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Abstract

Gesture recognition is a tool that enables intuitive Human Computer interactions
(HCI) for techniques and applications in the fields of Extended Reality (XR). In this
master thesis we present the steps we took to create a new SHREC Track for the hand
gesture category. Namely the track Recognition Of Dynamic Hand Motions Molding Clay.
The task is the recognition of 7 motion classes given their spatial coordinates in a frame by
frame motion. Our novel dataset has been captured using a Vicon system and has been
pre-processed using blender and Vicon Shogun Post. This paper presents the creation
method of the novel dataset used in our challenge combined with the methodology and
results of the baseline method.

1 Introduction

Skeleton based action recognition is becoming more widely used in Human-computer Interac-
tion (HCI) due to its unique and intuitive way of controlling applications in various fields. This
research project was designed around creating a new shape retrieval challenge (SHREC) [1]
for the hand gestures category. SHREC general objective is to create 3D Shape Retrieval
Challenge to evaluate 3D shape retrieval systems in hope of finding new ways on how we can
improve these retrieval systems.

In this thesis we will address the challenges of creating a dataset of hand motions molding
clay captured using a Vicon system [2]. The Vicon system uses 14 Vantage Cameras that will
track reflective markers to create a desirable human skeleton. We explain all steps involved
to create the skeletal coordinate system from the Vicon data in section 4. We also present the
steps we took to create a new SHREC Track for the hand gesture category. Namely the track
Recognition Of Dynamic Hand Motions Molding Clay in section 5. We also explain in de-
tail the creation and evaluation of our skeleton based recognition system on our novel dataset.

A well functioning Skeleton based recognition system needs to work efficient and be adapt-
able to multiple forms of data. Our retrieval system will run using only the global coordinate
system of the skeletal hand structure. In order for a retrieval system to function well on
different types of data, it should be location-viewpoint invariant, while containing global mo-
tion information as well as a feature for the hand shape. We trained a convolutional neural
network (CNN) that makes use of a two-scale global motion feature and a highly efficient
Joint collection Distances feature (JCD) [3] on a novel dataset created by a Vicon system.

The rest of the paper is organized as follows: Section 2 presents the related work, section
4 presents our novel dataset and the collection steps used, section 5 goes into details of the
proposed SHREC challenge, section 6 presents our implementation, and section 7 presents
the results and evaluation of our retrieval system on different configuration settings.

2 Related Work

2.1 SHREC

The main objective of the 3D Shape Retrieval Contest (SHREC) [4] is to evaluate the effec-
tiveness of 3D-shape retrieval algorithms. They provide resources in the form of challenges
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and benchmarks to compare and evaluate existing or new 3D retrieval methods for the last 18
years. Participants can join these challenge to compete and work together on a track. Where
the final goal is to create a collective research paper with the results and methods of all
participants. This paper will be published in the proceedings of the Eurographics Workshop
3D Object Retrieval. Every year there is a workshop where at least one author per track can
register for a time slot to present their results.

As of writing this Thesis there have been a total of 103 SHREC challenges held, 5 of which
have been on the hand gesture track which will be discussed in section 2.2.1.

2.2 Hand Gesture Recognition

Hand gesture recognition is becoming more and more important due to the rise in Augmented
and virtual reality [5]. Hand gesture recognition tries to classify hand gestures. There are
2 categories of hand gesture retrieval: static and dynamic. Static hand gesture retrieval fo-
cuses on hand gestures from a single still image while dynamic gesture retrieval sequence of
data. This sequence of data can be a sequence of images of the hand, frame by frame skeletal
structural data or just the global coordinate system of the skeleton.

Recent advancements in hand gesture recognition [6] [7] allows for real time generation of
hand skeletons and even gesture recognition. The current leading technique shown by An-
drea Giachetti et al. [8] [9]. is to create a hand skeletal coordinate structure and utilize
features on these coordinates.

Hand gesture recognition can be used to control certain operations in human-machine ap-
plications or human–computer interaction. They can replace physical hardware which for
some of these applications might be undesirable. It is shown that gestures can be recognized
accurately and the execution of gesture commands can be done on an interactive level [10].

2.2.1 Previous Hand Gesture Tracks

Hand gesture recognition has been a consistent research field where several benchmarks have
been created over the years. In order for us to create our own hand gesture track we looked
at the previously organized hand gesture SHREC tracks.

The SHREC’17 Track: 3D Hand Gesture Recognition Using a Depth and Skeletal Dataset [11],
is the most cited track and the most used benchmark of the 5 SHREC tracks. This track
features dynamic gestures that are created with the HCI viewpoint in mind, meaning that
they are mostly gestures that can be used for interactive applications.

The SHREC’19 track on online gesture detection [8] challenged methods with a new task
by creating gesture sequences. These gesture sequences where created to challenge gesture
recognition systems to reduce the amount of false positives in their retrievals. This bench-
mark consisted of 5 gesture classes where the gestures where performed by either their index
fingertip or their hand palm. In the SHREC 2020 Track called recognition of sequences of
gestures from fingers’ trajectories [9] they improved on their previous 2019 track by increasing
the amount of gesture classes from to 13 while also including the entire shape of the hand.

4



The SHREC’21 track Skeleton-based Hand Gesture Recognition in the Wild [12] was cre-
ated to test more complex gestures in the form of XR interactions. The SHREC 2022 track
on online detection of heterogeneous gestures [13] was the continuation of their previous 2021
track, the authors removed ambiguous classes and avoided annotation issues affecting the
previous SHREC 2021 benchmark.

Looking at these previous hand gesture tracks we notice certain important aspects on their
benchmarks. First of all we notice that skeletal coordinate data is the preferred way of storing
hand motions. Secondly we see that in order to create a good hand gesture track, your track
should either challenge retrieval systems in a new way, or provide a new benchmark that
exists of more detailed motions increasing the difficulty of retrieval.

2.2.2 Gesture Recognition Systems

As mentioned in section 2.2.1 hand recognition has been a consistent research field, in this
section we will look into a few state of the art recognition systems that we have considered
as potential candidates to adjust, or just utilize certain features from.

Graph Neural Networks (GNN’s) are a highly-scalable class of models that can ”learn” on
graph structured data. The idea about a GNN is that: If you can define a correct graph the
GNN can retrieve features on this graph. The Graph is denoted as G(V,E,XV , XE) where
V stands for Vertices, E stands for edges and XV and XE for attributes in the vertices and
edges respectively. A special type of graph neural network is the Spatio-Temporal Graph.
The Spatio-Temporal graph tries to deal with time varying features, in this case its feasible
to create a graph where the features XV and XE are sampled over time. Resulting in the
creation of a sequential graph that reflects the real world.

In the case of ST-GCN [14–16] they used the idea of this Spatio-Temporal Graph in combi-
nation with a convolutional graph networks (CNNs) to create a ST-GCN. The ST-GCN has
demonstrated remarkable capabilities in learning temporal relationships. It enables identifi-
cation of complex patterns in sequential data by creating a graph network that connects the
body joints based on natural connections in the human body. Afterwards Hazim wanous et
al, [15] used these principles to create a ST-GCN based on the skeleton of the human hand.
For our proposed dataset (more in section 4) the proposed graph could be split into a separate
graph for each hand, seen in figure 1.
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Figure 1: Proposed graph connectivity on a singular hand based on our marker locations.

Media pipe is a customizable machine learning solutions framework developed by Google,
Media pipe uses pre-trained machine learning solutions such as object detection, face detec-
tion and also hand recognition. The biggest strength of media pipe is it’s pre-trained models
by google. For example you can detect hand key points from your camera in real time. This
key points detection of the hand will create the hand skeleton from your video data in real
time.

There are many online papers [17] [18] [19] and video tutorials on how to use media pipe
for hand gesture recognition, some of these tutorials even show how to train media pipe to
learn new gestures. The issue however is that media pipe is a gesture recognition system that
is trained for video data and recognition in real time. Since in our challenge we will not be
releasing video data but instead the skeletal coordinate data, there is no real benefit in using
google’s pre-trained models to detect hand key points.

For our retrieval system we will be using the principle of a feature from Fan Yang et al. [3]
the Joint collection feature (JCD). We chose this feature due to it’s high performance on the
SHREC-17 hand gesture dataset from Quentin De Smedt et al [11], and the fact that it’s a
lightweight feature that is both location viewpoint invariant and easily implementable for any
network. These traits make the JCD feature the perfect candidate for our baseline method.

2.3 Neural Networks

Neural networks also known as artificial neural networks (ANNs) have shown great results
in modeling human motions recently. ANNs are comprised of node layers, containing input
output and hidden layers. each node connects to another node with an associated weight
and threshold. The main advantage of using deep learning approaches is their flexibility in
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designing the architecture [20]

For human motion analysis there are tHree special types of neural networks that are in-
teresting. These are the recurrent neural network (RNNs), The graph neural networks that
where mentioned in section 2.2.2, and the convolutional neural networks (CNNs).

RNNs make use of sequential data or time series data. These neural networks have utilize
their training data to learn rather than see every input and output as independent. Meaning
that the prior inputs of a sequence are dependent to the output of the RNNs.
CNNs are a type of feed-forward neural network majorly used for image recognition, pattern
recognition and computer vision [15]. The biggest advantage of using CNNs is that you don’t
need to do a lot of pre-processing on your data. Another advantage of the CNN is that it
uses convolutions by leveraging principles from linear algebra instead of doing matrix multi-
plications. This speeds up the computation time drastically.
For this project we decided to use CNNs. We value the advantages of the CNN on spatial
data as well as the performance increase we get from the convolution method.

2.4 Motion Capture Systems to record the data

There have been multiple studies that showed that Motion Capture system can be used as
an accurate and robust option to create benchmarks for Human Movement Analysis and ges-
ture recognition [21] [22]. These papers have shown their steps taken to create a professional
benchmark from scratch, as well as assuring the quality of the data. This has been our guide
to ensure that we are ready for all the steps to create our own benchmark.

The Vicon Motion System is the system we decided to utilize for the creation of our bench-
mark. The vicon system uses 14 Vantage Cameras to capture lightweight markers placed on
various locations on the subject in 3D space. Jonathan et al. [23] showed in his work that the
Vicon System can be used for accurate real-time hand posture tracking.

Our project used the Motion Capture and Virtual Reality Lab of Utrecht University to record
our hand motion data, processed and later used in the benchmark for our SHREC track. See
section 4 where we explain in detail on how we used the the Motion Capture Lab at Utrecht
University to create our benchmark.

3 Study Goal

Our goal is to propose, implement and evaluate a new SHREC track for the hand gesture
category. In order to create this track we will create a novel benchmark that will be the
foundation of our new SHREC hand gesture track. This benchmark needs to either challenge
retrieval techniques in a new way, or provide a continuation on an already existing track by
improving on their benchmark (section 2.2.1).

The main research goal is as follows: Propose, participate and evaluate our SHREC
track on Recognition Of Dynamic Hand Motions Molding Clay.

In order to reach this goal we need to complete the following sub-tasks.
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1. Define the objective, task and evaluation for the participants.

2. Create the benchmark for the track.

3. Find Participants for the track.

4. Participate with a baseline retrieval method.

5. Evaluate all submitted results.

6. Follow the SHREC procedure to submit the track.

After we have finished these tasks we can finally give an answer to our research question:
”How do we propose, participate and evaluate our SHREC hand gesture track on Recognition
Of Dynamic Hand Motions Molding Clay?”.

The procedure to submit a SHREC track is as follows: First the organizer proposes their
track by describing their task, objective and evaluation method. They also send in their
benchmark together with a rough expected amount of participants. After acceptance of their
proposal, the track will be listed on the SHREC web-page. You can find our SHREC web-
page at the footnote1.
On this page participants can register by contacting the organizers of their desired to join
SHREC track. These tracks each have their own time schedule for the participants, however
they do have certain deadlines to meet. These deadlines are for the joint research paper
submissions as well as the deadlines for their peer reviewed revisions on this paper.
The steps that we took to create our hand gesture track can be read in section 5. You can
read our current version of the SHREC 2024: Recognition Of Dynamic Hand Motions Molding
Clay paper, that is currently in it’s second stage of peer-review at Appendix A.

4 Data Set

Our goal is to create a dataset of hand motions that are highly similar and contain precise but
small motions using both hands. We hope to challenge participants in a new way by creating
this novel benchmark. Our benchmark focuses on retrieval of hand movements on mold-able
objects. This benchmark will be the first SHREC benchmark to provide hand motions using
both hands while the motions themselves are precise and highly similar.

The previously mentioned benchmarks in section 2.2.1 have certain weaknesses that we would
like to overcome during this track. The first weakness that we found is that they are highly
focused on their global motion due to the fact of them being applicable for HCI. For example
the benchmark of the SHREC-17 track from Quentin De Smedt et al. [11] has 11 out of 14
classes that simply can be solved by looking at the global motion regardless of the hand shape.
These classes all fall under the category rotations or swipes.

The second issue we found is that the benchmarks do not contain similar or highly detailed
motion classes. We are interested to see if hand recognition systems can differentiate between
highly similar motions. In our case of molding clay all actions performed by the potter are

1https://www.shrec.net/SHREC-2024-hand-motion/
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precise, similar motions.

Lastly all these previously mentioned benchmarks consist of data using a singular hand.
Some gestures might be performed using both hands. We will provide a benchmark that
tackles these found weaknesses, this benchmark will be the foundation for a new SHREC
track to challenge 3D hand gesture recognition systems.

4.1 Data Collection

Hand-motion data has been captured using many different technologies so far. Previous pa-
pers have used a Leap Motion Device, Hololens 2 finger tracking headsets, other VR/AR
technologies, and short range depth cameras. This data is later processed into skeletal data
for hand-movements.

We recorded hand motions of an experienced potter who sculpted the same pot with and
without clay. For this project we are using the motion capture lab at Utrecht University [24].
These recordings are done using a Vicon System [2]. This system contains 14 Vantage Cam-
eras that work with the Vicon Shogun and Vicon Shogun Post software. That will track
reflective Soft-base markers on the potter’s hands and body, see figure 2. This way we can do
full body and hand tracking in real time while the potter is at work. After recording we use
post-processing software namely Blender and Vicon Shogun Post to extract the coordinates
information of the hand skeleton on a frame by frame basis.

Figure 2: Recording of Kees Agterberg using clay to create a vase

4.1.1 Motion Capture Lab

The Motion Capture and Virtual Reality Lab of Utrecht University [24] is one of the only
Motion capture lab’s in the Netherlands at this scale that allows detailed captures of multi-
ple actors in a multi-modal manner. The MoCapLab includes captures of facial expressions,
body movements, finger tracking and audio which can be captured in a fully immersive VR
experience.
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The motion capture lab has a library of 3D Software that is available for use within the
lab. Vicon Shogun and Shogun Post, Dynamixyz Grabber and Performer, Unreal Engine,
Motion Builder and Maya. For our project are using Vicon Shogun and Vicon Shogun Post.

The Body Motion Capture is done by the Vicon System. This system makes use of 14
Vantage Cameras. These cameras need to be calibrated in a specific way using the Vicon
Shogun software [2]. There are some fairly important things to notice before you can use this
system to record subjects.

Calibration of the Cameras: Before you can calibrate the cameras you have to wait
between 45 minutes to 1 hour for the cameras to warm up. The Vantage camera has an
on-board sensors that measures the camera position and temperature to ensure optimal per-
formance. The status of these cameras is visible in the Vicon Shogun software. After the
cameras are finished warming up. Simply go the Camera Calibration tab on the top right and
press the Activate Video Calibration button. Now we have to complete the following steps:
The first step is doing a wave task by waving to all the cameras using a Calibration Wand.
After that put the wand in the middle of the room to set the Origin and the Floor Plane.
Now we remove the Calibration wand from the scene, setup the following items needed for the
recording and use the Mask option to remove any unwanted reflections seen by the motion
capture cameras.

Creating the subject We create a subject for recording. To achieve accuracte hand motion
capture we use the FrontWaist10Fingers Marker set. This set will create a skeleton that con-
tains 10 fingers. For this project we used Soft-base markers in combination with the full-body
suit. The Soft-base markers need to be placed in precise locations on the subjects hand in
order to track the hand motions correctly. The location of these markers can be seen in figure
3. We did not use a glove but instead used tape to attach all the markers at the correct
location. We did this to ensure better stability on the markers when they come into contact
with the clay of the potter. Since the force might shift the glove making the captures less
accurate.
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Figure 3: Placement for all the finger markers for the 10 finger marker set as depicted in
Vicon documentation [25]

Now that the subject is wearing the full bodysuit and the markers are in place it’s time to
calibrate and create the subjects skeleton. In the Tracking tab of the Vicon shogun software
we choose the FrontWaist10Fingers Template, remove the Prop option and click Create.
Now we use the calibration option of the software. Before continuing we do a manual check
to see if the skeletal structure looks correct, and when needed we adjusted markers
accordingly.

Calibrating the Subject After clicking the Accept A-pose button, the Subject for
calibration needs to do a Range Of Motions. These include moving your arms and legs.
Since we are interested in hand motions we made the subject do a special range of motions
to inspect the finger movements. This ROM exists of the following motions for both hands:

1. Make a fist

2. Wiggle all fingers

3. Make the tip of your thumb touch all fingers of the same hand.

After the ROM is completed and we examined the correctness of the motions, we stopped
calibrating which will finalize the creation of our subject. We then did a quick check to see
if the markers on the hands are labeled correctly, After this inspection we were ready to
record.

4.1.2 The Recording day of the Experienced Potter

We calibrated the camera’s then place all necessary equipment in the correct locations and
masked the room to be ready for recordings. As noted above the cameras take about one hour
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to warm up so this was all done ahead of time. Before we attach the markers to the potters
hands we will give him time to create 1 pot without recording him. This is so he can get a feel-
ing for what type of pot he wants to create. The potter created the same pot a total of 4 times,
twice without clay and twice with clay. He also created the end of the pot twice without clay
using a video for guidance that was recorded beforehand. This gives us a total of 6 recordings.

A recording will be from the start to finish of creating one singular vase, as said before
we will make the potter create the exact same vase 6 times. The reasoning for not using clay
at the start is to not make the markers filthy or potentially fall off the hand.

At the end of the 4 recordings without clay tried to do recordings with clay. After the
first recording we quickly realized that the clay would cover the markers. We anticipated that
this could be an issue however we did not realize that it would make the tracking break to
this extent. Even the slightest bit of clay would make markers function significantly less or
even hide markers completely from the vicon system. This is visible on the recorded data
and can been seen on figure 4. This resulted in us losing most of the later data of the first
recording using clay. During the second recording we made sure to clean the markers more
often with a towel. This resulted in a better recording.

Figure 4: Screenshot of Hand tracking issues due to markers not responding well while being
covered with clay
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4.1.3 Post-Processing the Recordings

After the recording we used Vicon Shogun Post, automated post processing functions to
smooth the stuttering from the trackers. We solved finger joint issues and automatically la-
beled the markers. We exported the MCP file format to FBX (Filmbox) format. We can now
open these FBX files using Blender 3.6 and load in the armatures, see figure 5 for an example
of an armature in blender.

Figure 5: Example of an FBX file opened in Blender 3.6

The markers are as mentioned before automatically labeled by Vicon shogun post. The
labeling can be seen in table 1. These labels begin with an L or an R at the front standing
for left or right hand. The number at the end of the label is 0 if the marker is at the
metacarpal of the finger, 3 if it is at the start of the phalanx of the finger, and 6 if it’s at the
end of the phalanx.
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IWR OWR IHAND
OHAND THM3 THM6
IDX3 IDX6 MID0
MID6 RNG3 RNG6
PNK3 PNK6

Table 1: Location of markers on the left hand

After our files are converted in FBX format, we open them in blender 3.6 and manually find
hand motions by watching the recordings. After seeing a motion we note down the motion
class combined with the start and end frame. We then use a custom made blender script
that requires as inputs the FBX file combined with the start and end frame to extract the
skeletal coordinate system for all frames given in the input. It does this by looking at the
XYZ coordinates from the markers and creating a singular line per frame in the following
format:

[Frame; LIWR(x;y;z); LOWR(x;y;z); LIHAND(x;y;z); LOHAND(x;y;z); LTHM3(x;y;z);
LTHM6(x;y;z); LIDX3(x;y;z); LIDX6(x;y;z); LMID0(x;y;z); LMID6(x;y;z); LRNG3(x;y;z);
LRNG6(x;y;z); LPNK3(x;y;z); LPNK6(x;y;z); RIWR(x;y;z); ROWR(x;y;z);
RIHAND(x;y;z); ROHAND(x;y;z); RTHM3(x;y;z); RTHM6(x;y;z); RIDX3(x;y;z);
RIDX6(x;y;z); RMID0(x;y;z); RMID6(x;y;z); RRNG3(x;y;z); RRNG6(x;y;z); RPNK3(x;y;z);
RPNK6(x;y;z)]

After continuing this XYZ extraction for every frame on a motion, we acquired a list of
XYZ coordinates that will be written in a singular TXT file. We give the TXT file a name
based on it’s motion class, label it with a number, and put it in the correct folder. As
mentioned in section 2.2.1 participants are familiar with this specific skeletal coordinate
framework. After extracting all the movements we separated the movements in a 80-20
distribution for the train and test set.

4.1.4 The Finalized Dataset

The novel dataset is composed of 62 motions (split into a 80/20 train/test split), these motions
are quite long with frame lengths between 29 frames to 3721 frames averaging around 990
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frames. The motions are of high quality, showing highly similar, precise motions using both
hands on the subject of molding clay. These frame lengths are highly different from previous
SHREC tracks mentioned in section 2.2.1. Since previous SHREC tracks had frame lengths
averaging around 30 frames per motion. The data consists of 7 motion classes, these classes
are:

• Pressing the clay to make it stick to the pottery wheel.

• Making a hole in the clay.

• Tightening the cylinder of the clay.

• Centering the clay.

• Raising the base structure of the clay

• Smoothing the walls

• Using the sponge to make the clay more moist.

This dataset is fairly small, however due to the uniqueness of the data recorded we still
value this dataset highly. The data has been made available on our SHREC track web-page2.

5 My Hand Gesture SHREC Track

In section 3 we defined the goals for our thesis to hold our own SHREC challenge. Now
that we have created a novel benchmark it is time for us to lay the foundation for our shape
retrieval challenge. This section will show the steps taken by us to organize the SHREC 2024:
Recognition Of Dynamic Hand Motions Molding Clay challenge found at Appendix A. This
section will also go into detail on the SHREC procedure to submit the track.

5.1 Defining the Track

This contest will focus on trying to recognize different highly similar hand motions from a
professional potter. Participants will try to recognize the hand motions from the given skele-
tal coordinate data of both potters hands. The small size of train set, the motion of two
hands simultaneously, and the precise and highly similar motions of the professional potter
hands makes it a novel recognition task. This track is created to evaluate the current state
of the art gesture recognition systems by challenging them with new highly similar skeletal
data using two hands.

The task for the participants is to develop methods that can detect and classify the hand
movements based on the classes given in section 4.1.4. Their results should consist of a sin-
gular txt file, were a singular row would represent a singular motion. The format of each row
should be: The number of motion in the test dataset, followed by the respective motion class.
We decided to look at the accuracy per class, combined with the total accuracy over the entire
test set for the evaluation method. We will create a confusion matrix to gather insight in the
algorithms. The participants where asked to make their algorithm available for download.

2https://www.shrec.net/SHREC-2024-hand-motion/
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This is to comply with the rules of the Graphics Replicability Stamp Initiative [26].
For the submission we asked the participants the following 4 items:

A Readme file containing information on how to compile and run their code, combined
with required parameters and dependencies to reproduce their results.
Their Results file in the exact format mentioned before.
Their executable code, or the link where the code could be downloaded from.
Their Method description, consisting of 1-2 pages in Latex format. Containing the Impor-
tant implementation details of the classification system. We also provided the participants
with a link to the Computer and Graphics (C&G) LaTex template3. We made the dataset
available for download, combined with a minor description of the dataset to inform the par-
ticipants.

5.2 Creating a Schedule

Now that we have our track defined it’s time to create a time schedule for the track. Since
our SHREC track is part of the Computer and Graphics Journal (Elsevier) for the 3D Object
retrieval (3DOR) section we are bound to their timeline. There are a few important dates for
our track:

• February 16 - Data made available.

• March 8 - Registration deadline.

• March 29 - Submission deadline of the results for participants.

• April 12 - Track report submission to Computers Graphics for review.

• May 31 - First revision due.

• July 4 - Final version submission.

• August 26-27 - Presentation at the Eurographics 2024 Symposium on 3D Object
Retrieval

We have decided to close the registration for participants on March 8th. This is not necessar-
ily a hard deadline but more a deadline for us to estimate how many participants we will have.

Since the first paper track submission is due at April 12th we decided that I require 2 full
weeks to work through the participants submissions. This would require me to compile their
code to check their reliability and validity in comparison to their results. It requires me to
read through their method descriptions and do minor to major adjustments to their Latex
files. This would also ensure me enough time to write the results, discussion and conclusion
sections for the paper. For these reasons we decided to set the submission deadline for the
participants on March 29th.

For the deadlines for the first revision we awaited the reviewers response to our paper, and

3https://legacyfileshare.elsevier.com/promis misc/elsarticle-CAG-template.zip

16



applied the revisions ourselves. After the revisions where finished we contacted the partic-
ipants of our track, notifying them about the revision of the paper and asking them about
their feedback. Then after utilizing their feedback we would send them the final version of
the revised paper. We would handle this similarly for the second revision, which is due at
July 4th.

5.3 Finding Participants

The preperations are finished, we have defined our track and created a schedule and have a
benchmark ready, now we have to find participants for our challenge. First of all we made a
promotion web-page for our SHREC track4. This page provides the definition of the track,
the information needed for participants to participate in the track and our time schedule for
the track.

Secondly we decided to email all 37 participants of previous hand recognition SHREC tracks
on the 22nd of February. Stating that we were looking for participants for the new hand recog-
nition track. In total we have 5 groups participating, 1 group participated using 2 different
retrieval systems.

5.4 Creation of the SHREC Paper

Now that we have our participants and our track is ongoing, it is time to look at the joint pa-
per creation. Before obtaining the submissions and results of our participants we can already
do a fair amount of work for our paper. We could already write the Introduction, Related
Work, the Dataset, the Task and Evaluation Section, and the baseline retrieval method sec-
tion for the paper.

Then after confirming every groups results by running their retrieval system(s) and reading
their Method description it was time to implement their method descriptions in the paper.
Most method descriptions only required minor changes to be implemented in the SHREC2024
paper, while there was also a group (Windowed Multi View) that gave me their previous 2023
paper [27] with a list of changes made for the SHREC2024 challenge. This required me to
rewrite their method description in a way that fits in the style of the short paper. After I
obtained all the groups submissions I was able to write the results, discussion, and conclusion
sections to finish the paper.

After the paper was finished, we emailed all participants asking them for their feedback
on the paper. After implementing their feedback we submitted the paper to the editorial
manager from Computer and Graphics5. You can read our current version of the SHREC
2024: Recognition Of Dynamic Hand Motions Molding Clay paper at Appendix A.

4https://www.shrec.net/SHREC-2024-hand-motion/
5https://www.editorialmanager.com/cag/default.aspx
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6 Methodology

We created a CNN hand motion recognition system by customizing an existing algorithm from
Fan Yang et al available at GitHub6. Called the Double-feature Double-motion Network (DD-
Net) [3]. DD-Net uses local combined with global motion features that are location-viewpoint
invariant. DD-Net utilizes simple 1D convolutional operations to classify motions, in this
case the skeletal coordinate data which is converted into 1 dimensional arrays of the skeletal
coordinate system. The network architecture of our modified DD-Net can be found at Fig. 6.

Figure 6: Overview of the baseline method for SHREC2024 modified DD-net framework

As seen in Fig. 6 we start by pre-processing the data which will be explained in section
6.1, followed by 3 main feature arrays. The 3 main feature arrays used in our retrieval system
are: The Joints Collection Distances (JCD) feature explained in section 6.2, the Slow Motion
(Mslow) feature, and the Fast Motion feature (Mfast)both explained in section 6.3.

6.1 Pre-processor and variable tuning

For the pre-processing steps we load in all the raw TXT files containing all the skeletal coor-
dinate data from all the motions. This data is preemptively split in a train and test folder.

6https://github.com/bennie010697/DD-Net-SHREC-2024
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We created some minor automatic data loading functions to load the data more smoothly. for
example a function that will automatically extract the motion class labels. Then we apply 3
major pre-processing steps to this data: A Reshape, a Zoom function, and a Normalization
function.

First we call a simple NumPy reshape function to reshape the NumPy arrays to a 28x3
size. This size is favorable to read since this reshapes the array to a size of Nx28x3, where we
have 28 markers with 3 coordinates (x,y,z) per marker. This is not necessary for the system
to work, but it makes the array way more readable for debugging, programming, and testing
purposes.

After we reshaped the data, we call a zoom function. The Zoom function will ”zoom” the
data. This means that by using a medfilt array function from the scipy library, we can scale
our frame length to a desirable number. This is a very important step for our CNN since
all input data is required to be the same size. The medfilt function is called with a kernel
size of 3 meaning it will look at it’s neighbouring frames. Medfilt will automatically use the
zero-padding strategy when needed. This is again desirable for our retrieval system since it
will not only zoom out to decrease the frame length of certain motions that are too long, but
with padding can also zoom in to increase the length of short motions.
Since our recorded motions have a larger frame-length than previous gesture recognition tracks
(see section 4.1.4) we decided to test the zoom function for different values to see if it has
an impact on our performance. We tested the retrieval system on 32, 128 and 256 frames.
In the end we did not notice a performance increase on the accuracy by increasing the frame
length. We did however just to be sure train on a higher frame length of 256 frames to test
the effect of filters on the accuracy. After we found our desired filter size, we again trained
on a lower frame length of 32, again not noticing a difference in the accuracy of our network.
More about how we trained the network can be found in section 7.

Lastly we normalized the data using a Normalization function. This normalization func-
tion subtract the mean values from the skeletal coordinate data, resulting in a nicely centered
skeletal coordinate framework.

6.2 Joint Collection Distances Feature

The issue of Cartesian coordinate features are that they are highly variable on the location
or viewpoint of the skeleton. The Joint Collection Distance feature is a location viewpoint
invariant feature that calculates the Euclidean distances between a pair of collective joints to
obtain a symmetric matrix. This feature roughly translates the shape of the hand. Then to
reduce the amount of redundant data we use the NumPy triu indices function with a diagonal
offset of 1 to return only the indices of the upper triangle.

We assume that the total number of frames is T (of size 32 in our case) and the set of
all joints N (in our case a total of 28). We represent the Cartesian coordinates of joint n at
frame t as J t

n = (x, y, z). By combining all joints into a set we have St = {J t
1, J

t
2, ..., J

t
N}.

Now calculating this JCD feature for S on frame t we get:
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∥∥∥−−→J t

iJ
t
j

∥∥∥ (i ̸= j) denotes the euclidean distance between J t
i and J t

j on frame k. As noted

in our pre-processing steps section 6.1. We transform this matrix to a 1D vector by appending
it to a list in order for the data to be accepted in our convolutional neural network.

6.3 Global Motion Features

While the JCD is location viewpoint invariant it does not contain information about the
global motion of the hands. We calculate the speed by looking at the temporal differences
between frames, this is a location viewpoint invariant feature. The Short-term slow motion
Mslow computes the linear velocity of every single joint for all joints on every frame. The
Short-term fast motion Mfast is similar to Mslow but the linear velocity gets computed every
other frame. In practice, Mslow and Mfast model the short-term global motion of the skeleton
in terms of speed.

6.4 Combining the Features

DD-Net embeds the 3 features: Mslow, Mfast, and JCD into latent vectors at each frame. This
embedding process automatically learns the network the correlation between markers on the
hand. The embedding process can be seen in figure 6. Here we can see the embedding steps
colored in red. Now that we have our 3 latent feature vectors we concatenate them into our
network. Since Mfast only calculated the spatial differences for every other frame. We require
to call the MaxPooling1D function in the embedding process to down samples the output of
the Mslow and JCD tracks.
Afterwards we call more 1D convolutional operations with increasing filter size while main-
taining a kernel size of 3, this is a general best practice for convolutional networks and helps
the network learn the temporal information. Afterwards we call the GlobalMaxPool1D func-
tion to extract the maximum values over the time dimension.
The major difference between the Maxpool and the GlobalMaxPool is that the GlobalMax-
Pool takes the max vector over the steps dimension instead of just over the stride. Meaning
that we take the max values of all frames. For example imagine we have a shape of (batch size,
steps, hidden size) then after the function GlobalMaxPool we will get the shape (batch size,
hidden size) by pooling over the steps. Afterwards we create 2x 128 units fully connected
dense layers. Then in the end we create a fully connected Dense layer with 7 units, each
representing one of the 7 motion classes.

7 Results and Evaluation

In this section we present about our results on the SHREC-2024 novel dataset mentioned in
section 4. We trained our retrieval method using 6 different parameter settings, we changed
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the frame length of the zoom function and the amount of filters used in the layers of our
network.
In this section we will look at effect on the training time and accuracy when changing these
parameters. We also calculate the metrics precision (Eq. 1): Percentage of positive class
predictions that are correct, recall (Eq. 2): Percentage of positive cases correctly predicted
by the method, and F1 score (Eq. 3): A harmonic average of the precision and recall for our
network on all our tested parameter settings.

Precision =
True Positive

True Positive + False Positive
(1)

Recall =
True Positive

True Positive + False Negative
(2)

F1 score = 2 · Precision · Recall
Precision + Recall

(3)

Table 2 Shows the effect of changing the filters parameter in the network. By changing
the filters we can see that both the Total parameters of the network as well as the training
time increase in exponentially. Note that the training time is in seconds, and that we trained
the system for 3000 epochs on a frame length of 256 frames. Looking at this table we can see
that when we train the network with 512 filters for the neural layers that we train for roughly
11 hours.

Filters Total Params Training Time (seconds)

128 7.043.463 (26.87 MB) 2.768
256 27.536.263 (105.04 MB) 11.523
512 108.924.807 (415.52 MB) 40.548

Table 2: Training time in seconds and total parameters of the network, based on the filter
parameter used in the configuration. Trained on 3000 epochs with a frame length of 256
frames.

In table 3 the effect of changing the Frame length parameter is visible on the training time.
Lowering this parameter will decrease the amount of frames loaded into the CNN. This is
done by the zoom function explained in section 6.1. We trained all the networks shown in
the table on 3000 epochs with a filter size 128 filters.

Frame length Training Time (seconds)

32 1.456
128 2.220
256 2.768

Table 3: The effect of changing the Frame length on the training time.
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We then combined table 2 and table 3 to create table 4, we also added the global accu-
racy to this table. As shown In table 4 the network with similar filter sizes perform the same
on the global accuracy of the test set. The issue however is that the increase in filter size
slows the training time significantly. The network with 256 filters trains quicker by a factor
of roughly 4, compared to our network when using 512 filters. Since all methods with 256 or
more filters got the same global accuracy, we decided to crown the method with the lowest
training time the best performer. Resulting in us using a filter size of 256 and a frame length
of 32 as our baseline configuration for our method.

Filters Frame length Total Params Training Time Accuracy

128 32 7.043.463 (26.87 MB) 1.456 0.83
128 128 7.043.463 (26.87 MB) 2.220 0.83
128 256 7.043.463 (26.87 MB) 2.768 0.83
256 32 27.536.263 (105.04 MB) 7.257 0.92
256 256 27.536.263 (105.04 MB) 11.523 0.92
512 256 108.924.807 (415.52 MB) 40.548 0.92

Table 4: Combined table of table 2 and table 3 and the accuracy of the network.

256filters 256frames 256filters 32frames

Figure 7: Training Graph, number of epochs on the x-axis, the corresponding accuracy per-
centages for both train and test datasets on the y-axis.

As mentioned above all networks are trained on 3000 epochs. Figure 7 shows the model
accuracy of our method on 256 filters and a frame length of 256 and 32 frames over the
training period. Figure 7 shows that the network converges at around 300 epochs on the
training set. Normally a network is done training slightly after it converges. However due to
the small data set it is hard to automatically detect if a network is converged.
Which is why in our case we manually chose to run the network for 3000 epochs, to make
sure the network is fully trained. We can also see that our network increases it’s
performance on the test set, way after the training convergence point. We are also able to
spot a difference in the training graphs at 256 and 32 frames. Namely that the network
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using 32 frames shows better results earlier in the training stages on the test set, compare to
the model using 256 frames. When using 32 frames we also gain a more stable performance
on the test set.
Normally computation speed is an importance factor for your program, our training could
be stopped at around 400-500 epochs. However since we are dealing with a retrieval system
where we can create a pre-trained model, we do not care about the metric of Frames Per
Seconds (FPS) or total training time as much as the metric of accuracy. Predicting a
motion will be just as quick on a model that’s trained for only 400 epochs as for a model
that is trained for 3000 epochs.
However if we do care about the performance in terms of training time we could always
train the neural network for 300 epochs. By setting the configuration of the parameter
settings to 256 filters and 32 frames we are able to obtain an accuracy of 92% when training
for 300 epochs. This would still give us the best found results in terms of global accuracy on
our test set, while only requiring 700 seconds to train.
The correlation between accuracy and parameters might change when using a larger test
and or training set, where perhaps having a higher frame length might result in a better
global accuracy score.

Figure 8: Performance metrics per motion class on the different parameters

The bar charts in figure 8 show the per-class precision, recall and F1 scores of the retrieval
system on different configuration settings. The confusion matrix of the retrieval system can
be seen in figure 9.
First of all we notice that the frame lengths that we used for training do not impact the
retrieval accuracy on our dataset. All three configurations using 128 filters, and all three
configurations using 256 or 512 filters gave similar results in both Precision, Recall and
F1-score as well as similar confusion matrices.
Looking at these 2 figures, we can see that no matter which parameters we use we will
always make a prediction error in the ’Smoothing’ and ’Raising’ classes. Where the true
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Figure 9: Confusion matrix of 128 filters on the left and 256 & 512 filters on the right

label is ’Smoothing’ but we predict ’Raising’. These motions are highly similar due to the
fact that the potter’s left hand makes the exact same upwards motion to stabilize the inside
of the pot. While the potter’s right hand makes a similar upwards global motion. There is
however a difference in these motions, namely in the fact that the right hand is angled
slightly differently. Both these motions can be seen in figure 10.
We also notice a change on the confusion matrix in the 128 filters compared to the 256 &
512 filters configuration setting. Where we predict the ’Centering’ class when the true label
is ’MakingHole’ when using the configuration of a 128 filters. Showing that the global
accuracy of the model is increased whenever we upscale the filter size to 256 or 512 filters.

Figure 10: Static screen-capture in blender of the ’Smoothing’ motion (left) where the potter
uses his phalanges and the ’Raising’ motion (right) where the potter uses the tips of his fingers

Our results are compared to other retrieval methods in the SHREC 2024: Recognition Of
Dynamic Hand Motions Molding Clay paper at Appendix A. In this paper we used the
neural network with 256 filters and frame lengths of 32 frames as the baseline method.
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8 Conclusion

In this paper we have presented the steps taken to organize the SHREC 2024 track: Recog-
nition Of Dynamic Hand Motions Molding Clay. We reported the creation steps of the novel
dataset and the baseline method. We then explained our evaluation method and evaluated
our results on our novel benchmark. The evaluation of our benchmark shows that due to the
small size of the dataset it’s difficult to tune our neural network properly. Due to the small
test set, we believe that it is necessary to continue the study on a larger test set to get a
more in depth evaluation. We do however believe that we have shown the valuable steps on
how we created our benchmark and our retrieval method. Just as the steps we took on how
to successfully hold your own SHREC track. We also believe that our dataset even in it’s
small scale is a valuable asset to the field of hand recognition, due to it’s uniqueness and high
quality. As of writing this paper there are little to non benchmarks available of hand motions
on mold-able objects. Our benchmark also contains highly similar, and precise motions using
two hands, making it a new type of benchmark for gesture recognition.

9 Future Work

The current research has a limited scope, due to the rather small dataset which is meant to
introduce the concept of retrieving highly similar motions on objects while using both hands.
Follow-up research could expand on the dataset by generating more data by using the same
or other systems and techniques to generate data on mold-able objects. We could expand the
data by having different subjects recorded while also looking at the possibility of increasing
the amount of gesture classes. Having this larger dataset would improve the quality of our
results and will make it easier to see differences between the parameters as well as select the
best parameters for our retrieval method.

A supplementary study could be performed that looks at different retrieval techniques or
different neural networks and compares them. As mentioned in the paper there are multiple
neural networks that each have their own benefits and reasons to be used for gesture retrieval.
Exploring these in more depth could lead to a better retrieval system.

While this is just a new way to look at skeletal based recognition there are numerous new
studies, datasets, techniques and gestures that could be added within the SHREC track of
hand gesture recognition and increase the effectiveness of skeletal based recognition. Skeletal
based recognition is by far not finished and more studies always help to improve retrieval
systems.
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A B S T R A C T
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coordinates in a frame by frame motion. The data have been captured using the Vicon
system and pre-processed into a coordinate system using Blender and Vicon shogun
Post. We created a small novel dataset with a high variety duration in frames. This
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1. Introduction1

The recognition of motions based on hand skeletons is be-2

coming a more effective and intuitive tool for Human-Computer3

Interaction (HCI) applications. Especially in Virtual Reality4

(VR) and Mixed Reality (MR) devices. During the years We5

have seen a higher focus on using a hand Skeletal dataset for6

gesture recognition however the gesture classes used in these7

datasets are quite simplistic and distinct [1, 2, 3]. Furthermore8

most hand gesture benchmarks use only a singular hand. Hand9

gesture recognition has been an active research field for the past10

25 years where a range of different methods and network ap-11

proaches have been proposed.12

In this track, we present a novel highly similar dynamic hand13

gesture dataset which provides sequences of hand skeletal data14

using two hands on variable time length. We construct a novel15

recognition task focusing on precise hand motions using both16

hands and compare the results of the five groups that have been17

registered for this track with our baseline method.18

The paper is organized as follows: Section 3 presents the19

novel dataset, Section 4 the task for the participants and the20

evaluation method, Section 5 presents the participants and their21

proposed methods together with our baseline method, Section22

6 presents the results that will be discussed in Section 7.23

2. Related work24

Hand gesture recognition has been a consistent research field25

where several benchmarks have been created over the years. A26

popular benchmark is the SHREC’17 Track: 3D Hand Gesture27

Recognition Using a Depth and Skeletal Dataset [1], featuring28

dynamic gestures that will be used in interactive applications.29

Many methods for hand gesture classification have been eval-30

uated on this dynamic benchmark. The benchmark proposed31

in the SHREC 2019 track on online gesture detection [2] was32

focused on gesture sequences and challenged methods to lower33

the amount of false positives. The track SHREC’21 Skeleton-34

based Hand Gesture Recognition in the Wild [4] was created to35

test complex gestures in the form of XR interactions. Which36

was later improved on by the SHREC 2022 track on online de-37

tection of heterogeneous gestures [5] which removed ambigu-38

ous classes and avoided annotation issues affecting the previous39

SHREC 21 benchmark.40

These datasets however have weaknesses: To begin, most off41

these dynamic gestures are highly focused on their global mo-42

tion namely the swipes, cross and V classes. Which lowers the43

significance of looking at the shape of the hand. Second these44

benchmarks do not contain similar or highly detailed motion45

classes. Lastly all these benchmarks consist of data using a sin-46

gular hand while, some gestures might be performed using both47

hands.48

3. Dataset creation49

We created our novel benchmark trying to overcome the50

weaknesses mentioned in the related work section. We created51

a novel dataset of precise, small motions that are highly similar,52

using both hands while keeping importance on both the global 53

motion data as well as hand shape information. 54

55

This novel small dataset is composed of 62 motions captured 56

using a Vicon system, consisting of 7 classes of motions divided 57

into two subsets using a (80/20) training/testing split. The mo- 58

tions are: 59

• Pressing the clay to make it stick to the pottery wheel. 60

• Making a hole in the clay. 61

• Tightening the cylinder of the clay. 62

• Centering the clay. 63

• Raising the base structure of the clay 64

• Smoothing the walls 65

• Using the sponge to make the clay more moist. 66

We recorded the hand motions of an experienced potter who 67

sculpted the same pot with and without clay. Molding clay is 68

a precise and delicate act where the potter makes small and 69

precise hand movements using both hands. The movements 70

the potter creates are perfect for our recognition benchmark 71

since it fits all the aspects to overcome the weakness mentioned 72

earlier. Due to the potters movements being so precise our 73

motions are variable in frame length and quite long. resulting 74

in frame lengths between 29-3721 frames with an average of 75

990 frames, compared to previous benchmarks where motions 76

had a frame length of 15-50 frames on average. 77

78

For this project we are using the motion capture lab at 79

Utrecht University 1. These recordings are done using a Vicon 80

System 2. This system contains 14 Vantage Cameras that work 81

with the Vicon Shogun and Vicon Shogun Post software. That 82

will track 28 reflective soft-base markers on the potter’s hands 83

and body see Fig. 1. This way we can do full body and hand 84

tracking in real time while the potter is at work and record high 85

quality motion data. 86

87

Fig. 1. Recording of hand motions using clay to create a vase

We use Vicon Shogun post to remove any stuttering found 88

during the recording and to export armature of the potter 89

1uu.nl/en/research/motion-capture-and-virtual-reality-lab
2vicon.com/software/shogun
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to a Filmbox(FBX) format. We then extract the coordinate1

system of the hand skeleton on a frame by frame basis by2

using a custom made small blender script. The script exports3

the coordinates of the markers in a text file where each row4

represents the data of a specific frame followed by the 28x35

coordinate floats (14 per hand see Fig. 2) (x;y;z) positions of6

the markers.7

8

The structure of the coordinate system is as followed where9

the L and R stand for Left and Right hand respectively:10

Frame; LIWR(x;y;z); LOWR(x;y;z); LIHAND(x;y;z);11

LOHAND(x;y;z); LTHM3(x;y;z); LTHM6(x;y;z);12

LIDX3(x;y;z); LIDX6(x;y;z); LMID0(x;y;z); LMID6(x;y;z);13

LRNG3(x;y;z); LRNG6(x;y;z); LPNK3(x;y;z); LPNK6(x;y;z);14

RIWR(x;y;z); ROWR(x;y;z); RIHAND(x;y;z);15

ROHAND(x;y;z); RTHM3(x;y;z); RTHM6(x;y;z);16

RIDX3(x;y;z); RIDX6(x;y;z); RMID0(x;y;z); RMID6(x;y;z);17

RRNG3(x;y;z); RRNG6(x;y;z); RPNK3(x;y;z); RPNK6(x;y;z);18

see Fig. 2 for the location of the markers on the left hand19

(marker locations on the right hand are on similar locations).20

Fig. 2. Location of markers used on the left hand during recording

4. Task and evaluation21

Participants where asked to develop methods that can detect22

and classify hand movements based on the given skeletal co-23

ordinate system in the test set. The small size of train set, the24

motion of two hands simultaneously, and the precise and highly25

similar motions of the potter hands makes it a novel recognition26

task. That requires methods to look into motion details as well27

as creating a difficulty for training.28

The result should consist of a single text file with a row repre-29

senting the number of motion in the test dataset followed by the30

motion class combined with their algorithms and information31

on how to run them for verification purposes.32

For the evaluation the recognition accuracy will be computed33

per class as well as the total accuracy over the entire test set.34

We will also create a confusion matrix to extract more informa-35

tion out off the methods. We also use the metrics precision (Eq.36

1): percentage of positive class predictions that are correct, re- 37

call (Eq. 2): percentage of positive cases correctly predicted by 38

the method, and F1 score (Eq. 3): a harmonic average of the 39

precision and recall. 40

Precision =
True Positive

True Positive + False Positive
(1)

Recall =
True Positive

True Positive + False Negative
(2)

F1 score = 2 · Precision · Recall
Precision + Recall

(3)

5. Participants and proposed methods 41

Five research groups were registered for the contest and sent 42

their results. A total of 6 results files have been obtained with 43

different classification strategies or parameters. Their methods 44

are described in the following subsections and we compare their 45

results against our baseline method. The five groups were com- 46

posed as follows: 47

• Group 1: SkelMAE: Skeleton-based MAE and STGCN 48

Omar Ikne, Benjamin Allaert and Hazem Wannous 49

• Group 2: Windowed Multi View 50

Marco Emporio, Andrea Giachetti and Joseph J. LaViola 51

Jr 52

• Group 3: DET-ACTIONS: DEep-based Technique for AC- 53

Tion Identification Operations from haNd-derived Skele- 54

tons 55

Ruiwen He, Halim Benhabiles, Adnane Cabani, Anthony 56

Fleury and Karim Hammoudi 57

• Group 4: HMM-based classification & RNN-based ap- 58

proach 59

Konstantinos Gavalas, Christoforos Vlachos, Athanasios 60

Papanikolaou, Ioannis Romanelis, Vlassis Fotis, Gerasi- 61

mos Arvanitis and Konstantinos Moustakas. 62

• Group 5: SE(3)-equivariant Graph Convolutional Net- 63

work 64

Martin Hanik, Esfandiar Nava-Yazdani and Christoph von 65

Tycowicz. 66

5.1. Baseline: Modified DD-net 67

For the baseline method we customized an algorithm from 68

Fan Yang et al. that showed high results in previous SHREC 69

hand gesture track [1], namely the Double-feature Double- 70

motion Network (DD-Net) [6] available at GitHub 3. This net- 71

work uses simple 1D convolutional operations to classify mo- 72

tions using Cartesian coordinate features. The network archi- 73

tecture can be found at Fig. 3. 74

3https://github.com/bennie010697/DD-Net-SHREC-2024
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Fig. 3. Overview of the SHREC2024 DD-net framework

5.1.1. Feature extraction1

DD-net derives 3 features from the hand joints stream namely2

the: Joint Collection Distances (JCD), the short-term slow mo-3

tion Mslow and the short-term fast motion Mfast. The JCD4

is a Location-viewpoint Invariant Feature that calculates the5

Euclidean distances between a pair of collective joints on all6

frames a feature Characterizing the hand pose. The slow motion7

and fast motion features calculate the temporal difference of8

the Cartesian coordinate feature to obtain global motions of the9

hand skeleton. The slow motion calculates this for every frame10

while the fast motion calculates this for every other frame.11

5.1.2. Changes for SHREC202412

For the customization of the algorithm we first had to make13

sure that all the data of the SHREC2024 would be loaded cor-14

rectly into the algorithm. We transitioned from 22 joints in the15

SHREC17 [1] track to 28 joints using both hands. Furthermore16

we immediately realised the difference in frame lengths off the17

SHREC17 track compared to our SHREC24 data. Resulting in18

the removal of too much useful coordinate information in the19

zoom function from DD-net. The previously used target frame20

length of 32 frames in the zoom function was increased to 256.21

During testing we realised that increasing the frame length fur-22

ther would impact too heavily on performance, while not in-23

creasing classification accuracy to the same degree. Due to this24

increase in frame length we decided to up the filters from the25

previous 64 to the same degree of 512 to keep the same level of26

detail per frame. This increase in frame length and filter amount27

improved the accuracy of the classification in the test-set on28

highly similar motions like ”Centering” and ”MakingHole”.29

5.1.3. Implementation details30

We trained each model on DD-net for 3000 epochs using a31

Adam optimizer. With an annealing learning rate that drops32

from 1×10−4 to 5×10−6. We did not apply pre-trained weights.33

We experimented on different frame lengths and filter sizes. All34

models are implemented in TensorFlow.35

5.2. Group 1: SkelMAE: Skeleton-based MAE and STGCN 36

5.2.1. Method Description 37

Group 1 proposed an innovative approach to improve 38

skeleton-based hand gesture recognition by integrating self- 39

supervised learning, a promising technique for acquiring 40

distinctive representations directly from unlabeled data and 41

showed to be useful in case of limited annotated data [7, 8]. The 42

proposed method takes advantage of prior knowledge of hand 43

topology, combining topology-aware self-supervised learning 44

with a customized skeleton-based architecture to derive mean- 45

ingful representations from skeleton data under different hand 46

poses. 47

The proposed Mask Auto-Encoder (MAE) [9] is based on a 48

Vision Transformer (ViT) [10] architecture adapted for skeletal 49

data processing, with some novelties including: 1) Integration 50

of Fourier feature mapping, showed to outperform linear map- 51

ping in capturing spatial relationships [7, 11]. 2) A modified 52

attention mechanism formula that incorporates adjacency infor- 53

mation, enhancing joints spatial connectivity encoding. Code 54

and trained models are available at GitHub 4
55

5.2.2. Masking Strategy 56

We propose to use a widely adopted technique involving ran- 57

domly masking a number of joints in the hand skeleton [9, 8]. 58

We adapt this method to randomly mask a given ratio of joints 59

in each hand (see Fig.4). 60

5.2.3. Model architecture 61

The architecture of the MAE is designed to process skeletal 62

data. It is based on an asymmetric encoder-decoder architec- 63

ture, both built upon the ViT model as illustrated in Fig. 4. 64

Encoder. Based on ViT model, we design our encoder to pro- 65

cess skeleton data. Given the non-masked joint-level coor- 66

dinates v of a hand skeleton, the encoder employs a Fourier 67

feature mapping γ(v) [11] to project spatial coordinates into 68

a higher-dimensional space using sine and cosine functions of 69

different frequencies. Fourier features embedding enhances the 70

model’s ability to capture spatial relationships in the skeleton 71

data. By representing joint movements and interdependencies 72

as frequencies, the model gains a more comprehensive under- 73

standing of the nuanced patterns in skeletal structures. 74

The Fourier feature mapping is employed to embed the 3D 75

coordinates (x, y, z) into a 256-dimensional vectors. They are 76

then fed into a series of ViT blocks including a self-attention 77

mechanism and feed-forward layers to learn distinctive features 78

in latent space for each hand pose. This architecture allows 79

the encoder to capture complex relationships and dependencies 80

between skeleton joints. 81

The MAE encoder is implemented based on a ViT of depth 6, 82

with attention mechanisms in each layer with 8 heads for multi- 83

head attention and incorporates feed-forward networks with a 84

dimension of 512. The embedding dimension is set to 256. 85

4https://github.com/o-ikne/skelmae-shrec24.git
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Fig. 4. Proposed MAE for hands skeleton reconstruction. We mask a given ratio of joints in each hand, the unmasked joints are encoded by the encoder
while taking into account their connectivity given by the masked adjacency matrix. The encoded joints are then concatenated with the masked tokens and
passed through the decoder along with the connectivity matrix to reconstruct the masked joints.

Decoder. The decoder is designed to reconstruct the masked1

joints in the skeleton data. It operates identically to the encoder,2

but with a different set of parameters. It first adds positional3

embeddings specific to the decoder. Then it concatenates the4

masked tokens, represented by a learnable mask token, with the5

encoded non-masked joints tokens. Subsequently, the decoder6

attends to this combined sequence using a ViT transformer. Fi-7

nally, the model predicts the missing joints’ coordinates.8

The MAE decoder is built as a counterpart to the encoder,9

adopting the ViT architecture with a depth of 6 and an 8-head10

attention mechanism for multi-head attention.11

Enhancing Spatial Connectivity. Spatial connectivity between12

hand joints is crucial for accurate recognition of hand gestures.13

While ViT models intrinsically capture a certain level of spatial14

relationships in their attention mechanisms, the anatomical con-15

straints of the hand skeleton can benefit from the explicit inte-16

gration of adjacency matrices. In our approach, we incorporate17

adjacency matrices during both the encoding and decoding.18

The inclusion of adjacency matrices improves spatial mod-19

eling, enabling the attention mechanism to explicitly take into20

account the spatial layout of hand joints. The modified attention21

mechanism formula is provided in Eq. 4.22

Attention(Q,K,V,A) = softmax
(

QKT

√
dk
⊙A

)
V (4)

In this context, Q, K, and V represent the query, key, and value23

components of the original attention mechanism [12]. While A24

denotes the adjacency matrix, embedding spatial connectivity25

between hands joints.26

For the encoder, we only consider the connectivity between27

the non-masked joints (masked adjacency matrix), while for the28

decoder, the connectivity between all joints is considered (com-29

plete adjacency matrix). The proposed adjacency matrix is il-30

lustrated in Fig.5.31

Fig. 5. SkelMAE: proposed hand adjacency connections.

We employ the Mean Squared Error (MSE) as the main loss 32

function for the MAE. 33

5.2.4. Fine-Tuning for Dynamic Hand Gesture Recognition 34

To assess the ability of the MAE model to acquire discrimi- 35

native representations of the hands at various poses, we rely on 36

the Space-Time Graph Convolutional Network (STGCN) [13] 37

as the backbone architecture for skeleton sequence classifica- 38

tion. The STGCN has demonstrated remarkable capabilities in 39

learning temporal relationships, enabling it to identify complex 40

patterns in sequential data. 41

Given a sequence of 3D hand joints, we use the MAE pre- 42

trained encoder to acquire the learned representations (latent 43

space), which then serve as the basis for training the STGCN. 44

5.2.5. Implementation Details 45

For MAE training, we selected the AdamW optimizer with 46

a learning rate of 2 × 10−4 and a weight decay of 5 × 10−2. 47

The learning rate is gradually reduced during training using Co- 48

sine Annealing scheduler [14]. The masking ratio is set to 0.7, 49
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meaning that 70% of the joints are randomly masked in each1

hand.2

For the STGCN, we set a sequence length of 3000 frames,3

either padding or truncating sequences accordingly. For train-4

ing we employed the AdamW optimizer with a learning rate of5

1 × 10−3 and a weight decay of 5 × 10−4. The learning rate6

is gradually reduced using the same scheduler as for MAE. We7

adopt the cross-entropy loss with label smoothing of as the fine-8

tuning loss with a smoothing rate of 0.1.9

Pre-training spans 100 epochs with a batch size of 64, while10

fine-tuning spans 30 epochs with a batch size of 2. All models11

are implemented in PyTorch.12

5.3. Group 2: Windowed Multi View13

5.3.1. Method Description14

Group 2 leveraged a method successfully applied on a contin-15

uous gesture recognition task, On-Off deep Multi-View Multi-16

Task [15], adapted for this specific action recognition problem.17

Starting from the OO-dMVMT code 5, they adjusted it by elim-18

inating the multi-task component. As in their original work,19

providing state-of-the-art performances on continuous gesture20

recognition benchmarks [2, 16].21

The network used for the windows’ classification and the in-22

put features used to feed it are derived from the Double-feature23

Double-motion Network (DD-Net) [6] framework. The net-24

work is based on a simple 1D convolutional neural network and25

provides a good classification of segmented gestures. The net-26

work is trained with feature arrays that are derived by the orig-27

inal hand joints stream, for each input sequence are extracted28

three features:29

• Joint Collection Distances (JCD): Represents the Eu-30

clidean distances between pairs of collective joint features,31

invariant to location and viewpoint.32

• Short-term slow motion Mslow: Calculates the 1-frame lin-33

ear velocity for every individual joint across all joints.34

• Short-term fast motion Mfast: Similar to short-term slow35

motion, but linear velocity is computed every other frame,36

skipping the ones in between.37

In practical terms, Mslow and Mfast model the short-term38

global motion of the skeleton in terms of speed, while JCD char-39

acterizes the hand pose.40

Group 2 trained the network to classify fixed-sized windows41

of the hand pose stream. In the testing phase, it predicts a label42

for a set of windows of the same size sampled in the processed43

action stream. The action label of the test sequence is then ob-44

tained with a majority voting over the window set.45

5.3.2. Sliding-window approach46

We incorporated the sliding-window approach proposed in47

the gesture recognizer On-Off deep Multi-View Multi-Task48

paradigm (OO-dMVMT) [15]. Rather than feeding the entire49

5https://github.com/intelligolabs/OO-dMVMT

sequence directly into the network, we decompose the sequence 50

into smaller windows. We extract DD-Net features for each of 51

these windows. Subsequently, we assign the corresponding ac- 52

tion label to each window. All the windows extracted in this 53

manner collectively form the input dataset for the network. 54

5.3.3. Fine-tuning of parameters 55

The network underwent testing with window sizes 16, 50, 56

and 100 frames. We maintained a consistent 10% shift be- 57

tween windows, resulting in 1, 5, and 10 frames distance be- 58

tween the center of one window and the next. Upon analysis of 59

our graphs all window sizes exhibit strong performance during 60

training phase. However the 100-frame windows achieved the 61

best results in classifying. 62

5.3.4. Train and Test 63

To assess the method’s effectiveness, we partitioned the 64

Training-set, allocating approximately 75% for training and the 65

remainder for validation. During the dataset loading phase, 66

each sequence is segmented into windows of 100 frames, with a 67

step size of 10 frames between the center of one window and the 68

next. These windows, created through this process, are utilized 69

for training the network. In each epoch, the network undergoes 70

testing on the validation dataset. If the network achieves a su- 71

perior result compared to the previously saved one, the network 72

parameters are then saved. 73

After completing 100 training epochs, the Test-set sequences 74

are sequentially segmented into windows and provided as input 75

to the network to evaluate its effectiveness. 76

5.4. Group 3: DET-ACTIONS: DEep-based Technique for AC- 77

Tion Identification Operations from haNd-derived Skele- 78

tons 79

5.4.1. Method description 80

Group 3 proposed a deep learning based framework for ac- 81

tion recognition illustrated in Fig. 6 available at Google Colab6. 82

First, an action augmentation stage is operated over the imbal- 83

anced action data through an offline stage. Our augmentation 84

aims to produce the same number of action files per action cat- 85

egory. To perform this augmentation, we apply an ordered in- 86

terpolation (e.g. a variant of [17]) over frame coordinates of an 87

action file in order to generate a new one. This interpolation 88

acts as an action motion translation and is guided by an alpha 89

parameter which regulates the translation steps for generating a 90

number of actions which is equal to the maximal number of ac- 91

tions contained in a class category amongst the original dataset. 92

Once the number of action files balanced for each class, we 93

apply a feature extractor over each single frame contained in an 94

action file in order to get a feature vector of dimension 16. Then 95

an online augmentation stage is performed on the transformed 96

action files by using a sliding window-based strategy [18]. To 97

this end, a set of n successive frames is considered (n=14) in or- 98

der to take into account the temporal dimension. This operation 99

6https://colab.research.google.com/drive/

1fi4PPsHp9K50vg9qLBFYWCzk5A5_kPP2?usp=sharing
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Fig. 6. Overview of DET-ACTIONS bottom-up deep learning-based analysis framework for hand motion recognition.

Fig. 7. CNN-based architecture for feature extraction from a single motion frame.

which is repeated with an overlapping step equal to one permits1

to produce m sequences of temporal-aware features (each one2

of dimension 224). Then, a MLP-based classifier is employed3

to predict a membership class to an action from a temporal-4

aware feature. The prediction of the class of the input action5

file is finally calculated by applying a major voting over the6

output class predictions obtained from the m temporal-aware7

features. Our analysis framework operates through a bottom-up8

strategy in the sense that frames are first individually charac-9

terized by considering that each frame represents a pattern of10

an action motion. Then characterized frames are aggregated for11

being processed by sequences in order to embed the temporal12

dimension. Additionally, two successive augmentations are ap-13

plied towards improving the classification performances. The 14

core component of our framework which is a CNN-based fea- 15

ture extractor is described hereafter. 16

5.4.2. Single frame-based feature extractor 17

To build our feature extractor from a single motion frame, we 18

designed a CNN-based architecture [19] which is illustrated in 19

Fig. 7. The architecture is composed of two successive pro- 20

cessing backbones namely image generator and classifier. The 21

image generator takes in input fi vector corresponding to the 22

28 3D raw coordinates of the hand markers (LIWR(x;y;z), etc.) 23

and transforms it into a new frame representation, namely a fea- 24

ture map Mi (28×28). The feature map is then injected into the 25
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classifier backbone to predict its action class Ci. The final fea-1

tures are extracted from the intermediate global average pooling2

layer preceding the output layer and corresponding to a vector3

of dimension 16. It is worth mentioning that the whole archi-4

tecture is trained on the dataset including augmented actions.5

5.5. Group 4 Run1: HMM-based classification6

5.5.1. HMM-based classification7

The proposed method utilizes an array of Hidden Markov8

Models (HMMs) with Gaussian mixture emissions. HMMs are9

known to be particularly well suited for modelling and classi-10

fying signals that demonstrate intrinsic temporality, like human11

speech [20] and movement [21]. This makes them a promising12

choice for the present task of hand action recognition. Our code13

is available at GitHub 7
14

5.5.2. Architecture15

The basic architecture of the proposed solution is illustrated16

in Fig. 8 Each input sequence is initially filtered, processed17

and flattened to a single vector (h), which is then fed to N dis-18

tinct HMMs. Each HMM models one of the observed actions19

(classes) and, using a scoring function, evaluates the (log) prob-20

ability of the given input sequence. The most likely match can21

then be extracted using a simple voting system based on the22

generated probabilities.23

Each processing step is described in detail in the following24

paragraphs.25

5.5.3. Preprocessing26

Each of the provided examples is compromised of a sequence27

of frames, with each frame containing the coordinates of each28

marker. In order to train the HMMs, each sequence has to be29

converted to a single vector. Different ways of generating this30

representation were tested and compared, with the most effi-31

cient ultimately being interlacing the position data with esti-32

mated velocity data:33

ht = [x1 y1 z1 ∆x1 ∆y1 ∆z1 x2 y2 z2 ∆x2 ∆y2 ∆z2 · · · ] (5)

h = [h0 h1 h2 · · · ] (6)

The velocity of each marker is estimated as the difference34

between the current coordinates of the marker and those of the35

previous frame.36

Another useful preprocessing step identified during testing37

was filtering the data by keeping only markers placed on the38

subjects fingertips (THM, IDX, MID, RNG and PNK), wrist39

(IWR and OWR) and center of the hand (IHAND). This im-40

proves training speed without affecting the models perfor-41

mance, as the positions of the other markers seem to provide42

mostly redundant information.43

Finally, each sequence can be downsampled by only keep-44

ing every n frames. This improves training speed and, in some45

cases, also improves performance as the delta values become46

more intensified.47

7https://github.com/ChristoforosVlachos/shrec2024

5.5.4. HMMs 48

One fully connected first order HMM is fitted to model the 49

provided training examples of each separate class using the 50

Expectation-Maximization (EM) algorithm [22]. The obser- 51

vations for each state are modeled using a Gaussian Mixture 52

Model (GMM) with a full covariance matrix. The number of 53

states of each HMM, as well as the number of states of each 54

GMM are considered free variables. 55

The implementation of HMMs used was provided by the 56

hmmlearn8 python library, while hyperparameter optimiza- 57

tion was performed based on leave-one-out cross validation 58

(LOOCV) manually and automcatically using Optuna [23]. 59

5.6. Group 4 Run2: RNN-based approach 60

5.6.1. RNN-based approach 61

The data was provided as sequences of frames requiring clas- 62

sification. This made Recurrent Neural Networks (RNN) per- 63

fect for the task. A bidirectional Long Short-Term Memory (bi- 64

LSTM) layer was used as the RNN layer, in order to extract the 65

features from the data, preserving temporal relations. The fea- 66

tures were subsequently fed into a linear layer with one output 67

per class in the dataset, representing the score for that particular 68

class. 69

The dataset featured a few interesting challenges. Its rather 70

small size would give most neural networks a tough time learn- 71

ing meaningful properties while avoiding overfitting to the ex- 72

act input. To combat the aforementioned issue, we designed 73

our LSTM to be relatively small in size, only including one 74

hidden layer of 128 neurons. Additionally, the provided dataset 75

was heavily imbalanced; a weighted cross-entropy loss crite- 76

rion, whose weights reflected this imbalance, was used in the 77

training loop. The possibility of using focal loss [24] was in- 78

vestigated, but no noticeable improvement during training was 79

observed. 80

The coordinates of the data were centered around (0, 0, 0) 81

and normalized to lay within the range [-1, 1], keeping the as- 82

pect ratio intact. Xavier initialization [25] was used to initialize 83

the trainable parameters of the network and the Adam optimizer 84

with a learning rate of 0.001 was used in the training process. 85

The data was not fed in batches into the network. We exper- 86

imented using batches and padding the samples to include the 87

same number of frames but, probably due to the vastly differ- 88

ent number of frames between each sample, the results were 89

significantly worse. 90

5.6.2. Implementation details 91

The training took place for just under 2 hours on our NVIDIA 92

RTX™ 2060 SUPER GPU with 8GB of video memory, over 93

3000 epochs (the dataset was kept loaded in RAM). Early re- 94

sults were promising, regularly managing higher than 50% ac- 95

curacy on both the training and test datasets. The test dataset ac- 96

curacy, specifically, was closely monitored throughout the train- 97

ing process. With no regularization means (other than the small 98

network size), we had to ensure that the quick drop in training 99

8rhttps://github.com/hmmlearn/hmmlearn
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Fig. 8. Architecture of the proposed HMM-based method.

Fig. 9. Schematic of the proposed manifold GCN architecture.

loss and increase in the training set accuracy was not a product1

of overfitting and that the accuracy of the test set remained close2

to that of the training set. You can find our code at Github 9
3

5.7. Group 5: SE(3)-equivariant Graph Convolutional Net-4

work5

5.7.1. Method Description6

Group 5 interpreted the hand motions as sequences of point7

clouds in three-dimensional space. For such data, methods from8

the field of geometric deep learning have delivered excellent re-9

sults. Indeed, through the built-in invariance/equivariance un-10

der the symmetries of the data, these approaches can learn de-11

sired relationships very effectively. Since time series naturally12

define neighbor relationships, we utilize the power of graph13

neural networks. The code to reproduce our experiments can14

be found online10.15

5.7.2. Feature design16

We describe the molding motions as sequences of anatom-17

ically corresponding landmarks, i.e., labeled points in three-18

dimensional Euclidean space, as opposed to the common deep19

learning approach of viewing vectors as collections of indepen-20

dent, one-dimensional features. Taking this viewpoint allows21

methods from geometric deep learning to be invariant under22

(three-dimensional) rigid motions, an invariance that the clas-23

sification function we want to learn should also possess.24

9https://github.com/ChristoforosVlachos/shrec2024
10https://github.com/morphomatics/SHREC24

5.7.3. Network Architecture 25

An ensemble of ten manifold graph convolutional neural net- 26

works performs our prediction. This architecture for graph 27

learning tasks was introduced in [26]; it is particularly suited to 28

exploit the symmetries of the data space. Our manifold GCN re- 29

ceives 28 channels, each operating on a different 3D landmark, 30

and consists of two types of blocks: an “equivariant block” 31

comprising a (convolutional) diffusion layer with sigmoid-type 32

activation followed by a node-wise tangent multilayer percep- 33

tron (MLP), and an “invariant block” that combines a diffusion 34

layer with a node-wise manifold invariant layer. Other than per- 35

mutation invariant networks for point clouds (e.g., deep sets), 36

we employ geometric fully connected layers on the vector- 37

valued channels to exploit the landmark correspondence. Our 38

architecture stacks multiple equivariant blocks before a single 39

invariant one. To obtain a sequence-level output, we then per- 40

form a flat pooling, viz. a concatenation of mean and max pool- 41

ing, and feed the result to a final (vanilla) MLP. Eventually, the 42

softmax function is employed to map the model output to class 43

probabilities. Fig. 9 illustrates the proposed architecture. 44

With the chosen Euclidean features, the network is invariant 45

under joint rigid motions of a sequence, i.e., when the same 46

rigid motion is applied to each and every frame. This prop- 47

erty leads to a reduced number of parameters, which helps cope 48

with the small amount of training data. The final prediction 49

is obtained from ten of these models by taking the geometric 50

median [27] of their predicted class probabilities based on the 51

Fisher-Rao distance [28] and choosing the most likely class. 52

Through a hyper-parameter search, we found that the follow- 53

ing configuration provides the best performance: We only use 54

the invariant block with a diffusion layer that performs one Eu- 55

ler step; the MLP has three layers mapping from 28 to 14 to 7 56

dimensions. The resulting network has only about 3000 train- 57
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able parameters; we believe that this “slim” network performs1

best because it is less prone to overfitting the small training set.2

5.7.4. Training3

We trained each of the ten models with RMSProp for 3004

epochs on a different 3:1 training-validation split of the full5

training set; the learning rate was 0.001 and the batch size was6

one. We employed the common weighted cross-entropy loss,7

with the inverse number of training samples of each class as the8

class weight. The final model was selected among those with9

100% training accuracy as the first with the highest validation10

score.11

6. Results12

Table 1 shows the total Accuracy per method over the test set.13

It’s hard to say which group is the best due to the small Test set.14

We can however see that 4 groups: SkelMAE, DET-ACTIONS,15

RNN-based approach and SE(3)-equivariant GCN got a perfect16

score. It however is more interesting to look at the mistakes17

made by the other methods. The bar charts in Fig. 10 show the18

per-class precision, recall and F1 scores of all the methods. We19

also created a confusion matrix of the 3 other runs.20

Method Accuracy
DD-Net 0.92
SkelMAE 1
Windowed Multi View 0.75
DET-ACTIONS 1
HMM-based approach 0.83
RNN-based approach 1
SE(3)-equivariant GCN 1

Table 1. Total Accuracy per group over the test set.

Looking at the bar-charts in Fig. 10 we can see that most21

issues are made with the highly similar motions ’Smoothing’22

and ’Raising’ namely 3 out off the 6 errors and can be found23

in 3 different methods namely: DD-Net, Windowed Multi View24

and HMM-based approach. These motions are highly similar25

due to the fact that the potter’s left hand makes the exact same26

motion, while his right hand makes a similar upwards motion in27

both classes. The difference is in the way that the right hand is28

angled slightly differently. See Fig. 11 for a better visualization29

between the 2 hand motions.30

Fig. 11. Static picture of the Smoothing motion (left) where the potter uses
his phalanges and the Raising motion (right) where the potter uses the tips
of his fingers

There are also 2 errors in total in the method of Windowed 31

Multi View and the HMM-based approach where the method 32

predicted the motion class MakingHole as the Centering class. 33

Both the MakingHole and Centering dynamic motions begin 34

with a downward motion from the right hand which might clar- 35

ify the confusion of the methods. They also both use the left 36

hand to stabilize and centralize the clay. However in the Mak- 37

ingHole motion the right hand uses the Index finger and Middle 38

finger to create a hole at the end of the motion. 39

The last error is found in the Windowed multi view method 40

where the true label was raising and they predicted centering. 41

We do not find many similarities between these 2 motions. 42

7. Discussion 43

The evaluation outcomes provide insights that state-of-the- 44

art techniques can indeed provide promising scores given the 45

limited data size, large variation in frame lengths the high detail 46

of the motions. Given the small amount of time available for the 47

contest, we can say that these results are exceptional. We have 48

seen many different methods and network approaches namely: 49

Convolutional Neural Networks, Recurrent Neural Networks, 50

the Hidden Markov Models and Space-Time Graph Convolu- 51

tional Networks. 52

The issue that the gesture class MakingHole got predicted 53

as the gesture class Centering by the methods Windowed Multi 54

View and HMM-based approach could derive from the limited 55

test and train data. The gesture MakingHole exists a total of 5 56

times in the train and test set while centering exists a total of 16 57

times. Creating a more evenly distribution of the motion classes 58

could have solved these issues. 59

We do however believe that the issues in the Smoothing and 60

Raising class do derive because they are highly similar in both 61

left and right hand. One of the goals was to have participants 62

train on a small train set. However due to the small test set, it 63

became hard to find a ”winner” for this challenge. 64

8. Conclusion 65

In this paper we have presented a novel dynamic hand gesture 66

dataset, and have reported and analyzed the results of the partic- 67

ipants submissions for the SHREC 2024 track on Recognition 68

Of Dynamic Hand Motions Molding Clay. The evaluation of 69
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Fig. 10. Performance metrics per motion class

the proposed methods show that there are many different meth-1

ods and network approaches that show high results on classify-2

ing hand movements using both hands with precise and highly3

similar motions on a small training set. Due to the small test set4

we believe that it is necessary to continue the evaluation on a5

larger test set to get a more precise evaluation of the methods.6

A possible future research direction could be to continue with a7

small train set however expand on the test set, both increasing8

the amount of gestures and the amount of gesture classes. We9

can achieve this by recording a higher amount of subjects and10

by creating more pottery. This might give us a better insight11

on how to solve the problem of highly similar motions. We12

do believe that, to bring the field of hand recognition further.13

There should be a focus for hand gesture recognition on highly14

detailed, highly similar motions using both hands.15
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