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Abstract

An excess amount of hand luggage is a growing issue for airlines, causing boarding delays
and passenger dissatisfaction. This thesis investigates the factors that cause excess hand luggage
and presents a model that predicts the amount of excess hand luggage using machine learning.
Various models have been tested on flight data from KLM Royal Dutch Airlines including Linear
Regression, Decision Tree Regression, Random Forest Regression and XGBoost. These models
have been compared to the heuristic currently in use by KLM.

The results indicate that all Regression models gave a big improvement over the heuristic.
The best-performing model is the Random Forest Regressor achieving an R2 value of 0.83 on the
intercontinental flight data. To improve the prediction for gate agents, a variation of the model
estimates the amount of hand luggage that should be collected at each collection point. This
addition decreased the Mean Absolute Error of the gate collection from 4.58 to 1.65. For KLM
this means that, using the models, planning and assignment tasks become easier since it is known
how much work needs to be distributed over the gate agents.

Despite these promising results, some challenges remain. The first challenge is the lack of a
feedback loop from the cabin which can correct the model. Currently, the true target is the number
of hand luggage pieces collected at the outstations or by the check-in agents or gate agents. Another
challenge is the model drift. While still performing much better than the heuristic, results decrease
in the next year. Future research could explore the use of quantile models to better manage
prediction uncertainty.
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List of Terms

Bax Baggage. Bax is a commonly used abbreviation for (multiple pieces of) luggage used in the
travel industry.

Cabin The space in the aircraft where passengers sit.

EUR EURopean flights. These flights are done using narrow-body aircraft with one aisle. These
flights do not necessarily always have a destination that lies in Europe, the Schengen zone,
or the European Union.

Flight leg A Flight leg is the journey of an aircraft from one airport to another without any stops.
A flight can consist of multiple flight legs (A → B,B → C).

ICA InterContinentAl flights. These flights are done using wide-body aircraft with two aisles.
ICA flights do not necessarily have to go to another continent. As long as the flight is done
using a wide-body aircraft, it is an ICA flight.

KLC KLM Cityhopper. A daughter company of KLM which flies with smaller Embraer aircraft
(Embraer 175, 190, 195-E2).

KLM KLM Royal Dutch Airlines. The oldest airline in the world which has its hub at Amsterdam
Airport Schiphol. KLM is part of the Air France-KLM group and a member of the SkyTeam
airline alliance.

Outstation In the context of this thesis, an outstation is an airport of a passenger’s previous leg.
If this thesis talks about flight B → C and passenger travel from A → B → C, airport A is
an outstation.

Passenger leg A flight leg of one passenger. If a passenger flies from A to C via B, it has two
pax legs: A → B and B → C.

Pax Passengers. Abbreviation of passengers used in the travel industry.

Transfer A transfer passenger is a passenger who traveled by plane to the departure airport and
did not pass check-in.

Transit Transit passengers are passengers who stay on the same aircraft for multiple flight legs.
For flight leg B → C, a passenger who travels on the same aircraft from A → B → C, is a
transit passenger.
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CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

Hand luggage is an increasing problem for airlines. Each year, more passengers carry a large
amount of carry-on luggage. Even if all passengers adhere to the rules about the size and the
quantity of hand luggage, there is a surplus. Each aircraft has a certain amount of space for hand
luggage in the overhead bins, but sometimes there is not enough space. Even the Airbus A330
does not fit all the hand luggage of a flight that is fully booked with US passengers [3]. This means
that airlines need to find ways to prevent such a surplus. One way many airlines are solving this
issue is by collecting hand luggage, mostly trolleys, from passengers and putting them in the hold
of the aircraft.

With all the overflows, airlines have created a procedure for collecting hand luggage. For
example, Transavia let people board until they have counted 70 trolleys. After the limit is reached,
Transavia starts collecting all the trolleys from the passengers still in the queue. [14].

KLM Royal Dutch Airlines has another procedure: before the boarding starts, they look through
the queue and estimate whether they need to collect hand luggage, and how much. KLM Royal
Dutch Airlines starts collecting from the passengers with the cheapest tickets. This procedure does
not always work flawlessly, there may still be too much hand luggage on the aircraft. When there
is a hand luggage surplus, and the gate agents do not collect enough hand luggage at the gate, gate
agents need to go into the plane to label the excess trolleys and move them to the hold. While the
gate agents are picking up the excess trolleys, communication is done over a walkie-talkie with a
gate agent still at the gate to link the luggage to the right passenger. When the excess trolleys
are picked, they need to be moved outside to the ground platform to be moved into the hold of
the aircraft. These manual retrievals almost always cause the aircraft to have a delayed departure.
That is why KLM Royal Dutch Airlines wants to collect the hand luggage as early as possible
during the process. This research wants to create a model that can indicate if hand luggage needs
to be collected to prevent an overflow, and how much hand luggage needs to be collected.

KLM Royal Dutch Airlines, henceforth called KLM, wants to improve its hand luggage estima-
tion because looking through the queue does not always give an accurate estimation: People may
arrive later, or a queue might be crowded in which case the gate agents can not scan through the
queue. The desire is to have a prediction before the boarding starts. This prediction should tell
the gate agents how many hand luggage pieces they need to collect to prevent a surplus inside the
aircraft. Using this prediction, KLM wants to prevent an overflow in the aircraft itself.

Another use case for the prediction is to use the model in a flow network. If flight B → C is
expected to be very busy, KLM wants to collect the hand luggage as early as possible. Passengers
on flight B → C may come from another KLM flight (A → B). KLM ultimately wants to
already collect the hand luggage at station A to prevent delays at station B. The current situation
sometimes causes chaos at station B because of the large number of passengers that have to board
in a short amount of time. To be able to create this flow network, an accurate prediction model is
needed for intercontinental and KLC flights.
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CHAPTER 2. LITERATURE OVERVIEW

Chapter 2

Literature Overview

2.1 Hand Luggage overflow prevention

The aviation industry has a lot of published research. Many papers have been written about the
best boarding procedure to minimize boarding time for different amounts of hand luggage per
passenger [2], [8], [11], [13]. Less research has been done into (the prevention of) hand luggage
overflow.

At KLM, two studies have been done into (the amount of excess) hand luggage. In 2015,
Xander van der Broek studied the hand luggage problem at KLM [3]. His research dived into the
causes of the hand luggage surplus together with possible solutions.

Van der Broek surveyed 1150 people to analyze the trolley factor, the number of passengers
that bring a trolley compared to the total number of passengers on a flight, based on different
factors. In the survey, he asked people about the duration of their stay, the goal of the trip, and
whether they had hand luggage or not. The survey showed that nationality, duration of stay, the
goal of the trip, and whether the person checked baggage before were important factors. The
exploratory survey in which the hand luggage of 150 passengers was weighed also showed that 17%
of the respondents’ hand luggage pieces exceeded the allowances and could have been checked.

In his study, Van der Broek focussed on European flights. He observed that the KLM Cityhop-
per aircraft (Embraer planes) had another boarding procedure which did not delay the aircraft by
much. When passengers of such a cityhopper were asked to check their hand luggage, they could
carry their trolley to the aircraft and leave it at the bottom of the stairs. After landing, they could
retrieve their hand luggage immediately after disembarking the aircraft. For the passengers, this
was a big advantage because this meant that they did not have to wait for their hand luggage at
the baggage belt.

One of the prediction solutions Van der Broek introduced is a heuristic for calculating the hand
luggage surplus. His report stops at the introduction of the equation, so no further information
about the equation is available. Within KLM, some variant of the heuristic is being used for
predicting the number of hand luggage pieces that need to be collected on intercontinental flights.
The heuristic in the report shows the following structure:

HLsurplus = #bookings ∗ trolleyfactor +margin− airplanecapacity (2.1)

Vico Heinrich continued the research of Van der Broek [6]. His research focussed on creating
a machine learning model for estimating the amount of hand luggage on the EUR flights (Boeing
737 aircraft).

In the exploration of the data, Heinrich found that the following features had a high (> 0.3 ab-
solute Pearson correlation coefficient) correlation with the target: TotalPax (passengers), TotalBax
(bags), TotalLocalPax (not transfer passengers), scheduledFlightProcessDuration, and whether it
is a departure from Southern Europe.

After the data research, Heinrich compared different types of models. After testing all models,
he found that the random forest regressor, MLP, and XGBoost models gave the highest R2 values.
Other models with an R2 value above 0.60 were: Linear Regression, SVR, Ridge regression, GBR,
Bagging, and SGD. For all tested models, Heinrich used the default settings since there was not
enough time to do hyperparameter tuning. In his final model, Heinrich combined the 3 best-
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2.2. AIRCRAFT TYPES CHAPTER 2. LITERATURE OVERVIEW

performing models into an ensemble. After testing, the weighted-averaged voting regressor gave
the highest R2 value.

A public survey on the hand luggage problem asked respondents what they thought about
different solutions [12]. The survey showed that 56% of the respondents traveled with only carry-
on luggage. Research showed that stowing hand luggage in the overhead bins is the most time-
consuming process when boarding [5] When the respondents were asked what their opinion was for
an automated system onboard that would automatically store their carry-on luggage somewhere,
83% gave an affirmative response. On the other hand, only 51% accepted the consequence that,
in the case of an automated system, there would be limited access to their stored items. This
tells us that passengers are willing to hand in their hand luggage, as long as they are not picked
individually and other passengers are not.

Milne and Kelly did research into new methods to board the aircraft. In their conclusions,
they mentioned the move within the airline industry towards charging fees for carry-on luggage.
Allegiant Air charges a lower fee for carry-on luggage when paid online prior to arrival at the
airport [7]. This stimulates passengers to register their hand luggage before their arrival at the
airport. Using this method, airlines can get more accurate information about the amount of carry-
on luggage on a flight. They also state: "If an airline does not want to use fees for this purpose, the
airline could estimate carry-on luggage from other known information. For example, a passenger
departing Monday morning and returning the same day/night can be expected to have less carry-
on luggage than a passenger departing that same Monday morning who is returning four days later
without checking a bag.”

2.2 Aircraft types
One of the factors Heinrich analyzed is the type of aircraft. Van der Broek collected the trolley
capacity for all aircraft types that KLM uses. This information is shown in Figure 2.1 where the
percentage of trolley spaces per seat is shown. The black line indicates the average trolley factor
for the USA [6]. The number above each bar shows the exact number of trolley spaces that that
type of aircraft can store. The figure shows that an Airbus A330-300 has a higher relative trolley
capacity than a Boeing 777-300 while both have space for 191 trolleys. (Figure 2.1). The figure
shows that none of the aircraft types used by KLM have enough space to store all the trolleys
brought by passengers, assuming that the trolley factor on a KLM flight is the same as the trolley
factor in the USA.

Figure 2.1: Trolley capacity per aircraft type.
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Chapter 3

Thesis outline

3.1 Problem description
The problem of estimating the amount of hand luggage that needs to be collected can be split
up into several subproblems. One of the big questions is what we want to estimate. The overall
problem is that a flight could have a hand luggage overflow.

At several points in the flight process, the hand luggage can be collected. However, 70% of the
passengers on a flight (B → C) are transfer passengers (A → C) who do not pass the check-in
at the departure airport of their current flightleg (airport B). Those transfer passengers could
transfer from another airline such as Delta or AirFrance. In figure 3.1 from Van der Broek these
different flows of hand luggage can be observed.

KLM wants to solve the hand luggage problem by collecting as early as possible. If the model
only predicts when the passengers are already waiting at the gate, it is too late for KLM. The model
should take into account how much hand luggage is collected at the check-in and the outstations.
If in an early stage it is known that there is a great surplus of hand luggage, KLM can decide to
collect more at the check-in stage by blocking boarding passes.

Figure 3.1: The flow of different types of Hand Luggage (HL), Checked Luggage (CL) and other
types of luggage. Image from Van der Broek [3].
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3.2. RESEARCH QUESTION CHAPTER 3. THESIS OUTLINE

3.2 Research question
Combining all these problems, the following research question arises:

How can a predictive model be developed and optimized, to accurately forecast the
total number of hand luggage pieces that have to be collected for KLM intercontinental
and KLM Cityhopper flights?

The prediction tool should be able to predict the number of hand luggage pieces that need to
be collected given different criteria. In the first place, the model should be able to estimate the
number of hand luggage pieces that have to be collected for days without big disruptions. When
the model has a good performance for ‘normal’ days, the prediction for flights with disruptions
will be studied. The research question can be split out into the following questions:

1. What is the target entity for this problem?

2. How can a prediction model solve this problem?

(a) What specific variables (both available and derivable) are most predictive of the number
of hand luggage pieces collected for KLM flights departing from Schiphol Airport?

(b) What specific variables (both available and derivable) are most predictive of the number
of hand luggage pieces collected for KLM flights arriving at Schiphol Airport?

(c) Among various machine learning models, which model minimizes prediction error, es-
pecially in terms of avoiding large prediction errors?

3. How does the collection rate (how much hand luggage is being collected) at outstations, affect
the predictive accuracy for flights with more than 70% transfer passengers?

4. How can the model be made more robust to handle special events such as the Jewish Passover
feast, or the Chinese New Year?

5. What is the effect of using the observed hand luggage collection at the check-in and the
outstations as a feature in the model on the accuracy at the gate?

Public Version 8



Part II

Data Analysis

9 Public Version





CHAPTER 4. CURRENT HEURISTIC MODEL

Chapter 4

Current heuristic model

4.1 Functionality
Currently, KLM uses a simple model to estimate the total number of excess hand luggage pieces.
This model is based on Van der Broek’s proposed calculator [3]. The model is managed by someone
from KLM who tunes the model by hand based on feedback from the gate agents. The model works
like a linear regression model in the sense that features get multiplied by a certain factor to calculate
the total amount of excess hand luggage [9]. The following features control the models output:

Aircraft type & Route category The first feature is a correction for each aircraft type for all
flightlegs. Per city pair (pair of 2 airports), each aircraft type has an indication how much
hand luggage should be collected as a basis.

Number of Skyprio pax Per x passengers, one additional excess hand luggage item is added to
the prediction.

Point of Sale correction (nationality) Per x passengers, with point of sale in certain countries,
add one additional item to the amount of hand luggage pieces that should be collected. For
other selected countries, decrease the prediction by one for every x passengers that buy a
ticket from one of the selected countries.

Season correction (winter coats) In the winter period, collect one hand luggage piece more
for every x passengers.

Amount of checked in hold baggage Calculate the checked in bag factor: ncheckedbaggage

nacceptedpassengers
.

A lower factor means that fewer bags are checked which means more hand luggage can be
expected. A correction factor gets multiplied by the number of accepted passengers.

Correction for open seats For every x open seats, decrease the prediction by 1.

Restrict the maximum prediction

4.2 Performance
To measure the performance of the current model, the data from 2023 is used. The predicted
total amount of excess hand luggage has been compared with the total number of collected hand
luggage pieces. Table 4.1 and Figure 4.1 show the results of the current model.

The table shows a negative R2 for
both ICA (-1.63) and KLC (-1.17). Section 11.4 will further discuss the negative R2 scores. The
mean absolute error for the current model is ≈ 20 for ICA flights and ≈ 6 for KLC flights. This
means that, on average, the model has a prediction error of 31 for ICA flights. When splitting
the MAE into a positive and a negative error, the analysis shows that -when the error is positive-
≈ 23 hand luggage pieces get collected more than the predicted number for ICA flights. When the
error is negative, on average ≈ 19 less hand luggage pieces get collected than predicted. For KLC,
these numbers are ≈ 7 when underestimating and ≈ 5 when overestimating. The average error for
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each aircraft is around 10% of the trolley capacity (Table 4.2). For the Embraer 195-E2 (295), the
model shows an underestimation of about 19%.

Table 4.1: This table shows the results of the current model for ICA and KLC flights. The results
are from flight data from 2023.

ICA KLC
R2 -1.63 -1.17

MAE 20.28 6.09
RMSE 27.72 8.22

Figure 4.1: Bin2d plots which show the prediction results of the current model for both ICA and
KLC flights in 2023. The count tells how many flights have the score of that square.

(a) Predictions for ICA flights. (b) Predictions for KLC flights.

Table 4.2: This table shows the average over- and underestimation of the current heuristic model.
The percentages show the MAE in relation to the trolley capacity of the aircraft type.

Aircraft type Overestimated Underestimated
MAE % MAE %

Boeing 777-200ER 21.25 % 25.61 %

ICA

Boeing 777-300ER 24.61 % 34.11 %
Boeing 787-9 14.51 % 16.78 %
Boeing 787-10 15.29 % 19.28 %
Airbus A330-200 19.00 % 18.54 %
Airbus A330-300 15.86 % 18.12 %

Embraer 175 6.04 % 4.88 %

KLC
Embraer 190 4.86 % 6.53 %
Embraer 195-E2 3.29 % 10.33 %
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Chapter 5

The KLM data

For this research, flight data from KLM will be used to train and test the models. For each flight,
KLM stores data about the flightleg, the passengers, and the baggage. The level of observation is
a flight leg. For each flightleg, a prediction will be made. The model will be trained and tested
on 2023 data, since 2020-2022 is not representative due to the coronavirus, and KLM only started
registering the hand luggage collection in the second half of 2019. Additionally, data up until May
2024 will be used to test how the models perform in future years. From the 2023 data, a random
split will be made for the training (70%) and test (30%) set.

5.1 Censored data

The 2023 dataset stores all hand luggage that is collected at the outstations, check-in, and the
gate. What is not recorded, is the number of empty trolley spaces in the aircraft bins. The stored
data is count data, meaning that all variables are ≥ 0. This means that only data is available when
hand luggage is collected. When no hand luggage is collected, it is unknown if it is a perfect fit or
if there is still space left in the aircraft. Figure 5.1 shows the data from 2023 for the number of
trolleys collected at the gate. This figure shows that in most cases 0, or only a few hand luggage
pieces were collected.

When no collected hand luggage pieces are registered, gate agents don’t know how much space
there is left in the overhead bins of the aircraft. The gate agents check the passengers while
boarding and will not know the situation inside the plane. The gate agents only will get feedback
if they do not collect enough hand luggage. When they collect too few pieces, the boarding process
is delayed because hand luggage pieces have to be moved from the plane to the aircraft’s hold. On
the other hand, if the gate agents collected too much, they would not know. It could be the case
that there is space left for 10 more trolleys, but that information will not reach the gate agents.
This means that even without a prediction for the gate agents, the data is censored.

Figure 5.1: Histogram showing the number of hand luggage pieces collected at the gate for all
intercontinental and KLC flights in 2023.

(a) Plot for ICA flights. (b) Plot for KLC flights.
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5.2. FLIGHTLEG DATA CHAPTER 5. THE KLM DATA

To formalize this, let y∗ denote the number of pieces that should be collected to get a perfect
fit of the hand luggage in the aircraft where no space is left in the overhead bins. The value of y∗ is
not always observed and is therefore sometimes called a latent variable. Let yc denote the number
of pieces of hand luggage that have been collected at or before the gate. We observe y∗ whenever
y∗ > yc because then there won’t be enough room in the plane and additional hand luggage has
to be collected from the cabin. On the other hand, if y∗ ≤ yc, then we observe yc, because there
might still be room in the aircraft, but this is not noted. This has consequences for the model
since the amount of room left is not known. If the censoring is not taken care of, the assumption
has to be made that the amount of space left, is always 0.

All in all, we can summarize the situation as follows. Let y denote the observed number of
pieces of hand luggage collected. Then we have

y =

{
y∗ if y∗ > yc
yc if y∗ ≤ yc

(5.1)

5.2 Flightleg data
A flight leg is a flight from one airport to another airport, with no stops in between. Flight
A → B → C will result in 2 flight legs: A → B and B → C.

5.2.1 Correlated features
The first analysis that is done is Pearson’s and Spearman’s correlation. The results (Figure A.1)
show that for ICA flights arriving at Schiphol, the percentage of local (departing) passengers has
a negative correlation of ≈ −0.5 with the number of hand luggage pieces collected at outstations.
This means that on flight B → C more local passengers (departing from B) will result in less hand
luggage collected at outstations (A). This is expected because more local passengers means that
there are fewer transfer passengers from whom hand luggage can be collected.

A correlation of ≈ 0.75 can be observed between the percentage of transit passengers and the
amount of hand luggage collected at outstations (Figure A.1). This is an observation that can be
explained by the fact that transit passengers are passengers who continue their flight on the same
flight number. This is the case for some destinations where KLM flies from A → B → C with
the same aircraft. Passengers who fly from A to C, are transit passengers on flight B → C. This
means that hand luggage that is collected at station A from passengers who fly to airport C, is
registered as hand luggage collected at outstations for flight B → C.

For intercontinental flights departing from Schiphol, two expected correlations can be observed:
a correlation of ≈ 0.6 between the percentage of local passengers and the amount of hand luggage
collected at check-in, and a negative correlation of ≈ −0.6 between the percentage of transfer
passengers and the amount of hand luggage collected at check-in. This is explained by the fact
that at check-in, hand luggage can only be collected from local passengers. The same correlation
can be observed between the local/transfer percentage and the amount of hand luggage collected
at outstations.

Correlation matrices A.4 and A.3 show that there are no features with significant correlated
besides the negative correlation between the percentage of local and the percentage of transfer
passengers. The distribution of passengers is spread between local, transfer, and transit passengers.
This large negative correlation is mostly due to the lack of transit passengers which results in the
passengers being local or transfer.

5.2.2 Number of passengers on board
It feels intuitive that there should be a relation between the number of passengers on board and
the amount of hand luggage because each (intercontinental) passenger has a free trolley included.
The maximum amount of luggage that passengers can bring depends on the destination. For some
destinations, passengers can bring 2 pieces of check-in luggage and 1 piece of hand luggage. For
other destinations, passengers can only bring 1 piece of check-in luggage together with 1 piece of
hand luggage. When looking at the hand luggage collection, a flat line at y = 0 would be expected
when plotted against the number of passengers on board for flightlegs that are less than (< 80%)
full. The data contradicts this. The lower right plot in Figure 5.2 corner shows that hand luggage
collection is already observable from x = 0. This phenomenon can be explained by the check-in
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(upper left) and outstations (lower left) plots. These two plots show that there is a correlation
between the number of passengers and the number of hand luggage pieces collected. The upper
right plot shows minimal hand luggage collection when there are less than 275 passengers on board.
This proves our hypothesis that there is little hand luggage collection at the gate when a flightleg
is not full. This analysis increases the complexity of the research since KLM wants to reduce the
gate collection by collecting at the check-in or the outstations, but still wants to know how much
hand luggage to collect. If there were no gate collection -and there is voluntary collected hand
luggage at the check-in and the outstations- the model would be trained to start collecting hand
luggage. The model does not know if hand luggage is collected voluntary or involuntary. This
means that the model can predict to collect hand luggage even when it may not be necessary.

Figure 5.2: Number of hand luggage pieces collected for Boeing 777-200ER in 2023.

5.3 Passenger data

5.3.1 Airport behaviour

There is a big correlation visible between the amount of hand luggage collected and the ar-
rival/departure airport. When training a simple decision tree, the arrival and departure airports
were the most important features. For KLM this is unwanted behaviour: these features should not
be the most important features since KLM could decide to fly to a new destination. The flights to
these new airports need a prediction too.

Besides that, the influence was so big that other features such as the number of passengers
on board were not used for the prediction. This is unwanted behaviour because automatically
predicting an excess hand luggage amount of 200 when flying to destinations for which a lot of
hand luggage gets collected is unwanted. Otherwise, if a flight is half empty, or when the passenger
composition is different, the model would still base its estimation on which airport the aircraft is
departing/arriving from. The resulting model would not be robust.
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5.3.2 Journey purpose

The KLM dataset contains the journey purpose of passengers on their journey. For 2023 ICA
flights, are business flights, are leisure flights, and for the purpose of the journey
is not registered. Pearson and Spearman correlation calculations have been run to measure the
performance of these potential features. Figure 5.3 shows that there is no correlation between
the purpose of the journey and the amount of hand luggage collected on ICA flights. This result
contradicts the results from [3] which states that the goal of the trip is one of the four big factors.
This might be due to the limited amount of journey purposes. The data only accounts for 2 types:
leisure and business. Van der Broek held a survey which might have led to more possible answers
to the question about the goal of the trip.

Figure 5.3: The figure shows the Spearman correlation results between the number of pax with
journey purpose x and the number of hand luggage pieces collected. The data used is the flight
data in 2023 for ICA flights.

5.3.3 Passenger nationality

Another feature that KLM stores about their passengers is the nationality of the passenger. This
might be an interesting feature since gate agents state that passengers from some countries bring
more (hand) luggage with them than passengers from other countries. This information is only
useful with the assumption that all passengers from all nationalities have the same chance to be
selected for handing in their hand luggage. The Spearman correlation results in Figures A.9 and
A.10 show that there is a correlation between the nationality of the passenger and the amount of
hand luggage collected for some countries.

The computed correlations show that there is a big difference between flights departing and
arriving at Schiphol International Airport. For flights departing from AMS, all four different types
of collected hand luggage appear in the graphs (Figures A.9a and A.10a). In Figure A.9a, the
country with the most correlation with the check-in hand luggage collection is .
This can be explained by the fact that 70% of KLM passengers are transfer passengers, which means
that they don’t leave the airport. As a result, most passengers passing check-in are passengers who
start their journey at that airport. These passengers will mostly be citizens or tourists.

In Figure A.10a, the highest bar shows a correlation of 0.20 between the number of
passengers and the number of hand luggage collected at the gate. This is a correlation gate agents
agree with. The gate agents often see passengers coming from a flight with the company

and continuing their journey with KLM. has different hand luggage allowances than
KLM. Passengers flying with can bring bigger hand luggage trolleys that fit on their aircraft,
but not on KLM aircraft. Coming from another flight means that they only pass the gate before
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embarking on their next flight leg. This results in the gate as the only option to collect their
oversized hand luggage.

The flights arriving at Schiphol show more countries with a correlation with the amount of
hand luggage collected at the gate (Figure A.9b)
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5.4 What is the target?
A problem that needs to be solved is choosing the right target for our model. As analyzed in the
previous sections, multiple variables are related to how much hand luggage is collected. However,
for each of those variables, there are advantages and disadvantages to setting that variable as a
target.

total This is the total amount of hand luggage pieces collected during the entire process for a
flight. It includes pieces collected at the check-in and at the gate, but also pieces collected
at outstations. Outstations are the airports where transfer passengers come from before
boarding the current flight.

gate When the gate agents expect a lot of hand luggage pieces, they will collect hand luggage at
the gate. The total number of pieces collected at the gate is recorded in this variable.

Intuitively the gate-variable would be picked: We want to predict whether hand luggage needs
to be collected at the gate, or not. However, this does not take into account that hand luggage
is already collected at the check-in and the outstations. If a lot of hand luggage is collected at
outstations, the gate agents should have a lower prediction.

On the other hand, if we use the total number of HL pieces collected, other errors occur. The
advantage of predicting the total amount of HL that needs to be collected in the entire process
is that no other variables influence the predicted value. The disadvantage is that training on the
total amount of collected pieces can create expectations from outstations. Let’s use an example
to explain this problem: All transfer passengers on our current flight (B → C) come from many
European flights (A → B). For KLM, a European flight is a flight that is flown with a narrow-body
aircraft (single aisle) with often limited space for hand luggage. This causes a lot of hand luggage
collection on flight A → B. The total amount of hand luggage collected at outstations for flight
B → C is high because of flight A → B. This causes the total amount collected to increase as well.
The problem is that our target now is a big value while all those hand luggage pieces easily could
have fitted in the aircraft on flight B → C. Because of the count data, the model does not know
that there is still plenty of space left in the aircraft on flight B → C.

This is the reason that finding the right target is one of the subproblems.
For this research, the decision is made to predict the total number of hand luggage pieces that

need to be collected for a given flight. The reason for this is that KLM eventually wants to stop
to collect hand luggage at the gate. Collecting hand luggage at the gate often makes passengers
uncomfortable because they do not want to be the person from whom hand luggage is taken. In the
future, KLM wants to only collect hand luggage that exceeds restrictions at the gate. Currently,
one of the strategies is by blocking the boarding passes as earlier explained. For these strategies,
KLM still needs to know how much hand luggage to expect and how many boarding passes need
to be blocked. That is why this research will focus on predicting the total amount of hand luggage
that needs to be collected. The model should be able to estimate the right amount of hand luggage
that should be collected for a flight without leaving too much empty space in the overhead bins.

The decision to predict the total amount of hand luggage still leaves the outstation’s hand
luggage problem. In this research, the effect of outstations will be studied when predicting how
much hand luggage needs to be collected.
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Chapter 6

Other datasets

This chapter discusses data from other sources than KLM that are used in this research.

6.1 Airports, Countries and Continents
When a classification tree was trained on the 2023 data, the first split was on the (one-hot) boolean
feature that the flight departed from some airport. Not only was the top feature split on the airport,
but all splits (except the bottom one or two) were on departure and arrival airports. This showed
the importance of the origin and destination airports. This relation can be observed in figure B.1,
where for each (IATA) airport code a box plot is plotted for the number of collected hand luggage
pieces.

However, for KLM it is not desired to use the departure or arrival airport because it is -while
being correlated- not the cause for the amount of collected hand luggage. A model in which (nearly)
all splits are done on the departure or arrival airport is not robust to adding new destinations. A
solution to this problem would be to use the country or the continent of the airport as a feature.
Using the country as a feature was also not a good option because most countries only have one
airport that is a KLM destination. This leaves the continent as the other option. The flight
data does not store the country or continent of airports, so a dataset is used to perform this
conversion. The dataset is from 2019 and was created by Andrian Zinovei [15]. In figure B.2, the
number of hand luggage pieces collected for each continent is plotted. It can be observed that
there are differences in hand luggage collection between continents. The continent feature will be
used instead of the country or the airport features.

6.2 National Holidays
When talking to the gate agents, one of the common things heard was that national holidays have
a large impact on the amount of excess hand luggage. The python package national holidays [1]
was used to retrieve a dataset of the worldwide national holidays. The following features have been
created:

• days until a national holiday at departure country

• days after a national holiday at departure country

• boolean value whether the current date is a national holiday at the departure country

• days until a national holiday at arrival country

• days after a national holiday at arrival country

• boolean value whether the current date is a national holiday at the arrival country

These six features have been tested for correlation with the target variable. Figure B.3 show a
positive correlation of ≈ 0.2 between the number of days since a holiday at the departure country
and the number of collected hand luggage pieces at outstations. This means that more days since
the last holiday means that more hand luggage gets collected at the outstations. However, the
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same is true for the days until a holiday and the amount of hand luggage collected at outstations
which shows a Spearman correlation score of ≈ 0.3 for ICA and ≈ 0.2 for KLC. This could mean
that, at the outstations, the most hand luggage gets collected between two holidays.

6.3 Dutch School Holidays
When speaking to gate agents, they often see the school holidays as a busy period. Not only does
KLM perform the most flights during the school holidays, but it is also the period that a lot of
hand luggage gets collected. The company has the option to block boarding passes for some tickets
if a hand luggage overflow is expected, to force these passengers to check in their hand luggage.
This option is used during the busy summer times. To analyze the possible correlation between
the Dutch school holidays and the hand luggage collection rate, an additional library is used to
retrieve these school holidays. Felix Claessen contributed to the workalender Python package by
adding the Dutch school holidays [4]. To test the correlation, the same features were tested as for
the national holidays in the previous section (Section 6.2). The highest correlation is a Spearman
correlation coefficient of ≈ 0.3 between the boolean variable whether the current date is a holiday
at the departure country and the amount of hand luggage collected at outstations (Figure B.4a).
A smaller Spearman correlation coefficient of ≈ 0.1 can be seen for the total amount of collected
hand luggage. Figure B.4b shows a positive Spearman correlation value of ≈ 0.2 for the number of
collected hand luggage pieces when the arrival country (The Netherlands) currently has a school
holiday. Surprisingly, no correlation is discovered for the amount of hand luggage collected at the
check-in when the departure country (The Netherlands) has school holidays.
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Chapter 7

Proposed models

The hand luggage estimation problem is a supervised regression problem with censored data. The
output of the model should be the number of hand luggage pieces that need to be collected in the
entire process (check-in + gate + outstations). If the predicted number of excess hand luggage
pieces is too low, the gate agents need to collect additional hand luggage pieces (otherwise, the
aircraft can’t depart). These corrections can be used to retrain the models.

7.1 Single output models
The first types of models that will be tested are the regression models that will estimate the total
number of hand luggage pieces that need to be collected. For the experiment, all models will
estimate the total amount of hand luggage that needs to be collected for a given flight leg. The
following models were chosen to be used in the experiment:

Linear Regression A basic model that attempts to fit a linear relationship between the input
variables and the target variable.

Decision Tree Regressor A single tree-like model that splits the set by making decisions using
the features. The expectation is that this model will perform well since similar flights will
have similar hand luggage collections. Flights with a large amount of excess hand luggage
are easily separated from flights with no hand luggage overflow.

Random Forest Regressor A random forest model that will generate several trees.

XG Boost Regressor A different type of ensemble machine learning using Decision Tree Regres-
sors. Trees are added one by one and are trained to correct the prediction errors made by
prior models.

Multilayer Perceptron Regressor A feedforward neural network with a single output node.

In order to be able to calculate the performance at the gate, the gate predictions can be
simulated by subtracting the hand luggage collected at the check-in and outstations from the
predicted total collected hand luggage. This is calculated as shown in Equation 7.1. For calculating
the ycheck−in and youtstations, the following assumptions are made:

In order to be able to calculate the estimated number of excess hand luggage pieces, two
assumptions have to be made. The first assumption is that the ŷtotal perfectly estimates the
number of excess hand luggage pieces, ensuring a perfect fit within the aircraft. A perfect fit
means that all the trolley storage bins in the aircraft are filled with no excess hand luggage and
no empty bins. The second assumption is that the total number of collected hand luggage pieces
collected—whether at check-in, the gate, or outstations—equals the estimated number of excess
hand luggage pieces. Based on these assumptions, the estimated number of excess hand luggage
pieces at the check-in and outstations can be calculated as shown in Equation 7.1.

ŷtotal = ŷ

ŷcheck−in = ŷ − ygate − youtstations

ŷgate = ŷ − ycheck−in − youtstations

ŷoutstations = ŷ − ycheck−in − ygate

(7.1)
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7.2 Multi-output models
The single output models only estimate the total amount of hand luggage that needs to be collected.
These models do not take into consideration how much hand luggage is collected during the different
collection moments. For the planning of the personnel, KLM needs to have an estimate of how
much work the check-in agents and the gate agents have to do. Since the single-output models
only predict the total, predictions of the check-in and gate collections need to be made. Predicting
how much hand luggage needs to be collected at check-in and the gate is not possible since these
numbers are not known before the flight process is started. During the flight process, calculating
how much hand luggage pieces need to be collected at the gate can be calculated as shown in
Equation 7.1. However, the ŷgate can only be calculated after all passengers passed the check-
in or departed from the outstations. For planning reasons, KLM wants these predictions earlier.
Although KLM wants to bring the gate collection to zero in the future, the amount of hand luggage
passengers bring to the gate can not (easily) be controlled for passengers who don’t pass check-in.
Up until three hours before departure, the planning of passenger services can change how many
gate agents are assigned to a flight.

In order to be able to make more precise predictions for the check-in and gate, the multi-output
models have been created. These models do not estimate the total amount of excess hand luggage,
but they estimate how much hand luggage will be collected at the outstations, check-in, and the
gate. The models will be trained individually on each collection process to learn the patterns for
each collection point. The total amount of excess hand luggage can be calculated by computing
the sum of these three predictions. Equation 7.2 shows how the estimations for all collection points
are calculated.

ŷtotal = ŷcheck−in + ŷgate + ŷoutstations

ŷcheck−in = ŷcheck−in

ŷgate = ŷgate

ŷoutstations = ŷoutstations

(7.2)

These multi-output models are created using the MultiOutputRegressor function from the sk-
learn package. This function creates a model (linear / decision tree / random forest / XG Boost /
MLPR) for each output. This means that for each model, three separate models will be trained for
each of the three outputs. However, for the multilayer perceptron, this function is not used since
a multilayer perceptron has built-in multi-output functionalities. For the multilayer perceptron, a
network with three output nodes is created.
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Chapter 8

Experimental setup

To test the proposed models, flight data from KLM will be used. This data will be split into two
categories: 2023 and 2024 flights. The data will be split on the flight group (ICA or KLC) to create
2 datasets. For both datasets, a 70/30% split will be made on the 2023 flight data to create the
train and test set. Flight data from January 1st, 2024 until July 31st, 2024 will be used to evaluate
the models on their predictive performance. The experiments will be performed in Python using
the models from the sk-learn package [10].

For all models, hyperparameter tuning will be used to find the best values. To automate this
tuning, the GridSearchCV function from sk-learn will be used with a cross-validation fold of 5.

After the data analysis and some preliminary experiments, the following features have been
chosen to be included in the model:

1. Day of week (date at the departure airport, cyclic encoded)

2. Month number (date at the departure airport, cyclic encoded)

3. Departure hour (date at the departure airport, cyclic encoded)

4. Arrival hour (date at the arrival airport, cyclic encoded)

5. Number of booked passengers

6. Number of male passengers

7. Number of female passengers

8. Number of children

9. Number of babies

10. Number of booked economy seats

11. Number of booked premium comfort seats

12. Number of booked business seats

13. Percentage of local passengers

14. Percentage of transfer passengers

15. Percentage of transit passengers

16. Number of saleable seats (number of seats - number of blocked seats)

17. Departure continent (one-hot encoded)

18. Arrival continent (one-hot encoded)

19. Trolley capacity of aircraft

20. Days since last holiday (country of arrival airport)
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21. Days until next holiday (country of arrival airport)

22. arrival day is holiday (country of arrival airport)

23. Days since last holiday (country of departure airport)

24. Days until next holiday (country of departure airport)

25. arrival day is holiday (country of departure airport)

26. Number of passengers with nationality x (for all nationalities)
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Chapter 9

Metrics

This chapter describes which measure will be used in the experiment to compare the tested models.
Not only performance measures will be used, but the models will be compared to a business rule
too. This chapter describes the different metrics used and explains the reason for using them.

9.1 Performance metrics
To compare the models, a variation of metrics will be used to measure the performance. Those
metrics include R2, mean absolute error and root mean square error. The R2 metric is used to
measure how much of the data is explained by the model. The MAE is the average of all (absolute)
errors. The RMSE is more sensitive to outliers due to the error being squared. The RMSE is an
important metric because, for KLM, large outliers (on the low side) cause more risk for delay than
small errors. A large error on the upside where too much hand luggage gets collected is bad for
passenger satisfaction but does not directly impact the boarding process.

Besides the performance of the test data, KLM also wants to know the performance of the
model in practice. More metrics will be introduced to evaluate the models. The first metric is the
R2

2024 together with the MAE2024. The model is trained on 2023 data and also tested on 2023
data. To know the predictive performance of the model, the models will be tested on data from
2024 which the model has never seen before in the training. The second metric is the R2

gate which
measures the accuracy of the model at the gate. Equation 7.1 shows how the ygate is calculated.
Since the observed collection at the gate is known, the R2

gate can be calculated.

9.2 Business rule
In Heinrich’s report, the following business norm was stated: % of predictions have a deviation
of less than or equal to at the gate [6]. This means the following: the model predicts the total
number of hand luggage pieces that should be collected in the entire process before the flight. The
number of hand luggage pieces that still need to be collected gets reduced in the process when hand
luggage is being collected at the outstations and check-in. The number of hand luggage pieces that
still need to be collected at the gate, must have a difference of or less with the actual amount
of collected hand luggage pieces, for % of the predictions. During the experiment, this number
will be calculated using the test dataset.
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Chapter 10

Results

This chapter presents and analyzes the results of all proposed models to predict the number of
excess hand luggage for ICA and KLC flights. First, the results from the single output models are
gathered and analyzed using basic statistics. After that, the multi-output model results will be
shown and discussed. Following this, a comparison with the current heuristic model will be made
after which the models will be discussed using the performance metrics and business rule.

10.1 Single output results
This section gives an overview of the hyperparameter tuning of the models and will give a showcase
of the model output. The results of all tuned models are gathered and shown in Table 10.1. Table
C.1 shows the results of the hyperparameter tuning.

Table 10.1 shows that all the models could explain the amount of excess hand luggage using
the training data. The lowest R2 score for the ICA models is from the Ridge regression model
which has an R2 value of 0.76, which is already above the results from Heinrich [6]. For KLC, the
best R2 is lower with a value of 0.47 for the random forest regressor. The random forest regressor
has the lowest mean absolute error and the lowest root mean square error with values of 7.36 and
10.13. The results show that the random forest regressor gave the overall best results with an R2

value of 0.83, an MAE of 7.36, and an RMSE value of 10.13.

Table 10.1: This table shows the results of the tests of the single-output models which were trained
on 2023 flight data.

(a) Table for ICA single-output models.

Ridge
regression

Multilayer
perceptron

Classification
tree regressor

Random forest
regressor XG Boost

R2 0.76 0.82 0.76 0.83 0.77
MAE 8.94 7.56 8.70 7.36 8.7

RMSE 11.91 10.25 12.07 10.13 11.62
R2

check−in 0.70 0.77 0.69 0.78 0.71
R2

gate -1.39 -0.91 -1.51 -0.82 -1.24
R2

outstations 0.62 0.72 0.61 0.72 0.63
(b) Table for KLC single-output models.

Ridge
regression

Multilayer
perceptron

Classification
tree regressor

Random forest
regressor XG Boost

R2 0.36 0.45 0.33 0.47 0.42
MAE 4.09 3.73 4.13 3.62 3.83

RMSE 5.38 4.98 5.52 4.90 5.14
R2

check−in 0.30 0.40 0.26 0.42 0.36
R2

gate -0.88 -0.80 -0.89 -0.56 -0.69
R2

outstations -0.98 -0.70 -1.08 -0.64 -0.81

Knowing how well these models would perform in practice is difficult to know without additional
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measures. As shown in Table 10.1, the models perform well with a mean absolute error of 7.36
(ICA) and 3.62 (KLC) for the random forest regressor. However, adding additional measures gives
a different impression. The measures that give a different impression are the R2

check−in, R2
gate and

R2
outstations. These measures are calculated as stated in Equation 7.1 and are shown in Table 10.1.

The results show that all models maintain their score for the check-in and outstations R2 values,
but have a negative R2 score for the gate predictions. To solve this, the multi-output models have
been created. The next section covers the results of the multi-output models which should give
better results for the R2

gate score.

10.2 Multi output results

In this section, the gathered results of the multi-output models are shown. These models predict 3
values: for each collection point in the flight process the number of collected hand luggage pieces
is predicted. This means that the prediction for how many hand luggage pieces are collected at
check-in is different from the prediction for the gate, or the outstations. The total number of
collected hand luggage pieces is determined by the sum of these three predictions. The results can
be found in Table 10.2. Table C.2 shows the results of the hyperparameter tuning.

The results of the total amount of excess hand luggage are similar to those of the single-output
models. Table 10.2 shows that the R2 values of the multi-output models do not have a difference
bigger than 0.02 compared to their single-output counterpart. These multi-output models are
created to solve the negative R2

gate score from Table 10.1. Table 10.2 shows the R2 results for each
collection process. The results show that all multi-output models have a positive R2

gate value. The
random forest regressor gave the best results with R2 values of 0.88 for the R2

check−in, 0.62 for the
R2

gate and 0.90 for the R2
outstations.

The KLC multi-output models do not show an improvement for any of the R2, mean abso-
lute error and root mean square error scores (except for the MAE of the MLPR, Table 10.2).
For the R2

check−in, R2
gate and R2

outstations, all models show improvements over their single-output
counterpart.

Table 10.2: This table shows the results of the tests of the multi-output models which were trained
on 2023 ICA flight data.

(a) Table for ICA multi-output models.

Ridge
regression

Multilayer
perceptron

Classification
tree regressor

Random forest
regressor XG Boost

R2 0.76 0.81 0.74 0.83 0.78
MAE 8.96 7.72 8.96 7.40 8.64

RMSE 11.93 10.70 12.43 10.21 11.54
R2

check−in 0.77 0.87 0.83 0.88 0.84
R2

gate 0.39 0.55 0.54 0.62 0.57
R2

outstations 0.80 0.88 0.85 0.90 0.87
(b) Table for KLC multi-output models.

Ridge
regression

Multilayer
perceptron

Classification
tree regressor

Random forest
regressor XG Boost

R2 0.36 0.43 0.30 0.46 0.41
MAE 4.10 3.68 4.26 3.66 3.84

RMSE 5.40 5.10 5.65 4.97 5.16
R2

check−in 0.45 0.56 0.47 0.59 0.54
R2

gate 0.14 0.25 0.11 0.27 0.20
R2

outstations 0.57 0.66 0.54 0.66 0.65

10.3 Including national holidays

The models above did not include the national holidays dataset. The results of the experiments
with the holiday dataset can be found in Table 10.3. For ICA no significant changes were observed
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with the biggest change being an increase in the R2
gate value for the Multilayer Perceptron from

0.55 to 0.57.
For KLC, the inclusion of the holiday dataset shows some minor improvements in the perfor-

mances. The multilayer perceptron shows the biggest increase in R2 score from 0.43 to 0.46. The
Ridge Regression model shows an improvement of the R2

gate from 0.14 to 0.20. The other metrics
also show some minor improvements, but no big changes can be found.

Table 10.3: This table shows the results from the multi-output models that used the holiday data
in addition to the flight data.

(a) Table for ICA multi-output models.

Ridge
regression

Multilayer
perceptron

Classification
tree regressor

Random forest
regressor XG Boost

R2 0.76 0.80 0.74 0.83 0.78
MAE 8.95 7.83 8.95 7.37 8.63

RMSE 11.92 10.86 12.42 10.16 11.51
R2

check−in 0.77 0.86 0.83 0.89 0.84
R2

gate 0.39 0.57 0.54 0.62 0.57
R2

outstations 0.80 0.88 0.85 0.90 0.87
(b) Table for KLC multi-output models.

Ridge
regression

Multilayer
perceptron

Classification
tree regressor

Random forest
regressor XG Boost

R2 0.37 0.46 0.30 0.47 0.42
MAE 4.06 3.62 4.25 3.61 3.82

RMSE 5.35 4.97 5.64 4.90 5.13
R2

check−in 0.46 0.59 0.48 0.61 0.55
R2

gate 0.20 0.25 0.11 0.27 0.20
R2

outstations 0.58 0.67 0.54 0.67 0.66

10.4 Using outstation collection rate as an input

Since the shortest KLM flight already takes 40 minutes (AMS → BRU), the number of collected
hand luggage pieces at the outstations can be used as input for the gate prediction model. Table
10.4 shows the results of adding the number of collected hand luggage pieces at outstations as a
feature to the model that predicts the amount of hand luggage that should be collected at the
gate. The results show no significant increase in the scores for the intercontinental flights.

10.5 Comparison with current heuristic model

Comparing the proposed models to the current heuristic models is done using the metrics described
in Chapter 9. These metrics are calculated by the predictions done by the current heuristic model.
Table 10.5 shows the results from 2023 for the KLC and ICA flights. The current model shows a
negative R2 for both KLC and ICA flight groups. The bin2d plots (Figure 4.1) of the model show
this complete misclassification of the models. The figures show that the model is mostly predicting
too high for KLC flights and mostly predicting too low for ICA flights.

When comparing the proposed model with the current model, the first comparison is made
using the metrics. For ICA flights, the best-performing proposed model is the Random Forest
regressor which has an R2 value of 0.83 (Table 10.2a), which is much higher than the current
model which has an R2 value of −1.63. The other metrics also show much better results compared
to the current model. The Mean Absolute Error from the Random Forest Regressor is 7.40, against
an MAE of 20.28 of the current model. The RMSE shows a decrease from 27.72 to 10.21.

For KLC flights, the differences are smaller since the amounts of excess hand luggage are lower.
This is due fact that the KLC aircraft can carry fewer passengers compared to the wide-body
aircraft. The best-performing KLC model is also the Random Forest Regressor. The model has an
R2 score of 0.46 (Table 10.2b) which is significantly higher than the −1.17 of the current heuristic
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Table 10.4: This table shows the results from the gate prediction models for which the observed
number of collected hand luggage pieces at the outstations is added as an extra feature to the
models.

(a) Table for ICA multi-output models.

Ridge
regression

Multilayer
perceptron

Classification
tree regressor

Random forest
regressor XG Boost

R2
gate 0.39 0.56 0.54 0.63 0.57

MAEgate 2.24 1.8 2.04 1.65 1.84
RMSEgate 4.32 3.68 3.76 3.39 3.64
KLM norm 0.91 0.92 0.92 0.93 0.92

(b) Table for KLC multi-output models.

Ridge
regression

Multilayer
perceptron

Classification
tree regressor

Random forest
regressor XG Boost

R2
gate 0.15 0.25 0.11 0.27 0.20

MAEgate 1.46 1.26 1.36 1.23 1.33
RMSEgate 2.62 2.45 2.67 2.42 2.53
KLM norm 0.96 0.95 0.95 0.96 0.96

model. The Random Forest Regressor has an MAE and RMSE score of 3.66 and 4.97 against 6.09
and 8.22 of the current model. This shows that, although it is not perfect, the Random Forest
Regressor improves the current heuristic model by a lot.

Table 10.5: This table shows the results of the current model for ICA and KLC flights. The results
are from flight data from 2023.

ICA KLC
R2 -1.63 -1.17

MAE 20.28 6.09
RMSE 27.72 8.22
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10.6 Performance of metrics and business rule

As discussed in Section 9, there are two custom measures to test the model’s performance. The
first measure tracks the model drift over time, and the second tests the accuracy of the model for
the gate collection.

The first measures that will be discussed are the R2
2024 and the MAE2024 which measure the

performance of the 2023-trained model in 2024 (data up until July). Figure 10.1 shows the MAE
per week for all tested models. In Figure C.1 this score is split out per aircraft type. Table 10.6
shows a lower R2

2024 score for all models compared to their R2 score on the test data in 2023.
However, this decrease in the R2 score does not start in January 2024. Figure 10.1a shows that an
increase in the MAE started in September 2023. This increase will be further discussed in Section
11.1.

The second measure is the percentage of absolute prediction errors below at the gate. This
measure ensures the amount of trust that KLM can put in the predictions of the model. The
company uses the predictions of this model to plan and schedule gate agents. A flight with a lot of
predicted hand luggage collection at the gate means that more gate agents need to be scheduled for
that flight to ensure minimal delays at the gate. Figure 10.2a shows that none of the single-output
ICA models meet the criterion of 80%. Contrary to this, all multi-output ICA models meet the
criteria with the multi-output random forest as the best-performing model. On the other hand,
for KLC, all single-output models already meet the business rule as shown in Figure 10.2b. The
multi-output models increase this score up to 96%.

Figure 10.1: Mean Absolute Error over time for the trained single-output (SO) and multi-output
(MO) models. The models are trained on data from 2023 (left of the black intercept). The MAE
is calculated for the 2023 test set. For 2024, all flightlegs done for that flight group are evaluated.

(a) Plot for ICA flights. (b) Plot for KLC flights.

Figure 10.2: Percentage of ICA predictions with a maximum absolute error of x.

(a) Plot for ICA flights. (b) Plot for KLC flights.
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Table 10.6: This table shows the results for two of the measures described in Chapter 9 for the
Single-Output (SO) and Multi-Output (MO) variants of the models.

Ridge
regression

Multilayer
perceptron

Classification
tree regressor

Random forest
regressor

XG Boost
regressor

SO MO SO MO SO MO SO MO SO MO
R2

2024 0.61 0.61 0.64 0.63 0.58 0.59 0.65 0.66 0.64 0.64
MAE2024 11.24 11.25 10.71 11.32 11.56 11.67 10.72 10.73 10.84 10.89
klm norm 0.62 0.91 0.68 0.92 0.64 0.92 0.69 0.93 0.63 0.92

10.7 Feature importance
After the models were trained, feature importance metrics were calculated. Figure C.5 shows the
Gini importance metric for both the ICA and KLC multi-output models. The Gini importance
shows the (normalized) sum of impurity reductions that a feature did achieve in all trees of the
random forest. The figure shows that the percentage of local and transfer percentages were the
features that achieved the highest impurity reduction for both ICA and KLC.

Because of the cardinality bias of the Gini importance metric, two other methods have been
used to calculate the feature importance. Figure C.6 shows the impact on the MAE score if the
values in the test set of a feature were randomized. Figure C.6b shows that randomizing the
boolean feature that states whether a flight departs from Schiphol Airport gave the highest MAE
increase. The total number of bookings and the total number of booked economy tickets showed
an increase in the MAE when randomized.

The features that showed no role in any of the above metrics were most of the n_XX_passengers
features. Besides some nationalities that came back in all the tests, other nationalities never came
back in the splits. From the 267 nationalities in the data, 168 nationalities were never used to
make a split in the random forest. Figure C.7 shows that the features that appeared the most in
the splits differ from ICA and KLC. The three splits with the most splits on ICA were on features
about the passengers. For KLC, the 4 features with the most splits were all on national holiday
features.

10.8 Performance on flights with many transfer passengers
Section 5.4 describes the influence of transfer passengers on the total amount of collected hand
luggage. This situation is summarized in research question 3. To test the prediction accuracy, the
following statistics have been calculated using the multi-output ICA model for the ICA flight group.
The MAE for the entire model is 7.37. Table 10.7 and Figure C.2 show the results of splitting
the results based on the passenger composition. The MAE value for flights with a percentage
of transfer passengers between 70% and 100% is 8.05. For flights with 0% and 70% of transfer
passengers, this value is 7.12. This shows that the MAE is 13% higher for flights with 70%− 100%
transfer passengers.

Table 10.7: The MAE of the multi-output Random Forest Regressor for ICA flights in 2023.

% of transfer passengers MAE samples
0-10 7.32 3840

10-20 7.74 1150
20-30 7.69 460
30-40 5.86 211
40-50 6.28 309
50-60 5.97 570
60-70 6.55 880
70-80 7.05 1234
80-90 8.57 1067

90-100 10.64 256

Public Version 36



CHAPTER 11. DISCUSSION

Chapter 11

Discussion

11.1 Decrease of score in September

In Figure 10.1a, an increase in the MAE score can be observed in September 2023 for the ICA
flights. This increase is not expected since the training data contains flights from January 2023
until December 2023. The collection rates change from week to week, so the models should be able
to capture this change in September. An increase from January 2024 onwards is expected since
the training data does not include flights from 2024. After analyzing the data a change is observed
that could potentially be the cause of this increase: the heuristic model is enabled for ICA flights in
September 2023. The existence of a prediction model might have changed the collection behaviour
of gate agents. This is something that has to be taken into account when the proposed model will
be released in production.

11.2 Retraining on model output

The previous section discussed the increase in the mean absolute error when a prediction model
exists. This means that the gate agents react in some way to the model. Before the boarding
process starts, gate agents know how many hand luggage pieces they should collect during the
boarding. After the boarding process, the number of collected hand luggage gets logged in the
database. Due to the model drift, the model should be retrained periodically. However, since
the gate agents first get the information on how much hand luggage to collect, the model could
hypothetically be trained on its output. This happens if the gate agents always perfectly adhere
to the output of the model and if there never is excess hand luggage in the cabin. The model will
only be corrected if there is not enough hand luggage collected at the gate and gate agents need
to retrieve excess hand luggage from the cabin. If too much hand luggage is collected, there is still
space in the cabin for more hand luggage. This signal does currently not reach the gate agents.
At this moment, KLM is developing an app for the cabin personnel to report how much space is
left in the overhead bins. This app will create a feedback loop that is needed to prevent the model
from drifting further from a perfect fit.

11.3 Censored data

As described in the previous section, the lack of a feedback loop has a risk of unnoticeable model
drift. Another potential cause for this drift is the censored data as described in Section 5.1. Since
collecting not enough hand luggage has big implications, gate agents want to stay from the edge
(the perfect fit). This results in always having some free spaces for trolleys. However, since the gate
agents collected more than predicted, the result is that the next model will predict higher collection
numbers. Another potential solution besides the addition of a feedback loop is an algorithm that,
instead of predicting the amount of hand luggage pieces that need to be collected, predicts the
total amount of hand luggage pieces. Predicting the total number of hand luggage pieces will result
in a number that can be easily interpreted by the data scientists and the gate agents.
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11.4 Negative R squared score
In this thesis, multiple negative R2 scores can be observed (Tables 4.1, 10.1, 10.5). These R2 scores
are calculated using the sk-learn package. A negative R2 score means that the predictions were
worse than if the prediction always were the ȳ of the test set.

Table 10.1 shows a negative score for all gate estimations. This can be explained by the fact
that the single-output has not been trained for the gate collection process. This means that the
ŷgate depends on how much hand luggage is collected at the check-in and the outstations. It still
does not explain why the R2

gate is negative since the check-in and outstation collection processes
are highly correlated with the gate collection process. At the gate, the amount of collected hand
luggage should be the number of hand luggage pieces that have not yet been collected at the check-
in and outstations when assuming a perfect fit in the aircraft. In theory, the collection numbers
should look like this:

perfectfit = HLcapacity
aircraft = TotalHL− collectedHL (11.1)

The negative R2 scores could indicate that there is not a perfect fit of hand luggage in the
aircraft. The multi-output models give a decent R2 score for the gate prediction, but this only
means that the data can be explained using the models. It does not mean that following these
predictions always gives a perfect fit.

11.5 Multi-output models
How should the multi-output models be treated? Should each collection point collect the predicted
amount of hand luggage? Or does only the total number of collected hand luggage matter and do
the gate agents only have to worry about the difference between ŷtotal and the current collected
number of hand luggage pieces?

The second seems more logical when comparing it to the research problem: predict the difference
between the total number of hand luggage pieces and the aircraft capacity (for hand luggage pieces).
This means that it does not matter when the hand luggage gets collected, but how much hand
luggage gets collected.

The multi-output models main purpose is to give a rough estimation on how much hand luggage
does have to be collected at the gate. The multi-output models are able to do this. For the
operation, the advice is to use the ŷtotal at the check-in and the gate and subtract all hand
luggage pieces that get collected during the process (including the hand luggage pieces from transfer
passengers).
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Chapter 12

Conclusion

In this thesis, new machine learning models are proposed for predicting the amount of excess hand
luggage. Two different types of flight groups are investigated: intercontinental flights done by
wide-body aircraft and flights done with the KLM Cityhopper (Embraer 175, 190 and 195-E2).

12.1 The current situation

The problem that is solved with this research is that KLM Royal Dutch Airlines had a prediction
tool that did not perform well. The prediction tool predicts the number of hand luggage pieces
that have to be collected for a given flight leg. This amount should not be too low, that would
cause an overflow in the cabin. The amount should also not be too high, which would cause
passenger dissatisfaction. This dissatisfaction is increased if there is still space left in the overhead
cabins (because of a too-high prediction). The prediction model currently in use is a heuristic that
multiplies certain factors by a set value. This model has an R2 score of −1.63 for ICA flights and
−1.17 for KLC flights.

The data study showed no variables with high correlation values for flights originating from and
flights flying to Schiphol International Airport. For ICA, the most significant feature for the total
number of collected hand luggage pieces is the total number of economy bookings followed by the
total number of passengers. Other features with a Pearson or Spearman correlation score above 0.3
were: the number of sale-able seats, the total number of female passengers and the percentage of
transfer passengers. For KLC, the same features gave the highest Pearson or Spearman correlation
result. In addition to this, the number of male passengers also gave a Spearman correlation value
of ≈ 0.4.

12.2 The proposed models

For both flight groups, of the five tested models, the Random Forest Regressor gave the best
results. This model gave an R2 value for respectively ICA and KLC of 0.83 and 0.46. The Mean
Absolute Error decreased significantly for both flight groups. The results show that adding the
national holidays as a feature gave no (significant) changes for ICA and a minor decrease in the
MAE and RMSE for the KLC Random Forest Regressor. Adding the number of collected hand
luggage pieces at outstations as a feature for the model that predicts the amount of excess at the
gate also showed no significant improvements for either flight group.

The KLC models showed worse results compared to their ICA models. This can be explained
by the fact that the KLC encounters relatively more noise. The Embraer aircraft that KLM uses
has a capacity of 88, 100 or 132 passengers. This is much lower than the wide-body aircraft used
for ICA flights with the largest aircraft having a capacity of 408 pax. The result of this is that
voluntarily checked hand luggage gives noise between the obliged checked hand luggage. This claim
can be supported by Figure A.10a where a big spike can be observed for the number of passengers
from . Gate agents observe that the passengers from this country often have hand luggage
which does not comply with KLM’s hand luggage size allowances. According to the gate agents,
these passengers travel to Schiphol International Airport with an airline that allows for bigger hand
luggage on their aircraft resulting in an involuntarily checking of their hand luggage at Schiphol.
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12.3 The performance of the proposed models
Additional metrics have been defined to compare the models in specific situations. The first metric
is the R2 score in 2024. This metric was introduced to measure the predictive performance of the
model in a year for which the model has not been trained on. The results in Table 10.6 show that
all models performed worse in 2024 compared to 2023. However, Figure 10.1 shows that the MAE
easily stays below the current models (which gets constantly tweaked to be improved in contrast to
the proposed models which did not get tweaked for the 2024 data). This shows that the proposed
models outperform the model currently in use.

The second introduced measure was the KLM norm that stated that 80% of the predictions (at
the gate) had a maximum absolute error of . The heuristic model currently in use does not reach
this norm for both flight groups. The results show that for both ICA and KLC, all multi-output
models satisfy the norm easily. For the single-output models, the flight groups show a different
result with none of the ICA single-output models reaching the norm. The rule is reached by all
single-output KLC models but by none of the single-output ICA models. This can be explained
by the fact that the KLC flight group has to deal with a lot fewer passengers and thus less hand
luggage. The result of this is that the business norm is more easily satisfied for KLC since the
allowed maximum absolute error is the same for all flight groups.

12.4 Similar model performance
The results showed that all tuned (multi-output) models performed very similarly besides the
Linear Regression model. This made it difficult to make a decision on which model should be
adopted by KLM to be used in production. The best-performing model is the Random Forest
Regressor, but the differences with the multilayer perceptron are small. This indicates a robust
dataset for which multiple types of models can be used to predict the amount of excess hand
luggage. To prevent too much drift, due to shifts in hand luggage trends, periodic retraining is
advised. This will result in a robust model that can predict the amount of excess hand luggage for
KLM’s intercontinental and Cityhopper flights.

12.5 Summary
To summarize all these conclusions, the results show that the multi-output models are preferred
above the single-output models since the overall performance does not drop while the individual
performance (at the different collection points) does increase. The inclusion of the national holidays
set and the number of collected hand luggage pieces at outstations did not improve the performance
of the models. When the best model has to be chosen, the metrics show no significant differences.
However, since most gate agents approach this problem as some kind of decision tree, the random
forest regressor has been chosen as the best performing model on this data. In the end it is a
regression problem, but before that a lot of questions are asked regarding the aircraft type, season
and destination. Hence, the random forest regressor fits the spirit of how the decisions are made.
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Chapter 13

Future work

13.1 Luggage allowances

How much (luggage) passengers can bring on their flight varies from airline to airline. Even within
KLM, many factors impact the luggage allowance. The big factor is the ticket type, passengers
flying economy can bring less luggage than business class passengers. For some flights, economy
passengers can only bring 1 piece of hand luggage, whereas on other flights economy passengers
can bring 2 luggage pieces: one hand luggage piece and a checked luggage piece. Other factors
could not be discovered, but even for the same flights, the allowances could change from time
to time. It is expected that these allowances impact the amount of excess hand luggage. If a
passenger already needs to wait for their checked luggage at the arrival airport, waiting for two
luggage pieces does not take much longer than waiting for one. Gate agents within KLM have
the feeling that passengers who only travel with hand luggage do not want to hand in their hand
luggage since they do not want to wait for their luggage at the arrival airport. These allowances
were not included in the research because no dataset or algorithm contained this information.

13.2 Quantile models

The model that is proposed in this thesis does estimate the total number of excess hand luggage
pieces for a given flight. What it does not predict is the amount of uncertainty. Currently, the
gate agents see two numbers on their screen: a minimum and a maximum. The gate agents should
aim to collect the number of hand luggage pieces that lie between these two bounds. However,
the current heuristic model does not give two bounds, it only gives one prediction. KLM adds
5 to that number to calculate the upper bound. This does also not reflect any uncertainty. To
solve this uncertainty, quantile models could be used to reflect how certain the model is about a
prediction. The 95% (or other numbers) intervals of quantile models could be used as lower and
upper bounds for the gate agents. This way gate agents not only know how much hand luggage
they should collect but also know how big the uncertainty spread is. If the model is not certain
about a prediction, the gate agents could use the higher spread to manually decide how much hand
luggage they will collect. Further research is needed to investigate how gate agents would react to
such quantile models.

13.3 Minimize baggage intake

The last recommendation is an extension towards predicting over multiple flight legs. This exten-
sion can minimize the total number of hand luggage pieces collected: Suppose KLM has a flight
from A → B → C and a surplus of hand luggage is expected for both flight legs (A → B and
B → C), Collecting from a passenger that travels from A to C decreases the total amount of hand
luggage that needs to be collected because the hand luggage is collected for both legs. This is
preferred compared to first collecting from a passenger that flies from A → B and then collecting
from a passenger that flies from B → C.

The final step in this extension is to not only minimize the baggage intake for flight legs, but
for KLM’s entire flight network. A second goal can be introduced to also minimize the aircraft
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delays due to an excess amount of hand luggage at the gate. If a passenger flies from A → C and
flightleg B → C is expected to have a large amount of excess hand luggage at the gate, KLM can
decide to collect the hand luggage of this passenger at airport A. This will reduce the work load
for the gate agents on airport B and reduce the risk of having a delay due to an overflow of hand
luggage.
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APPENDIX A. DATA ANALYSIS RESULTS FROM KLM DATA

Appendix A

Data analysis results from KLM data

Figure A.1: Correlation calculation results for ICA flights in 2023 arriving at Schiphol.
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Figure A.2: Correlation calculation results for ICA flights in 2023 departing from Schiphol.
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Figure A.3: Correlation matrix for Spearman correlation for ICA flights in 2023 departing from
Schiphol.
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Figure A.4: Correlation matrix for Spearman correlation for ICA flights in 2023 arriving at
Schiphol.
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Figure A.5: Correlation calculation results for KLC flights in 2023 arriving at Schiphol.
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Figure A.6: Correlation calculation results for KLC flights in 2023 departing from Schiphol.
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Figure A.7: Correlation matrix for Spearman correlation for KLC flights in 2023 departing from
Schiphol.
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Figure A.8: Correlation matrix for Spearman correlation for KLC flights in 2023 arriving at
Schiphol.
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Figure A.9: Spearman correlation results for ICA flights in 2023 departing from or arriving at
AMS. Country names have been replaced by random words due to confidentiality. Only countries
with a correlation ≥ 0.15 are shown.

(a) Departing from AMS.

(b) Arriving at AMS.
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Figure A.10: Spearman correlation results for KLC flights in 2023 departing from or arriving at
AMS. Country names have been replaced by random words due to confidentiality. Only countries
with a correlation ≥ 0.10 are shown.

(a) Departing from AMS.

(b) Arriving at AMS.

Public Version 56



APPENDIX B. DATA ANALYSIS RESULTS FROM OTHER DATASETS

Appendix B

Data analysis results from other
datasets
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Figure B.1: Number of hand luggage pieces collected per airport for ICA and KLC flights in 2023.
Only airports with more than 200 flights in 2023 shown.

(a) Plot for the ICA flights. (b) Plot for the KLC flights.
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Figure B.2: Number of hand luggage pieces collected per continent for KLM intercontinental flights
in 2023.
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Figure B.3: Correlation of the national holiday dataset against the collected hand luggage features
for ICA and KLC flights flown in 2023.

(a) Plot for ICA flights.

(b) Plot for KLC flights.
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Figure B.4: Correlation of the Dutch school holiday dataset against the collected hand luggage
features for ICA and KLC flights flown in 2023.

(a) Plot for ICA flights.

(b) Plot for KLC flights.
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Appendix C

Experiment results

Table C.1: Hyperparameter Tuning results for the single-output models.

Model Feature ICA KLC
Ridge Regression alpha 1 1

Decision Tree
Regressor

min samples split 100 30
min samples leaf 10 10
max depth None 20
ccp alpha 0.2 0.1

Random Forest
Regressor

n estimators 140 160
min samples split 3 2
min samples leaf 3 200
max depth 20 10
ccp alpha 0 0

XG Boost

learning rate 0.1 0.1
n estimators 90 130
max depth 10 5
min samples leaf 20 10
min samples split 20 100
ccp alpha 0 0

Multilayer
Perceptron
Regressor

solver adam adam
activation relu relu
layer sizes (16,) (32,)
alpha 0.001 0.01
learning rate init 0.001 0.001
batch size 32 32
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Table C.2: Hyperparameter Tuning results for the multi-output models.

Model Feature ICA KLC
Ridge Regression alpha 1 1

Decision Tree
Regressor

min samples split 20 6
min samples leaf 25 10
max depth 15 10
ccp alpha 0 0

Random Forest
Regressor

n estimators 140 170
min samples split 10 3
min samples leaf 15 11
max depth 25 40
ccp alpha 0 0

XG Boost

learning rate 0.4 0.2
n estimators 80 150
max depth 30 5
min samples leaf 20 20
min samples split 20 10
ccp alpha 0.1 0

Multilayer
Perceptron
Regressor

solver adam adam
activation relu relu
layer sizes (32,) (48,)
alpha 0.01 0.01
learning rate init 0.001 0.001
batch size 16 32
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Figure C.1: Mean Absolute Error over time for the trained models. Data from the ICA flights
from 1st of January 2023 up until 31st of July 2024. Each subplot covers one aircraft type. The
line shows the end-of-training-data date which means that the predictions on the left side are of
the 30% test data and the predictions on the right side are from 100% of the ICA flights on which
the model has not been trained.

(a) Plot for ICA flights.

(b) Plot for KLC flights.
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Figure C.2: The MAE of the multi-output Random Forest Regressor for ICA and KLC flights
in 2023, departing from Schiphol, split by passenger composition. Each decile shows the mean
absolute error of all flights within that decile. Only deciles that contain more than 2% of the data
are shown. The transit passenger group is omitted since all data was grouped in the same decile
causing the other points to become very small.

(a) Plot for ICA flights.

(b) Plot for KLC flights.
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Figure C.3: Bin2d plots which show the gate prediction results of the random forest for both
single-output and multi-output models for 2023 ICA flights.

(a) Calculations from the single-output ICA model
(as described in Equation 7.1).

(b) Predictions from the multi-output ICA model.

(c) Calculations from the single-output KLC model
(as described in Equation 7.1).

(d) Predictions from the multi-output KLC model.
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Figure C.4: Bin2d plots for all collection moments from the best performing model: the multi-
output random forest.

(a) Results from the ICA model.

(b) Results from the KLC model.
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Figure C.5: Feature importance plot calculated using the Gini importance method. This method
shows the (normalized) total reduction of impurity of a feature. The calculations are done on the
random forest model trained on 2023 flight data.

(a) Results for the ICA model.

(b) Results for the KLC model.
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Figure C.6: These figures show the feature importance of the multi-output random forest models.
The length of the column is the increase in the MAE score if the values (in the test set) of that
feature got randomized.

(a) Results for the ICA model.

(b) Results for the KLC model.
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Figure C.7: These figures show the feature importance using the number of times a feature has
been used to split in one of the trees. These results are from the multi-output random forest
models.

(a) Results for the ICA model.

(b) Results for the KLC model.
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