
UTRECHT UNIVERSITY

Department of Information and Computing Science

Game and Media Technology Master Thesis

Conversational agents in games

First supervisor:

Massimo Poesio

Second supervisor:

Julian Frommel

Candidate:

Lei Wang

(Commonly referred to as:

Charlotte Wang)

Abstract

Natural language processing(NLP) can potentially apply to various fields. As a sub-

field of artificial intelligence, NLP focuses on the interaction between the computer and

the user by generating and interpreting the natural language. Applying NLP to games

is a challenge for both AI and game fields, potentially enhancing the gameplay expe-

rience. Conversational agents as one of the popular topics that is related to NLP have

been more widely used in researching the natural language processing(NLP) field. Re-

searching the dialogue agent work with the player on Minecraft via Malmo to perform

interaction and collaboration abilities between the dialogue agent and the player during

gameplay within Minecraft environment is an attractive research field with increasing

potential efficiency in enhancing the interaction between the dialogue agent and the

player during gameplay. Introducing the dialogue agent into Minecraft environment

could help us explore the potential possibilities of NLP in AI fields. In this paper I will

discuss how to make the dialogue agent collaborate with the player for construction

including the execution within Minecraft environment, the exploration of the large lan-

guage model’s(LLM) interaction, and the collaboration utility in Minecraft via Malmo.

Contents

1 Introduction 4

2 Literature Review 6

3 Research Questions 13

3.1 Research Question 1 . 13

3.2 Research Question 2 . 13

3.3 Research Question 3 . 13

3.4 Research Question 4 . 14

4 Experimental Design 15

4.1 Hypotheses . 15

4.2 Tasks . 17

5 Implementation 19

5.1 Minecraft . 19

5.2 Malmo . 20

5.3 NLP . 26

5.4 Interface . 29

6 Experimental Methods 38

6.1 Participants . 38

6.2 Procedure . 38

6.3 Guidelines . 41

6.4 Survey . 41

6.5 Evaluation . 42

7 Results 47

8 Discussion 53

8.1 H1: Natural Language Interaction can Improve the Efficiency and Effec-

tiveness of Task Completion . 53

8.2 H2: Natural Language Interaction Enhances the Experience of Minecraft

Players . 53

2

CONTENTS CONTENTS

8.3 H3: GPT-4 has a Relatively Accurate and Efficient Understanding and

Parsing of Simple Tasks Natural Language Commands, But has Limita-

tions When Processing with Complex Commands 54

8.4 H4: Task Complexity Affects the Effect of Natural Language Interaction

and GPT-4 Performance . 54

8.5 Limitation . 55

9 Conclusion 57

10 Future work 58

Appendix

A Appendix title 59

A Appendix A 60

A.1 appendix . 60

Bibliography 70

3

1. Introduction

With the development of natural language processing, integrating artificial intelligence(AI)

in the virtual world to explore interaction and cooperation is a revolutionary trend for

both AI and game development. Natural language processing(NLP) applied in the vir-

tual world changes the essentials of digital interaction, and the relationship between

NLP and the virtual world is crucial for development in the future[1]. Some research

about applying an embodied agent to observe and learn in Minecraft to adapt to the

environment shows the large language model VoYAGER has the ability of training and

learning[2]. And an extended VOYAGER model to explore Minecraft more comprehen-

sively by adding visual information and prediction-oriented in prompts[3]. So using

LLM enables the agent to learn and adapt to Minecraft world. Nonetheless, the dialogue

agent gets to explore a virtual world by navigation support shown in 2004, which already

showed some potential for exploring Minecraft world[4]. Understanding and interpret-

ing the natural language in games can be challenging. However, by understanding and

interpreting the natural language, the interaction and the collaboration in games can be

achieved and improved. Some research develops an agent that has memory and text-

based knowledge by LLM to adapt Minecraft’s environment then interact in Minecraft

by using textual descriptions[5]. The advancements in AI and game technology enable

dialogue agents to have more possibilities for development in virtual worlds, especially

Minecraft. Minecraft is an open sourced platform that offers a complex and rich virtual

world that allows the player to build, explore, and interact, therefore Minecraft can be

an educational tool[6], and Minecraft along with its extension Malmo goes beyond mere

connectivity in which empowers agents not only just to communicate but also to col-

laborate seamlessly, the cooperation of Malmo and Minecraft has been tested in[7]. In

the field of modern game development and artificial intelligence, the application of di-

alogue agents in games is becoming increasingly important, also in the virtual world.

This project aims to develop and optimize a dialog agent that can not only understand

and generate natural language conversations related to the Minecraft game environment

but also collaborate by executing the action orders. In this project, we will integrate LLM

and Malmo into Minecraft to make a dialogue system that can interact with the user espe-

cially assistance to complete tasks in the virtual world to improve users’ game experience,

4

immersion, and interaction. Creating the dialog agent aims to explore and achieve inter-

action and collaboration functions with the player. Moreover, We are going to present

the analysis of evaluating the performance by comparisons with and without LLM in

Minecraft. Specifically, it will focus on understanding the player’s commands including

dialogues to perform specific tasks or assist in the game environment. Moreover, the

agent will be required to generate natural, coherent, and context-related responses to the

player’s commands in Minecraft to improve the immersion and interactivity of the game.

To achieve this goal, we will explore and experiment with natural language processing

via its prompt to help the agent to understand the commands and generate appropriate

responses in Minecraft. We will examine how LLM processes NLP, and the performance

of dealing with various complexity of commands. The purpose of this project is to pro-

mote the application of natural language in the field of game development to improve

the game experience, interaction, and collaboration. Moreover to explore the capability

and limitations of LLM. By combining natural language processing with creative and

exploratory virtual world games like Minecraft, we are pursuing a conversational agent

that allows the player to engage and enjoy the game under NLP’s application in depth.

5

2. Literature Review

Some pioneers applied NLP to game fields as Minecraft during the previous years. Most

of papers are from the recent year (2017-2023), which represents the state-of-the-art re-

search on the above fields. Project Malmo aims to advance our understanding of Artifi-

cial General Intelligence (AGI) in complex domains (an interactive 3D world: Minecraft).

Malmo Minecraft as an intelligence platform enables the player to collaborate with the

AI agent to complete tasks during gameplay. Project Malmo Minecraft was developed by

Microsoft to provide a platform for artificial intelligence research and experimentation.

It combines the Minecraft game with the Malmo API. Connecting Minecraft with Malmo

API to enable the player to communicate and collaborate with the dialogue agent.

Prashant Jayannavar et.al[8] proposed an interactive agent in 2019, their agent can com-

municate and collaborate with humans to solve tasks in Minecraft. Figure 2.1 shows the

builder task, there are 2 characters. A stands for the architect player while B stands for

the builder player, A will guide B to finish a construction task by building according to

the target. Only A can observe B but A is invisible to B. They communicate via a chat

interface. They collected data from 40 volunteers and made a Minecraft dialogue corpus

that consists of 509 human-human dialogues and game logs for the collaborative build-

ing task. And their utterance model uses seq2seq to generate the next utterance based on

previous conversations[8], as seq2seq can process and translate the sequence and track

the dialogue state efficiently[9][10][11].

6

Figure 2.1: Builder task communicate via a chat interface[8]

Prashant Jayannavar eg.al[12] tried to create an automated builder agent with a spa-

cious action space about a collaborative building task that constructs a target structure

out of 3D blocks within Minecraft in 2020.[13] However, not all of their hypothesis were

predicted successfully. In [14], Prashant Jayannavar eg.al focus on making A’s utterance

generation, but in their new paper in 2020[12], they created models for predicting B’s

actions in the collaborating task. They consider designing the task as the builder agent

that they made is able to predict its action sequences from the precious orders that A sent

still within a given Minecraft context, such as placing and removing the blocks. Figure

2.2 shows the sample sequence of human-human game states. The game starts with B

standing on an empty grid and A makes a command to B in (a), then B executes the order

in (b) by placing a block. In (c), B starts to execute the next order given the previous

A’s instruction in (b). However, A interrupts B in (c) with the instruction, which leads

to 2 different B action sequences: (b)–(c) placing a single block, and (c)–(h) placing and

removing blocks multiply.

7

Literature Review

Figure 2.2: A sample sequence of human-human game states[12]

Zhengxiang Shi et.al[13] extend the Minecraft Corpus Dataset by annotating all builder

utterances into 8 types(Instruction-level Questions, Task-level Questions, Verification

Questions, Greetings, Suggestions, Display Understanding, Status Update, and Others),

also including clarification questions, and propose a new builder agent model that is able

to determine when to ask or execute commands. Experimental results in[13]show that

their model achieves state of the art performance on the collaborative building task with

a substantial optimization. Figure 2.3 shows a simple builder task: The builder can ob-

serve the world state and the dialogue context. The green utterance displays a response

and the yellow utterance asks a clarification question but it is actually a previous work

from[8]’s concept[13].

8

Figure 2.3: Builder task sample[13][14]

Harsha Kokel et.al proposed a system named Lara in[15], that integrates different re-

search components to develop a human-machine collaborative system. Figure 2.4 shows

Lara’s illustration. (a) a mission received: make a red tower; (b) The builder sends

greetings and the architect sends an instruction of building a red tower; (c) The builder

enquires the height of the tower and the architect answers the height value 4; (d) The

builder understands the task and starts to execute; (e) After accomplishing the command

the builder asks for the next instruction and the architect replies. The mission has been

done. (f) The complete chat of this mission, A stands for the architect while B stands for

the builder. According to their results, their system Lara worked successfully on basic

functions.

9

Literature Review

Figure 2.4: Builder mission[15]

Massimo Poesio and Chris Madge[16] examined the use of large language model ap-

plied to building and architect tasks in Minecraft. Figure 2.5 shows the builder clafirica-

tion under an incomplete instruction, we can see that if they gave a bit more clear instruc-

tion, the confusion from GPT solved, moreover,Figure 2.6 shows GPT-4 accepts complex

descriptions, furthermore, Figure 2.7 illustrates the architect executing commands that

have simple structure, in addition, Figure 2.8 presents the results of the architect execut-

ing commands that have simple structure. They also proposed adapting the Minecraft

builder task into an LLM benchmark suitable for evaluating LLM ability in spatially ori-

entated tasks, and informing builder agent design in [17]. They examined the validity of

their benchmark by applying a few basic strategies to see how this challenges a current

LLM. Their benchmark based on absolute addressing, relative addressing, and primitive

shapes in Minecraft dialogue agent building task, and test with Zero Shot, Few Shot, and

Chain of Thought(CoT).

10

Figure 2.5: Builder clarification and reference (GPT-4)[16]

Figure 2.6: Builder complex structures (GPT-4)[16]

11

Literature Review

Figure 2.7: Architect - Simple Structure (GPT-4)[16]

Figure 2.8: Architect - Complex Structure (GPT-4)[16]

12

3. Research Questions

3.1 Research Question 1

Can interaction via natural language help Minecraft users?

Natural language interaction indicates computer systems’ ability to understand and pro-

cess human natural language. In Minecraft, the player can interact with the game through

spoken or written natural language commands. Natural language interaction can under-

stand and convert the natural language commands that the user inputs then provides

real-time responses and executes the commands. This question focuses on the effec-

tiveness of natural language interaction compared to the regular mode, which natural

language processing is not involved.

3.2 Research Question 2

Can interaction via natural language improve the game experience with Minecraft?

Natural language interaction’s real-time responses could potentially enhance the overall

game experience and immersion. This research question focuses on whether integrating

natural language commands makes the game more engaging and enjoyable for players

compared to the regular mode, which considers user satisfaction, ease of use, and im-

mersion, etc in the game world.

3.3 Research Question 3

What is chat GPT-4’s limit and capability of understanding and converting the natural

language?

This question investigates the strengths and weaknesses of using ChatGPT-4 for natu-

ral language interaction within Minecraft. It seeks to identify specific scenarios where

ChatGPT-4 excels or struggles, such as understanding complex commands, handling am-

biguous language, and generating accurate corresponding and appropriate responses.

The goal is to evaluate the model’s performance and identify areas for improvement.

13

Research Questions

3.4 Research Question 4

How does the complexity of the task affect the answer to the previous research questions?

The complexity of tasks within Minecraft can vary significantly, from simple commands

e.g, ’place a blue glass block at 0 4 0’ to more intricate ones like ’build a zoo’, tasks content

requires different resources and steps to be completed. This research question examines

how task complexity influences the effectiveness of natural language interaction and the

performance of ChatGPT-4. It aims to explore how the natural language interface adapts

to varying levels of command complexity in Minecraft.

14

4. Experimental Design

4.1 Hypotheses

4.1.1 Hypothesis 1

Hypothesis 1: Natural language interaction can significantly improve the efficiency and

effectiveness of Minecraft users in completing tasks.

Specifically, the dialogue agent provides the users with real-time responses according to

the context to create a more engaging and personalized experience for the player, which

offers a supportive and interactive environment for the users to proceed with their tasks.

The interaction includes real-time proper responses and natural language commands un-

derstanding, conversion, and execution, which helps assist. Apart from that, interaction

provides a flexible and wide range of freedom that allows users to input commands in

their natural language instead of specific Minecraft format commands. In that case, the

user can achieve more category commands with their natural language commands in-

stead of remembering and looking up other specific Minecraft commands if they do not

know the exact Minecraft commands or other categories of items for commands.

4.1.2 Hypothesis 2

Hypothesis 2: Natural language interaction can significantly enhance the gaming expe-

rience of Minecraft players, including increased user satisfaction, improved ease of use,

and enhanced game immersion.

Natural language interaction provides users ultimate flexibility and freedom for com-

mands, allowing them to express their intentions more naturally and intuitively. By un-

derstanding and processing these commands, the system can give corresponding real-

time responses, which improves the overall user experience. It increases users’ sense

of control and autonomy, leading to a more satisfying and immersive gaming experience

when users see their commands being executed. Moreover, users only need to input com-

mands with natural language instead of getting familiar with all Minecraft commands,

which improves the accessibility of the game. More importantly, natural language inter-

action means that players are no longer limited to a predefined set of commands, and

15

Experimental Design

they can interact with the game more richly and diversely with more freedom degree by

using their creativity and imagination.

4.1.3 Hypothesis 3

Hypothesis 3: ChatGPT-4 has relative accuracy and effectiveness in understanding and

interpreting simple tasks’ natural language commands in Minecraft, but there are limita-

tions when dealing with complex tasks’ commands that require further optimization to

improve performance.

Specifically, ChatGPT-4 can effectively handle mostly simple and common natural lan-

guage commands, such as ’summon a dragon’ this kind of sole tasks with few steps and

fewer resources can lead to relatively accurate execution results. However, for more com-

plex or ambiguous commands, such as ’build a castle’ this kind of tasks need multiple

steps and resources might not be able to result in accurate natural language command

parsing. ChatGPT-4 may encounter difficulties in understanding or executing the com-

mands correctly. These situations indicate that while ChatGPT-4 possesses relatively well

natural language processing capabilities, further optimization will be needed for tasks

with high complexity and high requirements to enhance its accuracy and reliability in

understanding and execution.

4.1.4 Hypothesis 4

Hypothesis 4: The complexity of the task significantly affects the effectiveness of natural

language interaction and the performance of ChatGPT-4.

For simple tasks, natural language interaction can perform well by generating coher-

ent and accurate corresponding commands to be executed. However, as the task com-

plexity increases, the system’s effectiveness may decline, requiring more advanced pro-

cessing techniques and strategies. Specifically, for simple tasks, such as ’plant a tree’

or ’change the weather to rainy’ these kind of simple tasks, natural language interaction

and ChatGPT-4 can quickly and accurately understand and generate commands, demon-

strating efficiency and reliability. However, as task complexity increases, such as ’build

a farm’ or ’build a forest’, the natural language interaction system may need to process

more variables and more complex logic, making it more prone to misunderstandings

or execution errors. Therefore, the complexity of the task directly impacts the effective-

ness of natural language interaction and system performance, with complex tasks might

require more advanced natural language processing algorithms and more precise task

16

4.2 Tasks

decomposition strategies to ensure the system can accurately understand and execute

user commands.

4.2 Tasks

There are 3 tasks in total that the participants are asked to do in the experiment, task 1

and task 2 are involved with ChatGPT-4. In contrast, task 3 is without ChatGPT-4. Task

1 and task 2 aim to explore the natural language interaction based on LLM while task 3

focuses on the performance of Malmo cooperating with Minecraft without LLM.

4.2.1 Task1: simple tasks with ChatGPT-4

Task 1 is consistent with simple tasks. By simple, it means tasks with simple content,

simple tasks satisfied with the following conditions: 1. Should be completed within rel-

atively few steps or commands. 2. The goal of the task is single or few, and contains

less content and requires few steps and resources. 3. The task can be completed in a

short time, and the operation is simple in few steps and direct. 4. The execution of tasks

depends on simple resources and conditions. 5. Tasks do not require complex planning

or multiple decisions. For example, the user inputs ’place a stone at 0 4 0’ in Minecraft,

then there will be a stone block being placed at 0 4 0, which satisfies the conditions of

simple tasks because placing a block at a specific location only needs one step and it

completes the execution soon, also there are no other resources required except a block

so ChatGPT-4 does not need to consider about complex plans and strategies. However,

task 1 explains the basic functions implementation for the simple tasks not only placing

blocks in various colors and materials at any coordinates x y z (0-64) but also including

summoning creatures, planting trees, changing the weather, daytime, teleport the player

to any positions within the world’s range, filling the area with blocks, etc. Moreover, the

block material includes dirt, grass, glass, stone, water, etc, and there are 15 colors for the

block, and they represent 0-15 in Minecraft. The participants need to input their natural

language commands and dialogue in Minecraft chat box.

4.2.2 Task2: complex tasks with ChatGPT-4

Task 2 is based on task 1 commands’ structure but enables participants to attempt to ex-

ecute more complicated task commands than in task 1. Specifically, this task is about

building something more complex. In contrast with task 1’s task complexity, task 2’s

17

Experimental Design

complex tasks’ conditions include 1. Complex tasks require relatively multiple steps to

complete execution, which usually involves multiple phases. 2. Even though complex

tasks’ goals are clear, they usually contain multiple sub-goals or require coordinating

multiple elements to achieve. 3. Complex tasks take longer time to complete the execu-

tion because they usually require multiple stages of work. 4. Require multiple complex

resources and certain conditions to complete. 5. Require multiple and complex plan-

ning, strategies, variables, and structures to complete. For example, ’build a garden’, the

natural language commands structure is simple but building a garden involves multi-

ple steps such as land preparation, planting, layout design, and decoration. Apart from

that, building a garden is not only to grow flowers and plants, but also to coordinate the

overall design and layout, possibly involving a combination of aesthetics and function-

ality. Moreover, building a garden can take multiple Minecraft day and night cycles to

complete, from initial preparation to final decoration. Furthermore, building a garden

may require different types of plants, building materials, water, and time to complete the

different steps. Hence, in task 2, more details and descriptions will be added to make the

natural language instructions content more complex and rich. With more plentiful details

on building more complex tasks, GPT-4 generates comprehensive Minecraft commands

according to the complex tasks from the input natural language commands.

4.2.3 Task3: combined tasks without ChatGPT-4

Without GPT-4 involved, task 3 focuses on the relationship between Malmo and Minecraft.

Task 3 includes the basic content of task 1 and task 2 but without LLM involved. In task

3, there will be a couple of certain commands that are also typical example tasks from

task 1 and task 2. For example, input ’summon 0 1 0 chicken’ or ’build garden 1 2 3 55

30’, the chicken will be summoned to 0 1 0, and a garden will be built at 1 2 3 with 55

length and 30 width. In that case, task 3 contains both simple and complex tasks.

18

5. Implementation

In implementation, I used ChatGPT-4 as the LLM to obtain the NLP interface to inte-

grates in Minecraft via Malmo. ChatGPT-4 is an advanced language model with pow-

erful text understanding and generation capabilities. In this implementation, NLP uses

a Large language model (LLM) GPT-4 to interpret and process the player’s natural lan-

guage instructions. Specifically, ChatGPT-4 is responsible for parsing the player’s input,

understanding its intent, and generating corresponding action instructions. NLP models

use their language understanding to interpret input natural language instructions, iden-

tify specific requirements, and generate detailed action steps. These instructions are then

translated into actual actions in Minecraft via the Malmo platform, and related tasks are

performed via its API. NLP also involves converting the generated instructions into a

format that Malmo can understand, and processing game feedback in order to generate

further instructions or responses. Through this integration, ChatGPT-4’s large language

model not only improves the interactivity of the game, but also enables the player to

interact directly with the game environment in natural language, enhancing the user ex-

perience and expanding the possibilities for game automation and intelligent control.

5.1 Minecraft

Minectraft is an open world sandbox game with exploration, resource gathering, craft-

ing, construction, and combat functions[18]. It was developed in 2009, as the virtual

world with various environments, provides various complexities and infinite possibili-

ties, which inspires researchers to develop and test AI models that can deal with com-

plex environments in the real world. Apart from that, Minecraft allows the developer to

customize and modify the game environment. Moreover, developers can create new sce-

narios, missions, characters, and more challenges, which offers flexibility, openness, pos-

sibility, and creativity for researching collaborative AI. Furthermore, Minecraft’s various

scenarios and missions make building, exploiting, exploring, collecting, and gathering

resources to complete the task, which have more potential and possibilities for investigat-

ing collaborative AI, also have more plasticity to provide more experiments of research-

ing collaborative AI. Moreover, Minecraft allows us to explore the dynamic relationship

19

Implementation

between communication and interaction. In that case, it will help us to understand how

to improve interaction by investigating collaborative AI.

From the perspective of the game, Minecraft is already a popular game in the whole

world that is well-known by many people. Let alone it has infinite creativity and broad

space for designing thanks to its open interactive game world that relies on block-based

construction, which inspires more developers’ interest in designing open interactive world

games. Additionally, Minecraft has its own community for the players and developers to

communicate and share views, they can get inspiration and updates in the community.

Minecraft also has a contribution to education fields. It as a creative development tool,

demonstrates the potential development of game technology, which leads to more pro-

gramming learning applied and drives the application and exploration of game technol-

ogy in the field of education. Minecraft’s cross-platform support is a significant and con-

vincing reason for being popularity among developers. This multi-platform adaptation

has facilitated the development of technology in the gaming industry. In this project, we

executed the commands of the version of Minecraft 1.11.2 which is launched by ’launch-

Client’ in cmd as figure 5.3 has shown while the port need to be set as 10000 as default as

figure 5.4 presents. The command item names are different in each version of Minecraft.

All commands will be executed in Minecraft 1.11.2. In Minecraft, there are some other op-

erations besides executing the commands (e.g, T for input in the chat box, W for forward,

A for move left, D for move right, S for backward, space for jump, shift for fall, enter for

rotating the views, Esc for quit the chat box). Moreover, there are some commands as

far as we discovered for this project that can be executed in Minecraft 1.11.2, including

place blocks, fill area, change time, summon creatures, change the weather, give an item,

and teleport, etc. Figure 5.5 demonstrates the operation and execution in Minecraft, con-

tains the corresponding button for the operation, and the corresponding button for the

execution.

5.2 Malmo

Malmo is a platform that is built on Minecraft, as the tool for connecting to Minecraft

to execute the commands. It provides a collaborative environment in Minecraft to make

Minecraft artificially, which allows the developer to do AI experimentation and allows

the dialogue agent to interact within Minecraft, such as placing blocks, movements, and

executing action orders, which provides a wealth of features and interfaces that allow

developers to create complex AI agents within the Minecraft environment. Malmo pro-

20

5.2 Malmo

Figure 5.1: Minecraft interface launched by cmd

Figure 5.2: Port

21

Implementation

Figure 5.3: Minecraft operation and execution

22

5.2 Malmo

vides the agent observations that include the environment, objects, and world state, etc.

Additionally, the player can perform actions including creating the world, movement,

and commands for inventory and building structures[18]. Specifically, Malmo allows the

developer to create complex virtual environments, including various terrains, obstacles,

and resources. This compatible development could assist the developer in exploring col-

laborative AI performances in a manifold and realistic environment. Furthermore, var-

ied missions and challenges can be set up by Malmo, such as from simple navigation to

complex collaboration. In addition, Malmo is flexible and extensible, so developers can

customize the agent’s dialogue, behavior, movements, response, planning, and strategy

according to their needs because Malmo allows the agent to sense their surroundings

by exploring, observing the world, and obtaining data about the environment. Gener-

ally, Malmo provides a flexible and compatible platform for developers to explore and

experiment with different types of collaborative AI to adapt to diverse tasks and environ-

ments. Its flexibility, openness, and plasticity make it an ideal tool for doing collaborative

AI research. In Malmo, AgentHost is an intermediary main class, essentially acting as a

mediator enabling communication and interaction between the agent and the Minecraft.

In this project, we used the version of Malmo 0.37, which requires the version of Python

to be below 3.7 to import the library MalmoPython which contains Malmo classes and

for now, Malmo 0.37 is the latest version. Specifically, Malmo will receive the Minecraft

commands that are interpreted from natural language by LLM GPT-4, and then Malmo

sends the commands to Minecraft and execute the commands in Minecraft via Malmo,

so Malmo is the tool that connects to Minecraft and executes commands. Some Malmo

classes are used in this project for designing and starting the mission, observing the cur-

rent environment, sending commands to Minecraft, chatting in Minecraft, executing the

commands in Minecraft, updating world state, etc. Figure 5.1 shows the classes from

Malmo that are used in this project, which includes agenthost(sendCommand, startMiss-

sion, and getWorldState), MissionRecordSpec, mission spec(XML), and WorldState(is_-

mission_running, number_of_observations_since_last_state, and observations).

5.2.1 AgentHost

AgentHost is one of the main classes that contains agent_host.sendCommand is used

to send instructions to the Minecraft environment. These commands can control the

actions of the agent, such as moves, jumps, attacks, etc., and can also be used to ex-

ecute Minecraft commands, MalmoPython.AgentHost is used to control and manage

the behavior of agents in the Malmo environment, sendCommand is for sending com-

23

Implementation

Figure 5.4: Malmo classes

mands and executing commands in Minecraft so that to interact and collaborate. agent_-

host.startMission is used to start a defined task, which sends the task to the Minecraft

server and launches the task, agent_host.getWorldState is used to get the world state of

the current task. The world state includes the observation data of the agent, whether the

task has started, whether the task has ended.

5.2.2 MissionRecordSpec

MalmoPython.MissionRecordSpec is used to define how data is recorded during task

execution. In this project, it is used to specify how to record the execution of Minecraft

tasks. Specifically, MissionRecordSpec allows to save information about the status and

events of task execution for analysis and review after the task is completed.

5.2.3 MissionSpec

MalmoPython.MissionSpec is used to define and configure Malmo tasks. The definition

of a mission includes the way the world is generated, the task goal, the initial position

and behavior of the agent, and so on. There is a XML file under MissionSpec class that is

shown in Figure 5.2 that has the description for defining the basic framework and all the

contents of the entire mission, providing the basic description of the mission, the server

environment in which the mission runs, and the agent running in the mission, etc.

24

5.2 Malmo

Figure 5.5: XML description

25

Implementation

5.2.4 WorldState

WorldState is the class for representing the current state in Minecraft. In this project, there

are three classes from WorldState that are used, is_mission_running specifies whether the

mission is still running when the current world state was taken at that moment. Apart

from that, number_of_observations_since_last_state contains the number of received ob-

servations since the current world state was taken from the last time. Additionally, ob-

servations contains the timestamped observations that are stored in the current world

state.

5.3 NLP

Natural language processing(NLP) is for understanding and analyzing human languages

while LLM is powerful tool that have been trained throigh massive amounts of data

to understand and generate human language that is employed in NLP [19][20]. In this

project, when the player inputs natural language in Minecraft, the natural language will

be interpreted and translated to corresponding Minecraft commands and responds the

related response in natural language if the player makes the dialogue in Minecraft and

responds the contect-related Minecraft commands if the user input natural language co-

mamnds.

5.3.1 LLM and API

Considering the complexity of training, I used ChatGPT-4 as the large language model to

parse and input naturla language and generate the corresponding dialogue and Minecraft

commands so that enables the AI agent to communicate with the player and execute the

commands in this project. In [21], Zhiheng Xi et.al mentioned LLM can efficiently process

user prompts and generate coherent, context-relevant responses and LLM is capable of

processing multiple rounds of conversations, constantly building a conversation history

and generating responses based on context, which is helpful for coherent dialogue and

in-depth communication so that it can help the agent to understand the instructions. LLM

has potential abilities on autonomy, reactivity, pro-activeness, and social ability. Hence

it is suitable for being the core of an AI agent. In[21], Zhiheng Xi et. al introduced how

LLM can help in understanding natural language to interact with the player, memory,

planning, perceiving the environment, observation, navigation, and action.

Since in this project, I use chat GPT-4’s API which requires the OPENAI API KEY from

26

5.3 NLP

Figure 5.6: Accuracy on IGLU NLP Evaluation[16]

the personal ChatGPT-4 account. Openai API Key is used for authorization requests to

ensure that only authorized users can access OpenAI’s API.This Key is the bridge that en-

ables us connects to ChatGPT-4 to send request and get responses from GPT-4. I use GPT-

4 becuase GPT-4 has the highest accuracy on processing natural language commands for

building as figure tasks[16] compared with some other LLM as in Figure 5.1. Specifically,

the API key allows us to access the powerful features of GPT-4 through a programmatic

interface, enabling functionalities such as automated conversations and task instruction

conversions. Note that it is crucial to ensure the security of the API key, as it is the sole

credential for authorized access to the GPT-4 service. Anyone with this key can access

and utilize the API resources associated with the account, so the OPENAI API KEY must

be protected carefully to prevent from being leaked or misused. Furthermore, the API

key information will be integrated in the API request headers. This ensures that each

request is authenticated and properly processed, allowing commands and requests to be

seamlessly transmitted to GPT-4 and accurate responses to be received.

5.3.2 Send Request To GPT

ChatGPT-4’s corresponding model version is GPT-3.5-turbo, which has been clarified on

the officially ChatGPT website. GPT-3.5-turbo is an API-provided model that processes

user requests and generates responses. The model version is mandatory to be consistent

to the certain version of ChatGPT-4. Moreover, adherence to the corresponding model

27

Implementation

version is often requires for compliance with licensing agreements and usage policies

set forth by OpenAI. Ensuring that we use the correct version to help us stay compliant

with these regulations, avoiding any potential legal or operational issues. In that case,

we can keep the connection status persistently while connecting to GPT-4. The URL:

https://api.openai.com/v1/chat/completions is the access point to the API and points

to the OpenAI server. So in summery, openai API Key accesses GPT-3.5-turbo model

through the URL and gets the generated content.

5.3.3 Prompt

The prompt is the input for sending to GPT-4, and instructs GPT-4 generates the appro-

priate response as the output, besides of generating responses, also includes answering

questions, providing information these kind of interaction by understanding the con-

text. In this project, appropriate responses include corresponding Minecraft commands.

Specifically, prompt makes GPT-4 understand its ability to collaborate with malmo in

Minecraft effectively. The content of the prompt clarified the responsibility of the role

that GPT-4 will play. The content needs to be extremely clear and specified so that GPT-4

will understand the input natural language and convert it to Minecraft command form

language and give responses. The prompt covers the specific commands and responding

forms elaborately and is consistent with logical sentence structures. In the prompt, I spec-

ified that GPT-4 needs to generate commands that is compatible with the Minecraft 1.11.2

version. Prompt is the most significant part of the whole project, that all content has to

be specified, and the sentence structure has to be very logic and coherent in prompt.

Minecraft Command Generation AI Instructions

You are an AI that can engage in general conversation and generate

specific Minecraft 1.11.2 version compatible with /setblock and /give

and /tp and /weather and /time and /summon and /fill commands based

on user instructions and provides dynamic, real-time responses based

on the commands executed and the current environment, please avoid

generating <x> <y> <z>. For example, do not generate /setblock <x> <y> <z> stone.

Please avoid generating commands with placeholder coordinates such as

<x> <y> <z>. All coordinates’ number have to be greater or equal to 0

instead of generating negative numbers (e.g., the number has to be

28

5.4 Interface

between 0-64). When the user’s message is related to building

structures (e.g., ’build a house’, ’create a farm’, ’build a pyramid’,

’build a castle’, ’build a fountain’, ’build a forest’, ’build a jungle’,

’build a palace’, ’build a igloo’, etc), respond with the appropriate

Minecraft command using Minecraft 1.11.2 syntax to create a simple,

coherent structure using common blocks like planks, logs, glass, water,

dirt, grass, leaves, stone, ice, snow, stairs, bricks, stone bricks,

iron blocks, gold blocks, diamond blocks, and other materials, etc.

Ensure the commands build a structurally sound and visually appealing

structure with the right materials for each part. For example, a house

should have walls made of planks or bricks, a roof made of stairs or

slabs, windows made of glass, and a door. A pyramid should be made of

sandstone or stone bricks. A fountain should include a stone or brick

base and water blocks. Make sure to include commands for all necessary

structural components.

Please avoid using placeholder coordinates like <x> <y> <z> and generate

actual relative coordinates using ~ or absolute coordinates.

When the user’s message is related to Minecraft (e.g., ’place a red wool

block at 0 64 0’), respond with the appropriate Minecraft command using

Minecraft 1.11.2 syntax and data values (e.g., ’/setblock 0 64 0 wool 14’).

Use numerical IDs for colors and adapt block names to Minecraft 1.11.2

standards (e.g., ’planks’ for ’oak_planks’).

For non-Minecraft related chat or ambiguous queries, provide a conversational

response that encourages clarification or further interaction.

Please respond appropriately based on the context of the user’s message,

focusing on precise command generation for Minecraft tasks and engaging

interaction for general conversation. Here is the user’s instruction: ’{prompt}’.

Please respond appropriately based on the context of the user’s message,

focusing on precise command generation for Minecraft tasks and engaging

interaction for general conversation.

5.4 Interface

There are the interfaces, one with natural language involved, the other one without it

involved. Algorithm 1 shows the pseudocode of the natural language processing inter-

29

Implementation

face, and describes the flow of generating and executing Minecraft commands on the

Malmo platform using GPT. Apart from that, figure 5.7 also shows the workflow for each

main step and their corresponding malmo classes elaborately. After getting openai api

key from GPT-4’s account, the main flow focuses on define, start, and record the mis-

sion via MissionSpec(XML), startMission, MissionRecordSpec respectively, Observation-

FromChat from XML description obtains the input natural language instructions from

Minecraft chat box, then extracts instructions via getWorldState, parse instructions via

observations, send instructions to GPT-4 via URL: HTTP and get responses(generates

corresponding Minecraft commands) after processing, send generated Minecraft com-

mands to Minecraft and execute via sendCommand(). Specifically, users input com-

mands through Minecraft’s chat box, these natural language commands will be sent and

translated into GPT-4’s prompts, through multiple rounds of interaction with GPT-4, then

generates corresponding commands for execution in Minecraft. Then the generated com-

mands are validated and post-processed to ensure compatibility with Minecraft versions.

Finally, these commands will be executed in Minecraft and continue to process and ex-

ecute new commands until the end of the mission. The whole process, through interac-

tion with the GPT-4 and command verification, ensures that the commands executed in

Minecraft are valid and applicable.

Algorithm 2 presents the one only involves malmo and minecraft while figure 5.8 also

shows the workflow for each main step and their corresponding malmo classes in details.

Firstly, it initializes a Malmo agent (AgentHost) and defines an XML file for describing

the framework of the task, setting the basic environment and initial conditions for the

task. As the same Malmo functions in Figure 5.7, Malmo sends commands to Minecraft

and execute also via sendCommand. Once the mission is launched, series of functions

are defined for placing blocks, filling areas, summoning entities, etc in the Minecraft

world. Users can perform these functions by entering commands from the command

line. For example, users can use commands to place blocks, build pyramids, castles,

houses, gardens, and other architectural structures. I set the commands including place

x y z block_type data_value’, ’fill x1 y1 z1 x2 y2 z2 block_type data_value’, ’summon x

y z entity_type’, ’daytime time_value’, ’tree x y z sapling_type’, ’build pond x y z length

width depth’, ’build castle x y z length width height block_type data_value’, ’build house

x y z length width height block_type data_value’, ’build garden x y z length width’, ’build

ladder x y z height’, ’place torch x y z’, ’teleport x y z’, and ’quit’. The program parses

the instructions entered by the user and calls the corresponding function to perform the

task. If the user enters quit, the program ends the task and outputs the message "Mission

30

5.4 Interface

Algorithm 1 GPT Interaction and Command Execution in Malmo

1: procedure SENDREQUESTTOGPT(prompt, openaikey, retries)
2: Initialize url, headers, data with openaikey
3: for attempt in 1 to retries do
4: Send POST request
5: if response status code is 200 then
6: return message content
7: else
8: Wait
9: end if

10: end for
11: return None
12: end procedure
13: procedure ITERATIVEPROMPTING(agent_host, prompt, openaikey, max_attempts)
14: for attempt in 1 to max_attempts do
15: response← SENDREQUESTTOGPT(prompt, key, 3)
16: if ISCOMMANDVALID(response) then
17: return response
18: else
19: Update prompt
20: end if
21: end for
22: return None
23: end procedure
24: procedure EXECUTEMINECRAFTCOMMAND(agent_host, commands)
25: for command in commands do
26: if command is valid then
27: Execute command
28: Wait 2 seconds
29: end if
30: end for
31: end procedure
32: procedure MAINLOOP(agent_host, openaikey)
33: while mission is running do
34: if new observations then
35: for chat_msg in observations do
36: prompt← chat_msg
37: response← ITERATIVEPROMPTING(agent_host, prompt, openaikey, 5)
38: if response then
39: commands← POSTPROCESSCOMMANDS(response)
40: EXECUTEMINECRAFTCOMMAND(agent_host, commands)
41: end if
42: end for
43: end if
44: end while
45: end procedure

31

Implementation

Figure 5.7: Used Malmo classes in the interface with natural language

32

5.4 Interface

ended", indicating that the task has ended.

Algorithm 2 Malmo Building Mission

Initialize AgentHost
2: Define mission XML

Start mission with AgentHost
4: Wait for mission to start

while mission not started do
6: Wait 0.1 seconds

end while
8: Mission started

procedure PLACEBLOCKS(agent_host, x, y, z, block_type, data_value)
10: Execute chat command to place blocks

Wait 0.1 seconds
12: end procedure

while True do
14: Read user input

Parse input into arguments
16: if command is valid then

Execute corresponding procedure
18: else

Print invalid command message
20: if user input is "quit" then

Break loop
22:

End the mission
24: Print "Mission ended."

Figure 5.9 and Figure 5.10 show the conversation in task 1 and task 2’s interface.

Figure 5.11 demonstrates that simple task commands in Dutch was being understood

and interpreted.

33

Implementation

Figure 5.8: Used Malmo classes in the interface without natural language

34

5.4 Interface

Figure 5.9: Conversation 1 in Minecraft

35

Implementation

Figure 5.10: Conversation 2 in Minecraft

36

5.4 Interface

Figure 5.11: Simple task commands in Dutch

37

6. Experimental Methods

6.1 Participants

There are 20 participants and they will be divided into 2 groups equally, with 10 partici-

pants in each group.

6.2 Procedure

The experiments are offline in person, which means participants doing experiments in

person on my laptop. Before the participants start experimenting, they will be required

to read the guidelines first and they are allowed to read the guidelines anytime they want

during the whole experiment. The guidelines contain elaborate content that might make

the participants impatient to read thoroughly. Hence I will make a short verbal guide-

line before they start experimenting. Apart from that, they can ask me anything about

this experiment during the gameplay but I will only answer their questions and will not

give any suggestions. There are 2 main reasons for the procedure being set up this way.

1. The participants’ experience should be considered because some participants might

never played Minecraft before, some might played Minecraft a long time ago so they are

not that familiar with operating Minecraft. Hence, the participants might not be able to

get familiar with operating in Minecraft and need me to explain elaborately in person.

2. The project can not be exported because the project is based on Minecraft launched

from cmd, which requires of tons configurations and installations, In addition, in task

3, participants need to enter specific commands in PyCharm to execute the program.

The complexity and environmental dependencies of these operations make it impractical

to package or export the project. In order to save participants time and effort, and to

avoid distributing the program code to prevent code leakage or abuse, the experiment

was arranged to be conducted in person. This ensures me to guide all configurations,

installations, and operation steps are guided in person, and the participants can conduct

the experiment directly in the field, avoiding complicated setup and possible technical

problems. The participants were asked to finish the survey as soon as they finished the

experiment to ensure the time duration would not affect the participants’ experience and

38

6.2 Procedure

memory.

For group 1, the task order during the experiment is task 1, task 2, and task 3, which

means group 1 is required to do task 1 first, then task 2, and then task 3 the last. For

group 2, the task order during the experiment is task 3, task 1, task 2, that group 2 is

required to do task 3 first, then task2, and then task 3 the last. I will specify to the partic-

ipants about the task order they need to follow before the experiment after they read the

guidelines, then repeat and emphasize before they start filling out the survey.

For the procedure of each task, the user is required to complete at least 5 different com-

mands in each task generally. For the details of the procedure, firstly, task 1 and task

2 share the same platform that both input natural language commands in Minecraft

chat box in the same Minecraft window. Figure 6.1 shows the workflow of task 1 that

the user starts with inputting natural language commands to execute simple tasks in

Minecraft, then Malmo parses commands after receiving them from Minecraft then sends

parsed commands to GPT-4, and GPT-4 interprets commands and generates correspond-

ing Minecraft commands, then Malmo sends commands to Minecraft and execute after

receiving while keeps monitoring to update current states. Apart from that, Figure 6.2

illustrates the workflow on the same Minecraft interface after task 1 is finished but the

user proceeds to input natural language commands to execute complex tasks. We encour-

age the participants to be as creative and innovative as possible in inputting the natural

language commands in task 2 so that we can explore more details on natural language

processing by accessing various forms of NLP. In that case, the participants are allowed

to input any form of natural language.

Task 3’s commands need to be input in Pycharm instead of Minecraft because task 3 does

not involve GPT-4, Figure 6.3 presents task 3’s workflow. IN specific, during the experi-

ment, I ran the task 3 program on the PyCharm console. While the program is running,

users can enter a specific Minecraft command from PyCharm’s console once a time. The

program performs corresponding operations according to these input commands. Specif-

ically, when I launch the code, the PyCharm console displays a prompt where the user

can enter Minecraft commands. These commands are passed to my code, which pro-

cesses them according to predefined logic and performs the appropriate actions in the

Minecraft environment. Each time the participant enters a certain Minecraft command

and presses enter, the program processes and executes the command as required by task

3. This task aims to see the performances of Malmo cooperates in Minecraft.

39

Experimental Methods

Figure 6.1: Task 1 workflow

Figure 6.2: Task 2 workflow

40

6.3 Guidelines

Figure 6.3: Task 3 workflow

6.3 Guidelines

The guidelines contain the content of 3 tasks and the instructions for operation in Minecraft

with images.

The guidelines contain 2 sections: 1. The content of 3 tasks experiments. 2. The instruc-

tion on how to operate during the whole experiment in Minecraft. For experienced and

inexperienced Minecraft participants, there is an amount of content in the guidelines es-

pecially when Minecraft is combined with a dialogue agent. The experienced Minecraft

participants need to get familiar with the combination part that involves LLM. The inex-

perienced Minecarft participants need to get familiar with both Minecraft and the com-

bination part. Each step is attached with figures to make the guidelines as elaborate as

they can be. The guidelines also include lists for block types, colors, orientation, and tree

types, etc for the participants to take as references.

6.4 Survey

I set up the questionnaire to collect data on Qualtrics. There are 11 questions in total and

are divided into 4 blocks. The first block is for investigating participants’ backgrounds

in playing games and Minecraft due to the impacts of participants’ games and Minecraft

experience and contains 3 open questions. The second block contains 3 choice questions,

41

Experimental Methods

which compare among 3 tasks on the metric of ease of interaction, understood and exe-

cute, and effectiveness. The third block also contains 2 choice questions, and this block is

for the game emotions during gameplay within 3 tasks, including happy and frustrated.

The fourth block is for the conclusion to see the participants’ willingness to play games

with the dialogue agent mod in the future, which contains 1 choice question about game

experience, and 2 open questions.

This survey focuses on getting to know the participants’ video game and Minecraft back-

grounds. Especially, the questions help to get to distinguish experienced and inexperi-

enced Minecraft players. Their experience will affect the game experience. The survey

will not record any personal information from the participants, it will be anonymous

without any videos, images, eye tracking, and audio involved.

6.5 Evaluation

We aim to evaluate by computing the weighted ranking, average weighted ranking,

mean, and std to see 3 tasks’ performance. Apart from that, comparing 3 tasks’ per-

formance via pairwise and triplet to see whether the resulting data are significantly dif-

ferent. Friedman is used to evaluate 3 tasks’ significance difference generally in triplets,

then applied Wilcoxon to measure pairwise significance difference among 3 tasks so that

the results will be more comprehensive.

6.5.1 Weighted average ranking

We use weighted for evaluating the performance of 3 tasks on ease of interaction, under-

stood and execute, and effectiveness. This method combines information about the par-

ticipants’ rankings and takes into account the impact of different rankings. The weighted

average ranking method takes the ranking of each task into account in the final score to

reflect the actual impact of the ranking flexibly[22]. The task ranked 1 had the lowest

weight because it was considered the best performer, while the task ranked 3 had the

highest weight because it was the worst performer. This weighting can effectively reflect

the actual ranking of the task in the minds of the participants. In addition, by applying

the weighted values of the rankings (1, 2, 3) to the ranking number for each task, we were

able to consider the evaluations of all participants comprehensively and balance the eval-

uations of different participants. The weight impact of each ranking is set according to

the order in which it is ranked, so as to fairly reflect the opinions of all participants. Also,

using a weighted average ranking allows us to witness a more intuitive comparison of

42

6.5 Evaluation

performance across tasks. Weighted ranking makes the ranking differences in tasks more

obvious and easy to understand and explain by assisting us to identify the best task in

terms of overall performance so that enables us to fully and fairly assess the performance

of each task. This method not only takes into account the weight of each task on different

rankings, but also reflects the participants’ overall evaluation of the task, thus providing

us with a more accurate and practical assessment result. Specifically on calculation, we

first calculate the weight of each section, then calculate the overall average score to see

their performance generally. We calculated the weight for ranking 3 tasks on the ease

of interaction, understood and execute, and effectiveness to reveal the performance of

different tasks in different dimensions, and multiple dimensions can be integrated to get

the overall performance. From the weighted average ranking results, we can check the

performances of 3 tasks’ ranking generally. Then we use the overall average weighted

score to see 3 tasks’ performances on the ease of interaction, understood and executed,

and effectiveness generally. [22]

Weighted Rank =
1×Number of Rank 1 + 2×Number of Rank 2 + 3×Number of Rank 3

Total Number of Participants
[22]

(6.1)

6.5.2 Friedman

Firedman test is for comparing matched groups[23]. We use Friedman to illustrate the

comparison of 3 tasks performance significance differences as triplets so that we can com-

pare 3 tasks’ performance together generally.

χ2
F =

12
nk(k + 1)

[
k

∑
j=1

R2
j

]
− 3n(k + 1)[23] (6.2)

where[23]:

• n is the number of subjects.

• k is the number of conditions.

• Rj is the sum of ranks for the j-th condition, which is calculated by ranking each

task’s performance across different metrics, then summing these ranks for each

metric.

43

Experimental Methods

• The constant 12 is a scaling factor that adjusts the statistic to follow a chi-squared

distribution under the null hypothesis.

• ∑k
j=1 R2

j is the sum of the squared ranks for each metric.

• 12
nk(k+1)

[
∑k

j=1 R2
j

]
adjusts the squared sums of ranks to account for the number of

tasks and metrics.

• 3n(k + 1) is a correction factor that adjusts for the expected value of the test statistic

under the null hypothesis.

6.5.3 Wilcoxon

Wilcoxon is for comparing two related samples, matched samples, or to conduct a paired

difference test on repeated measurements from a single sample to determine whether

there is a significant difference in their population mean ranks[24]. We use Wilcoxon to

compare the pairwises’ significance differences among 3 tasks, which are task 1vs task2,

task 1vs task3, and task 2 vs task3. Significant differences indicate real differences be-

tween tasks on some scoring dimensions. This can help us identify tasks that are per-

forming well and those that need improvement.

W =
n

∑
i=1

(sign(di) · Ri) [25][24] (6.3)

where[25][24]:

• di is the difference between paired samples.

• Ri is the rank of the absolute value of the differences.

• sign(di) is the sign of the difference di, which is +1 if di is positive, -1 if di is negative,

and 0 if di is zero.

• n is the number of non-zero differences.

• The absolute differences |di| are ranked, ignoring their signs, from the smallest to

the largest. Tied ranks are assigned the average rank.

This test is used to determine whether there is a statistically significant difference

between the pairwise tasks to validate the hypotheses.

44

6.5 Evaluation

6.5.4 Mean and STD

Some research already used mean and std to evaluate ChatGPT-4’s performance[26].We

use mean for evaluating 3 tasks’ performances on happy, frustrated, and experience gen-

erally, and std for analyzing the concentration and dispersion of the scores to see how

stable the tasks’ performances are from the participants’ feedback. For presenting mean

and std, we use a box plot to visualize the data.

The mean is calculated by summing up all the elements in the dataset of game feelings

and experience scores and then dividing by the total number of elements.[27]

Mean(µ) =
1
N

N

∑
i=1

xi[27] (6.4)

where[27]:

• µ represents the mean (average) value of the dataset(scoring).

• N is the total number of elements in the dataset(10 each group).

• xi represents each individual element in the dataset, where i ranges from 1 to N.

• ∑N
i=1 xi is the summation of all elements in the dataset from i = 1 to i = N.

The standard deviation measures the amount of variation or dispersion in a dataset. It

is calculated by taking the square root of the average of the squared differences between

each element and the mean.[28]

Standard Deviation(σ) =

√√√√ 1
N

N

∑
i=1

(xi − µ)2[28] (6.5)

where[28]:

• σ represents the standard deviation of the dataset.

• N is the total number of elements in the dataset.

• xi represents each individual element in the dataset, where i ranges from 1 to N.

• µ is the mean (average) value of the dataset.

• (xi − µ) represents the difference between each element and the mean.

45

Experimental Methods

• (xi − µ)2 is the square of the difference between each element and the mean.

• ∑N
i=1(xi − µ)2 is the summation of the squared differences for all elements in the

dataset from i = 1 to i = N.

• 1
N ∑N

i=1(xi − µ)2 is the average of these squared differences.

•
√
· denotes the square root of the average squared differences.

46

7. Results

The results are demonstrated in table 7.1 and table 7.2, table 7.1 illustrates the results for

ranking among 3 tasks on ease of interaction, understood and executed, and effective-

ness. Table 7.2 presents the results for scoring among 3 tasks on happy, frustrated, and

experience.

Table 7.1: Results for ranking

task rank 1st rank 2nd rank 3rd

ease task 1 9 10 1

ease task 2 5 9 6

ease task 3 6 1 13

understood task 1 8 8 4

understood task 2 4 6 10

understood task 3 8 6 6

effectiveness task 1 7 9 4

effectiveness task 2 5 7 8

effectiveness task 3 8 4 8

47

Results

Figure 7.1: Tasks ranks for each metric

Table 7.2: Results for Scoring

Game Feelings Scores

Frustrated_Task 1 3 1 5 1 3 4 9 3 6 9 3 4 0 2 7 4 5 1 0 0

Frustrated_Task 2 6 2 0 4 5 7 9 2 7 5 1 6 9 6 9 6 7 7 8 5

Frustrated_Task 3 1 2 1 3 1 1 3 5 8 10 0 5 8 4 5 10 7 3 0 10

Happy_ Task 1 6 8 8 7 2 5 9 8 7 3 8 9 9 10 8 6 3 8 8 3

Happy_ Task 2 3 9 9 7 2 5 9 8 6 2 8 10 1 10 4 7 3 4 2 1

Happy_ Task 3 6 7 10 8 2 5 2 5 3 5 8 8 10 10 6 3 8 9 9 0

Experience_ Task 1 6 9 8 8 2 4 9 5 7 0 7 4 9 5 7 6 7 10 7 1

Experience_ Task 2 4 10 9 7 1 3 7 8 6 1 7 6 3 5 3 7 3 10 0 0

Experience_ Task 3 7 6 10 9 4 6 2 5 3 2 6 8 10 3 4 1 6 5 7 0

From the weight we can see that task 1 performs the best in ease of interaction, under-

stood and execute, and effectiveness with the smallest values. Task 2 performs mediocre

on ease of interaction, the worst in understood and execute, and effectiveness. Task 3 per-

forms the worst on ease of interaction, mediocre on effectiveness, same as good as task 1’s

performance on understanding and executing. In the overall average score, according to

48

Figure 7.2: Overall average ranking score

the results, task 1 performs the best, and task 2 performs the worst. There is a significant

difference between the 3 tasks on ease of interaction and frustration respectively, where

the p values are 0.0003 and 0.027 respectively.

There are significant differences between task 1 and task 3(p-value=0.017), and a sig-

nificant difference between task 2 and task 3(p-value=0.0003) on ease of interaction as

Figure 7.4 shows. There is also a significant difference between task 1 and task 2 on

happy (p-value=0.047), and a significant difference on frustrated between task 1 and task

2(p-value=0.02) that has shown in Figure 7.5.

According to the mean of 3 tasks on happy, frustrated, and experience, task 1 has the

highest mean on happy and experience, and lowest mean on frustrated, which means

the participants are satisfied with task 1 the most. Task 2 illustrates the lowest mean of

happy and experience, and the highest mean of frustrated.

Happy: If we combine mean with std, we can see that in happy, task 1’s std (2.36) is the

lowest which shows most of the participants rated it close, and the rating agreement was

high. In contrast, task 2 demonstrates the highest std (3.15), presents the scores of the

participants vary greatly and the scores are scattered. Apart from that, task 3 has a rela-

tively higher mean (6.2) indicating a higher overall score while its std is moderate (3.00),

indicating that there is a certain consistency but a certain dispersion of the scores.

Frustrated: When we come to frustrated, both task 1 and task 2 have the low std indi-

cating that there is a certain consistency, but task 1’s mean is lower than task 2, so task 1

49

Results

Figure 7.3: Friedman p-value

Figure 7.4: Wilcoxon p-value 1

50

Figure 7.5: Wilcoxon p-value 2

performs better, and task 3’s std (3.44) is the highest shows the scores of the participants

vary greatly and the scores are scattered.

Experience: Additionally, task 1 still has the lowest std in experience, 2.58, which displays

that most of the participants rated it close, and the rating agreement was high whereas

task 2’s std (3.10) is the highest indicating the scores of the participants vary greatly and

the scores are scattered. Task 3’s std is moderate (2.86), indicating that there is a certain

consistency but a certain dispersion of the scores.

Here is the proportion of 20 participants’ answers to “Do they prefer to interact with

the dialogue agent in the future’. 90% participants prefer yes and maybe to interact with

the dialogue agent in the future, only 10% participants choose no.

51

Results

Figure 7.6: Mean and STD

Figure 7.7: Participants who prefer to use the dialogue agent in Minecraft in the future

52

8. Discussion

We first compared the performance of 3 tasks as an entity, then we compared the perfor-

mance between task 1 vs task 2, task 1 vs task 3, and task 2 vs task 3 in pairs. According

to the results, task 1 performed the best on all metrics, including ease of interaction, un-

derstood and execute, effectiveness, happy, frustrated, and experience, Which partially

validated our hypotheses.

8.1 H1: Natural Language Interaction can Improve the Ef-

ficiency and Effectiveness of Task Completion

According to the results of Figure 7.1 and Figure 7.4, task 1 performed the best on the ease

of interaction, understood and execute, and effectiveness, in particular showing signifi-

cant differences between task 1 and task 3 (p-value =0.017) and task 2 and task 3 (p-value

=0.0003) on the ease of interaction, and that corresponds with the weighted results on

task 1 and task 2 in ease of interaction, that task 1 and task 2 performed better than task

3, which means task 1 and task 2 as a natural language interaction, is easier to interact

to complete tasks. In addition, although no significant differences were seen in under-

stood and execute and effectiveness indicators, Task 1 still outperformed the other tasks

on these indicators, especially the lowest weighted on effectiveness (Figure 7.1). These

results support hypothesis 1 that natural language interaction does improve efficiency

and effectiveness in Minecraft but only on simple task completion.

8.2 H2: Natural Language Interaction Enhances the Expe-

rience of Minecraft Players

Task 1 and Task 2 also showed significant differences in happy(p-value =0.047) and frus-

trated (P-value =0.02) as in Figure 7.5, indicating that natural language interaction can

enhance player satisfaction and reduce frustration when completing simple tasks. In ad-

dition, Task 1 performed best across all metrics, with the highest scores on happy and

experience and the lowest scores on frustrated (see Figure 7.6), which validates hypoth-

53

Discussion

esis 2 that natural language interaction enhances the overall gaming experience and sat-

isfaction of Minecraft players of task completion and making users more engaged and

satisfied during gameplay but only on completing simple tasks.

8.3 H3: GPT-4 has a Relatively Accurate and Efficient Un-

derstanding and Parsing of Simple Tasks Natural Lan-

guage Commands, But has Limitations When Process-

ing with Complex Commands

Task 1 performed the best on all metrics, while task 2 performed relatively poorly, espe-

cially in ease of interaction, where the significant difference between task 1 and task 3

(p =0.017) and task 2 and task 3 (p =0.0003) show that GPT-4 performs well when pro-

cessing with simple tasks’ natural language commands. However, in the face of complex

tasks’ commands (such as the construction of complex buildings), the effect is signifi-

cantly insufficient. This is reflected in the highest mean of frustration in task 2 (5.55)

and the lowest mean of happy and experience (Figure 7.6), reflecting the limitations of

GPT-4 in parsing and executing complex instructions, which validates hypothesis 3 that

GPT-4 is relatively accurate and efficient when processing simple tasks’ natural language

instructions, but has significant limitations when processing complex tasks’ instructions.

8.4 H4: Task Complexity Affects the Effect of Natural Lan-

guage Interaction and GPT-4 Performance

The influence of task complexity is fully reflected in the experimental results. In partic-

ular, on ease of interaction, there are significant differences between task 1 and task 3

(p =0.017) and task 2 and task 3 (p =0.0003), indicating that task complexity does affect

the effect of natural language interaction. In addition, the significant differences between

task 1 and task 2 in happy (p-value =0.047) and frustrated (P-value =0.002) further vali-

date the significant impact of task complexity on user experience and satisfaction. Since

the complex instructions of task 2 lead to greater frustration and lower performance than

task 1, hypothesis 4 is validated that task complexity does affect the effect of natural

language interaction and GPT-4’s performance.

Additionally, from Figure 5.9, Figure 5.10 we can see that GPT-4 can process and han-

54

8.5 Limitation

dle relatively simple conversations in Minecraft. Figure 5.11 presents that GPT can un-

derstand and parse simple Dutch commands and commands that involve simple or few

Dutch words in Minecraft.

8.5 Limitation

The versions of Minecraft and Malmo have some limitations since we can not test with

the higher version of Malmo on the higher version of Minecraft for now. However, in the

current stage, the versions of Minecraft and Malmo are the state-of-the-art we can use.

8.5.1 Unclear Coordinates

In task 1 and task 2, the whole building task is based on the player’s position as the

original principle spot hence once the player moves while the building task is proceeding,

the block’s position will follow the player’s movement while building and misplaced.

And the coordinates are usually unclear in all 3 tasks’ interfaces even though I have set

up the original spot in XML description, there are no clear grids in Minecraft interface to

show clear coordinates. Hence making GPT understand and interpret the coordinates in

Minecraft would be a challenge in the future, and the unclear coordinates impact route

planning and the setup in specifying the prompt.

8.5.2 Minecraft 1.11.2 Version Command

In Minecraft 1.11.2, it has its own command names for certain versions. However, even

though I specified to chat GPT-4 in the prompt clearly that the commands it generated

have to be aligned with Minecraft 1.11.2 version command names. It still gives some

command names that are not compatible with the Minecraft 1.11.2 version. For example,

when the player inputs to build a castle, GPT-4 responds to commands that are com-

patible with the higher version of Minecraft. During the experiments, when the partici-

pants attempted to build some complex buildings, there was some reported information

that said ’there is no such name called Minecraft:xxxxxxx’, which means even though I

specified compatibility in the prompt, and post processed the generated responses com-

mands item names by replacing with the pre-fined item names in case GPT-4 still gen-

erates wrong Minecraft version item names. But GPT-4 still generated some Minecraft

commands that are not compatible in Minecraft 1.11.2. I assume it still needs to be more

55

Discussion

specified in the prompt in the future.

8.5.3 Respond Suggestions

During gameplay in task 1 and task 2, sometimes GPT-4 responds to suggestions instead

of converting corresponding Minecraft commands to Malmo to execute in Minecraft.

Even though I have already specified in the prompt clearly that as an assistant GPT-4

needs to generate corresponding and proper Minecraft commands instead of giving sug-

gestions, but corresponding suggestions still happened every now and then.

8.5.4 Iterative Prompting

I used iterative prompting to gradually refine the generated Minecraft commands by

interacting with the GPT-4 model in multiple iterations to perform better in the current

environment. However, iterative prompting still did not adjust the generated Minecraft

commands very decently.

8.5.5 Lag

This project connects to GPT-4’s API, it lags very often during the gameplay in Minecraft.

Sometimes the player has to input multiple times to get responses from GPT-4 due to the

lag. To some extent, it affects the player’s immersion and experience during gameplay.

However, I assume the lag issue is due to ChatGPT itself. therefore hope the lag problem

can be solved with GPT’s update in the future.

56

9. Conclusion

Hypothesis 1 and hypothesis 2 are partially validated that the natural language inter-

face can enhance the effectiveness and experience in Minecraft to the users but only in

completing simple tasks. In addition, hypothesis 3 and hypothesis 4 have been vali-

dated that GPT-4 does have relative accuracy and effectiveness in simple tasks, but does

not perform as well on complex tasks as it does on simple instructions (hypothesis 3),

suggesting that task complexity does have a significant impact on the effect of natural

language interactions and GPT-4’s performance (hypothesis 4). These findings provide

important guidance and insights for the future application of natural language process-

ing techniques in Minecraft or other similar platforms. Furthermore, there are still some

limitations and challenges that need to be considered and worked on in the future to

improve GPT-4’s performance in my project.

57

10. Future work

Due to limited time, the complex tasks did not perform well and still there are some

limitations. However, in the future, if we have more time we will work on adjusting

the prompt’s sentence structures and content in the prompt via multiple attempts to im-

prove the accuracy and effectiveness of enabling LLM such as GPT-4 to interpret complex

commands based on the prompt. That might be also works on solving the first 4 limi-

tations, because unclear coordinates, incompatible Minecraft item names might relate to

the prompt. So besides well processing the complexity, GPT-4 generating accurate proper

corresponding Minecraft commands, providing current state and previous actions’ ob-

servation in Minecraft world by adjusting iterative prompting will also be considered as

future work to enhance the interaction and collaboration in Minecraft.

Appendices

58

A. Appendix title

59

A. Appendix A

A.1 appendix

Guidelines:

60

Guidelines:

Welcome to this experiment. There are 3 tasks. You nare required to

give at least 5 different commands in each task.

Content:

Task1(simple tasks with GPT-4): placing blocks at any random X, Y, Z

coordinates you want with any color and material (eg. dirt, stone, glass,

grass, etc) blocks, filling area at any random X1, Y1, Z1, X2, Y2, Z2

coordinates with any color and material blocks or water or planks,

summon creatures (eg. Chicken, wolf, pig, dog, duck, cat, skeleton,

villager, cow, spider, sheep, dragon, cat), plant trees, set up the day

time, teleport the user to any random X, Y, Z coordinates, setting up

the weather, etc

Figure: input interface

Figure: example

Task2 (complex tasks with GPT-4): creating/building something

complex assembly (eg. a lake, pool, garden, stable, tower, house, castle,

pyramid,etc). Please be as creative and innovative as you can when

inputting the natural language commands in task2.

Task3(combined tasks without GPT-4): task 3 content combined simple

and complex tasks

Figure: input interface

Instruction:

In general, for get better performance, all values you input must

between 0-100. W: forward / A: left/ S: backward / D: right / Space:

jump / Esc: cancel chat / Enter: move views /shift: fall/ left mouse:

break blocks/ Up button: the previous commands in chat box

1. Task 1 & 2: Input the natural language commands/ instructions in

minecraft chat box by pressing button ‘T’ (it might be lagging so you

have to keep sending once a time until your command shows in

pycharm controller) when you do task 1 & task 2. Please hold still while

your build.

2. Task 3: Input the commands according to the commands options in

pycharm interface once a time, when you finish typing, press ‘Enter’.

(e.g., 'place x y z block_type data_value', 'fill x1 y1 z1 x2 y2 z2

block_type data_value', 'summon x y z entity_type', 'daytime

time_value', 'tree x y z sapling_type', 'build pond x y z length width

depth', 'build castle x y z length width height block_type data_value',

'build house x y z length width height block_type data_value', 'build

garden x y z length width', 'quit')

For blocks’ data value: "white": 0, "orange": 1, "magenta": 2,

"light_blue": 3, "yellow": 4, "lime": 5, "pink": 6, "gray": 7, "light_gray":

8, "cyan": 9, "purple": 10, "blue": 11, "brown": 12, "green": 13, "red":

14, "black": 15

Sapling type: 0-5

Oak Sapling：0

Spruce Sapling：1

Birch Sapling：2

Jungle Sapling：3

Acacia Sapling：4

Dark Oak Sapling：5

For stairs: the data_value is used to indicate both the direction and

whether the stairs are inverted:

Direction

0 - Facing North (negative Z-axis)

1 - Facing South (positive Z-axis)

2 - Facing West (negative X-axis)

3 - Facing East (positive X-axis)

Inversion State

Adding 4 to the base values above indicates the stairs are inverted, for

example:

4 - Inverted and facing North

5 - Inverted and facing South

6 - Inverted and facing West

7 - Inverted and facing East

For log: log Type and Orientation:

Basic Values - Default Upright Placement

0: Oak log

These values represent the logs placed in their default, upright position.

Extended Values for Orientation

Along the X-axis :

4: Oak log placed horizontally along the X-axis.

Along the Z-axis:

8: Oak log placed horizontally along the Z-axis.

All Bark Variant:

12: Oak log variant with bark on all sides.

Please note that I’ll do the verbal guidelines before the experiments as

well. You can check this guidelines anytime you want during the

experiment or ask me.

Thanks for participating.

A.1 appendix

Figure A.1: Survey 1

Survey:

67

Appendix A

Figure A.2: Survey 2

68

Bibliography

[1] R. I. Sumon, S. M. I. Uddin, S. Akter, M. A. I. Mozumder, M. O. Khan, and H.-C.
Kim, “Natural language processing influence on digital socialization and linguis-
tic interactions in the integration of the metaverse in regular social life,” Electron-
ics, vol. 13, no. 7, p. 1331, 2024.

[2] G. Wang, Y. Xie, Y. Jiang, et al., “Voyager: An open-ended embodied agent with
large language models,” arXiv preprint arXiv:2305.16291, 2023.

[3] W. Haijima, K. Nakakubo, M. Suzuki, and Y. Matsuo, “The embodied world
model based on llm with visual information and prediction-oriented prompts,”
arXiv preprint arXiv:2406.00765, 2024.

[4] A. Nijholt, J. Zwiers, and B. van Dijk, “Maps, agents and dialogue for exploring a
virtual world,” Web Computing. International Institute of Informatics and Systemics
(IIIS), 2004.

[5] X. Zhu, Y. Chen, H. Tian, et al., “Ghost in the minecraft: Generally capable agents
for open-world environments via large language models with text-based knowl-
edge and memory,” arXiv preprint arXiv:2305.17144, 2023.

[6] K. Krappala, L. Kemppinen, and E. Kemppinen, “Achievers, explorers, wander-
ers, and intellectuals: Educational interaction in a minecraft open-world action-
adventure game,” Computers and Education Open, vol. 6, p. 100 172, 2024.

[7] Y. Xiong, H. Chen, M. Zhao, and B. An, “Hogrider: Champion agent of microsoft
malmo collaborative ai challenge,” in Proceedings of the AAAI conference on artifi-
cial intelligence, vol. 32, 2018.

[8] A. Narayan-Chen, P. Jayannavar, and J. Hockenmaier, “Collaborative dialogue in
Minecraft,” in Proceedings of the 57th Annual Meeting of the Association for Computa-
tional Linguistics, Florence, Italy: Association for Computational Linguistics, Jul.
2019, pp. 5405–5415. [Online]. Available: https://www.aclweb.org/anthology/
P19-1537.

[9] R. J. Weiss, J. Chorowski, N. Jaitly, Y. Wu, and Z. Chen, “Sequence-to-sequence
models can directly translate foreign speech,” arXiv preprint arXiv:1703.08581,
2017.

[10] Y. Feng, Y. Wang, and H. Li, “A sequence-to-sequence approach to dialogue state
tracking,” arXiv preprint arXiv:2011.09553, 2020.

[11] M. Eric and C. D. Manning, “A copy-augmented sequence-to-sequence architec-
ture gives good performance on task-oriented dialogue,” arXiv preprint arXiv:1701.04024,
2017.

[12] P. Jayannavar, A. Narayan-Chen, and J. Hockenmaier, “Learning to execute in-
structions in a minecraft dialogue,” in Proceedings of the 58th annual meeting of the
association for computational linguistics, 2020, pp. 2589–2602.

[13] Z. Shi, Y. Feng, and A. Lipani, “Learning to execute actions or ask clarification
questions,” arXiv preprint arXiv:2204.08373, 2022.

[14] A. Narayan-Chen, P. Jayannavar, and J. Hockenmaier, “Collaborative dialogue
in minecraft,” in Proceedings of the 57th Annual Meeting of the Association for Com-
putational Linguistics, 2019, pp. 5405–5415.

69

https://www.aclweb.org/anthology/P19-1537
https://www.aclweb.org/anthology/P19-1537

Bibliography

[15] R. Islam, W. EDU, J. Bonn, et al., “Lara–human-guided collaborative problem
solver: Effective integration of learning, reasoning and communication,”

[16] C. Madge and M. Poesio, “Large language models as minecraft agents,” arXiv
preprint arXiv:2402.08392, 2024.

[17] C. Madge and M. Poesio, “A llm benchmark based on the minecraft builder dia-
log agent task,” arXiv preprint arXiv:2407.12734, 2024.

[18] S. Singh, “Minecraft as a platform for project-based learning in ai,” in Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 34, 2020, pp. 13 504–13 505.

[19] D. Gala and A. N. Makaryus, “The utility of language models in cardiology: A
narrative review of the benefits and concerns of chatgpt-4,” International Journal
of Environmental Research and Public Health, vol. 20, no. 15, p. 6438, 2023.

[20] P. M. Nadkarni, L. Ohno-Machado, and W. W. Chapman, “Natural language pro-
cessing: An introduction,” Journal of the American Medical Informatics Association,
vol. 18, no. 5, pp. 544–551, 2011.

[21] Z. Xi, W. Chen, X. Guo, et al., “The rise and potential of large language model
based agents: A survey,” arXiv preprint arXiv:2309.07864, 2023.

[22] A. F. Siegel, Practical business statistics. Academic Press, 2016.
[23] D. G. Pereira, A. Afonso, and F. M. Medeiros, “Overview of friedman’s test and

post-hoc analysis,” Communications in Statistics-Simulation and Computation, vol. 44,
no. 10, pp. 2636–2653, 2015.

[24] B. Rosner, R. J. Glynn, and M.-L. T. Lee, “The wilcoxon signed rank test for paired
comparisons of clustered data,” Biometrics, vol. 62, no. 1, pp. 185–192, 2006.

[25] S. Deng, J. Qin, et al., “Graduation planning analysis using wilcoxon rank sum
test,” Academic Journal of Humanities & Social Sciences, vol. 5, no. 8, pp. 84–89, 2022.

[26] J. K. M. Ali, M. A. A. Shamsan, T. A. Hezam, and A. A. Mohammed, “Impact of
chatgpt on learning motivation: Teachers and students’ voices,” Journal of English
Studies in Arabia Felix, vol. 2, no. 1, pp. 41–49, 2023.

[27] M. N. Martinez and M. J. Bartholomew, “What does it “mean”? a review of in-
terpreting and calculating different types of means and standard deviations,”
Pharmaceutics, vol. 9, no. 2, p. 14, 2017.

[28] G. W. Brown, “Standard deviation, standard error: Which’standard’should we
use?” American journal of diseases of children, vol. 136, no. 10, pp. 937–941, 1982.

70

	Introduction
	Literature Review
	Research Questions
	Research Question 1
	Research Question 2
	Research Question 3
	Research Question 4

	Experimental Design
	Hypotheses
	Tasks

	Implementation
	Minecraft
	Malmo
	NLP
	Interface

	Experimental Methods
	Participants
	Procedure
	Guidelines
	Survey
	Evaluation

	Results
	Discussion
	H1: Natural Language Interaction can Improve the Efficiency and Effectiveness of Task Completion
	H2: Natural Language Interaction Enhances the Experience of Minecraft Players
	H3: GPT-4 has a Relatively Accurate and Efficient Understanding and Parsing of Simple Tasks Natural Language Commands, But has Limitations When Processing with Complex Commands
	H4: Task Complexity Affects the Effect of Natural Language Interaction and GPT-4 Performance
	Limitation

	Conclusion
	Future work
	Appendix title
	Appendix A
	appendix

	Bibliography

