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Abstract

Monitoring and interpreting vital signs in pediatric intensive care is cru-

cial for timely medical interventions. Analyzing the multivariate time se-

ries data of these vital signs with data science techniques can significantly

improve patient monitoring. This study focuses on using clustering algo-

rithms to detect and classify medical events in the Pediatric Intensive Care

Unit (PICU).

The main problem addressed is identifying and classifying medical events

from the vital sign measurements of cardiac infants. Here we show that

using a combination of Mini Batch K-means clustering and Random Forest

classifier validation, significant health events can be effectively identified.

The "Difference Baseline Cubed (10m - 5m)" approach achieved the highest

accuracy of 0.966, showing the best performance in clustering vital sign

data.

These findings highlight the potential of advanced clustering techniques to

improve patient monitoring and intervention strategies in the PICU. By in-

volving medical experts to validate the clustering results, the findings can

be made more relevant to clinical needs. This approach not only enhances

current patient care but also opens the door for real-time monitoring and

automatic event detection in critical care settings.

In a broader context, the methods developed in this study can be used in

other fields where analyzing multivariate time series data is important. Fu-

ture research could look into using more advanced models and real-time

applications, which could significantly change how pediatric critical care

and other areas operate.
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1. Introduction

In the Pediatric Intensive Care Unit (PICU), the effective monitoring and

timely medical intervention for critically ill children is paramount. This

chapter sets the stage for understanding the critical role of data science in

enhancing patient care. It outlines the motivation behind the study, pro-

vides a comprehensive literature review on the current state of medical

event detection in healthcare, and details the specific objectives that this re-

search aims to achieve. By leveraging advanced clustering algorithms, this

study seeks to improve the detection and classification of medical events,

ultimately contributing to better patient outcomes in the PICU.

1.1 Motivation and Context

In the PICU, critically ill children with a variety of underlying conditions

receive intensive care and monitoring. An array of parameters, including

heart rate, blood pressure, and respiration, are meticulously monitored to

gauge the patients’ physiological status. In today’s era of data science and

artificial intelligence, this wealth of data presents an opportunity for ad-

vanced analysis and insight.

However, a change is on the horizon for PICU practice: patients will

soon have individual rooms for privacy, which is beneficial for families but

poses challenges for monitoring. Understanding patterns in vital signs be-

comes crucial for this new setup to ensure patients receive the care they

need.

In this study, the aim is to develop methods to recognize variations in

patient data related to medical interventions. Specifically, common medical

interventions such as adjustments in inotropic support, which refers to med-

ication that enhances the contractility of the heart, and supplemental oxygen

provided to patients to improve oxygenation levels, will be examined. By
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1.2 Literature review

analyzing retrospective data from pediatric patients, we seek to enhance our

understanding of when these medical interventions take place. Currently,

such medical interventions are not consistently annotated over time, lim-

iting the utility of this information for clinical decision-making and model

development. Addressing this challenge will be essential for the future de-

velopment of models and smart alarming algorithms for PICU patients.

To address these challenges, this thesis explores the potential of cluster-

ing techniques in detecting significant medical events from time series vital

measurements. Clustering, an unsupervised learning method, can identify

natural groupings in data without predefined labels, making it well-suited

for uncovering patterns in physiological data that correspond to medical

interventions.

1.2 Literature review

1.2.1 Vital Signs and Data Analysis

Vital signs, such as heart rate, blood pressure, respiratory rate, and oxygen

saturation, are critical indicators of a patient’s health status and are contin-

uously monitored over time. These measurements are interdependent, and

their analysis is complex due to high dimensionality, temporal dependen-

cies, and noise. Noise and artifacts, including movement, pain, and cough-

ing (Malani, 2012); (Van Lieshout et al., 1989), further complicate the data.

Advanced techniques are required to extract meaningful patterns from this

data, enabling accurate monitoring and event detection, which are crucial

for patient care and clinical decision-making in healthcare settings.

1.2.2 Event Detection in Healthcare

Event detection can significantly impact healthcare, aiding in early disease

diagnosis, patient monitoring, and treatment optimization. For instance,

Srinivasulu et al. (2021) detected apnea events using machine learning tech-

niques for the clinical diagnosis of Sleep Apnea Syndrome by analyzing

time, frequency, and statistical features of electrocardiogram signals. Fur-

5



Introduction

ther literature reveals that medical events such as seizures (Potter et al.,

2022), heart disease (Nagavelli et al., 2022), and brain infarcts (Van Hespen

et al., 2021) have been detected using machine learning algorithms.

1.2.3 Supervised and Unsupervised Learning

Machine learning algorithms used for event detection and anomaly detec-

tion can be either supervised or unsupervised. Supervised methods require

pre-modeling knowledge of when events or anomalies occur, necessitating

consistent annotation or expert labeling, which is labor-intensive and prone

to variability. Despite this, supervised learning has been successful in de-

tecting and classifying events, as shown by Nagavelli et al. (2022) and Van

Hespen et al. (2021). Chen et al. (2016) also used a supervised model to

classify real and artifact alerts, employing a random forest model to discern

relevant alerts from artifacts.

1.2.4 Unsupervised Learning in Healthcare

Unsupervised models, which do not rely on labeled data, have also been

explored. Kavitha et al. (2021) applied unsupervised clustering techniques,

such as K-means and K-medoids, to detect anomalies in healthcare data ex-

tracted from wearables. This approach increases the efficiency of health ser-

vices. Potter et al. (2022) also employed unsupervised learning for seizure

detection, using the first time series transformer-based model, which suc-

cessfully identified seizures and outperformed other supervised learning

models. Both of these studies provide can provide reliability and support in

the health care system.

Clustering algorithms, such as K-means and DBSCAN, have shown promise

in uncovering hidden patterns and identifying significant deviations in phys-

iological data. These clustering methods can group similar time series data

points based on their features, allowing for the identification of natural

groupings and anomalies that may correspond to medical events. The ap-

plication of these techniques to vital sign data can enhance the detection of

critical medical events by recognizing patterns that might not be evident
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through supervised learning approaches alone. According to Kanagala and

Krishnaiah (2016), a comparative study demonstrated the effectiveness of K-

means and DBSCAN in various contexts, including medical data analysis,

highlighting their utility in detecting meaningful patterns and anomalies in

physiological datasets.

1.2.5 Conclusion

Overall the current application of machine learning in the loads of data that

a health care system can provide, has aimed to support physicians to pro-

vide more effective treatment to patients (Habehh & Gohel, 2021).

1.3 Objectives

Vital parameters represent multivariate time series data in the field of data

science. The primary research question is: Can medical events be detected

and classified by analyzing vital measurements in cardiac infants? This

study aims to employ clustering techniques to identify and categorize sig-

nificant health events, thereby enhancing patient monitoring and interven-

tion strategies in the PICU.
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2. Data

This chapter delves into the data used for this research, sourced from the

PICU at Wilhelmina Children’s Hospital. It provides a thorough descrip-

tion of the dataset, which includes vital sign measurements from cardiac

infants. The chapter discusses the initial exploration and preparation of the

data, addressing issues such as missing values and anomalies. Additionally,

it highlights the ethical and legal considerations involved in handling sen-

sitive patient data, ensuring compliance with privacy regulations and the

protection of patient identities.

2.1 Description of the Dataset

The data utilized for this study were collected at the PICU of Wilhelmina

Children’s Hospital, part of the University Medical Center (UMC) Utrecht,

The Netherlands. It comprises time-series recordings of vital measurements

from 68 cardio patients, all of whom were infants less than one year of age,

from the year 1999 to 2020. As mentioned earlier, the data provided is a

time series, with measurements recorded in consecutive time frames in sec-

onds. Each patient was assigned a unique pseudo-ID, and their timelines

begin at the point of admission to the PICU. The patients were admitted at

different times, and the duration of their stays in the PICU varied. Detailed

descriptions of the vital measurements that were available in the provided

dataset can be found in Appendix A.1. These measurements include a range

of "normal" values, which differ based on the age of the patients. These

are all patients diagnosed with different cardiac conditions, which can lead

to varying "normal" vital measurements. Additionally, their vital measure-

ments are influenced by the initiation of medical interventions and are more

susceptible to movement-related noise. While all vital measurements were

possible for every patient in the dataset, an exception was the Near-Infrared
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2.2 Data exploration

Figure 2.1: Example of Patients Vital Signs

Spectroscopy (NIRS) measurement. Due to the small size of the infants and

the nature of the NIRS device, which involves a sticker placed on the head,

it was sometimes feasible to fit only one sticker on smaller infants.

2.2 Data exploration

The dataset comprises high-frequency measurements recorded every sec-

ond, resulting in a substantial volume of data. Specifically, it contains ap-

proximately 12 million rows and 9 columns, totaling around 108 million

data points. Figure 2.1 illustrates the time series of measurements for three

patients over a selected interval, highlighting daily variations and overall

trends. During data analysis and visualization, numerous missing values

(NAs) and anomalies were identified. Notably, anomalies in the blood pres-

sure columns, where the mean blood pressure exceeded the systolic blood

pressure, were classified as blood collection events.

2.3 Preparation of the Data

2.3.1 Missing Data Analysis

Missing data was observed sporadically throughout the dataset. Clustering,

the main method used to detect events in this study, requires no missing

values and a uniform number of features (vital sign measurements). Given

that some patients were missing certain features, exclusion of these features
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Data

was neccesary

One of the NIRS measurements was sometimes limited to a single sensor

on smaller infants, indicating that the missing data in NIRS measurements

might be considered Missing at Random (MAR) due to its correlation with

the size and condition of the infant. When assessing the number of patients

missing both NIRS measurements, it was decided to exclude this measure-

ment from the analysis. As shown in Table A.2, 12 patients lacked this NIRS

measurement. Excluding the NIRS measurement allowed these patients to

be included in the analysis.

Non-Invasive Blood Pressure (NIBP) measurements were also inconsis-

tently recorded in short intervals, making them unsuitable for this study

and thus excluded from the analysis. The inconsistent recording of NIBP

measurements indicates that the missing data is likely Missing Not at Ran-

dom (MNAR), possibly due to specific conditions or decisions made during

data collection.

To ensure the clustering algorithms were applicable, only patients with

the following measurements were included in the analysis: mon_etco2, mon_-

hr, mon_ibp_dia, mon_ibp_mean, mon_ibp_sys, mon_rr, and mon_sat. This se-

lection resulted in a dataset comprising 39 patients. Although these mea-

surements still had sporadic missing values, they were manageable and

filling them in did not introduce significant bias. These were indicated by

NaNs in the dataset. Since the measurements were continuous for each pa-

tient, no time points were missing. The NaNs were sporadic and varied

in length, necessitating specific constraints to handle these data points effi-

ciently. The conditions for handling missing data were as follows:

• If consecutive data points of a feature were missing for more than 10

seconds, the window was skipped.

• If fewer than 10 seconds of data were missing from a time window, the

points were interpolated linearly.

• Exception: Time windows were adjusted for known events, such as

blood collection, based on expert confirmation.
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2.3 Preparation of the Data

2.3.2 Windows and more preprocessing

After the missing data analysis, several additional steps were implemented

to prepare the dataset for analysis. For clustering purposes, each patient’s

dataset was split into sliding windows. This approach captures a period

of time rather than clustering the measurements per second. The windows

were set to 10 minutes after experts opinions of the events being approxi-

mately this length of time.

Recognizable anomalies in the blood pressure feature, identified as blood

collection events, were excluded from the windows to simplify the analysis.

Other anomalies were retained to preserve as much information as possi-

ble, assuming some of these points could be medical interventions. The

windows of measurements were then converted to arrays and scaled using

MinMaxScaler() from scikit-learn. This scaling ensures all features are on

a similar scale, which improves the performance of clustering algorithms.

This approach reduces the impact of features with large ranges, enhances

cluster separation, and makes the analysis easier to understand and more

efficient.

2.3.3 Assumptions

• Different interventions have different effects on a patient. Each

medical intervention is assumed to impact the patient’s vital signs

uniquely. For example, the administration of different medication or

other treatments can cause distinct changes in measurements such as

heart rate, blood pressure, and oxygen saturation.

• Relative consistency of intervention effects across patients. For the

purposes of this study, it is assumed that the relative (percentage)

change induced by a specific intervention is consistent across patients.

This assumption is necessary to facilitate the clustering of similar events,

such as the administration of epinephrine, based on their effects on vi-

tal signs. Without this assumption, the clustering algorithm would

struggle to identify and group together similar events effectively. For

instance, if an intervention typically results in a 10% increase in heart
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rate, it is expected to cause a similar percentage change in all patients,

regardless of their initial heart rate.

• Baseline variability among patients. It is assumed that each patient

has a different "normal" range for vital signs due to inherent physio-

logical differences and underlying health conditions. Therefore, trans-

formations using the median of each specific vital measurement are

employed to standardize data, making individual variations more com-

parable.

• Independence of non-blood pressure features. Except for the sys-

tolic, diastolic, and mean invasive blood pressure measurements, which

are interdependent, all other features are assumed to be independent.

This means that changes in one vital sign are not directly influencing

changes in another, simplifying the analysis and interpretation of the

data.

• Impact of outliers and anomalies. Recognizable anomalies, such as

blood collection events, are excluded from the analysis to avoid skew-

ing the results. However, other anomalies are retained to preserve the

integrity of the data and ensure that significant variations and poten-

tial patterns are not overlooked.

• Temporal consistency within sliding windows. When splitting each

patient’s dataset into sliding windows for clustering, it is assumed that

the vital sign patterns within each window are temporally consistent.

It is assumed that an event can be captured in the time set window.

• Scalability of features. By scaling both transformed and non-transformed

features using MinMaxScaler to a consistent range, typically [-1, 1], it

is assumed that this will enhance the performance of clustering algo-

rithms. This scaling approach is expected to mitigate the impact of

features with large ranges, improve cluster separation, and make the

analysis more interpretable and efficient.
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2.4 Ethical and legal consideration of the data

Conducting research involving time series data of vital measurements from

patients under the age of one year involves several critical ethical consider-

ations. Ensuring the privacy and confidentiality of patient data is extremely

important. All data used in this research was anonymized to protect the

identities of the young patients, in compliance with the guidelines provided

by UMC Utrecht.

Access to the data was strictly controlled and only permitted through

a secure virtual machine environment to prevent unauthorized access and

ensure data security. This measure is essential to protect sensitive health

information from potential breaches.

Moreover, the potential implications of the research findings must be

carefully considered. The aim is to contribute positively to the field of pedi-

atric healthcare by identifying medical events in the vital measurements of

infants, which could lead to improved monitoring and care. It is crucial to

ensure that the outcomes of this research are used to enhance patient care

and not to stigmatize or disadvantage any individuals.
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3. Method

In this chapter, the methodologies employed in the study are meticulously

detailed. It begins with a description of the chosen clustering techniques

and the rationale behind their selection. The chapter then explains the orig-

inal approach and the process of optimizing the number of clusters. Valida-

tion methods are also discussed to ensure the robustness of the clustering

results. Furthermore, alternative approaches and specific event detection

strategies are explored to enhance the accuracy and reliability of the find-

ings.

3.1 Description of the method used

To capture the medical interventions within the patients measurements, clus-

tering was chosen due to its proven success in event detection (Kanagala &

Krishnaiah, 2016). However, clustering often involves extensive distance

calculations, which can be computationally expensive, especially with large

datasets. This computational burden made many clustering methods im-

practical for this study. In the context of data science, this involves de-

termining how clustering algorithms can be utilized to detect and classify

events within these multivariate time series.

Despite preprocessing, scaling, and windowing the data, methods such

as DBSCAN, KMeansTimeSeries with dynamic time warping, HDBSCAN,

and Gaussian Mixture Models were infeasible due to their high compu-

tational demands. The clustering method that performed efficiently was

Mini-Batch K-Means. The effectiveness of Mini-Batch K-Means will be dis-

cussed in detail in the following chapter. With regards to expectations of

clusters, we expect one cluster for the events, one for the artefarcts and one

for no event.

Given that only one clustering method proved feasible, it became nec-
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3.2 Original Approach

essary to explore alternatives within this clustering method. These alterna-

tives will also be discussed in this chapter.

3.2 Original Approach

In the original approach, the features: end-tidal carbon dioxide, heart rate,

diastole IBP, mean IBP, systole IBP, respiratory rate, and saturation were all

included in the analysis. The main focus of this approach was to capture as

much information as possible to make the data points distinguishable. The

dataset was split into 10-minute windows, and for this approach, set to slide

per minute of a patient’s measurements. From here, the optimal number of

clusters was calculated, which will be discussed later in this chapter. The

algorithm used for clustering was Mini-Batch K-Means. After clustering,

the clusters were validated both internally and externally. For visualization

purposes, the windows were PCA-reduced to be shown in 3D. The valida-

tion process and clustering optimization provided statistics to compare the

original approach to the alternative approaches.

3.2.1 Mini Batch K-means

The Mini-Batch K-Means algorithm is a variant of the standard K-Means

algorithm. It employs the same clustering technique but with a key differ-

ence: instead of processing the entire dataset at once, it randomly selects

small subsets (mini-batches) of the input data. These mini-batches are clus-

tered to the nearest centroid, and the process continues iteratively until all

data points are assigned to clusters. This approach significantly enhances

computational efficiency and reduces memory usage compared to the stan-

dard K-Means algorithm, making it well-suited for large datasets.

However, the Mini-Batch K-Means algorithm has some limitations. It

can be sensitive to the choice of mini-batch size: a batch size that is too

large can negate the computational advantages, while a batch size that is

too small can lead to noisy clustering results. Additionally, the algorithm

may require more iterations to achieve convergence to a stable solution.
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3.3 Optimizing the number of clusters

To determine the number of clusters for a model, three metrics were utilized:

the Within-Cluster Sum Squares (WCSS), Silhouette Score and Davies-Bouldin

Index. These metrics provided a comprehensive evaluation of clustering

performance, supporting the identification of most suitable number of clus-

ters.

3.3.1 Within-Cluster Sum of Squares (WCSS)

The WCSS measures the total variance within each cluster by calculating

the sum of the squared distances between each point and its correspond-

ing cluster centroid. It is used to assess the compactness of the clusters.

The Elbow Method was applied to find the optimal number of clusters.

This method involves plotting the WCSS against the number of clusters and

identifying the "elbow" point, where the rate of decrease in WCSS signifi-

cantly slows down, indicating diminishing returns from adding more clus-

ters.

WCSS =
K

∑
k=1

∑
xi∈Ck

∥xi − µk∥2

where:

• K is the number of clusters.

• Ck is the k-th cluster.

• xi is a data point in cluster Ck.

• µk is the centroid of cluster Ck.

3.3.2 Silhouette Score

The Silhouette Score evaluates the quality of the clustering by measuring

how similar each point is to its own cluster compared to other clusters
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3.3 Optimizing the number of clusters

(Rousseeuw, 1987). The score ranges from -1 to 1, with higher values in-

dicating better-defined clusters. A higher Silhouette Score implies that the

points are well-matched to their own cluster and poorly matched to neigh-

boring clusters, signifying good separation between clusters.

s(i) =
b(i)− a(i)

max(a(i), b(i))

where:

• a(i) is the average distance between i and all other points in the same

cluster.

• b(i) is the minimum average distance between i and all points in any

other cluster (the nearest cluster).

S =
1
N

N

∑
i=1

s(i)

where:

• N is the total number of data points.

3.3.3 Davies-Bouldin Index

The Davies-Bouldin Index assesses the average similarity ratio of each clus-

ter with its most similar cluster (Davies & Bouldin, 1979). A lower Davies-

Bouldin Index indicates better clustering quality, with more distinct and

well-separated clusters. This index is particularly useful for validating the

compactness and separation of clusters.

DB =
1
K

K

∑
k=1

max
j ̸=k

(
σk + σj

d(µk, µj)

)
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where:

• K is the number of clusters.

• σk is the average distance between each point in cluster k and the cen-

troid of cluster k.

• σj is the average distance between each point in cluster j and the cen-

troid of cluster j.

• d(µk, µj) is the distance between the centroids of cluster k and cluster

j.

3.4 Validation

3.4.1 Internal validation

For internal validation, a Random Forest classifier will be used to determine

if the data points are easily distinguishable, thus assessing the effectiveness

of the labeling process. This involves comparing accuracy measurements to

ensure that data points are correctly clustered. To fairly classify the data, the

number of labels needed to be balanced, so the dataset was undersampled

to achieve an even distribution of labels. The dataset was then split into

a training set (70%) and a test set (30%). The classifier was trained on the

training set and tested on the test set, with accuracy measured. Additionally,

a confusion matrix and a classification report were generated to validate the

classifier’s performance.

3.4.2 External validation

To understand the characteristics of the clusters, the mean and the standard

deviations were calculated of each cluster for each measurement. Addition-

ally, to assess the realism of the clustering, the distribution of clusters per

patient was analyzed. The labeled windows were also visualized within

individual patient measurements to inspect their accuracy and consistency.
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Data
Missing Data

Analysis
Make 10 Minute
Sliding Windows Scale Windows

Clustering Internal Validation
(Random Forest) External Validation

Figure 3.1: Methodology Flow Chart

3.5 Alternative approach

3.5.1 Feature Selection and Transformation

Given the large and dense set of data points in the original approach, it

was necessary to reduce computational costs and prevent model overfit-

ting. To address the density of data points and find more variability, dif-

ferent options were considered to achieve more concise clusters. Most fea-

tures were independent, except for the systolic, diastolic, and mean invasive

blood pressure (IBP) measurements. Due to their interdependence and the

redundancy of information they provided, only the mean IBP was included

in the analysis.

To improve the separability of data points, the focus shifted to exam-

ining the difference of measurements relative to a baseline of each patient

(median). This approach accounts for individual patient "normal" values.

The window sliding time was also adjusted from 1 minute to 5 minutes to

reduce overlap and enhance the distinction between data points.

Two transformation approaches were used:

• Percentage error:

measurement − median
median

× 100

• Cubed difference:

(measurement − median)3
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Cubing the difference emphasized outliers and keeps negative values

negative, making these data points more distinct and easier to cluster. The

internal and external validation processes remained consistent with those

mentioned earlier in this chapter.
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4. Results

This chapter presents the findings of the study, comparing the results of dif-

ferent clustering approaches. It provides a detailed analysis of the original

approach and the alternative methods, highlighting their respective perfor-

mances. The chapter also includes a comprehensive comparison of the ap-

proaches and discusses the external validation of the model. During this

chapter only a few results will be shown, in the appendix from A.2 until A.5

the rest has been attached.

4.1 Original approach

In figure 4.1 you can see the distributions of the points and the optimal

amount of clusters for this model. The sliding windows in this model are

very close to each other, resulting in significant overlap and many identical

points. This overlap explains the dense clustering, with little distinction be-

tween data points. Additionally, using three blood pressure measurements

(systolic, diastolic, and mean) with similar variance and interdependence

adds redundancy. Including all three does not contribute to distinguishing

between the data points, as they provide similar variability.
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Results

Figure 4.1: Plot of the original approach

4.2 Alternative approach

4.2.1 Second model: difference % median window 10m - 1m

Figure 4.2 presents the clustering results for the 10-minute window with 1-

minute steps using the percentage difference baseline approach, reduced to

three principal components (PCA). The plot illustrates five distinct clusters,

each represented by a different color. The clustering shows a clear separa-

tion between the different classes, with Class 1 (blue) and Class 4 (yellow)

exhibiting more compact and distinct groupings, suggesting homogeneity

within these clusters. Classes 0 (purple), 2 (teal), and 3 (green) display more

spread distributions, indicating greater variability within these clusters.
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4.2 Alternative approach

Figure 4.2: Plot of the Alternative (% difference) 1 minute sliding approach

4.2.2 Third model: difference % median window 10m - 5m

Figure 4.3 presents the clustering results for the 10-minute window with 5-

minute steps using the percentage difference baseline approach, reduced to

three principal components (PCA). The plot illustrates five distinct clusters,

each represented by a different color. The clustering shows clear separation

between the different classes, with Class 0 (purple) and Class 4 (yellow).

The Classes: 1, 2 and 3 have less variability in their data points.
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Figure 4.3: Plot of the Alternative (% difference) 5 minutes sliding approach

4.2.3 Fourth model: difference3 median window 10m - 5m

Figure 4.4 presents the clustering results using the cubed difference baseline

approach with 10-minute windows and 5-minute steps, reduced to three

principal components (PCA). The plot illustrates three distinct clusters, each

represented by a different color. The clustering shows an even dispersion of

the different classes, with Classes 0 (purple), 1 (teal), and 2 (yellow) spread

uniformly across the PCA space. This even dispersion suggests that the

cubed difference baseline approach captures a balanced representation of

the data, indicating consistent variability within each cluster. The PCA fea-

tures on the axes captures the significant variance in the data, showing the

that the clustering algorithm can differentiate between various patterns.
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4.3 Comparison of the approaches

Figure 4.4: Plot of the Alternative (cubed) approach

4.3 Comparison of the approaches

Table 4.1 presents the internal validation results for the different cluster-

ing approaches using a Random Forest classifier to measure accuracy. The

"Difference Baseline Cubed (10m - 5m)" model achieved the highest accu-

racy of 0.966, indicating the most reliable cluster differentiation. This model

also demonstrated the best clustering performance with a Davies-Bouldin

Index of 1.560 and a Silhouette score of 0.21, suggesting well-separated

and cohesive clusters. In comparison, the original model, despite having

more clusters (7), showed lower performance with an accuracy of 0.958, a

Davies-Bouldin Index of 1.63, and a Silhouette score of 0.16. The "Difference

Baseline %" models, using 10-minute windows with 1-minute and 5-minute

steps, achieved accuracies of 0.959 and 0.941, respectively, with moderate

Davies-Bouldin and Silhouette scores. These results highlight the effective-
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ness of the cubed difference baseline approach combined with larger step

sizes in capturing meaningful patterns in the data and achieving a better

clustering quality.

Table 4.1: Internal Validation Results

Model Window n Clusters Davies-Bouldin Silhouette WCSS Accuracy

Random Forest

Original 10m - 1m 7 1.63 0.16 110597494 0.958
Difference baseline % 10m - 1m 5 1.79 0.13 4761626 0.959
Difference baseline % 10m - 5m 5 1.71 0.13 1061595 0.941
Difference baseline3 10m - 5m 3 1.56 0.21 10392273 0.966

4.4 External validation of the model

In this section we will discuss results for the cubed model.

4.4.1 Statistics of each cluster

Table 4.2: Centroid Difference to the Median (10-minute Window): Mean Dif-
ference and Standard Deviation per Measurement

Cluster ETCO2 Heart Rate Respitory Rate Blood Pressure Saturation
Mean StdDev Mean StdDev Mean StdDev Mean StdDev Mean StdDev

0 0.00 0.60 4.61 1.44 0.82 2.95 -0.19 3.60 -0.35 2.87
1 0.04 0.55 -3.30 3.00 -0.61 2.05 -3.10 2.84 -1.05 2.84
2 -0.07 0.58 -2.54 2.52 -0.02 3.08 2.83 2.17 -0.67 2.81

Table 4.3: Cluster Difference to the Median per Centroid (10-minute Window):
Mean and Standard Deviation per Measurement (%)

Cluster ETCO2 (%) Heart Rate (%) Respiratory Rate (%) Blood Pressure (%) Saturation (%)
Mean StdDev Mean StdDev Mean StdDev Mean StdDev Mean StdDev

0 -0.01 0.72 1.79 2.08 -0.10 1.45 -0.16 1.11 2.13 1.45
1 0.13 1.07 -1.46 1.13 -1.70 1.44 -0.47 1.13 2.04 1.44
2 -0.20 1.11 -1.06 1.28 -1.60 1.41 0.37 1.41 2.06 1.41

Table 4.4: Mean of the Median for each Cluster

Cluster ETCO2 Heart Rate Respiratory Rate Blood Pressure Saturation

0 4.36 146.82 31.14 52.87 87.98
1 4.28 145.48 30.98 53.69 88.59
2 4.41 146.02 30.98 52.40 87.74
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4.4 External validation of the model

4.4.2 Statistics clusters per patient

In this section, we discuss and visualize the clustering of events per patient

to evaluate the realism of the clusters. Table 4.5 presents the mean percent-

age of windows that were clustered into each cluster for each patient. The

average time clustered in Cluster 0 is 41.12%, in Cluster 1 is 25.80%, and in

Cluster 2 is 33.08%. Given that Clusters 1 and 2 exhibit the most variabil-

ity, they are likely to correspond to distinct events or artifacts, which aligns

with our expectations.

Table 4.5: Mean % Windows in each Cluster

Cluster Mean % windows for all patients

0 41.12
1 25.80
2 33.08
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5. Discussion and Conclusion

The concluding chapter summarizes the key findings and contributions of

the study. It offers a discussion on the implications of the results, drawing

conclusions on the effectiveness of the clustering methods used. The chapter

also addresses the limitations of the study and proposes recommendations

for future research. By reflecting on the study’s impact on patient care in the

PICU, this chapter emphasizes the importance of continued advancements

in data science for healthcare applications.

5.1 Discussion

Within this study, the aim was to detect and classify medical interventions

(events) within the patient dataset provided. There were four different ap-

proaches to reach this goal, and these approaches differ in parameters but

were all clustered using the same algorithm: Mini Batch K-means. All of the

models were optimized to find the best number of clusters and validated in-

ternally and externally. For the internal validation, the Random Forest clas-

sifier was used to measure the accuracy of the predicted clusters. The results

in Table 4.1 show that the model with the difference to the baseline cubed is

the best-separated one. The results are close to each other, but when look-

ing at the Davies-Bouldin Index and the Silhouette score, the cubed model

scores the best well.

The hypothesis for the general clustering is that one cluster will rep-

resent no event, one will capture artifacts, and one will represent events.

Given the assumptions, the most important thing to keep in mind is that we

expected to cluster the same kind of change within one cluster and assume

that these changes were the same kind of event.
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5.1 Discussion

5.1.1 Internal Validation

The internal validation results indicated that the "Difference baseline cubed"

model performed the best across several metrics. Specifically, this model

had the highest accuracy (0.966) when validated using the Random Forest

classifier. This high accuracy suggests that the clusters formed are distinct

and the model can reliably differentiate between different types of events.

Additionally, the Davies-Bouldin Index (1.560) and Silhouette score (0.21)

for this model were the most favorable, further indicating well-separated

clusters with a reasonable level of cohesion.

5.1.2 External Validation

In the external validation of the model, the statistics of each cluster, as shown

in Tables 4.2 and 4.3, provide a deeper understanding of the characteristics

of each cluster. The analysis of the cluster differences to the median per

centroid over a 10-minute window reveals distinct patterns for each cluster.

For instance, in Table 4.2, Cluster 0 shows relatively stable values across

measurements, suggesting that this cluster might represent periods with no

significant events. Cluster 2, on the other hand, exhibits higher standard

deviations in respiratory rate and blood pressure, which might indicate the

presence of events or interventions. Cluster 1 shows noticeable differences

in heart rate and saturation levels, which could suggest artifacts or specific

types of events.

In Table 4.3, where the difference to the median per centroid is expressed

as a percentage, similar patterns emerge. Cluster 0 has smaller deviations,

reinforcing the idea that this cluster might represent normal, event-free pe-

riods. Cluster 1 and Cluster 2 show larger deviations, indicating more vari-

ability likely due to medical events or artifacts.

5.1.3 Comparison of the Approaches

The alternative approaches to clustering provided notable benefits, particu-

larly in terms of efficiency. By using fewer data points with more variation,
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Discussion and Conclusion

the clustering algorithm was faster and got more accurate results. The min-

imum expectation was to identify clusters corresponding to no events, ar-

tifacts, and actual events. This was successfully achieved using the cubing

model, and the percentage difference model also effectively clustered the

data into meaningful groups.

However, it is crucial for experts to externally validate these clusters to

determine what the events represent. While some models appeared visually

better separated, their accuracy scores were comparable. This suggests that,

although it is possible to distinguish data points based on measurements

alone, the true meaning of these clusters requires validation. Expert evalu-

ation is necessary to confirm the types of events each cluster represents.

5.1.4 Objective

Despite the promising results, the objective of the study has not been fully

achieved. One significant limitation is the inability to label the clusters ac-

curately. As a non-expert, it is challenging to determine if a particular mea-

surement belongs to a specific medical event. This limitation proves the ne-

cessity of collaboration with medical professionals who can provide expert

annotations for the data, ensuring that the clusters are correctly interpreted

and validated.

5.2 Conclusion

In conclusion, the "Difference baseline cubed" model proved to be the most

effective in clustering the dataset into meaningful groups. The internal val-

idation metrics demonstrated high accuracy and well-separated clusters,

while the external validation provided insights into the characteristics of

each cluster. These results support the hypothesis and confirm that the clus-

tering approach can successfully differentiate between normal periods, ar-

tifacts, and medical events.

However, it is important to note that the objective of the study has not

been fully achieved due to the inability to accurately label the clusters. Col-
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5.3 Limitations

laboration with medical professionals is essential to provide expert annota-

tions for the data, ensuring that the clusters are correctly interpreted and

validated. This clustering framework could potentially enhance patient

monitoring and intervention strategies in clinical settings.

5.3 Limitations

5.3.1 Unsupervised Nature

Being unsupervised, there is no way to exclusively cluster events. Some

clusters may represent a combination of patient deterioration and medica-

tion effects, without clear confirmation of specific events.

5.3.2 Event Intervals and Duration

There is no clear indication of the number and duration of interventions.

The chosen windows might not capture precise events. Due to time con-

straints, finding the "optimal" window size was not feasible. Different win-

dow lengths could yield better results, as events like blood collection (5

minutes) versus oxygen adjustment can vary significantly. The study’s win-

dows might capture multiple events, complicating clustering. Shorter win-

dows, might better recognize specific events.

5.3.3 Variability of Patient Response

The initial assumption was that similar events would produce uniform ef-

fects across all patients, resulting in consistent changes in measurements.

However, the variability in individual patient responses to medication means

that identical events can express differently in different patients. This vari-

ability complicates the task of clustering these events based solely on mea-

surement data. Similarly, different events that produce similar measure-

ment patterns in a single patient cannot be easily distinguished based solely

on these measurements.
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5.3.4 Computational Constraints

The use of sensitive data necessitated a secure virtual machine, limiting the

use of computationally intensive methods. This time constraint meant only

faster models were viable, potentially missing more complex patterns. Bet-

ter models might be achievable with higher processing power or a smaller

dataset.

5.4 Future Work and Recommendations

Given the high accuracy achieved using the relatively simple K-Means clus-

tering algorithm, future work could focus on validating and possibly refin-

ing this approach further. However, exploring more computationally inten-

sive models could still offer benefits in terms of robustness and generaliza-

tion. Advanced techniques such as deep learning methods might provide

improvements in handling edge cases and outliers, thereby enhancing the

overall reliability of the clustering process.

Additionally, experimenting with various window sizes and step sizes

could provide deeper insights and help identify specific events within in-

dividual clusters. Tailoring the windowing approach to different types of

medical events might further enhance detection accuracy.

Another important aspect of future research is the validation of the clus-

tered data points by medical professionals. Expert annotations would en-

sure that the clusters are accurately interpreted and that the events identi-

fied are clinically relevant. Collaboration with healthcare experts would not

only validate the current findings but also refine the clustering approach to

better suit medical needs.

Moreover, focusing on a specific event approach could enhance the de-

tection and classification of medical events. This involves targeting certain

types of events by assigning different weights to the measurements. Specifi-

cally, research could look for three kinds of events: pulmonary, cardiac, and

blood pressure-related events, by giving more weight to the measurements

most relevant to these events. This targeted approach could improve the ac-
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5.4 Future Work and Recommendations

curacy and relevance of the event detection algorithms, providing more pre-

cise monitoring and intervention strategies tailored to these distinct physi-

ological responses.

Lastly, implementing real-time clustering and anomaly detection sys-

tems in clinical settings could offer significant advancements in patient mon-

itoring and intervention strategies. Developing user-friendly tools and dash-

boards for healthcare providers to visualize and interact with the cluster-

ing results would facilitate practical application and improve patient out-

comes.
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A.1 Vital Measurements

A.1 Vital Measurements

• ETCO2 (mon_etco2): End-tidal carbon dioxide (mmHg) - The maxi-

mum concentration of carbon dioxide at the end of an exhaled breath,

which indicates how well CO2 is being eliminated by the lungs.

• Heart Rate (mon_hr): Heart rate (beats per minute) - The number of

heartbeats per minute.

• Diastole IBP (mon_ibp_dia): Invasive Diastolic Blood Pressure (mmHg)

- The pressure in the arteries when the heart is at rest between beats,

measured invasively.

• Mean IBP (mon_ibp_mean): Invasive Mean Blood Pressure (mmHg)

- The average arterial pressure during a single cardiac cycle, measured

invasively.

• Systole IBP (mon_ibp_sys): Invasive Systolic Blood Pressure (mmHg)

- The pressure in the arteries when the heart beats, measured inva-

sively.

• Diastole NIBP (mon_nibp_dia): Non-Invasive Diastolic Blood Pres-

sure (mmHg) - The pressure in the arteries when the heart is at rest

between beats, measured non-invasively.

• Mean NIBP (mon_nibp_mean): Non-Invasive Mean Blood Pressure

(mmHg) - The average arterial pressure during a single cardiac cycle,

measured non-invasively.

• Systole NIBP (mon_nibp_syst): Non-Invasive Systolic blood pressure

(mmHg) - The pressure in the arteries when the heart beats, measured

non-invasively.

• Respiratory Rate (mon_rr): Number of breaths per minute - The num-

ber of breaths taken per minute.

• Saturation (mon_sat): Blood oxygen saturation (%) - The percentage

of oxygen-saturated hemoglobin relative to total hemoglobin in the

blood.
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• Near-infrared spectroscopy Left (mon_nirs_l): Near-Infrared Spec-

troscopy measurement on the left side (nm)- Used to assess tissue oxy-

genation and hemodynamics on the left side of the body.

• Near-infrared spectroscopy Right (mon_nirs_r): Near-Infrared Spec-

troscopy measurement on the right side (nm)- Used to assess tissue

oxygenation and hemodynamics on the right side of the body.
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A.2 Missing Values table

A.2 Missing Values table

NA table

Key Value
(’mon_etco2’, ’mon_hr’, ’mon_ibp_dia’,
’mon_ibp_mean’, ’mon_ibp_sys’, ’mon_rr’,
’mon_sat’)

17

(’nirs_mean’,) 12
(’mon_etco2’, ’mon_ibp_dia’, ’mon_ibp_mean’,
’mon_ibp_sys’) 4

(’mon_rr’,) 3
(’mon_rr’, ’nirs_mean’) 2
(’mon_etco2’, ’mon_ibp_dia’, ’mon_ibp_mean’,
’mon_ibp_sys’, ’nirs_mean’) 1

(’mon_etco2’, ’nirs_mean’) 1
(’mon_ibp_dia’, ’mon_ibp_mean’, ’mon_ibp_sys’,
’nirs_mean’) 1

Table A.1: Count of Patients with Different Combinations of Missing Mea-
sures
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A.3 Original Design Results

Figure A.1: Plot of the Original approach
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A.3 Original Design Results

Figure A.2: Elbow Plot of the Original approach

Figure A.3: Silhouette Score of the Original approach
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Figure A.4: Confusion Matrix Original approach

Table A.2: Classification Report: Original approach

Class Precision Recall F1-Score Support

0 0.96 0.96 0.96 3121
1 0.95 0.93 0.94 2413
2 0.96 0.98 0.97 4520
3 0.97 0.97 0.97 3754
4 0.95 0.95 0.95 3846
5 1.00 0.99 0.99 1166
6 0.95 0.93 0.94 2903

Accuracy 0.96 21723
Macro Avg 0.96 0.96 0.96 21723

Weighted Avg 0.96 0.96 0.96 21723
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A.3 Original Design Results

Table A.3: Cluster Centroids Means and Standard Deviations for Vital Mea-
surements

Cluster ETCO2 Heart Rate IBP Dia Respiratory Rate IBP Mean IBP Sys Saturation
Mean StdDev Mean StdDev Mean StdDev Mean StdDev Mean StdDev Mean StdDev Mean StdDev

0 4.46 0.79 170.24 15.63 44.66 4.17 36.72 5.75 54.37 5.04 72.66 8.29 89.05 9.68
1 3.78 0.91 143.55 12.36 41.68 4.92 24.90 6.65 55.75 5.06 81.44 9.78 80.33 10.74
2 5.21 0.81 143.79 12.95 36.46 4.47 36.36 6.26 46.35 4.79 62.16 8.14 95.00 5.39
3 4.43 0.82 139.98 15.65 53.22 7.18 37.17 6.70 66.67 6.92 92.43 10.46 91.15 8.13
4 3.88 0.92 128.30 13.45 39.00 4.77 32.45 5.12 51.12 5.24 72.01 9.94 83.70 10.06
5 3.38 0.76 147.48 8.81 40.41 5.35 0.62 3.51 49.71 5.92 63.09 9.76 94.31 6.20
6 4.16 0.71 159.19 13.53 35.74 4.85 31.02 4.47 46.31 4.83 64.78 7.58 77.87 8.80

Table A.4: Cluster Distribution and Window %

Pseudo ID 0 1 2 3 4 5 6 # Windows Approx. Time (h)

1 0 0 12.53 0 87.47 0 0 359 59.83
2 0 12.86 0 2.06 2.83 82.24 0 1695 282.5
3 0 0.29 0.39 0 99.12 0 0 1021 179.17
5 16.08 4.77 19.65 4.41 26.30 0.26 1.54 7396 1232.67
7 13.46 0 0 36.81 18.96 1.65 0 364 60.67
8 0 0 0 0.87 0 0 0 18 3
9 8.97 4.43 25.50 0.15 11.78 44.43 4.74 4090 681.67

10 9.94 5.06 0 1.86 6.11 0 2.54 3272 545.33
12 0 77.07 0 22.95 0 0 0 458 76.33
15 76.66 0.99 3.47 2.58 0.50 4.50 0 2018 336.33
16 36.52 0 0 28.19 0 0 0 1703 283.83
18 0.24 0 41.23 0 0 1.44 7.10 6212 1035.33
19 0 95.75 0 0 31.44 0 3.94 636 106
22 58.21 6.83 0.57 4.86 0.21 3.76 25.57 3355 559.17
24 2.13 0.07 54.89 29.79 13.12 0 0 3048 508
27 12.69 4.57 37.26 9.14 56.35 0 0 197 32.83
28 37.16 62.64 0 0 0 0.19 0 2061 343.5
29 66.11 0 0 0 0 0 0 33 30
30 0.61 0 13.66 61.43 15.30 0 0 28 4.67
34 6.35 87.30 0 0 0 6.35 0 63 10.5
35 0 81.52 0 22.64 0 0 0 18 15.33
38 0 10.99 20.32 18.24 46.75 0 0 92 15.33
40 0.78 60.94 14.06 5.47 0 18.75 0 128 21.33
42 4.94 0 0 93.13 0 0 0 1862 310.33
44 1.25 1.21 82.84 0 4.93 0 9.77 2477 412.83
46 6.04 5.28 71.89 15.28 0.19 1.32 0 1060 176.67
47 0 1.04 0 0 0 0 0 0 2.66
50 0.94 0 12.15 24.65 0 0 0 58 1.53
52 4.86 0 0.09 39.66 0 0.04 0 5380 896.67
53 2.82 0 15.39 34.66 0 7.44 7.49 1988 331.33
55 11.75 16.23 15.32 0.32 0.19 1.67 1.67 2537 422.83
61 2.12 90.92 0 0 6.56 0.39 0 1509 251.5
63 8.40 23.36 0.32 1.10 0.07 66.57 0 8181 1363.5
65 7.35 0.57 7.19 2.69 0 0 42.19 3155 525.83
66 5.81 0.08 91.99 1.42 0 0 0 2537 422.83
67 11.27 8.17 20.28 0 57.75 0 2.54 355 59.17
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Table A.5: Average Window Distribution for each Patient

Pseudo ID Mean % Windows

0 32.3846
1 14.1487
2 14.246
3 22.7658
4 15.6818
5 18.5032
6 5.123

# Windows 1856.59
Approx. Time (h) 309.432
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A.4 Cubed Design

A.4 Cubed Design

Table A.6: Cluster Distribution and Window %

Pseudo ID 0 1 2

1 41.33 30.67 28.00
2 45.58 20.23 34.19
3 37.02 7.69 55.29
5 38.47 39.61 22.46
7 43.99 19.51 36.59
9 100.00 0.00 0.00

10 37.76 36.20 26.85
12 41.55 14.14 39.04
16 18.09 39.36 42.55
19 49.40 24.82 25.79
22 41.83 20.63 37.54
24 40.66 35.65 23.69
27 46.51 14.73 38.76
29 44.82 21.39 34.02
30 41.79 31.05 28.16
35 39.02 26.83 34.15
38 36.65 40.86 22.49
42 26.83 12.20 60.98
43 60.00 0.00 40.00
46 42.09 40.45 17.45
47 21.88 46.88 31.25
52 47.62 28.57 23.81
55 26.19 42.86 30.95
61 26.09 19.06 54.84
63 32.14 10.71 57.14
66 36.24 39.68 24.07
67 48.48 36.36 15.15
44 43.81 22.20 33.99
46 40.15 27.27 32.58
47 15.79 31.58 52.63
52 47.62 33.33 19.05
53 46.49 26.14 27.37
55 36.72 26.05 37.22
56 41.38 24.14 34.48
61 40.51 36.33 23.15
63 44.43 22.04 33.53
65 39.50 28.21 32.29
66 41.95 20.14 37.93
67 35.62 23.29 41.10
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A.5 % Difference Median 10m-1m Results

Figure A.5: Plot of the Alternative 10m-1m Baseline Difference approach

Table A.7: Classification Report: Alternative 10m-1m Baseline Difference ap-
proach

Class Precision Recall F1-Score Support

0 0.96 0.98 0.97 8274
1 0.99 0.93 0.96 952
2 0.97 0.96 0.97 2531
3 0.95 0.97 0.96 7186
4 0.98 0.89 0.93 2568

Accuracy 0.96 21723
Macro Avg 0.96 0.96 0.96 21723

Weighted Avg 0.96 0.96 0.96 21723
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A.5 % Difference Median 10m-1m Results

Figure A.6: Elbow Plot Alternative 10m-1m Baseline Difference approach

Figure A.7: Silhouette & Davies Bouldin Index Alternative 10m-1m Baseline
Difference approach
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Figure A.8: Confusion Matrix Alternative 10m-1m Baseline Difference ap-
proach
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A.6 % Difference Median 10m-5m Results

A.6 % Difference Median 10m-5m Results

Figure A.9: Plot of the Alternative 10m-5m Baseline Difference approach

Table A.8: Classification Report

Class Precision Recall F1-Score Support

0 0.95 0.96 0.95 1027
1 0.96 0.96 0.96 1412
2 0.98 0.88 0.93 213
3 0.93 0.88 0.90 444
4 0.92 0.93 0.92 1206

Accuracy 0.96 21723
Macro Avg 0.96 0.96 0.96 21723

Weighted Avg 0.96 0.96 0.96 21723
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Figure A.10: Plot of the Alternative 10m-5m Baseline Difference approach

Figure A.11: Silhouette and Davies Bouldin Index of the Alternative 10m-5m
Baseline Difference approach
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A.6 % Difference Median 10m-5m Results

Figure A.12: Confusion Matrix Alternative 10m-5m Baseline Difference ap-
proach
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