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Abstract

While research in using natural language processing for mining text and coherent concepts

from electronic health records within generic healthcare is steadily increasing, psychiatric and

mental health care demands a more sophisticated approach due to its ambiguity in texts and

is therefore considered to be more difficult. This difficulty is predominantly experienced when

analyzing large quantities of letters. Specialists within the UMC Utrecht psychiatry

department recognize the advantage of being able to quantify and conceptualize disorders on

a large scale, leading to disorder profiles that can be used for further research.

This paper proposes several techniques to extract psychiatric disorders from outpatient- and

discharge letters, built on existing frameworks and transparent model-independent processes.

These model-independent processes consist of rule-based segmentation and extraction of

annotated disorders and disorder status within these letters. Mapping disorders and disorder

status has been tackled with different techniques, going from least complex to more complex.

The least complex method, which consisted of a syntactic pattern-matching algorithm called

ContextD, supplemented with several rules to fit more nuance for psychiatric texts, performed

best on average. Only on precision, the ensemble method based on a majority voting classifier

performed better than this purely rule-based approach. The other models within this ensemble

classifier are a two-stage method classifying the disorders on a POS-tagged TF-IDF token

window masking the patterns from the ContextD rule set using SVM, and a pre-trained

transformer model called MedRobBERTa finetuned for negation classifying the disorders on

the token window. The last model performed worst overall, with recall being below 0.5.

Analyzing psychiatric outpatient- and discharge letters in such a way has not been done before

within this context, this project acts as the foundation where the platform for specialists helps

advance analysis by clinical specialists.
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1 Introduction

Within mental healthcare, up to 70% of data concerning clinical research and practice is con-

sidered to be in free-text, instead of a pre-structured format [Velupillai et al. 2018]. Psychiatric

practice is about diagnosing disorders following detailed mental profiles resulting from dialogue,

observations, or functional tests. Within this practice, there is an overall lack of available

biomarkers and ”golden standard tests” pointing to distinct diagnoses when compared to other

fields of medicine [Pies 2007].

These free-text notes, or clinical notes, therefore hold valuable salient information about but

not limited to the development of diagnoses, the considerations of other diagnoses, or other

complications [Velupillai et al. 2018]. Obtaining insight into the objectivity of these notes by

mining the text could highlight patterns and/or considerations of diagnoses, and could prevent

further burdens on the already stressed psychiatric system in the Netherlands1.

Rezaii, Wolff, et al. (2022) put it as: making the subjective objective. They claim that while the

disorder categories in psychiatry are supposed to be distinct, categorizing and diagnosing these

disorders following symptoms (which are often apparent as being objective) present a challenge

for specialists. This objectivity is supposed to arise from the way these disorders are classified,

namely via the DSM-5. This manual is the principal authority for psychiatric diagnoses within

the US, and the main source of categorization within the UMC Utrecht concerning psychiatric

disorders. Some specialists argue that this way of categorizing disorders is sub-optimal, and

that ”diagnostic categories [...] require more of a flexible approach of symptoms and causes”

[HGR 2019]. Following this, it stands to reason that classification, within the DSM-5 nomen-

clature, and diagnoses are not the same thing2.

Insight into these diagnoses by utilizing NLP makes it possible to evaluate the amount of

diagnosed disorders or the amount of mentions of a particular disorder, and whether these as-

pects changed. Other examples for mining distinct features within these notes can be: better

prediction for intervention (as stated above) and discovering missed symptoms and/or new

categories of disorders. An example of such an application was done in a study by Rezaii,

Walker, et al. (2019). They found missing symptoms in a text when trying to predict psychosis

with machine learning. Statistical models of language representations found implied concepts

that referenced symptoms by modeling the semantic content within sentence vectors. They

found that ”low semantic density” and an increase in ”talking about voices” were predictors

for enabling psychosis.

Another example of NLP applied to mental health practice is a two-stage system that filters key-

words in the first stage and regresses critical cases on the filtered text from mental health crisis

chatlines. Provided by Swaminathan et al. (2023) in their original paper, this system detects

and notes intervention at a significantly faster rate than before the implementation. It brought

down the average response time from 9 hours to 8-13 minutes for specialists to facilitate triage.

These examples highlight how such applications help push clinical practice to make better and

more appropriate mental health interventions. Another aspect of these cases is that this em-

1https://nos.nl/artikel/2515420-wachttijden-geestelijke-gezondheidszorg-nog-altijd-onverminderd-hoog
2Henceforth in the report, diagnosed and classified are interchangeably mentioned since classification is a

regular term in machine learning nomenclature which directly refers to ’Diagnosed’ or ’Not diagnosed’ and does

therefore not represent the DSM-5 ”classification”
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phasis on diagnoses makes it possible to highlight experiences with said diagnoses or disorders,

which in turn makes it possible to more accurately describe the conditions present.

1.1 Objective

Within the UMC Utrecht psychiatry department, an increase in questions and diagnostic con-

siderations regarding diagnoses on the Autism spectrum and Bipolar disorder became apparent.

It then begged the question to specialists if these diagnoses could be mined for further insight.

During orientation, the observation was made that Borderline disorder is mentioned sparsely

throughout clinical notes, which is suspected to be due to stigmatization around the disorder,

and the pivot was made to mining several other disorders for which the specialists would like

more insight. When having constructed this pipeline, the implementation could have the follow-

ing forms but is not limited to investigating how many second opinions were requested, and/or

whether the considerations made for different diagnoses after a second opinion.

To tackle this problem, a trilateral project was set up, where one part would investigate the

ground truth within these clinical notes [van Ginkel 2024], making inference possible. The other

two parts investigate the models used for making this inference, with a focus on one part being

less complex, more rule-based, and classical in its machine learning, and the last part being

more complex and utilizing LLMs [Hoek 2024]. This sub-project investigates the most optimal

robust and less complex setup.

The goal of this report is to investigate the characteristics of rule-based, machine learning,

and deep-learning systems on these notes to create a transparent pipeline for the extraction of

coherent diagnoses from clinical notes out of the Department of Psychiatry within the UMC

Utrecht. This translates to the following research question:

”How can a pipeline be developed to accurately and robustly extract disorder status from

clinical notes within the UMC Utrecht psychiatry department, and what are the comparative

characteristics and performance metrics of rule-based versus more learning-based or combined

systems in this context?”

Specialists in this department have trouble quantifying the amount of diagnosed, considered,

or negated disorders for large quantities of clinical notes. If this were possible, a whole new

range of conclusions could be drawn which would not be possible beforehand. This project acts

as the basis for these questions, investigating whether this goal is possible, and how to achieve

this goal and answer this question.

1.2 Background

Given free-text, diagnoses need to be found, and the status of these diagnoses needs to be

classified. Within the UMCU several projects related to NLP have come out, such as cliNLP

[Menger et al. 2024], an extension to the spaCy module3[Honnibal et al. 2020].

van Es et al. (2023) compared the available classifiers within the cliNLP module on regular

clinical notes, comparing rule-based negation detection and learning classifiers. After annotat-

ing medical properties, they make the divide between: experiencer, temporality or negation.

3Spacy is an open-source library for text processing capable of performing on an industrial level. It is also

the preferred framework for the cliNLP package.

6



Every medical concept should fall within these categories. However, when applying models,

the evaluation was only done on negated or non-negated. In other texts, this concept is also

known as qualifier detection. The main corpus provided to the models was a mixture of (semi-)

structured notes, and complete free text. The performance of the models on this heterogeneity

could therefore also be investigated.

For the rule-based system, the ContextD algorithm was used [Afzal et al. 2014]. This algorithm

is based on the logic of the earlier mentioned NegEx algorithm, supplemented with triggers for

identifying if a clinical condition is present in the historical-, hypothetical- or 3rd party sense.

It seems the model struggles with the historical aspect because the authors claim that the

experiencer and negated are identified accordingly, but temporality requires further work. The

results of this model varied significantly among the different notes, with the more structured

notes being identified accurately. The best performing learning classifier is the generic version

of the English RoBERTa fine-tuned to a Dutch clinical corpus called MedRobBERTa [Verkijk

et al. 2021] This model stores contextual information the best out of all the models compared.

In the essence of capturing the best characteristics of both aspects, a two-staged model was

proposed that combines rules and learning. The motivation for this is a statement made in Afzal

et al. (2014): ”While machine-learning and rule-based systems showed good performance, the

systems using combination approaches produced the best results.” The combination chosen is

based on a relatively old study [Goryachev et al. 2007] that combined tagging text with NegEx

terms and phrases and classifying on POS terms. With time, NegEx has been replaced by

ContextD (given these circumstances), and better POS taggers have become available. Given

these advancements, an increase in efficiency is expected.

1.2.1 Making inference on systems

Premises must be set to be assumed as true to make inference, therefore, the development of

supervised systems and the performance metrics of unsupervised systems annotated sets are

needed. This process needs to happen efficiently and concisely [Berge et al. 2023]. Clinical

specialists’ time is considered valuable and not optimizing the efficiency and inter- or intra-

annotator agreeability of the labelling is therefore out of the question. Labelling is often done

on Electronic Health Records (EHRs). EHRs are handled more efficiently when it comes to

the assistance of diagnoses. Le Glaz et al. (2021) state that: ”EHRs [...] are convenient

data sources because of their heterogeneity: they combine structured, semi-structured, and

free data, and they often use a significantly controlled language containing medical terms that

allow the extraction of concepts.”

In such complex tasks as mining text from clinical notes, evaluation of the model and error

analysis can give valuable insight into the performance and the results. A paper by Velupillai et

al. (2018) provides a summary of the challenges of defining evaluation metrics for NLP research

with a focus on mental health. They state that to enhance the field further: ”more emphasis

needs to be placed on rigorous evaluation”. They also provide the confusion matrix and error

analysis as main instruments to evaluate models, and warn about the intrinsic shortcomings of

NLP models with respect to true negatives. These appear to be ignored by common evalua-

tion processes. True negatives indicate the elimination of exposure of case status but are very

difficult to extract from text. An emphasis on negation of medical concepts can indicate true

negatives, and help spur the ratio.

Negation has been a challenge to correctly identify within the field of NLP for some time.
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A paper by Chapman et al. (2001) investigates this problem and provides a relatively simple

solution. To introduce the concept of negation, they give as to how negation was handled at

that time. They state that: ”[...] most phrases indicating negation are stop words in informa-

tion retrieval systems and are not even used for indexing”. Most times, clinicians state diseases

(or disorders) that can be ruled out. When ignoring this dynamic, one can only figure out the

amount of false positives the system will flag. An example of a clinical note given by Chapman

and colleagues that displays the simplest form of negation:

“The chest X-ray showed no infiltrates and EKG revealed sinus tachycardia.”

In this sentence, ”infiltrates” is supposed to be negated (this would be a true negative), and

”sinus tachycardia” is not negated (this would be a true positive), or experienced. This example

seems trivial but also applies to mental health notes, especially when the main syntactic way of

writing these notes is by ruling out disorders. To take into account negation, the authors provide

a rule-based regular expression method based on (only) 15 sentences. This algorithm is called

”NegEx”. Its performance varied significantly among the expressions, suggesting ambiguity in

the notes. The annotators were allowed to label it as ambiguous, while the model could not.

They attest to the poor performance of some expressions to this fact.

1.2.2 General bias

According to the earlier cited review by Malgaroli et al. (2023), a general bias towards the

language used in the clinical notes exists. An overwhelming 88% of the analyzed studies were

in English. This raises the question as to the robustness of these studies when relating to

other languages/locations, considering this form of selection bias can present itself in all sorts

of skewed assumptions.

Referring back to Velupillai et al. (2018), they claim in their review that mental health is

relatively understudied. This issue extends to prominent (qualifier) algorithms, such as Con-

textD or MedRobBERTa (the final name of the RobBERTa model discussed in van Es et al.

(2023)), where they seem to be predominantly developed using physician data.
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2 Data & methods

This chapter concerns the data utilized in this project, which will be analysed and discussed

in terms of modifications. Following the data section, the methodology for the extraction of

disorder status will be reviewed.

2.1 Data

The data at hand are discharge and outpatient letters from the psychiatry department within the

UMC Utrecht. Dates range from 2012 up until 2022 and the text encompasses several aspects,

such as: considerations, medications, recommendations, medical history, etc. Annotation was

done on the conclusions of the clinical narratives provided by the UMC Utrecht patient dossier

since the conclusion often summarizes all arguments for and against diagnoses 4. This approach

also relieves clinicians of having to annotate the whole text. There are no corrupt records,

missing values, or duplicates present since the data is procured from a larger data ecosystem

that has provided clean data.

2.1.1 Procurement

The requested data was validated by the data ethics committee within the UMC Utrecht since

this project is a sub-project of the bigger approved ”PsyData” project and belongs to scien-

tific research. Names, places, and institutions were anonymized using the DEDUCE model [V.

Menger et al. 2018], and birth dates were rounded down to the first date of the respective

birth year. The full dataset consisted of 17 910 clinical letters, 3 590 discharge letters, and 14

320 outpatient letters to be precise. 250 discharge- and 250 outpatient–letters were sampled

at random to be annotated.

Via a formal data format, the following information was given in the letter table: ”Pseu-

doID”, ”LetterID”, ”Letter Type”, ”Text”, and ”DATETIME”. The birth year and gender can

be linked to the patient table using the ”PseudoID”.

4The method of filtering for the conclusion can be found in section 2.2
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2.1.2 Descriptive Statistics

The text of the letters can be analyzed using basic descriptive statistics. This summarizes the

characteristics and gives insight into the distribution of the texts. The annotation, as discussed

in Paragraph 2.2, was only done on the conclusions. Therefore a split can be seen in Table 1,

which highlights the data distribution.

Table 1: Dataset and text statistics such as average amount of words, average amount of

sentences, and average word length, with the lower and upper borders of a 95% confidence

interval in brackets.

Letter type # documents # words # sentences avg. word length

Discharge letters 3 590 1 364 99 5.6

(1 341, 1 387) (98, 101) (5.6, 5.8)

Conclusions 202 12 6.0

(197, 207) (12, 12) (6.0, 6.0)

Outpatient letters 14 320 1 217 88 5.5

(1 201, 1 232) (87, 89) (5.5, 5.5)

Conclusions 176 10 5.8

(173, 178) (10, 10) (5.8, 5.8)

Total 17 910

As shown in Table 2, the annotated sample has a corresponding distribution of metrics.

Table 2: Descriptive statistics of the annotated sample such as average amount of words,

average amount of sentences, and average word length, with the lower and upper borders of a

95% confidence interval in brackets.

Letter type # documents # words # sentences avg. word length

Discharge letters 250 1 321 97 5.6

(1 229, 1 412) (91, 104) (5.6, 5.6)

Conclusions 210 12 5.9

(194, 226) (11, 13) (5.9, 6.0)

Outpatient letters 250 1 382 101 5.5

(1 265, 1 499) (92, 110) (5.5, 5.5)

Conclusions 207 12 5.8

(191, 223) (11, 13) (5.8, 5.9)

Total 500

The clinical texts were annotated and checked for adequate annotator agreement by inter-

annotating sets from different annotators and subsequently arguing for or against disagree-

ments. The subsequent step of arguing for or against choices creates a consensus set. This
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process ensures a valid intra-annotator agreement, by systematically removing subjectivity from

the annotations. These sets were subsequently classified on an intra-document level using a

rule-based approach called ContextD, the transformer-based negation detector (in terms of

qualifying) developed by van Es et al. (2023), a two-stage approach utilizing the rules from

ContextD for feature vectors and classifying from Goryachev et al. (2007), and an ensemble

method.

2.2 Annotation

These narratives were provided as free text with HTML breaks. The conclusion was filtered as

having up to four double breaks after triggering the conclusion. After filtering, these narratives

were flagged for having discussed diagnoses concerning the following aspects: ”Diagnosed”,

”Considered”, and ”N.A.”. An example of annotation on a fictitious sentence has been given

below:

Conclusie: Betreft een vrouw, eerder gediagnosticeerd met STRT{ADHD}ADHDd
en STRT{dissociatieve stoornis}ANDInvt, laatsgenoemde lijkt inmiddels geen
sprake van te zijn. Opgenomen ivm STRT{bipolaire-1-stoornis}BIP1d, DD
STRT{schizofrenie}SFRo.

Where the clinical terms are tagged to belong within a category, as well as: diagnosed (d),

considered (o), or N.A. (nvt). Annotations were done concerning the following disorders and

are per the DSM-5 manual. Each of these categories has its respective pseudo terms and

annotation labels.

▷ Attention-deficit/hyperactivity disorder

▷ Autism spectrum disorder

▷ Schizofrenia

▷ Borderline personality disorder

▷ Bipolar disorder type 1

▷ Post-traumatic stress disorder

▷ Depressive disorder

▷ Other

2.3 Pipeline

The term pipeline loosely refers to the concept from the SpaCy package mentioned earlier. This

concept makes it possible to construct a pipeline from several language processing components

which can be interchanged. CliNLP is built on top of SpaCy, and some features used in this

project lend their usefulness from this interchangeability and interpretability. The pipeline is

visualized in Figure 1.
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Figure 1: General processing pipeline with model-independent processes

and interchangeable qualifiers

At the individual patient level, several diagnoses could be discussed at different points in a

narrative. The pipeline is constructed in such a way that it extracts diagnoses, and captures

context. These algorithms are being used out of the box and will be tuned after the preliminary

error analysis.

The model processes and evaluation are independent of the models so that no bias of these pro-

cesses can leak to the classifier models, as transparency and differences in model performance

are key factors in this process.

2.3.1 Model independent processes

These processes supply a base for the classification models to work on. In Figure 2, an example

sentence can be seen.

Figure 2: Model independent processes and an example sentence

The normalization of the text needs to be done for the model to make sense of non-UTF-8

characters. Within the clinical notes, these characters appear amply. This feature was used

directly out of the cliNLP package. The same goes for the sentence splitting, but this was
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supplemented with HTML breaks, to correctly include sentence breaks. For each outpatient-

or discharge letter, all sentences were split and were not evaluated if no entity was present.

Entity linkage was done based on a method where first, entities are mined using regular expres-

sions based on the annotations. A rule of thumb is to only mine the entities from the training

set, to remain robust. These entities were subsequently linked to a greater subcategory, namely

the disorders annotation was done on. The classifiers will see the annotated entities as if they

were stripped of the annotation and only the disorder remained.

2.3.2 Rule-based setup

The ContextD algorithm was used for qualifying diagnoses for the rule-based approach. This

algorithm is the Dutch version of ”Context”. It is based on regular expressions scopes out

tokens around the tagged concept, and determines whether the concept was negated or not.

The most basic version of this principle is called NegEx, an algorithm that seeks out negative

or positive phrases around the concept in a 5-token window per sentence, meaning that the

text needs to be tokenized and sentenced, this is still a prerequisite for ContextD. An example

of the tagging process can be seen in Figure 3.

Figure 3: An example of the rule-based approach using the ruleset and algorithm from

ContextD

This principle is fairly simple and intuitive, and given the right amount of combinations of

rules, can be very effective. NegEx categorizes the concepts into negated or non-negated,

while the Context algorithm replaces non-negated with categories like temporality (recent), or

experiencer (patient). The algorithm also handles pseudo-negations -terms that imply nega-

tion but are not- and terminations triggers -triggers that (should) terminate a context scope.

The rules and triggers for this algorithm are extensive, and the main goal is to investigate the

performance out of the box, investigate imbalances within these rules and triggers, and adjust

accordingly.

The outcome metrics of the ContextD model were classified as having the features as seen in

Table 3:
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Table 3: Rule-based outcome classifications, corresponding with annotation categories

Annotation category Presence Temporality Experiencer

Diagnosis Present Current Patient

Present Historical Patient

Present Future Patient

Considered Uncertain Current Patient

Uncertain Historical Patient

Uncertain Future Patient

N.A. Absent Current Patient

Absent Historical Patient

Absent Future Patient

Present | Uncertain | Absent Current | Historical | Future Other | Family

Configurable aspects of this model present as custom rules that can be changed within the

algorithm, such as supplementary terms or phrases.

2.3.3 Learning model

To capture context by learning, a fine-tuned version of MedRobBerta.nl was provided by van Es

et al. (2023). This model was trained on Dutch EHRs and fine-tuned on the ”Dutch Clinical

Corpus”- or DCC- to detect negation and experiencer. It scopes out tokens around a recognized

entity/diagnosis and classifies the context of the term. The outcome metrics pertain to the

presence of the diagnosis and the experience, much like in Paragraph 2.3.2. However, it has

no temporality module, but this does not directly indicate negation, therefore it can be missed

when evaluating. It follows the same categorization as visualized in Table 3, but without the

temporality module.

Given the black-box nature of transformers, tuning and adjusting model characteristics can

be difficult. However, some aspects can be changed like: the amount of tokens to scope, or

re-training the final classification layer on a new labeled set. An example of the tagging process

can be seen in Figure 4.

Figure 4: An example of the learning method using the negation detection transformer from

van Es et al. (2023)
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2.3.4 Two-stage approach

Given a narrative, diagnoses will be linked using a thesaurus. Around this diagnosis, a scope

will be determined much like the regular ContextD algorithm, but instead of giving a status to

the diagnosis, the whole sentence will be tagged for POS. This transformation will result in

POS tags for all terms available where the diagnosis will be masked to be a regular diagnosis.

Phrases that co-occur in the ContextD rule set will be flagged as being negated, possible,

or experienced in text. Notice that these coincide with the annotation categories. An SVM

classifier will be trained on the features that this process creates. This is however not set in

stone as the training data set is not that extensive, and comparable performance using Naive

Bayes can be expected. Both of these models are lent from the scikit-learn package [Pedregosa

et al. 2011]. An example of the tagging process can be seen in Figure 5.

Figure 5: An example of the two-stage method utilizing the trigger phrases from ContextD

and a classifier on the feature vectors

The feature vector in this process will be in TF-IDF format, giving more weight to the

disorders mentioned and ContextD rules (both of which often appear sparsely), over-generalized

POS masks.

2.3.5 Ensemble method

Ensemble learning is a way to stack models and complement or balance out imbalances in

prediction. A majority vote classifier was used to stack these models. For evaluating the

performance of the classifiers, the annotations need to be mined from the labeled notes, and

only then can analysis be done. The mining of these annotations can be seen in an example

shown in Figure 6.
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Figure 6: An example of mining the annotation for analysis

The entities contain all the information needed to compare when classifying disorders.

Within these entities, the annotations are present for which the classifier trains or gets an-

alyzed. The actual and predicted classifications are put into a confusion matrix. This not only

gives insight into the performance but makes stratification on different subsections possible, as

well as stratification on disorder.

2.4 Validating models

Because these models are tested out-of-the-box, and a certain bias exists in some models (as

discussed in section 1.2.2), they will need to be tuned to more appropriately fit this type of

free text. Each model has its tune-able parameters and was briefly discussed in their respective

sections. However, they will be summarized here for convenience. The rule-based system can

be tuned by expanding or reducing its scope and supplementing rules. The learning-based model

can also be tuned by expanding or reducing its scope and/or adjusting classification probability

thresholds. And finally, the two-stage model can once again be tuned by expanding or reducing

the scope, but can also be tuned by searching over a field of hyperparameter values respective

to the classifier.

2.4.1 Structure

A test and train set split was made based on the distribution of annotated entities, such that

these splits have the same distribution within. The purpose of this approach was to prevent

selection bias in the test and training set concerning the annotation. Benchmarking the out-

of-the-box models for performance was done on this split, to compare with tuned versions after

validating. For the train set, 5 random subsets are split for the models to train and validate
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on. This means that the training set will be randomly split into 5, and 4 of the 5 subsets

will be tested against each remaining set, iteratively. This process is called cross-validation. A

visualization of the process can be seen in Figure 7

Figure 7: The information flows from the clinical notes through the benchmark and validation.

Parallel to the data flow for validating through cross-validation, the process of iterative

vetting on the annotated set can also increase performance. If done correctly, it can align

annotated classifications and help achieve better performance overall.

2.4.2 Validation

This section analyses the made errors and highlights the tuned features of the models and

the impact these made. A general overview of the classifications as a confusion matrix of all

models following 5-fold cross-validation on the annotated set and the consensus set is given in

Table 4. Between these two sets, the amount of annotations can differ, meaning that the total

sum of entities can be higher or lower, and therefore the sum of the confusion matrix does not

necessarily correspond per model.
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Table 4: Model benchmarks out of the box for the annotated set and consensus set

Predicted

Actual Annotated set Consensus set

Diagnosed Considered NA Diagnosed Considered NA

Rule-based method

Diagnosed 140 4 7 151 4 5

Considered 20 1 19 41 21 1

NA 20 1 19 25 0 21

Learning model

Diagnosed 148 0 3 159 0 1

Considered 56 1 1 62 1 0

NA 22 11 7 25 13 8

Two-stage method NB

Diagnosed 136 3 0 155 3 2

Considered 49 8 0 48 14 1

NA 33 2 5 31 2 13

Two-stage method SVM

Diagnosed 129 10 0 146 12 2

Considered 28 28 1 30 32 1

NA 26 2 12 27 3 16

From this table, benchmark results show all models classified with a noticeable bias toward

classifying a diagnosis. The two-stage models using Naive Bayes and the learning model suffer

from this bias the most. Their performance across both sets is very much skewed towards

predicting ’Diagnosis’. This seems to be the case for the rule-based model as well on the anno-

tated set without interannotations. However, after inter-annotating and achieving a consensus

on this set, ambiguity was most likely worked out and this model went on to perform in a more

heterogeneous manner. Across the board, all models still predict ’Diagnosis’ too often, seeing

’Considered’ as a sort of barrier that acts between ’Diagnosis’ and ’NA’, resulting in very few

(correct) ’NA’ classifications.

For tuning the models, metrics such as accuracy, precision, recall, and the F1 score were cal-

culated during validation. These metrics, apart from the recall 5, were calculated in a weighted

manner, so that classes that appear scarcely, don’t influence the average that much. The recall

5Weighted average recall is the same as accuracy
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was left unweighted in the averaging to show the spread of the accurate precision over the

classifications. For example, as shown in Table 4, the recall across the ’Considered’ and ’NA’

categories for the rule-based and learning models is significantly worse than for the ’Diagnosed’

section. With weighted averaging, this outcome gets muted by the class imbalance. The de-

fault configurations in these tables are the same configurations used for prediction as depicted

in the right column in Table 4.

In Figure 8 the results can be seen for tuning the rule-based model. Adjusting the scope

to take in more tokens and supplementing some basic rules spurred the performance. These

rules were mined from looking at misclassifications.

Figure 8: Rule based method tuning outcomes, the tuned features here are the rules and the

scope around the entity

Misclassifications can mainly be attributed to the models not capturing the essence of the

context, addressing them can help make the model more accurate. When looking at these

misclassifications for the rule-based model, simple errors were being made where, the rule set

from the ContextD algorithm in essence matched the words in the text, but didn’t flag them

due to it being a synonym. Some examples of an added rule where the default rule captured

the essence can be seen in Table 5.

Table 5: Examples of default rules, and supplementary rules in the ContextD rule set

Default rule Added rule

geen aanwijzingen voor onvoldoende aanwijzingen voor

wordt gedacht aan kan worden gedacht aan

kenmerken van trekken van

In Figure 9 the results can be seen from tuning the learning model. The performance was

not susceptible to adjusting the token scope but did react to adjusting the probability thresholds.

In specific, adjusting the probability of classifying ’Diagnosed’ to a higher probability, was meant

to negate the bias that exists for this classification. The same goes for the ’NA’ class, where
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adjusting this threshold to a higher probability made some impact. Overall, the performance is

severely sub-optimal, leaving a lot to discuss.

Figure 9: Learning model tuning with transformer properties

In Figures 10 & 11 the tuning of the two-stage models can be seen. These two models fit

the data more nudged towards classifying considerations, which is healthy for the heterogeneity

between the models. The SVM model responded better to tuning, and with some tweaks, the

performance went up significantly. However, the Naive Bayes model was not so susceptible to

tuning and performed poorly overall. If these models performed the same, the argument could

be made to choose the NB model since this model is less complex compared to the SVM model,

but the performance difference is too large.

Figure 10: Two stage model using Naive Bayes tuning with several parameters
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Figure 11: Two stage model using SVM tuning with several parameters

2.4.3 Final models

The final models used for testing and their configurations can be seen in Table 6.

Table 6: Final models with respective configurations

Model Configuration

Rule-based model Max scope of 15, ContextD algorithm with complementary rules

Learning model Negation transformer token window of 32, probability

threshold set to NA < 0.6 < Considered < 0.9 < Diagnosed

and experience transformer token window of 64,

probability threshold set to Patient < 0.5 < Family

Two-stage model SVM classifier with a token window of 11, and a radial base kernel

Ensemble model Majority vote classifier using the:

the two-stage, rule-based, and learning models

mentioned in this section, with corresponding parameters
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3 Results

In this chapter, the results will be presented of the approaches taken to tackle the problem and

reach the objective of constructing the pipeline. A glance will be taken at the performance as

a whole.A final error analysis highlighting errors that persist even after iteration will conclude

these sections and therefore the results chapter.

3.1 Overview

This paragraph provides an overview of the final models and their respective performance on

the test set and a global overview of misclassifications per model. Table 7 provides a summary

of the results per model:

Table 7: Performance of the models on the test set with the highest value per category in bold

Weighted Unweighted Weighted

Model Accuracy average precision average recall average F1

Rule-based model 0.77324 0.76995 0.71723 0.76851

Learning model 0.64312 0.56925 0.43074 0.54648

Two-stage 0.73234 0.72641 0.60093 0.71099

Ensemble 0.75939 0.78088 0.63821 0.73797

The performance metrics are weighted and averaged where possible, but the recall is left un-

weighted to highlight an imbalance in misclassifications. Overall, the rule-based method seems

to outperform every other method, with the ensemble method having the highest precision and

overall second-best metrics. The learning model performed the worst out of all the models,

even falling below the 0.5 threshold for the unweighted recall. Figure 12 shows the number of

errors made per model and gives insight into how this unweighted recall is distributed among

other models.
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Figure 12: Total amount of errors or misclassifications made per model

To see how these errors are situated per classification, an overview of the confusion matrices

per model was made. This can be seen in Figure 13.

Figure 13: Confusion matrix per model with the x-axis depict predicted -, and the y-axis

actual -classes, the main diagonal represent correct classifications

When viewing these matrices, it becomes clear why, for example, the learning model has

such bad performance. There are almost no predicted classes that are not ’Diagnosis’. For the

rest of the models, the bias that existed earlier, mentioned in paragraph 2.4.2, seems to be

less severe but still exists. When stratified on the disorder, as seen in Figure 14, no apparent

discrepancies between models can be seen, except for the learning model having a lot of errors.
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This figure also gives insight into the distribution of disorders within the letters.

Figure 14: Amount of errors made by all models stratified on disorder category

3.2 Error analysis

Apart from the misclassifications as seen in Figure 13, which made apparent that all models

prefer to classify diagnosed, several errors persist across all methods. These errors highlight

aspects that account for most of the misclassifications. Apart from errors that fall in the cat-

egory of being inherent to the models and out of the scope, for example: mentioning that a

disorder is not relevant in sentence no. 2, and only mentioning the disorder in sentence no. 6,

-or-, capturing every possible form of negation as defined rules, which is simply not possible

given all combinations and possible misspellings. Other categories might be able to be handled

in future versions of these models.

Fictitious examples of errors that persisted and can be categorized as being out of the scope

or handleable are as follows:

The concatenation category highlights errors that have occurred due to multiple disorder terms

being concatenated on one flag term. In the example below, all disorders should be negated

due to the flag term ’geen aanwijzingen voor’, but instead, the first disorder term gets negated

and the flag term gets terminated. The rest of the disorder terms are therefore incorrectly not

negated.

Gebaseerd op wat wij tot nu toe hebben gezien, zien we op dit moment geen aan-

wijzingen om een STRT{ontwikkelingsstoornis}ANDInvt (STRT{ADHD}ADHDnvt
en/of STRT{autisme}ASSnvt) vast te stellen.
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The same applies to the next example, where ’trekken’ is a flag term that implies a consid-

eration for both mentioned disorders, but in practice only gets applied to the first disorder term.

Tijdens onderzoek trekken gezien die zowel bij STRT{ASS}ASSo als STRT{sociale
angst}ANDIo kunnen passen, doorverwezen voor nadere diagnostiek.

The ContextD algorithm suffers most from this way of writing. In this algorithm, the scope is

terminated when one rule is applied. The other models should make sense from these outcomes

by masking other disorders.

Another type of error category is how the models handle disorders mentioned in terms of

treatment centers. When disorders are mentioned in terms of treatment centers, these should

be negated, since these disorders are not explicitly diagnosed or considered. Both of these

examples show disorders mentioned in terms of treatment centers, and all models got these

wrong. As of writing this paper, no flags were implemented to highlight these terms that the

models could learn from. The models see these as normal words, leading to misclassifications.

Behandeling gaat door bij INSTELLING-1 STRT{bipolair}BIP1nvt, en wordt afges-
loten in het INSTELLING-2.

Op de poli STRT{persoonlijkheidsstoornissen}ANDInvt aangemeld in verband met
stemmingswisselingen en hypomane episodes.

The category of flag terms that are not properly recognized is the biggest error category, but,

as stated above in the introduction of this section, cannot be eliminated. However, expanding

on rules can help improve the models that rely on the flagging of terms. In the example below,

a simple case is given of a flagged term, namely: ’onvoldoende aanwijzingen gevonden voor’,

that should be recognized, but because only variations (e.g. ’onvoldoende aanwijzingen voor’)

are present the rule-set, the flagged term is not captured correctly. The problem with looking

at errors and mining rules in such a manner is that for every new instance, this algorithm will

be used, and new rules will need to be mined.

Uit de voorgeschiedenis werden onvoldoende aanwijzingen gevonden voor

STRT{autismespectrumstoornis}ASSnvt.

The last category pertains to disorders being mentioned in terms of medication. The rea-

son this is misclassified is that it is not explicitly obvious that the disorder has been diagnosed,

considered, or ruled out. Instead, the disorder is mentioned in terms of medication and models

will pick this up as a diagnosis. This is the case in the example below. In this example, the

disorder is mentioned in terms of being the cause for giving medication, but this is not an

explicit diagnosis in the way the texts were annotated.

Geadviseerd om te stoppen met andere middelen en aanzet om

STRT{ADHD}ADHDnvt klachten te mitigeren met Methylfenidaat.

25



4 Conclusion and discussion

This project acts as the foundation for making the pivot towards quantifying disorders and

further analyzing large amounts of patient data within the Psychiatry department of the UMC

Utrecht. Along with the other sub-projects, this sub-project tested a completely rule-based

approach, a partly rule-based and deep learning model, and a two-stage model classifying scope

vectors using rule-based term flagging, on 500 randomly selected outpatient- and discharge

letters. The results show that the least complex system performed the best after validating.

Inherent transparency within these less complex models adds value in the way of interpretability

towards specialists. This is the same for the unilateral processes across the sub-projects and

model-independent processes for concept extraction and evaluation. These steps are pragmatic

and transparent. Performance across all models is subpar when compared to referred- and

original literature. Application of these systems is fairly straightforward but the downstream

tasks can be optimized, as will be discussed in the discussion in section 4.1.

4.1 Discussion

Investigating the different models gave all sorts of insights into the texts, such as errors persist-

ing even after a heterogeneous approach to classifying disorders. Having obtained a precision

of 0.94, a recall of 0.88, and an F1-score of 0.91 on the consensus set classified on the con-

sensus set (considered to be the ground truth) [van Ginkel 2024], this inference seems to be

largely correct. Tuning the models to the texts also gave insight into the best approach to

handle these texts, and the results showed what worked better on these texts than what is

otherwise considered to be the default. Having a larger scope worked better for these types of

texts, suggesting that the context is spread out over more words than compared to different

(healthcare) texts.

The entirely rule-based system with supplemented rules and the ContextD algorithm achieved

an accuracy of 0.78, an unweighted recall of 0.72, and an F1-score of 0.77. The majority

vote ensemble model had the highest precision: 0.78. The two-stage model, using flagging

ContextD terms, part-of-speech tagging, and classifying via SVM, performed third best overall.

The learning model using MedRoBERTa transformers to classify the disorder performed worst

overall. In general, the models could in theory perform much better, however there are too

many factors that are missed in classifying. For the more rule-based models these factors are

terms or phrases that are not mapped correctly, and for the transformer model this would (most

likely) be a class imbalance for psychiatric data, leading to bad performance.

Reflecting on the literature for reference, van Es et al. (2023) reported an F1-score of 0.86

for the rule-based approach also using ContextD, and an F1-score of 0.95 for the transformer-

based model (the same as used in this report). Going from the results, they concluded that

overall, the learning model performed best, and for structured texts, the rule-based system

could keep up. Results from this project do not necessarily align with these findings but do

suggest that the rule-based approach is more adaptable than the transformer set up by van Es

et al. (2023). The same goes for the research done by Goryachev et al. (2007), where the

two-stage mode originated. In their paper, the authors pitch the two-stage model against the

precursor of ContextD, NegEx. Following the performance metrics, (their models portrayed

an F1-score of 0.91 and 0.86 for the NegEx and the two-stage respectively), they concluded

that the classification-based system performed worse than the ”regular expression and syntactic
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processing-based algorithms”. These findings align with the findings in this report, where the

rule-based model also outperformed the two-stage model.

4.1.1 Model discussion

Each model benefits from different changes and supplementation. This section highlights what

the best course of action would be to directly advance these models for performance.

Rule-based model The rule-based model was the best-performing model overall, beating

every other model except for the ensemble model concerning precision. The unweighted recall

is relatively high compared to the rest of the models, suggesting that this approach performs

best across all classes. It appears that the ContextD algorithm captures the context sufficiently,

especially when compared to the rest of the models. The added rules are not syntactically

different, but rather variations of the spelling for the already existing rules. Expanding on this

could result in further improved performance.

Learning model It is clear from the performance of the learning model that it has trouble

making the pivot toward pure psychiatric text. Given the fact that this transformer was trained

on clinical text, where apparently, not a significant amount of similar syntactic text is present.

Due to the black-box nature of this model, the exact workings and therefore deficiencies, could

not be uncovered. The probability of classifying ’Diagnosed’ is high at default (see the thresh-

olds during the tuning in Figure 9), and moving this threshold higher to let more classifications

fall into the ’Considered’ class, does not move the correct classifications into the next class.

Adjusting both these thresholds higher pushes all classifications into the ’NA’ class. In conclu-

sion, the model does not capture the correct context and/or aspects of the text to make the

right classifications.

It could be that the rule-based aspects of this approach, such as splitting the sentences or

matching the entities based on a list, go against what the model performs best on, namely raw

text. But then again, if raw text were presented, it would not be much of a comparison when

looking at: the other models in this report, and the other sub-project that researches LLMs on

these texts.

Two-stage model The two-stage model shows promise because it can combine the rules that

directly capture context, into a more generalizable format due to the part-of-speech tagging.

This means that a lot of different classifiers can in theory more easily find complex relations in

this dense data space. However, being two-stage, every stage brings about possible bias. The

part-of-speech tagging may not be optimal, or the tagging of the rules. The problem this model

suffers from now is that when a rule is not flagged, the subsequent classifier finds nothing to

relate to. This explains why this model could not perform better than the only rule-based model

since this model at least has a default to classify ’Diagnosed’.

Ensemble model The ensemble model predicts the class that two or more votes agree on.

These votes are built up by the stacked classifiers, namely all of the above. The goal is to

balance out the shortcomings of respective models with models that can supplement these

shortcomings. This concept worked out to be beneficial, especially since the ensemble model

performed better than two of the models it was stacked with. The learning model strictly

classifies ’Diagnosis’ classes, while the other models try to ascertain if the other classes are the
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case. This approach gives the highest weighted precision but still suffers from low recall due to

the misclassifications of the learning model.

4.1.2 General discussion

Model deficiencies have been highlighted in paragraph 3.2. In summary, all models benefit from

handling concatenation correctly, this occurs when one trigger term applies to multiple disor-

ders. The same goes for handling mentions of disorders in terms of medication and treatment

centers correctly. Annotation was done in such a way that explicit mentions of disorder status

were definitive. Implicit mentions of medication due to a disorder imply causality and are not

correctly handled. In general, expanding on the explicit trigger terms used in psychiatric care

can greatly improve the performance of these types of texts, and give insight into the differ-

ences between psychiatric texts and different types of healthcare.

General recommendations for improving the overall effectiveness of the project in the long

term are as follows: tracking disorder evolution on an individual patient level and/or classifying

sub-types of disorders within the text. The first recommendation could be achieved by tagging

re-occurring disorders in notes and linking different types of letters. The second recommenda-

tion comes forth out of the top-level classifications focus concerning the disorder categories.

However, sub-types within these categories can be mentioned differently and therefore be missed

in evaluation. For example, think of developmental disorders that are supposed to be part of

the autism spectrum, but are mentioned differently and more vaguely. The next step could

be to analyze causal symptoms in text related to the disorder. This could give insight into all

different kinds of new information. To test these eventual implementations, a greater emphasis

on external validation could highlight weak points and make the setup more robust, but looking

for a between set to validate can be quite a challenge.
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Appendices

A Glossary

This glossary is made possible thanks to ChatGPT, courtesy of OpenAI (2024).

Term Definition

Algorithm A set of rules or steps to be followed in calculations or problem-

solving operations.

Association Rules Rules that highlight relationships between variables in large datasets.

BERT Bidirectional Encoder Representations from Transformers: a

transformer-based model designed to pre-train deep bidirectional

representations by jointly conditioning on both left and right context

in all layers.

biLSTM Bidirectional Long Short-Term Memory: a type of recurrent neu-

ral network that can capture context from both directions in a se-

quence.

Classifiers Algorithms used to categorize data into predefined classes, such as

SVM, logistic regression, and neural networks.

Convolutional Neural Net-

works

A class of deep neural networks, most commonly applied to analyz-

ing visual imagery.

ContextD An algorithm designed to replace NegEx for better detection of

negation and context in clinical text.

Contextual Encoder Repre-

sentations

Representations like BERT that understand the context of a word

in a sentence.

Deep Learning A subset of machine learning involving neural networks with many

layers, enabling the processing of complex data patterns.

Decision Trees A decision support tool that uses a tree-like model of decisions and

their possible consequences.

Domain Knowledge Fea-

tures

Features derived from specific domain knowledge, such as UMLS

and DSM-X.

ELMo Embeddings from Language Models: a deep contextualized word

representation that models both complex characteristics of word

use and how these uses vary across linguistic contexts.

Electronic Health Records

(EHRs)

Digital versions of patients’ paper charts that contain medical his-

tory, diagnoses, medications, treatment plans, and test results.

Embedding A representation of text in continuous vector space, such as

word2vec.

Experiencer The entity that experiences a certain condition or event in a clinical

context.

GloVe Global Vectors for Word Representation: an unsupervised learning

algorithm for obtaining vector representations for words.

HTML HyperText Markup Language: the standard language for creating

web pages and web applications.

Hybrid-based Models Models that combine different architectures or techniques to im-

prove performance.

31



LDA Latent Dirichlet Allocation: a generative statistical model used for

topic modeling.

LIWC Linguistic Inquiry and Word Count: a text analysis software that

calculates the degree to which people use different categories of

words.

LLMs Large Language Models: models with a large number of parame-

ters that are trained on extensive text datasets to understand and

generate human-like language.

LSA Latent Semantic Analysis: a technique in natural language process-

ing for analyzing relationships between a set of documents and the

terms they contain.

Lemmatization The process of reducing words to their base or root form.

Linear Regression A linear approach to modeling the relationship between a dependent

variable and one or more independent variables.

Linguistic Features Features based on linguistic properties, such as part-of-speech tag-

ging and bag of words.

Logistic Regression A statistical model used for binary classification tasks.

Machine Learning A subset of AI that involves the use of algorithms and statistical

models to enable computers to improve at tasks with experience.

MedCAT Medical Concept Annotation Tool: a tool for annotating medical

concepts in text using natural language processing.

Mined The process of extracting useful information from large datasets.

N-grams Contiguous sequences of n items from a given sample of text or

speech.

NLP Natural Language Processing: a field of AI focused on the interac-

tion between computers and human language.

NER Named Entity Recognition: the process of identifying and classifying

entities in text into predefined categories.

Naive Bayes A classification technique based on Bayes’ theorem with an assump-

tion of independence among predictors.

NegEx An algorithm used to detect negation in clinical text.

Negation The grammatical construction that contradicts or denies some or

all of the meaning of a sentence.

Neural Network A series of algorithms that attempt to recognize underlying rela-

tionships in a set of data through a process that mimics the way the

human brain operates.

POS Part-Of-Speech tagging: the process of marking up words in a text

as corresponding to a particular part of speech.

Preprocessing Techniques Techniques used to prepare raw data for analysis, including lemma-

tization, POS tagging, and n-grams.

Random Forest An ensemble learning method that operates by constructing multiple

decision trees.

Recurrent Neural Networks A class of neural networks where connections between nodes form

a directed graph along a temporal sequence.

RobBERT A transformer-based model specifically designed for processing

Dutch language text.

SVM Support Vector Machine: a supervised machine learning algorithm

used for classification and regression tasks.
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Statistical Features Features extracted from text using statistical methods, such as TF-

IDF and n-grams.

TF-IDF Term Frequency-Inverse Document Frequency: a statistical measure

used to evaluate the importance of a word in a document relative

to a corpus.

Temporality The aspect of time concerning when a medical event occurred.

Thesaurus Linkage Associating words with their synonyms using a thesaurus.

Transformer-based Models Models that rely on transformer architecture, which is particularly

effective for NLP tasks.

Trigger and/or Flag Terms Words or sets of words representing a status of a disorder, like

indicating a diagnosis, a consideration or that the disorder is not

applicable.

UMCU University Medical Center Utrecht.

UTF-8 Characters A standard for encoding a wide array of characters in the Unicode

standard using 8-bit blocks.

Word2vec A group of related models that are used to produce word embed-

dings.
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B Repository

Upon request, the code for the project and its dependencies can be obtained. Note that this

does not include the data, since this is protected by privacy regulations. The structure of the

repository is as follows:

z→ DevOps

↪ Dependencies

| ↪ specifications.txt

| ↪ package modifications.txt

↪ Pre-processing

| ↪ entity and annotation mining.ipynb

| ↪ letter sampling conclusion filtering.ipynb

| ↪ exploratory data analysis.ipynb

↪ Validating

| ↪ rule based cv.ipynb

| ↪ learning model cv.ipynb

| ↪ two stage cv.ipynb

↪ Main

| ↪ rule based main.ipynb

| ↪ learning model main.ipynb

| ↪ two stage main.ipynb

| ↪ ensemble model main.ipynb

↪ Evaluation

↪ prediction matrix error analysis.ipynb
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