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Abstract

Burgeoning economic crises, growing political instabilities, and the recent pandemic have
caused mental health deterioration in many parts of the world. The most prevalent mental
health affliction is anxiety disorder and it has been affecting a growing number of adults
and children alike. In this thesis, we investigated the feasibility and approaches of applying
machine learning for the detection of anxiety symptoms in 9-year-old children. These
symptoms might be expressed more saliently through certain modes of communications
and in specific interactional contexts. Hence, we experimented with models that were
trained on unimodal and multimodal features extracted from video recordings of conflictual
and cooperative interactions between nine-year-olds and their parents in a laboratory
setting. Results suggest that anxiety symptoms manifest most noticeably during tense,
conflictual interactions and are conveyed through the hand movements, facial expressions—
particularly the mouth area—and word choice. Moreover, training with multimodal
features demonstrated better performance compared to unimodal approaches. Although
the resulting performance of the models was moderate, this study establishes the feasibility
of detecting symptoms of anxiety using machine learning applied to multimodal dataset.

1



Table of Contents

1 Introduction 4
1.1 Relevance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Machine learning to detect anxiety symptoms . . . . . . . . . . . . . . . 5
1.3 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Ethical and privacy concerns . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Related work 10
2.1 Anxiety emotion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Anxiety in children . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Anxiety symptoms detection . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Visual modality . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.2 Acoustic modality . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.3 Linguistic modality . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Clinical application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4 Previous works on the YOUth dataset . . . . . . . . . . . . . . . . . . . 20

3 Methodology 21
3.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Feature extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.1 Acoustic modality . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.2 Linguistic modality . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.3 Visual modality . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.1 Data preparation . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3.2 Model architectures . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3.3 Model training . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3.4 Performance metrics . . . . . . . . . . . . . . . . . . . . . . . . 43

4 Results 46
4.1 Comparative analysis between modalities . . . . . . . . . . . . . . . . . 46
4.2 Comparative analysis between scenarios . . . . . . . . . . . . . . . . . . 49
4.3 Important predictors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3.1 Acoustic features . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.3.2 Linguistic features . . . . . . . . . . . . . . . . . . . . . . . . . 53

2



4.3.3 Facial expressions features . . . . . . . . . . . . . . . . . . . . . 56
4.3.4 Affective body pose features . . . . . . . . . . . . . . . . . . . . 58
4.3.5 Combined modality . . . . . . . . . . . . . . . . . . . . . . . . . 60

5 Discussion 63
5.1 Better context through multimodality . . . . . . . . . . . . . . . . . . . . 63
5.2 Interaction scenarios and anxiety expressions . . . . . . . . . . . . . . . 63
5.3 Advantage of the GBC approach . . . . . . . . . . . . . . . . . . . . . . 64

5.3.1 Curse of dimensionality, kernel methods, and tree-based approaches 65
5.3.2 Hyperparameter optimization . . . . . . . . . . . . . . . . . . . . 65
5.3.3 Early vs. late fusion . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.4 Suitability of the MCC metric . . . . . . . . . . . . . . . . . . . . . . . . 66
5.5 Answers to the research questions . . . . . . . . . . . . . . . . . . . . . 66

6 Limitations &future work 69

7 Conclusion &final remarks 72

8 Acknowledgements 73

9 Appendix 74
9.1 Model performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
9.2 Confusion matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
9.3 Contingency tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
9.4 Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3



1. Introduction

1.1 Relevance
Anxiety is a prevalent emotion experienced by people of all ages and is characterized by a
sense of restlessness and worry in anticipation of a forthcoming event. There are at least
two factors affecting the intensity of the emotion: the significance of the event and the
individual’s preparedness to face its worst possible outcome (Hinds et al., 2010). Just as
any other emotions, anxiety evolves as an adaptation that aids the individual to survive and
thrive in the environment. However, when dysregulated, it transforms into a debilitating
force that interferes with the individual’s well-being and becomes a disorder (Marks and
Nesse, 1994).

In 2019, it was estimated that 301 million people in the world suffer from anxiety disorder.
This estimate increased to 322 million or 4% of global population by 2023, making
anxiety disorder the most prevalent mental issue.1 Unfortunately, despite being highly
treatable, only one in four sufferer received treatment due to factors such as lack of
awareness, inadequate investment in mental health services, low number of trained health
care providers, and social stigma. Anxiety disorder is not only detrimental to health and–in
severe cases–potentially life-threatening, but also inflicts sizeable economic loss. One
estimate suggests that 2.08% of global healthcare costs and 0.22% of global GDP is spent
on treating the disease, whereas the indirect costs, such as loss of productivity and stunted
education, corresponded to 0.23% of GDP (Konnopka and König, 2020).

Mental health issues in general, and anxiety disorder in particular, also affect children
and adolescent. While encountering fear and learning to overcome it are normal parts of
childhood, some children may fail to outgrow these emotions such that their education,
socialization, and family life are disrupted. Some symptoms of anxiety disorder in children
includes being terrified when away from parents (separation anxiety), extremely fearful
of certain objects or animals (phobias), refusing to go to school and crowded places
(social anxiety), having episodes of sudden and intense fear accompanied with dizziness or
shaking (panic disorder), or unable to speak in certain situations (selective mutism).2

Children mental health issue is becoming more widespread and has been on the rise even
prior to the COVID-19 pandemic. It was estimated that between 2016 and 2019, the number

1https://www.who.int/news-room/fact-sheets/detail/anxiety-disorders
2https://www.cdc.gov/childrensmentalhealth/depression.html
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of children and adolescents in the United States who suffered from anxiety and depression
rose by 27% and 24% respectively. By 2020, 5.6 million kids (9.2%) had been affected by
anxiety problems and 2.4 million (4%) had been affected by depression (Lebrun-Harris
et al., 2022). Although the statistics may vary between countries, prioritizing children’s
mental health is becoming an urgent global concern.

Current methods to assess mental disorders depend almost entirely on clinical interviews
and self-reports. These approaches are not only prone to subjective biases, but also hinge
on the sufferer’s awareness of psychological disorders, articulation capacity, and sincerity
in reporting. Already this presents a barrier to segments of sufferers such as youth, less
educated population, and those with diminished mental and cognitive capacity. Moreover,
while these measures have been proven useful, they lack objective and efficient ways
of incorporating nonverbal behavioral observations that can be strong indicators of the
presence of mental disorders. This presents a missed opportunity that will be explored
further in this study.

Recently, automated assessment of symptoms of mental disorders from multimodal behav-
ioral cues has become an important topic in the field of affective computing. Several studies
have focused on automated assessment of symptoms of depression, obsessive-compulsive
disorder and anxiety disorders from verbal and nonverbal behavior of adults. Most studies
have focused on assessment during clinical interviews, interaction with a virtual agent, and
reading aloud. Broadly speaking, there are two types of detection methods: intrusive and
non-intrusive. Intrusive detections rely on biosignals such as heartbeat and blood volume.
As such, the subject has to be intruded with apparatus that is attached on or in the body. In
contrast, non-intrusive methods rely on observations made from a distance with little to
no physical contact with the subject. It utilizes features of outward expressions conveyed
through multiple modes of communications such as visual (facial and head movements),
auditory (vocal characteristics), and linguistic (words statistics) modalities. In a unimodal
approach, automated assessment is produced using features from a single modality, such as
auditory features or linguistic features. In a multimodal approach, features from multiple
modalities are combined to make the predictions.

1.2 Machine learning to detect anxiety symptoms
In this thesis, we developed a machine learning approach to automatically assess symptoms
of anxiety in 9-year-old children, as defined by items of Child Behavior Checklist (CBCL;
Verhulst et al. (1996)). Our models were trained using verbal and nonverbal behaviors
that were captured in video recordings of the children’s interactions with their parents.
These interaction sessions were part of the YOUth Cohort Study (Onland-Moret et al.,
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2020), a large scale longitudinal cohort study following nearly 4,000 Dutch children in
their development from pregnancy until early adulthood. This study utilized the interaction
videos that recorded their behaviors in two settings: planning a vacation and arguing.

We employed three types of modeling approaches (Support Vector Machine, Gradient
Boosting Classifier, and Light Gradient Boosting Machine) and applied grid-search cross-
validation for hyperparameter tuning. To better approximate the capability of the models
to generalize to unseen data, we ran stratified k-fold cross-validation and averaged the
model’s performance across different folds. We analyzed the performances of models that
were trained on unimodal features and compared them with models trained on multimodal
features. We also analyzed the performance difference between models trained on features
from conflictual interaction videos and from cooperative videos. Furthermore, we leveraged
Shapley Additive Explanations (SHAP) to analyze the relative importance and impact
of features in a model’s predictions. By doing so, we were able to suggest the outward
manifestations of anxiety symptoms based on the features most impactful to our models.

1.3 Research questions
The aim of this study is to investigate the feasibility and effectiveness of machine-learning-
based methodologies of automated anxiety symptoms detection on children. More specifi-
cally, we aim to answer the following questions:

Main question: To what extent can anxiety symptoms be detected in 9 year-old children

using unimodal and multimodal approaches?

The above question is very broad and contains many supporting sub-aspects that are
formulated below.

Sub-question 1: To what extent can unimodal methods detect symptoms of anxiety com-

pared to multimodal approaches?

The outward behavior of our participants was observed through multiple modalities. In
this sub-question, we compared the predictive power of features extracted from individual
and combined modalities. By answering this question, we were able to suggest whether
anxiety symptoms are more salient in some modalities than others, and whether a holistic
observation through combined modalities is more beneficial.

Sub-question 2: How do videos recorded during a conflicting and a cooperative task

compare to detect symptoms of anxiety?
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The situation in which a person finds him/herself may have a strong influence on their
expressiveness. Likewise, outward symptoms of anxiety may surface more quickly/promi-
nently in certain situations more than others. YOUth Cohort Study presented two con-
trasting themes of interaction between the child and parent. One was peaceful, almost
frictionless, and likely delightful for the children (i.e., vacation planning), while the other
was tense and perhaps intimidating (i.e., arguing). By observing how the children behaved
in these opposite atmospheres, we investigated whether different types of interaction
scenarios elicit different levels of expressiveness of anxiety. To do this, we performed ex-
periments using data from individual scenarios, and both, and compared their performances
to detect anxiety symptoms.

Sub-question 3: What are the important verbal and non-verbal indicators of anxiety

symptoms?

Following sub-question 1, we dived deeper into the models’ prediction mechanism to
discover the features that most strongly influenced the outcome. To do this, we applied
SHAP and analyzed the pattern of influence each feature had on the models’ predictions
of the test sets. Surely, non-linearity and feature interactions affected how a particular
behavior would be weighed differently from one participant to another. However, by
observing the general patterns, we were able to identify specific actions of the participants
that were presumed as manifestations of anxiety symptoms.

Note that this study is not aimed at discovering the best-suited model architecture for the
problem domain. While hyperparameter tuning was involved, the independent variables
were mainly the feature sets and the type of interactions displayed in the videos. We
implemented a commonly used model architecture that have been proven effective in
previous studies, as explained in Section 2.2

1.4 Contribution
Current anxiety diagnostic methods rely mostly on the reported level of subjective distress
and suffering to distinguish normal anxiety from pathological anxiety (Knepley et al.,
2019; Read et al., 2015). This approach can introduce bias into diagnoses and makes
early detection less accessible to those unfamiliar with psychological disorders or less
capable to articulate their emotions, such as young children, less informed populations, and
individuals with diminished mental or cognitive capacities. This thesis aims to demonstrate
the feasibility of applying technological measurement tools in psychiatry. In turn, it may
encourage the adoption of technology, not as a replacement for human experts but as a
preliminary screening aid or as a supplementary second opinion, serving the overarching
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purpose of making mental health care more accessible.

In the field of Psychology, this study contributes by utilizing physical expressions as
anxiety indicators, thus furthering the understanding of the correlation between mental
disorders and their outward expressions. This thesis also contributes to the field of Artificial
Intelligence by investigating how different modalities and their combinations affect the
performance of various models, as well as exploring ways to optimize them. We also
showcased multiple pre-trained models by leveraging them to process raw videos and
extract features, which were then used by other models to learn the patterns of anxiety
symptoms.

Several studies have attempted to detect emotional distress using physical expressions
captured through a single modality. For instance, Han et al. (2020) and Baird et al. (2020)
used audio features, while Giannakakis et al. (2017), Holmes et al. (2006), Pearlstein
et al. (2019), Metaxas et al. (2004), and Pediaditis et al. (2015) focused on visual features.
There are also studies that combined multiple modalities, such as Lin et al. (2023) which
integrated audio and visual features (body poses), and Hinduja et al. (2024) which utilized
audio, visual (facial expressions), and linguistic features. However, to my knowledge,
this is the first study that extracts and combines features from facial expressions, body
language, verbal content, and voice characteristics, while also considering how the context
of the interaction atmosphere (i.e., conflicting vs. cooperative) affects the manifestation of
anxiety symptoms.

1.5 Ethical and privacy concerns
Since we worked with human data containing unaltered voices and images of children and
parents, the security and protection of the participants’ privacy is of utmost priority. At the
time of this writing, the European Union (EU) has released the final draft3 of a law that
will govern the deployment and usage of artificial intelligence technology (AI) across EU,
aptly named The EU AI Act. The purpose of the act is to ensure that AI systems are safe,
transparent, traceable, non-discriminatory and environmentally friendly.4 Title II Article 5
point 1-dc of the act in particular is relevant for this work as it regulates the us of emotion
recognition systems5. The precise wording of the law states:

The following artificial intelligence practices shall be prohibited: ... (dc) the

placing on the market, putting into service for this specific purpose, or use
3https://data.consilium.europa.eu/doc/document/ST-5662-2024-INIT/en/pdf
4https://www.europarl.europa.eu/topics/en/article/20230601STO93804/eu-ai-act-first-regulation-on-

artificial-intelligence
5https://artificialintelligenceact.eu/high-level-summary/
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of AI systems to infer emotions of a natural person in the areas of workplace

and education institutions except in cases where the use of the AI system is

intended to be put in place or into the market for medical or safety reasons;6

This study protected the privacy of the participants in a number of ways. First, we did
not recruit the participants and never had any contact with any of them. Their identities
were unknowable to any of the authors and supervisors of this thesis. Second, all of
the recordings were stored in a protected server that prevented any unauthorized party,
ourselves included, from exporting the data. Our access privilege was strictly for data
processing and modelling experimentation for the purpose of this thesis. We did not work
with samples from the original dataset on our local machines; instead, we worked with
dummy data obtained from various other sources. Third, we did not do this study in a
joint manner with any external organizations or persons outside of the team of authors and
supervisors, thus eliminating the risk of unwarranted access from third-parties. Fourth, this
work was done for the purpose of studying the feasibility of automated anxiety symptoms
detection, and not intended to be deployed in any institutions or workplaces, let alone for
commercial purpose. Moreover, Utrecht University had ensured the ethical and privacy
aspect of this study through its master’s thesis screening.7

6https://artificialintelligenceact.eu/article/5/
7https://www.uu.nl/en/research/institute-of-information-and-computing-sciences/ethics-and-

privacy/guidance-for-research-master-thesis-students
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2. Related work

This chapter discusses the literature and studies relevant to this work. It explores the
anxiety emotion from psychological perspective, describes a number of works that applies
artificial intelligence to detect the symptoms of anxiety disorder, and shows several studies
that had been conducted on the YOUth dataset.

2.1 Anxiety emotion
Over the course of its lifetime, an organism constantly navigates through an environment
that is continuously undergoing gradual or drastic shifts. This dynamic exposes the
organism to potential threats that may lurk in the unfamiliar and unknown parts of the
environment. The emotion of anxiety serves to alert the organism to the level of risk
and uncertainties in its surroundings, which in turn prepares it to respond appropriately
in anticipation of the impending danger (Marks and Nesse, 1994; Bateson et al., 2011).
Anxiety produced by the brain’s security motivation system is an enduring motivational
state that urges the organism to perform threat-reducing actions (Woody and Szechtman,
2005; Woody et al., 2005; Szechtman and Woody, 2004). Experiments have shown that
concrete and tangible action is highly effective in reducing the activation to baseline,
while post-contact reappraisal has negligible effect. In other words, the anxiety signal has
little correlation to whether the threat is real or sham; what is relevant is the organism’s
readiness to face the threat if it were to occur (Hinds et al., 2010). The vast evolutionary
timespan shaping the anxiety mechanism has caused humans to be more anxious to largely
archaic threats, like snakes (~138 thousand deaths per year), than to modern hazards,
like automobiles (~1.19 million deaths per year).1 That said, humans have not failed
to extrapolate the mechanism to detect threats to relationships, property, social status,
reputation, capability, and anything else that supports our thriving and well-being in the
modern society.

The methodologies used in the literature that are presented here have shown that anxiety-
exhibiting behaviors can be induced in laboratory settings and be detected through small
time windows. However, when the same behaviors is displayed over a longer period of
time and in non-anxiety-inducing situations, it may be categorized as a disorder. Like other
disorders, anxiety disorders are failure of regulation resulting in excessive or deficient
responses (Marks and Nesse, 1994). Generalized anxiety disorder (GAD) is among the

1www.who.int/news-room/fact-sheets/detail/snakebite-envenoming and www.who.int/news-room/fact-
sheets/detail/road-traffic-injuries
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most common disorders, affecting 6.8 million adults or 3.1% of the U.S. population.2

It is characterized by excessive anxiety of at least six months’ duration, occurring most
days, hard to control, not focused on a specific situation or objects, and not triggered
by recent stressful events. GAD is comorbid with other psychopathological disorders in
majority of cases. Other disorders include: depressive disorder, bipolar disorder, mood
disorder, separation anxiety, panic disorder, agoraphobia, social phobia, simple phobias,
obsessive-compulsive disorder (OCD), attention deficit/hyperactivity disorder, and bipolar
disorder (Masi et al., 2004).

2.1.1 Anxiety in children
Although there are developmental periods where increased anxiety is normative (e.g.,
separation anxiety at 9 months - 18 months, fear of storms in toddlerhood), the excessive
and overwhelming presence of the emotion can morph into disorder that affects people
even at a young age. Unfortunately, data on the prevalence of this disease is hard to
come by due to various factors (e.g., under-reported, undetected, and variations between
regions and cultures). Estimates of the prevalence rates of anxiety disorder among young
children vary from 9% - 10% (Egger and Angold, 2006) and up to 22% (Paulus et al.,
2015). Physical complaints are frequent and early signs of anxiety, both in children and in
adolescents. Children with somatic symptoms are more fearful of novelty, more prone to
separation anxiety disorder (SAD), and more likely to miss school or refuse to go to school
(Bernstein et al., 1997). Although children might be less verbally coherent than adults,
they might exhibit similar but less articulated symptoms such as alteration in tone and
volume of voice, increased use of filler sounds, reduced word counts, increased negative
words, Laukka et al. (2008) or broader change in body language such as crying, tantrums,
freezing, clinging, repeated frightening dreams, blushing, muscle tension, or trembling
(Rockhill et al., 2010). Preschool children with an anxiety disorder often have comorbid
depression, attention deficit-hyperactivity disorder, oppositional defiant disorder (ODD),
or conduct disorder (Rockhill et al., 2010). Moreover, once a child is diagnosed with
an anxiety disorder, that child is at increased future risk for the same disorder and for
additional anxiety and depressive disorders. In turn, it may jeopardize their education and
relationship, leading to less social acceptability and support, in the long term may lead to
criminality and societal disharmony.

Separation anxiety disorder (SAD) is one of the most common childhood anxiety disorders.
SAD involves significant distress when the child is unexpectantly separated from home or
a close attachment figure (Vaughan et al., 2017). Separation anxiety is developmentally
normal for infants and toddlers but becomes a disorder when it continues past toddlerhood.
Some risk factors from parents: parents with panic disorder or other anxiety disorders,

2adaa.org/understanding-anxiety/facts-statistics
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maternal smoking, alcohol consumption, low birth weight. Risk factors from life cir-
cumstances: divorce, military leaves such as parental deployments during war, foster
care, adoption, incarceration, parental death, and relocation due to occupation. Children
whose parents stayed with them during the onset of sleep, such as co-sleeping, were at
an increased risk of developing anxiety or depressive symptoms. Some consequences:
social withdrawal, apathy, sadness, or difficulty concentrating on work or play, which
in turn leads to academic social difficulties. SAD also precedes other disorders, such as
panic disorder with agoraphobia, social phobias, obsessive–compulsive disorder, bipolar
disorder, pain disorder, depressive disorders, and alcohol dependence. SAD may also
strain the relationship with other caregivers, leading to resentment and low self-efficacy
among caregivers and family members. Children with SAD often present with comorbid
conditions such as depression and attention deficit hyperactivity disorder, and thus it is
important to consider these comorbid disorders when screening for and diagnosing SAD.

2.2 Anxiety symptoms detection
Studies have shown that stress and anxiety have physical and behavioral manifestations.
Marks and Nesse (1994) identify at least four ways in which anxiety prepares an organism
to deal with threat. First, it urges flight/escape or preflight/avoidance that distances the
individual from the threat. Sweating prevents the body from overheating and makes the skin
slippery, preparing the organism for evasion. Vomiting, disgust, diarrhea, coughing, and
sneezing are some of the ways the organism creates physical distance from the pathogen.
Second, it empowers the organism to do aggressive defense by neutralizing the source
of threat just as the immune system attacks the bacteria. Hyperventilation raises oxygen
intake and carbon dioxide removal, increasing energy production and preparing the body
to exert high amount of power. Third, it ceases the organism’s movement (freeze) which
may conceal it, prevent the predator’s attack reflex, prevent detrimental moves (e.g., fear of
height), and aid the location and assessment of the threat. Fourth, it inhibits the organisms
impulses and induce submission/appeasement which may be beneficial when the threat
comes from one’s own group.

In the more severe cases, stress and anxiety can negatively affect our physical health. The
symptoms of illnesses resulting from anxiety includes headache, hypertension, muscular
pain especially in the neck and lower back, and gastrointestinal problems such as gastritis
and irritable bowel or colic (Giannakakis et al., 2017). Anxiety is often comorbid with
other mental disorders such as depression and can be fatal when it leads to social isolation
and suicidal thoughts (Gorman, 1996).

Given the physical manifestations, it is feasible to objectively detect anxiety from the
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outward symptoms using external detectors, rather than relying solely on self-reports of
the sufferers. Although studies aimed specifically at detecting anxiety are rare, there are
substantial number of relevant works aimed at detecting other mental disorders like OCD
and depression from multimodal behavioral indicators. The following sections will discuss
various methods to automate detection of symptoms of mental disorders found in the
literature, as well as the challenges in applying them in clinical practices.

2.2.1 Visual modality
Several works suggest that psychological disorders are expressed visually, mainly through
head and facial movements. Several studies have found that emotionally distressed people
tend to make greater overall head movements with more frequency and rapidity (Dinges
et al., 2005; Liao et al., 2005; Hadar et al., 1983). People with anxiety disorder, for
example, tend to show symptoms such as increased blink rate, eye aperture/pupil diameter,
eyelid response, gaze distribution, and variation in pupil size (Giannakakis et al., 2017).
Anxious people also tend to be more alerted by and make more saccades to images of
angry or fearful expressions (Holmes et al., 2006; Mogg et al., 2007). A study by Harrigan
and O’Connell (1996) reports that raising the eyebrows and drawing them together is the
second most reliable facial indicator of anxiety. Other indicators mentioned in the same
report are widening the eye by raising the upper eyelid, non-enjoyment smile (lacking
eye movement compared to sincere smile), and decreased eye contact. Another study
by Pearlstein et al. (2019) makes the same observation where people diagnosed with
SAD have reduced smile reciprocity and express insincere smiles, i.e., one with minimal
involvement of the eye region. Moreover, they tend to have decreased smile frequency and
intensity, and they tend to smile less when listening than when speaking in a conversation.

Regarding the mouth region, it is found that asymmetric lip deformations and movements
are related to stress/anxiety (Metaxas et al., 2004). Giannakakis et al. (2017) reports that the
frequency of mouth opening is inversely proportional to stress level, as indexed by higher
cognitive workload. Another study by Harrigan and O’Connell (1996) found that stretching
the lips horizontally to form a rectangular mouth shape is the most predominant indicator
of the fear emotion. Pediaditis et al. (2015) uses the position and velocity of the upper and
lower lips to distinguish stressed or anxious state versus relaxed state. Interestingly, facial
skin tone, eye blink rate, and mouth opening rate were not found to be among the most
useful predictors.

The facial skin tone is also found to be correlated to stress/anxiety (Giannakakis et al.,
2017), with blushing linked to anger and pallor linked to fright or embarrassment. The
change in skin tone, as well as other symptoms such as sweating palms and shortness of
breath, are the result of the change of blood volume transferred from the heart (Mauss
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et al., 2004).

Beyond the head and facial region, emotional distress like anxiety and depression also
manifests itself throughout other parts of the body and can be read from body postures
and gestures of the limbs. In a study by Lin et al. (2023), audio features are combined
with generic body features (overall movements, hands, legs, and head movements) and
fidgeting behavior (cross hand, single-hand, and leg/feet fidgeting) to predict the level of
anxiety and depression. The authors find that the length of gestures in the head and legs
is most predictive of mental distress, while hand fidgeting is observed across individuals
irrespective of mental condition. Another pertinent study by Kasap and Tanhan (2019)
explores the effect of open and closed body postures on anxiety levels. Their work draws
from the well-established reciprocal relationship between mental states and body language,
as elucidated by previous research (Hargrave, 2008; Pease and Pease, 2008).

Several studies have suggested that the predictive power of methods that use visual features
are comparable to those that use biosignals such as blood volume pulse, galvanic skin
response, pupil diameter, and skin temperature (Dinges et al., 2005; Gao et al., 2014; Setz
et al., 2010; Zhai and Barreto, 2006; Barreto et al., 2007). However, it is worth noting that
facial expressions are also affected by factors independent of the emotional and cognitive
state of the subject. For example, the ambient conditions such as lighting, temperature,
and humidity, or disorders such as depression, schizophrenia, and Parkinson’s disease
(Giannakakis et al., 2017). Moreover, people tend to blink more during speaking, reading
or memorizing (Harrigan and O’Connell, 1996).

There have been a number of studies that employ computer vision to detect symptoms of
psychological disorders. Adams et al. (2015), for example, uses head shakes and nods
among other features to identify complex emotional situations. In the work by Dibeklioğlu
et al. (2018), vocal features are combined with visual features (facial movements and
head pose) extracted using a fully automatic, person-independent, generic approach called
ZFace (Jeni et al., 2015). The library works by constructing 3D registration from 2D
videos, tracking 49 facial landmarks (fiducial points) and 3 degrees of out-of-plane rigid
head movements (pitch, yaw, and roll). For the predictor, the authors choose to use Stacked
Denoising Autoencoders (SDAE), a deep network architecture based on stacking layers
of denoising autoencoders which has been proven to be highly effective in discovering
unknown non-linear mappings between features and outcomes, while coping with high
dimensionality and redundancy. Separate SDAEs are used to encode per-frame represen-
tations for facial and head movements, each comprises 3 hidden layers. The number of
units per each hidden layer and other hyperparameters are determined during training by
minimizing the prediction error.
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ZFace is also employed in a study by Hinduja et al. (2024) to extract facial Action Units
(AUs), head pose, Eye Aspect Ratio, and Mouth Aspect Ratio, which are then combined
with acoustic and linguistic features to predict OCD and comorbid depression severity.
This work specifically uses the AFAR (Ertugrul et al., 2019) AU detector module of ZFace
which tracks a set of facial muscles instrumental in the display of emotion according to
the Facial Action Coding System (FACS, Ekman and Friesen (1978)). As the classifier,
they train a number of Mixed-Effect Random Forests (MERF) on multimodal features.
The performance is evaluated using Mean Absolute Error (MAE), Root Mean Squared
Error (RMSE), R-square (R2), Intraclass correlation (ICC), Normalized MAE, and feature
contribution assessed through Shapley Additive Explanations (SHAP). With this method,
the authors show results that have the potential to rival the interrater reliabilities of trained
clinicians, suggesting the opportunity to diagnose the severity of OCD and depression
without the necessity for formal clinical interviews.

2.2.2 Acoustic modality
The human voice is proven to be highly expressive in conveying the speaker’s emotion
to the listener (Pope et al., 1970). A smiling speaker alters her vocal tract such that "the
smile is audible" (Tartter, 1980), while an anxious speaker produces vocal disturbances and
varied speech-rate that can be interpreted as hesitation (Cook, 1969; Kasl and Mahl, 1965).
Depressed speakers, on the other hand, tend to present reduced speech variability and
monotonicity in loudness and pitch, reduced speech and articulation rate, and increased
pause duration (Dibeklioğlu et al., 2018).

Although these auditory cues may not be as easily recognizable to untrained ears as the
speaker might have believed (Goberman et al., 2011), an ample number of studies has
proven the efficacy of predicting anxiety from adult voice and speech. Some examples
of the conventional and well established approach are provided in Han et al. (2020) and
Baird et al. (2020). In these works, the OpenSMILE toolkit is utilized to extract the
Computational Paralinguistics Challenge (ComParE) and Geneva Minimalistic Acoustic
Parameter Set (eGeMAPS) feature sets from a set of audio samples.3 ComParE is a
large-scale brute-force feature set used in a number of INTERSPEECH Computational
Paralinguistics Challenges since 2013. It contains 6373 dimensional static features pro-
duced by statistical computations over 65 low-level descriptor (LLD) contours, which
themselves consist of spectral (e.g., relative spectra auditory bands 1-26, spectral energy,
spectral slope, spectral sharpness, spectral centroid), cepstral (i.e., Mel frequency cepstral
coefficient 1-14), prosodic (e.g., loudness, root mean square energy, zero-crossing rate,
F0 via subharmonic summation), and voice quality features (probability of voicing, jitter,
shimmer and harmonics-to-noise ratio) (Schuller et al., 2013). In contrast, the eGeMAPS

3https://audeering.github.io/opensmile-python/api/opensmile.FeatureSet.html

15



feature set is considerably smaller, comprising 88 features derived from 25 LLDs that are
also proven descriptive for identifying affective psychological effect on voice production
(Eyben et al., 2015).

Han et al. (2020) utilize the aforementioned audio features to predict the level of anxiety,
fatigue, and sleep quality of COVID-19 patients. They preprocess the voice segments data
by employing speaker diarisation to annotate speaker identities for each voice segment,
and speech transcription which converts voice segments from the targeted speakers into
text transcriptions. As the classifiers, the authors opt for Support Vector Machine (SVM)
with a linear kernel based on the scikit-learn library. Leave-One-Subject-Out (LOSO)
cross-validation is chosen as the evaluation strategy as it is particularly well-suited for
dealing with small datasets. The classifiers are trained to optimize the following metrics:
Unweighted Average Recall (UAR), overall accuracy (also referred to as Weighted Average
Recall or WAR), and the F1 Score (alternatively known as F-score or F-measure). The
best performances were achieved in predicting sleep quality and anxiety level, while
the performance on fatigue prediction was unsatisfactory although still above chance.
Further, when comparing two selected feature sets, the compact eGeMAPS set consistently
outperformed the large-scale ComParE feature set.

In a similar work by Baird et al. (2020), besides ComParE and eGeMAPS, the authors
also utilize the DEEP SPECTRUM toolkit which has shown success in similar audio-
and speech-based tasks in the INTERSPEECH challenge. For the classifier, the authors
choose to train a series of epsilon-support vector regressor (SVR) models with a linear
kernel, optimizing the complexity parameters C. Their performance are evaluated using
Spearman’s correlation coefficient (ρ) due to the ordinal nature of the raw Beck Anxiety
Inventory (BAI) scores that the models predict. This study finds that an anxious person
produces more variations in speech characteristics, which is most detectable when the
speaker is smiling. In terms of technique, late-fusion of best results from eGeMAPS and
DEEP SPECTRUM feature sets is found to produce the best performance.

Hinduja et al. (2024) provide a more elaborated example where the authors utilize OpenS-
MILE and Collaborative Voice Analysis Repository (COVAREP) (Degottex et al., 2014)
to extract acoustic feature sets before combining them with visual and linguistic modal-
ities to predict OCD severity and comorbid depression severity. OpenSMILE is used to
extract eGeMAPS feature set that contains 62 features: arithmetic mean and coefficient of
variation of 18 low-level descriptors (LLD), 8 functionals applied to loudness and pitch
LLD, and 6 temporal features. COVAREP extracts 72 low-level speech acoustic features
derived from the speech signal including pitch, energy, spectral envelope, loudness, voice
quality and other characteristics. Interestingly, while multimodal models seem to perform
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best, unimodal model that uses voice acoustics alone approached the accuracy of the best
multimodal model. The authors hypothesize that this is because of the inherent dynamism
of voice and its connection to the vagus nerve, rendering it highly expressive in capturing
variations in arousal and stress level.

Dibeklioğlu et al. (2018) explore a number of vocal features, namely fundamental frequency
(F0), Maxima Dispersion Quotient (MDQ), Peak Slope (PS), Normalized Amplitude
Quotient (NAQ), Quasi Open Quotient (QOQ), and switching pause durations. In this
paper, the authors find that only switching pause durations (or latency to speak; the pause
duration between the end of one speaker’s utterance and the start of the other speaker’s
utterance) and F0 are correlated with depression severity.

Studies by Laukka et al. (2008) and McGinnis et al. (2019) employ techniques that can
function with a limited computational resources and a small number of audio features.
The former uses seven acoustic features, namely mean, standard deviation, and maximum
of F0, mean voice intensity, HF 500, speech rate, and ratio of silence, to predict social
anxiety and nervousness during speech. This work indicates that anxiety impacts the
nonverbal qualities of speech reflected in the features of the voice, and that tone of anxiety
in speech is perceivable by the listener. Similarly, the latter study computes Davies-
Bouldin Index-based feature selection to produce eight features from a small subset of
three-minutes audio data and use them as input to a logistic regression model. While the
performance in detecting internalizing disorders (which includes anxiety, depression, and
somatic symptoms) is moderate, it can potentially be improved with higher quality audio
data.

Kwon et al. (2022) show that their approach can detect depression and anxiety using
acoustic features alone by capturing 23 Mel Frequency Cepstral Coefficients (MFCCs)
from phone conversations with participats diagnosed with depression and anxiety. The
features are then fed into a pre-trained SRE16 X-vector Model for feature extraction, which
is followed by a trainable classifier model. The classifier architecture is a convolutional
neural network (CNN) with three 1-D convolutions (each is followed by batch ReLU
activation, batch normalization, and dropout) followed by a fully connected layer with 32
nodes, and an output layer with two nodes and softmax activation. In total, the X-vector
and the classifier contains 4.5 million parameters, of which 0.28 million are trainable. This
approach manage to achieve comparable sensitivity and specificity to self-reports such as
General Anxiety Disorder-7 (GAD-7) and Patient Health Questionnaire-8 (PHQ-8).

Diep et al. (2022) performs a similar experiment that combines deep-learned acoustic and
linguistic features—extracted using Wav2Vec 2.0 (Baevski et al., 2020) and RoBERTa,
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respectively—with 16 hand-crafted features proposed by domain experts to train an
AudiBERT-like model. The model comprises a two-layer Bi-directional Long Short-
Term Memory (biLSTM) connected to a multi-head attention layer with two heads. Their
work shows that augmenting hand-crafted features with deep-learned features improves the
overall classification F1 score in depression and anxiety detection (compared to a baseline
of hand-crafted features alone).

2.2.3 Linguistic modality
Various studies from the field of personality psychology (Fast and Funder, 2008; Ireland
and Mehl, 2014; Schwartz et al., 2013; Yarkoni, 2010) have found associations between
the content of speech and the speaker’s traits. As such, this modality can also be used as an
indicator to the speaker’s psychological condition. One canonical method of psychological
analysis of speech is using the Linguistic Inquiry and Word Count (LIWC) program
developed by James Pennebaker and colleagues (Boyd et al., 2022), which efficiently maps
the content of text bodies on a number of psychological dimensions.

Bilalpur et al. (2023) employ text analysis to detect depression by capturing concepts
such as analytic capabilities, focus on past events, negations, comparisons, humor and
quantitative aspects of the spoken content. Among the 92 verbal features extracted using the
LIWC framework are usage of negations and comparisons, informal language and humor,
and referencing past events and agreements. The authors choose SVM as the classifier
and determine the best hyperparameters (linear and polynomial kernels and C value in the
range of 105 to 103 on a log-scale) with a grid-search and five-fold cross-validation (CV).
The best hyperparameters were used for Leave-One Subject-Out (LOO) cross-validation to
report accuracy (ACC) as well as positive and negative agreement. This study found that
this modality is the best performing unimodal and the most contributing modality (6 out
of 15 features) to the best performing multimodal model. Additionally, dictionaries from
LIWC are also utilized in a number of other experiments, e.g., to measure the prevalence
of absolutist words in speeches produced by people who are suspected to have anxiety,
depression, and suicidal ideation (Al-Mosaiwi and Johnstone, 2018), to find correlation
between linguistic expression in blogs and symptoms of depression, generalized anxiety,
and suicidal ideation (O’Dea et al., 2021), and to find linguistic markers of grandiose
narcissism (Holtzman et al., 2019).

2.3 Clinical application
Successful development of a predictive system does not always entail its application in
clinical practices. Ahn and Busemeyer (2016) went further and stated that "no compu-
tational methods have been successfully translated into clinical settings." The authors
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identify at least three major issues. First, it is often difficult to precisely characterize the
neurocognitive processes underlying human behaviors and decision-making, and more
cross-discipline collaborations are needed between the field of psychology, mathematics,
and computer science. Second, the design of diagnostic tests are sometimes too difficult
or contain confounding factors that hinder maximal decomposition of the underlying
processes and interactions between decision-making systems. Third, the size of sample
data that is often insufficient to reflect real-world condition.

In order to improve the clinical utility of predictive systems, Ruberg et al. (2023) propose
that developers adopt the same rigorous clinical trials that are used in the development of
other medical interventions. Furthermore, they also recommend a more comprehensive
way in assessing the performance of the system. Currently, developers rely too much on the
area under the receiver operating characteristic curve (AUC) as a performance metric. The
authors argue that the prevalence (P) of the disease or prognosis in question, which affects
positive and negative predictive value (PPV and NPV), are just as critical to clinicians and
should be taken into account.

Aspect Manual detection Automated detection

Indicator Subjective distress/self report. Objective presence of symptoms.

Proneness to bias More prone to untruthful report,
self suppression, and bias.

Less prone to self suppression,
able to pick up on small cues that
are hard to detect, and more con-
sistent.

Cost of access More expensive as it involves the
labor of experts and takes substan-
tially more time.

Less expensive in terms of labor
and time, thus more accessible.

Scale Limited to a smaller audience with
resources to afford the service.

Because of the low barrier, the ser-
vice can be scaled up to reach a
wider population.

Early detection Less opportunity, as it requires
manual detection and diagnosis.

More opportunity, as it is more ac-
cessible and inexpensive.

Table 1. Potential benefits of automated detection.

Having explored the challenges, the current psychiatric approach to anxiety detection
leaves rooms for enhancements through computational methods (see Table 1). First, the
various manual diagnostic methods such as Diagnostic and Statistical Manual (DSM), Child
Behavior Checklist (CBCL) including its various subscales, Zung Self-Rating Anxiety
Scale4, Beck Anxiety Inventory (BAI), Generalized Anxiety Disorder Scale, or Yale-
Brown Obsessive-Compulsive Scale (YBOCS) relies on the level of subjective distress and

4www.healthline.com/health/anxiety-diagnosis#diagnostic-tests
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suffering as the basis to discern normal from pathological anxiety (Knepley et al., 2019;
Read et al., 2015). This introduces biases and inaccuracies in the diagnosis.

Second, it is dilemmatic to assume that anxiety is pathological when it impairs quality of
life. A differing and equally valid view, for example from Bateson et al. (2011), suggests
that the level of anxiety is the result of interaction between the probability of threat
occurring and the cost that the threat may incur. Thus, in some cases where the level of
danger is overwhelming, severe anxiety may in fact be the appropriate level of response.
As a corollary, insensitive anxiety mechanism could be a common dysfunction which goes
largely unreported because those affected tend to not seek help. The sufferer may also try
to deny and suppress the emotion and not making a truthful report, thus preventing the
opportunity for early detection.

Third, and more pertinent to this study, is that because the initiative and measurement relies
on patient’s self-report or expert assessment, early detection becomes less accessible to
sufferers who lack familiarity with psychological disorders and/or capability to articulate
emotions, such as young children, less informed population, or those with diminished
mental and cognitive capacity. This is where this study comes in, not as a replacement of
human experts but as a technological aid for preliminary screening, serving the overarching
purpose of making mental health diagnosis more accessible.

2.4 Previous works on the YOUth dataset
Child and teenager data from the YOUth cohort study had been the basis of number of
works. Holleman et al. (2021) study the characteristics of gaze and its relation to speech
behavior during video-mediated face-to-face interactions between 81 pairs of parents and
their preadolescent children. The study utilizes the eye-tracking, frontal video, and audio
data from the YOUth cohort. In another study, Buimer et al. (2022) investigate the impact
adverse childhood experiences (ACEs) on the morphology of the developing brain of
children aged between 8 to 11 years old. They utilized the data on subcortical volumes,
cortical thickness, cortical surface area and fractional anisotropy in regions of interest in
brain scans acquired in 1,184 children from the YOUth cohort.
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3. Methodology

This chapter describes the dataset and the methods applied to extract the features from
various modalities. Further, it explains the modeling pipeline and performance evaluation
metrics used in this study.

3.1 Dataset
The data used in this thesis come from YOUth Cohort Study1 (Onland-Moret et al.,
2020), an extensive longitudinal study in child development conducted in the Netherlands.
This study tracks the development of nearly 4,000 Dutch children from pregnancy to
early adulthood. The study focus on neurocognitive development involved in two core
characteristics of behavioural development: social competence and behavioural control.
There are two primary cohorts of participants: Baby & Child, covering the period from
pregnancy to 7 years, and Child & Adolescent, spanning ages 8 to 16 years. With a
specific emphasis on neurocognitive development, the research focuses on unraveling the
intricacies of two fundamental aspects of behavioral development: social competence and
behavioral control. This rich database encompasses an array of sophisticated measures,
including 3D-ultrasound scans of the fetal brain, eyetracking, EEG, fMRI, computer-based
tasks, cognitive assessments, and parent-child observations. Also included in the database
is a diverse observational data such as behavior, personality, health, lifestyle, parenting
dynamics, child development, and the use of (social) media. Furthermore, data from
biomaterials like (umbilical) blood samples, buccal swabs, saliva, and hair samples are
also provided.

We used a sample set of 200 video recordings from 100 parent-child dyads. The children
comprised 52 females and 48 males aged 9 years. Each dyad appeared in 2 videos, showing
the child and his/her parent interacting in a laboratory setting for around 10 minutes. They
were instructed to conduct two types of interactions: cooperative (i.e., planning a vacation)
and conflicting (i.e., arguing).

Before the sessions, each parent filled the Child Behavior Checklist (CBCL; Verhulst
et al. (1996)) questionnaire, which is a widely used questionnaire to assess behavioral and
emotional problems in children (Mazefsky et al., 2011). It is generally divided into two
age brackets, the pre-school age (1.5 to 5 years) and the school age (6 to 18 years) with
each further divided into various subscales corresponding to specific disorders (Knepley

1https://www.uu.nl/en/research/youth-cohort-study
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et al., 2019; Read et al., 2015). The school age questionnaire contains a list of 118
observational items, 13 of which are related to anxiety (also known as the CBCL-A/D
or the anxious/depressed subscale, see Table 2). The score on each item is an integer
between 0 and 2, with 0 means Not True (as far as you know), 1 means Somewhat or

Sometimes True, and 2 means Very True or Often True. Hence, the maximum possible
score of anxiety-related symptoms is 26.

Item Description

14 Cries a lot

29 Fears certain animals, situations, or places other than school

30 Fears going to school

31 Fears he/she might think or do something bad

32 Feels he/she has to be perfect

33 Feels or complains that no one loves him/her

35 Feels worthless or inferior

45 Nervous, high-strung, or tense

50 Too fearful or anxious

52 Feels too guilty

71 Self-conscious or easily embarrassed

91 Talks about killing self

112 Worries

Table 2. Anxiety-related CBCL items.

The average score of anxiety-related symptoms in the normative sample for the boys
is 2.8 (SD = 2.7) and for the girls is 3.2 (SD = 2.9). For the purpose of classification,
we first calculated the Z-score, which is the individual score’s distance away from the
mean in terms of standard deviation (Equation 3.1; x is the anxiety score of the individual
observation, µ and σ are the mean and standard deviation of the respective gender group in
the population). The Z-scores were then converted to T-scores by scaling to have a mean
of 50 and standard deviation of 10 (Equation 3.2).

Z =
x− µ

σ
(3.1)

T = (Z × 10) + 50 (3.2)
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Once the T-scores were obtained, they were classified into two classes: class 0 for the
healthy participants and class 1 for the clinically anxious and the borderline clinically
anxious participants. The thresholds for classification were: score >= 70 is in clinical
range, 65 <= score < 70 is the borderline clinical range, and score < 65 is healthy. The
score distribution is shown in Figure 1.

Figure 1. Distribution of the participants’ CBCL scores. (A) Anxiety scores from the CBCL
questionnaires. (B) Anxiety scores transformed into T-scores, which are the deviations from the
mean in terms of standard deviations, scaled to a mean of 50 and a standard deviation of 10. (C)

The T-scores are classified into two classes, class 0 (healthy) and class 1 (borderline and clinically
anxious), using a threshold of 65.

3.2 Feature extraction
This chapter describes our feature engineering process. Using the audio and visual data
from the videos, we were able to extract features for four modalities. The acoustic
characteristics of the audio produced the acoustic features, and analysis of the content of
the speech produced the linguistic features. We also tracked the facial expressions and the
body postures depicted on the video frame images and convert them into facial expression
and body pose feature sets. While we studied numerous approaches of feature extraction,
the main inspirations behind our method are the work of Hinduja et al. (2024) and Jung
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et al. (2023).

3.2.1 Acoustic modality
To analyze the emotional states expressed in the voice of the speakers, the sound signals
were converted into a set of 88 acoustic parameters of the extended Geneva Minimalistic

Acoustic Parameter Set (eGeMAPS; Eyben et al. (2015)) of OpenSMILE. The set was then
used as training features for the model. The outline of the process is depicted in Figure 2.
In this section we will discuss the steps and tools that were applied during the process in
greater details.

Figure 2. Acoustic and linguistic features extraction pipeline.

Speaker diarization with PyAnnote

Since the audio samples contained multiple speakers, a number of preprocessing steps
were taken before the acoustic features could be extracted. The first step was speaker
diarization, which is the task of partitioning an audio stream into homogeneous temporal
segments according to the identity of the speaker (Plaquet and Bredin, 2023). This was
done using the pretrained model speaker-diarization version 3.1 from PyAnnote2. The

2https://huggingface.co/pyannote/speaker-diarization-3.1
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speaker diarization process pipeline is outlined in Figure 3.

PyAnnnote works by first collecting fixed-length sub-sequences at random from the training
set to form mini-batches. This improves the variability of the training data and make for
more efficient training time. Then, it performs a number of detections, namely: voice

activity detection where the model predicts for each time step whether it contains a speech
or noise, speaker change detection in which the model marks each time step where it
predicts a speaker switch as well as 200ms surrounding the switching point, and overlapped

speech detection in which it detects the time steps where there are more than one speaker.
The time segments and labels are refined through an unsupervised process where a new
model is trained from scratch and applied on the very same file it was trained on. The next
step involves calculating the distances between the speaker embeddings, which reflects the
similarity between any two embeddings (commonly done using cosine distance). Finally,
based on these distances, a clustering algorithm groups similar embeddings together and
assigns it to a speaker identity (Bredin et al., 2020; Bredin and Laurent, 2021; Bredin,
2023).

Figure 3. Working pipeline of the PyAnnote speaker diarization tool (Bredin et al., 2020).

We specifically set the num_speakers parameter to 2 as this increased the accuracy of the
model. Although the moderators could sometimes be heard, we did not set the parameter to
3 as the moderator segments were much shorter compared to the parent-child’s segments.
We would also like to avoid the risk of losing some of the child’s segments which, in some
cases, were rather short.

The output for each audio file was a list of time segments, each assigned a speaker ID.
Since this number is assigned randomly, the child’s ID differs between videos. Therefore,
a manual process was required to identify the child’s ID in each recording. This was
done by carefully listening to each recording and cross-referencing with the time segments
produced by PyAnnote. Once identified, the audio file was truncated by removing time
segments that were not assigned the child’s ID. Some segments contained voices from
multiple speakers, i.e., the child’s voice overlapped with either the parent or the moderator.
If their voices exceed the amplitude threshold, the segment was assigned to all actors
(Bredin, 2023). Such segments were also kept as it was not feasible to separate the actors
using our available tools.
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eGeMAPS extraction with openSMILE

After separating the child’s audio segments from other speakers, the resulting audio file
was processed to extract the audio features. To achieve this, we leveraged a toolkit called
openSMILE (Open-source Speech and Music Interpretation by Large-space Extraction).34

The tool offers the capability to extract various pre-defined acoustic feature sets, including
ComParE, GeMAPS, and eGeMAPS.

After conducting some preliminary benchmarking and considering our limited sample size,
we decided to work with eGeMAPS v2. This set is a popular acoustic feature set commonly
used as a baseline for analyzing speech and other vocal sounds. It is lauded for its ability
to capture physiological changes in voice production during emotional states as well as
its successful applications in past research. The set was developed in two configurations:
minimalistic (GeMAPS) and extended (eGeMAPS). The minimalistic set comprises 62
parameters that capture various aspects of speech, including frequency, energy, spectral
balance, loudness, pitch, and temporal characteristics (Eyben et al., 2015). The extended
set adds 26 more features related to spectral flux, Mel-Frequency Cepstral Coefficients
(MFCC), and sound level. Despite its relatively small size (88 parameters), eGeMAPS
has demonstrated performance comparable to much larger brute-forced baseline acoustic
feature sets of the INTERSPEECH 2009 Emotion Challenge (ranging from 384 to 6,373
parameters) in tasks such as automatic recognition in binary valence and binary arousal
dimensions (and in some cases, outperformed the bigger set; for example see Han et al.
(2020)).

3.2.2 Linguistic modality
To get the content of the subject’s speech, his or her voice was transcribed using OpenAI’s
Web-scale Supervised Pretraining for Speech Recognition (WSPSR, or Whisper).5 Then,
the Linguistic Inquiry and Word Count (LIWC, or the latest software iteration, LIWC-22)6

text analysis toolkit was applied to analyze the affective state of the speaker. The output
is a linguistic feature set comprising 85 parameters. The procedure and tools that were
applied are further described below.

Speech transcription with Whisper

Following the speaker diarization process (explained in Subsection 3.2.1), the resulting
audio files were transcribed using Whisper. Specifically, we utilized the multilingual model
to perform transcription in the Dutch language and opted for the largest model size in order
to obtain the highest accuracy.

3https://github.com/audeering/opensmile
4https://audeering.github.io/opensmile-python/index.html
5https://github.com/openai/whisper/tree/main
6https://liwc.app
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Whisper is a general-purpose speech recognition model trained on a large dataset of diverse
audio samples. It offers multiple capabilities such as multilingual speech recognition,
speech translation, and language identification. The model is based on the encoder-decoder
architecture (transformer) and uses a special input embedding with tokens that represent the
combination of tasks for which the model was trained (see Figure 4). This allows the model
to perform multiple tasks (e.g., voice activity detection, alignment, speaker diarization,
inverse text normalization, transcription, translation, and language identification) that
traditionally requires many different stages (Radford et al., 2023).

Figure 4. Overview of Whisper’s multitask speech recognition learning approach (Radford et al.,
2023).

Feature extraction using LIWC

LIWC-22 is a text analysis tool based on the theory that word choice carries significant
psychological value and reflects the mental construct of the speaker. At the heart of LIWC’s
analysis strategy is a series of dictionaries, essentially mappings between sets of textual
components (e.g., words, word stems, phrases, emoticons) and important psychological,
emotional, and social concepts and theories (Boyd et al., 2022). In total, there are over
12,000 textual components spread over many categories. Each entry can be part of
multiple dictionaries. For example, the word cried is part of ten dictionaries: affect,
tone_pos, emotion, emo_neg, emo_sad, verbs, focuspast, communication, linguistic, and
cognition. Thus, each time the word appear in the input text, these ten dictionaries would
gain increased relevance. The dictionaries themselves are arranged hierarchically (e.g.,
the emo_sad dictionary is part of the emo_neg dictionary, which is part of the emotion
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dictionary, which in turn is part of the broader affect category). LIWC has been applied
successfully in a number of works, such as Zhao et al. (2016); Yu et al. (2023); Kane and
van Swol (2023).

This thesis used the Dutch translation of LIWC dictionary (2015 version) created by Peter
Boot.7 As shown in Figure 2, after the speech transcription, the output text was analyzed
using LIWC-22 to extract 85 linguistic features. Broadly, these features consisted of sum-
mary features (e.g., word count, average number of words per sentence), percentages of
punctuation marks (e.g., question mark, exclamation mark), and percentages of psycholog-
ical concepts present in the input text (i.e., concepts LIWC’s dictionaries). To illustrate, if
a speaker uttered 100 words of which 5 were expressions of sadness (dictionary: emo_sad)
and 20 were 3rd person plural pronouns (dictionary: they), then LIWC would report them
as: 0.05 emo_sad and 0.2 they (as well as other related dictionaries).

3.2.3 Visual modality
The facial expressions and body gestures of the subjects throughout the interactions were
analyzed to predict their anxiety level. We employed the Py-Feat library8 to detect the
presence and probability of 20 Facial Action Units (AUs) on the face of the subject. We
also applied OpenPose9 to detect the presence and locations of 15 Key Points on the
subject’s body. These datasets were then used to train our models. Note that although both
facial expressions and body gestures come from visual data, they were treated as separate
modalities, as illustrated in Figure 5.

Sub-frame extraction

Just as the audio files required some preprocessing, the videos also required some prepara-
tion work before the feature extraction could be implemented. Each video frame comprises
four sub-frames: two single-subject frames that captured the child and the parent, one
frame that had the dyad together, and one empty frame. Since the location of the child’s
sub-frame varied across videos, a manual process was required to note the child’s sub-frame
in each video. These target frames were then cropped and stored as images.

While each video had around 10,000 to 20,000 frames, the small time interval between
between subsequent frames (shot at 60 fps) meant that the amount of differences between
adjacent frames was negligible. For efficiency, only one in every five frames was captured.
This way, we were able to significantly shorten the computing cost without notable
information loss since at this rate, the time difference between adjacent frames was still
below 100 ms.

7Contact listed on the site: peter.boot@huygens.knaw.nl
8https://py-feat.org
9https://github.com/CMU-Perceptual-Computing-Lab/openpose
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Figure 5. Visual (facial expression and body gesture) features extraction pipeline.

Facial expression detection with Py-Feat

The Facial Action Coding System (FACS) is a systematic mapping of human facial
movements. Invented by Carl-Herman Hjortsö in 1978, it was further developed into
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today’s mature form by by Paul Ekman and Wallace V. Friesen in 2002 (Ekman and
Friesen, 1978). FACS is a mapping system of facial expressions based on facial Action
Units (AU). The activation of an AU signifies that the corresponding muscle or group of
muscles deviate from a neutral face expression (see Figure 6). Hence, an expression can
be estimated by knowing which AUs are activated.

Figure 6. (Above) Py-Feat facial expression analysis pipeline. (Below) Visualization of the
resulting facial expressions when an AU is activated (Cheong et al., 2023).

In this work, we leveraged a FACS implementation from an open-source Python toolbox
named Py-Feat to estimate the activation probability of 20 AUs on each video frame (listed
in Table 3). Although there are 66 known AUs at the time of this writing, most Py-Feat
models support a subset of about 25 AUs corresponding specifically to facial muscles.
Other AUs are not commonly used to train models as they are associated with eye or head
movements.10

Py-Feat shares a similar architecture to OpenFace for AU detection (see the pipeline in
Figure 6). It first applies a combination of facial landmarks detection and convex hull
algorithm to determine the face region. Then it extracts Histogram of Oriented Gradients
(HOG) of the face, which captures local information about the intensity gradients and
outlines the areas where there are sharp changes in intensity. Finally, the extracted HOG
feature is compressed using Principal Component Analysis (PCA) where only the most

10https://py-feat.org/pages/au_reference.html
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AU number Description AU number Description

01 Inner brow raiser 14 Dimpler

02 Outer brow raiser 15 Lip corner depressor

04 Brow lowerer 17 Chin raiser

05 Upper lid raiser 20 Lip stretcher

06 Cheek raiser 23 Lip tightener

07 Lid tightener 24 Lip pressor

09 Nose wrinkler 25 Lip part

10 Upper lip raiser 26 Jaw drop

11 Nasolabial deepener 28 Lip suck

12 Lip corner puller 43 Eyes closed (muscle relaxation)

Table 3. Action Units and their functions.

relevant information is preserved. This compressed representation is the used to train a
model to predict the Action Units (Cheong et al., 2023; Baltrusaitis et al., 2018).

Py-Feat offers two alternative AU detection models, an XGBoost classifier model and an
SVM model. The XGBoost model, which is the default, returns a continuous value for
each AU, representing the probability of its activation. The alternative SVM model returns
a binary value, denoting its presence/activation.11 We experimented with both alternatives
and compared their performances, which will be discussed in Chapter 4.

Summary features extraction using Tsfresh

The frame-level features extracted by Py-Feat had to be transformed into participant-level
features before they are usable for model training. For this purpose, we leveraged the
Tsfresh12 library, a Python toolkit based on the FeatuRe Extraction based on Scalable
Hypothesis tests (FRESH) algorithm (Christ et al., 2018). Overview of the toolkit’s
functionalities is shown in Figure 7.

The first functionality Tsfresh offers is feature extraction, where it converts time-bound
features into summary features by calculating various statistical characteristics. These
include metrics like minimum, maximum, mean, mean absolute change, median, variance,
skewness, kurtosis, counts (above/below mean), and so on. From observation, Tsfresh
calculates around 783 of such metrics for each feature, which led to a feature vector with
thousands of dimensions (15,660 in the case of our face expression feature set).

11https://py-feat.org/pages/models.html
12https://tsfresh.readthedocs.io/en/latest/index.html
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Hn
0 : {Xn and Y are independent} and Hn

1 : {Xn and Y are dependent} (3.3)

The second functionality offered is feature selection where Tsfresh deploys a statistical test
to find the relevance of a given feature X in predicting the target variable Y (Christ et al.,
2016). That is, given n extracted features, for X ∈ {X1, X2, ..., Xn} it tests the hypotheses
in Equation 3.3. This is done for each extracted feature. And, depending on the data type, a
different test is used (i.e., Exact Fisher Test of Independence for when both the feature and
target variable are binary variables, Kendal Rank Test if both are continuous variables, and
the Kolmogorov-Smirnov Test when one is binary and the other is continuous). Finally,
using the resulting vector of p-values, the Benjamini-Yekutieli procedure (Benjamini and
Yekutieli, 2001) is performed in order to control the rate of falsely rejected null hypothesis
(the False Discovery Rate, FDR).

Figure 7. Tsfresh feature extraction and selection scheme (Christ et al., 2016).

We encountered a number of issues when utilizing Tsfresh’s feature selection. Namely,
it often selected features that are not easily explainable without considerable mathemat-
ical comprehension (e.g., cwt_coefficients__coeff_0__w_2__widths_(2, 5, 10, 20) and
fft_coefficient__attr_"real"__coeff_14). Moreover, Tsfresh’s calculation often resulted
in very few or even zero features being selected. Subsequent inquiry into literature on
Tsfresh revealed some dilemmas with its feature selection mechanism. Several studies on
feature extraction strategies found that while Tsfresh produces highly effective features
(i.e., leading to higher performance compared to other feature sets), it often comes at the
expense of interpretability. The features are difficult to interpret without extensive domain
knowledge, and even experts cannot guess at feature definitions from the feature names

32



(Bosch, 2021). Moreover, the set contains many redundancies, with one study found that
90% of the variance of 779 Tsfresh features was captured with 55 principal components,
and around 50% was derived from Fast Fourier Transform (FFT) coefficients (Henderson
and Fulcher, 2021).

We believe that in the context of medical application, a transparent and humanely com-
prehensible mechanism of decision making is critical in order for the AI system to be
trusted. Hence, from comparison with other studies (Bilalpur et al., 2023; Radhakrishnan
et al., 2023; de Santis et al., 2023), we heuristically selected 10 types of summary statistics:
minimum, maximum, mean, median, standard deviation, variance, coefficient of variation,
skewness, kurtosis, and mean absolute change. This set was chosen as they are considered
common statistical measurements that are highly interpretable without requiring extensive
domain knowledge, and the amount was approximated to suppress the feature dimensional-
ity and prevent overfitting. The output is a facial expression feature set with a shape of
(100, 200).

Key Points tracking with OpenPose

We utilized the OpenPose library (Cao et al., 2021; Simon et al., 2017; Wei et al., 2016)
to extract the gestures of the subject. We specifically used OpenPose’s BODY_25 model
as it is optimized for the task of estimating body poses (contrary to two other alternative
models, namely COCO and MPII).13

Figure 8. OpenPose Key Points locations (Zhang et al., 2023).

As shown in Figure 5, from each video frame, the model produced 25 two-dimensional
confidence maps, each corresponds to a Key Point on the human body (important joints
and edges such as wrists, elbows, nose, and so on; see Figure 8). The dimension of the
confidence map is proportional to the original image, and each cell on the map contains a

13https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/doc/05_faq.md
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value representing the model’s level of confidence that the respective Key Point is located
at the cell’s coordinate. Therefore, to find the location of a Key Point, we identified the
coordinate of the highest confidence level on the point’s confidence map and projected it
back onto the original image. Only the first 9 points were required for calculating affective
body pose features, hence the more detailed points were ignored (such as eye, ear, toe,
heel, and so on).

Figure 9. (Above) OpenPose’s overall pipeline. (Below) OpenPose’s architecture, comprising sets
of multi-stage CNN (Cao et al., 2021).

OpenPose’s architecture is based on a previous work by Cao et al. (2021). It comprises
multiple stages of convolutional neural networks (CNN), largely divided into two stages
(Figure 9). A stage is comprised of multiple convolution blocks, each containing 3 layers
of convolutions of kernel 3 that are concatenated at their end. An input image is processed
by the first 10 layers of the VGG-19 network to produce a set of feature maps F that are
the input for the first stage. Then, a series of convolution blocks iteratively predict the Part
Affinity Fields (PAFs) which are a series of 2D vector fields that encode the associations
between key body parts. After multiple iterations of the first stage, the most updated PAF
prediction is concatenated with the original image features (F ) and used as input for the
second stage. Here, another set of convolution blocks iteratively predict 2D confidence
maps, one per body part.

Affective body pose feature calculation

Based on the locations of key points estimated by OpenPose, we derived 15 affective body
pose features (listed in Table 4) using the same approach that was used in the study by
Jung et al. (2023). These feature set comprises 7 angles, 5 distance ratios, and 3 area ratios
(examples depicted in Figure 10).
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Figure 10. Examples of angular (left), distance ratio (middle), and area ratio (right) affective body
pose feature calculations (credit: freepik.com/author/drobotdean).

The selection of these features was informed by prior research on body language and
emotion. For instance, Bhattacharya et al. (2021) highlighted the importance of upper
body openness in relation to dominance and arousal. Kleinsmith et al. (2011) investigated
the connection between emotions and body posture by observing specific joints like head,
neck, collar, shoulders, elbows, wrists, torso, hips, and knees. The authors found that torso
bending, shoulder rotation, and upper body openness correlate with affective dimensions
like arousal, valence, potency, and avoidance. Roether et al. (2009) explored the influence
of emotion on joint movement, demonstrating that happiness and anger are associated with
larger joint movements, while sadness and fear lead to the opposite effect.

After deriving the affective body pose features at the frame level, we used Tsfresh to
generate the summary features, similar to our approach with the facial expression features.
From the resulting 11,745 summary features, we then selected 10 statistical characteristics
per feature, resulted in a data frame of shape (100, 150).

3.3 Pipeline
To obtain a more comprehensive and reliable assessment of the model’s performance, we
applied k-fold cross-validation (k = 5) by splitting the data into five subject-independent
sub-sets/folds of equal sizes. Before being funneled for model training and evaluation, the
data was standardized to have zero mean and unit variance using scikit-learn’s Standard
Scaler. Subsequently, we trained the models and evaluated the performance across a
number of variables: modeling approaches, scenarios (conflict and cooperation), feature
modalities, and data folds. Finally, to understand the significant indicators of anxious
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Feature Type Name Key Points Description

Angle

AngArmL 2, 3, 4 Upper - lower left arm

AngArmR 5, 6, 7 Upper - lower right arm

AngShoNeckL 2, 1, 0 Left shoulder - neck

AngShoNeckR 5, 1, 0 Right shoulder - neck

AngShoArmL 1, 2, 3 Left shoulder - upper arm

AngShoArmR 1, 5, 6 Right shoulder - upper arm

AngNeckNose 0, 1, 8 Head - torso

Distance ratio

DistLWHipNose (4, 0) and (4, 8) Left wrist to head / to mid-hip

DistLWHipNeck (4, 1) and (4, 8) Left wrist to neck / to mid-hip

DistRWHipNose (7, 0) and (7, 8) Right wrist to head / to mid-hip

DistRWHipNeck (7, 1) and (7, 8) Right wrist to neck / to mid-hip

DistLRWHipNose (4, 7) and (0, 8) Between wrists / head to mid-hip

Area ratio

ArUpLowBody (4, 7, 1) and (4, 7, 8) Wrists to neck / to mid-hip

ArWristsNoseHip (7, 0, 8) and (4, 0, 8) Left wrist - head - mid-hip / Right
wrist - head - mid-hip

ArWristsNeckHip (7, 1, 8) and (4, 1, 8) Left wrist - neck - mid-hip / Right
wrist - neck - mid-hip

Table 4. Affective body pose features.

behavior, we used SHAP to analyze the feature relevance of the best-performing model
from each scenario and modality.

3.3.1 Data preparation
Each feature set was split into five folds of equal sizes. Considering the class imbalance
with the clinically anxious subjects in the minority (approximately 60:40 ratio of healthy
or borderline anxious subjects to clinically anxious subjects), the splitting was done in a
stratified fashion so that the ratio of the two classes is the same across all folds. Figure11
shows the unimodal model pipeline.
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Figure 11. Unimodal model pipeline.

Figure 12. Early fusion model pipeline.

Early and late fusion

In the case of early fusion, feature sets from all modalities were concatenated horizontally,
i.e., extending the feature vector of each data point (see Figure 12). Then, the samples
were split into five folds using stratified sampling to ensure each fold maintained the same
class distribution. A model trained on this combined feature set therefore learned from
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all modalities, allowing it to consider information from various modalities when making
predictions.

In contrast, in the late fusion approach, feature sets from different modalities remained
separated and were used to train individual models separately. However, because the
predictions from different models were to be fused into a single prediction, it was critical
to ensure consistent participant IDs across all classifiers and folds. This means that the
participant IDs within the test set of each fold for modality A must be identical to that of
the corresponding fold in modality B. This was achieved by seeding the random number
generator used by the k-fold stratified sampling function.

Single and combined scenario

The type of interaction was used as an independent variable to examine its impact on the
observability of anxiety symptoms. As mentioned in Section 3.1, two types of interactions
were reflected through the scenarios: cooperative (planning a vacation together), and
conflict (arguing/reprimanding). Accordingly, for each modality and fusion type, three
datasets were prepared: one containing only the features from the conflict videos, one from
only the cooperative/vacation-planning videos, and one that combined both. We presumed
that this approach would allow for a comprehensive analysis of how different interaction
atmospheres influence the detectability of anxiety symptoms across various modalities.

To combine the scenarios within a modality, we concatenated the feature frames from
the cooperative scenario and the conflict scenario vertically, thus keeping the number
of features while doubling the number of samples. This was done to avoid increasing
the number of features which could make the model prone to overfitting. However, in
retrospect, we believe that this approach was sub-optimal, as the results would later confirm.
An alternative approach would be to concatenate feature-wise and applied feature selection
and regularization to avoid overfitting.

3.3.2 Model architectures
While there are numerous modeling alternatives to classification problem, we chose to
explore three promising options. The first two models are ensembles of decision trees, i.e.,
Gradient Boosting Classifier (GBC) and Light Gradient Boosting Machine (LightGBM).
Tree-based models are seen as highly potential due to their well-established suitability for
classification tasks. The third is Support Vector Machine (SVM), which is perhaps one
of the most studied modeling algorithm and is widely used as a baseline model due to its
relative simplicity and ability to work with small dataset. This section will discuss each
approach further.
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Support Vector Machine

SVM is a machine learning algorithm that classifies data by calculating the relationships
between data points in a higher dimentional space (using a technique called the kernel

trick) and finding a hyperplane that maximally separates the classes. Not only is SVM
able to work with small training data, it also makes a lightweight choice as it stores only
the decision boundaries rather than the entire training set. Moreover, SVM is reputed to
work well with our dataset’s characteristic: a relatively small sample size coupled with
a significantly higher number of features compared to samples (especially in the case
of early fusion where features from all four modalities are concatenated, bringing the
number of features to be around four times the number of samples), also known as the
"high dimensionality problem."

We used scikit-learn’s implementation of support vector classifier model 14. The model
was optimized through grid-search cross-validation15 over a set of hyperparameters, the
values of which were heuristically approximated from repeated experiments. The hyper-
parameters optimized for this model were kernel type, degree of the polynomial kernel,
kernel coefficient γ, inverse-strength of regularization C, and shrink (whether to try to
accelerate training time by shrinking some variables; Chang and Lin (2011)).

Gradient Boosting Classifier

The gradient boosting classifier (GBC) is a variant of the gradient boosting machine (GBM)
algorithm applied to classification problem. Since most of our modeling approaches are
based on GBM, we will explain the technique more deeply in this section.

GBM is a tree-based algorithm that iteratively builds an ensemble of weak learners (often
in the form of shallow trees), each attempting to correct the mistakes of the previous learner
by training on its errors (termed pseudo residuals to distinguish it from linear regression’s
residual). The algorithm given by Friedman (2002, 2001) is as follow:

1. F0(x) = argminγ

∑N
i=1 Ψ(yi, γ)

2. For m = 1 to M do:
3. ỹim = −[∂Ψ(yi,F (xi))

∂F (xi)
]F (x)=Fm−1(x), i = 1, N

4. {Rlm}L1 = L− terminal node tree({ỹim,xi}N1 )
5. γlm = argminγ

∑
xi∈Rlm

Ψ(yi, Fm−1(xi) + γ)

6. Fm(x) = Fm−1(x) + ν · γlm1(x ∈ Rlm)

7. endFor

14https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
15https://scikit-learn.org/stable/modules/grid_search.html#exhaustive-grid-search
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Ordered explanation of how the algorithm operates is given below:

1. Initialize with a predicted value F0(x). This is equal to a value ρ that minimizes the
sum of losses (also called pseudo residuals, as calculated by the loss function L)
between each truth value yi and ρ (i is the index of sample, which goes from 1 to
N where N is total number of samples). This value can be found through gradient
descent or the sum of the derivatives of the loss function with respect to ρ.

2. Build M number of base learners sequentially.
(a) For i ∈ {1..N} calculate the pseudo residuals ỹi. To do this, first take the

previous prediction for the sample (F (xi) = Fm−1(xi)), apply it to the loss
function L and calculate ỹi = −[∂L(yi,F (xi))

∂F (xi)
]

(b) Fit a base learner that predicts the residuals.
(c) Given a set of data points R in a terminal/leaf node l, for each Rlm of the new

base learner (m), calculate γlm that minimizes
∑

L(yi, Fm−1(xi) + γ), xi ∈
Rlm

(d) Update the predictions on each data point by following the formula Fm(xi) =

Fm−1(xi) + ν ·
∑m

l=1 γlmI(x ∈ Rlm) where ν is a learning rate that scales γ.
(e) Repeat (a) to (d) until stopping condition is met (usually in terms of number of

trees or reduction in bias).

The derivative operation in step (a) is the gradient calculation, referring to the slope of
the tangent line on the loss function curve/plane at a specific value of x. The negative
sign points in the direction of steepest descent (i.e., gradient descent). Step (a) through
(d) is the boosting stage where the model sequentially adds a weak learner to ’boost’ the
performance of the previous learner. For classification problem, a slight modification is
applied in step (1) and (a) to convert discrete labels into log-odds and probabilities, hence
the residuals become discrepancies between observed and predicted class probabilities.

Thus intuitively, the algorithm iteratively groups the samples based on the difficulty in
predicting them (as reflected in the amount of residuals) by fitting a series of weak learners.
Then it gradually shrinks the residuals/improve the predictions by minimizing the loss
function through gradient descent moderated by learning rate.

One of the benefits of gradient boosting is its built-in regularization effect as a result of
using weak learners. A single complex model is prone to overfit the training data and
perform poorly on unseen data. However, since each weak learner only captures a small
part of the data complexity, it prevents the overall model from becoming overly sensitive
to specific features.
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Another strength of gradient boosting is its low variance. Because it uses an ensemble
of models, the collective prediction averages out the individual errors, leading to lower
variance compared to a single complex model. Additionally, its ability to provide feature
importance scores makes it more interpretable and aids in feature selection/reduction.

We utilized scikit-learn’s implementation of GBC algorithm16. The following hyperparam-
eters were optimized: number of estimators/boosting stages, learning rate, maximum depth
of an estimator, maximum features to consider during a split, minimum samples required
to perform a split, minimum samples required at a leaf node, and the number samples used
for fitting an individual base learner.

Light Gradient Boosting Machine

The LightGBM algorithm builds on the previously discussed GBC algorithm by introducing
a number of improvements. Besides the capability to leverage parallel processing, built-in
regularization, and native support for categorical features, the two major improvements
described in (Guolin et al., 2017) are: Gradient-based One-side Sampling (GOSS), and
Exclusive Feature Bundling (EFB).

The idea of GOSS is to reduce the amount of computation required in finding the best
split in a node using a histogram of gradients of the instances in that node. Similar to our
description for GBC in the previous section, for a gradient to be computed, the model
first derives the loss function with respect to each weight variable. Then, a base model
with a set of weights is built on the dataset. Next, the gradient is calculated based on the
residuals (errors) between the predicted and actual values. The model then gradually finds
the optimal weights through gradient descent.

In GOSS, the histogram is built by keeping the instances with the largest gradients (i.e.,
under-trained instances) and randomly sampling from instances with the smaller gradients.
Then, the instances are grouped into bins based on the range of the gradient values. This
way, GOSS focuses on instances that contribute more to the loss function and yield more
information gain. Moreover, while traditional decision trees evaluate splits at every possible
point within the feature range, GOSS reduces the number of potential splits to the number
of bins, significantly lowering the computational complexity.

LightGBM also decreases the computational cost by reducing unnecessary computation
of zero feature values. Typically, a large number of features results in a sparse high-
dimentional feature space. To increase the density, EFB first creates a graph where a vertex
represents a feature and a weighted edge represents the amount conflicts between any two

16https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html
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features. Conflict is defined as having non-zero values simultaneously. Then, sorting by
the degrees, the low conflict features (i.e., vertices with low degree) are merged (bundled)
into a new feature. This new feature occupies a value range that is made up of multiple
sub-ranges, each belongs to an original feature that composes the bundle. By merging
features that do not have non-zero values simultaneously, the new feature effectively
encodes the same information as the original features but in a more compact form. Hence,
EFB is a nearly lossless approach to not only reduce features but also increase the feature
space density.

We employed the Python version of Microsoft’s LightGBM library17. The optimized
hyperparameters were the maximum depth of a base learner, the number of leaves, the
minimum number of samples at a leaf node, the learning rate, the number of estimators,
and the L1/alpha and L2/lambda regularization terms.

3.3.3 Model training
For each type of modality and interaction scenario, we loaded and prepared the training
and testing dataset through concatenation (when applicable) and k-fold stratified sampling,
as previously explained. All three models were then fitted on k-1 folds and tested on the
remaining fold.

The fitting process involved running a grid-search cross-validation on the training set,
optimizing the hyperparameters mentioned in Section 3.3.2. Internally, this process further
split the training set into 5 folds and performed cross-validation for each combination of
hyperparameter values. After exhaustively testing all hyperparameter combinations, the
process returned the optimal parameters configuration as well as an estimator object that
had been refitted on the whole dataset. We would then measure the performance of the
optimized estimator on the test fold.

The process of fitting and testing on a remaining fold was repeated k-times such that
each fold is used as a test fold once. The final performance measures were obtained by
calculating the average and standard deviation of each of the performance metrics across
all folds.

Late fusion

The late fusion approach is essentially an ensemble of unimodal classifiers. Here, the
process of k-fold stratified sampling, model fitting, and predicting on the test fold were
executed independently per modality. Their predictions would then be combined (fused)
through a voting mechanism using simple majority rule. That is, for each data point, the
ensemble would assign the class that was predicted by the highest number of classifiers

17https://lightgbm.readthedocs.io/en/stable/Python-Intro.html
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(see Figure 13).

The fact that we had an even number of modalities (acoustic, linguistic, facial expression,
and body gesture) introduced the possibility of a tie during the fusion phase. In such case,
the ensemble was designed to vote for the positive class (the ’anxious’ prediction). This
decision to prioritize the recall of the positive class was made with the assumption that in
the medical context, it is more important for a preliminary diagnostic tool to not miss a
possible patient (avoid false negative) than to avoid false positive diagnosis.

Figure 13. Late fusion model pipeline.

3.3.4 Performance metrics
Performance of the models were measured using a number of performance metrics that we
believe to be appropriate for the task at hand. Except accuracy, the metrics presented in
this section are selected specifically with prevalence and class imbalance in mind, i.e., they
are known to be reliable even when applied to a dataset with a skewed class distribution.
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Classification accuracy

This is a common way to measure how well a model performs, simply defined as the
percentage of correctly classified samples out of all the samples it analyzes. Given a
binary classification task and a comparison result between the predicted labels and the
ground truth, then accuracy is calculated as Equation 3.4 where True Positive (TP) and
True Negative (TN) are the numbers of samples correctly classified as belonging to the
positive and negative classes respectively, while False Positive (FP) and False Negative

(FN) are the numbers of falsely classified observations.

Accuracy =
TP + TN

TP + TN + FP + FN
(3.4)

F-1 of the positive class

While accuracy is a popular metric, it is not enough to depict the model’s performance,
especially in imbalanced datasets where the prevalence must also be considered. To
represent both precision and recall in one metric, we calculated their harmonic mean
through the F-measure (see Equation 3.5). Harmonic mean is akin to a weighted average
with an automatic regularization effect, making it more robust to outliers than arithmetic
mean and suitable when working with rates and ratios such as precision and recall. The
β variable acts as a weight on the importance of recall in comparison to precision. In
our experiments, we used β = 1 which gave equal importance to both precision and
recall. We specifically looked at the positive class because of the hypothetical context of
the application of this model (i.e., medical diagnosis) where preliminary identification of
potential illness is important.

Fβ = (1 + β2) · precision · recall
(β2 · precision) + recall

(3.5)

Area under the Receiver Operating Characteristic (ROC AUC)

The Receiver Operating Characteristic (ROC) curve is a graphical plot depicting a model’s
performance over a series of thresholds that it uses to discriminate between the target
classes. The graph consists of two axes, one for True Positive Rate (TPR/sensitivity) and
the other for False Positive Rate (FPR or 1 - specificity). Generally, a good model is one
that maximizes TPR while minimizes FPR, i.e., maximizes the size of the area under its
ROC curve.

Area under the Precision-Recall Curve (PR AUC)

Precision is defined as the ratio of correct predictions to the total number of predictions
(Equation 3.6), while recall is the ratio of correct predictions to the actual number of
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true instances (Equation 3.7). In other words, precision measures how reliable a model’s
predictions are or the accuracy of the positive predictions, while recall measures the
model’s ability to identify all relevant instances/the ground truth.

Precision =
TP

TP + FP
(3.6)

Recall =
TP

TP + FN
(3.7)

Like the ROC curve, the precision-recall curve is a graphical plot that illustrates a model’s
performance on the precision and recall metrics across various decision thresholds. In
scikit-learn, the decision thresholds are acquired from the class probabilities of each
prediction (more specifically, the probability of the positive class). Internally, it iterates
through each threshold, classifies the data points accordingly, then calculates the precision
and recall of the threshold.

A larger area under the precision-recall curve indicates that the model is able to recognize
most of the relevant instances while maintaining trustworthiness in its predictions. Con-
versely, a smaller area under the curve suggests that the model struggles with one or both
of these metrics.

Matthew’s Correlation Coefficient (MCC)

The Matthews Correlation Coefficient (MCC) is a powerful metric for evaluating the
performance of binary classification models. Because it considers the four elements
in the confusion matrix (true positive, false positive, true negative, and false negative)
in proportion to the size of the classes (see Equation 3.8), MCC is less susceptible to
producing overly optimistic results compared to metrics like accuracy or F1-score (Chicco
and Jurman, 2020). This makes it particularly robust for handling imbalanced datasets.
An MCC score has the range of [-1, 1] where 1 means perfect agreement between the
two variables, -1 means perfect disagreement, and 0 means random chance. In our case,
the binary variables are the true labels (ground truth) and the predicted labels (model’s
predictions).

MCC =
TP · TN − FP · FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(3.8)
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4. Results

This chapter describes the experimental results in terms of modality type, interaction
scenario of the participants, and modeling approach. Overall, the GBC model trained on
early-fused multimodal feature set from the conflict scenario achieved the best performance
across modalities and scenarios. Performance details are presented in Table 13, 14, and 15.

A number of notable patterns can be observed. First, the best unimodal models that were
trained on linguistic and facial expression feature sets performed consistently well across
performance metrics. Multimodal features also consistently yielded good performance,
and the overall best performance was achieved by a model trained on the early fusion
feature set. Second, the Gradient Boosting Classifier (GBC) approach produced most
of the best results. Third, all best-performing models were trained on features from the
conflict interaction scenario.

4.1 Comparative analysis between modalities
We evaluated the performance of models from each modality using several metrics. Because
of class imbalance, we prioritize Matthews Correlation Coefficient (MCC), Area Under the
Receiver Operating Characteristic Curve (ROC AUC), and Area Under the Precision-Recall
Curve (PR AUC). The results are visualized in Figure 14 and detailed in Table 5.

The performances were also compared to a baseline model that always predicts the majority
class (class 0, healthy). However, it should be noted that the baseline model’s F1-positive
and MCC scores were not usable for benchmarking since they were inherently zero (the
model only predicts one class, hence precision and recall of the unpredicted class are zero).
Additionally, the baseline PR AUC of 0.71 was unusable since a simple majority-predicting
model can produce a high PR AUC in an imbalanced dataset due to the way the curve is
drawn. That is, the first point is always assumed at a baseline level where only the positive
class is predicted, thus precision = proportion of the positive class and recall = 1.0. The last
point of the curve is always at precision = 1.0 and recall = 0.0. Due to these assumptions,
the area under the curve of a simple baseline model can reach a moderate size, depending
on the proportion of the classes.

Among unimodal models, linguistic and facial expression (with continuous Action Unit
values) performed consistently well across most metrics. The acoustic model had the
highest PR AUC (0.63), the linguistic model achieved the highest MCC (0.3), and the facial
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expression model (with continuous AUs) reached the highest accuracy (0.66, exceeding
the baseline by 7%).

Modality Model Accuracy F1-positive ROC AUC PR AUC MCC

Acoustic GBC 0.63 0.43 0.6 0.63 0.21

Linguistic LightGBM 0.63 0.51 0.6 0.6 0.3

Facial Expression
(cont. AUs)

GBC 0.66 0.53 0.63 0.55 0.28

Facial expression
(bin. AUs)

SVM 0.64 0.4 0.59 0.52 0.22

Body pose GBC 0.61 0.45 0.58 0.6 0.2

Early fusion (cont.
AUs)

GBC 0.66 0.56 0.64 0.63 0.29

Early fusion (bin.
AUs)

LightGBM 0.6 0.49 0.58 0.62 0.17

Late fusion (cont.
AUs)

Ensemble of
GBC

0.66 0.54 0.64 0.59 0.28

Late fusion (bin.
AUs)

Ensemble of
LightGBM

0.63 0.5 0.62 0.55 0.25

Baseline 0.59 0 0.5 0.71 0

Table 5. Performance of the best models of each modality. All of these models trained on features
from the conflict scenario. Values displayed here are averages across five folds.

Similar trends can be observed with early-fusion and late-fusion models. The late-fusion
model (with continuous facial AUs) scored the highest accuracy and ROC AUC (0.64,
which was 14% above baseline). Notably, the early-fusion model (also using continuous
facial AUs) produced the highest measurements in multiple metrics: accuracy, F1-positive
(0.56), ROC AUC, PR AUC, and MCC (despite not the highest, but was only 1% below
the highest score).
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Figure 14. Best performance from various modalities. The models performed slightly above
baseline level, suggesting moderate performance. Note: These values are averages across five folds.
Also, baselines are unusable for F1-score, MCC, and PR AUC since the model only predicted one

class.
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Overall, we observed moderate performance from our models. The best accuracy and
ROC AUC are only marginally above the baseline. F1-positive scores were between 0.4
and 0.56, PR AUC ranged from 0.52 to 0.63, and MCC ranged from 0.17 to 0.3. These
results indicate that the models only slightly surpassed chance level, suggesting room for
improvement.

Interestingly, regarding modeling approach, 5 out of the 9 models were GBCs, 3 were Light-
GBMs, and only 1 was an SVM. Moreover, across all modalities, the best performances
were produced by models trained on data from conflict interaction.

McNemar’s test was applied to compare the predictions of the best unimodal model
(LightGBM model trained on linguistic features) and multimodal model (GBC model
trained on early-fused multimodal features). The test hypothesizes that the marginal
frequencies of the row and column of the contingency table (see Table 22) are equal,
meaning the two binary variables (in this case, the predictions of the two models) are
not significantly different from each other. Our result (p = .03, α = .05) indicates that
there is a statistically significant difference in predictions between the best unimodal and
multimodal classifiers. This observation supports the notion that learning multimodal
features can improve the model’s performance.

4.2 Comparative analysis between scenarios
This section compares the performances of the best model of each scenario (detailed in
Table 6 and visualized in Figure 15). Evidently, the feature sets from conflict interaction
consistently yielded the highest performance across all metrics and modalities. Cooperation
and combined scenarios exhibited comparable performance in most metrics except for F1
metric, in which the cooperation scenario shows a significant drop compared to the other
two. Moreover, while the gaps between the first and second best in the other metrics are
between 5-7% , MCC observed a 9% gap.

Interestingly, in terms of modeling approach, two out of the three classifiers in Table 6 are
GBC models trained on multimodal early-fusion features. Further, when controlled for
model type and training features, the cooperation scenario occasionally produced higher
results than the conflict scenario. Examples of this are the LightGBM model trained
on facial expression data with binary Action Unit values (cooperation: 0.21 MCC, 0.63
accuracy; conflict: 0.02 MCC, 0.54 accuracy) and the late-fusion SVM model trained on
multimodal features (cooperation: 0.15 MCC, 0.62 accuracy; conflict: -0.04 MCC, 0.53
accuracy). However, this type of results rarely occurred.
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Figure 15. Best performance from conflict, cooperation, and combined scenarios. Anxiety
symptoms are better detected during the conflict scenario.

To better understand the behavior of the models (conflict: Mcon, cooperation: Mcop, and
combined: Mboth), we examined their confusion matrices by summing the corresponding
entries across folds (details are available in Table 16, 17, and 18). Our analysis revealed
that Mcon excelled in both positive class recall (0.54) and negative class precision (0.7)
compared to Mcop (0.24 recall, 0.63 precision) and Mboth (0.37 recall, 0.65 precision).
It is apparent that the classifier prioritizes true positives (individuals needing help) and
minimizes false negatives (missing those who need support). This prioritization aligns
with our hypothetical context (i.e., detecting mental health issues), where failing to identify
someone who needs help may have a greater cost than misidentifying a healthy individual.

Conversely, Mcop and Mboth tend to overestimate the number of negative samples, with
Mcop producing the highest negative class recall (0.9) and predicted the least number of
positive samples (16 predictions, compared to 26.5 from Mboth (normalized) and 37 from
Mcon). This behavior might reflect the peaceful and cooperative interaction exhibited in
the model’s training data, which led to its tendency to predict the negative class.

The result of McNemar’s test (α = .05) confirms that there is indeed a statistically
significant difference between the output of Mcon and Mcop (see Table 7). However, Mboth

results are in between Mcon and Mcop, hence it is possible that there is no significant
difference between Mboth and Mcop and also Mboth and Mcon. Whereas it is good to find
difference between Mcop and Mcon.
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Scenario Modality/model Accuracy F1-positive ROC AUC PR AUC MCC

Conflict Multimodal early
fusion (cont. AUs) /

GBC

0.66 0.56 0.64 0.63 0.29

Cooperation Facial expression
(bin. AUs) /
LightGBM

0.63 0.34 0.57 0.58 0.21

Combined Multimodal early
fusion (cont. AUs) /

GBC

0.62 0.45 0.59 0.57 0.2

Baseline 0.59 0 0.5 0.71 0

Table 6. Performance of the best models of each scenario. Values displayed here are averages
across five folds.

Comparison p-value

Conflict v. cooperation 0.001

Combined v. conflict 1.0

Combined v. cooperation 3.4

Table 7. Results of McNemar’s test between scenarios (α = .05).
The contingency tables are available in Table 19, 20, and 21

4.3 Important predictors
To identify the most important indicators of anxiety symptoms, we employed SHAP
(Lundberg and Lee, 2017) analysis on the top performing model of each modality. SHAP
is a model-agnostic method of explanation based on game theory. It works by building
explanation models to approximate the predictions of the original model. Then, it uses
additive feature attribution methods where a feature’s relative importance to a model is
measured by comparing the model’s prediction with and without the presence of the said
feature. Note that the graphs in this section are in different scales, thus comparisons
between different graphs should not be made based on the length of the bars.

4.3.1 Acoustic features
Figure 16 shows the most important features used by the model (definitions of the top
five are given in Table 8). The first feature, spectralFlux_sma3_stddevNorm, refers to
the fluctuations/change over time in the distribution of sound energy/amplitude across
spectrum of frequencies. While the presence of this feature in most cases contributed
towards a negative prediction, there were some cases in which the lower the spectral flux
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feature value, the higher the probability of presence of anxiety symptoms (SHAP value
increases).

Figure 16. Important features of the GBC model trained on acoustic features from the conflict
scenario.

The fourth feature, mfcc1_sma3_amean, is related to the first coefficient in the series of
Mel-Frequency Cepstral Coefficients (MFCC). Mel-Frequency itself is a transformation
technique to warp sound frequencies using the Mel-scale which approximates human
auditory perception.1 The first few coefficients (including MFCC-1 and MFCC-3) tend
to capture the overall shape of the spectrum, providing information about the dominant
frequencies and the distribution of energy. The impact of this feature varied greatly, with
the absolute mean of MFCC-1 inversely related to the prediction of the positive class (i.e.,
the presence of anxiety symptoms), and standard deviation of MFCC-3 directly related to
the positive class.

1https://www.sciencedirect.com/topics/computer-science/cepstral-coefficient
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Feature name Description

spectralFlux_sma3_stddevNorm Normalized standard deviation of the difference of
the spectra of two consecutive frames.

loudnessPeaksPerSec Number of peaks in signal intensity per second.

loudness_sma3_ stddevFallingS-
lope

Standard deviation of the slope of the falling parts of
the loudness signal. Unfortunately we could not find
a precise documentation of this feature, however it
might relate to the skewness of the spectral distribu-
tion calculated in third-order moment.

mfcc1_sma3_amean Arithmetic mean of the encoded vocal timbre repre-
sented using 1 Mel-Frequency Cepstral Coefficients
(MFCC).

loudness_sma3_meanRisingSlope Mean of the slope of the rising parts of the loudness
signal.

Table 8. Top 5 features of the model that was trained on acoustic features.

Furthermore, three of the five most important features (loudnessPeaksPerSec, loud-

ness_sma3_stddevFallingSlope, and loudness_sma3_meanRisingSlope) are related to the
loudness of voice (the amplitude of the signal). Although the effects were also mixed,
generally, high feature values seemed to indicate the absence of anxiety symptom.

Taken together, this suggests that the distribution of energy across frequencies as well
as the size of the amplitudes are the most influential factors to the model’s predictions.
Looking at the impact direction, it is probable that the suspected anxious children in our
sample tended to be quieter and toneless, although it worth noting that we mostly observed
mixed effects where a feature’s impact varies depending on the values of other features.
This is to be expected, as feature interactions and non-linearity can cause different features
to be weighed differently between subjects.

Looking at the literature, our finding partially agrees with a previous study by Hinduja et al.
(2024). The study found that loudness of voice was the second most important acoustic
feature and that it was negatively correlated with the presence of symptoms of obsessive
compulsive disorder (OCD). Although the study was about assessment of severity of
depression and OCD, it is known that anxiety disorder often comorbid with other mental
disorders (such as depression and OCD, as explained in Chapter 2).

4.3.2 Linguistic features
Figure 17 and Table 9 present the most important indicators used by the best-performing
model that was trained on the linguistic feature set (conflict scenario). Pronounced clus-
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terings of feature effects were shown by five out of the six most important features. The
low usage of 3rd-person plural pronouns (LIWC: they), which might indicate a more
self-focused speech, contributed to the positive prediction. The low usage of filler sounds
indicative of non-fluency (nonflu), which could hint at a more reserved or quiet subject,
also contributed positively. Furthermore, frequent usage of words emphasizing nega-
tive emotions (negemo), anxiety (anx) and focusing on past events (focuspast) tended to
correlate positively with the prediction of anxiety symptoms. Additionally, the use of
movement-related words (motion) also significantly influenced the model’s predictions.
Although the direction of the impact was generally mixed, there was a slight tendency
towards a negative correlation. This could be interpreted as a tendency to be less expressive,
similar to the effect of nonflu.

Feature name Description

they The use of 3rd person plural nouns (e.g., they, their, them).

nonflu Frequent use of filler sounds/words (e.g., oh, uh, um) indicating
nonfluency.

negemo The use of words indicating negative tone (e.g., bad, wrong, too
much, hate), previously labeled as tone_neg.

motion The use of words to perceive movements (e.g., go, come, went,
came).

anx The use of words to indicate anxiety (e.g., worry, fear, afraid,
nervous), also labeled as emo_anx.

focuspast The use of past-oriented words.

Table 9. Top features of the model trained on linguistic features (Boyd et al., 2022).

These findings find some support in the literature. For instance, a previous study by
O’Dea et al. (2021) reported that the frequent use of 3rd-person plural pronouns and filler
sounds indicating non-fluency were negatively correlated with depression (ρ = −0.34

and −0.67, respectively)2, while the use of 1st-person singular pronouns was positively
correlated (ρ = 0.35) with the prediction of anxiety (notably, depression and anxiety
are often comorbid). Likewise, a study by Al-Mosaiwi and Johnstone (2018) found that
individuals suffering from anxiety and depression tend to utter more words from LIWC’s
negemo and affect dictionaries, which includes the anx dictionary as a subset (Boyd et al.,
2022).

Psychological literature tend to agree on the relationship between a subject’s mental

2https://journals.plos.org/plosone/article/figure?id=10.1371/journal.pone.0251787.t003
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Figure 17. Important features of the LightGBM model trained on verbal features from the conflict
scenario.

state/health and their temporal orientation and their is rather well established. For example,
Papageorgiou and Wells (1999); Hong (2007) considered anxiety to be linked with worrying
about future events, while ruminating is associated with depression about past events. In
chapter four of Sirois (2016) the author explores the link between stress, temporal myopia

(essentially, short-term thinking), and the development of chronic diseases.

Interestingly, although we could not find existing literature linking the use of motion-
related words to anxiety, the data show that the two variables were negatively correlated.
We speculate that this behavior might stem from the nature of the discussion topic and the
fact that the subjects were young children, who may be more inclined to speak in terms
of concrete bodily actions and movements rather than abstract concepts (we believe this
behavior is rather well-established in the field of psychology and child development, for
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example see Kaminski et al. (2006)).

To conclude, our analysis suggests that verbal symptoms of anxiety may include placing
more attention on the self and less towards others. The subject may also explicitly express
his/her anxiety through frequent usage of words related to the negative emotions (examples
from Boyd et al. (2022) include: bad, hate, hurt, tired) and anxiety/fear (e.g., worry, fear,
afraid, nervous).

4.3.3 Facial expressions features
Figure 18 and Table 10 present the most important facial features used by unimodal
facial expression model. Three features showed pronounced positive correlation with the
prediction of anxiety (namely, AU11_mean_abs_change, AU43_standard_deviation, and
AU43_median) and four showed the opposite effect (AU23_maximum, AU10_maximum,

AU05_median, and AU07_mean). Interestingly, the two features related to AU 04
(AU04_skewness, AU04_standard_deviation) showed mixed effects with inclination
towards predicting the negative class.

The negative effect of high AU23_maximum (tightening of the lip) and AU10_maximum

(raising of the upper lip) as well as the negative impact of AU04_skewness and
AU04_standard_deviation (raising and drawing together of eyebrows) may suggest
that our less anxious participants were more expressive/displayed more vivid facial
expressions. Conversely, the positive correlation of AU11_mean_abs_change (nasolabial
deepener; lifting and stretching of the upper lip, forming an expression of fear or disgust
similar to AU10 only more subtle), AU43_standard_deviation and AU43_median (closing
of the eyelids) suggest that the more anxious participants tended to make subtle expressions
of fear through their upper lips and to close their eyes more often.

These findings agree with a significant number of literature. Our first 3 action units (AU 23,
11, 10) are related to the mouth region, while the 4 subsequent units (AU 43, 04, 05, 07) are
related to the eyes region. Accordingly, studies have found that anxiety is primarily driven
by/related to the fear emotion (Harrigan and O’Connell, 1996; Pediaditis et al., 2015;
Giannakakis et al., 2017) which is expressed on the face mostly through lip movements
and deformations (such as stretching or tightening) (Metaxas et al., 2004; Pediaditis et al.,
2015) as well as increased blink rate and raising/drawing the eyebrows together.

In Facial Action Coding System (FACS), anxiety is most strongly predicted by the acti-
vation of AU 01, 02, and 04, and additionally AU 05, 07, 20, 25, and 26 (Arellano et al.,
2014). Similarly, the summary statistics of AU 04, 05, and 07 are in our top ten most
important indicators. However, while most activations of AU 05 and 07 contributed to the
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Figure 18. Important features of the GCB model trained on acoustic features from the conflict
scenario.

positive prediction, all activations that had the opposite effect were of high probabilities.
Also, the activation of AU 04 tended to have a negative correlation with the presence of
anxiety symptom. This shows some level of disagreement with some prominent mappings
between FACS and emotion.34

In summary, our observations suggest that anxiety is expressed mostly through the eyes
and mouth regions, with the mouth being the most important indicator. Our observation
suggests that anxious people display less facial expressions and close their eyes more
frequently, likely in an attempt to decrease the amount of incoming stimuli.

3https://imotions.com/blog/learning/research-fundamentals/facial-action-coding-system/
4https://www.eiagroup.com/resources/facial-expressions/facial-action-coding-system-facs/
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Feature name Description

AU04 Eyebrow lowerer (Depressor glabellae, Depressor super-
cilli, and Currugator muscles).

AU05 Eyelids raiser (Levator palpebrae superioris muscle).

AU07 Eyelids tightener (Orbicularis oculi and pars palpebralis
muscles).

AU10 Upper lip raiser (Levator labii superioris and Caput infraor-
bitalis muscles).

AU11 Nasolabial deepener (Zygomatic minor muscle).

AU23 Lip tightener (Orbicularis oris muscle).

AU43 Eyelids closing (relaxation of the Levator palpebrae superi-
oris muscle).

Table 10. Top 5 features of the model trained on facial expression features.

4.3.4 Affective body pose features
Figure 19 and Table 11 show the most impactful body pose features. Although we were
not able to find an direct support linking the exact same feature set to anxiety emotion
in the literature, a number of studies have suggested that fidgeting, frequent and regular
hand movements, as well as closed body posture and contracted upper body are among the
gestures most linked to negative emotions.

Feature name Description

AngArmL Angle formed between the upper and lower left arm.

AngShoArmR Angle formed between the right shoulder and upper arm.

AngShoNeckL Angle between the left shoulder and neck.

AngNeckNose Angle between the head and torso.

DistRWHipNose Distance ratio between the right wrist to nose and to hip.

DistLRWHipNose Ratio of distances from left to right wrist and from nose
to hip.

Table 11. Top 5 features of the model trained on body pose features.

We can see the gestures that our model considered in its predictions. For instance, head
movements indicated by the high variance of the angle between the head and torso (Ang-

NeckNose_variance), and hand movements indicated by the angle formed by the left elbow
(AngArmL_variance) as well as the platykurtic distribution (low tailedness/less outliers)
of distance ratio between the right wrist to hip and to nose (DistRWHipNose_kurtosis)
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Figure 19. Important features of the GCB model trained on acoustic features from the conflict
scenario.

had positively impacted the prediction of the positive class. And although the size and
distribution of the left arm’s angle (AngArmL_median and AngArmL_kurtosis) exhibited
a mixed effect, there was a tendency for higher median and platykurtic distribution to
influence positive prediction. These feature effects suggest that the model’s predictions
were based on constant head movements and arm movements from the elbow, which aligns
with the observations made by Lin et al. (2023) in which constant hand movements and
head fidgeting are indicative of anxiety. Roether et al. (2009) also found that the flexion
of limbs, head inclination, and body posture are strong predictors of positive affect (e.g.,
happy, confident) and negative affect (e.g., fearful, anxious, sad).

The model also considered a closed and contracted upper body as an important indi-
cator of anxiety symptom. The small angle between the right shoulder and upper arm
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(AngShoArmR_mean) and between the left shoulder and neck (AngShoNeckL_mean) con-
tributed mostly towards the positive class. The low variance and change in the distance
ratio of the wrists to the body’s vertical axis (DistLRWHipNose_variance and DistLR-

WHipNose_mean_abs_change), suggesting that the posture remained relatively constant
(which could also be interpreted as tense) and exhibited less changes in hand positions in
the direction of opening/closing of the upper body, also influenced positive prediction. The
model’s behavior in considering body openness is supported in the literature. For instance,
Castillo and Neff (2019); Karg et al. (2013) associate closed upper body posture with the
fear emotion.

In conclusion, these observations suggest that non-anxious subjects displayed more open
body postures and moved their arms more frequently in the direction of opening/closing
the upper body. In contrast, more anxious subjects exhibited more fidgeting movements
with their heads and fewer side-to-side arm movements, resulting in a more closed posture.

4.3.5 Combined modality
Figure 20 and Table 12 present the most important predictors used by the highest-
performing early-fusion model. Overall, the model seemed to have relied mostly on
features related to body gestures, facial expressions and words use.

The high standard deviation of the angle formed by the left arm (indicated by An-

gArmL_standard_deviation) coupled with the platykurtic distribution (low tailedness/less
outliers) of the size of the angle (indicated by AngArmL_kurtosis) can be interpreted as
constant hands movements. Their correlation with anxiety is supported in the work of Lin
et al. (2023) where constant hand movements, fidgeting, and more body movements overall
are associated with anxiety. Furthermore, the positive skew (mode less than median) of the
angle between the right shoulder and arm (indicated by high AngShoArmR_skewness) can
be interpreted as a closed upper body posture, which is associated with tenseness and fear
(Castillo and Neff, 2019; Karg et al., 2013).

In our result, high probability of the activation of the chin raiser muscle (Mentalis; as
indicated by AU17__mean_abs_change) tended to encourage predictions of the positive
class. Although we could not find a direct link between the chin muscle and anxiety
symptom in the literature, we speculate that the muscle might have altered the shape of the
mouth which then indirectly related to anxiety symptom.

The link between ruminations on past events and anxiety and depression is relatively
well established, for example in studies such as Hong (2007) and Hilt and Pollak (2012).
This supports our finding where the frequent usage of past-oriented words (indicated by
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Figure 20. Important features of the early fusion GCB model trained on conflict data.

focuspast) is positively correlated with anxiety prediction.

We could not find a literature that supports the inverse correlation between non-fluency
and anxiety. One may speculate that the inverse correlation shown in our result might
have stemmed from the participants’ tendencies to be quiet and speak less when anxious
(similar to the observation in Section 4.3.1). The same behavior was observed in a study
by Holleman et al. (2021). Here, children spoke more in the cooperation-scenario whereas
parents spoke more in the conflict-scenario.

Another interesting observation is that while some features were deemed most important
in unimodal contexts (for example, they, nonflu, and negemo were most important for
the linguistic model), their ranking within the multimodal model decreased. This shift in
importance can be attributed to the interplay between features from different modalities
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Feature name Description

AngArmL Angle formed by the upper and lower left arm.

AngShoArmR Angle between the right shoulder and upper arm.

AU17 Chin raiser (Mentalis muscle).

focuspast Frequent use of past-oriented words (e.g., was, had,
were, been).

nonflu Frequent use of filler sounds/words (e.g., oh, uh, um)
indicating nonfluency.

Table 12. Top 5 features of the model trained on dataset from multiple modality.

and the specific workings of our tree-based models. During the boosting process, the
training set progressively undergoes splits based on the most informative features. In this
case, by a certain iteration, the training data might have already been split in a way that
rendered the previously most important linguistic features less explanatory. In other words,
splitting based on these features offered less information gain compared to splitting based
on features like focuspast.
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5. Discussion

This chapter discusses the observations derived from the results shown in the previous
chapter, utilizing these findings to answer the research questions. It compares unimodal
and multimodal features, contrasts the results from conflict and cooperation scenarios, and
analyze feature importance to deduce the symptoms of anxiety.

5.1 Better context through multimodality
Several studies support the notion that learning from multimodal feature sets lead to better
performance compared to learning from a single modality. Bilalpur et al. (2023), for
example, combined 143 features capturing summary statistics of head and face attributes
(Face and Head Dynamics/FHD) extracted with AFAR toolbox (Ertugrul et al., 2020,
2019), face Action Units (AU), speech behavior, and verbal features extracted with LIWC.
The models trained on this combined feature set achieved higher performance than models
that trained with only one of the modalities. Likewise, Hinduja et al. (2024) employed the
same feature set with the addition of acoustic features (eGeMAPS and COVAREP). Despite
observing a mixed effect on OCD severity prediction, their multimodal models produced
the highest performance in depression severity prediction and TEED prediction. A study
by Yoon et al. (2022) showcased that their multimodal fusion model—particularly one
that used multiply fusion operation—yielded higher precision, recall, and F1 scores than
unimodal baseline models, second only to their proposed Depression Detector architecture.
In a different study by Pranesh (2022), a model that utilizes a series of attention-based
fusion techniques on top of pre-trained unimodal models performed better than any of the
underlying models.

We posit that the superior performance was the result of the richer and more comprehensive
representation produced by multimodal feature sets. Features from one modality might
at times be ambiguous when considered alone. However, combining them with features
from other modalities can provide additional context and information that can help resolve
ambiguities, leading to better predictions. Also, by leveraging multiple sources, the
model can potentially compensate for deficiencies in any single modality, making it less
susceptible to noise or missing data in any single modality.

5.2 Interaction scenarios and anxiety expressions
The results presented in Section 4.2 points at a difference in expressiveness inherent to
the context/theme of the interaction. Our results indicate that anxiety symptoms tend to
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become more observable in an atmosphere of conflict and turbulence compared to normal
or positive ones.

This observed relationship between anxiety and stimuli presented in the environment is
similar with findings from a number of previous studies. For instance, an experiment by
Mogg et al. (2007) compared the gaze reactions of high- and low-anxious individuals when
presented with neutral, angry, fearful, and happy faces. In this study, the authors reported
the role of anxiety in producing heightened attention to threat-related cues. High-anxious
individuals were more likely to direct gaze at intense negative facial expressions, than
low-anxious individuals. However, differences in the duration of attention were noticeable,
where fearful expression tended to hold longer attention than angry expression. Likewise,
Holmes et al. (2006) found compelling evidence suggesting that neural systems involved
in sensitivity to gaze direction in fearful and angry faces can be modulated by levels of
anxiety, demonstrating that the eyes are a particularly important source of information for
guiding attention in anxious individuals. Notably, the difficulty to distinguish between the
performance of high and low anxiety individuals is directly proportional to the level of
threat and arousal evoked by the stimulus. Mennin et al. (2007); Watson (2005); Dix and
Meunier (2009); Downey and Coyne (1990) also observed associations linking depression
and anxiety with more negative reactivity. In particular, anxiety is more related to (and
strongly predicted by) heightened intensity, defined as frequently experiencing strong
negative affect and having emotional reactions that occur intensely, easily, and quickly.

The age and maturity of the participants might have also played a role in their reactivity
to the emotional context of the interaction. This is showcased in a study by van Bommel
et al. (2019) that, similar to our work, examined the emotional responses of mothers
and their adolescent children during conflict interactions. In the study, it was observed
that mothers were more likely to initiate positivity after negativity, while adolescents
tended to reciprocate negativity. Interestingly, mothers with internalizing problems, such
as depression or anxiety, expressed fewer negative emotions compared to those without
such problems. The likely explanation is that they might be less attuned to the emotional
cues of a conflict situation and therefore express less negative emotions, leading them to
express less negativity outwardly (Rottenberg and Hindash, 2015). This aligns with other
research highlighting a potential disconnect between self-reported negative emotions and
outwardly displayed negativity in individuals with depressive symptoms (Chaplin, 2006).

5.3 Advantage of the GBC approach
While the overall performance remained moderate, our GBC models consistently outper-
formed LightGBM and SVC models. This suggests some degree of compatibility between
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the modeling approach and the properties of our dataset. And while comparative analyses
between models and problem contexts often merit empirical observations, we may explore
some potential factors that might explain the patterns in our results.

5.3.1 Curse of dimensionality, kernel methods, and tree-based ap-
proaches

SVC operates in a high-dimensional implicit feature space generated by the kernel trick. In
our case, with a high feature-to-sample ratio (523 features in the concatenated early-fused
feature set vs. 100 samples) and potentially excessive transformation (e.g., up to 9th-degree
in the case of polynomial kernel), the data might have become too sparsely distributed in the
hyperplane, hindering effective classification. In contrast, being a tree-based model, GBC
was better equipped to handle non-linear relationships in our dataset that SVC might have
struggled with. Thus, for our context, GBC’s rather pragmatic strategy of systematically
improving based on losses and placing less emphasize on the inherent characteristics of
the features was perhaps more effective.

5.3.2 Hyperparameter optimization
SVC’s smaller hyperparameter space (5 parameters, compared to 7 for GBC and Light-
GBM) combined with few value options (3 per parameter) might have limited its optimiza-
tion potential. On the other hand, GBC employed fewer estimators and shallower trees
(maximum 20 estimators and depth of 6) compared to LightGBM (maximum 75 estimators
and depth of 10). This potentially helped GBC avoid overfitting the training data, leading
to better generalization. Also, GBC allowed for fewer samples per leaf node (6 samples
compared to 30 for LightGBM). This might have facilitated finer groupings with less
impurity within GBC’s leaf nodes whereas LightGBM’s leaf nodes may contained greater
impurity.

5.3.3 Early vs. late fusion
As to the performance difference between early fusion (0.29 MCC, 0.64 ROC AUC, and
0.66 accuracy) and late fusion GBC models (0.28 MCC, 0.64 ROC AUC, and 0.66 accu-
racy), we hypothesize that while both were ensembles, the early fusion model learned from
a richer feature set incorporating information from all modalities, with each base-learner
improving the performance of the previous. In contrast, the late-fusion model consisted of
base-learners/sub-models trained on individual modalities with no interconnectedness at
the training stage. This might have made it more prone to incomplete information, and
explains the slight advantage of early fusion in our case.
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5.4 Suitability of the MCC metric
The MCC metric consistently measured lower performance compared to other metrics (see
Figure 14 and 15). This is because unlike other metrics, MCC value is high only when a
model produced a high percentage of true positives (over the total number of positives) and

true negatives (over the negatives) (Chicco and Jurman, 2020). Table 4 of the previously
cited paper demonstrates that in a highly imbalanced data, a simple model predicting
the majority class can achieve high accuracy (0.9) and F1-score (0.95) despite entirely
missing the minority class. However, the MCC score (-0.03) correctly reflects this poor
performance.

Although less optimistic, MCC showed considerable agreement with most of other metrics
for relative comparisons between scenarios (also discussed in Section 4.2). This suggests
that MCC might be a stricter but potentially more informative metric, especially for
datasets with characteristics similar to ours. Moreover, we believe such characteristics
(such as small sample size, high dimensionality, and imbalanced class distribution) are
more realistic and representative of real-world applications. Additionally, unlike metrics
that consider the entire dataset, MCC’s measurement focuses on correct predictions per
class, making it much less affected by class imbalance.

5.5 Answers to the research questions
Main research question: To what extent can anxiety symptoms be detected in 9 year-old

children using unimodal and multimodal approaches?

Our experiments suggest the potential of detecting children anxiety symptoms through
multiple modalities. The symptoms seem to be more detectable in an atmosphere of
disagreement and dispute than a calm or agreeable interaction, and leveraging tree-based
classifiers on a multimodal feature set tends to yield better results. With a moderate
0.66 accuracy and 0.29 correlation from our best model (GBC model trained on multi-
modal, early-fused features from conflict interaction), we believe that there are rooms for
improvement before the system reach usage feasibility.

Sub-question 1: To what extent can unimodal methods detect symptoms of anxiety com-

pared to multimodal approaches?

We found evidence for a statistically significant advantage for models that used multimodal
features over those that learned from unimodal features (as explained in Section 4.1).
However, when the performance was averaged across multiple iterations/folds, we saw
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comparable results despite slightly lower performance from the unimodal model (as shown
in Table 5). This might imply that training on unimodal features can still yield a sufficiently
good performance. This has practical implications; for example, when there is only
sufficient resources to acquire data from one or a few modalities.

To merge the modalities, our results suggested that the early fusion strategy (merging at
the feature level) outperformed the late fusion strategy (at the prediction level). As for the
unimodal features, linguistic and facial expression seemed to have more predictive power
and yielded better results compared to other modalities. Of course, a number of other
factors also affect the quality of the training data (such as the data collection procedure,
the type of extracted features and their predictive power, the tools used to process the data,
and so on).

Sub-question 2: How do videos recorded during a conflicting and a cooperative task

compare to detect symptoms of anxiety?

The results clearly indicate the superiority of conflict interaction over cooperative or
peaceful atmospheres at eliciting anxious behavior. Although the cooperation scenario
occasionally outperformed the conflict scenario when controlled for model and feature
type, this occurrences were very few. Overall, the highest performing models from each
modality and fusion type were all trained on the conflict data.

Sub-question 3: What are the important verbal and non-verbal indicators of anxiety

symptoms?

SHAP analysis performed on unimodal models suggests that low spectral flux and ampli-
tude (loudness) of voice were the top acoustic predictors of anxiety. Spectral flux refers
to the speed at which the power spectrum of a signal changes (Giannoulis et al., 2013).
In the content of speech, anxiety is also associated with the frequent use of third-person
plural nouns, filler sounds, past-focused words, and words that convey negative emotions.
Unsurprisingly, a high usage of words that explicitly refer to anxiousness and fear also
strongly indicates the presence of anxiety. Anxiety also manifests itself through facial
expression, specifically with high activity of muscles around the mouth (AU 23, 11, 10) and
eyes (AU 43, 04). Further, it is also manifested through body language, most prominently
with frequent movements of the hands, head, and contraction of the upper body, adopting a
closed and guarded posture.

Similarly, when feature sets from different modalities were learned jointly, we found that
the top anxiety indicators are movements around the hands and mouth (more specifically
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the raising of the chin/AU 17), focusing on the past with frequent combination of filler
sounds, closing of the eyes, and upper body contraction. This implies an agreement of
feature importance. That is to say, the same features deemed highly predictive by the
unimodal models were also found to be important by the multimodal models.
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6. Limitations & future work

One limitation of this study is the relatively small sample size. Given the complex
interplay of multimodal communication, diverse interaction scenarios, and multiple feature
engineering strategies, a larger dataset would have provided a robust foundation for model
development and likely would have yielded a higher performance. While increasing sample
size typically demands substantial resources, leveraging pre-processed datasets specifically
engineered for model training could be a viable strategy to mitigate this challenge.

Another limitation may have come from the way the interactions were recorded. The
cameras were located at varying angles and distances to the subject, with some videos
capturing only part of the subject’s body. This might have contributed to inaccuracies when
extracting the body pose features. In the same way, the extraction of acoustic features
could have been optimized by isolating the subject’s voice from environmental noises as
well as other participants such as parents and moderators. Although from practical point of
view, noises are almost unavoidable in real-world engineering applications and the ability
to account for deviations from normal scenarios is a hallmark of a robust system.

Limitations might have also been inherited from the feature extraction tools. For example,
despite the high importance assigned to some of our linguistic features, the tool itself
(LIWC) is not without its limitations. LIWC is a rather crude instrument (as is admitted
on the website1) that works by calculating the presence of pre-defined words within
a text corpus. This approach has several shortcomings. First, words are analyzed in
isolation while context and nuanced meanings are prone to be neglected. Polysemous
words (words with different meanings depending on context or user) might be susceptible
to misinterpretation. To take an example from our work, we may not know with absolute
certainty whether the frequent usage of focuspast was due to the participant’s mental
state or it might had been influenced by the context of the argument between a parent
and child (i.e., the discussions likely centered around recounting past events or mistakes
rather than future plans, especially considering the age of our participants). Second,
the predefined dictionaries may miss relevant terms, including slang, jargon, and newly
emerging expressions. It is also not designed to capture non-verbal communication such
as the use of non-words (either expressed verbally or written). This is particularly relevant
to studies such as ours where non-verbal cues might carry significant meaning. Third,
mixed language use that is prevalent in multilingual communities (e.g., Singapore’s use
of four official languages) or the use of absorbed foreign language (e.g., Dutch words in

1https://www.liwc.app/help/howitworks
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the Indonesian language or French words in the English language) may pose additional
challenges for LIWC. Finally, language is constantly evolving, and LIWC dictionaries
may not always keep pace with these changes, potentially overlooking recently developed
expressions.

Future work may explore alternative methods in combining samples from multiple sce-
narios. Our approach to joint scenario analysis treated conflict and cooperation data as
separate samples. In the future, one may experiment with concatenating them at an earlier
stage, forming an extended feature vector. Subsequently, applying feature selection (e.g.,
Principal Component Analysis) might be beneficial in order to suppress the feature com-
plexity. This approach might potentially yield a better performance since the datapoints
would compactly encode information from multiple scenarios, enabling the model to learn
from all the different atmospheres of interactions more efficiently.

Future research in this topic may also experiment with alternative feature selection methods
to potentially enhance model performance. While our heuristic approach was informed
by previous studies, future works can employ other promising methods such as Principal
Component Analysis (PCA). Although the interpretation of principal components is not
straightforward, it can be approximated by analyzing the components of the eigenvectors.
As different feature importance methods yield varying results, optimizing this step could
be a topic of study on its own right (Petelin et al., 2023).

Future research could examine the plethora of both shallow and deep learning approaches,
and explore the effects of including deep features in the dataset. A number of studies have
shown varying degrees of success in applying deep features. For example, the work of Diep
et al. (2022) utilized deep acoustic (extracted with Wav2Vec 2.0) and verbal feature sets
(extracted with RoBERTa language tokenization tool) for the task of detecting depression
and anxiety. By including deep features, the authors managed to increase the average
F1 score by 3% to 4% compared to using hand-crafted features only. Similarly, Schroff
et al. (2015) employed 128 deep visual features extracted using FaceNet for training
facial recognition models. They managed to achieve around 95% to 99% accuracy on
popular face databases. Baird et al. (2020) observed a mixed effect when comparing
DEEPSPECTRUM (4,096 dimensions) deep acoustic representations with two other hand-
crafted acoustic feature sets (6,373 dimensional ComParE and 88 dimensional eGeMAPS
feature sets) for the task of detecting anxiety through vocal characteristics.

Considering the heavy dependence of a young child and the enormous influence of adults
on a child’s early development, it would be interesting to examine the role of adults in
affecting expressions of anxiety. One possibility is to include behavioral features from
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parents and caretakers as predictors in order to explore the effect of parenting styles and
interaction with caretakers on the child’s mental well-being. Furthermore, since culture
strongly influences the way in which people and institutions react to a child’s problems,
it is also known that psychopathology vary across cultures (Ryan et al., 2005). For
example, shyness and over-sensitivity in Western cultures tend to be associated with peer
rejection and social maladjustment. In contrast, for children in Shanghai, such behaviors
are associated with leadership, school competence, and academic achievement (Mash and
Barkley, 2003). Therefore, the participant’s cultural background could be included as a
variable in order to investigate its effect on the expressions of mental disorder symptoms
and mental well-being in general.
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7. Conclusion & final remarks

In this thesis, we studied the feasibility of detecting symptoms of anxiety in children using
multimodal indicators. Specifically, we extracted acoustic, linguistic, and visual data from
video recordings of parent-and-child dyads interacting in two contexts/scenarios: coop-
erative (vacation planning) and conflict (arguing). We compared multiple approaches by
varying the interaction contexts/scenarios, feature modalities, fusion types, and modeling
approaches.

We observed that anxiety symptoms were more pronounced during disagreements. They
were exhibited through various cues that agree with the psychological literature. We also
found that while training on multimodal datasets was proven beneficial, unimodal feature
sets also produced reasonable performance. Moreover, feature extraction techniques also
played crucial roles in contributing to the model’s performance.

To conclude, our study suggests that anxiety are expressed mostly through the hand
movements (and, more broadly, body posture), facial expression (more specifically, the
mouth area), and choice of words. It also suggests that training models on multimodal
features is more promising than unimodal features. Further, we recommend to collect data
from conflictual interactions as they seem to elicit anxious behavior more than cooperative
or peaceful interactions. However, these patterns might depend on a number of other
factors, such as the tools and techniques and the condition under which the data was
collected. While our models managed to produce moderate performance, we identified a
number of opportunities for improvements and recommend them for future research in this
area.
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9. Appendix

9.1 Model performance
Performance of models trained on the dataset from the conflict, cooperation, and the
combination of both scenarios are shown in Table 13, Table 14, and Table 15.
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Modality Model Accuracy F1-positive ROC AUC PR AUC MCC

Acoustic

GBC* 0.63± 0.04 0.43± 0.16 0.6± 0.06 0.63± 0.12 0.21± 0.11

SVM 0.62± 0.05 0.29± 0.11 0.56± 0.04 0.46± 0.09 0.18± 0.14

LightGBM 0.57± 0.04 0.38± 0.15 0.54± 0.06 0.55± 0.12 0.08± 0.12

Linguistic

GBC 0.49± 0.14 0.32± 0.18 0.46± 0.14 0.41± 0.07 −0.08± 0.29

SVM 0.56± 0.04 0.19± 0.14 0.5± 0.04 0.36± 0.05 −0.01± 0.09

LightGBM* 0.63± 0.1 0.51± 0.11 0.6± 0.1 0.6± 0.12 0.3± 0.2

Facial expression
(continuous)

GBC* 0.66± 0.09 0.53± 0.11 0.63± 0.08 0.55± 0.07 0.28± 0.18

SVM 0.55± 0.13 0.25± 0.21 0.5± 0.12 0.49± 0.13 0± 0.31

LightGBM 0.56± 0.09 0.41± 0.08 0.53± 0.08 0.43± 0.07 0.16± 0.21

Facial expression
(binary)

GBC 0.53± 0.05 0.4± 0.07 0.51± 0.05 0.47± 0.09 0.02± 0.1

SVM* 0.64± 0.1 0.4± 0.23 0.59± 0.1 0.52± 0.16 0.22± 0.28

LightGBM 0.54± 0.04 0.37± 0.06 0.51± 0.03 0.54± 0.1 0.02± 0.07

Body pose

GBC* 0.61± 0.1 0.45± 0.16 0.58± 0.1 0.6± 0.09 0.2± 0.2

SVM 0.52± 0.09 0.41± 0.08 0.5± 0.07 0.51± 0.09 0.02± 0.16

LightGBM 0.6± 0.03 0.39± 0.1 0.56± 0.01 0.56± 0.12 0.17± 0.07

Multimodal early
fusion

GBC*△ 0.66± 0.1 0.56± 0.13 0.64± 0.1 0.63± 0.18 0.29± 0.22

SVM 0.64± 0.09 0.47± 0.13 0.61± 0.09 0.64± 0.13 0.26± 0.2

LightGBM 0.6± 0.12 0.48± 0.17 0.58± 0.13 0.54± 0.07 0.16± 0.25

Multimodal early
fusion (binary fa-
cial expression)

GBC 0.59± 0.1 0.4± 0.1 0.55± 0.09 0.55± 0.1 0.14± 0.2

SVM 0.52± 0.07 0.15± 0.14 0.46± 0.07 0.43± 0.09 −0.1± 0.17

LightGBM* 0.6± 0.13 0.49± 0.19 0.58± 0.14 0.62± 0.18 0.17± 0.29

Multimodal late fu-
sion

GBC* 0.66± 0.16 0.54± 0.21 0.64± 0.16 0.59± 0.14 0.28± 0.33

SVM 0.53± 0.07 0.2± 0.06 0.47± 0.06 0.5± 0.11 −0.04± 0.18

LightGBM 0.64± 0.1 0.52± 0.13 0.62± 0.1 0.49± 0.12 0.26± 0.2

Multimodal late fu-
sion (binary facial
expression)

GBC 0.61± 0.1 0.49± 0.16 0.59± 0.12 0.56± 0.07 0.19± 0.23

SVM 0.59± 0.05 0.33± 0.12 0.54± 0.04 0.52± 0.17 0.12± 0.13

LightGBM* 0.63± 0.06 0.5± 0.12 0.62± 0.06 0.55± 0.08 0.25± 0.13

Table 13. Model performance on dataset from conflict scenario (averaged over 5 folds). Bold:
highest value in the respective metric. (*) This model achieved the best performance in the

respective modality, across scenarios. (△) From all the models that used the conflict scenario data,
the GBC model trained on early-fused multimodal features produced the best overall performance.
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Modality Model Accuracy F1-positive ROC AUC PR AUC MCC

Acoustic

GBC 0.55± 0.1 0.3± 0.13 0.51± 0.09 0.46± 0.13 0.04± 0.25

SVM 0.6± 0.06 0.19± 0.12 0.52± 0.05 0.54± 0.15 0.1± 0.2

LightGBM 0.52± 0.05 0.2± 0.13 0.47± 0.03 0.47± 0.1 −0.08± 0.08

Linguistic

GBC 0.43± 0.12 0.17± 0.13 0.39± 0.12 0.37± 0.09 −0.24± 0.23

SVM 0.58± 0.02 0.1± 0.13 0.5± 0.02 0.44± 0.11 0.01± 0.05

LightGBM 0.51± 0.14 0± 0 0.43± 0.11 0.32± 0.07 −0.16± 0.23

Facial expression
(continuous)

GBC 0.55± 0.05 0.32± 0.13 0.5± 0.06 0.45± 0.08 0± 0.15

SVM 0.6± 0.03 0.27± 0.16 0.54± 0.03 0.55± 0.04 0.11± 0.08

LightGBM 0.55± 0.04 0.36± 0.08 0.51± 0.04 0.48± 0.1 0.03± 0.09

Facial expression
(binary)

GBC 0.58± 0.07 0.32± 0.13 0.53± 0.07 0.47± 0.1 0.07± 0.16

SVM 0.58± 0.02 0.22± 0.16 0.52± 0.03 0.44± 0.08 0.05± 0.08

LightGBM△ 0.63± 0.04 0.34± 0.12 0.57± 0.04 0.58± 0.11 0.21± 0.1

Body pose

GBC 0.53± 0.09 0.25± 0.15 0.48± 0.08 0.42± 0.1 −0.05± 0.22

SVM 0.59± 0.04 0.11± 0.15 0.51± 0.04 0.41± 0.07 0.02± 0.14

LightGBM 0.46± 0.08 0.25± 0.09 0.43± 0.07 0.37± 0.08 −0.16± 0.14

Multimodal early
fusion

GBC 0.49± 0.08 0.23± 0.13 0.44± 0.07 0.43± 0.1 −0.13± 0.17

SVM 0.55± 0.1 0.2± 0.16 0.49± 0.1 0.41± 0.11 −0.01± 0.22

LightGBM 0.59± 0.07 0.38± 0.1 0.55± 0.07 0.52± 0.12 0.13± 0.17

Multimodal early
fusion (binary fa-
cial expression)

GBC 0.49± 0.07 0.26± 0.17 0.45± 0.08 0.42± 0.09 −0.12± 0.18

SVM 0.61± 0.07 0.25± 0.17 0.54± 0.07 0.52± 0.15 0.11± 0.16

LightGBM 0.62± 0.07 0.29± 0.2 0.56± 0.08 0.59± 0.11 0.17± 0.22

Multimodal late fu-
sion

GBC 0.52± 0.08 0.26± 0.12 0.47± 0.07 0.43± 0.08 −0.05± 0.17

SVM 0.62± 0.04 0.19± 0.16 0.55± 0.05 0.56± 0.02 0.15± 0.16

LightGBM 0.45± 0.1 0.16± 0.13 0.4± 0.1 0.44± 0.08 −0.23± 0.22

Multimodal late fu-
sion (binary facial
expression)

GBC 0.53± 0.07 0.28± 0.14 0.49± 0.05 0.43± 0.08 −0.04± 0.15

SVM 0.59± 0.02 0.08± 0.1 0.51± 0.01 0.38± 0.04 0.03± 0.03

LightGBM 0.52± 0.09 0.17± 0.15 0.46± 0.09 0.51± 0.1 −0.11± 0.24

Table 14. Model performance on dataset from cooperation scenario. (△) The overall best
performance was achieved by the LightGBM model trained on the facial expression features (with

binary AUs).
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Modality Model Accuracy F1-positive ROC AUC PR AUC MCC

Acoustic

GBC 0.55± 0.05 0.38± 0.06 0.52± 0.04 0.49± 0.06 0.05± 0.09

SVM 0.55± 0.05 0.22± 0.1 0.5± 0.03 0.43± 0.04 0.02± 0.12

LightGBM 0.61± 0.06 0.42± 0.09 0.57± 0.06 0.55± 0.1 0.18± 0.13

Linguistic

GBC 0.53± 0.02 0.23± 0.09 0.47± 0.02 0.4± 0.01 −0.07± 0.06

SVM 0.51± 0.03 0.17± 0.12 0.46± 0.04 0.4± 0.07 −0.12± 0.1

LightGBM 0.5± 0.1 0.07± 0.06 0.44± 0.09 0.36± 0.06 −0.13± 0.23

Facial expression
(continuous)

GBC 0.57± 0.04 0.39± 0.08 0.53± 0.04 0.49± 0.08 0.07± 0.09

SVM 0.55± 0.11 0.41± 0.11 0.52± 0.1 0.54± 0.14 0.06± 0.22

LightGBM 0.55± 0.05 0.39± 0.05 0.52± 0.03 0.44± 0.06 0.05± 0.07

Facial expression
(binary)

GBC 0.54± 0.08 0.36± 0.2 0.51± 0.1 0.46± 0.1 0.01± 0.23

SVM 0.61± 0.1 0.5± 0.11 0.59± 0.09 0.53± 0.11 0.19± 0.2

LightGBM 0.58± 0.02 0.43± 0.07 0.56± 0.02 0.49± 0.06 0.13± 0.04

Body pose

GBC 0.58± 0.05 0.34± 0.07 0.53± 0.04 0.48± 0.08 0.07± 0.11

SVM 0.49± 0.08 0.3± 0.13 0.47± 0.07 0.44± 0.07 −0.03± 0.18

LightGBM 0.53± 0.12 0.39± 0.17 0.51± 0.13 0.46± 0.11 0.01± 0.26

Multimodal early
fusion

GBC△ 0.62± 0.08 0.45± 0.1 0.59± 0.07 0.57± 0.1 0.2± 0.17

SVM 0.58± 0.05 0.4± 0.08 0.55± 0.05 0.51± 0.09 0.1± 0.11

LightGBM 0.57± 0.14 0.41± 0.13 0.54± 0.13 0.51± 0.16 0.09± 0.28

Multimodal early
fusion (binary fa-
cial expression)

GBC 0.56± 0.1 0.38± 0.08 0.53± 0.09 0.48± 0.1 0.09± 0.19

SVM 0.59± 0.06 0.4± 0.11 0.55± 0.06 0.53± 0.11 0.11± 0.13

LightGBM 0.58± 0.11 0.43± 0.07 0.55± 0.1 0.46± 0.11 0.14± 0.22

Multimodal late fu-
sion

GBC 0.51± 0.06 0.3± 0.13 0.47± 0.07 0.49± 0.08 −0.06± 0.16

SVM 0.5± 0.11 0.31± 0.13 0.47± 0.1 0.55± 0.14 −0.06± 0.22

LightGBM 0.54± 0.1 0.34± 0.12 0.51± 0.1 0.45± 0.06 0.02± 0.23

Multimodal late fu-
sion (binary facial
expression)

GBC 0.55± 0.02 0.39± 0.05 0.49± 0.07 0.51± 0.07 0.04± 0.05

SVM 0.55± 0.09 0.36± 0.12 0.52± 0.09 0.53± 0.11 0.04± 0.18

LightGBM 0.56± 0.12 0.39± 0.15 0.53± 0.12 0.49± 0.03 0.08± 0.27

Table 15. Model performance on dataset from both conflict and cooperation scenario. (△) The
GBC model trained on early-fused multimodal features produced the best performance.
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9.2 Confusion matrices
Below are confusion matrices of the best-performing models trained on features from
the conflict (Table 16), cooperation (Table 17), and the combination of both scenarios
(Table 18).

Predicted / Actual Positive Negative Sum

Positive 22 15 37

Negative 19 44 63

Sum 41 59

Accuracy 0.66

Precision 0.59 0.7

Recall 0.54 0.75

F1 0.56 0.72

Table 16. Confusion matrix of the best model trained on the conflict scenario

Predicted / Actual Positive Negative Sum

Positive 10 6 16

Negative 31 53 84

Sum 41 59

Accuracy 0.63

Precision 0.63 0.63

Recall 0.24 0.90

F1 0.35 0.74

Table 17. Confusion matrix of the best model trained on the cooperation scenario
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Predicted / Actual Positive Negative Sum

Positive 30 23 53

Negative 52 95 147

Sum 82 118

Accuracy 0.63

Precision 0.57 0.65

Recall 0.37 0.81

F1 0.45 0.72

Table 18. Confusion matrix of the best model trained on both the conflict and cooperation scenario.
Note that in the combined scenario, datasets from the two scenarios are concatenated, doubling the
number of samples. Thus normalization is required when making side-by-side comparison between

the number of predictions.

9.3 Contingency tables
Below are contingency tables used in McNemar’s tests to compare the performances
between various scenarios.

Conflict-positive Conflict-negative

Cooperation-positive 7 9

Cooperation-negative 30 54

Table 19. Contingency table between conflict and cooperation scenario.

Conflict-positive Conflict-negative

Combined-positive 35 3

Combined-negative 4 58

Table 20. Contingency table between conflict and combined scenario.
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Cooperative-positive Cooperative-negative

Combined-positive 12 27

Combined-negative 4 57

Table 21. Contingency table between cooperative and combined scenario.

Unimodal-positive Unimodal-negative

Multimodal-positive 20 19

Multimodal-negative 7 54

Table 22. Contingency table between the predictions of the best unimodal model and multimodal
model.

9.4 Hyperparameters
Optimal hyperparameter settings of the best performing model of each modality are shown
in Table 23.
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Model Parameter

Unimodal acoustic (GBC) learning rate 0.25, max. depth 4, max. features
0.8, min. samples leaf 6, min. samples split 2,
num. estimators 5, subsampling rate 0.5

Unimodal linguistic (LightGBM) lambda L1 0.1, lambda L2 0.1, learning rate
0.1, max. depth 4, min. data in leaf 15, num.
estimators 15, num. leaves 15

Unimodal face cont. AUs (GBC) learning rate 0.25, max. depth 6, max. features
0.9, min. samples leaf 2, min. samples split 6,
num. estimators 10, subsampling rate 0.5

Unimodal face bin. AUs (SVM) C 3, degree 2, gamma auto, kernel polynomial,
shrinking True

Unimodal body pose (GBC) learning rate 0.2, max. depth 2, max. features
0.8, min. samples leaf 6, min. samples split 2,
num. estimators 10, subsampling rate 0.5

Multimodal early fusion cont. AUs
(GBC)

learning rate 0.25, max. depth 4, max. features
0.6, min. samples leaf 6, min. samples split 2,
num. estimators 20, subsampling rate 0.85

Multimodal early fusion bin. AUs
(LightGBM)

lambda L1 0.2, lambda L2 0.1, learning rate
0.2, max. depth 4, min. data in leaf 15, num.
estimators 30, num. leaves 15

Table 23. Hyperparameters of the best performing model of each modality.

Optimal hyperparameter settings of the best performing model of each scenario are shown
in Table 24.

81



Model Parameter

Conflict - Multimodal early fusion
cont. AUs (GBC)

learning rate 0.25, max. depth 4, max. features
0.6, min. samples leaf 6, min. samples split 2,
num. estimators 20, subsampling rate 0.85

Cooperation - Unimodal face bin.
AUs (LightGBM)

lambda L1 0.05, lambda L2 0.05, learning rate
0.1, max. depth 4, min. data in leaf 30, num.
estimators 15, num. leaves 15

Combined - Multimodal eearly fu-
sion cont. AUs (GBC)

learning rate 0.2, max. depth 4, max. features
0.6, min. samples leaf 2, min. samples split 2,
num. estimators 20, subsampling rate 0.85

Table 24. Hyperparameters of the best performing model of each scenario.
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