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Abstract

Urban air pollution, particularly nitrogen dioxide (NO2), poses significant health

risks and remains a widespread concern. Traditional stationary monitoring sta-

tions often fail to capture the spatial variability of pollutants in urban environ-

ments, leading to incomplete exposure assessments. Mobile measurement cam-

paigns provide a more dynamic and detailed picture of air pollution distribution.

This study leverages street view imagery and deep learning models to develop

a pipeline for predicting NO2 concentrations at a hyperlocal level. By utilizing

complex pre-trained models without the need for retraining, this approach signif-

icantly lowers the technical barrier to entry. Using data from a mobile measuring

campaign in Augsburg, Germany, pre-trained deep learning models were em-

ployed to extract features from 360-degree street view images at both object de-

tection and semantic segmentation levels. These features served as inputs for sec-

ondary models, including Linear Regression, Support Vector Regression (SVR),

and XGBoost, to predict NO2 levels.

Despite the innovative approach, significant data quality issues, such as low re-

visit frequency and spatial inconsistencies, led to poor model performance. Mod-

els trained on a subset with higher revisit frequencies demonstrated improved

results but still fell short of expectations. These findings underline the critical im-

portance of data quality and revisit frequency in mobile air quality monitoring

campaigns.

The results suggest that while the proposed methodology has potential, data qual-

ity significantly impacts model accuracy. Future research should focus on im-

proved data integration, better planning of measurement campaigns, and apply-

ing this pipeline to other urban datasets. This study contributes to the ongoing ef-

fort to enhance urban air quality monitoring using advanced image analysis tech-

niques, offering a scalable solution with the potential to provide more detailed

pollution assessments in various urban settings.
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1. Introduction

Air pollution is a significant global issue, affecting millions of people and caus-

ing various health problems. Among the many pollutants, nitrogen dioxide (NO2)

stands out as particularly harmful. NO2 is a critical component of traffic-related

air pollution (TRAP), which is predominantly emitted by vehicles. This pollutant

not only contributes to respiratory and cardiovascular diseases but also exacerbates

existing health conditions, making it a major concern for public health worldwide.

Studies have shown that exposure to NO2 is associated with increased mortality

rates and adverse health effects, especially among vulnerable populations [1–4].

The spatial mapping of NO2 and other air pollutants is crucial for accurately assess-

ing exposure levels and understanding their health impacts. Traditional station-

ary monitoring stations provide limited spatial coverage and may not capture the

variability of pollutant concentrations in different environments. This limitation

is particularly significant in urban areas, where NO2 levels can vary dramatically

over short distances due to traffic density, road configurations, and building struc-

tures. Mobile measurement campaigns, which involve portable sensors on vehicles

or individuals, offer a more detailed and dynamic picture of air pollution distribu-

tion, overcoming these shortcomings [5–8]. These campaigns can identify pollution

hotspots, track temporal changes, and provide critical data for developing targeted

mitigation strategies. High-resolution spatial data from mobile measurements can

better correlate with health outcomes and improve the accuracy of exposure assess-

ments compared to stationary monitors alone [9].

The use of mobile monitoring for creating hyperlocal pollution mappings is be-

coming increasingly common [5–8]. Studies confirm that nearly continuous mea-

surements effectively reveal both intra- and inter-city pollution dynamics. They

consistently identify higher pollutant concentrations near major roads, busy areas,

and industrial zones, aligning with longstanding expectations about these loca-

tions [10–12]. Additionally, some studies highlight a direct correlation between

traffic density and pollutant levels, noting substantial variations in pollution based

on traffic proximity to the measurement points [10–14].
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Land-use Regression (LUR) is one of the most common methods for modeling air

pollution [15, 16]. LUR models, especially when combined with hyperlocal data,

have proven effective in predicting the concentration of multiple air pollutants,

including NO2 [16–22]. Typically, LUR models incorporate features at the street

or road level, such as road type, traffic density, and proximity to industrial sites.

However, these features mostly act as proxies for the sources of pollutants. This

research proposes using street view imagery to predict and map hyperlocal NO2

values, generating a more detailed local feature space and potentially uncovering

direct connections between NO2 levels and objects seen in the images.

Leveraging street view imagery to predict NO2 and other spatially dependent vari-

ables is not a new concept and has shown promise in previous research, achiev-

ing high model performance [23–29]. For example, a 2022 study using a ResNet

model achieved R2 values ranging from 0.51 to 0.9 across five cities when train-

ing and testing within the same city [24]. Similarly, research in Toronto used street

view imagery to extract architectural features for an air pollution prediction model,

achieving R2 values between 0.59 and 0.64 [30]. Another study combined multiple

pre-trained models to predict high-level features, which were then used in a Gra-

dient Boosted Regression model, yielding an R2 value of 0.48 for noise pollution

[23].

This research proposes utilizing pre-trained models to extract high-level features

from street view imagery as input for a simpler secondary model to predict NO2

concentrations. This method significantly reduces the need for large amounts of

data typically required for training extensive models, although a comprehensive

and diverse dataset remains essential [23]. Evaluating whether this approach, suc-

cessful in noise pollution studies, can achieve comparable accuracy for NO2 predic-

tion is particularly interesting. Using data from a mobile measurement campaign

in Augsburg, this study aims to provide a scalable and efficient method for NO2

prediction that lowers the technical barrier to entry compared to training large

models from scratch, leveraging advanced image analysis techniques to enhance

environmental monitoring efforts. The final pipeline and model aims to answer

the following research question: "How can features extracted from street view images

using state-of-the-art deep learning models predict air quality in urban environments?"
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2. Data and Methods

As discussed in the Introduction, this research utilizes data from a mobile NO2

measuring campaign together with street view images. This chapter will go into

detail about this data and about the methodological steps taken to prepare the data

for further analysis and how the models were utilized to extract insights from this

data.

2.1 Data Collection and Sources

The data utilized in this research is a set of geographically tagged nitrogen dioxide

(NO2) measurements in micrograms per cubic meter (µg/m3) and 360-degree street

view imagery, which are not geographically identifiable. This data was gathered in

a mobile measuring campaign utilizing a modified car that was equipped with a

GoPro camera and air pollution monitoring devices that drove randomly trough

Augsburg. The collection period spanned 15 days during July and August 2022, re-

sulting in around 330,000 NO2 measurements and 230,000 photographic captures.

Figure 2.1 displays a zoomed in map of the study area, showing the NO2 measure-

ments aggregated into 50-meter grids, a full overview of the study area is provided

in appendix A.

2.2 Data Preprocessing and Cleaning

Before the data can be analyzed it needs to be prepared. This section describes the

steps taken to preprocess the data.

2.2.1 Data Cleaning

The set of NO2 values received for this study was pre-cleaned of outliers by win-

sorizing the data. During the winsorizing process, the maximum NO2 values were

capped at 88.1 µg/m3, with all values higher than this threshold rounded down to

88.1 µg/m3. The distribution of the data received is shown in Figure 2.2
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2.2 Data Preprocessing and Cleaning

Figure 2.1: Zoomed in map of Augsburg and direct surroundings showing the mean
NO2 levels in 50 meter grid cells.
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Data and Methods
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Figure 2.2: Distribution of received NO2 values.

2.2.2 Data Transformation

The NO2 values were aggregated to grids of 50 meter to average the measurements.

This grid size was chosen to maintain the hyperlocality of the data while smoothing

out variations by averaging. There is not a clear standard for aggregating this type

of data, earlier research describe segments from 30 meters [29] all the way up to 540

meters [8]. A research using data that was gathered with the same equipment used

50 meters as the smallest segment [5], making it an appropriate reference for this

research. Despite receiving a clean dataset, averaging NO2 measurements per grid

was crucial for describing spatial patterns. Ultimately the aggregating resulted in

a total of 26,567 grid cells.

The image data required specific preparation due to its initial format as flattened

360-degree panoramas, which introduced two main biases. The first was a dispro-

portionate emphasis on the center of the flattened image and the second was the

obscuration of nearly half the image by the roof of the car.

To correct these biases, the images were reprojected into a 90-degree field of view

(FOV) with an upward tilt of the camera. This process involved three steps:

1. Spherical Projection: Assuming the image represents a sphere, the correlation

of longitude and latitude from the panorama with positions on the image was

established.

2. Directional Reprojection: Adjustments were made for the specified FOV, cam-
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2.2 Data Preprocessing and Cleaning

era tilt, and desired direction to compute new viewing angles. A 90-degree

FOV was selected, allowing for the computation of four directions of 90 de-

grees each, summing up to a complete 360-degree image. The tilt was set at

12 degrees, which testing indicated was optimal to minimize roof visibility

while maintaining as full a view as possible

3. Mapping to Original Panorama: All angles were mapped back to the original

panorama to extract specific pixels and create a new perspective image.

Each directionally adjusted image was then resized to 716 by 1333 pixels, accom-

modating model requirements and reducing the storage size. An overview of this

process can be seen in Figure 2.3

Figure 2.3: Image preprocessing pipeline.
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Data and Methods

2.2.3 Data Integration

The data was supplied in two parts: the NO2 measurements and the street view

images. Given that both data sources were captured using separate devices, it had

to be integrated to create one dataset were each image could be linked to the clos-

est NO2 measurement. To facilitate this, the time displayed on a smartphone, held

by individuals in the images taken at the beginning of each day, was used as a

reference. However, this method presented challenges. On some days, the time

was either not displayed or was only shown at the minute level, which is not accu-

rate enough, examples of this can be seen in Appendix B. The offset vastly differs

between days, ranging from 7 to 94 seconds.

Ultimately, successful synchronization of 7 days worth of images with their corre-

sponding NO2 measurements was achieved, utilizing 51.85% (120,462) of the avail-

able images. The failure to match the remaining data points not only resulted in a

loss of potential data but also impacted the temporal resolution of the dataset.

2.2.4 Data Selection

Due to the vast number of images in the dataset and the computational and stor-

age limitations, it was necessary to make a selection of the data to be used. Two

sampling methods were utilized to compare the performance of both:

1. Time-based: For the time-based data selection, 221 images were sampled

from each hour to ensure a balanced representation across different times.

This approach yielded 40,000 transformed images and their corresponding

NO2 levels.

2. Revisit-based: The revisit-based data selection uses the amount of unique

days a certain grid was visited by the measurement car. All grid cells had to

be visited more than once on different days to be selected. This threshold was

chosen to be able to create a sizeable dataset, as can be seen in Table 2.1, the

average days a grid has been revisited is around three. If a higher threshold

would have been chosen too much data would be lost. This data selection

yielded a sample of about 8,500 transformed images and their corresponding

NO2 level.

Apart from being smaller in size than the time-based dataset, the revisit-based

dataset also has a much smaller study area. Since a substantial amount of cells
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2.3 Modelling Methods and Techniques

do not have a revisit frequency higher than one, these have to be discarded for

this selection, Appendix G shows the grids selected, note how most of the cells are

clustered near busy places in and near the city center.

Table 2.1: Summary of the frequency of NO2 measurement grid visits.

Statistic Value

5th percentile 1.0
25th percentile 1.0
Median 2.0
Mean 3.19
75th percentile 3.0
95th percentile 12.0

2.2.5 Train, Validation and Test Split

To ensure robust model development and evaluation, the dataset was divided into

training, validation, and test sets, comprising 60%, 20%, and 20% of the data, re-

spectively. To realize this split each 50 meter grid was randomly assigned to one

of the 3 sets using a weighted random function to approximately get the 60-20-20

split. This approach helps prevent images and NO2 measurements within the same

grid from being placed in different sets, thereby avoiding data leakage which could

potentially bias the models. A map detailing the final dataset split is provided in

appendix H.

2.3 Modelling Methods and Techniques

This study focuses on a multi-step modeling approach. While each individual step

is simpler, the combination of these steps can become complex. This section pro-

vides detailed explanations of the methodologies used for modeling.

2.3.1 Model Selection

The model selection process was conducted in two phases. Initially, suitable pre-

trained models were identified to generate the necessary features for further anal-

ysis and predictions. Then, an evaluation was carried out to determine which sec-

ondary models would be most compatible with these features.
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Data and Methods

2.3.1.1 Pre-trained Models

Before selecting the pre-trained models, two feature levels were established: object-

level features and semantic-level features. This decision was influenced by earlier

research in another field, which identified these levels as the most important [23].

Limiting to two levels also helped maintain low complexity. Object-level features

provide information about what and how many objects are visible in a given image.

Semantic-level features classify each pixel into a category, followed by computing

the relative amount of pixels belonging to each class. This results in a percentage

value for each category, indicating how much of the image is covered by that clas-

sified semantic.

For the object detection the pre-trained DEtection TRansformer (DETR) (End-to-

End Object Detection) model with ResNet-101 backbone [31] trained by Meta (Face-

book) was chosen. The DETR model was trained on the COCO dataset, an impor-

tant resource in the field of computer vision designed to provide a comprehen-

sive coverage of 91 object categories with diverse image representation [32]. By

training on the COCO dataset the DETR model is able to robustly predict object

boundaries and categories across a wide range of contexts, as demonstrated in its

foundational study [31]. Apart from its robust performance on the COCO dataset,

it is also easily accessible through Hugging Face [33], a collaborative platform for

machine learning models and datasets, which further reduces the technical com-

plexity. The DETR model uses a ResNet-101 as backbone, which provides a strong

feature extractor with deep layers, enhancing the model’s ability to handle a wide

range of images and object scales [34]. What makes this model unique is that it uses

end-to-end object detection, this streamlines the training and inference pipeline by

removing the need for manually tuned components. It also leverages transformer

layers, which are known for their effectiveness in handling relational reasoning

and parallel processing. All this makes the performance accuracy and run time

on par with the well-established and highly-optimized Faster RCNN baseline on

the COCO object detection dataset [31]. All the aforementioned reasons make the

DETR model a reliable model to use for object detection in this study.

For semantic segmentation, the Mask2Former model trained on the Cityscapes

dataset [35, 36] was selected. This model is fine-tuned on the Cityscapes dataset,

which contains diverse urban street scenes. The dataset consists of around 20,000

images across 30 classes from 50 different cities [37]. This dataset’s focus on ur-
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2.3 Modelling Methods and Techniques

ban street scenes, aligns perfectly with this study’s requirements. Apart from this,

the model incorporates an advanced Mask2Former architecture with a Swin Trans-

former backbone, enhancing its ability to handle complex visual scenes and achieve

state-of-the-art results in semantic segmentation [35, 36]. This model is also easily

available on Hugging Face [38]. Given that both models can be found in the same

place, again lowers the barrier to entry to applying such large and complex models.

2.3.1.2 Secondary Models

The secondary models were not as complex as the pre-trained models, but they

had to be trained from scratch. To choose an adequate model, there were three

main requirements that a secondary model needed to fulfill:

1. Simplicity: The secondary model should be straightforward, avoiding un-

necessary complexity since the pre-trained models have already handled the

intricate feature extraction.

2. Regression Capability: As the target variable (NO2 levels) is continuous, the

model must be able to perform regression tasks. This aligns with the method-

ological approaches of most relevant research, thus making it easier to com-

pare the results with similar research.

3. Inclusion of Linear and Non-linear Models: It is crucial to assess both linear

and non-linear models to determine which best represents the underlying

patterns in the data.

The simplest model that will be applied is linear regression. Linear regression mod-

els the relationship between a dependent variable and one or more independent

variables using a linear equation. This model’s transparency and ease of imple-

mentation make it a good choice for interpreting straightforward relationships in

the data, suitable for continuous outcomes like NO2 levels [39].

Support Vector Regression (SVR) uses the same principles as the Support Vector

Machine (SVM) for classification but applies them to regression tasks. It creates a

set of hyperplanes in a high dimensional space, which can be linear or non-linear,

depending on the chosen kernel [40]. SVR offers a compromise between model

simplicity and the ability to model non-linear relationship trough kernels making

it robust in handling non-linear data and predicting continuous outcomes. It was

chosen to determine whether a moderately complex model can better capture non-
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Data and Methods

linear relationships within the data.

The last secondary model that will be implemented is the XGBoost regressor. XG-

Boost is an implementation of gradient boosted decision trees designed for speed

and performance. It sequentially constructs trees, where each new tree attempts to

correct the errors made by the previous trees. With this it also incorporates regu-

larization to avoid overfitting [41]. The model may be more complex, but remains

efficient and scalable, making it manageable with larger and complex datasets. It

was included to evaluate whether a more advanced non-linear model can better

make out the patterns missed by simpler models.

2.3.2 Methodological Approach

This subsection gives an overview of how each selected model was methodologi-

cally utilized.

2.3.2.1 Pre-trained Models

The methodological approach for the pre-trained models focuses on their output,

which serves as input for the secondary models. After predicting both the object

detection and the semantic segmentation of the four angles of all the images, the

outputs were parsed in the following ways:

• Object detection: All detected objects across the angles were aggregated for

each base image and summed to compile a complete count per image.

• Segmentation: The percentages of pixels classified into specific categories

were calculated for each angle. These percentages were then summed and

averaged across the four angles to normalize the semantic data for each im-

age.

A detailed compilation of all extracted features is available in appendix I.

2.3.2.2 Secondary Models

For the secondary models, the methodological approach focuses on the training

of the models. Since the nature of each model is different, slightly different ap-

proaches were taken for each one.

• Linear Regression: The features used were chosen using backward elimina-
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2.3 Modelling Methods and Techniques

tion.

• SVR: The input data was normalized to have a mean of zero and an unit

variance. The model was configured with the RBF (Radial Basis Function)

kernel to find non-linear patterns. Hyperparameters were tuned using a grid

search with cross-validation.

• XGBoost: Hyperparameters were tuned using a grid search with cross-validation.

2.3.3 Validation and Testing

For evaluating model performance, two metrics were selected: the coefficient of de-

termination (R2) and the root mean squared error (RMSE). These metrics are widely

used in similar research [24, 25], making it easier to compare the results, they also

work well for regression problems like ours. Equation 2.1 shows how the R2 score

is calculated. The R2 is a statistical measure indicating the proportion of variance in

the dependent variable that can be predicted from the independent variables. Un-

derstanding this variance is crucial for assessing the impact of various predictors

on NO2 levels. Since the R2 only indicates the proportion of variance explained,

it does not provide information about the absolute size of the errors, this is where

the RMSE comes in. As shown in Equation 2.2, RMSE quantifies the square root

of the average squared differences between the predicted and actual values, pro-

viding a measure of how accurately the model predicts the target variable. This

metric is especially important when modeling NO2 or any air pollutant, as mini-

mizing large prediction errors is critical due to their potential health and regulatory

implications. Furthermore, since RMSE is expressed in the same units as the target

variable, it allows for straightforward interpretation of the magnitude of prediction

errors.

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − ȳ)2 (2.1)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)2 (2.2)
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Data and Methods

2.3.3.1 Baseline

As a benchmark for model evaluation, this study employs the mean of the target

variable (NO2 levels) from the training set. This simple baseline model serves as

a foundational performance metric. Utilizing this baseline allows for a clear com-

parison of model efficacy. Any advanced model implemented should demonstrate

a substantial performance improvement over this baseline to justify the increased

complexity.

2.4 Implementation and Execution

All of the programming has been done in Python 3.11.5 and all the code can be

found in a Git repository linked to in Appendix C. The pre-trained models em-

ployed in this study are accessible via the Hugging Face Pipeline API in Python

[42] to easily process a large volume of images with minimal coding. The three

secondary models used in this study were implemented using Python: Linear Re-

gression and SVR with the scikit-learn library [43], and XGBoost using the xgboost

library [44]. The function employed to realize the grid search, scaling and the cal-

culation of the metrics was all done with function and classes from the scikit-learn

library, all other data wrangling and computational needs were handled using Pan-

das [45] and Numpy [46].

For the linear regression model, the features used were chosen using backward

elimination. Initially, all variables were included in the model. For each iteration,

the variable with the least significant impact on the model’s performance, assessed

via the p-value, was removed. This process was repeated iteratively until only

statistically significant variables remained, optimizing the model by retaining only

the most impactful features.

The SVR model was configured with the RBF (Radial Basis Function) kernel to

find non-linear patterns. Key hyperparameters such as C (regularization param-

eter), gamma (kernel coefficient), and epsilon were optimized using a grid search

with cross-validation. The features in the dataset were standardized to enhance the

model’s sensitivity to kernel variations. Table 2.2 displays the unique values tested

in the grid search.

For the XGBoost model, no additional data preparations were required, as the

dataset contained no categorical variables that needed encoding. The hyperpa-
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2.5 Summary

Table 2.2: Unique Values for Each Hyperparameter in SVR Tuning

C Gamma Epsilon

0.1 0.001 0.0
1 0.01 0.1

10 0.1 0.2
100 1 0.5
1000 scale [47] 1.0

auto [47]

rameters were again tuned using grid search, focusing on parameters critical for

controlling the model’s complexity and fitting behavior. These parameters include

max depth (maximum depth of a tree), min child weight (minimum sum of in-

stance weight needed in a child node), gamma (minimum loss reduction required

to make a further partition on a leaf node), learning rate (step size shrinkage used

to prevent overfitting), and n estimators (number of trees in the ensemble). Table

2.3 provides an overview of the unique values explored in the grid search.

Table 2.3: Unique Values for Each Hyperparameter in XGBoost Tuning

Max Depth Min Child Weight Gamma Learning Rate N Estimators

3 1 0 0.01 100
5 3 0.1 0.1 300
7 5 0.2 500

2.5 Summary

To summarize, this research utilizes data from mobile NO2 sensors along with

street view images. Using this data, it was proposed to employ two pre-trained

models: a DETR (End-to-End Object Detection) model with a ResNet-101 back-

bone [31] and a Mask2Former model trained on Cityscapes semantic segmentation

[35, 36]. These models extract high-level features from street view images, such as

objects and semantic content. These features will then serve as input for a simpler

secondary model, in this case, a linear regression [39], Support Vector Regression

(SVR) [40] and XGBoost regressor [41], to predict the NO2 values per grid cell. This

method and similar ones have shown promising results in earlier research [20, 23,

25], while lowering the overall complexity of the models that need to be trained.

Model performance are evaluated using R2 and RMSE metrics.
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3. Results

This chapter focusses on all the findings done after designing the methodology.

This includes data related insights, issues, model performance and an analysis of

this performance. A more detailed interpretation of the results will be given in the

Discussion chapter (4)

3.1 Data Summary

Since this research relies on two datasets: the original dataset, which consists of

NO2 measurements and street view images and a dataset build from extracted fea-

tures from these street view images using pre-trained models, both of these datasets

will be described.

3.1.1 Original Dataset

The distribution of the original NO2 measurements was already shown in 2.2. To

look at this in more detail and to compare it to the distribution of the new sam-

ple, Table 3.1 highlights the summary statistics of both the original NO2 measure-

ments and those from the two data selection methods. Note how the time-based

sample and the full data share very similar summary statistics. In contrast, the

revisit-based sample does not. This indicates that the revisit sample might not be

as representative of the full dataset as the time-based sample is.

Table 3.1: Summary of NO2 values for different sampling methods: time-based sam-
ple, revisit-based sample, and full data from Augsburg mobile measurements.

Time-based sam-
ple

Revisit-based
sample

Augsburg mobile
(full data)

5th percentile 2.1 4.8 1.6
25th percentile 4.1 7.6 3.6
Median 7.0 11.8 6.1
Mean 11.0 14.7 10.6
75th percentile 12.2 17.9 11.4
95th percentile 34.6 33.9 36.4

Further analysis showed that, almost all elevated NO2 measurements seem out of
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3.2 Model Performance

place. Such as unusually high NO2 values in tranquil neighborhoods or abrupt

spikes following periods of low measurements. In appendix E specific examples

can be found. Overall, the spatial pattern of the dataset appears irregular and out

of place compared to established trends. It was also concluded that these anomalies

were mostly removed when examining the revisit-based sample. This might indi-

cate issues with measurements at locations that have not been revisited multiple

times, potentially biasing the spatial pattern.

3.1.2 Feature Extraction Dataset

As was discussed in the Data and Methods chapter (2), features extracted using

pre-trained models will be used to train, validate and test the secondary models.

The combined number of extracted features is 21. From those 21 features, eight

come from the object detection model and 13 come from the semantic segmentation

model. The extracted features did not exhibit any note worthy anomalies and were

thus transformed and combined into one dataset. A comprehensive overview of all

the features extracted and their frequency can be seen in Appendix I.

3.1.3 Combined Dataset

To finalize the dataset the extracted feature set had to be merged with the correct

NO2 measurement. This was done by merging both datasets based on the image

name. Each feature was extracted from an image and thus connected to that image

and as described in the Data Integration (2.2.3), every NO2 measurement was also

connected to an image. This way the features were correctly matched up with their

corresponding target variable.

3.2 Model Performance

To compare the performance of all the models as fair as possible over both the data

selection methods, all the secondary models have been tuned and trained sepa-

rately on each set. All six models (three models for each of the two sets), have been

benchmarked against the baseline that corresponds to their dataset over the same

two metrics.
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3.2.1 Model Descriptions

Equation 3.1 and 3.2 show the equations for the linear regression models fitted on

the time and revisit-based data samples respectively, after the features were se-

lected using backward elimination. This shows what variables impacted the linear

regression the most. It is note worthy that the ‘SuitcaseObject‘ in the time-based

equation (3.1) shows a relatively large value compared to the other variables, this

presumably has to do with the model not being able to find a clear pattern and thus

being more likely to assign larger values to variables that may not be considered

important. It is good to mention that Augsburg is not littered with suitcases, but

that the detection model tends to classify large garbage bins as suitcases.

y = 6.049 − 0.066 × CarObject + 0.25 × TrafficLightObject

+ 1.258 × BusObject − 6.727 × SuitcaseObject

+ 0.338 × TrainSegment + 0.031 × VegetationSegment

+ 0.101 × CarSegment + 0.042 × BuildingsSegment

+ 0.498 × RoadSegment + ϵ (3.1)

y = 34.378 − 0.061 × CarObject + 0.187 × TrafficLightObject

− 2.026 × MotorcycleObject − 0.170 × VegetationSegment

− 0.610 × PersonSegment − 0.214 × SkySegment

− 0.779 × SidewalkSegment − 0.122 × TerrainSegment

− 0.176 × VehicleSegment − 0.232 × BuildingsSegment + ϵ (3.2)

Table 3.2 and 3.3 show the final tuned settings for the SVR and XGBoost model

respectively. These settings have been used to build the final models.
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3.2 Model Performance

Table 3.2: Optimal Settings for SVR for Different Data Samples

Parameter Time sample Revisit sample

C 10 1000
Gamma 1 0.5
Epsilon 1 0.1

Table 3.3: Optimal Settings for XGBoost for Different Data Samples

Parameter Time sample Revisit sample

Max Depth 5 3
Min Child Weight 5 1
Gamma 0 0
Learning Rate 0.01 0.01
N Estimators 100 100

3.2.2 Performance Metrics

When all model were trained, all metrics could be computed. Table 3.4 displays the

R2 and RMSE scores of all the models in both of the data samples.

Table 3.4: Comparison of Model Performance on Validation and Test Sets for Different
Data Samples

Model Time sample Revisit sample

Validation Set Test Set Validation Set Test Set

R2

Score
RMSE R2

Score
RMSE R2

Score
RMSE R2

Score
RMSE

Baseline 0.00 11.89 0.00 12.98 0.00 9.65 -0.06 8.65
Linear Regression 0.05 11.96 0.02 12.33 0.06 9.35 0.05 8.20
SVR 0.02 12.12 0.00 12.42 0.06 9.36 0.14 7.81
XGBoost 0.03 12.05 0.02 12.30 0.08 9.23 0.11 7.96

3.2.3 Analysis of the Performance

Examining the results achieved by the models in Table 3.4, there are three main

aspects that stand out:

1. Revisit Sample Performance Improvement Over Time Sample: All the mod-

els that were trained and tested on the revisit dataset outperformed the time

sample dataset. This can be seen by the fact that the R2 scores are higher and

the RMSE values are closer to zero, indicating that the revisit sample might

make it easier for models to pick up on certain patterns.
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2. Revist Sample Performance improvement Over The Baseline: All the mod-

els, especially those trained on the revisit sample, outperformed the baseline,

indicating that they predict better than merely using the average value from

the training set. However, the marginal improvements suggest that while the

models learn more than averaging, they do not capture the underlying data

patterns.

3. General Underperformance: Despite outperforming the baseline, all models

exhibited generally poor performance. This can be seen by the R2 scores being

very close to zero and the RMSE values being not far from the median of the

respective samples, as seen in Table 3.1.

The overall poor performance of all the models could indicate underfitting, mean-

ing that the complexity and patterns in the data were not able to be captured by the

models.

3.3 Issues and Limitations

There is some concern about issues in the data that could be limiting the full poten-

tial of the models. Those concerns were analyzed in this section.

3.3.1 Data Quality Issues

During this research four main issues have been noted with the quality of the data

provided:

1. Overall Low Values: The summary statistics in Table 3.1 and the distribution

in Figure 2.2 confirm that the overall NO2 levels are fairly low. An increase

in these levels is observed in the revisit sample, suggesting that this might be

part of the issue.

2. Lack of spatial pattern: The zoomed in map of the study area as seen in Figure

2.1 and the full map of the study area found in Appendix A show that there

is no clear spatial pattern at play. Most of the grids are the same color and

there are not a lot of clear hotspots and especially not in places where these

would be expected, traffic dense areas for example. This issue also becomes

less pronounced with the revisit sample.

3. Spatial Outliers: During analysis of the spatial pattern, some spatial outliers
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3.4 Summary

were also found. These are grid cells that exhibit high NO2 levels but are

located in places where the opposite is expected. Specific examples can be

found in Appendix E. This also is partly aided by the revisit sample, this

can be confirmed by looking at the summary statistics shown in Table 3.1,

here the revisit sample has higher values for all statistics, expect for the 95th

percentile. This lower value for this statistic indicates that some higher values

have been removed from this set.

4. Sparse Revisit Time: The amount of times a certain grid cell has been revisited

on different days is very sparse. Most grids have only been visited two or

three times, as can be seen in Table 2.1. As discussed in the other points the

low frequency of revisits on most grids seems to have role in the data related

issues, this can be seen in that using a sample based on the amount of times a

grid has been visited aids the other data issues.

3.3.2 Impact on Performance

It is difficult to determine the exact impact of each of the mentioned issues on

the performance of the models. However, the improved performance of models

trained on the revisit sample suggests that these issues affect the models in some

way, as this data sample eliminated part of these issues. Other than that, all the per-

formance metrics of the models indicate underfitting which shows that the models

fail to capture the complexity and patterns of the data.

3.4 Summary

As shown in Table 3.4, the models are very much underperforming and thus lim-

iting the research is general. The issues with the quality of the data seem to play

a major part in the underperformance of the models. Further examination of these

issues will be conducted in the Discussion chapter (4).
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4. Discussion

This study aimed to construct a pipeline that was able to efficiently predict NO2

values by utilizing street view imagery. The proposed pipeline consisted of pre-

trained state-of-the-art models to extract features and simpler secondary models to

predict the NO2 levels, this way the overall complexity remained low while still

utilizing advanced models. The final pipeline and model created would be used to

answer the following research question: "How can features extracted from street view

images using state-of-the-art deep learning models predict air quality in urban environ-

ments?".

In the Results chapter (3), it was observed that the models achieved poor results

that did not align with outcomes reported by similar research using comparable

methods and data. Alongside these poor results, multiple data quality issues were

identified that potentially limited the models. In this chapter, further exploration

will be conducted to understand why this might have happened and how this

study differs from others that achieved better results.

4.1 Interpretation of Results

The models achieved poor performance over all the metrics and for both data sam-

ples, as is evident in Table 3.4. Apart from showcasing this poor performance of

the models, Table 3.4 shows a more important finding in the difference between the

metrics for the time and revisit samples. The revisit sample outperforms the time-

based sample in every model on every metric, the reason this is interesting is that

the revisit sample is, according to summary statistics (Table 4.2), less representative

of the entire dataset.

There are nuances to be made about the revisit time achieving better model per-

formance, such as that this set has a smaller study area and thus is easier to learn

since the grid cells are closer together than those in the time sample and the overall

RMSE being lower. However, when objectively examining the issues with the data

and their impact on model performance, as discussed in the Issues and Limitations
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4.2 Implications of Findings

section (3.3), it becomes evident that all the observed issues appear to be reduced

or disappear entirely in the revisit sample. The combination of better model per-

formance and the overall lesser effect of issues on the revisit set suggests that the

frequency of grid revisits is a determining factor for the stability and predictability

of the data.

4.1.1 Comparison with Other Studies

When comparing the results from this study to the results of other studies, it be-

comes more evident that the performance of the models used in this study is not

expected. Similar studies that employed comparable methods reported R2 scores

as high as 0.95 and RMSE values as low as 2.71, depending on the city [24, 25]. This

big difference in model performance raises concerns about the suitability of the fea-

ture set and the model’s capacity to generalize from the training data. Apart from

the data being gathered in a different city and the modeling methodology being

slightly different, there are not many striking differences in the way these studies

were conducted.

This stark difference in expected performance is evident in all the studies focus-

ing on NO2 or other pollutant predictions, which consistently achieve better met-

ric scores compared to this study. Given that good results are consistently being

achieved with studies from all around the world, utilizing vastly differing tech-

niques and data, underlines the unexpectedness of the achieved performance.

4.2 Implications of Findings

The findings suggest that there is little to no predictability that can be extracted

from street view images using this methodology. However, since the results achieved

in this study were not in line with expected outcomes and the poor results seem to

be correlated with the data sample used, a definitive conclusion cannot be drawn

at this time. The difference in performance underscores the importance of data

quality and illustrates how various segments of the data can vary significantly.

Because this study had a more practical focus, the main contribution to the field is

the pipeline and methodology created for future research to utilize and refine.
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Figure 4.1: Comparative histogram of NO2 concentration distributions from mobile
measurements and fixed stations in Augsburg.

4.3 Data and Model Limitations

As was noted in the Results chapter (3) there are some data quality issues that

influence the model performance. These subsections will provide more detail for

each of the points mentioned and explain why they are considered issues.

4.3.1 Values

At first glance the values in the full NO2 dataset seem to be lower than would be ex-

pected. This suspicion is confirmed when comparing the NO2 levels from the mo-

bile measuring campaign with the averaged levels of NO2 from all fixed measure-

ment stations in Augsburg [48] over the same time period. Figure 4.1 shows a his-

togram of these values. The histograms, normalized to show distribution shapes,

highlight the differences in distribution between the two measurement sources in

Augsburg. In this histogram, it is evident that the mobile measurements are sub-

stantially lower than the fixed measurements.

This difference is further highlighted when comparing the levels from the mobile

campaign in Augsburg with mobile measurements from Amsterdam and Copen-

hagen, using the same measurement tools [5]. These measurements were not taken

in the same period, but do give an idea of the difference in values. Table 4.1 shows

the summary values from both of the measurement sources in Augsburg and the

mobile campaigns from Amsterdam and Copenhagen. The fixed station values in
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4.3 Data and Model Limitations

Augsburg fall between the mobile measurements of Amsterdam and Copenhagen,

suggesting an ordinary distribution of the data. However, the Augsburg mobile

measurements show significantly lower values across all summary statistics com-

pared to the other values.

Table 4.1: NO2 levels in Augsburg (mobile and fixed), Amsterdam and Copenhagen

Augsburg
mobile

Augsburg
fixed

Amsterdam
[5]

Copenhagen
[5]

5th percentile 1.6 8.5 14.0 7.0
25th percentile 3.6 12.5 19.0 10.0
Median 6.1 14.9 24.0 13.0
Mean 10.6 15.8 28.0 17.0
75th percentile 11.4 18.4 33.0 20.0
95th percentile 36.4 25.3 55.0 39.0

Research indicated that mobile and stationary measurements can differ by as much

as 48%, depending on the proximity [49]. These findings align with this, as the

mean mobile measurement (10.6) was approximately 48% lower than that of fixed

stations (15.8). Contrary to expectations, the stationary measurements were higher

than the mobile measurements, which is the opposite of typical findings. This atyp-

ical difference and the overall lower values could be part of the reason why the

models did not perform as expected.

4.3.2 Spatial pattern

Compared to patterns observed in previous studies [5, 8, 10, 11, 17, 18, 20, 22, 24,

29], which consistently reveal distinct spatial correlations around heavy traffic ar-

eas, industrial zones, and residential areas, the data in this study presents a less

coherent pattern [10, 11, 13, 50]. The NO2 measurements in this study are pre-

dominantly lower and do not align with the expected patterns identified in other

research.

However, two roads, detailed in appendix D do display a pattern of elevated NO2

levels consistent with these studies [5, 8, 20, 29]. Apart from these, almost all el-

evated measurements seem out of place. Such as unusually high NO2 values in

tranquil neighborhoods or abrupt spikes following periods of low measurements.

In appendix E specific examples can be found. Overall, the spatial pattern of the

dataset seems irregular and out of place compared to established trends.

The lack of a spatial pattern and the data not exhibiting known trends in NO2 mea-
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surements can be concluded to be a significant reason why the models were unable

to perform better. Machine learning models are designed to extract patterns from

data, when these patterns are absent or irregular, models tend to struggle.

4.3.3 Revisits

In the Results chapter (3) the stark difference between the data sample based on

when the photos were taken and how often a grid was revisited on different days,

already highlighted that the revisit frequency is an important aspect of the data.

The increased performance from the revisit sample in combination with most of

the data issues dissipating is an indication that this should be further investigated.

The revisit dataset showed fewer anomalies, this is supported by the updated sum-

mary statistics. Table 4.2 illustrates that the refined sample more closely aligns with

the expected values from fixed stations, with improvements across most statistical

measures except for the 95th percentile, which indicates a reduction in high out-

liers.

Table 4.2: Summary of NO2 values from different data sets in Augsburg: revisit sam-
ple and full data from mobile measurements, and data from fixed measurement sta-
tions.

Augsburg mobile
(revist sample)

Augsburg mobile
(full data)

Augsburg fixed

5th percentile 4.8 1.6 8.5
25th percentile 7.6 3.6 12.5
Median 11.8 6.1 14.9
Mean 14.7 10.6 15.8
75th percentile 17.9 11.4 18.4
95th percentile 33.9 36.4 25.3

Figure 4.2 displays a comparative histogram that visually confirms this shift to-

wards the expected distribution, bringing the sampled data closer in line with fixed

station measurements.

As illustrated in Table 2.1 the average number of unique days a grid cell was re-

visited is approximately three, the majority of these, relatively high, average revisit

locations centered in Augsburg, as depicted in the spatial plot of revisit days in

Appendix F. Previous studies have indicated that for a long term air quality model,

approximately nine drive days per grid are necessary to achieve stable NO2 mea-

surement [5]. Although the focus was on a short-term model, the frequency of grid
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Figure 4.2: Comparative histogram of NO2 concentration distributions from full mo-
bile measurements, samples mobile measurements and fixed stations in Augsburg.

visits seems to have a high impact on the data patterns observed.

Observing that a sample with a minimum of just two revisit days already mitigates

data quality issues and increases model performance, it can be concluded that a

stable spatial pattern is essential for building an adequate model. In this case, the

frequency at which a grid has been revisited is key to achieving this stability.

4.3.4 Location

The location of the measurement campaign might also significantly influence the

data patterns observed. Augsburg, with a population of approximately 300,000

[51], is considerably smaller than cities like Amsterdam and Copenhagen, which

have populations of about 900,000 [52] and 650,000 [53] respectively. Studies con-

ducted in these larger cities have consistently demonstrated expected NO2 patterns

and values [5], utilizing the same measurement tools as in Augsburg.

However, a contrasting example can be found in a mobile measuring campaign

conducted in 2017 in parts of Oakland, CA [29], which also showed very clear

patterns, despite the overall city population being roughly similar to Augsburg at

about 420,000 [54]. It is important to note that the specific areas studied in Oakland

were not representative of the entire city, potentially putting the population of the

study area closer to that of Augsburg. This suggests that mere city size or popula-

tion numbers may not fully explain the differences observed in data patterns.
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The absence of distinct patterns and the anomalously low values in the Augsburg

data likely result from a complex interplay of factors including location, population

density, land use, and the distribution of highways, residential areas, and green

spaces. These elements collectively influence urban air quality patterns, indicat-

ing that a different approach is necessary to understand and predict NO2 levels

effectively. Understanding the dynamics at play is crucial to adapt air quality mon-

itoring strategies to the specific characteristics of each urban area.

4.3.5 Ultrafine Particles Comparison

To ensure the validity of the results and to rule out the possibility of a faulty

measurement device, parallel experiments were conducted with ultrafine particles

(UFP) using a different device as part of the same mobile measurement campaign.

The models followed nearly the same methodology, the only difference being that

UFP was only trained, validated, and tested on the revisit sample due to time con-

straints. NO2 and UFP levels are often correlated [5], and in this case, they exhibited

a Pearson correlation coefficient of approximately 0.38. According to the findings

detailed in Appendix J, the predictive performance for UFP was marginally bet-

ter than for NO2, but still suboptimal. This similarity in performance patterns be-

tween UFP and NO2 suggests that the anomalies observed in the study are likely

unrelated to equipment malfunction.

4.3.6 Summary

To summarize, the models utilized seem to be mostly limited by quality issues

related to the data. The section above explored where these issues might come from

and why they can influence the performance of the models. Other possibilities were

also discussed, such as the location and characteristics of the study area compared

to other studies, and the possibility of the NO2 sensor malfunctioning. Taking all

of the mentioned points into account, it can be concluded that data quality issues

are the biggest obstacle for the models, and the root cause of this issue is likely the

frequency at which a grid has been revisited.

4.4 Recommendations

To combat the data and model related limitation four recommendations can be

made for future research:
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4.5 Conclusion

1. Plan Out Driving Routes: Since the drive days are important, planning ahead

to determine how often each location will be visited is essential for future mo-

bile measurement campaign efforts. It is recommended to have a minimum

of nine drive days per segment to be included in the analysis.

2. Improved Data Integration: This study faced challenges with integrating NO2

measurements and images, resulting in the removal of about half the images.

Future research could improve alignment by setting the correct time on both

the measurement and image-taking devices or by consistently using a times-

tamp with a minimum precision of seconds.

3. Temporal Correction: Future research could benefit from implementing tem-

poral corrections to the NO2 measurements. Temporal adjustments aim to

minimize the influence of background concentrations at specific times, thereby

isolating local NO2 levels more effectively. This adjustment involves using

data from a fixed monitoring station to calibrate the mobile measurements,

effectively normalizing for time specific variations. The methodology for

such corrections has been extensively explained in previous studies [5, 55, 56].

Applying these corrections could enhance the accuracy of mobile air quality

monitoring, providing a clearer picture of local pollution dynamics.

4. Apply Pipeline on an Existing Dataset: To verify that the results obtained

from the experiments in this study are not due to errors in the experimental

setup, it would be useful to conduct the same set of experiments on a dataset

from a different city. Ideally, this dataset should come from a study that has

successfully utilized a similar methodological approach. If the models also

fail to deliver accurate predictions with this new dataset, it would suggest

that either the methodological approach may not be optimal for predicting

NO2 levels or that there may be fundamental flaws in the experimental setup

itself.

4.5 Conclusion

Reflecting on the original research question as stated in the Introduction (1), "How

can features extracted from street view images using state-of-the-art deep learning models

predict air quality in urban environments?", it becomes evident that the study did not

fully achieve its intended objectives. Despite extensive experimentation, none of
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the models tested managed to deliver considerable scores on the chosen metrics.

The primary challenges, as extensively discussed in the Data and Methods (2) and

Discussion chapters (4), come from data related issues that can be traced back to

the revisit frequency of a grid cell.

Nevertheless, this research successfully developed a pipeline capable of formatting

street view images, extracting features using state-of-the-art models, and utilizing

these features as inputs for secondary models. This pipeline significantly lowers

the technical barriers typically associated with developing and training complex

deep neural networks. This research also underlines the importance of data quality,

especially in spatial patterns, for models to perform as expected.

In conclusion, while this study did not succeed in accurately predicting air quality

in urban environments as initially hoped, it established a foundational pipeline that

facilitates further exploration and refinement. Future research, as outlined in the

Discussion chapter (4), can expand upon this groundwork to enhance the pipeline’s

effectiveness and potentially achieve more accurate predictions of urban air quality.

32



4.5 Conclusion

Appendices
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A. Full spatial Overview of NO2

Figure A.1: Map of Augsburg and direct surroundings showing the mean NO2 in 50
meter grid cells.
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B. Data Integration examples

Figure B.1: Example of a good image where time is shown with second precision

Figure B.2: Example of a bad image where time is shown with minute precision

35



C. Code

https://mbees.med.uni-augsburg.de/gitlab/mbees/airview_no2_augsburg
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D. Good Examples of Spatial NO2 Distribution

Figure D.1: Example of expected spatial pattern, highlighted by the green area.
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E. Examples of Anomalies in the NO2 Distribution

Figure E.1: Example of anomaly pattern.
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Figure E.2: Example of anomaly pattern.
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Examples of Anomalies in the NO2 Distribution

Figure E.3: Example of anomaly pattern.
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F. Full Spatial Revisit Count Distribution

Figure F.1: Overview of revisit frequency.
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G. Final Data Sample Spatial Overview of NO2

Figure G.1: Final sample NO2 overview.
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H. Final Data Sample Split

Figure H.1: Final data split.
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I. Pre-trained Features

Table I.1: List of features and their frequencies used in the object detection model.

Feature Frequency

Car 58669
Truck 9988
Person 5595
Traffic Light 9527
Bus 898
Bicycle 995
Stop Sign 935
Motorcycle 271
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Figure I.1: Detected object frequency.

44



Table I.2: List of features and their frequencies used in the semantic segmentation
model.

Feature Frequency

Sky 263862.5
Vegetation 251589.2
Buildings 111503.1
Road 65379.6
Vehicle 43455.9
Terrain 25802.9
Sidewalk 17400.2
Pole 8261.1
Person 1400.2
Traffic Sign 1368.1
Bicycle 567.4
Traffic Light 389.2
Rider 205.0
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Figure I.2: Detected semantic frequency.
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J. UFP Results

Table J.1: Comparison of Model Performance on Validation and Test Sets

Model Validation Set Test Set
R2 Score RMSE R2 Score RMSE

Baseline -1.10 13354.79 -0.02 12496.97
Linear Regression 0.08 12826.20 0.11 11681.01
SVR 0.03 13155.77 0.10 11762.88
XGBoost 0.16 12223.63 0.25 10700.29
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