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Abstract

This research aims to replicate CTAs using both top-down and bottom-up methods.
The top-down method involves estimating CTA positions based on their daily returns
over some lookback period, by using linear regression. The bottom-up method combines
trend and carry strategies, followed by an optimization process to determine the best
weights for strategy variants. The robustness of these methods is evaluated through
in-sample and out-sample tests. Performance metrics such as R2 and Sharpe ratio are
used to assess the methods. The results indicate that the bottom-up method performs
well in replication, with a Sharpe ratio of 0.8 and an R2 of 0.6, also demonstrating good
robustness. While the top-down method achieves a Sharpe ratio of 0.47 and an R2 of 0.42,
also demonstrating poor robustness. In terms of accuracy, profitability, and robustness,
the bottom-up method outperforms the top-down method.
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1 Introduction

Investment funds known as Commodity Trading Advisors (CTAs) present intriguing invest-
ment prospects due to their diversification attributes compared to the predominant long-only
buy and hold equity portfolios commonly held by individuals and institutions. However,
CTAs are encumbered by their high fees and the inherent opaqueness associated with being
classified as black box funds, thereby impeding potential investors. Another motivation is
that there exists a considerable amount of misconception surrounding the role and actions of
CTAs. An example showing this misconception is an article ”Hedge funds profit from Ukraine
war food price surge” published by The Guardian [Guardian, 2023]. The article suggests that
it is unethical for CTAs to profit from the Ukraine war. However, it fails to acknowledge that
CTAs had already established substantial positions in wheat prior to the onset of the conflict.
To address these issues, this project aims to employ statistical modeling techniques to unveil
the inner workings of CTAs, thereby effectively unlocking the black box and reconstructing
their internal positions exclusively utilizing publicly accessible performance data.

This research aims to shed light on the strategies and composition of CTAs, offering valu-
able insights for investors to make informed decisions. Beyond benefiting individual investors,
this study provides governmental bodies and regulatory agencies with critical insights to bet-
ter supervise and manage CTA operations, thanks to increased transparency in their strategies
and compositions. Understanding CTAs helps evaluate the potential risks and impacts asso-
ciated with these funds, serving as a crucial reference for policy and regulation formulation.
These measures ensure the healthy development of the market and protect investor interests.

2 Research background

2.1 CTA replication

2.1.1 Why is CTA replication hard?

The replication of CTAs presents considerable challenges due to various factors such as the
scarcity of data, the vagueness of what strategies that CTAs are running, and the ambiguity
of evaluation metrics. This section delves into the reasons behind the difficulty in accurately
replicating CTAs and highlights key issues associated with data availability, success criteria,
the elusive nature of CTA strategies, and the limited academic research in this domain.

Data perspective CTAs, like most other hedge funds, tend not to disclose their positions
and publish, at most, daily, weekly, or monthly return data. This limited transparency
presents significant challenges for replication. Without detailed position data, we cannot see
the specific assets and strategies employed, making it difficult to understand the performance
drivers accurately. The sparse return data available lacks the granularity needed for thorough
analysis, hindering the capture of dynamic strategy adjustments.

Vaguesness of what strategies CTAs are running Furthermore, the elusive nature of
CTA strategies poses a significant hurdle in the replication process. The majority of CTAs
do not disclose their strategies, and even if they do, there is no guarantee that the publicly
disclosed strategies reflect their actual practices. This opacity inhibits replication efforts, as it
becomes arduous to accurately discern and replicate the intricate decision-making processes
and trading strategies employed by CTAs.
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2.1.2 What does it mean to be successful?

The challenge of replicating CTAs is made harder by the difficulty in defining success criteria.
To properly assess replication models, we need metrics that match the goals and performance
measures of CTAs. However, setting clear benchmarks is tough due to the wide range of
strategies and investment goals used by CTAs. Therefore, agreeing on the right metrics to
evaluate replication success is still a challenge in both academia and industry.

Additionally, it is important to focus on the main goal of CTA replication. While exactly
matching post-fee returns is very difficult, especially considering the fees charged by these
funds, the main aim might be to create a profitable investment strategy. So, using risk-
adjusted return measures, like the Sharpe ratio, Sortino ratio, and Calmar ratio, is a wise
approach to assess the profitability of the replicated strategy. In summary, success in CTA
replication should be judged by both how accurately returns are replicated and how profitable
the strategy is, in risk-adjusted terms, compared to the target CTA.

2.1.3 What has been done

According to Takahashi et al. [2008], the biggest banks such as Goldman Sachs, Merrill Lynch,
and JP Morgan, and some large investment companies such as, Partners Group, have launched
hedge fund replication products. There are 3 hedge fund replication methods: Rule-based,
Factor-based, and Distribution replicating approaches. First, the Rule-Based Replication
method involves replicating hedge fund strategies by following a set of predetermined rules
or algorithms that mimic the decision-making processes of fund managers. This approach
aims for transparency and simplicity but may struggle to capture the nuanced strategies of
active fund managers. Second, the Factor-Based Replication method uses regression analysis
to extract a set of factors from public market data, establishing a linear model to replicate
hedge fund returns. This method is transparent, easy to understand and implement, and
cost-effective, but it is sensitive to factor selection and may not fully capture the unique skills
of fund managers. Finally, the Distribution Replicating Approach analyzes historical data to
understand the distribution of hedge fund returns, using statistical methods to simulate and
replicate this distribution. This approach better captures the risk and return characteristics
of the fund but requires extensive historical data and assumes future performance will mirror
the past.

Amenc et al. [2010] examines the out-of-sample performance of diverse non-linear and con-
ditional models used for replicating hedge funds. Their investigation reveals that venturing
beyond the linear framework such as linear regression does not necessarily enhance the effec-
tiveness of replication. However, they observe a noteworthy improvement in out-of-sample
replication quality when factors are selected based on an economic analysis, regardless of the
underlying form of the factor model. In line with the findings of Hasanhodzic and Hasan-
hodzic and Lo [2006], their overall results confirm that the replicating strategies consistently
underperform actual hedge funds.

Fung and Hsieh [1997] focused on analyzing the impact of survivorship bias in private
funds managed by CTAs. The study concluded that CTA funds dissolve more frequently than
mutual funds and that the dissolution cost is considerably higher. It also observed that CTAs
operating multiple funds tend to behave differently in terms of risk management to protect
their reputation, particularly when a fund is underperforming. The dominant investment style
in both surviving and dissolved CTA funds was identified as a trend-following strategy, which
the researchers were able to measure with minimal survivorship bias. This strategy had a
low correlation to standard asset classes, suggesting its unique risk-return profile within the
spectrum of investment strategies
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Gregoriou and Chen [2006] examined the performance of CTAs using fixed and variable
benchmarking models. To circumvent the challenges posed by passive and active commod-
ity and managed futures benchmarks (indices) in evaluating CTA performance, the authors
innovated by utilizing data envelopment analysis (DEA). Given the non-linear returns char-
acteristic of this alternative asset class, attributed to long/short positions and derivatives,
DEA was employed to mitigate the issues commonly associated with these indices. The effi-
cacy of benchmarking models within a DEA framework provided investors with an alternative
method for assessing performance and identifying efficient CTAs.

Bhardwaj et al. [2014] analyzed the performance of CTAs from 1994 to 2012. They
evaluated the performance of CTAs while accounting for various biases like strategic reporting
and database construction issues. They found that after adjusting for biases, the average
CTA’s returns, net of fees, were essentially the same as U.S. Treasury bills, implying that CTAs
did not generate significant value for investors. This included a newly identified ”graveyard
bias” where entire fund records were removed from databases, affecting performance analysis.

2.1.4 ReSolve Asset Management

In recent marketing materials conducted by ReSolve Asset Management, the authors inves-
tigate two distinct methods for the replication of CTA strategies: top-down replication and
bottom-up replication. The top-down approach involves an analysis of the returns exhib-
ited by the target index during a defined period, enabling the determination of the average
holdings maintained by the managers included in the index at each specific point in time.
Conversely, the bottom-up approach seeks to uncover the fundamental strategies employed
by the funds encompassed within the index, thereby facilitating the construction of their re-
spective portfolios. By gaining insight into the weighting and composition of representative
strategies, the replication strategy can emulate the holdings of the index over a given time
frame. Consequently, the bottom-up approach relies on an informed estimation of the weights
assigned to different instruments and trading signals based on the perceived underlying strate-
gies employed by the managers.

The authors highlight the challenges in replicating trend-following strategies due to the
dispersion of returns among individual funds. While the Barclays BTOP Index and similar
indices provide a broad representation of trend-following funds, allocating to a single fund
or a small sample of funds may not capture the category-like returns consistently. This
is because funds can differ in their choice of markets, trend lengths, weighting schemes, risk
management techniques, and exposure to other systematic factors. As a result, returns among
trend-following managed futures funds can vary significantly from year to year.

To mitigate dispersion and attain exposure to the trend-following theme while minimizing
tracking error, the utilization of replication strategies becomes imperative. Such strategies
aim to closely replicate the return trajectory of a designated benchmark. In the context of
trend-following managed futures, the authors of the study delve into the challenges associated
with selecting an appropriate benchmark for replication. Although the widely adopted Barclay
BTOP 50 Index is commonly employed, its drawback lies in the availability of daily returns
data only from 2010 onwards, which proves suboptimal for replication endeavors. As an
alternative, the authors propose the SG CTA index, which tracks the ten largest trend-
following managed futures funds and provides daily returns data dating back to January 2000.
The utilization of this index offers a more comprehensive and extensive dataset, facilitating a
robust assessment of replication effectiveness. Moreover, it would be intriguing to explore the
divergence between the replication of the BTOP 50 Index and the SG CTA Index, providing
insights into the dissimilarities in replication outcomes between the two benchmarks.

Due to the lack of access to the actual holdings and trading data of the funds in the
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benchmark, replication strategies must infer the weighted average holdings based on an un-
derstanding of the markets typically traded by managed futures funds, the strategies they
employ, and reported index returns. This publication uses two methods to replicate CTAs:
top-down and bottom-up. The authors use data from Société Générale Prime Services as the
Daily returns of the Trend Index and CSI Data and Refinitiv as the futures market data.

Top-down method The top-down method involves replicating a portfolio by regressing the
track record of an individual or index on a universe of stocks or assets to identify the optimal
combination that closely matches the returns.

In the top-down approach, the authors utilized Elastic Net regression for linear regression
analysis. This method aimed to identify the best replication portfolio that mimics the returns
of CTAs by examining the relationship between the historical performance of CTAs and the
returns of various markets.

On a daily basis, the model was fit based on the past few days or weeks of index and
explanatory market returns, yielding weights for representative markets. These weights min-
imized the squared differences between the tracking portfolio’s returns and the benchmark
returns during the regression period. Elastic Net regression was chosen because it could iden-
tify the most influential markets in each period while penalizing models that were overly
concentrated in any single market.

Rolling returns were used to fit the Elastic Net model, incorporating past 20, 25, 30, 35,
and 40 days of returns for each fit. The tradeoff in replicating index returns lies between
the breadth of markets used and the model fit. A larger market universe explains a greater
proportion of returns but compromises reliability when the number of explanatory variables
outweighs the available observations. A smaller universe may not capture the full opportunity
set but yields more stable results with limited observations. Ultimately, the linear model was
fit to the model outputs of each backtest period to determine the weights for the final model.

Therefore, the authors chose two representative market combinations, one smaller portfolio
consisting of 9 markets representing broad exposures to stocks, fixed income, commodities, and
currencies, and another larger portfolio consisting of 27 markets with more refined exposure
within the same industries. When fitting the weights using Elastic Net regression, both
market combinations produced similar-quality fits and performance over time in each period.
However, by combining the models, a better tracking portfolio could be generated than with
individual models, particularly in periods of divergent performance.

Bottom-up method The bottom-up method focuses on identifying and replicating the
underlying strategies or characteristics used by funds or managers to select individual stocks
or assets. In the bottom-up approach, the authors employed a range of trend-following trading
strategies to identify market trends. Thirteen representative trend-following strategies were
selected, and their calculations were performed using different lookback periods. The trend
for each strategy was measured by the z-score derived from the ratio of total returns to the
historical standard deviation of the index-weighted past 40 days.

The position of each market in each trend strategy was determined by multiplying the z-
score of that market by the expected volatility based on the index-weighted historical standard
deviation. This resulted in a combination of 13 trend strategies multiplied by 27 markets,
yielding a total of 351 market/strategy pairs.

Subsequently, the authors employed Ridge regression to fit the returns of these 351 strate-
gies, aiming to minimize the differences between the replicated portfolio’s returns and the
index returns when trading according to the model-specified weights. The model weights
were constrained to be positive values only. Ridge regression was chosen over LASSO or
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Elastic Net because it is well-suited for identifying all relevant predictive factors, even if some
may be falsely identified.

As the strategies employed in trend-following funds have a strong record in the literature,
the focus was on ensuring the inclusion of all relevant models, irrespective of their potential
underutilization by trend-following managers. K-fold cross-validation was used to assess if
strategy exposures changed over time. The model was fitted on 90% of the data, and the
selected strategies were run on the remaining 10% data. The out-of-sample strategy returns
were then combined, simulating the performance of the complete history of the SG Trend
Index. Additionally, the model was fitted on the complete data sample, and the selected
strategies were run on the full dataset to generate a full simulation based on in-sample fitting.

To compare the performance of the two simulations, the daily returns were scaled to the
same target volatility using a rolling 40-day index-weighted standard deviation. The out-of-
sample simulation demonstrated comparable performance to the simulation conducted on the
entire dataset, exhibiting a high daily Pearson correlation coefficient of 0.997. This finding
suggests that the model fitted using the complete sample data is capable of accurately tracking
the index in future periods. Furthermore, the selected strategies remained consistent across
various sub-samples, indicating that trend-following futures managers maintained stability in
their strategies and core market selections over time.

Discussion of the bottom-up methods by ReSolve Asset Management The
bottom-up replication method discussed above focuses on the identification and replication
of underlying strategies or characteristics utilized by funds or managers in the selection of
individual stocks or assets. However, it is important to acknowledge potential areas for
improvement in the method, as suggested in the provided comment.

One pertinent critique is that the current approach neglects to account for the tendency of
CTAs to refrain from altering their positions overnight. To address this concern, the integra-
tion of a modeling technique such as the Kalman filter or a similar model, capable of explicitly
capturing the interdependence between regression results across consecutive days, could prove
advantageous. While the existing method benefits from the utilization of overlapping data,
explicitly modeling this relationship would offer additional insights.

Moreover, there is a substantial issue of trading costs associated with rapid position
changes. To mitigate this concern, the incorporation of a penalty term for trading costs
within the optimization process presents a potential solution. By incorporating the impact of
trading costs into the optimization framework, the replication strategy could more accurately
reflect the real-world constraints faced by CTAs. However, it is crucial to implement this ad-
justment unless it can be substantiated that the trading costs already remain at a sufficiently
low level.

Final strategies The top-down approach in replication has the advantage of identifying the
most important markets during each period, allowing for a focused allocation of resources.
However, it may exhibit a slightly inferior fit compared to the bottom-up method. On the
other hand, the bottom-up approach excels in achieving a superior fit and overall performance,
but raises concerns about the potential for new and unrepresented strategies implemented by
future managers. Therefore, while the top-down method displays a lower tracking error dur-
ing crucial times in historical data, the bottom-up method provides a better fit. Combining
both approaches harnesses their respective advantages, yielding higher performance than ei-
ther approach individually and improving the long-term correlation between replication and
benchmark returns.

The final replication strategy consists of a combination of top-down and bottom-up ap-
proaches, with a 50% weight given to each method. This strategy is chosen because it effec-
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Figure 1: Performance of DBMF [2013].

tively balances the strengths and weaknesses of both approaches, creating a tracking portfolio
that is accurate and stable. By incorporating both top-down and bottom-up methods, the
strategy captures the broad exposures to equities, fixed income, commodities, and curren-
cies present in the benchmark index, while also identifying the underlying strategies used by
trend-following managed futures funds.

2.1.5 DBMF

The iMGP DBi Managed Futures Strategy ETF (DBMF) utilizes a top-down approach to
replicate CTAs. DBMF [2013] shows they employ an index-based investment strategy that
aims to generate superior risk-adjusted returns through transparent quantitative techniques
and rules-based criteria based on specific factors or attributes that drive investment returns.
Their portfolio holdings include various assets such as Treasury bills, euro foreign exchange,
gold, Japanese Yen, and US long bonds, among others.

The strategy employed by DBMF has shown strong performance. According to Figure
1, the fund’s returns have consistently outperformed both the SG CTA index and the Morn-
ingstar US Systematic Trend Category since its inception. This demonstrates the viability of
DBMF’s CTA replication approach and provides empirical support for this research.

However, the specific statistical models or quantitative techniques used by DBMF are not
disclosed in the information provided. This lack of transparency regarding their strategies
further motivates this research to delve into uncovering the industry secrets of CTAs. By
exploring and understanding the undisclosed method and techniques utilized by successful
CTAs like DBMF, this research aims to shed light on the strategies employed within the CTA
industry.

2.2 Research questions

This study will use top-down and bottom-up approaches to replicate CTAs. Top-down
approach involves using regression models to calculate positions of managed futures. The
bottom-up approach involves using trend-following and carry strategies to identify the trad-
ing strategies or characteristics of fund managers. Based on the related background and
previous work of CTA, this section poses the following research questions:

• Top-down approaches: Can the top-down approach effectively replicate the positions of
CTAs? If so, how much can the top-down approach explain? How does the effectiveness
vary with the number of selected instruments? Are there other parameters that influence
the results, such as the size of the rolling window? Would regularization be beneficial
for replication? If so, which regularization method is more suitable? Is the top-down
approach profitable? What metrics can be used to assess success? How is the robustness
of the top-down method? How can we best evaluate the robustness of the top-down
method?

9



• Bottom-up approaches: Can the bottom-up approach provide a detailed analysis of the
trading strategies used by CTAs, especially for carry and trend-following strategies? Is
it possible to replicate CTAs using the bottom-up method? Can optimization methods
be employed to determine the optimal allocation of carry and trend-following strategy
signals? If so, what proportion of signals should be dedicated to carry and trend-
following strategies? What is the distribution of signals across various asset classes?
Can optimization methods be employed to determine the optimal allocation of carry
and trend-following strategy signals? If so, what proportion of signals should be dedi-
cated to each asset class? Is the bottom-up method robust? How can we evaluate its
robustness? In comparison to the top-down approach, does the bottom-up method offer
higher accuracy and greater profitability?

2.3 Methods and data

2.3.1 Carry

Ralph S.J. Koijen et al. explain carry in detail and examine carry in many different asset
classes in Koijen et al. [2018]. In their study, the concept of ”carry” is introduced as the
futures return of an asset under the assumption of constant prices. The excess return can be
expressed as the sum of the carry and spot return components:

Excess return = Carry + Spot return

Carry, which represents a model-free characteristic of an asset and can be directly observed
from futures prices, is distinct from expected price appreciation, which requires estimation
using asset pricing models. The authors empirically examine carry across various asset classes
and demonstrate its relationship with expected returns and price appreciation.

The article explores the predictive power of carry in different asset classes and its ability
to test asset pricing theories. The findings reveal that carry is a strong positive predictor of
returns in each asset class studied, both across the cross-section and over time. In their anal-
yses, a carry trading strategy involves long positions in high-carry assets and short positions
in low-carry assets, generated significant returns with a Sharpe ratio of 0.8 on average, on
the time period examined (1983-2012). Furthermore, a diversified portfolio of carry strate-
gies across all asset classes exhibits a Sharpe ratio of 1.2. The returns from carry cannot
be explained by other known return predictors, indicating its unique contribution to return
predictability.

The study highlights the unifying nature of carry as a predictor of returns across different
asset classes, suggesting that it could serve as a unifying concept that connects various return
predictors scattered across the literature. By examining carry in conjunction with other
known factors, such as value and momentum, the authors demonstrate its distinct predictive
power. They also investigate potential explanations for the carry premium, including crash
risk and downside risk exposure, but find that these factors alone cannot fully account for the
observed returns.

Carry is more closely associated with specific asset classes. Various financial instruments
within different asset classes derive their carry from diverse sources. For instance, in the case
of equities, carry is influenced by factors such as dividend yields and interest rates. This
relationship can be mathematically expressed as follows, according to Carver [2023b]:

Excess return(equities) = Spot return + Dividend− Interest

Carry(equities) = Dividend− Interest
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In this context, the interest rate is specified as the risk-free rate, and the excess return is the
return over the risk-free rate.

2.3.2 Trend-following

A trend-following strategy entails the adoption of long or short positions based on the prevail-
ing market trend. Its profitability is contingent upon the presence of sustainable price trends
in future contracts. If the price of a particular market has exhibited an upward trajectory
over the past year, a trend strategy anticipates a continuation of this upward trend, while
in the case of falling prices, a further decline is expected. The primary objective of Trend
Following is to capture momentum by utilizing the historical returns of macro asset classes.

Since the last century, it has been discovered that it is possible to profit through mo-
mentum. In 1999, Jegadeesh and Titman [2001] evaluated the profitability of momentum
strategies based on Jegadeesh and Jegadeesh and Titman [1993] findings. Using an extended
dataset from 1990 to 1998, the authors confirmed that momentum strategies remained prof-
itable, supporting the original results. They found evidence in favor of behavioral models,
suggesting that momentum profits may result from investor biases and delayed reactions to
information. However, they cautioned against overinterpretation and highlighted the ongoing
debate about the interpretation of momentum profits. The study emphasized the need for fur-
ther research to understand the underlying causes of momentum profits and their implications
for investment strategies and market efficiency.

Cross-sectional momentum and time-series momentum are commonly used momentums by
traders and investors. Cross-sectional momontum was first proposed by Jegadeesh and Titman
[2002] in 2002. Cross-sectional momentum focuses on the relative performance of different
assets within a specific period. It compares the performance of various assets, such as stocks
or sectors, at a given point in time. The idea is to identify the assets that have exhibited the
strongest relative performance compared to their peers. Cross-sectional momentum typically
involves ranking assets based on their recent performance and constructing a portfolio that
includes the top-performing assets while excluding the underperforming ones.

Time-series momentum was prosed by Moskowitz et al. [2012] from AQR in a paper titled
”Time Series Momentum” in the Journal of Financial Economics. The study investigated
the momentum effect of various asset classes across the globe over a span of 25 years. The
findings revealed a significant presence of ”time series momentum effects” in the prices of 58
financial assets, including stock index futures, foreign exchange forwards, commodity futures,
and bond futures. This momentum effect is not an average outcome across the 58 assets but
rather manifests as positive returns on each asset. These returns exhibit persistence in the
short term (1 to 12 months) and reversal in the long term (beyond 12 months).

Compared to cross-sectional momentum, time-series momentum or trend following focuses
on the historical performance of a single asset over time. It aims to capture the persistent
price trends exhibited by individual assets. Time-series momentum traders typically look for
assets that have shown consistent price increases or decreases over a specified time horizon.
They enter long positions when the asset price has been trending upward and short positions
when the price has been trending downward.

In 2013, Asness et al. [2013] provided evidence that value and momentum are widespread
across asset classes. This academic study explores the value and momentum return premia
across eight diverse markets and asset classes. The researchers make significant contribu-
tions to the existing literature by discovering consistent value and momentum returns in all
the examined markets, including government bonds, currencies, and commodities. A notable
finding is the presence of a robust common factor structure among the returns of value and
momentum strategies across various asset classes. While positive correlations are observed
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within each strategy category, negative correlations are identified between value and momen-
tum both within and across asset classes. To explain these patterns, the researchers propose
a three-factor model that effectively captures global returns across asset classes, exhibiting
explanatory power for US stock portfolios and hedge fund indices. The study further reveals
global funding liquidity risk as a partial underlying factor for the observed phenomena. This
empirical evidence challenges prevailing behavioral, institutional, and rational asset pricing
theories. Importantly, the study underscores the necessity of jointly examining value and
momentum, emphasizing their interaction and common factor structure as crucial elements
in comprehending market dynamics.

The Exponentially Weighted Moving Average (EWMA) is a tool commonly used in tech-
nical analysis to smooth time series data. We use EWMA in the bottom-up method to catch
the trends of futures prices. Using the span parameter, the calculation process can be more
intuitively understood. The relationship between the span and the smoothing factor α is as
follows:

α =
2

span + 1
(1)

Thus, the EWMA can be calculated using the formula:

EWMAt = α · xt + (1− α) · EWMAt−1 (2)

where:

• EWMAt is the Exponentially Weighted Moving Average at time t.

• xt is the observed value (e.g., price) at time t.

• α is the smoothing factor, calculated as 2
span+1 .

• EWMAt−1 is the Exponentially Weighted Moving Average at the previous time period
t− 1.

The initial value EWMA0 is typically set to the first observed value x0:

EWMA0 = x0 (3)

Combining the above, the EWMA calculation can be summarized as follows:

EWMAt =
2

span + 1
· xt +

(
1− 2

span + 1

)
· EWMAt−1 (4)

with the initial condition:

EWMA0 = x0 (5)

2.3.3 Data

The data in this work are divided into two main parts. The first part is about the return
data of CTAs, shown by Figure 3. This work uses data from PLC. [2023] as target return to
replicate. The second part includes price data for futures. For future price data, this work
uses data from Robert Carver’s pre-possessed data Carver [2023b]. The futures price data
consists of two essential parts: the time when the data was recorded and the corresponding
prices. Figure 2 is a preview of the first few rows of aluminum price data. Preparing the
futures data involves the following steps:
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Figure 2: Sample price data.

Figure 3: Sample return data.

1. Removal of rows with missing prices, along with standardization of date formats.

2. Removal of time-of-day information, thereby retaining only the date component. In
scenarios where multiple price data entries correspond to the same date, the average
value of these entries is computed.

3. Given that our regression’s independent variable hinges on ratios of return, it becomes
essential to transform the daily prices into relative increase ratios concerning the previ-
ous day. This transformation is explained by the following formula:

Relative Increase Ratio =
Backadjusted Price(n)

Raw Futures Price(n− 1)
− 1

Where:

• Backadjusted Price(n) denotes the backadjusted price of the commodity on the nth
day.

• Raw Futures Price(n−1) signifies the raw price of the commodity on the (n−1)th
day.

4. Conversion of percentages into decimals.

Raw futures prices are the actual prices at which futures contracts are traded in the
market. Backadjusted prices, on the other hand, are adjusted prices that account for contract
rolls and other changes over time. These adjustments help to create a continuous price
series that is more suitable for analysis. Backadjusted prices remove gaps caused by contract
expirations and the introduction of new contracts, providing a smoother and more consistent
historical price series. Using backadjusted prices for calculating returns provides a more
accurate reflection of the underlying trends and movements in the market by eliminating
distortions caused by contract rolls.

2.4 Evaluation metrics

2.4.1 Sharpe ratio

The Sharpe ratio is a measure of risk-adjusted return that evaluates the excess return earned
per unit of risk taken. It is defined as the ratio of the portfolio’s average excess return to its
standard deviation of returns.

13



Formula:

Sharpe ratio =
Rp −Rf

σp

where Rp is the portfolio’s average return, Rf is the risk-free rate, and σp is the standard
deviation of the portfolio’s returns.

2.4.2 R2

R2 is the percentage of the response variable variation that is explained by a linear model. It
is always between 0 and 100%. We are going to use R2 a metric because it indicates how well
the model accounts for the changes in the dependent variable. A higher R2 value indicates a
better fit, meaning the model accounts for a larger proportion of the variation, which helps
in assessing the model’s predictive accuracy and overall performance. The formula for R2 is
given by:

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2

Where:

yi : Actual values of the dependent variable,

ŷi : Predicted values of the dependent variable,

ȳ : Mean of the actual values,

n : Number of observations.

2.5 Risk management

In the context of CTAs, allocating position weights based on risk parity is a common practice.
This approach focuses on considering the risk associated with different assets or positions,
rather than solely relying on prices.

The rationale behind allocating weights based on risk parity is to ensure that the portfolio
is balanced and diversified, taking into account the varying levels of risk across different assets.
By considering risk, rather than just prices, investors aim to achieve a more efficient allocation
of capital and manage risk exposure effectively.

To allocate position weights based on risk parity in a portfolio, the following formula can
be utilized:

ωi =
αi∑N
j=1 αj

(6)

In this formula: - ωi represents the weight allocated to asset or position i. - αi denotes
the risk measure associated with asset or position i. - The denominator,

∑N
j=1 αj , represents

the sum of risk measures for all N assets or positions in the portfolio.
The weight assigned to each asset or position is determined by dividing its individual

risk measure by the sum of risk measures across all assets or positions in the portfolio. This
ensures that the weights are proportional to the relative risk levels of each asset or position.

By allocating weights based on risk parity using the Greek letters ω and α, the portfolio
construction aims to achieve a balanced and diversified allocation, considering the varying
levels of risk across different assets or positions.
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3 The top-down method

The last section mentioned that DBMF has successfully replicated the performance of leading
managed futures hedge funds and, in some cases, even surpassed them by strategically elimi-
nating fees and expenses. However, the detailed method and statistical models used for this
replication have not been openly shared. This lack of detail has led to significant interest in
understanding and possibly replicating these successes.

This section aims to clarify how one replicate the ratios of return of CTAs using the top-
down method. CTAs often trade at regular intervals and tend to distribute their investments
evenly across various trading instruments. A rolling regression method, therefore, could be
suitable for replicating their return ratios. The method is to use linear regressions within a
lookback period, using CTA’s daily return as training data to predict the next day’s ratio of
return.

3.1 Procedural framework

In this section, we will explain the steps involved in top-down method. We start by preparing
the raw dataset. This preparation includes fixing missing data, converting data types, remov-
ing price data of instruments with too few samples, and selecting the relevant time periods
for price and return ratio data. We then convert daily price data into daily increment ratios
to show the relative increase from the previous day’s values.

Next, we use the increment ratio data to create a heatmap for each instrument. This
heatmap shows how different instruments relate to and affect each other. It helps us under-
stand the market dynamics that influence these instruments.

After creating the heatmap, we carefully select which instruments to include in our anal-
ysis. We start by randomly picking the first instrument. Then, we add more instruments
one by one, choosing each new instrument to lower the average correlation with those already
selected. By repeating this process, we create a diverse group of n instruments that represent
various aspects of the market.

We then use a rolling regression method to model how these instruments comprise the
portfolio. The method involves using linear regressions over a lookback period, with CTA’s
daily returns as training data to predict the next day’s return ratio. Key parameters in-
clude the rolling time window size (which determines the amount of training data for each
regression), the number of instruments, and the regularization method (ElasticNet, Lasso,
Ridge).

From the rolling regression results, we calculate R2 and the Sharpe ratio as performance
metrics. The metrics can comprehensively evaluate the performance of the model and strategy.
R2 provides a measure of the model’s goodness of fit. A higher R² means a better explanatory
power of the model. The Sharpe ratio offers an assessment of risk-adjusted returns.

To explore how parameters influence the method’s performance, we conduct a series of tests
with different values of parameters, including the window size, the number of instruments,
and the regularization methods. To test the robustness of the method, we use other CTAs as
target return to replicate their cumulative returns.

3.2 Heatmap and correlation analysis

In our study, we examined the relationships between different instruments. To simplify the
understanding of these relationships, we used heatmaps. These heatmaps illustrate the degree
of connection or dependence between the instruments. This involved calculating how closely
the movements of one instrument are related to another’s. The metric we used is the cor-
relation coefficient, which quantifies the degree of relationship between two variables. These
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coefficients capture the linear relationships between the variables, offering insights into the
strength of their associations. The formula used to determine this correlation coefficient is as
follows:

r =

∑
i(Xi −X)(Yi − Y )√∑

i(Xi −X)2
∑

j(Yj − Y )2
(7)

where:

• Xi and Yi are individual sample points.

• X and Y are the means of the X and Y samples, respectively.

• Yj represents individual sample points in the Y sample.

• The summations in the numerator and denominator are taken over all sample points.

To visually represent these correlations, we have generated a heatmap as shown in Figure
4. The heatmap provides an intuitive depiction of the intricate web of relationships among the
instruments. Variables with lower correlation coefficients are preferred choices for inclusion in
our regression analysis due to their lower interdependence. If the independent variables have
low correlation with each other, it is easier to identify and interpret the individual impact of
each variable on the dependent variable. This aids in understanding the relationships between
each independent variable and the dependent variable more clearly.

3.3 Selection of instruments

To make it easier to select any number of instruments for future experiments, this study uses
an automated method that picks instruments based on their average minimum correlation.
The procedure unfolds as follows:

1. Randomly select an instrument.

2. From the remaining instruments, pick another instrument that minimizes the average
correlation with the instruments already chosen.

3. Repeat step 2 until the desired count of n instruments has been selected.

This method ensures that the chosen instruments are diversified and possess a lower av-
erage correlation, thus enhancing the robustness of subsequent analyses.

Algorithm 1 provides a pseudocode representation of the instrument selection process:
The algorithm results show that it tends to select instruments from diverse asset classes,

ensuring a varied set covering different market sectors. Throughout experiments, we observed
that though the choice of instruments varied with different parameter settings, the algorithm
consistently produced diverse sets of instruments. This indicates that our method adapts
to various market conditions and captures correlations and dynamics across different asset
categories.

3.4 Rolling regression

CTAs typically engage in daily trading activities, but their positions are often maintained for
weeks or months due to the relatively slow nature of their trading signals. This slower pace
of trading signal changes is a key characteristic. Given this context, the top-down method
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Figure 4: Heatmap.

Algorithm 1 Automated Instrument Selection

1: procedure SelectInstruments(N)
2: Normalize the returns for volatility
3: for each instrument i do
4: Calculate the daily percentage returns
5: Normalize returns by dividing by the standard deviation
6: end for
7: Randomly select the first instrument, i1
8: selected← {i1}
9: for j ← 2 to N do

10: ij ← arg min
i∈remaining instruments

AvgCorrelation(percentage returns of i, selected)

11: selected← selected ∪ {ij}
12: end for
13: return selected
14: end procedure
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employs a rolling regression framework to effectively analyze and adjust the return ratios for
SG CTA.

Rolling Regression involves a dynamic application of linear regression within a sliding
time window. It entails fitting the regression model to a subset of the data within the window,
testing it, and then moving the window forward and repeating the process. The goal is to
capture temporal changes in relationships over time.

The rolling regression formula can be expressed as:

yt = β0 + β1x1,t + β2x2,t + . . .+ βpxp,t + εt

Where yt is the dependent variable at time t, x1,t, x2,t, . . . , xp,t are the independent vari-
ables at time t, and β0, β1, . . . , βp are the coefficients to be estimated.

The testing method involves the following steps:

1. Conduct a linear regression within the current time window to obtain a series of instru-
ment weights.

2. Apply these weights to the instruments within the subsequent date of the same window,
calculating the daily return for that date.

3. Slide the time window downwards and perform linear regression within the new window.

4. For the next date within the new window, repeat the procedure of calculating the daily
return as in step 2.

5. Repeat the above steps iteratively.

6. After computing the daily return for the last date, return all of the daily, weekly and
monthly returns.

Algorithm 2 provides a pseudocode representation of the rolling regression procedure:

Algorithm 2 Rolling Regression

procedure RollingRegression(x values, y values, window size)
2: for i← window size to length(x values) do

x window← x values[i− window size : i]
4: y window← y values[i− window size : i]

Perform linear regression on x window and y window to obtain weights
6: current date x← x values[i]

current date y← y values[i]
8: Compute daily return using obtained weights and current date x

end for
10: return Daily, weekly, and monthly returns

end procedure

To assess the robustness of our replication method under various choices of these param-
eters, we conducted numerous experiments, each featuring different numbers of instruments
and window sizes. A thorough statistical analysis followed these experiments, aimed at un-
derstanding how changes in these parameters affected the replication’s performance. The
key objective was to evaluate whether our replication approach remains effective and reliable
across a range of different settings. This approach ensures that our findings are not just a
result of overfitting to a particular set of parameters or instruments but are indicative of the
general robustness and adaptability of the replication method.
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3.4.1 Regularization methods

Considering the large number of variables (10-50 instruments), regularization techniques have
been employed to mitigate the risk of overfit. We explored Lasso, Ridge, and Elastic Net
regularization methods to enhance the robustness of our analysis.

Lasso, or Least Absolute Shrinkage and Selection Operator, is a regularization technique
that encourages sparsity in the regression coefficients. Its mathematical formulation is as
follows:

Lasso: min
β

 n∑
i=1

(yi − xi · β)2 + λ

p∑
j=1

|βj |


Here, λ is a tuning parameter that controls the strength of the penalty applied to the size
of the coefficients. A higher value of λ increases the penalty, leading to more coefficients
being shrunk towards zero Ridge regression, on the other hand, addresses multicollinearity by
adding a penalty term proportional to the square of the coefficients:

Ridge: min
β

 n∑
i=1

(yi − xi · β)2 + λ

p∑
j=1

β2
j


In Ridge regression, λ serves a similar purpose as in Lasso, but it affects the coefficients
differently. Instead of shrinking coefficients completely to zero, it reduces their magnitude,
thereby mitigating multicollinearity issues.

Elastic Net regression combines both Lasso and Ridge penalties, providing a balance
between them:

Elastic Net: min
β

 n∑
i=1

(yi − xi · β)2 + λ1

p∑
j=1

|βj |+ λ2

p∑
j=1

β2
j


In Elastic Net, λ1 and λ2 are tuning parameters controlling the balance between Lasso and
Ridge regularization, with λ1 governing the Lasso component and λ2 the Ridge component.

Through the visualization of the returns, we observed that Elastic Net is notably more
effective than Ridge and Lasso. For example, Ridge appears to be sensitive to outliers, as
depicted in Figure 5. ElasticNet combines the advantages of L1 and L2 regularization. By
mixing the penalty terms of Lasso and Ridge, it can perform feature selection (through L1
regularization) and handle multicollinearity (through L2 regularization). This combination
makes ElasticNet more stable and effective than using Lasso or Ridge alone, especially when
dealing with high-dimensional data.

Figure 5: Effect of Ridge Regularization
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3.5 Flow of the top-down method

Figure 6: Flow of the top-down method

Figure 6 is the flowchart of the top-down method. We start by loading backadjusted
prices, followed by handling missing values through forward filling. Next, we extract the
instrument prices and normalize them by their volatility. After this, we calculate the average
correlation and select the next instrument with the lowest correlation, repeating this until we
have selected seven instruments. We then load the target return data and merge it with our
selected instruments by date. The features and target variables are extracted, and infinite
values are handled. We set the window sizes and regularization methods, iterating over these
to train the model and predict the return. Subsequently, we calculate the monthly R² and
Sharpe ratio. Finally, we compute the cumulative returns and plot them to visualize the
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model’s performance over time.
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4 The bottom-up method

Compared to the top-down approach, the bottom-up approach takes a different perspective
when it comes to portfolio construction. Instead of treating the portfolio’s components as
a black box and attempting to infer their characteristics through reverse engineering, the
bottom-up method relies on historical price data of individual instruments and employs sta-
tistical techniques to predict whether an instrument’s price is likely to increase or decrease.
The bottom-up approach has several key distinctions, particularly in its emphasis on risk
management, especially in position sizing.

This section starts by detailing position sizing based on risk parity. It then introduces
the trend-following method and its application. The discussion proceeds to the use of the
carry strategy in futures trading. Finally, the section concludes with an explanation of how
optimization techniques can fine-tune the forecast weights of both the trend-following and
carry strategies, resulting in a composite approach that integrates elements of both.

4.1 Risk management

4.1.1 Measuring risk

In futures trading, leverage increases the risks. Because of this, the goals of CTAs are not just
about making profits; they also include carefully measuring and managing risks. One way to
measure this risk is by using standard deviation. The formula for simple standard deviation
is as follows:

1. Calculate the Mean:

r̄ =

∑T
i=1 ri
T

2. Calculate Variance:

Variance =

∑T
i=1(ri − r̄)2

T

3. Compute Standard Deviation:

Standard Deviation =
√
Variance

Another approach to quantify risk is the use of exponentially weighted standard deviation.
The exponentially weighted standard deviation is a measure that gives more weight to recent
observations while calculating the variability of a dataset. It can be defined in terms of the
span parameter.

Given a time series xt, the exponentially weighted variance σ2
t at time t is defined as:

σ2
t =

∑t
i=0wi(xi − µt)

2∑t
i=0wi

(8)

where:

• wi = (1− α)t−i for 0 ≤ i ≤ t

• α = 2
span+1

• µt =
∑t

i=0 wixi∑t
i=0 wi

is the exponentially weighted mean at time t

To ensure the weights are normalized, we use the fact that the sum of weights should be
1 when t→∞:
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∞∑
i=0

wi = 1 (9)

When t = 0, the exponentially weighted variance is not defined, so we initialize it as:

σ2
0 = 0 (10)

The exponentially weighted standard deviation σt is the square root of the exponentially
weighted variance:

σt =
√
σ2
t (11)

The exponentially weighted standard deviation at time t can be summarized as:

σt =

√∑t
i=0(1− α)t−i(xi − µt)2∑t

i=0(1− α)t−i
(12)

where α = 2
span+1 and µt is the exponentially weighted mean.

Another method involves combining the standard deviations of long-term and short-term
data to improve forecasting. This approach reduces the risk of large position changes just
before a crisis and lowers trading costs due to the stabilizing effect of the long-term estimate.
The long-term estimate smooths out volatility, providing protection against sudden spikes.
This method works because while short-term volatility might be low, long-term data shows
potential maximum volatility. By averaging long-term and short-term volatilities, this blended
measure prevents underestimating risk when recent volatility is unusually low, ensuring more
cautious position sizing.
The blended exponentially weighted moving average of standard deviations is formulated as:

σ = wshort × σ(spanshort) + wlong × σ(spanlong) (13)

Where:

• σ represents the blended standard deviation.

• σ(spanshort) is the exponentially weighted standard deviation with a short-term window
spanshort (e.g., 32 days).

• σ(spanlong) is the exponentially weighted standard deviation with a long-term window
spanlong (e.g., 1000 days).

• wshort and wlong are the weights applied to the short-term and long-term standard de-
viations, respectively.

In practice, the weights wshort and wlong are chosen such that wshort + wlong = 1 and that
wshort and wlong > 0. For instance, one might set wshort = 0.7 and wlong = 0.3 to reflect
a higher emphasis on recent market conditions while still accounting for long-term volatility
patterns.

4.1.2 Position scaling

Risk management is a cornerstone of our trading strategy. We apply principles of risk parity
for scaling positions, where each position is sized according to its contribution to the overall
portfolio risk. The objective is to optimize risk distribution across the portfolio. The target
risk is set as a proportion of the portfolio’s total value, and in our analysis, we estimate this
level based on historical data. For reference, the SG CTA index has a historical volatility of
around 10%, which we use as a guide for setting our target risk.
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4.2 Trend

The trend-following method is utilized to determine the direction of futures prices and to
inform trading decisions. Historical data indicate that many markets exhibit momentum
within approximately one-week to one-year time horizons. The aim of a trend-following
signal is to capitalize on this momentum behavior. By generating trading signals based on
this principle, the strategy seeks to profit from the continuation of price trends.

The presence of momentum is detected by calculating the EWMA over a chosen period.
A current price that is higher than the EWMA suggests an uptrend and typically triggers a
buy signal. However, a drawback of this approach is its susceptibility to frequent fluctuations
in price movements, leading to excessively frequent trading signals. To address this issue,
the exponentially weighted moving average crossover (EWMAC) is computed, and trading
decisions are based on its positive or negative values. EWMAC is derived by subtracting the
long-term EWMA from the short-term EWMA. For instance, in the calculation of a crossover
with a short-term duration of 64 days and a long-term duration of 256 days, the formula is
as follows:

EWMAC(64, 256) = EWMA(span = 64)− EWMA(span = 256).

If EWMAC is greater than 0, a buying signal is generated, whereas if it is less than 0, a selling
signal is indicated. This approach mitigates the issue of excessive trading signals associated
with abrupt price fluctuations.

As what we discussed in previous section, EWMA can be expressed as:

EWMAt =
2

span + 1
· xt +

(
1− 2

span + 1

)
· EWMAt−1 (14)

with the initial condition:

EWMA0 = x0 (15)

4.2.1 Trend forecast

Using EWMAC as a method to determine whether prices are in an uptrend is indeed effective.
However, considering the variations in prices among different instruments, EWMAC values
are likely to differ significantly, making it challenging to compare trend signals across diverse
instruments and to combine them coherently. To address this issue, we introduce a slight
modification to EWMAC - dividing the crossover by the standard deviation of returns, which
represents the risk calculated in units of daily price. This adjustment results in the creation
of a risk-adjusted EWMAC, referred to as the ”raw forecast” in subsequent subsections. The
formula for this signal-to-noise ratio is as follows:

Raw forecast =
Fast EWMA− Slow EWMA

σp

where

σp = Price× σ%

16

and σ% represents the annualized percentage risk.
The risk in daily price points is equal to the price multiplied by the annualised percentage

risk, divided by 16. This refined approach allows for a more accurate assessment of uptrends
while accounting for the inherent risk associated with daily price fluctuations.
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The forecast’s sign clearly determines our trading position: a positive forecast suggests a
long position, while a negative forecast implies a short position. A forecast above the average
size corresponds to a larger position, whereas a forecast below the average results.

To get a more accurate estimate for the average value, we can measure it across many
different instruments and take an average of those estimates. We standardize our forecasts to
have an average absolute value of 10. This means that after determining the average value of
the raw forecast, we scale each individual forecast accordingly. The scaled forecast is calculated
by multiplying the raw forecast by 10 and then dividing it by the average absolute value of
the raw forecast. This scaling process ensures that our forecasts are consistently measured
and comparable, facilitating a more accurate assessment of market trends and guiding our
trading decisions effectively. The scaled forecast is calculated using the formula:

Scaled forecast =
Raw forecast× 10

Average absolute value of raw forecast

In order to avoid extreme values, the forecast is capped using the following formula:

Capped forecast = Max (Min (Scaled forecast,+20) ,−20)

Where the Scaled forecast represents the initial forecast value. This method ensures that
the forecasted values are constrained within a reasonable range, preventing excessively large
or small predictions.

We introduce the notations for various trend forecasts using different spans for EWMAs:

• Trend2: Fast EWMA with span of 2, Slow EWMA with span of 2× 4 = 8.

• Trend4: Fast EWMA with span of 4, Slow EWMA with span of 4× 4 = 16.

• Trend8: Fast EWMA with span of 8, Slow EWMA with span of 8× 4 = 32.

• Trend16: Fast EWMA with span of 16, Slow EWMA with span of 16× 4 = 64.

• Trend32: Fast EWMA with span of 32, Slow EWMA with span of 32× 4 = 128.

• Trend64: Fast EWMA with span of 64, Slow EWMA with span of 64× 4 = 256.

Furthermore, the optimal position can be calculated using the following formula:

Ni,t = Capped forecast×Capital×Weighti × τ ÷ (Multiplieri × Pricei,t × FX ratei,t × σ%i,t)

Here, Ni,t represents the optimal number of contracts, Capped forecast is the capped
scaled forecast of trend signals, Capital denotes the available capital, Weighti represents a
specific weight associated with instrument i, τ signifies the target risk, Multiplieri represents
a multiplier associated with instrument i, Pricei,t represents the price of instrument i at
time t, FX ratei,t is the foreign exchange rate at time t, and σ%i,t represents the annualized
percentage risk associated with instrument i at time t.

4.2.2 Flow of Trend

Figure 7 is the flowchart of Trend. We start by setting input and output paths, where input
folders contain trend and carry price data, and the output folder is for saving results. We
iterate over each CSV file of backadjusted prices in US dollar, reading and preprocessing the
data by filling missing values and formatting dates. Adjusted and current price data are then
merged by date. We calculate daily price changes and percentage changes to determine daily
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Figure 7: Flow of Trend
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returns. The algorithm computes the exponential moving standard deviation of these returns
and annualizes it to understand annual volatility. Using this annualized standard deviation,
capital, and risk target, we determine the position size. A trend forecast is applied using
fast and slow EWMAs, adjusted by the standard deviation for a risk-adjusted trend forecast.
We calculate returns by applying position size and the trend forecast on the adjusted prices.
Finally, we save these percentage returns into new CSV files in the output folder, effectively
implementing the Trend Strategy.

4.3 Carry

4.3.1 Measuring Carry

The raw carry is determined by the price difference between the nearer futures contract and
the currently held contract. Carver [2023a] gives the formula below:

Raw carry = Price of nearer futures contract− Price of currently held contract

However, when the currently held contract is close to expiration and there is no nearer
futures contract available, the raw carry is computed as the difference between the prices of
the currently held contract and the further out contract. Carver [2023a] gives the formula to
calculate raw carry.

Raw carry = Price of currently held contract− Price of further out contract

To standardize raw carry values for comparison, we annualize the raw carry by considering
the difference in expiration time between contracts in years. Carver [2023a] gives the formula
to annualize the raw carry.

Expiry difference in years =
abs(months between contracts)

12

The annualized raw carry is then calculated as:

Annualized raw carry =
Raw carry

Expiry difference in years

For risk management purposes, we convert the annualized raw carry into a risk-adjusted
form by dividing it by the annualized standard deviation of returns for the relevant instrument.
According to Carver [2023a], the risk-adjusted carry (Carry) is given by the formula:

Carry =
Annualized raw carry

σ%× Current contract price

Here, σ% represents the estimated annual standard deviation of returns expressed in
percentage terms.

4.3.2 Carry forecast

To implement carry into trading strategies, we introduce a carry forecast, a signal to noise
ratio that is proportional to an expected risk-adjusted return. According to Carver [2023a],
the Raw Carry Forecast is expressed as:

Carry Raw Forecast =
Annualized Raw Carry

σp × 16

Here, σp denotes the daily standard deviation of price differences.
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However, the presence of noise in forecasts can lead to unneccessary trades. To mitigate
this issue, a smoothing technique is employed, employing an EWMA. The smoothed Carry
Forecast with a specified smoothing parameter, known as the Span, is calculated using the
following formula give by Carver [2023a]:

Smoothed Carry Forecast(Span) = EWMASpan(Carry Forecast)

To facilitate the comparison of different instruments and time spans in carry analysis,
we standardize the scaled carry, akin to a trend strategy, to a comparable magnitude. The
formula is as follows:

Scaled carry forecast = Smoothed carry forecast× Forecast scalar

The Forecast scalar used here for scaling the carry forecast aligns with the one utilized in
trend analysis, ensuring consistency between trend and carry signals.

In order to prevent extreme values, the scaled carry forecast is capped using the following
operation:

Capped carry forecast = Max (Min (Scaled carry forecast,+20) ,−20)

This capping mechanism confines the carry forecast within reasonable boundaries, averting
excessively large or small predictions. We introduce the notations for various carry forecasts
using different spans for the EWMAs:

• Carry5: Smoothed carry forecast with span of 5.

• Carry20: Smoothed carry forecast with span of 20.

• Carry60: Smoothed carry forecast with span of 60.

• Carry120: Smoothed carry forecast with span of 120.

Subsequently, the capped carry forecast is employed to compute the optimal position size:

Ni,t = Capped carry forecast× Capital×Weighti × τ ÷ (Pricei,t × FX ratei,t × σ%i,t)

Here, Ni,t represents the optimal number of contracts, Capped carry forecast is the capped
and scaled carry forecast, Capital denotes the available capital, Weighti represents a specific
weight associated with instrument i, τ signifies the target risk, Pricei,t represents the price of
instrument i at time t, FX ratei,t is the foreign exchange rate at time t, and σ%i,t represents
the annualized percentage risk associated with instrument i at time t.

4.3.3 Flow of Carry

Figure 8 is the flowchart of Carry. First, we set the input and output folder paths. The input
folder contains trend and carry price data, and the output folder is used to save the results.
Then, we iterate over each CSV file in the input folder, reading the adjusted prices and current
prices data. Next, we preprocess the data by filling missing values (using forward fill) and
formatting the dates. After that, we merge the adjusted prices data and current prices data
by date to generate a dataframe with all necessary information. Following this, we calculate
daily price changes and daily percentage changes, as well as the exponential moving standard
deviation of daily returns, which is then annualized. We calculate the ten-year volatility and
combine it with the annualized standard deviation to obtain a stabilized volatility measure.
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Figure 8: Flow of Carry
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Based on the volatility-adjusted risk target, we calculate the position size, and then compute
the raw carry, annualized carry, and price volatility. Next, we calculate the risk-adjusted
carry. We use exponential weighted moving average to smooth the carry, then scale it and
cap it within a specified range. Subsequently, we apply the carry forecast to calculate the
positions and daily price change returns. Finally, we save the calculated percentage returns
to new CSV files.

4.4 Optimization

In order to explore the weights of various instruments, as well as the weights of different carry
or trend signals, we use optimization techniques to address this challenge. This approach is
feasible due to the linearity of the impact of instruments and carry or trend signals on position
scaling as well as returns. Moreover, the forecasts we construct are all scaled to the same
order of magnitude, facilitating their integration.

4.4.1 Objective functions and constraints

Our objective is to minimize the tracking error between SG CTA’s index and the overall
returns derived from our bottom-up method:

Objective Function:

Tracking Error = |SG CTA returns−Overall returns|

Overall returns =
∑

i∈instruments

vasset-class(i)
∑

s∈signals
τ · ws × returns(s) (16)

where:

τ is the risk target parameter

vasset-class(i) is the weight for each asset class of instrument i

ws is the weight of the signal s

returns(s) is the return of the signal s

instruments = {instrument1, instrument2, . . . , instrumentn} (17)

signals = {Trend2,Trend4,Trend8,Trend16,Trend32,Trend64,
Carry5,Carry20,Carry60,Carry120} (18)

Constraints:

ws > 0 (Weights of trend and carry signals are greater than zero)∑
s in signal

ws = 1 (Sum of weights of signals equals 1)

va > 0 for all asset classes a∑
a∈asset-classes

va = 1
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Instruments refer to the specific financial assets included in our portfolio. These instruments
are categorized into different asset classes, such as agricultural products, bonds, commodities,
energy, metals, and currencies. Each asset class contains multiple instruments, and we assume
a constant weight for each instrument within the same asset class. We jointly optimize
the weights for the asset classes and the weights for the signals. This forms a non-linear
optimization problem, and we use a general-purpose gradient-based optimizer to solve it.

4.4.2 Flow of optimization

Figure 9 is the flowchart of optimization. We begin by reading the CSV files containing the
data, followed by filling any NaN and infinite values to ensure data integrity. Next, we set the
date index and filter the data to include only relevant records. We then extract the features
and target variables, checking again for any NaN or infinite values. Parameters are randomly
initialized to prepare for the optimization process. The training dataset is selected, and the
data is converted to PyTorch tensors for compatibility with machine learning models. We
initialize the parameters in log space to maintain positive values and define the objective
function. An Adam optimizer is initialized, and minibatches are created for efficient training.
The core of the process involves an optimization loop with minibatches and gradient clipping
to refine the parameters iteratively. Once optimized, the weights are saved to a CSV file.
Finally, we calculate the R2 and Sharpe ratio to evaluate the model’s performance.

4.4.3 Overfitting

According to Hawkins [2004], a minimum of 10 observations per term in a linear model
is essential for reliable results. Our study’s training set includes 6144 observations, which,
with a maximum of 50 terms, equates to roughly 122.8 observations per term. Even when
replicating with a subset of 10 years, which has the least training data, there are about 40
observations per term. These figures, well above the recommended threshold of 10, indicate
that our study is not prone to overfitting.

4.5 Conclusions

This subsection provides an overview of how the bottom-up approach is employed to replicate
CTAs, with a primary focus on trend and carry strategies. The utilization of optimization
techniques allows us to determine the optimal instrument weights and signal weights. Sub-
sequently, the next subsection will present the results and conduct a comparative analysis
between the bottom-up and top-down approaches.
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Figure 9: Flow of optimization
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5 Results and analysis

The previous sections delved into the methods and details of the top-down and bottom-up
approaches. This section now aims to showcase and compare the results of these approaches,
followed by a comprehensive analysis.

5.1 Results of top-down methods

Figure 10: Cumulative Returns

Figure 10 shows the results of replicating the cumulative returns of SG CTA using the
top-down method by randomly selecting 28 instruments. The graph compares the cumulative
returns predicted by the ElasticNet model with different rolling time windows to the actual
cumulative returns. We also tested the Lasso and Ridge methods, and found that ElasticNet
performed the best. The Sharpe ratio for ElasticNet 30, ElasticNet 40, and ElasticNet 50
are 0.47, 0.48, and 0.39. The green curve has the best fit. The green curve represents the
cumulative returns predicted by the ElasticNet model with a 30-day rolling time window.
A 30-day rolling window means that the model uses the daily returns from the past 30
days to train the regression model and predict the return for the next day. The ElasticNet
regularization method combines the advantages of both Lasso and Ridge regularizations,
aiming to improve the model’s predictive power and stability. This curve closely matches the
actual cumulative returns (blue curve) for some of the period, especially before 2008 and after
2020, showing relatively stable performance with moderate fluctuations.

To explore how window sizes and the number of instruments influence the replication, we
performed multiple replications with the window size ranging from 10 to 40, and the number
of instruments ranging from 20 to 50.

Figure 11 shows the relationship between window size (X-axis) and two metrics: the
average R2 (top plot) and the average Sharpe ratio (bottom plot). The number of instruments
ranges from 20 to 50. The R2 value is a measure of the goodness of fit of a regression model,
typically ranging from 0 to 1, with higher values indicating better model fit. In the top plot,
as the window size increases from 20 to 50, the average R2 generally fluctuates. It starts at
around 0.2 for window sizes 20 to 25, then peaks at approximately 0.37 when the window size
is between 30 and 35. After a drop at window size 35, it rises again, reaching another peak
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around 0.38 at window size 40, and finally stabilizes around 0.3 to 0.35 for window sizes 45
to 50.

In the bottom plot, the average Sharpe ratio initially decreases slightly from 0.32 at
window size 20 to 0.25 at window size 25. It then increases sharply, peaking at around 0.47
for window sizes 30 to 35. After peaking, the Sharpe ratio fluctuates and decreases gradually,
stabilizing around 0.3 for window sizes 45 to 50.

Overall, the risk-adjusted returns of the portfolio are best when the window size is between
30 and 35, with the highest Sharpe ratio observed in this range. The R2 value also indicates
significant variation, peaking around the same window sizes.

Figure 11: R2 and Sharpe ratio by window size

Figure 12 shows the relationship between the number of instruments (X-axis) and two
metrics: the average R2 (top plot) and the average Sharpe ratio (bottom plot). The window
size ranges from 10 to 40.

In the top plot, as the number of instruments increases from 10 to 35, the average R2

initially decreases from around 0.35 at 10 instruments to approximately 0.15 at 20 instruments.
It then starts increasing, reaching a peak at around 0.4 at 35 instruments.

In the bottom plot, the average Sharpe ratio also shows a fluctuating pattern. It starts
at 0.25 for 10 instruments, dips to about 0.25 for 15 instruments, then increases, peaking
at around 0.43 for 30 instruments. After the peak, it decreases to approximately 0.3 at 35
instruments.

Overall, the risk-adjusted returns of the portfolio are highest when the number of instru-
ments is around 30, with the highest Sharpe ratio observed in this range. The R2 value
indicates a significant increase when the number of instruments approaches 35.
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Figure 12: R2 and Sharpe ratio by number of instruments

5.2 Robustness of the top-down method

To assess the robustness of the top-down method, we conducted cumulative return replications
using the data of the mutual funds, including Capital [2024a], Beacon [2024], Fund [2024],
AlphaSimplex [2024], Capital [2024b], Fidelity [2024], and PIMCO [2024]. Figures 13, 15,
16, 18, 17, 19, and 14 present the cumulative return replication results achieved through the
top-down method for each of these CTA funds.
Figure 13 shows the results of replicating ABYIX using the top-down method, comparing

Figure 13: Cumulative returns of ABYIX and the top-down method

the cumulative actual returns (blue curve) with the predicted returns for different window
sizes (orange, green, and red curves). Before 2019, the green curve (50-day window) had the
best prediction performance, with the cumulative returns closely matching the actual returns,
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indicating that the 50-day window model performed the best during this period. After 2019,
the orange curve (40-day window) had the best prediction performance, with the cumulative
returns almost identical to the actual returns, indicating that the 40-day window model per-
formed the best during this period.
Figure 14 illustrates the results of replicating PQTIX using the top-down method. From

Figure 14: Cumulative returns of PQTIX and the top-down method

2014 to 2016, the actual returns and predicted returns were generally consistent, but there
was a sudden change in 2016, leading to a significant decline in the model’s predictive perfor-
mance. During the period from 2019 to early 2020, the predicted returns again diverged from
the actual returns, especially in early 2020. None of the models with different window sizes
accurately predicted the market changes during this period, resulting in a significant increase
in the gap between predicted and actual returns.
Figure 15 displays the results of replicating AHLYX using the top-down method. From 2015

Figure 15: Cumulative returns of AHLYX and the top-down method

to 2016, the model’s prediction results were mediocre, with a small gap between actual and
predicted returns. In 2016, the gap between predicted and actual returns suddenly increased,
indicating that the model failed to accurately capture the market’s sharp changes. It was not
until after 2019 that the models with 35-day and 40-day windows began to align more closely
with actual returns, showing better predictive performance.
Figure 16 shows the results of replicating AQMIX using the top-down method. The green line
(35-day window) model performs the best, capturing most of the market’s changing trends.
However, even though the green line performs well, there is always a certain degree of dif-
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Figure 16: Cumulative returns of AQMIX and the top-down method

ference between it and the actual cumulative returns, failing to match the actual returns
precisely.
Figure 17 presents the results of replicating EQCHX using the top-down method. The

Figure 17: Cumulative returns of EQCHX and the top-down method

model’s fit varies across different time periods. Before 2016, the model’s prediction results
were mediocre, with a small but not very accurate gap between actual and predicted returns.
However, in 2016, the predicted returns suddenly changed, leading to a significant increase
in the gap between the model’s predictions and the actual returns. Since 2016, the model’s
prediction accuracy has improved.
Figure 18 shows the results of replicating ASFYX using the top-down method. From 2012 to
2013, the model’s predictions closely matched the actual returns, indicating good performance.
However, in 2013, there was a sudden shift in the predicted returns, resulting in a significant
divergence from the actual returns. Another sharp change occurred in 2016, where the model
again failed to accurately capture the market volatility. Despite these abrupt changes in 2013
and 2016, the model’s predictions were generally aligned with the actual returns during other
periods, showing relatively good performance.

Figure 19 illustrates the results of replicating MFTFX using the top-down method. Apart
from the significant differences in 2012 and 2018, the model’s predictions were generally con-
sistent with the actual returns during the other periods. Particularly from 2020 onwards,
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Figure 18: Cumulative returns of ASFYX and the top-down method

Figure 19: Cumulative returns of MFTFX and the top-down method
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the 40-day window model performed well, accurately capturing market trends with minimal
differences from the actual returns.

5.3 Results of bottom-up methods

In the bottom-up method, first we use trend following and carry strategies to calculate the
return of each instruments. Then we optimize the asset class weights and signal weights for
trend and carry strategies. We classify all of the instruments into 6 classes and take the
average of the instruments’ return under each asset class to be the asset class return. The 6
asset classes are: equities, bonds, currencies, energy, metals, and agricultural products.The
classification of these instruments can be found in Table 1. Table 2 shows the optimal weights
for trend and carry signals, while Figure 20 represents the optimal weights for each asset class.
Furthermore, Figure 21 illustrates the cumulative returns of SG CTA and the cumulative
returns achieved through the bottom-up method.

Table 1: Classification of instruments

Category Instruments

Equities AEX, CAC, DAX, DOW mini, EU-BANKS, EU-DIV30, EURO600, FTSE100, FT-
SECHINAA, MSCIEM-LIFFE, MSCISING, NASDAQ micro, NIFTY, NIKKEI,
SP400, SP500 micro, TOPIX, US-DISCRETE, US-FINANCE, US-HEALTH, US-
MATERIAL, US-STAPLES, US-TECH, US-UTILS

Bonds AUSCASH, BOBL, BTP, BTP3, BUND, BUXL, US10, US2, US20, US30, US5,
GILT, JGB, SHATZ, EUROBOR-ICE, FED, CADSTIR, CAD10, CAD2, CAD5

Currencies AUD micro, CAD, CHF, DX, EUR micro, GBP, GBPEUR, JPY, MXP, NZD,
YENEUR, ZAR, BRE

Metals AULIMINIUM LME, COPPER, GOLD micro, NICKEL LME, PALLAD, PLAT,
SILVER

Energies BRENT-LAST, CRUDE W mini, GASOIL, GASOILINE, GAS US mini,
HEATOIL

Agricultural Products CANOLA, COCOA, COCOA LDN, COFFEE, CORN mini, COTTON2, FEED-
COW, LEANHOG, LIVECOW, MILLWHEAT, RAPESEED, REDWHEAT,
ROBUSTA, RUBBER, SUGAR11, SUGAR WHITE, WHEAT mini, SOY-
BEAN mini, SOYMEAL, SOYOIL

Signal Weight

Trend2 0.0110

Trend4 0.3430

Trend8 0.0003

Trend16 0.0053

Trend32 0.1097

Trend64 0.0017

Carry5 0.0333

Carry20 0.0599

Carry60 0.3475

Carry120 0.0879

Table 2: Weights of signals
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Figure 20: Asset allocation

Figure 21: Cumulative Returns
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With the optimal weights, the results show that the corresponding values for the Sharpe
ratio and R2 are 0.80 and 0.59. Figure 21 provides an overview of the cumulative return
over time, offering a comprehensive view of the overall performance achieved through the
bottom-up method. Overall, the model’s fit varies across different time periods. From 2000
to 2004 and after 2016, the model’s predictive performance is better, with cumulative predicted
returns closely matching the actual returns. However, during 2005 to 2010 and 2011 to 2015,
the model’s predictive performance is poorer, showing significant deviations. The R² value
is 0.59, indicating that the model can explain approximately 59% of the variance in actual
returns. The Sharpe ratio is 0.80, indicating that the model has good risk-adjusted returns.

5.4 Robustness of the bottom-up method

To check the robustness of the bottom-up approach, we conducted in-sample and out-sample
tests. In the in-sample tests, we used different time ranges as training data, such as 2000-
2010, 2001-2011, 2002-2012, and so on up to 2009-2019. We tested the model’s performance
by using the the remaining year data as test data. Figure 22 shows the weights for each asset
class and signal during these tests. Over time, all trend signal values show a decreasing trend.
For instance, Trend4 decreased from 0.52 in 2000-2010 to 0.41 in 2009-2019. This indicates
that the strength of market trend signals is gradually weakening over time. Trend32 and
Trend64 have zero values across all periods, suggesting that these signals did not contribute
significantly during these test periods. Carry signals generally show an increasing trend,
particularly Carry20 and Carry60, whose values gradually increase over different periods.
For example, Carry20 increased from 0.07 in 2000-2010 to 0.17 in 2009-2019, while Carry60
increased from 0.24 in 2000-2010 to 0.42 in 2009-2019. However, Carry120 shows a decreasing
trend, from 0.08 in 2000-2010 to nearly zero in 2009-2019. This indicates that market returns
over longer holding periods are weakening. Agricultural and metals show variable trends,
with some periods showing higher weights, indicating significance in those periods. Bonds,
currencies, and equities have generally consistent weights, indicating their steady contribution
over time. Energies show a noticeable weight in the earlier periods but decrease in significance
in later periods.

Figure 22: Cumulative returns of SG CTA and the bottom-up method

Figure 23,24, and 25 display the cumulative returns using the training data from 2000-
2010, 2004-2014, and 2009-2019. Using earlier training data (2000-2010 and 2004-2014), the
model demonstrates higher stability, with predicted results closely matching actual outcomes,
showcasing the model’s robustness. The model better learns the long-term trends of the mar-
ket, thereby exhibiting strong predictive capabilities during the testing phase. However, when
using more recent training data (2009-2019), the model’s stability significantly decreases, with
a larger discrepancy between predicted and actual results, indicating the model’s inadequate
adaptability to recent market changes.
For the out-of-sample tests, we evaluated how well the bottom-up method replicated other

CTA funds using return data from Capital [2024a], Beacon [2024], Fund [2024], AlphaSimplex
[2024], Capital [2024b], Fidelity [2024], and PIMCO [2024].
Figure 26 shows the weights for different asset classes and signals when replicating these
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Figure 23: Cumulative returns of SG CTA and the bottom-up method

Figure 24: Cumulative returns of SG CTA and the bottom-up method

Figure 25: Cumulative returns of SG CTA and the bottom-up method
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Figure 26: Cumulative returns of SG CTA and the bottom-up method

CTA funds using the bottom-up method. Analysis reveals that Trend4, Carry60, Trend32,
Carry120, and Carry20 have higher weights, indicating these signals are more significant in
capturing market changes. Specifically, PQTIX and ABYIX have higher weights in short-term
trend signals (Trend4), while AQMIX and AHLYX have higher weights in medium-term trend
signals (Trend32). Conversely, MFTFX and EQCHX have lower weights in short-term trend
signals (Trend2), and ABYIX and AHLYX also have lower weights in long-term trend signals
(Trend64). In terms of carry signals, EQCHX has the highest weights in medium-term carry
signals (Carry60), while PQTIX and AHLYX have higher weights in short-term carry signals
(Carry20). However, EQCHX has lower weights in long-term carry signals (Carry120), and
AHLYX and MFTFX also have lower weights in short-term carry signals (Carry5). For asset
class weights, MFTFX has higher weights in the agriculture asset class, PQTIX and AHLYX
have higher weights in the currencies asset class, and EQCHX and MFTFX have higher
weights in the equities asset class. Conversely, PQTIX and MFTFX have lower weights in the
metals asset class, and MFTFX and EQCHX have lower weights in the energies asset class.
These results indicate that different CTAs have varying weights in different signals and asset
classes, validating the stability of the bottom-up method under out-of-sample conditions.
Figures 27 shows the results of using the bottom-up method to predict the cumulative re-

Figure 27: Cumulative returns of ABYIX and the bottom-up method

turns of ABYIX. The actual returns and predicted returns had a generally consistent trend
from 2015 to early 2017, with some fluctuations but relatively small differences between them.
However, from mid-2017 to mid-2019, the gap between the predicted returns and the actual
returns significantly increased, indicating that the model’s predictive performance was unsat-
isfying during this period. While the bottom-up method was able to track the actual ABYIX
returns well in many time periods, its predictive performance notably declined during periods
of significant market changes.
Figure 28 shows the cumulative return predictions for AQMIX using the bottom-up method.
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Figure 28: Cumulative returns of AQMIX and the bottom-up method

From 2010 to 2015, the model performs well, with actual and predicted returns aligning closely.
However, in 2016, the model’s accuracy declines significantly, showing large differences. Later,
the model’s performance improves again.
Figure 29 presents the cumulative return predictions for ASFYX using the bottom-up

Figure 29: Cumulative returns of ASFYX and the bottom-up method

method. Between 2010 and 2016, both actual and predicted returns exhibit a generally
consistent trend, marked by minor fluctuations and relatively small discrepancies. Post-2016,
while the gap between the predicted and actual returns widened, the model still effectively
captured market trends in most periods. Notably, from 2019 to early 2020, the predicted and
actual returns converged once more, highlighting the model’s short-term predictive strength.
This suggests that the bottom-up method maintains a certain degree of stability in identifying
basic market trends and is proficient in tracking the actual returns of ASFYX in most cases.
30 shows the cumulative return predictions for MFTFX using the bottom-up method. From
2015 to 2021, the actual returns and predicted returns align well, indicating that the model
was effective in capturing market trends during this period. However, outside this period, the
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Figure 30: Cumulative returns of MFTFX and the bottom-up method

predicted returns diverged from the actual returns.

From 2019 onwards, the gap between actual and predicted returns significantly widened.
The actual returns showed considerable volatility around 2020, which the models failed to pre-
dict accurately. Although actual returns recovered and grew after 2022, the predicted returns
for all window sizes continued to decline, indicating persistent poor prediction performance.
This demonstrates that the top-down method struggled to adapt to market changes and high
volatility, regardless of the window size.
Figure 31 shows the cumulative return predictions for AHLYX using the bottom-up method.

Figure 31: Cumulative returns of AHLYX and the bottom-up method

Except for 2021, the actual returns and predicted returns are generally consistent throughout
most periods. Overall, the bottom-up method effectively tracks the market trends of AHLYX
and provides accurate predictions in most cases.
Figure 32 shows the cumulative return predictions for EQCHX using the bottom-up method.
Before 2015, the model’s prediction accuracy was poor, with a large gap between actual and
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Figure 32: Cumulative returns of EQCHX and the bottom-up method

predicted returns. From 2015 to 2019, the actual and predicted returns were generally con-
sistent, with small differences, demonstrating the model’s effectiveness during this period.

From 2019 to 2022, the prediction accuracy declined again, with actual returns signifi-
cantly higher than predicted returns. The model failed to capture the significant growth from
2020 to 2022 accurately. However, after 2022, the gap between actual and predicted returns
narrowed, and the model generally tracked the actual returns well. Despite some prediction
errors, the bottom-up method was overall effective in capturing the market trends of EQCHX.

Figure 33: Cumulative returns of PQTIX and the bottom-up method

Figure 33 shows the cumulative return predictions for PQTIX using the bottom-up method.
Apart from 2021, the actual returns and predicted returns are largely consistent throughout
most periods. From 2014 to 2020, the model effectively captured market trends, with the ac-
tual and predicted returns displaying similar patterns and minimal differences, demonstrating
the model’s accuracy.
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5.5 Comparison and analysis

The bottom-up method outperforms the top-down method in several aspects. Specifically,
the top-down method’s R2 value is generally lower. For instance, when predicting using SG
CTA data, the highest R2 value achieved by the model is only 0.42, indicating that only 42%
of the data can be explained by the model. Additionally, the top-down method’s Sharpe
ratio is low; in the same SG CTA data prediction, the best Sharpe ratio achieved is just 0.48,
demonstrating poor risk-adjusted returns. In terms of robustness of the top-down method
applied to other CTAs, though the method demonstrates some capability in capturing basic
market trends, but it shows insufficient robustness in dealing with sudden market changes
and disruptions. For example, in early 2016, there were significant discrepancies between the
predicted and actual returns for ASFYX, EQCHX, AQMIX, AHLYX, and PQTIX.

In contrast, the bottom-up method excels in many areas. When predicting using SG CTA
data, the bottom-up method achieves an R2 value of 0.59, indicating that the model can
explain 59% of the actual returns. The Sharpe ratio is also higher, reaching 0.80, indicating
better risk-adjusted returns. Regarding robustness, the bottom-up method shows high sta-
bility in different time periods during in-sample tests. Although its predictions using later
years as the training set for SG CTA are not as good as those using earlier years, it generally
captures market trends accurately. In out-of-sample tests, the bottom-up method demon-
strates higher robustness in adapting to market changes than the top-down method. Overall,
in terms of accuracy, profitability, and robustness, the bottom-up method outperforms the
top-down method.
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6 Limitations and Future work

Despite the satisfactory results achieved using the top-down and bottom-up approaches, there
are areas for discussion and potential enhancement. This section has a discussion of the
limitations of this work and directions of future work.

6.1 Limitations

6.1.1 Trading costs and buffer

In the present work, for the sake of facilitating a more straightforward replication of CTA
strategies, trading costs were not incorporated. However, in real-world trading scenarios,
these costs play a pivotal role in shaping strategy decisions. A strategy that leads to frequent
trading, despite being profitable in theory, might result in diminished actual returns due to
high trading costs. This dynamic is a critical aspect that the current model does not capture.

The influence of trading costs cannot be understated. In many cases, they can significantly
alter the profitability of a strategy. For instance, a strategy with high transaction frequency
might appear profitable on paper, but when trading costs are factored in, the net returns
could be substantially lower. This reality presents a major limitation in the current research,
as it overlooks a crucial component that affects the practical viability of CTA strategies.

CTAs typically operate in highly liquid markets and trade at a slower pace, making the
omission of trading costs more justifiable. For instance, strategies like Trend32, Trend64,
Carry60, and Carry120 generally incur minimal trading costs in the most liquid markets.
However, for quicker strategies (especially Trend2 and Trend4) and less liquid markets, incor-
porating trading costs is crucial for achieving realistic replication.

To address this limitation, future models can introduce the concept of buffering. Buffering
entails not initiating a trade unless the forecasted change exceeds a certain threshold. A
better analysis would also simply estimate trading costs and include them in the replications.
Buffering operates on the principle that minor fluctuations in forecasts should not trigger
immediate trading responses. By setting a predefined threshold for forecast changes, trades
are only executed when the forecasted change is substantial enough to justify the transaction,
thereby potentially increasing the net profitability of a strategy after accounting for trading
costs.

6.1.2 Scope of the bottom-up method

The study predominantly focuses on trend following and carry strategies, which, while shows
good results, do not encompass the full range of strategies employed by CTAs. To improve
the results, we can expand into diverse strategies by incorporating a wider array of strategies,
such as global macro strategies, the impact of regulatory changes, and sector-specific trades.
It will provide a more comprehensive understanding of CTA activities.

6.1.3 Quantification of Uncertainty in Strategy Reconstructions

The absence of a quantification mechanism for the uncertainty in strategy reconstructions is
a notable limitation. Incorporating uncertainty quantification is essential for comprehensive
risk management and setting realistic expectations regarding model reliability. Future models
could adopt statistical measures like confidence intervals or Bayesian methods to assess and
communicate the inherent uncertainty in the reconstructions.
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6.2 Future work

6.2.1 Extreme values in the bottom-up method

The results from the bottom-up replication were very extreme, with Trend4 and Carry60 hav-
ing a disproportionately large impact, while Trend2, Trend8, Trend64, and Carry5 had almost
no impact. Future work should thoroughly investigate the causes of these extreme results.
Ensuring that the input data is accurate, complete, and appropriately preprocessed is crucial,
as any anomalies or inconsistencies in the historical price data could significantly impact the
outcomes. Reviewing and potentially adjusting the parameters used in the trend-following
and carry strategies is another important step. Sensitivity analysis could help understand
how different parameter values affect the results.

6.2.2 Differences between the results of the top-down method and DBMF

The replications in this study did not perform as well as DBMF claim to have achieved with
their replication strategies. It would be valuable for future research to investigate the reasons
behind this discrepancy. Analyzing the detailed methodologies and statistical models used by
DBMF could provide insights into potential improvements for the current replication methods.

6.2.3 Combination of the bottom-up and top-down methods

The current research has individually explored the bottom-up and top-down methods for
replicating CTA strategies, each yielding promising results. The intriguing question arises:
can combining these two methods enhance the replication results? A hybrid approach that
integrates the granular detail of the bottom-up method with a broader perspective of the
top-down approach could potentially offer a more comprehensive and accurate replication of
CTA strategies.

6.2.4 Investigation of Long-Only Biases

Some CTAs might be incorporating long-only biases in their strategies, subtly blending them
with traditional trend and carry signals. Investigating this hypothesis is important to ascertain
if such biases exist and how they influence overall strategy performance and risk profiles.
Uncovering these biases would reveal new facets in CTA strategies, offering insights into
hidden risk exposures and portfolio management tactics.
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