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Abstract

In this thesis, we study the long time behaviour of two specific models; the Compass
model and the Deffuant model, which are special examples of opinion models. Opinion
models are special stochastic Markov processes in which one wants to understand how
global opinions can be formed given specific types of interaction.
Both models are first introduced as Markov processes and then simulated numeri-

cally and compared. The numerical simulations verify known analytical results on their
respective ergodic properties.
Furthermore, the impact of two different types of noise, the uniform and the bi-modal

noise, on both models is analysed using numerical simulations. The goal is to gain insight
into the influence of the noise on the behaviour of the models. From the simulations
we conclude that small uniform noise has little influence on the model behaviour. In
contrast, even the smallest bi-modal noise changes the ergodic properties of the Compass
model significantly, while not impacting the Deffuant model much.
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Introduction and Background
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1. Introduction

In this thesis we study opinion models, which are mathematical models for the time evo-
lution of opinions of a group of individuals. These models can, for example, be applied
to model opinion formation leading up to elections.

In general, individuals are seen as vertices on a graph that can interact only if they are
neighbours, that is, if they are connected by an edge. There are many different types of
graphs used; complete finite graphs, lattices, trees, random networks, and many more.
The opinions of individuals can be modelled by any sort of set. Often either finite sets

or metric spaces are used.
How and when interactions between individuals occur and how these interactions

change the opinions of the individuals involved is also model specific. An individual
could for example take the average of the opinions of a selection of its neighbours or a
group of individuals could agree on some form of compromise whenever they interact.
Many other types of interactions are possible as well.
Furthermore, one might want to model external influences, for example by adding

(random) noise.

When studying these models, one mainly wants to know what long-time behaviour
the group exhibits. Will all individuals eventually agree? And what opinion will they
agree upon? When everyone agrees, we speak of consensus. Note that this concept is
mathematically analogous to that of synchronisation used in different areas of applica-
tion.

From a mathematical point of view, opinion models are often studied in terms of inter-
acting particle systems. Some background literature can be found in [FV17], [Lig85] and
[Lig10, Chapter 4]. These are often modelled using stochastic processes which, roughly
speaking, model the evolution of a random variable in time. This randomness is useful,
since an opinion can change and interactions in groups often have a random component.
Stochastic processes in which the future of the process only depends on the present and
not its past are called Markov processes. These are particularly useful, because there
exist many theoretical results on their long-time behaviour. Many opinion models are
therefore modelled as Markov processes. An introduction to the theory of stochastic
processes and Markov processes can, for example, be found in the [Lig10] and [KS12].
An introduction to the topic using the example of Brownian motion is given in [MP10].

Opinion models can be divided into models with a finite set of opinions and models
with a continuous opinion space.
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1. Introduction

One of the first models applied as an opinion model is the Ising model. It was originally
proposed as a model of ferromagnetism, but has since been applied to numerous other
topics, such as opinion models [HRFS+22, Chapter 2.1.1]. It is for instance introduced
in [FV17] and [Lig85, Chapter IV]. In the Ising model, the opinions lie in the set {−1, 1}
and neighbours tend to agree with one-another, resulting in configurations that minimise
a given energy function. After originally being defined on the lattice, this model has then
been studied by on various graphs. For example in [DGM02], the authors investigate the
Ising model on random networks. In [BGJZ23], the Ising model with external influences
is studied on specific examples of finite clustered networks. Furthermore, in [TYS21],
the authors use a variant of the Ising model to investigate real-world behaviour of voters.
Another well-known model in which opinions can only take two values is the voter

model. At every time step an individual is selected at random. This individual changes
its opinion to be equal to that of a randomly selected neighbour. See [Lig10, Chap-
ter 4.3], [CFL09, Chapter III.B] and [Lig85, Chapter V] for an analysis of this model.
An application of the voter model to elections in the United States can be found in
[FGSR+14].

A popular model with a continuous opinion space, usually given by [0, 1], is the De-
Groot model. In this model, an individual updates its opinion to a weighted average of
the opinions of its neighbours, where the weights vary per individual and are constant
in time. More information on the DeGroot model, including additional references, can
be found in [DDK24].
Bounded confidence models provide another group of models with continuous opinion

spaces. In these models, individuals adjust their opinions during an interaction only
if they are sufficiently similar, that is, if the distance between their opinions is smaller
than a given confidence bound [HRFS+22, Chapter 2.2.2]. Two examples of bounded
confidence models, the Deffuant model (originally introduced in [DNAW00]) and the
Compass model (originally introduced in [GHH20]), are studied in this thesis.

The starting point of this thesis was the paper “Strictly weak consensus in the uni-
form compass model on Z” by N. Gantert, M. Heydenreich and T. Hirscher from 2020
[GHH20]. In this paper the Compass model is introduced and compared to the Deffuant
model. The dynamics of the Compass model are defined analogous to those of the Def-
fuant model. However, the opinions in the Compass model are represented as angles
in contrast to the finite intervals used for the Deffuant model. In both models, two
individuals adjust their opinions to a value that is closer to their average opinion when
they interact with each other, which happens at random times. If the initial opinions
are chosen independently and uniformly at random for each individual, we speak of the
Uniform Deffuant model or Uniform Compass model.

The Uniform Deffuant model has already been studied extensively. In [DNAW00], G.
Deffuant, D. Neau, F. Amblard and G. Weisbuch proposed this model on the complete
graph. They showed that consensus can only be achieved for large confidence bounds.
The paper [Häg12] shows that, for the Uniform Deffuant model on Z, the critical value of
the confidence bound lies at 0.5. Convergence to consensus is shown for larger confidence
bounds and absence of consensus for smaller ones. This model has also been simulated
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1. Introduction

numerically on various other graphs, for example in [DNAW00], [SSS04] and [Wei04].
Our main source for the Compass model is the paper [GHH20]. In this paper, an

infinite confidence bound is assumed. Furthermore, a distinction is made between strong
consensus, that is, all individuals agree on the same opinion, and weak consensus, that
is, the distance in opinion between all pairs of interacting individuals approaches zero.
Since the definitions of weak and strong consensus rely on convergence of sequences of
random variables, it is necessary to distinguish between consensus which is almost sure,
in L1 and in probability. The main result of the paper [GHH20] is that there is strictly
weak consensus in L1 for the Uniform Compass model on Z. In comparison, there is
almost sure strong consensus for the Deffuant model on Z.

The main goal of this thesis is to study consensus formation in both, the Compass
and Deffuant model. In particular, we are interested in the effect of random noise on
consensus building. We will answer the following research question:

How does the long-term behaviour of the Uniform Compass model change when it
is perturbed by random noise?

We answer this question numerically for two different versions of noise; the uniform
noise and bi-modal noise. We started by simulating both models without noise. For
this case there are theoretical results on the behaviour of both the models available.
Verifying these results through our simulation provides a way of checking whether the
implementation is correct. We then go on to simulate the models with different types of
noise. We will see that only large uniform noise has a significant impact on the dynamics
of the models. In contrast, very small bi-modal noise changes the long-time behaviour
of the Uniform Compass model drastically. For the Uniform Deffuant model even large
bi-modal noise has little impact.
Instead of looking at the configurations of the models directly we will calculate three

parameters and study them. Two of them are the order parameters that have, for exam-
ple, been used to study synchronisation in the mean-field XY-model as done in [CR16].
The third parameter is the sum of all absolute differences of opinions of neighbours. This
parameter comes up in the proof of consensus for the Compass model given in Lemma
3.1 of the paper [GHH20]. When it is zero, there is strong consensus.

This thesis is divided into three parts. Part I, contains the introduction and a chapter
on Markov processes. The goal of this chapter is to give the background on Markov
processes needed to understand Part II.
Part II consists of four chapters that give a theoretical description of the Compass and

Deffuant model. In Chapters 3 and 4, the models are introduced as Markov processes.
In the special case where the models are defined on a finite path, it is verified, that they
are indeed well-defined. Furthermore, the different types of noise are defined. Chapter
5 provides a definition of consensus and shows strong consensus for the Compass and
Deffuant model on finite paths. Chapter 6 gives some invariant measures for the Compass
and Deffuant model.
Part III presents the simulations, which form the main part of this thesis. First, the

implementations are explained in Chapter 7 and then the results are given in Chapter
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1. Introduction

8. This part is particularly interesting, because some of the behaviour that it analyses
numerically have not been studied so far. It therefore provides original contribution to
the field of opinion models. Finally, Chapter 9 gives the conclusion and an outlook on
further interesting research questions.

Note that I have generated all the graphics shown in the following text myself and
that, to the best of my knowledge, I explicitly stated wherever I used work that is not
my own.
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2. Markov Processes

The opinion models studied in this thesis are described as Markov processes; a special
kind of stochastic processes. This has the big advantage that Markov processes are
stochastic processes with practical properties that are rather well studied. That means
that there is a lot of literature and known results about Markov processes available. The
key property of a Markov process is that the future of the process is only dependent on
the immediate past and not on the entire history of the process. Thus, in the discrete
time case, what happens at time n + 1 will only depend on time n and not on the
entire history of the process, that is, what happens at times 1, 2, . . . , n. This can make
calculations and proofs significantly easier.
To motivate this further, we will start by looking at a standard example for a Markov

process; the simple random walk.

Example 2.0.1 (Simple random walk on Z). Let (ak)k∈N be a sequence of indepen-
dent random variables that are all uniformly distributed on {−1, 1}. Then consider the
stochastic process (sk)k∈N that is given by

sk :=

k∑
i=0

ai

in all k ∈ N. This process is then called the simple random walk on Z. One can visualise
it the following way. Imagine a line numbered by Z, where all integers are one step apart.
Then imagine someone standing on one of the integers. After every time unit, let that
person take a step to the left with probability 1

2 or to the right with probability 1
2 . The

integer on which the person stands at time k ∈ N is then given by the random variable
sk.

This process is a Markov process, because the position of the person at time k+1 only
depends on the position of the person at time k. In order to see this, note that

sk+1 := sk + ak+1 =

(
k∑
i=1

ai

)
+ ak+1,

where ak+1 is independent of
∑k

i=1 ai. Thus, when we know the value of sk and ak, we
will know sk−1. We do not need to know the values of s0, . . . , sk−1 as well.

This turns out to be a very practical property for calculations. For example, it allows
to describe these processes with only two things:

1. the starting distribution s0, and
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2. Markov Processes

2. the transition from step k − 1 to step k.

In this example we can describe the transition from step k− 1 to step k using an infinite
stochastic matrix (qi,j)i,j∈Z given by

qi,j :=

{
1
2 , if j = i+ 1 or j = i− 1,

0, else.

Here, qi,j gives the probability of the person moving from integer i to integer j in one
time step. The simple random walk on Z is a standard example of a Markov chain; a
special kind of Markov process. It can be found in many books on the topic, for example
in [KS12] or in [BW21].

In contrast, an example of a stochastic process that is not Markov is given in the
following example.

Example 2.0.2 (Stochastic process that is not Markov). Let (ak)k≥N be a sequence of
random variables that are uniformly distributed on {−1, 1}. Define a stochastic process
(pk)k≥0 by

pk :=


∑ k

2
i=0 a2i, if k is even,∑ k−1

2
i=0 a2i+1, if k is odd.

This process is not a Markov process as the behaviour of the next time step is always
dependent on the previous time step, and not just on the present. To see this, note that
for any k, pk+1 = pk−1 + ak+1. Thus, this is not a Markov process.

The examples shown above are using discrete time. A discrete time Markov process
is often called a Markov chain. They are easier to study, because they can be described
using transition matrices. We will go on to study Markov process in continuous time.
Our goal is to describe them using linear operators called generators.
In the following chapter we will often be using Brownian motion as an example to

illustrate various concepts. Brownian motion can, intuitively, be viewed as a continuous
version of a random walk. This is for example outlined in [Gal22, Chapter 1].
Throughout this chapter, let B(S) denote the Borel-σ-algebra on the Polish space

space S.

2.1. Markov Processes and their Generators

Before diving into the topic of Markov processes, recall the following definitions.

Definition 2.1.1 (Polish space). Let S be a topological space. Assume that there exists
a complete and separable metric d : S × S → R+ generating the topology. Then S is
called a Polish space. [Kec95, Definition 3.1]

Many standard examples of topological spaces are also Polish spaces. For example,
any separable Banach space is a Polish space. This, and many more examples of Polish
spaces can be found in [Kec95].
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2. Markov Processes

Definition 2.1.2 (Stochastic process). Let (Ω,U ,P) be a probability space and let (E, E)
be a measurable space. Then, a stochastic process X = (Xt)t≥0 on (Ω,U ,P) with state
space (E, E) is a collection of random variables Xt : Ω → S for t ∈ [0,∞). Stochastic
processes are sometimes also called random processes. [BW21, Definition 1.1]

Now, let us start by defining Markov processes. The following text is in large parts
inspired by the lecture notes on Markov processes by Andreas Eberle from 2023. [Ebe23]

Definition 2.1.3 (Markov process). Let (S,B(S)) be a measurable space and let (Ω,U ,P)
be a probability space. Let X = (Xt)t≥0 be a stochastic process on (Ω,U ,P) with state
space (S,B(S)). Let µ be a probability measure on (S, E), such that X0 ∼ µ. Then
we call µ the initial distribution of the process. Furthermore, let F = (Ft)t≥0 be the
natural filtration adapted to X. If X satisfies the Markov property

P (Xt ∈ E|Fs) = P (Xt ∈ E|Xs) almost surely

for all 0 ≤ s ≤ t and all E ∈ E, it is called a Markov process. [KS12, Chapter 19.2]
If, furthermore, P(Xt+s ∈ E|Xs) = P(Xt+h ∈ E|Xh) almost surely for every E ∈ E

and every s, h ∈ [0,∞), then X is called time-homogeneous. [MP10, Chapter 2]
If for every ω ∈ Ω,

[0,∞)→ S, t 7→ Xt(ω)

is almost surely a right continuous map, then X is called right-continuous.
[KS12, Chapter 13.6]

We start by giving an alternative formulation of the Markov property.

Remark 2.1.4. The following formulations of the Markov property are equivalent:

1. P (Xt ∈ E|Fs) = P (Xt ∈ E|Xs) for all 0 ≤ s ≤ t and all E ∈ E,

2. E [f(Xt)|Fs] = E [f(Xt)|Xs] for all 0 ≤ s ≤ t and all measurable f : S → R+.

The equivalence, which is mentioned in [Ebe23, Chapter 1], can be proven using standard
machinery. Below, we worked out the proof.

Proof. First, we show that (2.) implies (1.). We start by assuming that (2.) holds.
Then, fix a E ∈ E . The function 1Xt∈E is then a measurable function S → R+. Thus,

E [1Xt∈E |Fs] = P (Xt ∈ E|Fs)

and
E [1Xt∈E |Xs] = P (Xt ∈ E|Xs) .

Since one can do this for any B ∈ E , (1.) follows.
For the other implication, assume that (1.) holds. Let f : S → R+ be a measurable

function. Then approximate f from below by a sequence of simple functions that are
made up from indicator of the form 1Xt∈E where E ∈ E . Afterwards, use the monotone
convergence theorem for conditional expectations to get (2.).

8



2. Markov Processes

Figure 2.1.: Three realisations of Brownian motion.

From now on, we will only consider right-continuous time-homogeneous Markov pro-
cesses unless explicitly stated otherwise.
Before introducing any more properties of Markov processes, let us consider Brownian

motion as an example.

Example 2.1.5 (Brownian motion). Brownian motion is defined as a stochastic pro-
cess (Bt)t≥0 on a suitable probability space (Ω,U ,F) with state space (R,B(R)) such that
the following conditions hold:

1. B0 = 0,

2. Bt1 −Bt0 , Bt2 −Bt1 , . . . , Btn −Btn−1 are independent for all
0 ≤ t1 ≤ t2 ≤ · · · ≤ tn−1 ≤ tn (we speak of independent increments),

3. Bt −Bs ∼ N (0, |t− s|) for all t, s ≥ 0,

4. t 7→ Bt is almost surely continuous.

The existence of Brownian motion is a standard result that can, for example, be found
in [Lig10, Chapter 1.5]. According to [SP12, Theorem 6.1], for every s > 0, the process
(Bt+s−Bs)t≥0 is again a Brownian motion and independent of Fs. According to [SP12,
Theorem 6.2], this property is equivalent to the version (2.) of the Markov property
given in Remark 2.1.4. That Brownian motion is time-homogeneous follows immediately.
Right-continuity, follows from property (4.) in the definition above. Thus, Brownian
motion is an example of a time-homogeneous right-continuous Markov process.
An illustration of three realisations of Brownian motion can be found in Figure 2.1.

A common way to characterise a Markov process is through its transition function. We
will define the transition function of a Markov process by first defining a sub-probability
kernel. This set of definitions (2.1.6 and 2.1.7) is strongly inspired by the lecture notes
by A. Eberle [Ebe23]. Note, however, that equivalent definitions can be found in other

9



2. Markov Processes

literature. One example is the definition of Markov transition probabilities found in
[Bas11, Definition 19.2]. Another is the Markov transition kernel in [MP10, Definition
2.30]

Definition 2.1.6 (Sub-probability kernel). A function p : S × B(S)→ [0, 1] is called a
sub-probability kernel, if

1. p(x, ·) defines a measure on (S,B(S)) for each x ∈ S and

2. p(·, B) defines a measurable function of (S,B(S)) for all B ∈ B(S).

Furthermore, if p(x, S) = 1 for each x ∈ S, then p is called a probability kernel. If p
and q are such sub-probability kernels, define

(pq)(x,B) =

∫
p(x, dy)q(y,B)

for all x ∈ S and all B ∈ B(S).

Using sub-probability kernels we can define transition functions.

Definition 2.1.7 (Transition function). A collection (pt)t≥0 of sub-probability kernels
is called a transition function, if it satisfies the following properties:

1. p0(x, ·) = δx(·) for all x, and

2. ptps = ps+t for all 0 ≤ s and all 0 ≤ t (Chapman-Kolmogorov equation).

(pt)t≥0 is said to be the transition function of a time-homogeneous Markov process
(Xt)t≥0 on (S,B(S)), if

pt(x,B) = P (Xt ∈ B|X0 = x)

for all t ≥ 0 and B ∈ B(S).

Note that the transition functions (pt)t≥0 act as an operator on measurable functions
f : S → R by

(ptf)(x) =

∫
pt(x, dy)f(y)

for all x ∈ S.
The existence of a transition function for every Markov process is a standard results.

In the following remark, we will work out a proof.

Remark 2.1.8. Every Markov process (Xt)t≥0 has a transition function. In order to
see this, define

pt : S × B(S)→ [0, 1], (x,B) 7→ P(Xt ∈ B|X0 = x)

and check that it is indeed a transition function. To do this, first note that it is a
sub-probability kernel. Further,

p0(x,B) = P(X0 ∈ B|X0 = x) = 1B(x).

10



2. Markov Processes

Thus, p0(x, ·) = δx(·). Last but not least, we will check the Chapman-Kolmogorov equa-
tion. So, for all x ∈ S and all B ∈ B(S), calculate:

(ptps)(x,B) =

∫
pt(x, dy)ps(y,B)

= E[ps(Xt, B)|X0 = x]

= E[P(Xs ∈ B|X0 = Xt)|X0 = x]

= E[P(Xs+t ∈ B|Xt)|X0 = x]

= E[E[1Xs+t∈B|Xt]|X0 = x]

= E[E[1Xs+t∈B|Ft]|X0 = x]

= E[1Xs+t∈B|X0 = x]

= P(Xs+t ∈ B|X0 = x)

= ps+t(x,B),

where it was used that (Xt)t≥0 is a Markov process and that {X0 = x} ∈ F0 ⊂ Ft.

Now that we know that every Markov process has a transition function, we calculate
it for Brownian motion in the following example.

Example 2.1.9 (Transition function for Brownian motion). For standard linear Brow-
nian motion (Bt)t≥0 the transition function can be computed directly:

pt(x, [a, b]) = P(Bt+s ∈ [a, b]|Bs = x)

= P(x+Bt ∈ [a, b]|B0 = 0)

= P(Bt ∈ [x+ a, x+ b])

=

∫ x+b

x+a

1√
2πt

exp

(
−y

2

t

)
dy

=

∫ b

a

1√
2πt

exp

(
−(x+ y)2

2t

)
dy

where Bt ∼ N (0, t) was used. This defines the transition function fully, because the
closed intervals generate B(R). This matches the result stated in [MP10, Example 2.31].

Often, instead of describing a Markov process explicitly using its transition function,
one only gives its generator. This generator describes the infinitesimal properties of the
process. Below, we define semigroups of operators which we can then use to define the
generator.

Definition 2.1.10 (Semigroup of operators). Let (Pt)t≥0 be linear operators on a Ba-
nach space (A, || · ||∞). Then they define a semigroup if the semigroup-property

PtPs = Pt+s

holds for all s, t ≥ 0. Furthermore, if in addition the sub-Markov-property

0 ≤ f ≤ 1 =⇒ 0 ≤ Ptf ≤ 1

11



2. Markov Processes

holds for all t ∈ [0,∞) and all f ∈ A, they define a sub-Markovian semigroup. The
semigroup is called strongly continuous (C0), if for all f ∈ A,

lim
t↓0
||Ptf − f ||∞ → 0

holds. If for all t ≥ 0 and all bounded f ∈ A,

||Ptf ||∞ ≤ ||f ||∞,

(Pt)t≥0 is called a contraction semigroup. These definitions can be found in [SP12,
Chapter 7.1].

As described in the lecture notes [Ebe23], the transition function of a Markov process
induces such a semigroup. We worked out a similar argument in the following remark.

Remark 2.1.11. Let X = (Xt)t≥0 be a Markov process with state space (S,B(S)) with
transition function (pt)t≥0. Define the space

E := {f : S → R | f bounded and measurable, lim
t↓0
||Ptf − f ||∞ = 0}.

Note that this is a Banach space.
Now, define the collection of operators (Pt)t≥0 by Ptf := ptf for f ∈ E. We then have

(Ptf)(x) = (ptf)(x) =

∫
pt(x, dy)f(y) = E [f(Xt)|X0 = x]

for all x ∈ S, t ≥ 0 and f ∈ E. Thus, Ptf = E [f(Xt)|X0] for all f ∈ E. By the
definition of conditional expectation, Pt is a linear operator for all t ≥ 0. Furthermore,
from the Chapman-Kolmogorov-equation, it is a semigroup. The sub-Markov property
also follows directly from the properties of conditional expectations. By definition of E,
the semigroup is strongly continuous on E.

Further, for every f ∈ E and every t ≥ 0, we calculate

||Ptf ||∞ = ||E [f(Xt)|X0] ||∞ ≤ ||f(Xt)||∞ ≤ ||f ||∞.

Here the first inequality is a well-known property of the conditional expectation. The
semigroup is, thus, also a contraction.

This semigroup induced by a transition function is also called a transition semi-
group.

We are now ready to define the generator of a Markov process.

Definition 2.1.12 (Generator). Let P = (Pt)t∈[0,∞) be a C0 contraction semigroup on
a Banach space E. Then the linear operator L given by

Lf = lim
t↓0

Ptf − f
t

(for all functions f such that the limit is finite and exists) is called the generator of P .
This definition is also taken from the lecture notes [Ebe23].

12



2. Markov Processes

We calculate such a generator for Brownian motion below.

Example 2.1.13 (Generator of Brownian motion). The generator of Brownian motion
is given by

(Lf)(x) = 1

2
f ′′(x)

for all f ∈ C2
b (R). Here, C

2
b (R) denotes the set of all bounded and twice continuously

differentiable functions on R. This can be computed directly from the transition function:

(Lf)(x) = lim
t↓0

(ptf)(x)− f(x)
t

= lim
t↓0

E[f(Bt+s)|Bs = x]− f(x)
t

= lim
t↓0

E

[
f(Bt+s)− f(x)

t
|Bs = x

]
= lim

t↓0
E

[
f(Bt + x)− f(x)

t

]
= lim

t↓0
E

[
f(
√
tZ + x)− f(x)

t

]
= lim

t↓0

∫ ∞

−∞

f(
√
tz + x)− f(x)√

2πt
exp

(
−z

2

2

)
dz,

where Z ∼ N (0, 1). A Taylor expansion gives:

f(x+
√
tz) = f(x) + f ′(x)

√
tz + f ′′(x)tz2 + t3/2O(z3).

Thus,
f(
√
tz + x)− f(x)

t
=
f ′(x)√

t
z + f ′′(x)z2 +

√
tO(z3).

Substituting this into the integral gives:

(Lf)(x) = lim
t↓0

∫ ∞

−∞

f(
√
tz + x)− f(x)√

2πt
exp

(
−z

2

2

)
dz

= lim
t↓0

∫ ∞

−∞

(
f ′(x)√

t
z + f ′′(x)z2 +

√
tO(z3)

)
1√
2π

exp

(
−z

2

2

)
dz

= lim
t↓0

(
f ′(x)√

t
E[Z] +

1

2
f ′′(x)E[Z2] +

√
tE[O(Z3)]

)
=

1

2
f ′′(x).

Here, the second step uses that the moments of the Gaussian random variable Z as found
in [PR82]. The last step uses that

E[O(Z3)] ≤ E[M |Z|3] =ME[|Z|3] =M

√
8

π
<∞

for some positive M . This proof follows the argument given in [Var07, Chapter 5.6].
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2. Markov Processes

We have seen that for every Markov process we can define a transition semigroup and
a generator. The question arises whether there is a one-to-one correspondence between
Markov processes, transition semigroups and their generators. This is in general not
the case. However, for a special class of Markov processes, called Feller processes, it is
indeed the case. [Lig10, Chapter 3.1]

Definition 2.1.14 (Feller process). A Feller process is a right-continuous and time-
homogeneous Markov process (Xt)t≥0 with state space S such that the Feller property

x 7→ E[f(Xt)|X0 = x] is continuous on S for all t ≥ 0, f ∈ C(S),

holds [Lig10, Definition 3.1].

Example 2.1.15 (Brownian motion as a Feller process). Brownian motion is a Feller
process as for example given in [Lig10, Chapter 3.1.3].

In the following theorem we will give conditions under which there is a unique Feller
process for a given a generator. This theorem summarises results from Chapters I.1 and
I.2 of [Lig85] using the notation of introduced in this thesis.

Theorem 2.1.16 (Construction of Feller process from generator). Let S be a compact
metric space and let L be a linear operator on C(S) with domain D(S) such that the
following conditions hold:

1. The function 1 : S → R+, x 7→ 1, is in the domain of L.

2. L1 = 0, where 0 is the function S → R+, x 7→ 0.

3. The domain of L is dense in C(S).

4. For all f ∈ D(S) and η ∈ S such that f attains its minimum at η, we have that
(Lf)(η) = 0.

Furthermore, let L either be bounded or let the following condition hold in addition to
the previous four:

5. For all λ ≥ 0, let the range of I−λL̄ be equal to C(S). Here, I denotes the identity
operator and L̄ denotes the smallest extension of L such that the graph of L is a
closed in C(S)× C(S).

Then, the there is a unique Markov process (Xt)t≥0 which has L as its generator in the
bounded case and L̄ in the unbounded case. The transition semigroup (Pt)t≥0 of the
process is given by

(Ptf)(x) = E [f(Xt)|X0 = x]

for all f ∈ C(S), x ∈ S and t ≥ 0.

14
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Proof. First note that S is a Polish space by [Kec95, Proposition 4.2]. Therefore C(Ω)
is a Banach space by [GvR16, Chapter 11]. Conditions (1.) through (4.) together with
[Lig85, Chapter I.2, Proposition 2.2] show that L satisfies the definition of a Markov
pregenerator as in [Lig85, Chapter I.2, Definition 2.1]. In the case that L is bounded,
[Lig85, Chapter I.2, Proposition 2.8 (a)] implies that L is also a Markov generator as in
[Lig85, Chapter I.2, Definition 2.7]. If instead condition (5.) holds, [Lig85, Chapter I.2,
Proposition 2.8 (b)] together with [Lig85, Chapter I.2, Proposition 2.5] imply that L is
a Markov generator.
The Hille-Yosida theorem (as given in [Lig85, Chapter I.2, Theorem 2.9 (Hille-Yosida)])

gives a one-to-one correspondence between Markov generators and Markov semigroups
as defined in [Lig85, Chapter I.1, Theorem 1.4]. It furthermore states, that they fulfill
our definition of a generator. The corresponding Markov semigroup (Pt)t≥0 is given
explicitly by

Ptf := lim
n→∞

(
I − t

n
L
)−n

f

for f ∈ C(S) and t ≥ 0.
According to [Lig85, Chapter I.1, Theorem 1.5], there is then a unique Markov process

(Xt)t≥0 with the property

(Ptf)(x) = E [f(Xt)|X0 = x]

for all f ∈ C(S), x ∈ S and t ≥ 0. Thus, the semigroup is in fact the transition
semigroup of the Markov process.

2.2. Invariant Measures

In this section we will briefly introduce the concepts of invariant measures and ergodicity.
We will restrict our attention to Feller processes on a compact metric space S. This
makes dealing with the domain of the generator of the process easier. It is also the case
that we will encounter in the opinion models studied in this project.

Definition 2.2.1 (Invariant measure). Let (Pt)t≥0 be the transition semigroup of a Feller
process on the compact metric space S. A probability measure µ on (S,B(S)) is called
invariant with respect to this transition semigroup, if

µPt = µ

for all t ≥ 0. [Lig85, Chapter I.1, Definition 1.7]

Let us consider some equivalent definitions of invariant measures in the following
proposition.

Proposition 2.2.2. Let µ be a probability measure on a compact metric space S endowed
with the Borel-sigma algebra. Let (Pt)t≥0 be a transition semigroup induced by a Feller
process on S with generator L. Then the following are equivalent:
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2. Markov Processes

1. µ is invariant with respect to (Pt)t≥0.

2.
∫
Ptfdµ =

∫
fdµ for all f ∈ C(S) and t ≥ 0.

3.
∫
Lfdµ = 0 for all functions f in the domain of L.

Proof. The equivalence of (1.) and (2.) is taken from [Lig85, Chapter I.1, Proposition
1.8 (a)]. In order to see this equivalence, note that due to the Feller property both µ
and µPt are probability measures defined on C(S). Thus, the equivalence simply follows
by re-writing

µ(f) =

∫
fdµ

and

(µPt)(f) =

∫
Ptfdµ

for all f ∈ C(S) and t ≥ 0.
The equivalence of (1.) and (3.) is proven in [Lig10, Theorem 3.37].

The following proposition shows that if the process converges to a probability measure,
this measure needs to be invariant. This is a statement that we will use in Part II of
this project.

Proposition 2.2.3. Let (Pt)t≥0 a transition semigroup induced by a Feller process on
the compact metric space S endowed by the Borel-sigma algebra and let µ be a probability
measure on S. If limt→∞ µPt exists and is also a probability measure on S, then it is an
invariant measure.

Proof. A detailed proof can be found in [Lig85, Chapter I.1, Proposition 1.8 (d)].
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3. Deffuant Model

In this section we will formally introduce the Deffuant Model as a Markov process.
As mentioned in the introduction, this model has been studied by various people. We
are mainly interested in it, because the main model that we want to study, the Uniform
Compass model, is a variation on it [GHH20, Chapter 1]. We start by giving a description
of the Deffuant model on general graphs in Section 3.1. We then define a special case
of this model, the Uniform Deffuant model on finite paths in Section 3.2. This is the
version of the model that we mainly studied in this project. We will therefore also give
a detailed proof that it is a Markov process and even a Feller process. In Section 3.3, we
will define two variations of the Uniform Deffuant model that model noise. The types
of noise introduced in this section are the same as the ones that we will study in the
numerical part of the project. We will also show that the processes with noise are still
Markov.

3.1. Description of the Deffuant Model

The Deffuant model is a type of bounded confidence model. It can be described by a
Markov process. Intuitively, it describes how the opinions of the members of a group
evolve. The individuals and their connections are modelled as an undirected graph. The
individuals are represented by the vertices and individuals can only interact with each
other if they are connected by an edge. Opinions are mostly considered to be elements
of the interval [0, 1] with the standard Euclidean metric. Each individual interacts with
another individual at random times. When two individuals interact and the distance
between their opinions is larger than the confidence bound given by a parameter ψ, the
individuals do not change their original opinions. If the opinions are closer than ψ, both
of them alter their respective opinion in order to be closer to a consensus. How much
they alter their opinion is defined by a parameter µ. A formal definition is given in
Definition 3.1.2. We will use (variations of) the definitions given in [GHH20, Chapter
1].

Definition 3.1.1 (Uniform initial condition). Let (ηt)t≥0 be a Markov process with a
state space denoted by Ω = SV . We speak of the process having uniform initial condi-
tions when η0(v) ∼ Uniform(S) and η0(v) and η0(u) are independent for all individuals
u, v ∈ V .

Definition 3.1.2 (Definition of the Deffuant model). Let G = (V,E) be a locally finite
connected undirected graph, where V denotes the vertices and E the edges. Let the
opinion space be given by a compact and convex space S endowed with the metric
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3. Deffuant Model

d. Let the parameter µ be taken from (0, 0.5] and the confidence bound ψ, such that
ψ ∈ [0,∞]. Let the state space be given by Ω = SV together with the product topology.
Let (ηt)t≥0 be a Markov process with probability generator L, given by

Lf(η) =
∑
e∈E

(f(Aeη)− f(η))

with

Aeη(v) :=

{
η(v), if v /∈ e
η(v) + µ1{d(η(v),η(u))≤ψ}(η(u)− η(v)), if e = ⟨u, v⟩ ∈ E

for continuous test-functions f . We call this process the Deffuant model. When
ψ = ∞, we speak of unbounded confidence. When using uniform initial conditions,
we speak of the Uniform Deffuant model.

Intuitively, one can think of this system in the following way. On each vertex, let
there be an individual with an opinion in S. Two individuals can only interact with
each other when their positions are connected by an edge. The interactions between
different pairs of individuals are all independent. Also the waiting times between two
interactions at the same edge are always distributed exponentially with parameter 1.
These descriptions will allow us to simulate the process numerically in Part III.
Showing that the Deffuant model is indeed well-defined is tricky in the general case.

According to [GHH20, Chapter 1] it is, however, a rather standard result. We will prove
it in detail for the special case introduced in the next section.

3.2. Deffuant Model on Finite Paths

In this section we will consider the special case of the Deffuant model on finite paths with
infinite confidence bound. A formal definition of a finite path is given in the following
definition.

Definition 3.2.1 (Finite path). Let Pn := (Vn, En) be a simple undirected graph, where
the vertices are given by

Vn := {1, 2, . . . , n}

and the edges by
En := {⟨1, 2⟩, ⟨2, 3⟩, . . . , ⟨n− 1, n⟩}.

We call Pn the finite path of length n.

We then define the Deffuant model on finite paths of unbounded confidence as follows.

Definition 3.2.2 (Deffuant model on a finite path). Let Pn = (Vn, En) be the finite path
of length n as defined in Definition 3.2.1. Define the opinion space by the compact
and convex space [0, 1] endowed with the standard Euclidean metric d. Let µ ∈ (0, 0.5]
and the state space be given by Ω = [0, 1]V together with the product topology. Denote
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the set of continuous functions Ω → R by C(Ω). Let (ηt)t≥0 be a Feller process with
probability generator L, given by

Lf(η) =
n−1∑
i=1

(
f
(
A⟨i,i+1⟩η

)
− f (η)

)
with

A⟨i,i+1⟩η(m) =


(1− µ)η(i) + µη(i+ 1), if m = i

(1− µ)η(i+ 1) + µη(i), if m = i+ 1

η(m), else

for every i ∈ Vn\{n}, m ∈ Vn, η ∈ Ω and f ∈ C(Ω). We call this process the Deffuant
model on the finite path. When the initial configuration is the uniform distribution
on Vn, we speak of the Uniform Deffuant model on the finite path.

In order to show that this model is well-defined, we need to show that the probability
generator L is the generator of a well-defined Feller process. We will do this by first
showing the conditions given in Theorem 2.1.16 and then showing the Feller property.

Theorem 3.2.3 (L defines a Feller process). There exists exactly one Feller process
such that the operator L as defined above is its generator.

We start by showing a couple of lemmas first and then prove the theorem.

Lemma 3.2.4. L is a linear operator.

Proof. Let f, g ∈ D(L) and α ∈ R. For all η ∈ Ω, one has:

L(f + g)(η) =
n−1∑
i=1

(
(f + g)(A⟨i,i+1⟩η)− (f + g)(η)

)
=

n−1∑
i=1

[(
f(A⟨i,i+1⟩η)− f(η)

)
+
(
g(A⟨i,i+1⟩η)− g(η)

)]
=

n−1∑
i=1

(
f(A⟨i,i+1⟩η)− f(η)

)
+

n−1∑
i=1

(
g(A⟨i,i+1⟩η)− g(η)

)
= Lf(η) + Lg(η)

and

L(αf)(η) =
n−1∑
i=1

(
(αf)(A⟨i,i+1⟩η)− (αf)(η)

)
=

n−1∑
i=1

(
α · f(A⟨i,i+1⟩η)− α · f(η)

)
= α

n−1∑
i=1

(
f(A⟨i,i+1⟩η)− f(η)

)
= αLf(η).

Thus, L is linear.
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Lemma 3.2.5. Let f ∈ D(L) and η ∈ Ω such that f(η) = minξ∈Ω f(ξ). Then Lf(η) ≥ 0.

Proof. Let f ∈ D(L). Because f is a continuous function on a compact domain, there
exists η ∈ Ω such that f(η) = minξ∈Ω f(ξ). Thus, f(ξ) − f(η) ≥ 0 for all ξ ∈ Ω. Thus,
f(A⟨i,i+1⟩η)− f(η) ≥ 0 for all i ∈ {1, 2, . . . n− 1}. Thus, Lf(η) ≥ 0.

Lemma 3.2.6. Let L and Ω be as defined in Definition 3.2.2. Then D(L) = C(Ω).

Proof. D(L) = {f ∈ C(Ω) : ||Lf || <∞}. Let f ∈ C(Ω). Then

||Lf || = sup
η∈Ω
|Lf(η)|

= sup
η∈Ω

∣∣∣∣∣
n−1∑
i=1

(
f(A⟨i,i+1⟩η)− f(η)

)∣∣∣∣∣
≤ sup

η∈Ω

(
n−1∑
i=1

|f(A⟨i,i+1⟩η)|+ (n− 1)|f(η)|

)

=

n−1∑
i=1

sup
η∈Ω
|f(A⟨i,i+1⟩η)|+ (n− 1) sup

η∈Ω
|f(η)|

≤
n−1∑
i=1

sup
η∈Ω
|f(η)|+ (n− 1) sup

η∈Ω
|f(η)|

= 2(n− 1)||f ||.

Because f is continuous and Ω is compact, ||f || <∞. Thus, D(L) = C(Ω).

Lemma 3.2.7. The generator L from Definition 3.2.2 is bounded.

Proof. As seen in the proof of Lemma 3.2.6, ||Lf || ≤ 2(n−1)||f || for all f ∈ C(Ω). Thus,
||L|| ≤ 2(n− 1) <∞, which implies that L is bounded.

We are now ready to prove Theorem 3.2.3, which states that the generator L gives a
well-defined and unique Feller process.

Proof of Theorem 3.2.3. First note that [0, 1] is compact, because it is a closed and finite
interval. Thus, we can apply Tychonoff’s Theorem (see for example [Kec95, Proposition
4.1(vi)]) to show that Ω is also compact. Furthermore, ([0, 1], d) is a metric space.
According to Lemma 3.2.4, L is a linear operator.
We first show conditions (1.) to (4.) from Theorem 2.1.16. Condition (1.) follows

directly from Lemma 3.2.6. To show condition (2.), let 1 denote the function Ω → R
given by 1(η) = 1 for all η ∈ Ω. Then (L1)(η) =

∑n−1
i=1 (1 − 1) = 0 for all η ∈ Ω.

Therefore, condition (2.) is fulfilled. According to Lemma 3.2.6, D(L) = C(Ω). Thus,
D(L) is also dense in C(Ω) giving condition (3.). By Lemma 3.2.5 condition (4.) is
satisfied.
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By Lemma 3.2.7, we know that L is bounded. Therefore, Theorem 2.1.16 applies
and shows that there indeed exist a unique Markov process (Xt)t≥0 which has L as its
generator. The transition semigroup (Pt)t≥0 of the process is given by

(Ptf)(x) = E [f(Xt)|X0 = x]

for all f ∈ C(S), x ∈ S and t ≥ 0.
According to [Lig85, Chapter I.2, Theorem 2.9 (Hille-Yosida) (c)], Ptf ∈ D(Ω) for all

f ∈ D(Ω). Because of Lemma 3.2.6, this implies that x 7→ E [f(Xt)|X0 = x] is continuous
on S for all t ≥ 0 and f ∈ C(S). Therefore, the process is also Feller.

Note that for the case of the Deffuant model on a general graph G, the generator L is
not necessarily bounded. This means that different arguments are needed in that case.

3.3. Deffuant Model with Noise

Now that we have properly defined the Deffuant model on finite paths, we are interested
in variations of it that take into account the effects of noise. In particular, we will look
at uniform noise in Section 3.3.1 and bi-modal noise in Section 3.3.2. For both versions,
we will define the new model as a Markov process.

3.3.1. Uniform Noise

In this section we look at one of the most straightforward ways to define noise. At every
time that individuals interact, we simply draw a number from a uniform distribution
Uniform(−ϵ, ϵ) for an ϵ > 0 and add it to an individual selected uniformly at random.
A precise definition follows.

Definition 3.3.1 (Deffuant model with uniform noise). Denote the finite path of length
n as defined in Definition 3.2.1 by Pn = (Vn, En). Define the opinion space as the
compact and convex space [0, 1] endowed with the standard Euclidean metric d. Let
µ ∈ (0, 0.5] and ϵ ≥ 0. Furthermore, define the state space by Ω = [0, 1]V together
with the product topology. Let C(Ω) denote the set of continuous functions Ω→ R and ξ
be a random variable distributed as Uniform(−ϵ, ϵ). Let (ηt)t≥0 be a Feller process with
probability generator L, given by

Lf(η) :=
n−1∑
i=1

(
f(A⟨i,i+1⟩η)− f(η)

)
+

n∑
i=1

(f(Biη)− f(η))

with

A⟨i,i+1⟩η(m) =


(1− µ)η(i) + µη(i+ 1), if m = i,

(1− µ)η(i+ 1) + µη(i), if m = i+ 1,

η(m), else
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and

Biη(m) =

{
η(m), if m ̸= i,

η(m) + ξ, if m = i

for every i ∈ Vn\{n}, m ∈ Vn, η ∈ Ω and f ∈ C(Ω). We call this process the Deffuant
model with uniform noise. When the initial configuration is the uniform distribution
on Vn, we speak of the Uniform Deffuant model with uniform noise.

We can prove that this is in fact well-defined, by showing that L as defined above
corresponds one-to-one to a Feller process as shown in the following corollary.

Corollary 3.3.2 (Deffuant model with uniform noise is a Feller process). There exists
a well-defined and unique Feller process which has the generator from Definition 3.3.1.

Proof. This proof is completely analogous to that of Theorem 3.2.3.

3.3.2. Bi-Modal Noise

In this section we look at another type of noise that we call bi-modal noise. It is similar
to the noise considered in the paper [CR16]. This type of noise pushes opinions of
individuals towards the opinions 0 and 1. At every time when people interact, one
individual x is chosen from the set of all individuals uniformly at random. Then an
opinion a is chosen either from 0 or 1 uniformly at random. The opinion of the chosen
individual x is then perturbed towards the chosen opinion a. The farther away the
opinion of x is from a, the more it gets changed.

The noise is quantified by a parameter ϵ. The opinion of x gets changed in the same
way that the dynamics of the Deffuant Model would change it when it would react with
a neighbour with opinion a and if µ where ϵ. A formal definition is given below.

Definition 3.3.3 (Deffuant model with bi-modal noise). Denote the finite path of length
n as defined in Definition 3.2.1 by Pn = (Vn, En). Define the opinion space to be the
compact and convex space [0, 1] endowed with the standard Euclidean metric d. Let the
parameter µ ∈ (0, 0.5], ϵ ≥ 0 and let the state space be given by Ω = [0, 1]V together
with the product topology. Denote the set of continuous functions Ω → R by C(Ω). Let
(ηt)t≥0 be a Feller process with probability generator L, given by

Lf(η) :=
n−1∑
i=1

(
f(A⟨i,i+1⟩η)− f(η)

)
+

n∑
i=1

(
1

2
(f(Biη) + f(Ciη))− f(η)

)
with

A⟨i,i+1⟩η(m) =


(1− µ)η(i) + µη(i+ 1), if m = i

(1− µ)η(i+ 1) + µη(i), if m = i+ 1

η(m), else

and

Biη(m) =

{
η(m), if m ̸= i,

(1− ϵ)η(m), if m = i
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and

Ciη(m) =

{
η(m), if m ̸= i,

(1− ϵ)η(m) + ϵ, if m = i.

for every i ∈ Vn\{n}, m ∈ Vn, η ∈ Ω and f ∈ C(Ω). We call this process the Deffuant
model with bi-modal noise. When the initial configuration is the uniform distribution
on Vn, we speak of the Uniform Deffuant model with bi-modal noise.

Note that in the above definition, Bi stands for the case where a = 0 and Ci encodes
the case where a = 1.

The proof that this generator defines a Markov process is analogous to the case without
noise.

Corollary 3.3.4 (Deffuant model with bi-modal noise is a Feller process). There exists
a well-defined and unique Feller process which has the generator from Definition 3.3.3.

Proof. This proof follows fully analogously to the case of the Deffuant model without
noise as shown in Theorem 3.2.3, because of the very similar generators.
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4. Compass Model

In this chapter we define the Compass model, which was first introduced by N. Gantert,
M. Heydenreich and T. Hirscher in their paper “Strictly weak consensus in the uniform
compass model on Z” from 2020 [GHH20]. This model was introduced as a variation of
the Deffuant model with different opinion space. In particular, the condition that the
opinion space is convex will be dropped. In Section 4.1, we give a formal description of
the Compass model as a Markov process as given in [GHH20, Chapter 1]. In Section
4.2, we define a special case of the model and present a proof that it is indeed a Markov
process, which we have worked out for this specific model using methods outlined in
[Lig85, Chapter 1]. In the last section of this chapter, we will describe versions of the
model with noise.

4.1. Description of the Compass Model

The Compass model is similar to the Deffuant model, but with a few major differences.
In particular, it does not assume that S is convex, only that it is path connected. We
define the distance on S to be the length of the shortest path between two points. The
interactions are then analogous to those of the Deffuant model.

Definition 4.1.1 (Compass model). Let G = (V,E) be a locally finite connected undi-
rected graph, where V denotes the set of its vertices, and E its edges. Let µ lie in
the interval (0, 0.5]. Define the opinion space as S := R/2Z written as (−1, 1], for
simplicity. The distance d is given as the length of the shortest path in S :

d : S × S → [0, 1], (x, y) 7→ min{|x− y|, 2− |x− y|}.

Let the state space be Ω := SVn endowed with the product topology. Define a probability
generator L for η ∈ Ω and a continuous test-function f by

Lf(η) :=
∑
e∈E

(
1

2

[
f(A(1)

e η) + f(A(2)
e η)

]
− f(η)

)
with

A(k)
e η(v) =


η(v), if v ∈ e
η(v) + µ(η(u)− ν(v)), if e = ⟨u, v⟩, |η(u)− η(v)| < 1

η(v) + µ(2− |η(u)− ν(v)|) · sgn(ν(v)) mod S, if e = ⟨u, v⟩, |η(u)− η(v)| > 1

η(v) + (−1)k · sgn(ν(v)) mod S, if e = ⟨u, v⟩, |η(u)− η(v)| = 1
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4. Compass Model

where k ∈ {1, 2}. The Markov process (ηt)t≥0 defined by this generator is called the
Compass model. If the initial configuration is the uniform initial condition, we speak
of the Uniform Compass model. [GHH20, Chapter 1]

Note that the choice of 1
2

[
f(A

(1)
e η) + f(A

(2)
e η)

]
ensures that

1. opinions always update along the shortest connecting path on the circle, and

2. when two opinions have distance 1, the path along which they are updated is
chosen randomly with equal probability.

As explained for the Deffuant model, we can again describe the system by saying that
at rate 1 individuals connected by an edge react and that interactions between different
pairs of individuals are independent.
According to [GHH20, Chapter 1], this is not a Feller process, but still a Markov

process. In the special case that we will consider in the next section, however, it turns
out to be a Feller process.

4.2. Compass Model on Finite Paths

In this section we consider the Compass model on finite paths and show that this is a
well-defined Feller process. The formal definition is given below.

Definition 4.2.1 (Compass model on finite path). Let Pn = (Vn, En) be the finite path
of length n ∈ N as defined in Definition 3.2.1. Define the opinion space as S := R/2Z
using the distance d is given by

d : S × S → [0, 1], (x, y) 7→ min{|x− y|, 2− |x− y|}.

Let the parameter µ be a value in [0, 0.5]. For continuous test-functions f : Ω → R and
η ∈ Ω, define a generator L by

Lf(η) =
n−1∑
i=1

(
1

2

[
f
(
A

(1)
⟨i,i+1⟩η

)
+ f

(
A

(2)
⟨i,i+1⟩η

)]
− f(η)

)
.

Here, we used

A
(k)
⟨i,i+1⟩η(m) =

η(i+ 1) + µ(η(i)− η(i+ 1)), if m = i+ 1, |η(i)− η(i+ 1)| < 1,

η(i+ 1) + µ(2− |η(i)− η(i+ 1)|) · sgn(η(i+ 1)) mod S, if m = i+ 1, |η(i)− η(i+ 1)| < 1,

η(i+ 1) + (−1)kµ · sgn(η(i+ 1)) mod S, if m = i+ 1, |η(i)− η(i+ 1)| = 1,

η(i) + µ(η(i+ 1)− η(i)), if m = i, |η(i)− η(i+ 1)| < 1,

η(i) + µ(2− |η(i)− η(i+ 1)|) · sgn(η(i)) mod S, if m = i, |η(i)− η(i+ 1)| > 1,

η(i) + (−1)kµ · sgn(η(i)) mod S, if m = i, |η(i)− η(i+ 1)| = 1,

η(m), else.
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4. Compass Model

for i ∈ {1, . . . , n − 1}, m ∈ Vn, and k ∈ {1, 2}. We then call the Feller process (ηt)t≥0

given by L the Compass model on the finite path. When using a uniform initial
condition, we speak of the Uniform Compass model on the finite path.

For the remainder of the section, our goal is to show that Compass model on finite
paths is well-defined. We will proceed analogously to Section 3.2.

Theorem 4.2.2 (L defines a Feller process). There exists exactly one Feller process
such that the operator L as defined above is its generator.

Before proving this theorem, we need to show some lemmas.

Lemma 4.2.3. The operator L is linear.

Proof. Let f, g ∈ D(L) and α ∈ R. For all η ∈ Ω, we have that

L(f + g)η

=

n−1∑
i=1

(
1

2

[
(f + g)

(
A

(1)
⟨i,i+1⟩η

)
+ (f + g)

(
A

(2)
⟨i,i+1⟩η

)]
− (f + g)(η)

)

=

n−1∑
i=1

((
1

2

[
f
(
A

(1)
⟨i,i+1⟩η

)
+ f

(
A

(2)
⟨i,i+1⟩η

)]
− f(η)

)
+

(
1

2

[
g
(
A

(1)
⟨i,i+1⟩η

)
+ g

(
A

(2)
⟨i,i+1⟩η

)]
− g(η)

))

=
n−1∑
i=1

(
1

2

[
f
(
A

(1)
⟨i,i+1⟩η

)
+ f

(
A

(2)
⟨i,i+1⟩η

)]
− f(η)

)
+
n−1∑
i=1

(
1

2

[
g
(
A

(1)
⟨i,i+1⟩η

)
+ g

(
A

(2)
⟨i,i+1⟩η

)]
− g(η)

)
= Lf(η) + Lg(η)

and

L(αf)(η) =
n−1∑
i=1

(
1

2

[
(αf)

(
A

(1)
⟨i,i+1⟩η

)
+ (αf)

(
A

(2)
⟨i,i+1⟩η

)]
− (αf)(η)

)

=

n−1∑
i=1

(
1

2

[
α · f

(
A

(1)
⟨i,i+1⟩η

)
+ α · f

(
A

(2)
⟨i,i+1⟩η

)]
− α · f(η)

)

= α

n−1∑
i=1

(
1

2

[
f
(
A

(1)
⟨i,i+1⟩η

)
+ f

(
A

(2)
⟨i,i+1⟩η

)]
− f(η)

)
= αLf(η).

Thus, L is linear.

Lemma 4.2.4. Let 1 : Ω→ R denote the function given by 1(η) = 1 for all η ∈ Ω. Let
0 : Ω→ R denote the function given by 0(η) = 1 for all η ∈ Ω. Then L1 = 0.

Proof. For every η ∈ Ω we have that

L1(η) =
n−1∑
i=1

(
1

2
[1 + 1]− 1

)
= 0.
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4. Compass Model

Lemma 4.2.5. Let f ∈ D(L). Then there exists η ∈ Ω such that f(η) = minξ∈Ω f(ξ).
For this η it holds that Lf(η) ≥ 0.

Proof. Let f ∈ D(L) ⊂ C(Ω). Because f is a continuous function on a compact domain,
it takes a minimum. Therefore, there is an η ∈ Ω such that f(η) = minξ∈Ω f(ξ). By the
definition of the minimum, we have that f(ξ) ≥ f(η) for all ξ ∈ Ω. This implies that

also f(A
(k)
⟨i,i+1⟩η) ≥ f(η) for all i ∈ {1, . . . , n− 1} and k ∈ {1, 2}. Thus,

0 ≤ Lf(η) =
n−1∑
i=1

(
1

2

[
f
(
A

(1)
⟨i,i+1⟩η

)
+ f

(
A

(2)
⟨i,i+1⟩η

)]
− f(η)

)
<∞.

Lemma 4.2.6. The domain of the operator L is the set of continuous functions on its
state space Ω, that is D(L) = C(Ω).

Proof. Recall that D(L) = {f ∈ C(Ω) | ||Lf || < ∞}, where the norm || · || denotes the
supremum norm. Thus, by definition D(L) ⊂ C(Ω). It therefore remains to show that
C(Ω) ⊂ D(L), that is, that for every continuous function on Ω we have ||Lf || <∞. Let
therefore f ∈ C(Ω). Then

||Lf || = sup
η∈Ω
|Lf(η)|

= sup
η∈Ω

∣∣∣∣∣
n−1∑
i=1

(
1

2

[
f
(
A

(1)
⟨i,i+1⟩η

)
+ f

(
A

(2)
⟨i,i+1⟩η

)]
− f(η)

)∣∣∣∣∣
≤ sup

η∈Ω

n−1∑
i=1

(
1

2

[∣∣∣f (A(1)
⟨i,i+1⟩η

)∣∣∣+ ∣∣∣f (A(2)
⟨i,i+1⟩η

)∣∣∣]+ |f(η)|)

≤ sup
η∈Ω

[
n−1∑
i=1

1

2

∣∣∣f (A(1)
⟨i,i+1⟩η

)∣∣∣+ n−1∑
i=1

1

2

∣∣∣f (A(2)
⟨i,i+1⟩η

)∣∣∣+ n−1∑
i=1

|f(η)|

]

≤ sup
η∈Ω

n−1∑
i=1

1

2

∣∣∣f (A(1)
⟨i,i+1⟩η

)∣∣∣+ sup
η∈Ω

n−1∑
i=1

1

2

∣∣∣f (A(2)
⟨i,i+1⟩η

)∣∣∣+ sup
η∈Ω

n−1∑
i=1

|f(η)|

≤
n−1∑
i=1

sup
η∈Ω

1

2

∣∣∣f (A(1)
⟨i,i+1⟩η

)∣∣∣+ n−1∑
i=1

sup
η∈Ω

1

2

∣∣∣f (A(2)
⟨i,i+1⟩η

)∣∣∣+ n−1∑
i=1

sup
η∈Ω
|f(η)|

≤ 2
n−1∑
i=1

sup
η∈Ω
|f (η)| ≤ 2(n− 1)||f ||.

Because f is continuous and defined on a compact domain, ||f || <∞.
Thus, ||Lf || ≤ 2(n− 1)||f || <∞. This concludes the proof.
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4. Compass Model

Lemma 4.2.7. The operator L is bounded.

Proof. As seen in the proof of Lemma 4.2.6, for every f ∈ D(L) we have that
||Lf || ≤ 2(n− 1)||f ||. Thus, L is bounded by 2(n− 1) under the operator norm.

Now that we have shown that L is indeed a Markov generator, we can go on to prove
Theorem 4.2.2. This proof is completely analogous to that of Theorem 3.2.3.

Proof of Theorem 4.2.2. Note that S is homeomorphic to S1 = {(x, y) ∈ R|x2+y2 = 1}.
Thus, compactness of S follows directly from compactness of S1. Compactness of Ω then
follows from Tychonoff’s theorem [Kec95, Proposition 4.1(vi)]. Furthermore, (S, d) is a
metric space. According to Lemma 3.2.4, L is a linear operator.

We first show conditions (1.) to (4.) from Theorem 2.1.16. Condition (1.) follows
directly from Lemma 4.2.6. To show condition (2.), let 1 denote the function Ω → R
given by 1(η) = 1 for all η ∈ Ω. Then (L1)(η) =

∑n−1
i=1 (1 − 1) = 0 for all η ∈ Ω.

Therefore, condition (2.) is fulfilled. According to Lemma 4.2.6, D(L) = C(Ω). Thus,
D(L) is also dense in C(Ω) giving condition (3.). By Lemma 4.2.5 condition (4.) is
satisfied.

By Lemma 4.2.7, we know that L is bounded. Therefore, Theorem 2.1.16 applies
and shows that there indeed exist a unique Markov process (Xt)t≥0 which has L as its
generator. The transition semigroup (Pt)t≥0 of the process is given by

(Ptf)(x) = E [f(Xt)|X0 = x]

for all f ∈ C(S), x ∈ S and t ≥ 0.
According to [Lig85, Chapter I.2, Theorem 2.9 (Hille-Yosida) (c)], Ptf ∈ D(Ω) for all

f ∈ D(Ω). Because of Lemma 4.2.6, this implies that x 7→ E [f(Xt)|X0 = x] is continuous
on S for all t ≥ 0 and f ∈ C(S). Therefore, the process is also Feller.

Note that for the case of the Compass model on a general graph G, the generator L is
not necessarily bounded. This means that different arguments are needed in that case.

4.3. Compass Model on Finite Paths with Noise

As before for the Deffuant model, we also want to consider the impact of noise on
the Compass model. We again consider uniform and bi-modal noise that we define
analogously as for the Deffuant model. The precise definitions are given in the following
sections.

4.3.1. Uniform Noise

We start by looking at uniform noise. At every time that individuals interact, we simply
draw a number uniformly at random form [−ϵ, ϵ] for an ϵ > 0 and add it to an individual
selected uniformly at random. A precise definition follows.
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4. Compass Model

Definition 4.3.1 (Compass model with uniform noise). Let Pn = (Vn, En) be the finite
path of length n ∈ N as defined in Definition 3.2.1. The opinion space is given by the
space S := R/Z. Define the metric d on S as the metric giving the length of the shortest
path between two points. Let µ ∈ (0, 0.5], ϵ ≥ 0. Furthermore, define the state space by
Ω = [0, 1]V together with the product topology. Define a random variable ξ distributed as
Uniform(−ϵ, ϵ). Let (ηt)t≥0 be a Feller process with probability generator L, given by

Lf(η) :=
n−1∑
i=1

(
1

2

[
f
(
A

(1)
⟨i,i+1⟩η

)
+ f

(
A

(2)
⟨i,i+1⟩η

)]
− f (η)

)
+

n∑
i=1

(f (Biη)− f (η))

where A
(1)
⟨i,i+1⟩ and A

(2)
⟨i,i+1⟩ are given as before in Definition 4.1.1 and for all i,m ∈ Vn

we have

Biη(m) =

{
η(m), if m ̸= i,

η(m) + ξ, if m = i

for all f ∈ C(Ω). We call this process the Compass model with uniform noise.
When the initial configuration is the uniform distribution on Vn, we speak of the Uni-
form Compass model with uniform noise.

To prove that this is well-defined, we need to show that L as defined above corresponds
one-to-one to a Feller process as shown in the following corollary.

Corollary 4.3.2 (Compass model with uniform noise is a Feller process). There exists
a well-defined and unique Feller process which has the generator from Definition 4.3.1.

Proof. This proof is completely analogous to that of Theorem 4.2.2.

4.3.2. Bi-Modal Noise

We now look at bi-modal noise. This type of noise pushes opinions of individuals towards
the opinions 0 and 1. At every time when people interact, one individual x is chosen from
the set of all individuals uniformly at random. Then an opinion a is chosen either from
0 or 1 uniformly at random. The opinion of the chosen individual x is then disturbed
towards the chosen opinion a. The further away the opinion of x is from a, the more it
gets changed.
The noise is quantified by a parameter ϵ. The opinion of x gets changed in the same

way that the dynamics of the Compass Model would change it when it would react with
a neighbour with opinion a and if µ where ϵ. We define the resulting process formally
below.

Definition 4.3.3 (Compass model with bi-modal noise). Let Pn = (Vn, En) be the finite
path of length n ∈ N. Let µ, ϵ ∈ [0, 0.5]. Let the opinion space be given by S := R/Z.
Let the metric on S be the metric returning the length the shortest geodesic between two
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4. Compass Model

points in S. Define the generator L for continuous functions f and configurations η ∈ Ω
as

Lf(η) :=
n−1∑
i=1

(
1

2

[
f
(
A

(1)
⟨i,i+1⟩η

)
+ f

(
A

(2)
⟨i,i+1⟩η

)]
− f(η)

)

+
n∑
i=1

(
1

4

[
f
(
B

(1)
i η

)
+ f

(
B

(2)
i η

)
+ f

(
C

(1)
i η

)
+ f

(
C

(2)
i η

)]
− f (η)

)

where A
(1)
⟨i,i+1⟩ and A

(2)
⟨i,i+1⟩ are given as before in Definition 4.1.1 and for all i, v ∈ Vn we

have

B
(k)
i η(v) =


η(v), if v ̸= i,

(1− ϵ)η(v), if v = i, η(v) ̸= 1,

(−1)k(1− ϵ), if v = i, η(v) = 1

and

C
(k)
i η(v) =


η(v), if v ̸= i,

(1− ϵ)η(v) + ϵ, if v = i, η(v) ∈ (0, 1],

(1− ϵ)η(v)− ϵ, if v = i, η(v) ∈ (−1, 0),
(−1)kϵ, if v = i, η(v) = 0

where k ∈ {1, 2}.

Here B
(1)
i and B

(2)
i encode the case where a = 0. We need both versions to ensure

rotational symmetry in the case where η(v) = 1. C
(1)
i and C

(2)
i describe the case where

a = 1. Versions (1) and (2) ensure rotational symmetry for the case where η(v) = 0.
The proof that this generator defines a Feller process is analogous to the case without

noise.

Corollary 4.3.4 (Compass model with bi-modal noise is a Feller process). There exists
a well-defined and unique Feller process which has the generator from Definition 4.3.3.

Proof. The proof that this generator defines a Feller process is analogous to the case
without noise, because the generator has the same form.
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5. Consensus

The main goal of this project is to study how consensus is formed, that is, will the group
eventually agree? There are different types of consensus, which are given in the following
definition.

Definition 5.0.1 (Consensus). Let (ηt)t≥0 be the Markov process describing either the
Deffuant model or the Compass model on G as given in Definitions 3.1.2 and 4.1.1,
respectively. We can then define:

1. No consensus: There is an ϵ > 0 and an edge ⟨u, v⟩ ∈ E such that:

∀t0 ≥ 0 ∃t > t0 : d(ηt(u), ηt(v)) ≥ ϵ.

2. Weak consensus: For all edges ⟨u, v⟩ ∈ E, it holds that d(ηt(u), ηt(v)) → 0 for
t→∞.

3. Strong consensus: There exists a random variable L such that d(ηt(v), L) → 0
for t→∞ for all vertices v ∈ V.

Because ηt is a random variable for all t ≥ 0, the convergence to 0 needed for weak or
strong consensus can either be almost sure convergence, convergence in L1 or convergence
in probability. We then speak of a.s. (weak) consensus, (weak) consensus in mean and
(weak) consensus in probability, respectively. This definition is taken from [GHH20,
Chapter 1].

Intuitively, no consensus means that there are at least two neighbours that will always
come to disagree again. Weak consensus means that all neighbours eventually come to
agree for an indefinite time. It is the opposite of no consensus. Strong consensus is a
special case of weak consensus. It means that all people will eventually agree on one
common opinion. Note that strong consensus always implies weak consensus.
Also note that a.s. (weak) consensus implies (weak) consensus in probability and

(weak) consensus in mean also implies (weak) consensus in probability.

Lemma 5.0.2. For the Compass model and the Deffuant model on finite paths, weak
and strong consensus are equivalent.

Proof. The path of length 2 only contains one edge, so in that case the lemma trivially
holds. Thus, we only treat paths of length n ≥ 3 here.

As seen before, strong consensus always implies weak consensus. So it remains to
show that on finite paths weak consensus implies strong consensus.
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First, consider the Compass Model on a finite path (Vn, En) of length n ≥ 3, that is,
Vn = {1, . . . , n} and En = {⟨1, 2⟩, . . . , ⟨n− 1, n⟩}. Assume we have weak consensus. By
the definition of weak consensus, d(ηt(1), ηt(2))→ 0 and d(ηt(2), ηt(3))→ 0 for t→∞.
Thus, by the triangle inequality, d(ηt(1), ηt(3)) → 0 for t → ∞. Furthermore, by the
definition of weak consensus, for all i ∈ {1, . . . , n− 1}, d(ηt(i), ηt(i+1))→ 0 for t→∞.
Thus, applying the triangle inequality repetitively gives d(ηt(1), ηt(i)) → 0 for t → ∞
for all i ∈ Vn. Therefore, there is a random variable L on S, such that d(ηt(i), L)→ 0 for
all i ∈ Vn. That implies strong consensus. For the Deffuant model on the finite paths,
the same argument holds.

Definition 5.0.3. Let (ηt)t≥0 be either the Deffuant or the Compass model on the finite
path Pn of length n ≥ 2. We define the process (ct)t≥0 by ct =

∑n−1
i=1 d(ηt(i), ηt(i+ 1)).

Note that (ct)t≥0 is well-defined because the sum ct =
∑n−1

i=1 d(ηt(i), ηt(i+1)) is always
finite. Note that d is dependent on the chosen model.

5.1. Consensus in the Deffuant Model

Lemma 5.1.1. For the Deffuant model (ηt)t≥0 on the finite path Pn of length n ≥ 2, we
have that (ct)t≥0 is non-increasing. That is, ct ≤ cl for every t ≤ l.

Proof. Let (ct)t≥0 be as defined in Definition 5.0.3. In time intervals where no update of
opinions occurs, ct remains constant. Thus, we only have that ct cannot increase when
an interaction occurs. Assume an interaction occurs at time t > 0 at edge ei = ⟨i, i+ 1⟩
with i ∈ {1, . . . , n−1}. Because we have finitely many vertices, there is a time s < t such
that no interactions occur in [s, t). Then, precisely the distances of pairs of neighbours
where one is either i or i + 1 change their values at time t. Let us distinguish between
the following three cases:

1. i = 1,

2. i ∈ {2, . . . , n− 2},

3. i = n− 1.

In case (1.) only the values of ηt(1) and ηt(2) change. We get the following updates:

ηt(1) = ηs(1)− µ(ηs(1)− ηs(2))
ηt(2) = ηs(2) + µ(ηs(1)− ηs(2))
ηt(i) = ηs(i) for all i ≥ 3.
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Thus, the distances between neighbours update in the following way:

d(ηt(1), ηt(2)) = |((ηs(1)− µ(ηs(1)− ηs(2)))− (ηs(2) + µ(ηs(1)− ηs(2)))|
= (1− 2µ)d(ηs(1), ηs(2))

d(ηt(2), ηt(3)) = |(ηs(2) + µ(ηs(1)− ηs(2)))− ηs(3))|
= |ηs(2)− ηs(3) + µ(ηs(1)− ηs(2))|
≤ d(ηs(2), ηs(3)) + µd(ηs(1)− ηs(2))

d(ηt(i), ηt(i+ 1)) = d(ηs(i), ηs(i+ 1)) for all i ≥ 3.

Thus,

ct =
n−1∑
i=1

d(ηt(i), ηt(i+ 1)) ≤ cs − µd(ηs(1), ηs(2)).

Because all summands of this equation are positive, ct ≤ cs.
An analogous statement holds for case (3.). This is the same scenario; just renumber

the vertices in reversed order starting with the previously largest.
Case (2.) is slightly different, because here there are three distances between neigh-

bours that change. In this case, η only changes at vertex i and i+ 1. We therefore get
the following updates:

ηt(i) = ηs(i)− µ(ηs(i)− ηs(i+ 1))

ηt(i+ 1) = ηs(i+ 1) + µ(ηs(i)− ηs(i+ 1))

ηt(j) = ηs(j) for all j ∈ Vn\{i, i+ 1}.

Thus, the distances between neighbours update in the following way:

d(ηt(i), ηt(i+ 1)) = |((ηs(i)− µ(ηs(i)− ηs(i+ 1)))− (ηs(i+ 1) + µ(ηs(i)− ηs(i+ 1)))|
= (1− 2µ)d(ηs(i), ηs(i+ 1)),

d(ηt(i+ 1), ηt(i+ 2)) = |(ηs(i+ 1) + µ(ηs(i)− ηs(i+ 1)))− ηs(i+ 2))|
= |ηs(i+ 1)− ηs(i+ 2) + µ(ηs(i)− ηs(i+ 1))|
≤ d(ηs(i+ 1), ηs(i+ 2)) + µd(ηs(i)− ηs(i+ 1)),

d(ηt(i− 1), ηt(i)) = |ηs(i− 1)− (ηs(i)− µ(ηs(i)− ηs(i+ 1)))|
= |ηs(i− 1)− ηs(i) + µ(ηs(i)− ηs(i+ 1)))|
≤ d(ηs(i− 1), ηs(i)) + µd(ηs(i), ηs(i+ 1)),

d(ηt(j), ηt(j + 2)) = d(ηs(j), ηs(j + 1)) for all j ∈ Vn\{i− 1, i, i+ 1}.

Thus,

ct =
n−1∑
i=1

d(ηt(i), ηt(i+ 1)) ≤ cs.

Again, because all summands of this equation are positive, ct ≤ cs.
The above argument shows that ct ≤ cs for all t ≥ s ≥ 0.
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5. Consensus

Theorem 5.1.2 (Consensus of the Deffuant model on finite paths). The Deffuant model
on a finite path exhibits almost sure strong consensus. Furthermore, the opinion of each
individual converges to the average of the initial opinions.

Proof. Consider the Deffuant model on the finite path Pn = (Vn, En) as defined in Defi-
nition 3.2.2. Also consider the Compass model on the finite path Pn given by Definition
4.2.1 with initial opinions that all lie on the same half of the circle. Then by definition,
both models exhibit the same behaviour and produce the same configurations. Thus,
almost sure strong consensus for the Deffuant model follows from almost sure strong
consensus for the Compass model as will be shown in Theorem 5.2.2.
This means, that L = limt→∞ ηt is a well-defined random variable. Furthermore,

notice that, whenever an interaction between two individuals occurs, the average of the
opinions stays identical. The average of the opinions at the end must then be the same
as the average of the initial opinions. Additionally, limt→∞ ct = 0 because there is strong
consensus. Thus, L must be given by L = (

∑n
i=0 η0(i))

Vn .

This theorem means, that we expect ct to converge to 0 as t → ∞ in numerical
simulation. That also means that if we visualise the configuration at a time t as a
plot with the individuals on the x-axis and their opinions on the y-axis, we expect to
see increasingly flat lines of opinions at t increases. Furthermore, we expect this line
to lie at the height of approximately the average of the initial opinions. In particular,
this implies that only the initial condition and not the interactions are relevant for the
outcome.

5.2. Consensus in the Compass Model

First, we consider the Compass model without noise.

Lemma 5.2.1. For the Compass model (ηt)t≥0 on the finite path Pn of length n ≥ 2,
we have that (ct)t≥0 is non-increasing. That is, ct ≤ cl for every t ≤ l.

Proof. This proof is completely analogously to that of Lemma 5.1.1, which gives an
analogous statement for the Deffuant model. In this proof the key point was that ct
only changes whenever an interaction occurs. Let t be the time of such an interaction.
Because we have finitely many individuals in the model, there is a time s < t such
that no interactions occur in the interval [s, t). Therefore, shortly before time t, the
configuration is the same as at time s. At time t, only the opinions of two neighbours
change. That means that the distance of their opinion decreases by 2µ times their
previous distance. The distance of the neighbours on the edges right next to this one
can increase. However, by a maximum of µ times their previous distance each. The
distances of all other neighbours are unchanged.
In total, this means that ct cannot be larger than cs. The only difference to the case of

the Deffuant model is that we look at opinions as points on the circle and their distances
as the length of the shortest path on the circle between them. However, this does not
change the argument.
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5. Consensus

Theorem 5.2.2 (Consensus of the Compass model on finite paths). The Compass model
on finite paths exhibits almost sure strong consensus irrespective of the chosen initial
condition. [GHH20, Lemma 3.1]

Proof. A straightforward proof of this theorem can be found in [GHH20, Lemma 3.1].

In the case of the Deffuant model, we saw that the configurations converged to

L =

(
n∑
i=0

η0(i)

)Vn
.

Note, that this is not the case in the Compass model. The problem is that the average
of the opinions can change with time.
To see this, consider the following example: Let there be an interaction between

individuals i and i+ 1 at time t. Before time t, let i have opinion 0.9 and let i+ 1 have
opinion −0.7. Thus, the average of their opinions is 0.1. Let µ = 0.5. Then after the
interaction, both i and i+ 1 have opinion −0.9. Therefore, the average of the opinions
decreased by −1.0.
Again, we must ask ourselves what behaviour these results predict for the numerical

simulations in the following part of the project. We expect that ct converges to 0 as
t→∞ in numerical simulation, as in the Deffuant model. This again implies increasingly
flat configurations. However, we cannot predict the opinion upon which the individuals
will eventually agree. According to [GHH20, Corollary 1.3], these opinions are uniformly
distributed for the Uniform Compass model on Z. Because we will simulate the Uniform
Compass model on the finite path, which is a finite connected sub-graph of Z, we expect
this results hold in our simulations as well.
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6. Invariant Measures

In this chapter we briefly give analytical results for the invariant measures of the Deffuant
model and the Compass model.

6.1. Invariant Measures for the Deffuant Model

Let us consider the Deffuant model on the finite path Pn = (Vn, En). For all s ∈ S, define
the configuration sVn by sVn(i) = s for all i ∈ Vn. Let δsVn denote the Dirac measure
of the configuration sVn . These Dirac measures are invariant, which we will show in the
following lemma.

Lemma 6.1.1. δsVn is an invariant measure for every s ∈ S.

Proof. Let the Deffuant model be as defined in Definition 3.2.2. Let f ∈ C(Ω) and define
a function gs : Ω → R, η 7→ Lf(sVn) for every s ∈ S. Since gs is a constant function, it
is measurable. Note that

δsVn ({η|gs(η) ̸= Lf(sVn)}) = δsVn (Ω\{sVn}) = 0.

Thus, gs = Lf holds δsVn -almost everywhere. Therefore,
∫
gsdδsVn =

∫
LfdδsVn . Be-

cause the Dirac measure is a probability measure and gs a constant function, we have∫
LfdδsVn =

∫
gsdδsVn = Lf(sVn).

Now, note that for all i ∈ Vn\{n}, we have that

A⟨i,i+1⟩s
Vn = sVn .

This implies that ∫
LfdδsVn = Lf(sVn) = 0

for all s ∈ S. By Proposition 2.2.2 that implies that δsVn is an invariant measure.

6.2. Invariant Measures for the Compass Model

Let us consider the Compass model on the finite path Pn = (Vn, En). Let s ∈ S. Define
the configuration sVn and the Dirac measure δsVn analogously as for the Deffuant model
in the previous section. According to [GHH20, Chapter 1], these Dirac measures are
invariant for the Compass model on the graph G = (Z, E) where E = {⟨i, i+ 1⟩|i ∈ N}.
In the following lemma, we will show that this also holds for the Compass model on the
finite path.
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6. Invariant Measures

Lemma 6.2.1. δsVn is an invariant measure for every s ∈ S.

Proof. Let the Compass model be as defined in Definition 4.2.1. The proof that δsVn is
an invariant measure for every s ∈ S is absolutely analogous to that shown in Lemma
6.1.1. Simply note that for every i ∈ Vn\{n}, we have that

A
(1)
⟨i,i+1⟩s

Vn = A
(2)
⟨i,i+1⟩s

Vn = sVn .
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Part III.

Numerical Studies
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7. Numerical Simulation of the Compass
Model and the Deffuant Model

As seen in Part II, there are very few theoretical results for the Compass model. Proving
anything is very difficult. Therefore, we are now implementing a computer simulation of
the model with different versions of noise. For comparison, we will also implement the
Deffuant model. Note that for we will always assume empty boundary conditions. Our
goal is to verify the known results and to gain an insight into the effect of noise on these
models. We will start by describing the models as algorithms that we can implement in
Python. Some initial inspiration on how to implement the Deffuant model came from
[dax].

7.1. Implementation without Noise

Let us first look at how to simulate the Deffuant model and the Compass model without
noise for N individuals on the finite path given by the undirected graph G = (V,E).
Here the set of vertices V is the set of individuals {1, . . . , N} and the edges are given
by E = {< 1, 2 >,< 2, 3 >, . . . , < N − 1, N >}. Let the parameter µ ∈ (0, 12 ] be fixed.
In order to simulate the models, we need to know when individuals interact and what
happens when they do. The time when interactions occur and which individuals are
involved in the interaction is modelled using independent Poisson clocks, as defined in
Definition 7.1.2, on the edges as will be described in [GHH20, Chapter 1].

Definition 7.1.1 (Poisson process). A Poisson process with parameter λ > 0 is a
stochastic process (Xt)t≥0 that satisfies the following properties:

1. X0 = 0 almost surely.

2. The random variables Xt1 , Xt2−Xt1 , . . . , Xtn−Xtn−1 are independent for all finite
increasing non-negative sequences of times t1 < t2 < · · · < tn, .

3. Xt −Xs ∼ Poisson(λ(t− s)) for all non-negative times t > s.

[KS12, Chapter 12.3]

Definition 7.1.2 (Poisson clock). A Poisson clock is a process that returns the times
at which a Poisson process with parameter λ = 1 as defined in Definition 7.1.1 changes
its value. [Häg12, Chapter 1] We say that a Poisson clock rings at those times.

40



7. Numerical Simulation of the Compass Model and the Deffuant Model

Note that the distances between the times at which a Poisson clock rings are exponen-
tially distributed [KS12, Ch.12.3]. In our models, we have such a Poisson clock on every
edge in E and assume that these Poisson clocks are independent. With probability one,
at every point in time t ∈ (0,∞) there exists at most one edge such that the Poisson
clock of that edge rings at time t. Two neighbours in our graph G interact at precisely
the times when the Poisson clock on the edge connecting them rings. [GHH20, Chapter
1]
The pseudo-code in Algorithm 1 describes how to simulate those Poisson clocks. Let

us simulate them up to the time when m > N interactions between neighbours have
taken place. Let t be the vector giving the interaction times. p be the vector giving the
places where the interactions take place, that is, the i’th interaction takes place at edge
< j, j + 1 > if and only if pi = j.

Algorithm 1 Poisson clocks

e vector of length m + N of numbers drawn from an exponential distribution with
parameter 1.0
a← (e1, . . . , eN ) vector giving the next time each Poisson clock will ring
p← (0, . . . , 0) vector of length m giving the places where interactions take place and
their order
t← (0, . . . , 0) vector of length m giving the times at which interactions take place
for i ∈ (1, 2, . . . ,m) do

pi ← argmin a,
ti ← min a,
api ← eN+i + ti

end for

Using the above algorithm to describe where and when interactions take place, we can
go on to describe how an interaction on edge < j, j+1 > changes the configuration η to
a configuration η̄. This is done in Algorithm 2 for the Deffuant model and in Algorithm
3 for the Compass model.

Algorithm 2 i’th step in the Deffuant model

Let p, t be as calculated by Algorithm 1
Let η be the configuration before the i’th step
η̄ ← η configuration after i’th step
η̄pi ← (1− µ)ηpi + µηpi+1

η̄pi+1 ← (1− µ)ηpi+1 + µηpi
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7. Numerical Simulation of the Compass Model and the Deffuant Model

Algorithm 3 i’th step in the Compass model

Let p, t be as calculated by Algorithm 1
Let η be the configuration before the i’th step
η̄ ← η configuration after i’th step
Let r be a random number drawn from a uniform distribution on 0, 1
if |ηpi − ηpi+1| = 1 then

if r = 0 then
η̄pi ← ηpi + µ · sgn(ηpi)
η̄pi+1 ← ηpi + µ · sgn(ηpi+1)

else
η̄pi ← ηpi − µ · sgn(ηpi)
η̄pi+1 ← ηpi+1 − µ · sgn(ηpi+1)

end if
else

if |ηpi − ηpi+1| < 1 then
η̄pi ← (1− µ)ηpi + µηpi+1

η̄pi+1 ← (1− µ)ηpi+1 + µηpi
else

η̄pi ← ηpi + µ(2− |ηpi+1 − ηpi |) · sgn(ηpi)
η̄pi+1 ← ηpi+1 + µ(2− |ηpi+1 − ηpi |) · sgn(ηpi+1)

end if
end if
if η̄pi > 1 then

η̄pi ← η̄pi − 2
end if
if η̄pi+1 > 1 then

η̄pi+1 ← η̄pi+1 − 2
end if
if η̄pi < −1 then

η̄pi ← η̄pi + 2
end if
if η̄pi+1 < −1 then

η̄pi+1 ← η̄pi+1 + 2
end if

The next step is to apply the previous algorithms repetitively to simulate the Deffuant
model and the Compass model. (See Algorithm 4 for the Deffuant model and Algorithm
5 for the Compass model.) Note that the configuration only changes at the finite set of
times given by the Poisson clocks. In between these time steps the configuration remains
constant.
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7. Numerical Simulation of the Compass Model and the Deffuant Model

Algorithm 4 Deffuant model

p, t from Algorithm 1
add a first value of 0 at the beginning of t
m length of p
(ηi)i∈t be the configurations of the Deffuant model
η0 be the starting configuration chosen using a suitable probability distribution
for j ∈ (1, 2, . . . ,m) do

execute j’th step of Deffuant model to compute ηtj from ηtj−1 using Algorithm 2
end for

Algorithm 5 Compass model

p, t from Algorithm 1
add a first value of 0 at the beginning of t
m length of p
(ηi)i∈t be the configurations of the Compass model
η0 be the starting configuration chosen using a suitable probability distribution
for j ∈ (1, 2, . . . ,m) do

execute j’th step of Compass model to compute ηtj from ηtj−1 using Algorithm 3
end for

Now, that we have simulated the models, we would like to be able to check whether
consensus is reached. Remember that on finite paths weak consensus is equivalent to
strong consensus as shown in Lemma 5.0.2. In our computer simulations we only simu-
late the models on finite paths, therefore we cannot study the difference between these
types of consensus. Furthermore, in every simulation we have to stop after a finite time.
Thus, we will say that we have reached consensus if all individuals agree on one opin-
ion. When that is the case, we know that we have strong consensus as defined in the
theoretical part, that is, Part II. The definition of (approximate) consensus used in this
part of the project will be given in Definition 7.1.3. We need the approximate version
of consensus to describe the scenario in which very small noise has a negligible impact
on the simulation, but because noise will always destroy consensus at arbitrarily large
times c = 0 simply cannot be reached and is also not very important. Important is that
consensus is approximated within a sufficiently small bandwidth.

Definition 7.1.3 ((Approximate) consensus). Let ηt denote the configuration at time
t ≥ 0. We say that we have consensus (at time t) if there is an opinion o such that
ηt(i) = o for all individuals i = 1, . . . , N . If there exists a small α > 0 such that there
is an opinion o such that ||ηt(i) − o|| ≤ α for all individuals i = 1, . . . , N , we speak of
approximate consensus (at time t) within a bandwidth of width α.

A necessary criterion for consensus is that the sum of the distances between neighbours
at time t, ct, as defined in Definition 5.0.3, is 0. In this chapter we will simply write
c instead of ct and assume that the time is clear from the context. This immediately
implies consensus as described above. Furthermore, this sum is non-increasing in the
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7. Numerical Simulation of the Compass Model and the Deffuant Model

case without noise as shown in Lemma 5.1.1 for the Deffuant model and in Lemma 5.2.1
for the Compass model. That means that in the case without noise, once consensus is
reached, the configuration cannot change anymore.
Another way to look at consensus in the models, is to view it as synchronisation of the

opinions. Analogously to what is typically done for the Kuramoto model, as for exam-
ple in [CR16], we can investigate the order parameters r and θ defined in Definition 7.1.4.

Definition 7.1.4 (Order parameters r and θ).

1. Let (ηt)t≥0 denote the configuration given by the Compass model on a finite path.
Let S be as defined in Definition 4.1.1. We then define r : [0,∞) → [0, 1] and
θ : [0,∞)→ S by

r(t)eiπθ(t) :=
1

N

N∑
j=1

eiπηt(j)

2. Let (ηt)t≥0 denote the configuration given by the Deffuant model on a finite path.
We then define functions r, θ : [0,∞)→ [0, 1] by

r(t)e2iπθ(t)−π :=
1

N

N∑
j=1

e2iπηt(j)−π.

r then measures the degree to which the opinions have aligned and θ the average
opinion. Basically we view each opinion as a point on the circle and re-scale the circle
to be a unit circle. The opinions are then viewed as directions. We calculate a vector
pointing into the most prominent direction θ who’s length r is a measure of how promi-
nent that directions is. If r = 0 all opinions are equally distributed over the circle. If
r = 1 all opinions are equal and we have reached consensus. The closer r is to 1 the
more synchronised the opinions are.

For the Compass model, r(t) can be calculated as

r(t) =
1

N

√√√√√
 N∑
j=1

cos(πηt(j))

2

+

 N∑
j=1

sin(πηt(j))

2

.

One can then calculate

cos(πθ(t)) =
1

Nr(t)

N∑
j=1

cos(πηt(j))

sin(πθ(t)) =
1

Nr(t)

N∑
j=1

sin(πηt(j))
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and define

ϕ(t) := arcsin

 1

Nr(t)

N∑
j=1

sin(πηt(j))

 ,

such that

θ(t) =


ϕ(t), if cos(θ(t)) ≥ 0,

π − ϕ(t), if cos(θ(t)) < 0, ϕ ≥ 0,

−π − ϕ(t), if cos(θ(t)) < 0, ϕ(t) < 0.

For the Deffuant model we calculate r and θ analogously only taking into account the
different scaling of the opinions as seen in Definition 7.1.4

7.2. Implementation of Noise

Noise can, for example, be used to simulate what happens if individuals change their
opinions spontaneously or due to environmental influences. There are different ways
of implementing noise. We implemented uniform and bi-modal noise that were also
introduced in Sections 3.2 and 4.3.

7.2.1. Uniform Noise

We start by writing an algorithm that implements the Compass model and Deffuant
model with uniform noise. In both models we proceed very similarly. We start by fixing
an ϵ > 0 before the simulation. Then we run the simulation as described in the previous
section (see Algorithm 4 for the Deffuant model and Algorithm 5 for the Compass model),
but after every step of the simulation we pick one individual i uniformly at random from
the population and draw a value n from Uniform([−ϵ, ϵ]). Then, we add n to the opinion
of the individual i before proceeding to the next step of the simulation. For the Deffuant
model, this process is described in Algorithm 6. Algorithm 7 describes the Compass
model with uniform noise.
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Algorithm 6 Deffuant model with uniform noise

p, t are generated by Algorithm 1
include a first value of 0 at the beginning of t
m denotes the length of p
(ηi)i∈t denotes the configurations of the Deffuant model
η0 is chosen from a suitable initial probability distribution
ϵ is the parameter used to calculate by which amount an opinion gets changed when
it is perturbed by noise
for j ∈ (1, 2, . . . ,m) do

execute j’th step of Deffuant model to compute ηtj from ηtj−1 using Algorithm 2
pick i uniformly at random from {1, . . . , N}
draw n from U([−ϵ, ϵ])
add n to the opinion of individual i

end for

Algorithm 7 Compass model with uniform noise

p, t are generated by Algorithm 1
include a first value of 0 at the beginning of t
m denotes the length of p
(ηi)i∈t denotes the configurations of the Compass model
η0 is chosen from a suitable initial probability distribution
ϵ is the parameter used to calculate by which amount an opinion gets changed when
it is perturbed by noise
for j ∈ (1, 2, . . . ,m) do

execute j’th step of Compass model to compute ηtj from ηtj−1 using Algorithm 3
pick i uniformly at random from {1, . . . , N}
draw n from U([−ϵ, ϵ])
add n to the opinion of individual i

end for

7.2.2. Bi-Modal Noise

In this section we will describe the bi-modal noise in terms of an algorithm that can
be implemented in Python. For this type of noise, at every time step, one individual
changes its opinion to be closer to an opinion chosen uniformly at random from {0, 1}.
For the Compass model this is described in Algorithm 8 and for the Deffuant model in
Algorithm 9.
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Algorithm 8 Compass model with bi-modal noise

p, t be generated by Algorithm 1
include a first value of 0 at the beginning of t
m denotes the length of p
(ηi)i∈t denotes the configurations of the Compass model
η0 is the starting configuration chosen using a suitable initial probability distribution
ϵ is the parameter used to calculate by which amount an opinion gets changed when
it is perturbed by noise
for j ∈ (1, 2, . . . ,m) do

execute j’th step of Compass model to compute ηtj from ηtj−1 using Algorithm 3
choose an individual I uniformly at random and denote its current opinion by Io
choose D uniformly at random from {0, 1}
if D = 0 then

if Io = 1 then
draw u uniformly at random from {0, 1}
if u = 0 then

update Io to ϵ− 1
else

update Io to 1− ϵ
end if

else
multiply Io by 1− ϵ

end if
else

if Io = 0 then
draw u uniformly at random from {0, 1}
if u = 0 then

set Io to ϵ
else

set Io to −ϵ
end if

else
if Io > 0 then

multiply Io by 1− ϵ and add ϵ
else

multiply Io by 1− ϵ and subtract ϵ
end if

end if
end if

end for
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Algorithm 9 Deffuant model with bi-modal noise

p, t be generated by Algorithm 1
include a first value of 0 at the beginning of t
m denotes the length of p
(ηi)i∈t denotes the configurations of the Deffuant model
η0 is the starting configuration chosen using a suitable initial probability distribution
ϵ is the parameter used to calculate by which amount an opinion gets changed when
it is perturbed by noise
for j ∈ (1, 2, . . . ,m) do

execute j’th step of Deffuant model to compute ηtj from ηtj−1 using Algorithm 2
choose an individual I uniformly at random and denote its current opinion by Io
choose D uniformly at random from {0, 1}
multiply Io by 1− ϵ and add ϵ ·D

end for

7.3. Programming Methods

We implemented the algorithms described in the previous sections in the programming
language Python. Pythons’ biggest advantage for this project is that it is a relatively
common programming language that runs on every ordinary computer system. Because
it is such a common language, there are many big libraries of code already available
online. For example the numpy library was essential to this project as it provides the basic
tools for array computing, which is essential in scientific computing [CKSe20]. The scipy
library was very helpful as well, because it provides many statistical methods [VGOe20].
The figures used in this thesis where generated with the help of the matplotlib library
[Hun07].
Furthermore, Python is available for free. This is helpful to assure that others can

reproduce the results shown here.

Programming the algorithms from the previous sections and running simulations in
Python caused some unexpected difficulties. The major challenge that came up was
that the simulations are rather time consuming. In particular, it takes a long time
for one simulation to converge. In order to assure convergence in Uniform Compass
model without Noise for N = 200 and all values of µ, m = 108 steps where needed.
Thus, we started by trying to optimise the run-time. However, that only gave somewhat
satisfactory results.
Given the initial conditions are drawn from a probability distribution and the inter-

action times and places are calculated using Poisson clocks, it is necessary to run the
simulation multiply times. In order to get somewhat interesting results, we decided that
the minimum number of times that the simulation should run for is 50. Given the large
number of possible parameter choices, this quickly becomes very time consuming. The
solution to this challenge was to reduce the number of parameter choices analysed, keep
N small, only run the simulation 50 times and run 5 simulations simultaneous using the
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multiprocessing package found under [mul]. Another way to keep the time needed for
the simulation down, is to calculate the parameters r, θ and c at fewer steps. In this
project every 105th step where chosen. This has the added advantage of keeping the
storage (that is memory on the computer harddrive) and memory (that is RAM) lower,
which was another difficulty.
Storing one array with 108 floats takes approximately 762 MB of data. Saving an

array with 108 integers takes approximately 381 MB. For every simulation we would like
to store the interaction times and need to also calculate the interaction order. That
takes approximately 1143 MB of storage. When we have noise, we also need to calculate
two arrays of length 108 in order to describe this noise. Saving this as well doubles the
storage needed. In total, this means we needed approximately 56 GB of storage for one
set of parameters for a simulation without noise. This was challenging. It was obvious
that this procedure would not work for the case with noise, because it would simply
occupy too much storage. Therefore, we pre-calculated the initial condition, interaction
times, interaction places, noise direction and noise location, 50 times and used these
for the different parameter sets. This is possible because this part of the simulation
is parameter independent. With calculating r, θ and c at only every 105th step of the
simulation, this reduced the needed storage and memory significantly. The run-times
for the different versions of the models and pre-calculated initial conditions, interaction
times and interaction places are given in Table 7.1.
For the case with noise, it was not always possible to observe convergence within 108

steps of the simulation. Given the restrictions of the system we worked on, it turned
out to be impossible to run more than 108 at once. For larger simulations, the data
needed to be stored elsewhere before re-starting the simulation where it had left off.
This exceeded the scope of the project.
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7. Numerical Simulation of the Compass Model and the Deffuant Model

Model Run-Time

UDM without noise 2min 13s
UDM with uniform noise 4min 20s
UDM with bi-modal noise 6min 19s

UCM without noise 2min 15s
UCM with uniform noise 5min 33s
UCM with bi-modal noise 5min 21s

Table 7.1.: The table gives the run-times for one interpretation of the simulations of
the Uniform Deffuant Model (UDM) and Uniform Compass Model (UCM)
with different versions of noise. Each simulation was run for 108 with N =
200 and µ = 0.5. When noise was added, ϵ = 0.5 was used. For each
model, one interpretation of one model produced a folder of size 25.5 KB.
The initial configuration, interaction order, interaction times, noise location
and direction where calculated before the simulation and only loaded during
the simulation. This pre-calculated data produced a folder of size 2.60 GB
per needed interpretation of the simulation and took 34s to produce. That
is, we needed 50 versions of this folder. The parameters c, r and θ where
only calculated at every 105-th step of the simulations.

50



8. Numerical Results

In this section we want to illustrate the results of the numerical simulations of the
Deffuant and Compass model. Our goal is to study the long-time behaviour of the
models and confirm theoretical results introduced in Part II. We begin by studying both
models without noise in Sections 8.1 and 8.2 respectively. Here, we also pay attention
to the effect that the parameter µ has on the results. We then go on to study the effect
of noise on the Deffuant model in Section 8.3 and of noise on the Compass model in
Section 8.4. In these sections we restrict our attention to the case where µ = 0.5.

In Section 8.5, we will discuss the question whether it makes a significant difference if
we define noise at independent times from the interaction times.
After that, we compare the previously observed behaviour of the Deffuant and the

Compass models in Section 8.6.

8.1. Uniform Deffuant Model without Noise

In this section we aim to visualise the results of the numerical simulations for the Uniform
Deffuant model without noise.
To simulate the Uniform Deffuant model, using Algorithm 4, a population size of

N = 200 was chosen. The simulations lasted m = 5 · 107 steps for µ = 0.2, 0.3, 0.4 and
0.5. For µ = 0.1, 108 steps where needed to ensure, that the simulations had adequate
time to converge. For every value of µ, each simulation consisted of 50 interpretations.
Uniform initial conditions and empty boundary conditions were used.
Figure 8.1 visualises how the individual opinions can converge by showing the configu-

ration at selected times during the simulation. We see that the opinions converge quickly
at first and then once they are closer to each other the individuals take a long time to
fully agree with each other. In the last configuration shown in the figure, the opinions
form a horizontal line. This means everyone has the same opinion. The individuals agree
on an opinion close to 0.5, which is approximately the average of the starting opinions.

In Figure 8.2, we visualised the values of the parameter c at different times in the
simulations. One can see that c first decreases rapidly and then starts to take longer
to converge to 0. From the zoomed in frames, we see that the initial decrease of c is
larger for larger values of µ. Also the bandwidth of the values of c over the different
interpretations of the simulations seems to be largest for smaller µ-values.

51



8. Numerical Results

Figure 8.1.: This figure shows selected configurations that appeared in one realisation
of the Uniform Deffuant Model without noise for µ = 0.5. In each figure,
the x-axis represents the individuals and the y-axis their opinions. The
different opinions are connected by straight lines. The figure on the upper
left corner gives the starting configuration. The configuration in the upper
right hand corner shows the configuration at time 5. In the middle row, the
configurations at time 50 and at time 503 are presented. The bottom row
gives the configurations at times 5023 and 50269.
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8. Numerical Results

Figure 8.2.: The figure shows parameter c over time for the simulations of the Uniform
Deffuant Model without noise. Each plot shows a simulation for a different
value of µ, with every coloured line corresponding to a different interpreta-
tion of the simulation.
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8. Numerical Results

Figure 8.3.: On the left: Bandwidth of the values of c in the different simulations over
the step of the simulation. The blue line corresponds to µ = 0.1, green to
µ = 0.2, orange to µ = 0.3, red to µ = 0.4 and purple to µ = 0.5.
On the right: the sum over the bandwidth values of c shown in the figure
on the left.

As the interaction times are calculated using independent Poisson clocks on the vertices
connecting neighbours as described in Algorithm 1, and because the expected waiting
time between the rings of a Poisson clock is 1, the expected number of interactions per
time step is the number of edges. We simulate 108 steps, thus whether we consider
the bandwidth of c-values of time or over the interaction steps does not change the
qualitative results much. We can therefore take this computational shortcut. We plotted
this bandwidth in Figure 8.3. In it we see that the bandwidth of c decreases the longer
the simulations run. The figure also confirms that this convergence is faster for larger
values of µ.
Figure 8.4 gives visualised the order parameter r for the different simulations. For

every simulation, r seems to converge quickly to 1. This convergence appears faster
for larger µ-values. From checking the final values of the simulations, we know that
all interpretations of all simulations eventually reach r = 1. This means, that in every
simulation the individuals agree eventually.
The first time at which r = 1 for one interpretation of a simulation is again denoted

by tc. The mean and standard deviation for tc are shown in Figure 8.5. It confirms that
the time to reach consensus is on average longer for smaller values of µ. The standard
deviation does not give a clear picture.
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8. Numerical Results

Figure 8.4.: This figure shows values of the order parameter r for simulations of the
Uniform Deffuant model without noise. Each plot gives the results for a dif-
ferent value of µ with each coloured line corresponding to one interpretation
of the simulation. The x-axis shows the time and the y-axis the value of r
at that time.
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8. Numerical Results

Figure 8.5.: The figures show the mean and standard deviation of tc, that is the first time
when r = 1 for an interpretation of a simulation of the Uniform Deffuant
Model without noise, for different values of µ.

The Figure 8.6, visualises how the values of the order parameter θ evolve over time
in our simulations. Because we have already seen that consensus will be reached, we
know that the value shown for θ at the largest time that was plotted corresponds to the
opinion that all the individuals eventually agree upon. We see can therefore see that the
those final opinions are all relatively close to 0.5. This is what we expected, since we
know from theory that the final opinions should be the average of the initial opinions.
In Figure 8.7, we plotted the final opinions of every simulations together with the

average of the initial opinions. We can see that they match, confirming the theoretical
result. This means that we have shown that the behaviour is as predicted by theory.
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8. Numerical Results

Figure 8.6.: These figures show how the values of the order parameter θ evolve over time
for simulations of the Uniform Deffuant model without noise. Each one gives
the results for a different value of µ with each coloured line corresponding
to one interpretation of the simulation. The x-axis shows the time and the
y-axis the value of θ at that time.
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8. Numerical Results

Figure 8.7.: The figures show the values that the opinions converge to in 50 runs of the
simulation of the Uniform Deffuant Model for different values of µ. In each
figure, the x-axis is gives the number of the interpretation of the simulation
and the y-axis the value that the opinion converge to in that interpretation.
All figures are for simulations with N = 200. The first figure is for µ = 0.1,
the second for µ = 0.2, the third for µ = 0.3, the forth for µ = 0.4 and the
fifth for µ = 0.5.

58



8. Numerical Results

8.2. Uniform Compass Model without Noise

The goal of this section is to illustrate the results of the numerical simulations of the
Uniform Compass model (short: UCM) without noise. We do this by plotting various
parameters as for example r, θ and c introduced in Chapter 7.
To simulate the Uniform Compass model, using the algorithm laid out in the previous

chapter using a uniform initial distribution and a population size of N = 200. The
simulations lasted m = 108 steps. This ensured, that the simulations had adequate
time to converge. Values 0.1, 0.2, 0.3, 0.4, and 0.5 where chosen for µ. Because of the
randomness involved in drawing the initial opinions and calculating the Poisson clocks,
we decided to run the model 50 times for each value of µ. This helps us to study the
probabilistic properties of the model.

Figure 8.8 gives a selection of configurations at 6 different time steps in one simulation
with µ = 0.5. In it, we see how initially random opinions become increasingly synchro-
nised until every individual agrees. We can see how the synchronisation of opinions is
fast at first and then slows down.

In Figure 8.9, one can see the plots for parameter c, that is the sum of absolute
opinion differences between neighbours. The graphics suggest that for a larger value
of µ, c approaches 0 faster. When looking at the last values of the sum shown for
every simulation, we see that they are all zero. This means that by the end of every
interpretation of every simulation, all individual have the same opinion. Thus, consensus
has been reached.

In Figure 8.9, we can see that the bandwidth of the values that c takes for different
times and interpretations per simulation increases as the µ decreases. To confirm this,
we calculated the bandwidth of c-values over the step of the simulations and plotted
them in Figure 8.10.

The figure shows clearly that the bandwidth of c decreases the longer the simulations
run. This is expected as c converges to 0 for all interpretations. The figure also show
that this convergence is faster for larger values of µ as previously suspected.
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8. Numerical Results

Figure 8.8.: This figure shows selected configurations that appeared in one simulation of
the Uniform Compass Model without noise for µ = 0.5. In each figure, the
x-axis gives the number of the individual and the y-axis their opinion. The
different opinions are connected by straight lines. The figure on the upper
left corner shows the starting configuration. The configuration in the upper
right hand corner shows the configuration at time 5. In the middle row,
the configurations for time 53 and 502 are shown. The bottom row give the
configuration at times 5022 and 50268.
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8. Numerical Results

Figure 8.9.: The figures show the parameter c for the Uniform Compass model without
noise over time. Every figure give the results for a different value of µ. In
each figure, every coloured line represents on interpretation of the model.
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8. Numerical Results

Figure 8.10.: On the left: Bandwidth of the values of c over the step of the simulation.
The different colours stand for the different values of µ used in the simula-
tion.
On the right: the sum over the bandwidth values of c shown in the figure
on the left.

In the previous figures we saw that all neighbours will eventually agree. Thus, we
wonder which opinions they finally agree upon. These opinions are visualised as dots
on a circle in Figure 8.11. These opinions seem to be distributed uniformly. This is
precisely the behaviour that we expected from Chapter 5.

To confirm that the final opinions are uniformly distributed, we perform a two-sided
Kolmogorov-Smirnov test (KS-test), as introduced in Appendix A, on the data. We
perform the test separately on each set of 50 final θ-values obtain in the simulations of
the UCM for one specific value of µ. In this setting, we assume that the final θ-values are
independent and identically distributed random variables X1, . . . , Xn with cumulative
distribution F. We call the empirical distribution function on the values we actually
observe in our simulation Fn.

Our null-hypothesis H0 is the hypothesis that the data is uniformly distributed on
the circle (i.e. the interval (−1, 1] ). The alternative hypothesis HA is that the null-
hypothesis is wrong. This means we test the following:

H0 : F = Fn

HA : F ̸= Fn.

We can reject the null-hypothesis at significance level α ∈ [0, 1], if the p-value obtained
by the KS-test is less or equal to α.
Table 8.1 gives the test statistic and the p-value of the KS-test for every simulated

value of µ. As one can see, at significance level 0.1, we accept the null-hypothesis for
each value of µ. This means that we do not have any significant reason to suspect that
our final θ-values are not uniform.

More information on how the KS-test works can be found in Appendix A.
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8. Numerical Results

Figure 8.11.: The figures show the values that the opinions converge to in 50 interpreta-
tions of the simulations of the Uniform Compass Model for different values
of µ. In each figure, every dot represents the opinion that the individuals
eventually agree on for one interpretation of the simulation rescaled to lie
on a circle of radius 1. The first figure is for µ = 0.1, the second for µ = 0.2,
the third for µ = 0.3, the forth for µ = 0.4 and the fifth for µ = 0.5.
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8. Numerical Results

µ-value 0.1 0.2 0.3 0.4 0.5

p-value 0.707 0.321 0.878 0.681 0.731
test statistic 0.096 0.132 0.080 0.107 0.094

Table 8.1.: Every column gives the p-value and test statistic obtained from the two-sided
Kolmogorov-Smirnov test on the set of final θ-values for 50 simulations of the
Uniform Compass Model without noise with the specified µ-value.

Figure 8.12.: The figure on the right shows the mean and the one on the left the standard
deviation of tc, that is, the first time at which r = 1, as observed for the
Uniform Compass Model without noise for different values of µ.

In addition to the sum of the absolute opinion differences between neighbours, we also
computed the order parameters r and θ as described in the previous chapter. First let
us look at the order parameter r. Figure 8.13 shows the results for the parameter r and
Figure 8.16 visualises the results for order parameter θ. We can see that for all values
of µ, r converges to 1 meaning that the individuals agree. This confirms what we have
seen before. As before, we see faster convergence of opinions for higher values of µ.

Figure 8.12 visualises the times when consensus is reached. As we can assume that we
have consensus once r = 1, it gives the mean and standard deviation of the first times
tc when r = 1 is observed in an interpretation of a simulation for a specific value of µ.
This figure supports the observation that the larger µ the faster consensus is reached.
However, the standard deviation of tc is much larger for µ = 0.5 than for µ = 0.1.
However the relationship does not appear to be linear. In order to see why this is the
case, a more thorough analysis would be needed. In particular, it would be interesting
to see whether it persists if one chooses to do more than 50 samples per simulation.
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8. Numerical Results

Figure 8.13.: Each figure shows the value of the order parameter r over time for the
Uniform Compass Model without noise for 50 interpretations each. Every
figure gives the results for a simulation with a different value of µ. In the
graphics every colour corresponds to one interpretation.
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8. Numerical Results

Figure 8.14.: Mean and standard deviation of hnum, that is the number of significant
local maxima (jumps), as observed for the Uniform Compass Model without
noise dependent on µ.

We observe a number of local extrema in the plots of r. It seems like the number
of these extrema decreases as µ increases. However, upon calculating the number of
significant local maxima hnum, that is those that have enough distance to their neigh-
bouring local maxima and are significantly higher than the local minimum next to them,
this suspicion is not confirmed. The mean and standard deviation of hnum for different
values of µ are visualised in Figure 8.14. Looking at the configurations that correspond
to these local maxima and minima did not give further insight into why r has these local
extrema.
As we saw in Section 8.1, these jumps do not appear in the Uniform Deffuant Model

(see Figure 8.4). Even when we calculate r at at all steps, we do not observe significant
local maxima. The difference in these models is the way the opinion is modelled. For the
Uniform Compass Model opinions lie on a circle and for the Uniform Deffuant Model they
lie on a finite interval. This made us suspect that this difference might come from the fact
that when we calculate with numbers on a circle we need to do modulo calculation, which
is not necessary in the case of the Deffuant Model. The Kuramoto model also represents
opinions as numbers on a circle and, thus, also uses modulo calculation. However, in this
model the jumps are not observed as seen in the paper [CR16]. This made us suspect
that the difference comes from rounding errors that are cause by the way we carry out
the modulo operation.
In order to investigate this we carry out a simulation using different methods of do-

ing the modulo calculation but using the same initial condition, interaction times and
interaction places. We call the method used in our original simulation mod1. The same
method, just for a circle parameterised as [0, 2) is called mod2. These two methods are
defined in Algorithms 10 and 11. The standard modulo operator % in Python is referred
to as % and the version of the modulo operation from the numpy library, numpy.fmod, is
simply referred to as fmod. fmod adjusted is a customised version of fmod that ensures
that the result always lies in [0, 2). This method is shown in Algorithm 12.
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8. Numerical Results

Algorithm 10 mod1

Input a
if a > 1.0 then

a← a− 2.0
end if
if a < −1.0 then

a← a+ 2.0
end if
Return a

Algorithm 11 mod2

Input a
if a > 2.0 then

a← a− 2.0
end if
if a < 0.0 then

a← a+ 2.0
end if
Return a

Method Final Opinion

mod1 0.4116734986520993
mod2 1.411673498652099
% 1.411673498652099

fmod 1.8953899075572094
fmod adjusted 1.411673498652099

Table 8.2.: For every method for making modulo calculations on the left hand side, the
right hand side gives the value that the opinions converge to.

Algorithm 12 fmod adjusted

Input a
if a < 0.0 then

a← a+ 2.0
else

a← fmod(a)
end if
Return a
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8. Numerical Results

Figure 8.15.: This figure shows the plots of the order parameter r as calculated while
using different methods for the modulo calculation, indicated by different
colours (see legend). The lines are plotted in the order as they appear in the
legend. Thus, the orange, green, red and purple line are almost identical.

As seen in Table 8.2 and Figure 8.15, the simulation using mod1, mod2, % and fmod adjusted

give nearly identical results. However, the simulation using fmod gives significantly dif-
ferent results. As it turns out, the result using fmod is wrong. The reason is that this
version returns the answers as numbers in (−2.0, 2.0], which leads to problems with the
calculations in the following step. To visualise this, consider the following example. Note
that −0.5 and 1.5 are the same numbers modulo 2.0 and they could both be opinions
obtained in the previous step in the simulation using fmod. However, the calculations
−0.5 ·1.5+0.3 and 1.5 ·1.5+0.3 do not have the same results modulo 2. In all the other
methods of modulo calculation, this problem is avoided, because the result always lies
within the interval (−1.0, 1.0] or (0.0, 2.0].
This means that the local maxima observed in the order parameter r do not appear

to be cause by the modulo calculation. Further analysis beyond the scope of this project
is needed to see why these show up. We therefore end this excursion here and return to
studying other properties of the Compass model.
The results for the order parameter θ are given in Figure 8.16. As we can see, θ

quickly approximates the final value that it will take at the end of the simulation. The
larger µ, the faster this happens. We know that if the neighbours all agree upon the
same opinion, then this opinion is equal to θ. From the results for the parameters r and
θ, we know that this will eventually happen. Thus, the final values of θ should be the
same as the values that the individuals agree upon. We confirmed this by comparing
both vectors.
To summarise, in this section we saw that the larger µ, the faster the individuals

come to consensus. We also saw that with our uniform initial conditions, the opinions
that the individuals end up agreeing upon are also uniformly distributed. This matches
the theoretical results. Furthermore, we observed some unexplained behaviour in the
parameter r for small times.
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8. Numerical Results

Figure 8.16.: Each figure shows the value of the order parameter θ over time for the
Uniform Compass Model without noise for 50 interpretations each. Every
figure gives the results for a simulation with a different value of µ. In the
figures every colour corresponds to one interpretation.
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8. Numerical Results

8.3. Uniform Deffuant Model with Noise

The purpose of this section is to study how the Uniform Deffuant model behaves when it
is subjected to uniform and bi-modal noise. Does this kind of noise change the behaviour
of the model significantly? How will it compare to the Uniform Compass model with
noise? How does the noise parameter ϵ influence the results?

8.3.1. Uniform Noise

The first kind of noise that we consider is uniform noise. To study its effect we simulate
the Deffuant model with uniform noise as described in Algorithm 6. In all simula-
tions we use uniform initial conditions, N = 200, and µ = 0.5. We study the ϵ-values
0.1, 0.01, 0.001, 0.0001, 10−5, and 10−6. For each simulations we again run 50 simulations
in order to be able to study the randomness involved in the model.
We expect that for large ϵ the consensus cannot be reached. For those ϵ, we expect

very uneven configurations, small values of r and large c. The smaller ϵ gets, the less
the noise influences the opinion formation. We, thus, expect an increasing degree of syn-
chronisation for smaller ϵ-values. Because the noise is drawn from a symmetric uniform
distribution, we expect that if ϵ is sufficiently small to reach approximate consensus, it
does not change the opinion that the individuals converge to. This means that we expect
that the opinions of individuals still converge to approximately 0.5.
We start by looking at the values of the parameter c over time shown in Figure 8.17.

As one can see, the smaller ϵ gets, the closer c gets to 0 and the less it oscillates.
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8. Numerical Results

Figure 8.17.: These figures show the parameter c over the steps of the simulation for
simulations of the Uniform Deffuant model with uniform noise for different
values of ϵ. The different values of ϵ can be found in the headers of the
respective figures. Every coloured line corresponds to one simulation.
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We go on to study the order parameter r. We see that it is very noisy for large ϵ. For
smaller ϵ values, the graphs get increasingly less noisy and seem to converge to 1. This
suggests a high degree of synchronisation, approximate consensus even, for small ϵ.

Figure 8.18.: These figures show the order parameter r over steps of the simulation for
simulations of the Uniform Deffuant model with uniform noise for different
values of ϵ. The different values of ϵ can be found in the headers of the
respective figures. Every coloured line corresponds to one simulation.
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8. Numerical Results

mean of standard deviation of
ϵ bandwidth of last configuration bandwidth of last configuration

0.1 7.90 · 10−1 9.07 · 10−2

0.01 1.26 · 10−1 4.12 · 10−2

0.001 1.23 · 10−2 3.44 · 10−3

0.0001 1.25 · 10−3 3.87 · 10−4

10−5 1.32 · 10−4 3.69 · 10−5

10−6 1.25 · 10−5 3.75 · 10−6

Table 8.3.: This table shows the mean and standard deviation of the bandwidth of the
last configurations calculated in the simulations of the Uniform Deffuant
Compass model with uniform noise for different values of ϵ.

The values of the corresponding order parameter θ are visualised in Figure 8.19. The
individual lines are increasingly noisy for increasingly large ϵ indicating that the opinions
change more for larger ϵ values. This confirms the results for c and r. As expected, the
values are mostly clustered around 0.5. However, curiously, for ϵ = 0.01 and ϵ = 0.001
the values of θ seem to diverge away from θ = 0.5.

The last configurations calculated in the simulations are shown in Figure 8.20. As
expected the configurations look more even for smaller ϵ and are mostly clustered around
the opinion 0.5.

By calculating the mean and standard deviation of the bandwidth of opinions of the
last configurations simulated for different values of ϵ, we can see that the individuals
indeed get closer and closer to reaching consensus when ϵ gets close to 0. The mean and
standard deviation of the bandwidth for different values of ϵ are shown in Table 8.3.
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Figure 8.19.: Here we can see the order parameter r over steps of the simulation for
simulations of the Uniform Deffuant model with uniform noise for different
values of ϵ. Every coloured line corresponds to one simulation. In the
headers of the respective figures, the different values of ϵ can be found.
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Figure 8.20.: The last configurations simulated in simulations of the Uniform Deffuant
model with uniform noise for different values of ϵ are shown in these graphs.
Every coloured line corresponds to one simulation. The different values of
ϵ can be found in the headers of the respective figures.
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8.3.2. Bi-Modal Noise

In this sections we aim to answer the question what effect bi-modal noise has on the
Uniform Deffuant model. As already seen in Section 8.1, without noise, the Uniform
Deffuant model tends to produce consensus on opinions close to 0.5. Furthermore, the
dynamics of the bi-modal noise will work towards approximate consensus on 0.5. We
therefore expect these tendencies to support one another, resulting on fast approximate
consensus for smaller ϵ. For larger ϵ we expect the configurations to be in a larger
interval around ϵ after a few time-steps.
In order to study the behaviour, we simulated the model as described in Algorithm

9. For all simulations we used N = 200, m = 108 and µ = 0.5. Furthermore, we looked
at ϵ = 0.5, 0.1, 0.05, 0.01, 0.005 and 0.001. We ran 50 simulations per set of parameters.
The results are described and visualised below.
Figure 8.21 visualises the parameter c for the simulations. We see that the smaller ϵ,

the more c approaches 0 and the less it will variate.
Similarly, r gets closer and closer to 1 with decreasing variations for smaller ϵ. This

is shown in Figure 8.22.
The figure giving the results for the parameter θ, Figure 8.23, shows that θ quickly

ends up in an interval around 0.5. The smaller ϵ is, the smaller this interval becomes.
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Figure 8.21.: These figures show results for the parameter c for the Uniform Deffuant
model with bi-modal noise. The simulations all used the parameters indi-
cated in the respective headers. All lines correspond to individual simula-
tions.
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Figure 8.22.: These figures show results for the parameter r for the Uniform Deffuant
model with bi-modal noise. The simulations all used the parameters indi-
cated in the respective headers. All lines correspond to individual simula-
tions.
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Figure 8.23.: These figures show results for the parameter θ for the Uniform Deffuant
model with bi-modal noise. The simulations all used the parameters indi-
cated in the respective headers. All lines correspond to individual simula-
tions.
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mean of standard deviation of
ϵ bandwidth of last configuration bandwidth of last configuration

0.5 8.80 · 10−1 3.63 · 10−2

0.1 3.26 · 10−1 3.42 · 10−2

0.05 1.92 · 10−1 2.08 · 10−3

0.01 5.22 · 10−2 7.45 · 10−3

0.005 2.96 · 10−2 4.56 · 10−3

0.001 7.67 · 10−3 1.48 · 10−3

Table 8.4.: This table shows the mean and standard deviation of the bandwidth of the
last configurations calculated in the simulations of the Uniform Deffuant
Compass model with bi-modal noise for different values of ϵ.

In Figure 8.24, we see the configurations of the simulations after 108 steps. We can
see that they always lie within an interval around 0.5. We see that the length of this
interval decreases rapidly as ϵ decreases. For additional clarity, we calculated the lengths
of these intervals, that is, the bandwidths, in Table 8.4. The results are as expected.
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Figure 8.24.: The figures show the configurations after 108 steps for the Uniform Deffuant
model with bi-modal noise for N = 200 and µ = 0.5. Each coloured line
corresponds to one simulation. The figures correspond to simulations for
ϵ = 0.5, 0.1, 0.05, 0.01, 0.005 and 0.001 as indicated in their headers.
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8.4. Uniform Compass Model with Noise

After studying the behaviour of the Uniform Compass model in Section 8.2, we know go
on to study the effect of both uniform and bi-modal noise. Our main question is to see
whether the long term behaviour of the model changes under the influence of noise. In
particular, we want to know whether this is dependent on how large the noise is. Given
the length of the simulations, we restrict our attention to the parameter µ = 0.5 in this
section.

8.4.1. Uniform Noise

In order to study the effect of uniform noise, we simulated the Uniform Compass Model
for N = 200, m = 108 and µ = 0.5 with uniform noise as described in Algorithm 7. We
simulated ϵ-values in {0.5, 0.1, 0.05, 0.01, 0.0001, 10−6}. Because opinions are modelled
as values on a circle of length 2, adding this type of noise with ϵ > 0.5 does not allow
a consensus formation. Each simulation consists of 50 interpretations with the same
parameter selection.

The uniform noise is symmetric and centralised around 0. Thus, for small ϵ there are
only small perturbations and on average equally often in both directions. We therefore
expect the behaviour of the model to be very similar to the version without noise. The
only difference that we expect is that the individuals only agree within a small interval
of opinions. However, for large values of ϵ, we expect the noise to be so disruptive that
no (approximate) consensus can be reached.
Figure 8.25 shows the result of the parameter c for these simulations. For every value

of ϵ we can see that c falls quickly to a value significantly lower than its starting value
and oscillates around it. However, the larger ϵ is, the larger this value gets and the
stronger the visible oscillations.
Figure 8.26 visualises the order parameter r. For ϵ = 0.5, there is absolutely no visible

convergence of r to 1. For ϵ = 0.1, r oscillates wildly between 0 and 1. For ϵ = 0.05, r
still oscillates quickly, but closer to 1. For smaller values of ϵ, r seems to converge to a
value close to 1 and only oscillate slightly. This oscillation becomes less pronounced the
smaller ϵ gets. As we have seen before, the closer r is to 1, the more synchronised the
opinions are. Thus, we can assume that the opinions synchronise to within increasingly
smaller bounds for smaller ϵ.
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8. Numerical Results

Figure 8.25.: These figures show the parameter c for the Uniform Compass Model with
uniform noise for N = 200 and µ = 0.5. Each coloured line represents one
of 50 simulations with the same set of parameters. The figures on the left
hand side are from top to bottom for ϵ = 0.5, 0.05, 0.0001. The figures on
the right hand side are from top to bottom for ϵ = 0.1, 0.01, 10−6.
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8. Numerical Results

Figure 8.26.: These figures show the order parameter r for the Uniform Compass Model
with uniform noise for N = 200 and µ = 0.5. Each coloured line represents
one of 50 simulations with the same set of parameters. The figures on the
left hand side are from top to bottom for ϵ = 0.5, 0.05, 0.0001. The figures
on the right hand side are from top to bottom for ϵ = 0.1, 0.01, 10−6.
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The results for θ are shown in Figure 8.27. For ϵ = 0.5, 0.1, 0.05, the values are θ
are oscillating within their full range. For lower values of ϵ, they are oscillating withing
small intervals after approximately 107 steps. These intervals are smaller for smaller ϵ.

Figure 8.27.: These figures show the order parameter θ for the Uniform Compass Model
with uniform noise for N = 200 and µ = 0.5. Each coloured line represents
one of 50 simulations with the same set of parameters. The figures on the
left hand side are from top to bottom for ϵ = 0.5, 0.05, 0.0001. The figures
on the right hand side are from top to bottom for ϵ = 0.1, 0.01, 10−6.
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8. Numerical Results

mean of standard deviation of
ϵ bandwidth of last configuration bandwidth of last configuration

0.5 1.93 1.90 · 10−2

0.1 1.26 2.95 · 10−1

0.05 6.40 · 10−1 2.28 · 10−1

0.01 1.20 · 10−1 3.21 · 10−2

0.0001 1.18 · 10−3 3.49 · 10−4

10−6 1.32 · 10−5 4.24 · 10−6

Table 8.5.: This table shows the mean and standard deviation of the bandwidth of the
last configurations calculated in the simulations of the Uniform Compass
model with uniform noise for different values of ϵ.

The configuration that the model calculates after 108 steps are shown in 8.28. As
expected from the results for the order parameters, there is no consensus for ϵ ∈
{0.5, 0.1, 0.05}. For smaller ϵ there is agreement onto opinions in an interval that is
smaller for smaller ϵ. For the smallest ϵ values there is little visible disagreement between
neighbours. We also see that for every individual i, the final opinions of that individual
over the 50 interpretations of the simulation for one value of ϵ appear approximately
uniformly distributed over the interval.
By calculating the bandwidth of opinions of the last configurations simulated for

different values of ϵ and calculating their mean, we can see that the individuals indeed
get closer and closer to reaching consensus when ϵ gets close to 0. The mean and standard
deviation of the bandwidth for different values of ϵ are shown in Table 8.5.
In Figure 8.29, we can see that given identical initial condition, interaction times and

interaction places, uniform noise with ϵ = 10−6 does not change the averages of the
opinions that the process converges to. This means that for sufficiently small ϵ values,
we do not expect uniform noise to have a significant impact on the dynamics of the
model.
To summarise, we have shown that for sufficiently small values of ϵ, the qualitative

behaviour of the model is approximately as it is without noise. This is what we have
suspected.
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8. Numerical Results

Figure 8.28.: These figures show the configurations of the Uniform Compass Model
with uniform noise for N = 200 and µ = 0.5, after 108 steps. Each
coloured line represents one of 50 simulations with the same set of pa-
rameters. The figures on the left hand side are from top to bottom for
ϵ = 0.5, 0.05, 0.0001. The figures on the right hand side are from top to
bottom for ϵ = 0.1, 0.01, 10−6.
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Figure 8.29.: This figure shows the averages of the last calculated configuration for sim-
ulations of the Uniform Compass model with and without uniform noise.
In the simulation with noise, ϵ = 10−6 was used. Both simulations used
identical starting conditions, interaction times, and interaction places. The
x-axis of the figure shows the number of the interpretation of the simula-
tion and the y-axis gives opinions. The blue crosses give the average of the
opinions in the last simulated configuration in the case with noise. The red
circles give the opinion that the individuals would agree upon in the case
without noise.
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8.4.2. Bi-Modal Noise

We simulated the Uniform Compass Model with bi-modal noise. In every step one
opinion is perturbed towards one of the values in {0, 1} with equal probability. How
much a value gets perturbed by this noise in each step is proportional to its distance
from the value it gets disturbed towards. Before each simulation we chose a value ϵ.
This value quantifies the noise in the following way. In one step, let x ∈ (−1, 1] be the
opinion of the individual which we perturb by noise. Let a ∈ {0, 1} be the value towards
which x is pushed. Then the updated opinion is given by

(1− ϵ)x, if a = 0, x ̸= 0,

(−1)y(1− ϵ)x, if a = 0, x = 0,

(1− ϵ)x+ ϵ, if a = 1, x > 0,

(1− ϵ)x− ϵ, if a = 1, x < 0,

(−1)yϵ, if a = 1, x = 0,

where y is a realisation of Y ∼ Uniform({0, 1}). What results behaviour would we expect
in such a simulation?
Assume a simulation where all individuals have the same opinion x at the beginning

of the simulation. If x ∈ {−0.5, 0.5}, the noise disturbs the individual opinions equally
into direction 0 and direction 1. Once disturbed, the dynamics of the compass model
pull all opinions towards their average again. This means that we would expect that
each opinions approximately stays at 0.5 or −0.5, respectively. Therefore, we expect
1
2 (δ0.5 + δ−0.5) to be the invariant measure for this model.
If ϵ is small and opinions are not yet converged, we expect the dynamics of the compass

model to be more relevant than the noise. This leads to individuals nearly agreeing to
some value in (−1, 1]. This means that the dynamics of the noise start to become the
most relevant factor as described in the previous chapter. If the value that the individuals
agreed upon lies in (−1, 0), the model will converge to −0.5. If the value lies in (0, 1), it
will converge to 0.5.
When ϵ is large we expect the noise to be a lot more dominant than the dynamics

of the model. This means that the opinions quickly cluster around either −0.5 or 0.5.
However, because the noise is large, the configurations change significantly in every step
and also keep changing. Thus, making consensus formation increasingly difficult for in-
creasing ϵ-values.

To test this intuition, we simulated the Uniform Compass Model for N = 200,
m = 2·108 and µ = 0.5 with bi-modal noise. We simulated ϵ-values in {0.5, 0.1, 0.01, . . . , 10−14}.
Larger values of ϵ are by design not plausible. For each set of parameters we ran 50 in-
terpretations of the simulation.

As before for the Compass model with uniform noise, we begin by looking at the
parameter c. It is visualised in Figures 8.30, 8.31 and 8.32. In these figures we can see
that the smaller ϵ is the faster c approximates 0 and the less oscillations there are.
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8. Numerical Results

Figure 8.30.: Each figure shows the results of c for the Uniform Compass Model
with bi-modal noise for different values of ϵ. Here ϵ takes the values
0.5, 0.1, 0.01, 0.001, 0.0001 and 10−5. Each coloured line represents one sim-
ulation.
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8. Numerical Results

Figure 8.31.: Each figure shows the results of c for the Uniform Compass Model
with bi-modal noise for different values of ϵ. Here ϵ takes the values
10−6, 10−7, 10−8, 10−9, 10−10 and 10−11. Each coloured line represents one
simulation.
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8. Numerical Results

Figure 8.32.: Each figure shows the results of c for the Uniform Compass Model with
bi-modal noise for different values of ϵ. Each coloured line represents one
simulation. Here ϵ takes the values 10−12, 10−13 and 10−14.

Figures 8.33, 8.34 and 8.35 show the values of r for these simulations. Figures 8.36,
8.37 and 8.38 show the values of θ for these simulations. For large ϵ, that is ϵ ∈ (0.01, 0.5],
the values of r seem to converge to 1 and the values of θ to −0.5 or 0.5. However, they get
increasingly noisy as the value of ϵ gets closer to its maximum 0.5. For ϵ ∈ (10−4, 0.1), r
and θ only seem to converge for some simulations and not all. For small ϵ-values, that is
ϵ ≤ 10−4, r seems to go towards 1. Thus, there is approximate consensus. The values of
θ converge to −0.5 and 0.5 for ϵ ∈ [10−3, 10−5]. For smaller values of ϵ, convergence of θ
is not achieved within the length of the simulation. However, we observe, that agreement
seems to slow down for smaller ϵ. For θ = 10−5, the values of θ do not get close to −0.5
or 0.5, but do seem to converge towards these values.
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8. Numerical Results

Figure 8.33.: Each figure shows the results of r for 50 simulations of the Uniform Com-
pass Model with bi-modal noise and the same ϵ. Here ϵ takes the values
0.5, 0.1, 0.01, 0.001, 0.0001 and 10−5.
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8. Numerical Results

Figure 8.34.: Each figure shows the results of r for 50 simulations of the Uniform Com-
pass Model with bi-modal noise and the same ϵ. Here ϵ takes the values
10−6, 10−7, 10−8, 10−9, 10−10 and 10−11.
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8. Numerical Results

Figure 8.35.: Each figure shows the results of r for 50 simulations of the Uniform Com-
pass Model with bi-modal noise and the same ϵ. Here ϵ takes the values
10−12, 10−13 and 10−14.
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8. Numerical Results

Figure 8.36.: Each figure shows the results of θ for 50 simulations of the Uniform Com-
pass Model with bi-modal noise and the same ϵ. Here ϵ takes the values
0.5, 0.1, 0.01, 0.001, 0.0001 and 10−5.
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8. Numerical Results

Figure 8.37.: Each figure shows the results of θ for 50 simulations of the Uniform Com-
pass Model with bi-modal noise and the same ϵ. Here ϵ takes the values
10−6, 10−7, 10−8, 10−9, 10−10 and 10−11.
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8. Numerical Results

Figure 8.38.: Each figure shows the results of θ for 50 simulations of the Uniform Com-
pass Model with bi-modal noise and the same ϵ. Here ϵ takes the values
10−12, 10−13 and 10−14.

In order to analyse the previous observation further, we consider the slope of the values
of θ for very small ϵ in order to see whether there is still convergence towards −0.5 and
0.5.

Figures 8.39 and 8.40 show the difference in the value of θ between steps 108 and step
2 · 108 for ϵ ∈ {10−08, . . . , 10−14}. The slope is positive if the opinion is in (−1,−0.5)
and (0, 0.5). Elsewhere the values are negative. This lets us suspect that the opinions
are still converging to −0.5 and 0.5 as seen for larger ϵ, just at a much slower pace.
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8. Numerical Results

Figure 8.39.: Each figure shows the results of the difference in the value of θ between
steps 108 and step 2 · 108 for 50 simulations of the Uniform Compass
Model with bi-modal noise and the same ϵ. Here ϵ takes the values
10−6, 10−7, 10−8, 10−9, 10−10 and 10−11.
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8. Numerical Results

Figure 8.40.: Each figure shows the results of the difference in the value of θ between
steps 108 and step 2 ·108 for 50 simulations of the Uniform Compass Model
with bi-modal noise and the same ϵ. Here ϵ takes the values 10−12, 10−13

and 10−14.

In Figures 8.41, 8.42 and 8.43, we can see the last configurations that were simulated
for the Uniform Compass model with bi-modal noise. For ϵ = 0.5 and ϵ = 0.1, we can see
that the configurations are clustered around −0.5 and 0.5 but all still are very uneven.
For ϵ = 0.1 more so than for ϵ = 0.5. For ϵ = 0.0001 and ϵ = 10−5 we also get line
clustered around −0.5 and 0.5, but with a lot less oscillations. For larger ϵ-values the
configurations get even flatter, but spread out more and more. This is what was to be
expected from the results for r, θ and c shown before. For ϵ = 0.01 and ϵ = 0.001, some
configurations are slightly uneven lines around −0.5 and 0.5. This was also expected.
However, for the other configurations, we did not get a clear picture before. It turns
out that these are in parts slightly uneven lines on −0.5 and 0.5 that are connected by
a rather steep line. This lets us suspect that they might still converge to values close to
−0.5 and 0.5 given more simulation time.
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8. Numerical Results

Figure 8.41.: Each figure shows the last simulated configurations for the Uniform Com-
pass Model with bi-modal noise for different values of ϵ. Here ϵ takes the
values 0.5, 0.1, 0.01, 0.001, 0.0001 and 10−5. Each coloured line represents
one simulation.
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8. Numerical Results

Figure 8.42.: Each figure shows the last simulated configurations for the Uniform Com-
pass Model with bi-modal noise for different values of ϵ. Here ϵ takes the
values 10−6, 10−7, 10−8, 10−9, 10−10 and 10−11. Each coloured line repre-
sents one simulation.

102



8. Numerical Results

Figure 8.43.: Each figure shows last simulated configurations for the Uniform Compass
Model with bi-modal noise for different values of ϵ. Each coloured line
represents one simulation. Here ϵ takes the values 10−12, 10−13 and 10−14.
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8.5. Independence of Noise

In Chapters 3 and 4 we defined two different versions of noise, uniform noise and bi-
modal noise, as Markov processes. Note that the way we defined the Markov process,
the noise is dependent on the process of the interactions of neighbours. In particular,
noise is added at the same times as the interactions of neighbours occur. The numerical
implementation of these kinds of noise was described in Chapter 7. In Chapter 8 the
results of the simulations are presented.
Adding noise only when interactions between neighbours occur is less complex to

implement and produces faster simulations that need less memory that using independent
noise. Thus, this is a practical way to implement noise for the sake of this project.
However, it is often easier to proof theoretical results for independent noise. Thus, we
would like to know whether it makes a significant difference to consider independent
noise in simulations. This section will investigate this question for the case of the UCM
with bi-modal noise.
First let us define what we mean by independent noise. Consider the UCM. On all

edges we imagine independent Poisson clocks. Whenever a Poisson clock on an edge
between two individuals rings, these people interact. We now assume that we also have
independent Poisson clocks on the vertices. Whenever one of those Poisson clocks rings,
we add noise to the opinion of the person corresponding to the vertex it is on. As in the
case without noise, with probability one no two Poisson clocks ring at the same time.
This means the ringing times of the Poisson clocks gives us a well-defined order in which
interaction take place and noise is added. The pseudo-code for this process is given in
Algorithm 13.

We simulated the independent noise described Algorithm 13 for ϵ-values in 0.5, 0.01,
0.0001 and 10−6. These values were selected because they cover all the different versions
of long time behaviour shown in the simulations with dependent noise. Note that in the
simulations shown before, for dependent noise, one step in the simulation meant that
there was one interaction between neighbours and noise was added to one individual.
Now, one step in the simulation can either be an interaction between neighbours or
adding noise to one individual. Thus, what would have been denoted as one step before
is now two steps.
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8. Numerical Results

Algorithm 13 Simulating the Uniform Compass Model with Independent Bi-Modal
Noise
let N be the number of individuals
(ηi) denote the configurations of the Compass Model
η0 is the starting configuration chosen uniformly at random
ϵ is the parameter used to calculate by which amount an opinion gets changed when
it is perturbed by noise
calculate the first m interaction times between neighbours tneighbours and interaction
places pneighbours using 1 for N Poisson clocks
calculate the first m times tnoise and places pnoise where noise is added to individuals
using 1 for N + 1 Poisson clocks
i← 0
j ← 0
while i ≤ m & j ≤ m do

if tneighboursi < tnoisej then
execute i’th step of compass model to compute the configuration η

tneighbours
i

from the previously calculated configuration using Algorithm 3
else

let I denote the individual pnoisej and Io its current opinion
choose D uniformly at random from {0, 1}
if D = 0 then

if Io = 1 then
draw u uniformly at random from {0, 1}
if u = 0 then

set Io to ϵ− 1
else

set Io to 1− ϵ
end if

else
multiply Io by 1− ϵ

end if
else

if Io = 0 then
draw u uniformly at random from {0, 1}
if u = 0 then

set Io to ϵ
else

set Io to −ϵ
end if

else
if Io > 0 then

multiply Io by 1− ϵ and add ϵ
else

multiply Io by 1− ϵ and subtract ϵ
end if

end if
end if

end if
end while
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In Figures 8.44 and 8.45, we can see the values of the parameter c obtained in these
simulations. One can see that for ϵ = 0.5 the value of c first quickly goes down to a value
at around 35 but then keeps oscillating significantly around this value. For ϵ = 0.01, the
values of c quickly fall below 10 and then oscillate around that value. The oscillation
observed here is much smaller than for ϵ = 0.5. For ϵ = 0.0001 and ϵ = 10−6, the values
of c fall even faster and further to a value close to 0. They also oscillate even less.
Figures 8.46 and 8.47 visualise the order parameter r. For ϵ = 0.5, we can see that after

approximately 0.5·108 steps, r oscillates wildly around 0.8. This means that the opinions
synchronise somewhat, but not fully. For ϵ = 0.01, for a few simulations, r oscillates
slightly around a value close to 1. This means that for those the simulations the opinions
have nearly synchronised, that is consensus has nearly been reached. However, for most
simulations, the values of r stay well below 0.6, meaning there is no consensus. For
ϵ = 0.0001, r approaches 1 for all synchronisation. After approximately 0.5 · 108 steps,
every simulation has approximately reached consensus. For ϵ = 10−6, r approaches 1
even faster than for ϵ = 0.0001.
The results for the order parameter θ are shown in Figures 8.48 and 8.49. For ϵ = 0.5,

we observer that after approximately 0.5 · 108 the values of θ cluster around −0.5 and
0.5. However, they still oscillate significantly. For ϵ = 0.01, θ only oscillates around
−0.5 or 0.5 for a few simulations, most simulations do not seem to converge at all. This
corresponds to the behaviour observed for the order parameter r. For ϵ = 0.0001, in
every simulation θ converges to either −0.5 or 0.5. There is little oscillation around these
values. For smaller ϵ, the same convergence takes place, just a lot slower.
In Figure 8.50 and Figure 8.51, one can see the configurations calculated after approx-

imately 108 steps. As expected from the results for r, θ and c, those configurations are
very uneven lines clustered around −0.5 and 0.5 for ϵ = 0.5. For ϵ = 0.0001 those lines
are nearly even and nearly at −0.5 and 0.5. For ϵ = 106 we saw earlier that the r was
nearly at 1. Thus, we expect reasonable even lines. And because the values of θ are not
quite converged, we only expect them to be clustered around −0.5 and 0.5. Furthermore
we expect the lines to be at the same height as θ at the end of the simulation. This
is precisely what we can observe in this figure. For ϵ = 0.01, the previously considered
parameters did not give a good indication what the final configurations should look like.
We can see here that they are horizontal line segments at −0.5 and 0.5 that are connect
at a steep slope. That means that most neighbours either have an opinion of approx-
imately −0.5 or approximately 0.5. And the few individuals that live in between two
such groups can have opinions in between.
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Figure 8.44.: These figures show the parameter c for the Uniform Compass Model with
(in)dependent bi-modal noise for N = 200 and µ = 0.5. Each coloured
line represents one of 50 simulations with the same set of parameters. The
figures in the first line are for ϵ = 0.5, the second line is for ϵ = 0.01 and
the third line for ϵ = 0.0001. Figures on the left are for the dependent case
and the figures on the right for the independent case.
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Figure 8.45.: These figures show the parameter c for the Uniform Compass Model with
(in)dependent bi-modal noise for N = 200, µ = 0.5 and ϵ = 10−6. Each
coloured line represents one of 50 simulations with the same set of param-
eters. The figure on the left is for the dependent case and the figure on the
right for the independent case.
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Figure 8.46.: These figures show the order parameter r for the Uniform Compass Model
with (in)dependent bi-modal noise for N = 200 and µ = 0.5. Each coloured
line represents one of 50 simulations with the same set of parameters. The
figures on the left hand side are for the dependent case and the figures on
the right for the independent case. In the first row ϵ = 0.5, in the second
row ϵ = 0.01, and in the third row ϵ = 0.0001.
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Figure 8.47.: These figures show the order parameter r for the Uniform Compass Model
with (in)dependent bi-modal noise for N = 200 and µ = 0.5 and ϵ = 10−6.
Each coloured line represents one of 50 simulations with the same set of
parameters. The figure on the left hand side is for the dependent case and
the figures on the right for the independent case.
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Figure 8.48.: These figures show the order parameter θ for the Uniform Compass Model
with (in)dependent bi-modal noise for N = 200 and µ = 0.5. Each coloured
line represents one of 50 simulations with the same set of parameters. The
figures on the left hand side are for the dependent case and the figures on
the right for the independent case. In the first row ϵ = 0.5, in the second
row ϵ = 0.01, and in the third row ϵ = 0.0001.
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Figure 8.49.: These figures show the order parameter θ for the Uniform Compass Model
with (in)dependent bi-modal noise for N = 200, µ = 0.5 and ϵ = 10−6.
Each coloured line represents one of 50 simulations with the same set of
parameters. The figure on the left hand side is for the dependent case and
the figure on the right for the independent case.
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Figure 8.50.: These figures show the configuration calculated after approximately 108

steps in simulations of the Uniform Compass Model with (in)dependent
bi-modal noise for N = 200 and µ = 0.5. Each coloured line represents one
of 50 simulations with the same set of parameters. The figures in the first
line are for ϵ = 0.5, in the second line for ϵ = 0.01, and in the third line
for ϵ = 0.0001. Figures on the left represent the dependent case and the
figures on the right the independent case.
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Figure 8.51.: These figures show the configuration calculated after approximately 108

steps in simulations of the Uniform Compass Model with (in)dependent
bi-modal noise for N = 200, µ = 0.5 and ϵ = 10−6. Each coloured line
represents one of 50 simulations with the same set of parameters. The
figure on the left represent the dependent case and the figure on the right
the independent case.

As we can see in the figures, there are no significant qualitative differences. In order
to find small quantitative differences, a more thorough comparison would be needed.
However, this is not necessary, given our main goal is to study qualitative differences in
the convergence behaviour.

We conclude that studying dependent noise as we did is not a major disadvantage
over studying fully independent noise. This was not surprising. Due to the nature of the
Poisson clocks, we expected that on average, with the independent noise the clocks for
the noise and the ones for the interactions would take turn ringing. We would expect
the clocks for the noise to ring slightly more often, that is N out 2N−1 times. However,
for large N that is not significant. Thus, implementing the noise dependently as we did
in the previous sections, is a good method to safe computing time, storage and memory.
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8.6. Comparison of the Deffuant and the Compass Model

In this section we will highlight some important differences between the Uniform Def-
fuant model and the Uniform Compass model.

One of these differences is the fact that in the Uniform Deffuant model we already
know the opinion that the individuals eventually agree upon from the initial configura-
tion, but for the Uniform Compass model we do not. In the Deffuant model, the opinion
that individuals eventually agree upon is simply the average of the starting opinions as
seen in Figure 8.7. However, for the Uniform Compass model this is not the case. In
fact, with the same initial opinions but different interaction times and places, we can
get consensus on a different opinion. This is visualised in Figure 8.52.

There is also a significant qualitative difference between the convergence behaviour of
both models. In the Uniform Deffuant model, opinions converge to a value close to 0.5.
However, in the Uniform Compass Model, the values, to which the opinions converge in
different simulations, are uniformly distributed on the opinion space.

The uniform noise seems to have a very similar effect on both models. For small ϵ-
values it has very little effect on the dynamics. In contrast, for large ϵ-values it prevents
any sort of consensus and synchronisation of opinions.
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8. Numerical Results

Figure 8.52.: In this figure we see configurations after a selected number of steps for two
simulations of the Uniform Compass model without noise with N = 200
and µ = 0.5. Each colour represents the results for one simulation. Both
simulations use the same initial configuration.

116



9. Conclusion and Outlook

In this thesis we conducted numerical simulations of the Uniform Deffuant model and
the Uniform Compass model on the finite path of length 200 and analysed the effect
different types of noise have on the long-time behaviour of the models.
As seen in Sections 8.1 and 8.2, the simulations of both models without noise behave

as expected from the theoretical results described in Part II.
In Sections 8.3.1 and 8.4.1, we analysed the effect of uniform noise on the models. We

saw that both models react similarly to this kind of noise. Two regimes for ϵ can be
observed. For sufficiently small values of ϵ, the noise has little impact on the behaviour
of the model and approximate consensus is still reached. For large values of ϵ, consensus
can no longer be reached. The critical value, for the models on the path of length 200
and with µ = 0.5, is roughly ϵ ≈ 0.01.

The effect of bi-modal noise was studied in Sections 8.3.2 and 8.4.2. In contrast to
uniform noise, bi-modal noise influences the Uniform Deffuant model and the Uniform
Compass model differently. In the Uniform Deffuant model with bi-modal noise, for
every ϵ, all opinions converge into a symmetric interval around 0.5. The width of this
intervals decreases as ϵ decreases. There does not appear to be a phase transition.
However, in the Uniform Compass model with bi-modal noise, there appears to be two
distinct regimes. For large ϵ, the opinions converge to a (relatively large) interval around
either −0.5 or 0.5. There does not appear to be a large degree of synchronisation. For
ϵ-values under a critical value, for our simulations at around ϵ ≈ 0.01, the simulations
converge to consensus on −0.5 or 0.5.

An open question that remains after writing this thesis is why we see local maxima in
the graph of r for the Uniform Compass model without noise, see Figure 8.13. We inves-
tigated this topic, but unfortunately were unable to explain this phenomenon. Further
research is needed to find a satisfactory answer.
Furthermore, additional study is necessary to analyse both models for different val-

ues of µ and larger groups of individuals. This thesis only investigated the case of
unbounded confidence, uniform initial conditions and free boundary conditions. How-
ever, investigating the effect of non-trivial confidence parameters, non-uniform initial
conditions and boundary conditions would also be interesting. In order to do this, it is
necessary to develop more efficient algorithms, but this exceeded the scope of this thesis.

There are many interesting further research directions, both numerically and theoret-
ically. Gaining understanding of the behaviour of the models through numerical simu-
lations can help to prove theoretical results or provide direction for further theoretical
research.
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One obvious further direction is to analyse what happens with different types of noise.
One could, for example, look at the effect of non-centralised uniform noise. In the
Deffuant model we would expect that this type of noise, depending on the direction it
favours, causes the opinions to converge to an interval around either 0 or 1. For the Com-
pass model, this noise might be more interesting. Due to the opinions lying on a circle,
it is not immediately clear what would happen and whether this noise would change the
long-time behaviour significantly for all values of parameters. Another question one can
ask, is, what would happen when instead of perturbing towards two opinions, that is 0
and 1 in the bi-modal noise, one would perturb towards a set of k opinions. Possibly,
for small ϵ, this would simply lead to convergence towards an invariant measure of the
form 1

k (δx1 + · · ·+ δxk) where δx1 , . . . , δxk denote Dirac measures on flat configurations.
Yet another logical extension of this research project is to look at more underlying

graphs. One can start with regular graphs, such as (finite subsets of) Zd for d = 1, 2, 3, . . .
or trees. Then one can move up to more general graphs. Furthermore, studying the
models on random graphs would be particularly interesting. Random graphs are used to
model and study the interactions of groups of people and would therefore help to create
a more realistic opinion model. An introduction to the study of (social) networks can
be found in [New18].
Another way of creating more realistic models is to look at non-Markovian dynamics.

That allows the effect of memory on the opinion formation process to be taken into
account. The recent papers [CP23] and [CWS+20] introduce different approaches to
studying a non-Markovian opinion model.

118



Part IV.

Appendix
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A. Kolmogorov-Smirnov Test

The two-sided Kolmogorov-Smirnov-Test (short: KS-test), is a statistical goodness of fit
test. It is applied in the following scenario.
Let X1, . . . , Xn be independent and identically distributed random variables on R with

common cumulative distribution function F . For a specific set of observations y1, . . . , yn
let Fn be their empirical cumulative distribution function, defined as

Fn : R 7→ R, Fn(t) =


0, if t < min{y1, . . . , yn},
|{yi|yi≤t,i=1,...,n}|

n , if min{y1, . . . , yn} ≤ t ≤ max{y1, . . . , yn},
1, if t > max{y1, . . . , yn}

.

How likely is it, that y1, . . . , yn are sampled from X1, . . . , Xn? If n were large and
y1, . . . , yn were indeed sampled from X1, . . . , Xn, then Fn ≈ F. Thus, we test the follow-
ing hypotheses:

H0 : F = Fn

HA : F ̸= Fn.

Intuitively spoken, one can be reasonably sure that y1, . . . , yn are sampled fromX1, . . . , Xn,
if F and Fn are relatively close to each other using a suitable distance measure. Such
a distance measure is given by the Kolmogorov test statistic which was introduced in
1933 by Kolmogorov. It is given by

Tn = sup
t
|F (t)− Fn(t)|.

We reject the null-hypothesis H0, if Tn is large than a critical value T . If Tn is smaller
than T , we accept the null-hypothesis. The probability of a type-I-error, that is rejecting
H0 even though it is true, is called the significance level of the test. It is chosen before
the test and denoted by α. The smallest level of significance at which the null-hypothesis
is rejected is called the p-value of the test. We reject H0 when the p-value is smaller
than α. The p-value can be written as

P(Tn > T |F = Fn).

The critical value T is random variable that returns the value of the Kolmogorov test
statistic for a sample of X1, . . . , Xn. That is

T (x) = sup
t
|F (t)− F̃n(t)|,
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A. Kolmogorov-Smirnov Test

where F̃n is the cumulative distribution function of X1, . . . , Xn.
In order to perform this statistical test, one used to rely on tables. Nowadays, one

can simply use the function ks test from the Python package scipy to calculate the
p-values. How this function calculated the p-values can be seen by studying its code on
git-hub. First this function calculates the test statistic Tn as defined above. In order
to calculate the p-value given Tn, the method outlined in [SL11] is used. [Bir52] [Ric95]
[LR22] [Has22]
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B. Python Code

The main parts of the code are formulated in classes. These classes then only need to
be initiated and run. The classes for the Deffuant model without noise is given below as
udm. The class for the Deffuant model with uniform noise is udm n1, and with bi-modal
noise it is udm n2.

1 import numpy as np

2 import os

3 import math

4

5

6 class udm:

7 def __init__(self , N, mu , steps , i, initial_configuration ,

interaction_order):

8 self.i = i

9 self.N = N

10 self.mu = mu

11 self.steps = steps

12 self.config = initial_configuration

13 self.interaction_order = interaction_order

14 self.convergence = [0.0 for i in range(int(self.steps /100 _000) +

1)]

15 self.convergence [0] = np.sum([abs(self.config[i]-self.config[i

+1]) for i in range(self.N - 1)])

16 self.r = np.zeros(int(self.steps /100 _000) + 1)

17 s = np.sum(np.sin(2* self.config*math.pi - math.pi))

18 c = np.sum(np.cos(2* self.config*math.pi - math.pi))

19 self.r[0] = np.sqrt(s**2 + c**2)/self.N

20 self.theta = np.zeros(int(self.steps /100 _000) + 1)

21 self.theta [0] = np.arcsin(s/(self.N*self.r[0]))

22 if (c < 0):

23 if (self.theta [0] >= 0):

24 self.theta [0] = math.pi - self.theta [0]

25 else:

26 self.theta [0] = - math.pi - self.theta [0]

27

28 def run(self):

29 for i in range(self.steps):

30 interaction_point = self.interaction_order[i]

31 old1 = self.config[interaction_point]

32 old2 = self.config[interaction_point + 1]

33 self.config[interaction_point] = (1-self.mu)*old1 + self.mu*

old2

34 self.config[interaction_point + 1] = (1-self.mu)*old2 + self.

mu*old1

35 if ((i+1) % 100 _000 == 0):
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36 self.convergence[int((i+1) /100 _000)] = np.sum([abs(self.

config[j]-self.config[j+1]) for j in range(self.N - 1)])

37 s = np.sum(np.sin(2* self.config*math.pi - math.pi))

38 c = np.sum(np.cos(2* self.config*math.pi - math.pi))

39 self.r[int((i+1) /100 _000)] = np.sqrt(s**2 + c**2)/self.N

40 self.theta[int((i+1) /100 _000)] = np.arcsin(s/(self.N*self

.r[int((i+1) /100 _000)]))

41 if (c < 0):

42 if (self.theta[int((i+1) /100 _000)] >= 0):

43 self.theta[int((i+1) /100 _000)] = math.pi - self.

theta[int((i+1) /100 _000)]

44 else:

45 self.theta[int((i+1) /100 _000)] = - math.pi - self

.theta[int((i+1) /100 _000)]

46 name = str(self.N) + ’_0’ + str(self.mu) + ’_’ + str(self.steps)

47 folder_name = ’udm_version ’+ str(self.i) + ’_’ + name + ’/’

48 os.mkdir(folder_name)

49 np.save(folder_name + ’c_’ + name , self.convergence)

50 np.save(folder_name + ’r_’ + name , self.r)

51 np.save(folder_name + ’theta_ ’ + name , self.theta)

52 np.save(folder_name + ’final_config_ ’ + name , self.config)

53

54 class udm_n1:

55 def __init__(self , N, mu , steps , epsilon , i, initial_configuration ,

56 interaction_order , noise_loc):

57 self.i = i

58 self.N = N

59 self.mu = mu

60 self.steps = steps

61 self.epsilon = epsilon

62 self.config = initial_configuration

63 self.interaction_order = interaction_order

64 self.noise = np.random.default_rng ().uniform(-epsilon , epsilon ,

self.steps)

65 self.noise_loc = noise_loc

66 self.convergence = [0.0 for i in range(int(self.steps /100 _000) +

1)]

67 self.convergence [0] = np.sum([abs(self.config[i]-self.config[i

+1]) for i in range(self.N - 1)])

68 self.r = np.zeros(int(self.steps /100 _000) + 1)

69 s = np.sum(np.sin(2* self.config*math.pi - math.pi))

70 c = np.sum(np.cos(2* self.config*math.pi - math.pi))

71 self.r[0] = np.sqrt(s**2 + c**2)/self.N

72 self.theta = np.zeros(int(self.steps /100 _000) + 1)

73 self.theta [0] = np.arcsin(s/(self.N*self.r[0]))

74 if (c < 0):

75 if (self.theta [0] >= 0):

76 self.theta [0] = math.pi - self.theta [0]

77 else:

78 self.theta [0] = - math.pi - self.theta [0]

79

80 def run(self):

81 for i in range(self.steps):

82 interaction_point = self.interaction_order[i]
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83 old1 = self.config[interaction_point]

84 old2 = self.config[interaction_point + 1]

85 self.config[interaction_point] = (1-self.mu)*old1 + self.mu*

old2

86 self.config[interaction_point + 1] = (1-self.mu)*old2 + self.

mu*old1

87 self.config[self.noise_loc[i]] = self.config[self.noise_loc[i

]] + self.noise[i]

88 if (self.config[self.noise_loc[i]] >1.0):

89 self.config[self.noise_loc[i]] = 1.0

90 if (self.config[self.noise_loc[i]]< 0.0):

91 self.config[self.noise_loc[i]] = 0.0

92 if ((i+1) % 100 _000 == 0):

93 self.convergence[int((i+1) /100 _000)] = np.sum([abs(self.

config[j]-self.config[j+1]) for j in range(self.N - 1)])

94 s = np.sum(np.sin(2* self.config*math.pi - math.pi))

95 c = np.sum(np.cos(2* self.config*math.pi - math.pi))

96 self.r[int((i+1) /100 _000)] = np.sqrt(s**2 + c**2)/self.N

97 self.theta[int((i+1) /100 _000)] = np.arcsin(s/(self.N*self

.r[int((i+1) /100 _000)]))

98 if (c < 0):

99 if (self.theta[int((i+1) /100 _000)] >= 0):

100 self.theta[int((i+1) /100 _000)] = math.pi - self.

theta[int((i+1) /100 _000)]

101 else:

102 self.theta[int((i+1) /100 _000)] = - math.pi - self

.theta[int((i+1) /100 _000)]

103 name = str(self.N) + ’_0’ + str(self.mu) + ’_’ + str(self.steps)

+ str(self.epsilon)

104 folder_name = ’udm_n1_version ’+ str(self.i) + ’_’ + name + ’/’

105 os.mkdir(folder_name)

106 np.save(folder_name + ’c_’ + name , self.convergence)

107 np.save(folder_name + ’r_’ + name , self.r)

108 np.save(folder_name + ’theta_ ’ + name , self.theta)

109 np.save(folder_name + ’final_config_ ’ + name , self.config)

110

111

112 class udm_n2:

113 def __init__(self , N, mu , steps , epsilon , i, initial_configuration ,

114 interaction_order , noise_loc , noise_dir):

115 self.i = i

116 self.N = N

117 self.mu = mu

118 self.steps = steps

119 self.epsilon = epsilon

120 self.config = initial_configuration

121 self.interaction_order = interaction_order

122 self.noise_loc = noise_loc

123 self.noise_dir = noise_dir

124 self.convergence = [0.0 for i in range(int(self.steps /100 _000) +

1)]

125 self.convergence [0] = np.sum([abs(self.config[i]-self.config[i

+1]) for i in range(self.N - 1)])

126 self.r = np.zeros(int(self.steps /100 _000) + 1)
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127 s = np.sum(np.sin(2* self.config*math.pi - math.pi))

128 c = np.sum(np.cos(2* self.config*math.pi - math.pi))

129 self.r[0] = np.sqrt(s**2 + c**2)/self.N

130 self.theta = np.zeros(int(self.steps /100 _000) + 1)

131 self.theta [0] = np.arcsin(s/(self.N*self.r[0]))

132 if (c < 0):

133 if (self.theta [0] >= 0):

134 self.theta [0] = math.pi - self.theta [0]

135 else:

136 self.theta [0] = - math.pi - self.theta [0]

137

138 def run(self):

139 for i in range(self.steps):

140 interaction_point = self.interaction_order[i]

141 old1 = self.config[interaction_point]

142 old2 = self.config[interaction_point + 1]

143 self.config[interaction_point] = (1-self.mu)*old1 + self.mu*

old2

144 self.config[interaction_point + 1] = (1-self.mu)*old2 + self.

mu*old1

145 self.config[self.noise_loc[i]] = (1-self.epsilon)*self.config

[self.noise_loc[i]] + self.epsilon*self.noise_dir[i]

146 if ((i+1) % 100 _000 == 0):

147 self.convergence[int((i+1) /100 _000)] = np.sum([abs(self.

config[j]-self.config[j+1]) for j in range(self.N - 1)])

148 s = np.sum(np.sin(2* self.config*math.pi - math.pi))

149 c = np.sum(np.cos(2* self.config*math.pi - math.pi))

150 self.r[int((i+1) /100 _000)] = np.sqrt(s**2 + c**2)/self.N

151 self.theta[int((i+1) /100 _000)] = np.arcsin(s/(self.N*self

.r[int((i+1) /100 _000)]))

152 if (c < 0):

153 if (self.theta[int((i+1) /100 _000)] >= 0):

154 self.theta[int((i+1) /100 _000)] = math.pi - self.

theta[int((i+1) /100 _000)]

155 else:

156 self.theta[int((i+1) /100 _000)] = - math.pi - self

.theta[int((i+1) /100 _000)]

157 name = str(self.N) + ’_0’ + str(self.mu) + ’_’ + str(self.steps)

+ str(self.epsilon)

158 folder_name = ’udm_n2_version ’+ str(self.i) + ’_’ + name + ’/’

159 os.mkdir(folder_name)

160 np.save(folder_name + ’c_’ + name , self.convergence)

161 np.save(folder_name + ’r_’ + name , self.r)

162 np.save(folder_name + ’theta_ ’ + name , self.theta)

163 np.save(folder_name + ’final_config_ ’ + name , self.config)

The classes for the Compass model without noise, with uniform noise and with bi-
modal noise are given below as ucm, ucm n1 and ucm n2, respectively. The class for the
version of the Compass model with independent bi-modal noise discussed in Section 8.5
is called ucm independent n2.
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1 import numpy as np

2 import os

3 import math

4

5 class ucm_n2:

6 # Uniform compass model with noise

7 # if two_sided , then there are two opinion (0.0 and 1.0) towards

8 # which opinions get disturbed with equal probability.

9 # if one_sided , we only disturb towards 0.0 with amount epsilon

10 def __init__(self , N, mu , steps , epsilon , i, initial_configuration ,

interaction_order , noise_loc , noise_dir):

11 self.i = i

12 self.a = -1.0

13 self.b = 1.0

14 self.N = N

15 self.mu = mu

16 self.steps = steps

17 self.epsilon = epsilon

18 self.config = initial_configuration

19 self.interaction_order = interaction_order

20 self.convergence = np.zeros(int(self.steps /100 _000) + 1)

21 self.convergence [0] = np.sum([abs(self.config[i]-self.config[i

+1]) if(abs(self.config[i]-self.config[i+1]) <1.0) else 2.0-abs(self.

config[i]-self.config[i+1]) for i in range(self.N - 1)])

22 self.noise_loc = noise_loc

23 self.noise_dir = noise_dir

24 self.r = np.zeros(int(self.steps /10 _000) + 1)

25 s = np.sum(np.sin(self.config*math.pi))

26 c = np.sum(np.cos(self.config*math.pi))

27 self.r[0] = np.sqrt(s**2 + c**2)/self.N

28 self.theta = np.zeros(int(self.steps /10 _000) + 1)

29 self.theta [0] = np.arcsin(s/(self.N*self.r[0]))

30 if (c < 0):

31 if (self.theta [0] >= 0):

32 self.theta [0] = math.pi - self.theta [0]

33 else:

34 self.theta [0] = - math.pi - self.theta [0]

35

36 def run(self):

37 for i in range(self.steps):

38 interaction_point = self.interaction_order[i]

39 old1 = self.config[interaction_point]

40 old2 = self.config[interaction_point + 1]

41 if (abs(old1 -old2) == 1.0):

42 if (np.random.default_rng ().integers (0,1) ==0):

43 self.config[interaction_point] = old1 + self.mu * np.

sign(old1)

44 self.config[interaction_point + 1] = old2 + self.mu *

np.sign(old2)

45 if (self.config[interaction_point]>self.b):

46 self.config[interaction_point] = self.config[

interaction_point] - 2.0

47 if (self.config[interaction_point + 1]>self.b):

48 self.config[interaction_point + 1] = self.config[
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interaction_point + 1] - 2.0

49 if (self.config[interaction_point ]<=self.a):

50 self.config[interaction_point] = self.config[

interaction_point] + 2.0

51 if (self.config[interaction_point + 1]<=self.a):

52 self.config[interaction_point + 1] = self.config[

interaction_point + 1] + 2.0

53 else:

54 self.config[interaction_point] = old1 - self.mu * np.

sign(old1)

55 self.config[interaction_point] = old2 - self.mu * np.

sign(old2)

56 else:

57 if (abs(old1 -old2) <1.0):

58 self.config[interaction_point] = old1 + self.mu * (

old2 - old1)

59 self.config[interaction_point + 1] = old2 + self.mu *

(old1 - old2)

60 else:

61 self.config[interaction_point] = old1 + self.mu *

(2.0 - abs(old2 - old1))*np.sign(old1)

62 self.config[interaction_point + 1] = old2 + self.mu *

(2.0 - abs(old1 - old2))*np.sign(old2)

63 if (self.config[interaction_point]>self.b):

64 self.config[interaction_point] = self.config[

interaction_point] - 2.0

65 if (self.config[interaction_point + 1]>self.b):

66 self.config[interaction_point + 1] = self.config[

interaction_point + 1] - 2.0

67 if (self.config[interaction_point ]<=self.a):

68 self.config[interaction_point] = self.config[

interaction_point] + 2.0

69 if (self.config[interaction_point + 1]<=self.a):

70 self.config[interaction_point + 1] = self.config[

interaction_point + 1] + 2.0

71 for j in range(int(self.num_disturbed * i), int(self.

num_disturbed *(i+1))):

72 nl = self.noise_loc[j]

73 nd = self.noise_dir[j]

74 if (nd == 0):

75 if (self.config[nl] == 1.0):

76 if (np.random.default_rng ().integers (0,1) == 0):

77 self.config[nl] = -1.0 + self.epsilon

78 else:

79 self.config[nl] = 1.0 - self.epsilon

80 else:

81 self.config[nl] = (1.0- self.epsilon)*self.config[

nl]

82 else:

83 if (self.config[nl] == 0.0):

84 if (np.random.default_rng ().integers (0,1) == 0):

85 self.config[nl] = self.epsilon

86 else:

87 self.config[nl] = -self.epsilon
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88 else:

89 if (self.config[nl] > 0.0):

90 self.config[nl] = (1-self.epsilon)*self.

config[nl] + self.epsilon

91 else:

92 self.config[nl] = (1-self.epsilon)*self.

config[nl] - self.epsilon

93 if ((i+1) % 100 _000 == 0):

94 self.convergence[int((i+1) /100 _000)] = np.sum([abs(self.

config[j]-self.config[j+1]) if(abs(self.config[j]-self.config[j+1])

<1.0) else 2.0-abs(self.config[j]-self.config[j+1]) for j in range(

self.N - 1)])

95 if ((i+1) % 10_000 == 0):

96 s = np.sum(np.sin(self.config*math.pi))

97 c = np.sum(np.cos(self.config*math.pi))

98 self.r[int((i+1) /10000)] = np.sqrt(s**2 + c**2)/self.N

99 self.theta[int((i+1) /10000)] = np.arcsin(s/(self.N*self.r

[int((i+1) /10000) ]))

100 if (c < 0):

101 if (self.theta[int((i+1) /10000)] >= 0):

102 self.theta[int((i+1) /10000)] = math.pi - self.

theta[int((i+1) /10000)]

103 else:

104 self.theta[int((i+1) /10000)] = - math.pi - self.

theta[int((i+1) /10000)]

105 name = str(self.N) + ’_0’ + str(self.mu) + ’_’ + str(self.steps)

+ ’_’ + str(self.epsilon)

106 folder_name = ’ucm_n2_version ’+ str(self.i) + ’_’ + name + ’/’

107 os.mkdir(folder_name)

108 np.save(folder_name + ’c_’ + name , self.convergence)

109 np.save(folder_name + ’r_’ + name , self.r)

110 np.save(folder_name + ’theta_ ’ + name , self.theta)

111 np.save(folder_name + ’last_configuration_ ’ + name , self.config)

112

113

114 class ucm_independent_n2:

115 # Uniform compass model with noise

116 # there are two opinion (0.0 and 1.0) towards

117 # which opinions get disturbed with equal probability.

118 # times for interactions and noise are independent

119 def __init__(self , N, mu , steps , epsilon , i, initial_configuration ,

120 interaction_order , interaction_time ,

interaction_order_noise ,

121 interaction_time_noise , noise_loc , noise_dir):

122 self.i = i

123 self.a = -1.0

124 self.b = 1.0

125 self.N = N

126 self.mu = mu

127 self.steps = steps

128 self.epsilon = epsilon

129 self.config = initial_configuration

130 self.interaction_order = interaction_order

131 self.interaction_time = interaction_time
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132 self.interaction_order_noise = interaction_order_noise

133 self.interaction_time_noise = interaction_time_noise

134 self.convergence = np.zeros(int(self.steps /50 _000) + 1)

135 self.convergence [0] = np.sum([abs(self.config[i]-self.config[i

+1]) if(abs(self.config[i]-self.config[i+1]) <1.0) else 2.0-abs(self.

config[i]-self.config[i+1]) for i in range(self.N - 1)])

136 self.noise_loc = noise_loc

137 self.noise_dir = noise_dir

138 self.r = np.zeros(int(self.steps /50 _000) + 1)

139 s = np.sum(np.sin(self.config*math.pi))

140 c = np.sum(np.cos(self.config*math.pi))

141 self.r[0] = np.sqrt(s**2 + c**2)/self.N

142 self.theta = np.zeros(int(self.steps /50 _000) + 1)

143 self.theta [0] = np.arcsin(s/(self.N*self.r[0]))

144 if (c < 0):

145 if (self.theta [0] >= 0):

146 self.theta [0] = math.pi - self.theta [0]

147 else:

148 self.theta [0] = - math.pi - self.theta [0]

149

150 def run(self):

151 neighbours = 1

152 noise = 1

153 i = -1

154 while ((neighbours <self.steps) & (noise <self.steps)):

155 i = i + 1

156 if (self.interaction_time[neighbours] <= self.

interaction_time_noise[noise ]):

157 interaction_point = self.interaction_order[neighbours]

158 old1 = self.config[interaction_point]

159 old2 = self.config[interaction_point + 1]

160 if (abs(old1 -old2) == 1.0):

161 if (np.random.default_rng ().integers (0,1) ==0):

162 self.config[interaction_point] = old1 + self.mu *

np.sign(old1)

163 self.config[interaction_point + 1] = old2 + self.

mu * np.sign(old2)

164 if (self.config[interaction_point]>self.b):

165 self.config[interaction_point] = self.config[

interaction_point] - 2.0

166 if (self.config[interaction_point + 1]>self.b):

167 self.config[interaction_point + 1] = self.

config[interaction_point + 1] - 2.0

168 if (self.config[interaction_point ]<=self.a):

169 self.config[interaction_point] = self.config[

interaction_point] + 2.0

170 if (self.config[interaction_point + 1]<=self.a):

171 self.config[interaction_point + 1] = self.

config[interaction_point + 1] + 2.0

172 else:

173 self.config[interaction_point] = old1 - self.mu *

np.sign(old1)

174 self.config[interaction_point] = old2 - self.mu *

np.sign(old2)
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175 else:

176 if (abs(old1 -old2) <1.0):

177 self.config[interaction_point] = old1 + self.mu *

(old2 - old1)

178 self.config[interaction_point + 1] = old2 + self.

mu * (old1 - old2)

179 else:

180 self.config[interaction_point] = old1 + self.mu *

(2.0 - abs(old2 - old1))*np.sign(old1)

181 self.config[interaction_point + 1] = old2 + self.

mu * (2.0 - abs(old1 - old2))*np.sign(old2)

182 if (self.config[interaction_point]>self.b):

183 self.config[interaction_point] = self.config[

interaction_point] - 2.0

184 if (self.config[interaction_point + 1]>self.b):

185 self.config[interaction_point + 1] = self.

config[interaction_point + 1] - 2.0

186 if (self.config[interaction_point ]<=self.a):

187 self.config[interaction_point] = self.config[

interaction_point] + 2.0

188 if (self.config[interaction_point + 1]<=self.a):

189 self.config[interaction_point + 1] = self.

config[interaction_point + 1] + 2.0

190 if ((i+1) % 100 _000 == 0):

191 self.convergence[int((i+1) /100 _000)] = np.sum([abs(

self.config[j]-self.config[j+1]) if(abs(self.config[j]-self.config[j

+1]) <1.0) else 2.0-abs(self.config[j]-self.config[j+1]) for j in range

(self.N - 1)])

192 s = np.sum(np.sin(self.config*math.pi))

193 c = np.sum(np.cos(self.config*math.pi))

194 self.r[int((i+1) /100 _000)] = np.sqrt(s**2 + c**2)/

self.N

195 self.theta[int((i+1) /100 _000)] = np.arcsin(s/(self.N*

self.r[int((i+1) /100 _000)]))

196 if (c < 0):

197 if (self.theta[int((i+1) /100 _000)] >= 0):

198 self.theta[int((i+1) /100 _000)] = math.pi -

self.theta[int((i+1) /100 _000)]

199 else:

200 self.theta[int((i+1) /100 _000)] = - math.pi -

self.theta[int((i+1) /100 _000)]

201 neighbours = neighbours + 1

202 else:

203 nl = self.noise_loc[noise]

204 nd = self.noise_dir[noise]

205 if (nd == 0):

206 if (self.config[nl] == 1.0):

207 if (np.random.default_rng ().integers (0,1) == 0):

208 self.config[nl] = -1.0 + self.epsilon

209 else:

210 self.config[nl] = 1.0 - self.epsilon

211 else:

212 self.config[nl] = (1.0- self.epsilon)*self.config[

nl]
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213 else:

214 if (self.config[nl] == 0.0):

215 if (np.random.default_rng ().integers (0,1) == 0):

216 self.config[nl] = self.epsilon

217 else:

218 self.config[nl] = -self.epsilon

219 else:

220 if (self.config[nl] > 0.0):

221 self.config[nl] = (1-self.epsilon)*self.

config[nl] + self.epsilon

222 else:

223 self.config[nl] = (1-self.epsilon)*self.

config[nl] - self.epsilon

224 if ((i+1) % 100 _000 == 0):

225 self.convergence[int((i+1) /100 _000)] = np.sum([abs(

self.config[j]-self.config[j+1]) if(abs(self.config[j]-self.config[j

+1]) <1.0) else 2.0-abs(self.config[j]-self.config[j+1]) for j in range

(self.N - 1)])

226 s = np.sum(np.sin(self.config*math.pi))

227 c = np.sum(np.cos(self.config*math.pi))

228 self.r[int((i+1) /100 _000)] = np.sqrt(s**2 + c**2)/

self.N

229 self.theta[int((i+1) /100 _000)] = np.arcsin(s/(self.N*

self.r[int((i+1) /100 _000)]))

230 if (c < 0):

231 if (self.theta[int((i+1) /100 _000)] >= 0):

232 self.theta[int((i+1) /100 _000)] = math.pi -

self.theta[int((i+1) /100 _000)]

233 else:

234 self.theta[int((i+1) /100 _000)] = - math.pi -

self.theta[int((i+1) /100 _000)]

235 noise = noise + 1

236 name = str(self.N) + ’_0’ + str(self.mu) + ’_’ + str(self.steps)

+ ’_’ + str(self.epsilon)

237 folder_name = ’ucm_independent_n2_version ’+ str(self.i) + ’_’ +

name + ’/’

238 os.mkdir(folder_name)

239 np.save(folder_name + ’c_’ + name , self.convergence)

240 np.save(folder_name + ’r_’ + name , self.r)

241 np.save(folder_name + ’theta_ ’ + name , self.theta)

242 np.save(folder_name + ’last_configuration_ ’ + name , self.config)

243

244 class ucm_n1:

245 def __init__(self , N, mu , steps , epsilon , i, initial_configuration ,

246 interaction_order , noise_loc):

247 self.i = i

248 self.N = N

249 self.mu = mu

250 self.steps = steps

251 self.epsilon = epsilon

252 self.config = initial_configuration

253 self.interaction_order = interaction_order

254 self.convergence = np.zeros(int(self.steps /100 _000) + 1)

255 self.convergence [0] = np.sum([abs(self.config[i]-self.config[i
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+1]) if(abs(self.config[i]-self.config[i+1]) <1.0) else 2.0-abs(self.

config[i]-self.config[i+1]) for i in range(self.N - 1)])

256 self.noise = np.random.default_rng ().uniform(-epsilon , epsilon ,

self.steps)

257 self.noise_loc = noise_loc

258 self.r = np.zeros(int(self.steps /100 _000) + 1)

259 s = np.sum(np.sin(self.config*math.pi))

260 c = np.sum(np.cos(self.config*math.pi))

261 self.r[0] = np.sqrt(s**2 + c**2)/self.N

262 self.theta = np.zeros(int(self.steps /100 _000) + 1)

263 self.theta [0] = np.arcsin(s/(self.N*self.r[0]))

264 if (c < 0):

265 if (self.theta [0] >= 0):

266 self.theta [0] = math.pi - self.theta [0]

267 else:

268 self.theta [0] = - math.pi - self.theta [0]

269

270 def run(self):

271 for i in range(self.steps):

272 interaction_point = self.interaction_order[i]

273 old1 = self.config[interaction_point]

274 old2 = self.config[interaction_point + 1]

275 if (abs(old1 -old2) == 1.0):

276 if (np.random.default_rng ().integers (0,1) ==0):

277 self.config[interaction_point] = old1 + self.mu * np.

sign(old1)

278 self.config[interaction_point + 1] = old2 + self.mu *

np.sign(old2)

279 if (self.config[interaction_point ]>1.0):

280 self.config[interaction_point] = self.config[

interaction_point] - 2.0

281 if (self.config[interaction_point + 1] >1.0):

282 self.config[interaction_point + 1] = self.config[

interaction_point + 1] - 2.0

283 if (self.config[interaction_point ]<=-1.0):

284 self.config[interaction_point] = self.config[

interaction_point] + 2.0

285 if (self.config[interaction_point + 1] <=-1.0):

286 self.config[interaction_point + 1] = self.config[

interaction_point + 1] + 2.0

287 else:

288 self.config[interaction_point] = old1 - self.mu * np.

sign(old1)

289 self.config[interaction_point] = old2 - self.mu * np.

sign(old2)

290 else:

291 if (abs(old1 -old2) <1.0):

292 self.config[interaction_point] = old1 + self.mu * (

old2 - old1)

293 self.config[interaction_point + 1] = old2 + self.mu *

(old1 - old2)

294 else:

295 self.config[interaction_point] = old1 + self.mu *

(2.0 - abs(old2 - old1))*np.sign(old1)
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296 self.config[interaction_point + 1] = old2 + self.mu *

(2.0 - abs(old1 - old2))*np.sign(old2)

297 if (self.config[interaction_point ]>1.0):

298 self.config[interaction_point] = self.config[

interaction_point] - 2.0

299 if (self.config[interaction_point + 1] >1.0):

300 self.config[interaction_point + 1] = self.config[

interaction_point + 1] - 2.0

301 if (self.config[interaction_point ]<=-1.0):

302 self.config[interaction_point] = self.config[

interaction_point] + 2.0

303 if (self.config[interaction_point + 1] <=-1.0):

304 self.config[interaction_point + 1] = self.config[

interaction_point + 1] + 2.0

305 self.config[self.noise_loc[i]] = self.config[self.noise_loc[i

]] + self.noise[i]

306 if (self.config[self.noise_loc[i]] >1.0):

307 self.config[self.noise_loc[i]] = self.config[self.

noise_loc[i]] - 2.0

308 if (self.config[self.noise_loc[i]] <=-1.0):

309 self.config[self.noise_loc[i]] = self.config[self.

noise_loc[i]] + 2.0

310 if ((i+1) % 100 _000 == 0):

311 self.convergence[int((i+1) /100 _000)] = np.sum([abs(self.

config[j]-self.config[j+1]) if(abs(self.config[j]-self.config[j+1])

<1.0) else 2.0-abs(self.config[j]-self.config[j+1]) for j in range(

self.N - 1)])

312 s = np.sum(np.sin(self.config*math.pi))

313 c = np.sum(np.cos(self.config*math.pi))

314 self.r[int((i+1) /100 _000)] = np.sqrt(s**2 + c**2)/self.N

315 self.theta[int((i+1) /100 _000)] = np.arcsin(s/(self.N*self

.r[int((i+1) /100 _000)]))

316 if (c < 0):

317 if (self.theta[int((i+1) /100 _000)] >= 0):

318 self.theta[int((i+1) /100 _000)] = math.pi - self.

theta[int((i+1) /100 _000)]

319 else:

320 self.theta[int((i+1) /100 _000)] = - math.pi - self

.theta[int((i+1) /100 _000)]

321 name = str(self.N) + ’_0’ + str(self.mu) + ’_’ + str(self.steps)

+ str(self.epsilon)

322 folder_name = ’ucm_n1_version ’+ str(self.i) + ’_’ + name + ’/’

323 os.mkdir(folder_name)

324 np.save(folder_name + ’c_’ + name , self.convergence)

325 np.save(folder_name + ’r_’ + name , self.r)

326 np.save(folder_name + ’theta_ ’ + name , self.theta)

327 np.save(folder_name + ’final_config_ ’ + name , self.config)

328

329 class ucm:

330 def __init__(self , N, mu , steps , i, initial_configuration ,

interaction_order):

331 self.i = i

332 self.N = N

333 self.mu = mu
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334 self.steps = steps

335 self.config = initial_configuration

336 self.interaction_order = interaction_order

337 self.convergence = np.zeros(int(self.steps /100 _000) + 1)

338 self.convergence [0] = np.sum([abs(self.config[i]-self.config[i

+1]) if(abs(self.config[i]-self.config[i+1]) <1.0) else 2.0-abs(self.

config[i]-self.config[i+1]) for i in range(self.N - 1)])

339 self.r = np.zeros(int(self.steps /100 _000) + 1)

340 s = np.sum(np.sin(self.config*math.pi))

341 c = np.sum(np.cos(self.config*math.pi))

342 self.r[0] = np.sqrt(s**2 + c**2)/self.N

343 self.theta = np.zeros(int(self.steps /100 _000) + 1)

344 self.theta [0] = np.arcsin(s/(self.N*self.r[0]))

345 if (c < 0):

346 if (self.theta [0] >= 0):

347 self.theta [0] = math.pi - self.theta [0]

348 else:

349 self.theta [0] = - math.pi - self.theta [0]

350

351 def run(self):

352 for i in range(self.steps):

353 interaction_point = self.interaction_order[i]

354 old1 = self.config[interaction_point]

355 old2 = self.config[interaction_point + 1]

356 if (abs(old1 -old2) == 1.0):

357 if (np.random.default_rng ().integers (0,1) ==0):

358 self.config[interaction_point] = old1 + self.mu * np.

sign(old1)

359 self.config[interaction_point + 1] = old2 + self.mu *

np.sign(old2)

360 if (self.config[interaction_point ]>1.0):

361 self.config[interaction_point] = self.config[

interaction_point] - 2.0

362 if (self.config[interaction_point + 1] >1.0):

363 self.config[interaction_point + 1] = self.config[

interaction_point + 1] - 2.0

364 if (self.config[interaction_point ]<=-1.0):

365 self.config[interaction_point] = self.config[

interaction_point] + 2.0

366 if (self.config[interaction_point + 1] <=-1.0):

367 self.config[interaction_point + 1] = self.config[

interaction_point + 1] + 2.0

368 else:

369 self.config[interaction_point] = old1 - self.mu * np.

sign(old1)

370 self.config[interaction_point] = old2 - self.mu * np.

sign(old2)

371 else:

372 if (abs(old1 -old2) <1.0):

373 self.config[interaction_point] = old1 + self.mu * (

old2 - old1)

374 self.config[interaction_point + 1] = old2 + self.mu *

(old1 - old2)

375 else:
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376 self.config[interaction_point] = old1 + self.mu *

(2.0 - abs(old2 - old1))*np.sign(old1)

377 self.config[interaction_point + 1] = old2 + self.mu *

(2.0 - abs(old1 - old2))*np.sign(old2)

378 if (self.config[interaction_point ]>1.0):

379 self.config[interaction_point] = self.config[

interaction_point] - 2.0

380 if (self.config[interaction_point + 1] >1.0):

381 self.config[interaction_point + 1] = self.config[

interaction_point + 1] - 2.0

382 if (self.config[interaction_point ]<=-1.0):

383 self.config[interaction_point] = self.config[

interaction_point] + 2.0

384 if (self.config[interaction_point + 1] <=-1.0):

385 self.config[interaction_point + 1] = self.config[

interaction_point + 1] + 2.0

386 if ((i+1) % 100 _000 == 0):

387 self.convergence[int((i+1) /100 _000)] = np.sum([abs(self.

config[j]-self.config[j+1]) if(abs(self.config[j]-self.config[j+1])

<1.0) else 2.0-abs(self.config[j]-self.config[j+1]) for j in range(

self.N - 1)])

388 s = np.sum(np.sin(self.config*math.pi))

389 c = np.sum(np.cos(self.config*math.pi))

390 self.r[int((i+1) /100 _000)] = np.sqrt(s**2 + c**2)/self.N

391 self.theta[int((i+1) /100 _000)] = np.arcsin(s/(self.N*self

.r[int((i+1) /100 _000)]))

392 if (c < 0):

393 if (self.theta[int((i+1) /100 _000)] >= 0):

394 self.theta[int((i+1) /100 _000)] = math.pi - self.

theta[int((i+1) /100 _000)]

395 else:

396 self.theta[int((i+1) /100 _000)] = - math.pi - self

.theta[int((i+1) /100 _000)]

397 name = str(self.N) + ’_0’ + str(self.mu) + ’_’ + str(self.steps)

398 folder_name = ’ucm_n1_version ’+ str(self.i) + ’_’ + name + ’/’

399 os.mkdir(folder_name)

400 np.save(folder_name + ’c_’ + name , self.convergence)

401 np.save(folder_name + ’r_’ + name , self.r)

402 np.save(folder_name + ’theta_ ’ + name , self.theta)

403 np.save(folder_name + ’final_config_ ’ + name , self.config)

The interaction times and places were generated as shown in the following code.

1 import numpy as np

2

3

4 N = 200

5 mu = 0.5

6 steps = 1e8

7 i = 0

8

9 exp = np.random.default_rng ().exponential (1.0, int(steps)+N)
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10 folder_name = ’interactions/version ’ + str(i)

11 poisson_clocks = exp [0:N]

12 interaction_order = np.zeros(int(steps), dtype=np.int_)

13 interaction_time = np.zeros(int(steps)+1)

14 argmin = 0

15 for i in range(int(steps)):

16 argmin = np.argmin(poisson_clocks)

17 interaction_order[i] = argmin

18 interaction_time[i+1] = poisson_clocks[argmin]

19 poisson_clocks[argmin] = exp[N+i] + poisson_clocks[argmin]

20 np.save(folder_name + ’/interaction_time ’, interaction_time)

21 np.save(folder_name + ’/interaction_order ’, interaction_order)

The noise locations and, in the case of bi-modal noise, noise direction, were generated
like in the following code.

1 import numpy as np

2

3 i = 0

4 noise_loc = np.random.default_rng ().integers (0 ,200 ,100 _000_000)

5 noise_dir = np.random.default_rng ().integers (0,2, 100 _000_000)

6 np.save(’interactions/v’ + str(i) + ’/noise_loc ’, noise_loc)

7 np.save(’interactions/v’ + str(i) + ’/noise_dir ’, noise_dir)
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Egúıluz. Is the voter model a model for voters? Phys. Rev. Lett., 112:158701,
Apr 2014.

[FV17] S. Friedli and Y. Velenik. Statistical Mechanics of Lattice Systems: A Con-
crete Mathematical Introduction. Cambridge University Press, 2017.

[Gal22] J.-F. Le Gall. Brownian Motion, pages 349–393. Springer International
Publishing, Cham, 2022.

[GHH20] N. Gantert, M. Heydenreich, and T. Hirscher. Strictly weak consensus in
the uniform compass model on Z. Bernoulli, 26(2):1269 – 1293, 2020.

[GvR16] G.L.M. Groenewegen and A.C.M. van Rooij. Spaces of Continuous Func-
tions. Atlantis Studies in Mathematics. Atlantis Press Paris, 1 edition, 2016.
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