copilot seems to know what you want from it. Some students took
it further and expressed a fear of Copilot writing complete programs by itself
in the future.

3 Methods

This section describes the methodologies used in the study, including a think-
aloud study to observe how students interact with GitHub Copilot while solving
programming problems.
To analyze the sequencing of participant actions and decision-making processes
during the think-aloud study, we used n-grams. Here follows a detailed expla-
nation of what n-grams are and how they contribute to the understanding of
participant interactions with GitHub Copilot.

3.1 Think-aloud study

To find how students commonly use Copilot, and if there are any common pat-
terns in their use, a think-aloud study was carried out. This think-aloud study
was approved by the ethics review board of Utrecht University.
A think-aloud study is a study in which participants verbalize their thoughts
in real-time while they perform a task [7]. This research method used to cap-
ture and analyze the participants’ thinking process. It is often used to research
students’ knowledge and skills. Participants thoughts during the task may be
supplemented with an interview or questionnaire after the task.
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Figure 5: A small part of the plant taxonomy

During the think-aloud study, participants worked on an object-oriented pro-
gramming problem in Visual Studio code with access to GitHub Copilot. Par-
ticipants were instructed to verbalise their thoughts during the study. Because
this verbalizing increases cognitive load for novice programmers, participants
practiced on a small simple exercise for a maximum of 10 minutes before start-
ing the main exercise of the study. All exercises can be found in appendix A
and B.
After this practice round, participants began with the main programming prob-
lem. During this part of the study, the participants’ voices and screens were
recorded. They worked on this problem for up to 30 minutes.

3.1.1 Exercise

Participants were asked to implement a small part of the plant taxonomy as seen
in Figure 5 using different classes. This exercise focuses on the use of classes
and objects and was based on a classic object-oriented programming exercise, in
this case from ”Java, how to program early objects” by Paul Deitel and Harvey
Deitel [11]. In this classic programming exercise, the shape hierarchy from Fig-
ure 6 must be implemented and specific methods need to be added to different
types of shape. Since variations of this exercise are used very often, it might
be included in Codex’s training data. Because of this, I decided to adapt it to
a different context: that of plant taxonomy. Plant taxonomy is a hierarchical
structure that is obscure enough to not be commonly used in programming ex-
ercises, which makes it a great substitution for shapes in this exercise. I then
simplified the exercise for the think-aloud study. After the first think-aloud
session, I rewrote the exercise slightly to make the description clearer, and once
again after the third participant. The different versions of the exercise can be
found in appendix B.
The final version of the exercise focuses on the architecture of the code and
requires only very simple functionalities to be added. This invites participants
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Figure 6: The class structure for the original shapes exercise [11]

to plan how to structure their code before they start writing and makes it pos-
sible to test how helpful Copilot is to students when working specifically on
the planning and architecture part of object-oriented programming. Partici-
pants programmed their solution in C# since is the language used most in the
computer science program at Utrecht University, especially for object-oriented
programming. They had a maximum of half an hour to work on this problem,
after which they were asked to fill out a questionnaire.

3.1.2 Questionnaire

Participants answered some questions about their experience in programming
and using GitHub Copilot, so that this could be linked to differences in Copilot
use. Participants were also asked to reflect on their experience during the study,
to both give feedback on the exercise and to give more information on how they
felt about using Copilot. The complete questionnaire is included in appendix
C.

3.2 Participants

Participants were recruited at Utrecht University through announcements at
mandatory classes for first-year computer science students. Participants were
offered refreshments during the study, but no other reward was provided. There
were six participants in total. Table 2 shows details on each participants back-
ground in programming, as well as the difficulty rating (one to nine) they gave
to the exercise after completing it.
Three participants, participant one, three, and four, were bachelor computer
science students, all in their first or second year. Two participants, participant
two and six were bachelor artificial intelligence students. One at the start, and
one at the end of their bachelor’s.
Participant five was a master student who had finished their bachelor of artifi-
cial intelligence.
Of all participants, three had earlier experience with GitHub Copilot: partici-
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pant one and four had worked on projects with Copilot and participant five had
tried it out. Participant two did not have experience working with Copilot, but
had used ChatGPT for programming before.

Table 1: Participants overview

Participant Study Year Programming experience
1 Computer Science Second Secondary school, hobby
2 Artificial Intelligence Third Side job, hobby
3 Computer Science First Secondary school
4 Computer Science First Side job, hobby, former education
5 Artificial Intelligence Other Former education
6 Artificial Intelligence Other

Table 2: Background of participants

3.3 Data processing

The data collected during the think-aloud study was processed similarly to how
Mozannar et al. did in their similar study as explained in Section 2.2.2 [19]. All
timestamps of suggestions appearing, being accepted, and being rejected were
collected. The transcription was then divided up for every telemetry segment so
that participants quotes could be shared without sharing their voices. Next, the
CUPS taxonomy was used to tag the telemetry segments using the hierarchy
seen in Figure 4.
After the data had been fully processed and tagged as described, n-gram se-
quences of the CUPS were computed, from bigrams up to 10-grams, as explained
below. This shows how common every unique sequence of CUPS is in the data.

3.3.1 N-grams

N-grams are contiguous sequences of n items from a given sample of text or
speech. In the context of this study, an ”item” refers to a programming state
identified during the think-aloud sessions. N-grams are used to capture and
analyze the patterns in sequences of these states, helping us understand the
typical behavior of participants over multiple steps. For instance, a bigram
(2-gram) would involve sequences of two consecutive programming states (e.g.,
from ”writing new functionality” to ”verifying suggestion”), while a trigram (3-
gram) involves three, and so on. Analyzing these patterns allows us to identify
common sequences in participant behavior that might indicate typical usage
strategies or common responses to Copilot’s interventions.
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4 Results

This section discusses the results of the think-aloud study illustrating typical
individual and common behavior in programming with Copilot. These typical
behaviors of the participants are shown both by the CUPS N-grams and by
participants’ quotes and behaviors during the study. The section starts with a
discussion of shared behaviors all participants show, after which the participants
are divided into two groups based on their current programming experience.
This is done because participant one, two, three, and four were all in a bachelor
program where they program every week, and all had programming experience
outside of their current bachelor program. On the other hand, participant five
and six were working on a thesis and had not programmed in a while, and did
not have programming experience outside of their higher education. They also
show different typical behaviors as will be discussed in this section.
In this section, the heatmap of bigrams of CUPS for all participants combined
can be seen, along with tables of the most occurring trigrams and 4-grams.
Heatmaps of bigrams of CUPS from all individual participants and tables of
trigrams, 4-grams, 5-grams, and 6-grams from both individual participants and
all participants combined can be found in appendix E and D.

Table 3: Most Occurring CUPS 3-grams for All Participants

3-gram Count

(’writing new functionality’, ’writing new functionality’, ’writing new functionality’) 40
(’prompt crafting’, ’prompt crafting’, ’prompt crafting’) 20
(’writing new functionality’, ’writing new functionality’, ’thinking verifying suggestion’) 14

Table 4: Most Occurring CUPS 4-grams for All Participants

4-gram Count

(’writing new functionality’, ’writing new functionality’, ’writing new functionality’,
’writing new functionality’)

17

(’prompt crafting’, ’prompt crafting’, ’prompt crafting’, ’prompt crafting’) 11
(’writing new functionality’, ’writing new functionality’, ’writing new functionality’,
’thinking verifying suggestion’)

9

(’writing new functionality’, ’writing new functionality’, ’thinking verifying suggestion’,
’writing new functionality’)

8

4.1 Common participant behaviors

The behaviors contained in this section apply to all participants.
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4.1.1 Lack of note taking

Although some participants planned out a solution before starting to code, none
took notes on the exercise despite explicitly being given paper for that purpose.
All participants came back to reading the exercise multiple times for details on
how sub-problems had to be implemented. To do this, they had to search for
details in the exercise, taking up more time than necessary.

4.1.2 Object-oriented exercise

All participants except participant five commented on the fact that the exercise
was quite easy, and that most work was in structuring the classes. The exer-
cise was designed with this in mind, so that student use on Copilot could be
tested explicitly on object-oriented programming. All participants immediately
understood that this was what the exercise was about and all but one tried
to plan the structure themselves. Participants four and five did not know how
to start. Participant six started the exercise by opening Google and searching
for information on class structures in C#. However, participant five started by
prompt crafting in order for Copilot to generate a class structure.

4.1.3 Distracted by suggestions

When participants were writing code, whether they had a plan in mind at
that time or not, Copilot suggesting code at an unexpected moment was often
distracting to participants. They lost their focus and it took time to get back
to what they were writing. Participant two rejected six suggestions in thirty
seconds, saying ”What is it saying?” and ”Copilots suggestions are wrong” all
while continuing to write the code they already had in mind. This participant
also accepted a suggestion, spending a lot of time reading and working on the
code, but then removing large chunks of this code later. When seeing the
suggestion this participant said: ”do I need this? No, I don’t... I’ll accept it
just to check”. This participant spent a lot of time on code they knew they
didn’t need beforehand.

4.1.4 Helpful assistant

The survey conducted in this study found that all participants thought Copilot
was helpful, although some also found it annoying besides finding it helpful. De-
spite this, participants two and three would not like to continue using Copilot.
Both mentioning they like working with the code suggestions in their IDE (in-
tegrated development environment) more as they only recommend lines of code
which they find more helpful. Participants mostly mentioned Copilot being
helpful in speeding up the programming process and helping with syntax.
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Figure 7: CUPS Bigram Frequency for all Participants
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4.2 Actively programming participant behaviors

This subsection contains common behaviors from the group of participants that
program regularly: participant one, two, three, and four. All these participants
had programmed for a job or as a course in secondary school as well. Participant
one and four had extensive experience with Copilot.

4.2.1 Following a plan

A common behavior in the group of participants who programmed regularly
was that they wanted to write the code they had in mind already. They clearly
planned a solution, or an outline of a solution, while reading the exercise and
started programming with a plan in mind. While reading the exercise, partic-
ipant one said: ”Ok, so the first thing I see is that I will need to implement
different classes. I’ll make a plant mother class with two daughters and one of
those will also have two daughters and the other one will have one daughter.
So I’ll start with a superclass.” The other participants from this group started
planning similarly while reading the exercise. It is clear that these participants
already abstract the problem from the description while they read it, thinking
about how they would implement the plant taxonomy the moment they see the
tree structure: ”Ok, I’ll start with the graph”, ”ok, looking at the picture...”.
This leads to these participants wanting to write the code they have in mind,
and rejecting Copilots suggestions. This is supported by the common bigrams,
trigrams, and 4-grams seen in Figure 7 and Table 3 and 4 where writing new
functionality is followed by itself as this means participants ignored Copilot’s
suggestions and kept writing their own code.

4.3 Behavior from participants with past experience

This subsection contains behavior from participants who had not programmed
in a while: participant five and six. Participant five wrote in the questionnaire
that they were not very familiar with C#. Both had no other experience with
Copilot than simply trying it out.

4.3.1 Syntax examples

Both participants who had not programmed in a while commented that Copilot
could be helpful when using language with complex syntax requirements such
as C#. These participants were not or no longer very familiar with C#. Par-
ticipant six commented on Copilot in the questionnaire: ”[Copilot] makes the
whole syntax thing easier if you know what you want and where you want it.”.
During the think-aloud, participant six said: ”I’m fiddling around a lot with the
syntax, so I’m removing a lot. It’s so long ago that I don’t really know what
I’m doing.”. Since there are no specific cases in both participants think-aloud
studies where Copilot helped with syntax, it could mean that these participants
were using Copilot’s suggestions as general examples of C# code.
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Figure 8: CUPS Bigram Frequency Heatmap for Participant 5
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Table 5: Most Occurring CUPS 3-grams for Participant 5

3-gram Count

(’prompt crafting’, ’prompt crafting’, ’prompt crafting’) 20
(’thinking verifying suggestion’, ’waiting for suggestion’, ’thinking verifying suggestion’) 9
(’prompt crafting’, ’prompt crafting’, ’thinking verifying suggestion’) 8

Table 6: Most Occurring CUPS 4-grams for Participant 5

4-gram Count

(’prompt crafting’, ’prompt crafting’, ’prompt crafting’, ’prompt crafting’) 11
(’prompt crafting’, ’prompt crafting’, ’prompt crafting’, ’thinking verifying suggestion’) 7
(’thinking verifying suggestion’, ’waiting for suggestion’, ’thinking verifying suggestion’,
’waiting for suggestion’)

5

(’prompt crafting’, ’thinking verifying suggestion’, ’waiting for suggestion’, ’thinking
verifying suggestion’)

5

4.3.2 Prompt crafting

Participant five had a different approach to using Copilot than the other par-
ticipants. From this participants bigram heat map and sequence tables (Figure
8, Table 5, 6, and 7) it is clear that they tried to get Copilot to solve this exer-
cise by using prompts. This lead to this participant leaning on Copilot heavily
while not understanding the suggested code. During the study they said after
prompt crafting, but not getting the desired result: ”I will make it a bit nicer
so maybe Copilot understands me better”, which was then followed by more
prompt crafting.

5 Discussion and future work

5.1 Discussion

Students who use fundamental programming skills such as planning a solution
before starting to code, abstracting a problem from a description and dividing
that problem up into sub-problems, use Copilot to accelerate their programming.
They typically accept suggestions that fit into their plan. Students who do not
use these fundamental programming skills try to use Copilot for exploration,
but were mostly confused by Copilot suggestions. Using Copilot for acceleration
and exploration have previously been found by Barke et al. as explained in the
background section citebarke2022grounded. If students plan their solution out
before starting to code, their code will be better, and written faster. Planning
out code is also an important step in learning to code. They are the first steps
in McCracken et al. their framework: abstracting a problem from a description,
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Table 7: Most Occurring CUPS 5-grams for Participant 5

5-gram Count

(’prompt crafting’, ’prompt crafting’, ’prompt crafting’, ’prompt crafting’, ’prompt
crafting’)

7

(’prompt crafting’, ’prompt crafting’, ’prompt crafting’, ’prompt crafting’, ’thinking
verifying suggestion’)

4

(’prompt crafting’, ’prompt crafting’, ’prompt crafting’, ’thinking verifying suggestion’,
’prompt crafting’)

3

(’prompt crafting’, ’prompt crafting’, ’thinking verifying suggestion’, ’prompt crafting’,
’thinking verifying suggestion’)

3

(’thinking verifying suggestion’, ’waiting for suggestion’, ’thinking verifying suggestion’,
’waiting for suggestion’, ’thinking verifying suggestion’)

3

dividing a problem up into sub-problems [18]. These steps were also found to be
very beneficial in programming with Copilot as seen in the common behavior
of following a plan. When participants were following a plan, they used
Copilot as an assistant that had to conform to their plan. Participants only
accepted code that fit into their plan and so, deciding whether or not to accept a
suggestion from Copilot did not take up too much time. While some participants
did form a plan before starting to code, none took notes. If students were allowed
to use Copilot for a object oriented programming exercise, it would be helpful
to ensure they take notes on how they plan to solve the exercise before they
start to code. This will save students time, as they will have to look up details
in the exercise less often, and will help students use Copilot in a productive way.
When participants had less current experience writing C#, they started coding
without a clear plan in mind. This is described as a need to code by Yuen[31].
This need to code without having a clear idea of what to write, drove participants
to using Copilot early in the problem solving process. This caused Copilot to
give many unfitting suggestions as it did not have a lot of input to base its
suggestions on. Participants using Copilot in this way seemed to follow its lead
in stead of letting Copilot follow their lead. This caused these participants
confused on what to do.
It seems that students who have not mastered the skills of abstracting a problem
from a description and dividing a problem up into sub-problems, needs to learn
those before starting to use Copilot as a programming assistant. However,
Copilot can be helpful to these students in providing examples of code in an
unfamiliar language, as it can clearly show the right syntax quicker than Google.
Using examples can be very beneficial in learning programming according to
Zander et al. [32].

23



5.2 Limitations

When looking at the participant selection and sample size there are some clear
limitations to this study. All participants that were selected came from the same
university (Utrecht University). For the sample size, the study was conducted
with six people, of which only two fit into the demographic of first year com-
puter science students. This means that the results and conclusion are more
fit to support future, more extensive research on the same topic, than to stand
alone.

One of the limitations of this study is the sole use of GitHub Copilot for AI
assisted programming, as currently there are multiple other examples such as
Amazon CodeWhisperer1 and Tabnine2. Besides other programming assistants,
GitHub Copilot has recently been updated with more features, meaning this
study does not fully cover Copilot’s current features. If more programming
assistants were tested in this study, more features could have been tested for
typical student use.

5.3 Future work

Future work is needed on if code-recommender systems should be used as a tool
for learning in higher education and if so, how such tools could be implemented
to be used as successfully as possible. This could differ for age and experience
level of students, and also for different courses. Research is also needed on how
widespread Copilot use is among different categories of students.
In terms of using generative AI for programming education in a wider sense,
research is needed on which type of generative AI is most helpful for learning.
Would tools generating natural language, only code, or a combination work
best?
For example, comparing the use of Copilot with that of ChatGPT [20]. This
path could research which method is more beneficial when learning to program.
Another interesting field of research is in how tools such as GitHub Copilot
can be used to give students reliable personalised feedback. This can be greatly
beneficial to their learning but decreases the workload of educators significantly.

6 Conclusion

This thesis presents a think-aloud study on how computer science students solve
an object oriented programming problem using Github Copilot, a state of the
art code-recommender system based on a large-language model. The study iden-
tified several typical behaviors among participants, which were linked to funda-
mental programming skills described in the literature. To find these behaviors,

1https://aws.amazon.com/codewhisperer/
2https://www.tabnine.com/
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the CUPS taxonomy was used, a taxonomy of code-recommender system user
states, specifically designed to tag behavior of programmers using systems such
as Copilot. Through this study, it was found that code-recommender systems
are percieved to be helpful to students in reducing the time they spend on
programming exercises while students still use fundamental (object-oriented)
programming skills, specificaly those related to planning out solutions to object
oriented programming problems. Students who do not posses those skills were
not helped by using code-recommender systems as assistants, but were confused
by unhelpful suggestions. However code-recommender sytems might be helpful
in providing these students with examples of correct code. If code-recommender
systems are to be used by students, an emphasis must be placed by educators
on planning out a solution before starting to code.
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A Appendix A: Practice exercise

Given a string and a non-negative int n, return a larger string that is n copies
of the original string.

stringTimes(”Whoop!”, 2) → ”Whoop!Whoop!”

stringTimes(”Hi”, 3) → ”HiHiHi”

stringTimes(”Hi”, 1) → ”Hi”

B Appendix B: Exercise versions

B.1 First version

In the diagram you see part of the plant taxonomy. Non-flowering seed pro-
ducers such as pine trees produce seeds through cones. Flowering plants have
their seeds enclosed in a fruit that comes from a pollinated flower.
Implement the plant taxonomy in the diagram using different classes, with ap-
propriate methods and attributes.

All plants should have a name that you can make up yourself.

All plants should be able to produce seeds with seedProduction() which prints
a string describing how this plant produces seeds. Non-flowering and flowering
plants produce seeds through cones and fruits respectively. Since all plants pro-
duce seeds in their own way, the string this method prints is different for every
plant.

Plants that produce cones should have a coneProduction() method that, in the
case of a pine tree, prints: “Pine tree name created nrOfCones cones!” when
called. Here, nrOfCones is the number of cones this specific pine tree produces.
Every non-flowering plant should have this attribute that specifies how many

29



cones it produces when coneProduction() is called.

Flowering plants have to be pollinated before they can produce fruits that con-
tain seeds. They should have a bool pollinated that starts out as false. When
the method pollination() is called, pollinated turns true. Now the plant can
create fruit with the method fruitFormation(). When pollinated is false when
this method is called, the following string should be printed: ”Plant name was
not able to produce any fruit, since it is not pollinated”. When pollinated is
true, the string printed by this method depends on the type of plant that it
belongs to:

• Rose plants create rosebuds: ”Rose name produced many rosebuds!”

• Grasses create grains: ”Grass name produced many grains!”

Create a grass, a rose plant, and a pine tree and have them all produce seeds in
their own ways.

B.2 Second version

In the diagram you see part of the plant taxonomy. Non-flowering seed pro-
ducers such as pine trees produce seeds through cones. Flowering plants have
their seeds enclosed in a fruit that comes from a pollinated flower.
Implement the plant taxonomy in the diagram using different classes, with ap-
propriate methods and attributes.

All plants should have a name that you can make up yourself.

All plants should be able to produce seeds with seedProduction() which prints
a string describing how this plant produces seeds. Non-flowering plants produce
seeds inside cones and flowering plants produce seeds inside fruits. Since all
plants produce seeds in their own way, the string this method prints is different
for every plant: for a pine tree, which is a non-flowering plant, it should print:
“Pine tree name created nrOfCones cones!”. Here, nrOfCones is the number
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of cones this specific pine tree produces. Every non-flowering plant should have
this attribute that specifies how many cones it produces when seedProduction()
is called.

Flowering plants have to be pollinated before they can produce fruits that con-
tain seeds. They should have a bool pollinated that starts out as false. When
the method pollination() is called, pollinated turns true. Now the plant can cre-
ate fruit. When a flowering plant tries to create a fruit when pollinated is false,
the following string should be printed: ”Plant name was not able to produce
any fruit, since it is not pollinated”. When pollinated is true, the string printed
depends on the type of plant that it belongs to:

• Rose plants create rosebuds: ”Rose name produced many rosebuds!”

• Grasses create grains: ”Grass name produced many grains!”

Create a grass, a rose plant, and a pine tree and have them all produce seeds in
their own ways.

B.3 Final version

In the diagram you see part of the plant taxonomy. Non-flowering seed pro-
ducers such as pine trees produce seeds through cones. Flowering plants have
their seeds enclosed in a fruit that comes from a pollinated flower.
Implement the plant taxonomy in the diagram using different classes, with ap-
propriate methods and attributes.

All plants should be able to produce seeds with seedProduction() which prints
a string. Since plants produce seeds in their own way (cones or fruits), the
string this method prints is different for every plant: for a pine tree, which is
a non-flowering plant, it should print: “Pine tree name produced nrOfCones
cones!”. Here, name is a name you can choose for this specific pine tree. Every
plant object should have a name. nrOfCones is the number of cones this spe-
cific pine tree produces. Every non-flowering plant should have this attribute
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that specifies how many cones it produces when seedProduction() is called. For
example, if you name a pine tree ”western bristlecone” and say it produces 30
cones, seedProduction should print: ”Pine tree western bristlecone produced 30
cones”.

Flowering plants have to be pollinated before they can produce fruits that con-
tain seeds. They should have a bool pollinated that starts out as false. When
the method pollination() is called, pollinated turns true. Now the plant can cre-
ate fruit. When a flowering plant tries to create a fruit when pollinated is false,
the following string should be printed: ”Plant name was not able to produce
any fruit, since it is not pollinated”. When pollinated is true, the string printed
depends on the type of plant that it belongs to:

• Rose plants create rosebuds: ”Rose name produced many rosebuds!”

• Grasses create grains: ”Grass name produced many grains!”

Create a grass, a rose plant, and a pine tree and have them all produce seeds in
their own ways.

C Appendix C: Questionnaire
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Participant Identification

Please fill out your participant ID:
Participant ID (1)

Survey Questions

Exercise Difficulty

How difficult did you find the exercise?

Open-Ended Feedback

Q21. Do you have any comments/feedback on the main exercise (plant taxon-
omy)?

Study Programme

Which study programme are you following?

Computer Science (Informatica) (1)

Artificial Intelligence (kunstmatige intelligentie) (2)

Other: (3)

Year of Study

In what year of that study programme are you?

first year (1)

second year (2)

third year (3)
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other: (4)

Outside Experience

What programming experience do you have besides your bachelor programme?
(multiple answers possible)

none (1)

computer science in secondary school (middelbare school) (2)

from a job (bijbaan) (3)

from other formal education (4)

from programming as a hobby (5)

other: (6)
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Experience with GitHub Copilot

Q13. Did you have any experience working with GitHub Copilot before partic-
ipating in this study?

yes, I have tried it once/a few times (1)

yes, I work with it on some projects (2)

yes, I always have copilot activated while programming (3)

no (4)

other: (5)

Further GitHub Copilot Experience

Q14. How long have you been using GitHub Copilot?

Usage Context of GitHub Copilot

Q15. On which types of projects do you use Copilot? (hobby, uni work, etc.)

Usage of Additional AI Tools

Q16. What other AI tools do you use while programming?

none (1)

ChatGPT (2)

GPT-4 (3)

Other: (4)
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D Appendix D: CUPS N-gram tables
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3-gram Count

(’writing new functionality’, ’writing new functionality’, ’writing new functionality’) 11
(’writing new functionality’, ’writing new functionality’, ’thinking verifying suggestion’) 4
(’writing new functionality’, ’thinking verifying suggestion’, ’writing new functionality’) 4

Table 8: Most Occurring 3-grams for Participant 1

4-gram Count

(’writing new functionality’, ’writing new functionality’, ’writing new functionality’,
’writing new functionality’)

5

(’writing new functionality’, ’writing new functionality’, ’thinking verifying suggestion’,
’writing new functionality’)

3

(’writing new functionality’, ’thinking verifying suggestion’, ’writing new functionality’,
’writing new functionality’)

2

(’writing new functionality’, ’writing new functionality’, ’deferring thought for later’,
’editing last suggestion’)

2

Table 9: Most Occurring 4-grams for Participant 1

37



5-gram Count

(’writing new functionality’, ’writing new functionality’, ’thinking verifying suggestion’,
’writing new functionality’, ’writing new functionality’)

2

(’writing new functionality’, ’writing new functionality’, ’writing new functionality’,
’thinking verifying suggestion’, ’writing new functionality’)

2

(’reading exercise’, ’writing new functionality’, ’writing new functionality’, ’writing new
functionality’, ’writing new functionality’)

2

(’writing new functionality’, ’writing new functionality’, ’writing new functionality’,
’writing new functionality’, ’Thinking about new code to write’)

2

(’writing new functionality’, ’writing new functionality’, ’writing new functionality’,
’deferring thought for later’, ’editing last suggestion’)

2

Table 10: Most Occurring 5-grams for Participant 1

6-gram Count

(’writing new functionality’, ’writing new functionality’, ’writing new functionality’,
’writing new functionality’, ’thinking verifying suggestion’, ’writing new functionality’)

2

(’writing new functionality’, ’writing new functionality’, ’thinking verifying suggestion’,
’writing new functionality’, ’writing new functionality’, ’writing new functionality’)

2

(’writing new functionality’, ’writing new functionality’, ’writing new functionality’,
’thinking verifying suggestion’, ’writing new functionality’, ’writing new functionality’)

1

(’Thinking about new code to write’, ’writing new functionality’, ’reading exercise’,
’writing new functionality’, ’writing new functionality’, ’writing new functionality’)

1

(’writing new functionality’, ’reading exercise’, ’writing new functionality’, ’writing new
functionality’, ’writing new functionality’, ’writing new functionality’)

1

(’reading exercise’, ’writing new functionality’, ’writing new functionality’, ’writing new
functionality’, ’writing new functionality’, ’Thinking about new code to write’)

1

Table 11: Most Occurring 6-grams for Participant 1

3-gram Count

(’writing new functionality’, ’writing new functionality’, ’writing new functionality’) 20
(’thinking about new code to write’, ’writing new functionality’, ’writing new function-
ality’)

7

(’writing new functionality’, ’thinking verifying suggestion’, ’writing new functionality’) 7

Table 12: Most Occurring 3-grams for Participant 2
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4-gram Count

(’writing new functionality’, ’writing new functionality’, ’writing new functionality’,
’writing new functionality’)

10

(’writing new functionality’, ’writing new functionality’, ’thinking verifying suggestion’,
’writing new functionality’)

5

(’writing new functionality’, ’writing new functionality’, ’writing new functionality’,
’thinking verifying suggestion’)

5

(’thinking about new code to write’, ’writing new functionality’, ’writing new function-
ality’, ’writing new functionality’)

4

Table 13: Most Occurring 4-grams for Participant 2

5-gram Count

(’writing new functionality’, ’writing new functionality’, ’writing new functionality’,
’writing new functionality’, ’writing new functionality’)

5

(’writing new functionality’, ’writing new functionality’, ’writing new functionality’,
’thinking verifying suggestion’, ’writing new functionality’)

4

(’writing new functionality’, ’writing new functionality’, ’Reading exercise’, ’writing
new functionality’, ’writing new functionality’)

3

(’writing new functionality’, ’writing new functionality’, ’thinking verifying suggestion’,
’writing new functionality’, ’writing new functionality’)

2

(’writing new functionality’, ’writing new functionality’, ’writing new functionality’,
’writing new functionality’, ’thinking verifying suggestion’)

2

Table 14: Most Occurring 5-grams for Participant 2

6-gram Count

(’writing new functionality’, ’writing new functionality’, ’writing new functionality’,
’writing new functionality’, ’writing new functionality’, ’writing new functionality’)

3

(’thinking about new code to write’, ’writing new functionality’, ’writing new function-
ality’, ’writing new functionality’, ’writing new functionality’, ’writing new functional-
ity’)

2

(’deferring thought for later’, ’editing last suggestion’, ’thinking about new code to
write’, ’writing new functionality’, ’writing new functionality’, ’writing new function-
ality’)

2

(’Reading exercise’, ’writing new functionality’, ’writing new functionality’, ’writing
new functionality’, ’writing new functionality’, ’thinking verifying suggestion’)

2

(’writing new functionality’, ’writing new functionality’, ’writing new functionality’,
’writing new functionality’, ’thinking verifying suggestion’, ’writing new functionality’)

2

(’writing new functionality’, ’writing new functionality’, ’Reading exercise’, ’writing
new functionality’, ’writing new functionality’, ’writing new functionality’)

2

Table 15: Most Occurring 6-grams for Participant 2
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3-gram Count

(’writing new functionality’, ’writing new functionality’, ’writing new functionality’) 6
(’thinking verifying suggestion’, ’thinking about new code to write’, ’thinking verifying
suggestion’)

4

(’thinking about new code to write’, ’writing new functionality’, ’thinking verifying
suggestion’)

3

Table 16: Most Occurring 3-grams for Participant 3

4-gram Count

(’writing new functionality’, ’writing new functionality’, ’writing new functionality’,
’deferring thought for later’)

3

(’writing new functionality’, ’thinking verifying suggestion’, ’thinking about new code
to write’, ’thinking verifying suggestion’)

2

(’editing last suggestion’, ’thinking verifying suggestion’, ’writing new functionality’,
’thinking verifying suggestion’)

2

(’thinking about new code to write’, ’writing new functionality’, ’thinking verifying
suggestion’, ’thinking about new code to write’)

2

Table 17: Most Occurring 4-grams for Participant 3

5-gram Count

(’thinking verifying suggestion’, ’thinking about new code to write’, ’thinking verifying
suggestion’, ’thinking about new code to write’, ’thinking verifying suggestion’)

2

(’thinking about new code to write’, ’thinking about new code to write’, ’writing new
functionality’, ’writing new functionality’, ’writing new functionality’)

2

(’writing new functionality’, ’writing new functionality’, ’writing new functionality’,
’deferring thought for later’, ’thinking verifying suggestion’)

2

(’thinking about new code to write’, ’writing new functionality’, ’writing new function-
ality’, ’writing new functionality’, ’writing new functionality’)

2

(’thinking about new code to write’, ’thinking about new code to write’, ’thinking
verifying suggestion’, ’editing written code’, ’debugging/testing code’)

1

Table 18: Most Occurring 5-grams for Participant 3
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6-gram Count

(’thinking about new code to write’, ’thinking about new code to write’, ’writing new
functionality’, ’writing new functionality’, ’writing new functionality’, ’writing new
functionality’)

2

(’thinking verifying suggestion’, ’writing new functionality’, ’thinking verifying sugges-
tion’, ’editing last suggestion’, ’writing new functionality’, ’editing last suggestion’)

1

(’thinking about new code to write’, ’thinking verifying suggestion’, ’thinking about
new code to write’, ’thinking about new code to write’, ’reading exercise’, ’writing new
functionality’)

1

(’thinking verifying suggestion’, ’thinking about new code to write’, ’thinking about
new code to write’, ’reading exercise’, ’writing new functionality’, ’editing written code’)

1

(’thinking about new code to write’, ’thinking about new code to write’, ’reading
exercise’, ’writing new functionality’, ’editing written code’, ’thinking about new code
to write’)

1

(’thinking about new code to write’, ’reading exercise’, ’writing new functionality’,
’editing written code’, ’thinking about new code to write’, ’writing new functionality’)

1

Table 19: Most Occurring 6-grams for Participant 3

3-gram Count

(’deferring thought for later’, ’deferring thought for later’, ’deferring thought for later’) 4
(’writing new functionality’, ’deferring thought for later’, ’editing last suggestion’) 3
(’editing last suggestion’, ’deferring thought for later’, ’editing last suggestion’) 3

Table 20: Most Occurring 3-grams for Participant 4

4-gram Count

(’deferring thought for later’, ’deferring thought for later’, ’deferring thought for later’,
’deferring thought for later’)

3

(’deferring thought for later’, ’editing last suggestion’, ’deferring thought for later’,
’editing last suggestion’)

2

(’editing last suggestion’, ’writing new functionality’, ’deferring thought for later’, ’edit-
ing last suggestion’)

2

(’writing new functionality’, ’thinking verifying suggestion’, ’thinking about new code
to write’, ’reading exercise’)

2

Table 21: Most Occurring 4-grams for Participant 4
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5-gram Count

(’deferring thought for later’, ’deferring thought for later’, ’deferring thought for later’,
’deferring thought for later’, ’deferring thought for later’)

2

(’editing written code’, ’writing new functionality’, ’deferring thought for later’, ’editing
last suggestion’, ’writing new functionality’)

1

(’writing new functionality’, ’thinking verifying suggestion’, ’thinking about new code
to write’, ’reading exercise’, ’writing new functionality’)

1

(’thinking verifying suggestion’, ’thinking about new code to write’, ’reading exercise’,
’writing new functionality’, ’thinking verifying suggestion’)

1

(’thinking about new code to write’, ’reading exercise’, ’writing new functionality’,
’thinking verifying suggestion’, ’writing new functionality’)

1

Table 22: Most Occurring 5-grams for Participant 4

6-gram Count

(’writing new functionality’, ’reading exercise’, ’writing new functionality’, ’thinking
verifying suggestion’, ’thinking about new code to write’, ’reading exercise’)

1

(’editing written code’, ’writing new functionality’, ’deferring thought for later’, ’editing
last suggestion’, ’writing new functionality’, ’deferring thought for later’)

1

(’writing new functionality’, ’thinking verifying suggestion’, ’thinking about new code
to write’, ’reading exercise’, ’writing new functionality’, ’thinking verifying suggestion’)

1

(’thinking verifying suggestion’, ’thinking about new code to write’, ’reading exercise’,
’writing new functionality’, ’thinking verifying suggestion’, ’writing new functionality’)

1

(’thinking about new code to write’, ’reading exercise’, ’writing new functionality’,
’thinking verifying suggestion’, ’writing new functionality’, ’writing new functionality’)

1

(’reading exercise’, ’writing new functionality’, ’thinking verifying suggestion’, ’writing
new functionality’, ’writing new functionality’, ’writing new functionality’)

1

Table 23: Most Occurring 6-grams for Participant 4

3-gram Count

(’prompt crafting’, ’prompt crafting’, ’prompt crafting’) 20
(’thinking verifying suggestion’, ’waiting for suggestion’, ’thinking verifying suggestion’) 9
(’prompt crafting’, ’prompt crafting’, ’thinking verifying suggestion’) 8

Table 24: Most Occurring 3-grams for Participant 5
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4-gram Count

(’prompt crafting’, ’prompt crafting’, ’prompt crafting’, ’prompt crafting’) 11
(’prompt crafting’, ’prompt crafting’, ’prompt crafting’, ’thinking verifying suggestion’) 7
(’thinking verifying suggestion’, ’waiting for suggestion’, ’thinking verifying suggestion’,
’waiting for suggestion’)

5

(’prompt crafting’, ’thinking verifying suggestion’, ’waiting for suggestion’, ’thinking
verifying suggestion’)

5

Table 25: Most Occurring 4-grams for Participant 5

5-gram Count

(’prompt crafting’, ’prompt crafting’, ’prompt crafting’, ’prompt crafting’, ’prompt
crafting’)

7

(’prompt crafting’, ’prompt crafting’, ’prompt crafting’, ’prompt crafting’, ’thinking
verifying suggestion’)

4

(’prompt crafting’, ’prompt crafting’, ’prompt crafting’, ’thinking verifying suggestion’,
’prompt crafting’)

3

(’prompt crafting’, ’prompt crafting’, ’thinking verifying suggestion’, ’prompt crafting’,
’thinking verifying suggestion’)

3

(’thinking verifying suggestion’, ’waiting for suggestion’, ’thinking verifying suggestion’,
’waiting for suggestion’, ’thinking verifying suggestion’)

3

Table 26: Most Occurring 5-grams for Participant 5

6-gram Count

(’prompt crafting’, ’prompt crafting’, ’prompt crafting’, ’prompt crafting’, ’prompt
crafting’, ’thinking verifying suggestion’)

4

(’prompt crafting’, ’prompt crafting’, ’prompt crafting’, ’prompt crafting’, ’prompt
crafting’, ’prompt crafting’)

3

(’prompt crafting’, ’prompt crafting’, ’prompt crafting’, ’thinking verifying suggestion’,
’waiting for suggestion’, ’thinking verifying suggestion’)

3

(’prompt crafting’, ’prompt crafting’, ’thinking verifying suggestion’, ’waiting for sug-
gestion’, ’thinking verifying suggestion’, ’waiting for suggestion’)

2

(’reading exercise’, ’prompt crafting’, ’prompt crafting’, ’prompt crafting’, ’reading
exercise’, ’prompt crafting’)

2

(’thinking verifying suggestion’, ’waiting for suggestion’, ’thinking verifying suggestion’,
’waiting for suggestion’, ’deferring thought for later’, ’waiting for suggestion’)

2

Table 27: Most Occurring 6-grams for Participant 5
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3-gram Count

(’thinking about new code to write’, ’thinking about new code to write’, ’thinking
about new code to write’)

3

(’editing written code’, ’thinking about new code to write’, ’thinking about new code
to write’)

2

(’looking up documentation’, ’editing written code’, ’thinking about new code to write’) 2

Table 28: Most Occurring 3-grams for Participant 6

4-gram Count

(’looking up documentation’, ’editing written code’, ’thinking about new code to write’,
’thinking about new code to write’)

2

(’writing new functionality’, ’writing new functionality’, ’writing new functionality’,
’reading exercise’)

2

(’editing written code’, ’thinking about new code to write’, ’thinking about new code
to write’, ’thinking about new code to write’)

2

(’thinking about new code to write’, ’looking up documentation’, ’thinking about new
code to write’, ’reading exercise’)

1

Table 29: Most Occurring 4-grams for Participant 6

5-gram Count

(’looking up documentation’, ’editing written code’, ’thinking about new code to write’,
’thinking about new code to write’, ’thinking about new code to write’)

2

(’thinking about new code to write’, ’looking up documentation’, ’thinking about new
code to write’, ’reading exercise’, ’writing new functionality’)

1

(’writing new functionality’, ’editing written code’, ’writing new functionality’, ’writing
new functionality’, ’writing new functionality’)

1

(’editing written code’, ’writing new functionality’, ’writing new functionality’, ’writing
new functionality’, ’reading exercise’)

1

(’writing new functionality’, ’writing new functionality’, ’writing new functionality’,
’reading exercise’, ’writing new functionality’)

1

Table 30: Most Occurring 5-grams for Participant 6
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6-gram Count

(’reading exercise’, ’looking up documentation’, ’writing new functionality’, ’editing
written code’, ’writing new functionality’, ’writing new functionality’)

1

(’looking up documentation’, ’writing new functionality’, ’editing written code’, ’writ-
ing new functionality’, ’writing new functionality’, ’writing new functionality’)

1

(’writing new functionality’, ’editing written code’, ’writing new functionality’, ’writing
new functionality’, ’writing new functionality’, ’reading exercise’)

1

(’editing written code’, ’writing new functionality’, ’writing new functionality’, ’writing
new functionality’, ’reading exercise’, ’writing new functionality’)

1

(’writing new functionality’, ’writing new functionality’, ’writing new functionality’,
’reading exercise’, ’writing new functionality’, ’writing new functionality’)

1

(’writing new functionality’, ’writing new functionality’, ’reading exercise’, ’writing new
functionality’, ’writing new functionality’, ’writing new functionality’)

1

Table 31: Most Occurring 6-grams for Participant 6

3-gram Count

(’writing new functionality’, ’writing new functionality’, ’writing new functionality’) 40
(’prompt crafting’, ’prompt crafting’, ’prompt crafting’) 20
(’writing new functionality’, ’writing new functionality’, ’thinking verifying suggestion’) 14

Table 32: Most Occurring 3-grams for All Participants

4-gram Count

(’writing new functionality’, ’writing new functionality’, ’writing new functionality’,
’writing new functionality’)

17

(’prompt crafting’, ’prompt crafting’, ’prompt crafting’, ’prompt crafting’) 11
(’writing new functionality’, ’writing new functionality’, ’writing new functionality’,
’thinking verifying suggestion’)

9

(’writing new functionality’, ’writing new functionality’, ’thinking verifying suggestion’,
’writing new functionality’)

8

Table 33: Most Occurring 4-grams for All Participants
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5-gram Count

(’prompt crafting’, ’prompt crafting’, ’prompt crafting’, ’prompt crafting’, ’prompt
crafting’)

7

(’writing new functionality’, ’writing new functionality’, ’writing new functionality’,
’writing new functionality’, ’writing new functionality’)

6

(’writing new functionality’, ’writing new functionality’, ’writing new functionality’,
’thinking verifying suggestion’, ’writing new functionality’)

6

(’writing new functionality’, ’writing new functionality’, ’writing new functionality’,
’writing new functionality’, ’thinking verifying suggestion’)

5

(’writing new functionality’, ’thinking verifying suggestion’, ’writing new functionality’,
’writing new functionality’, ’writing new functionality’)

5

Table 34: Most Occurring 5-grams for All Participants

6-gram Count

(’writing new functionality’, ’writing new functionality’, ’thinking verifying suggestion’,
’writing new functionality’, ’writing new functionality’, ’writing new functionality’)

4

(’prompt crafting’, ’prompt crafting’, ’prompt crafting’, ’prompt crafting’, ’prompt
crafting’, ’thinking verifying suggestion’)

4

(’writing new functionality’, ’writing new functionality’, ’writing new functionality’,
’writing new functionality’, ’thinking verifying suggestion’, ’writing new functionality’)

4

(’prompt crafting’, ’prompt crafting’, ’prompt crafting’, ’thinking verifying suggestion’,
’waiting for suggestion’, ’thinking verifying suggestion’)

3

(’writing new functionality’, ’writing new functionality’, ’writing new functionality’,
’writing new functionality’, ’writing new functionality’, ’writing new functionality’)

3

(’prompt crafting’, ’prompt crafting’, ’prompt crafting’, ’prompt crafting’, ’prompt
crafting’, ’prompt crafting’)

3

Table 35: Most Occurring 6-grams for All Participants
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E Appendix E: Bigram Heatmaps

47



Figure 9: Bigram Frequency Heatmap for Participant 1
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Figure 10: Bigram Frequency Heatmap for Participant 2
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Figure 11: Bigram Frequency Heatmap for Participant 3
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Figure 12: Bigram Frequency Heatmap for Participant 4
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Figure 13: Bigram Frequency Heatmap for Participant 5
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Figure 14: Bigram Frequency Heatmap for Participant 6
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