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Abstract

This thesis navigates the complex environment of Natural Language Processing (NLP),
focusing on hate speech detection—a task that notably faces various difficulties, such as
annotator disagreement [2]. This variance across annotators throughout the labelling pro-
cess is a typical stumbling block in NLP. Traditionally, annotator discordance is addressed
by rejecting conflicting annotations, aggregating a "ground" truth, or utilising softmax
for label assignment [46]. On the other hand, a study by Davani and colleagues (2022)
[9] argued for the use of multi-annotator models that treat each annotator’s judgement as
a different subtask while sharing a common representation. An example of this model
is presented by Davani and colleagues (2022) [9], their research in addition proposed a
technique for estimating prediction uncertainty, which is critical in circumstances requiring
careful prediction withholding. Overall, their study is a crucial reference work for the
present project, which will draw from it while simultaneously attempting to addresses
its weak point, which is resource consumption. Indeed, training on each annotator is not
always a viable choice, depending on the volume of the data.

The goal of this research project is to develop a cluster-centric technique based on anno-
tators’ metadata or response patterns. This strategy entails training separate models for
each identified cluster. The process will involve a careful assessment of the performance
of models trained for individual annotators against those optimised for annotator clusters.
Evaluation measures, such as cross-entropy, will be used to determine any significant
discrepancies in the efficacy of hate speech identification.

Thus, the primary question driving this work is to investigate how the suggested multi-
model approach, which takes into account clustered individual annotator dynamics, per-
forms in comparison to previous approaches in hate speech identification. This study aims
to enhance NLP approaches to better address real-world problems. In addition, it will
examine the time necessary to train each model, offering insights into the relationship
between training length and results gained. Overall, the proposed project will contribute to
the optimisation of hate speech detection models by providing a comprehensive knowledge
of the relationship between annotator dynamics and model performance.
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1. Introduction

1.1 Problem statement

The task of hate speech detection within the field of Natural Language Processing (NLP)
is notably complex, especially due to variance in annotator judgments (Leonardelli et al.,
2021 [23]; Waseem, 2016 [48]). This variance translates into significant difficulties for
achieving consensus on what constitutes hate speech and what does not. Thus, the goal
of training of robust detection models needs to inevitably face issues of variance between
annotators. Traditional and widespread practices to deal with annotator disagreement
involve discarding conflicting annotations, or consolidating a consensus "ground truth" –
for an overview of the intrinsic limitations of these approaches, see Uma and colleagues
(2021) [46]. Indeed, one of the most problematic limitations of these methods is that they
tend to overlook the nuanced perspectives that different individual annotators offer. On the
other hand, recent research endeavors, such as proposed by Davani and colleagues(2022)
[9], advocate for multi-annotator models that are able to take into account the diversity of
annotators’ judgements by treating each annotator’s judgment as a distinct subtask within
a unified model framework. This novel approach has shown efficacy, particularly in binary
classification scenarios, but it does have significant limitations as well. Crucially, the
task of training individualized models for each annotator entails a substantial resource
consumption. Building on these premises, this research is committed to exploring a
cluster-centric approach that would be able to both give justice to the variance in annotator
judgement and simultaneously minimize the computational and resource overload that
is usually associated with multi-annotator models. The proposed solution is to cluster
annotators based on metadata or response patterns, seeking to group annotators with
similar socio-economic backgrounds or similar labelling behaviors, and thereby reaching
the goal of reducing the number of models required, without significantly compromising
the nuanced viewpoints of different annotators. This approach not only should alleviate
the resource- intensive nature of multi-annotator models but it also embodies a viable
solution for the annotator variance dilemma that is ever-present in hate speech detection
tasks. The critical examination of this clustering strategy’s impact on model performance
and resource efficiency is essentially the core of the problem that this research aims to
address.
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1.2 Research question

The research question of this project is based on the problem outlined above, and it can be
summarized as follows:

RQ: Is clustering of annotators a good approach to reduce resource consumption and

what is its effect on the evaluation score metrics on a multi-annotator model?

To answer this research question, it is necessary to compare the effectiveness of different
clustering methodologies, focusing particularly on whether clustering based on annotator
metadata (such as ethnicity, age, or political ideology) yields superior model performance
and resource efficiency compared to clustering derived from machine learning algorithms
that analyze response patterns. This investigation unfolds in two inter-related steps. First, it
seeks to measure the extent to which clustering annotators based on inherent demographic
characteristics or observed labelling behaviors can reduce the computational complexity
necessary to train separate models for each annotator. Second, it aims to evaluate the
impact of these clustering strategies on the accuracy and reliability of hate speech detection,
thereby assessing the trade-off between model performance and resource consumption.
Overall, it is expected that clustering annotators based on demographic aspects should
reduce the computational resources needed to train the model, as compared to the ensemble
model reported in Davani and colleagues’ (2022) article. For what concerns the evaluation
score metrics, one might argue that the clustering approach tested in this thesis could
also yield a better performace –as measured by the cross-entropy score (Hui & Belkin,
2020) [20] – due to the fact that it is less subject to the idiosyncratic patterns of individual
annotators.

The exploration of these clustering methodologies is pivotal for the advancement of NLP,
particularly for what concerns applications that require a nuanced understanding and
interpretation of textual data, such as in the case of hate speech detection. By assessing
the efficacy of different clustering approaches systematically, this research should produce
valuable insights for the optimization of hate speech detection models, thus enhancing
their applicability and effectiveness.
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2. Literature Review

2.1 Hate Speech Detection

Hate speech refers to the use of linguistic expressions that conveys hate or violence based
on race, sex, religion or other sensitive characteristics (Warner & Hirschberg, 2012) [47].
Since the advent of the digital era, with the widespread use of the Internet, and particularly
social media, hate speech has always been a strong (and unfortunate) component of the
digital world. Nowadays, hate speech detection is a critical and challenging task within the
field of Natural Language Processing (Poletto et al. [32], 2021; MacAvaney et al., 2019
[25]), and it is gaining significant attention due to the increasing prevalence of hate speech
on digital media and its harmful societal impacts. The purpose of hate speech detection
is to identify the presence of text that is offensive, promotes violence, or expresses hate
towards individuals or groups based on characteristics such as race, religion, gender, or
sexual orientation. The following literature review synthesizes key findings, methodologies,
and challenges within this methodology, highlighting the evolution of approaches and the
current research directions.

2.1.1 Early Approaches and Challenges

The first attempts to develop automated strategies for the detection of hate speech were
proposed in the early 2010s, soon after the launch of social media such as Facebook
and Twitter. These initial efforts in hate speech detection primarily relied on keyword-
based methods and manually curated blacklists in order to flag potentially harmful content
(Warner and Hirschberg, 2012) [47]. Although these approaches were quite straightforward,
they evidently suffered from high false positive rates. Crucially, they also lacked the
ability to understand context or the subtleties of language, such as sarcasm or idiomatic
expressions. The reliance on explicit keywords also made these systems easy to evade
through simple lexical substitutions.

2.1.2 Machine Learning and Feature Engineering

The advent of machine learning (ML) algorithms brought more sophisticated techniques,
which were adopted for the study of hate speech detection. ML algorithms such as Support
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Vector Machines (SVMs), Naive Bayes, and Random Forest classifiers were among the
first ones to be employed. Their characteristic is utilizing a range of linguistic features
such as n-grams, syntactic patterns, and sentiment analysis (Nobata et al., 2016) [28].
These methods marked a significant improvement over keyword-based approaches (Abro
et al., 2020) [1]. However, it is important to note that they were also heavily dependent on
the quality and representativeness of the feature sets, requiring extensive manual effort in
feature engineering.

2.1.3 Deep Learning and Neural Networks

The introduction of deep learning models, particularly Convolutional Neural Networks
(CNNs) and Recurrent Neural Networks (RNNs), represented a paradigm shift in hate
speech detection (Zhang et al., 2018) [50]. These models are capable of learning hierar-
chical representations of textual data, thus demonstrating superior performance for what
concerns capturing semantic and contextual nuances (Pitsilis et al., 2018) [30]. Further-
more, the use of word embeddings, such as Word2Vec and GloVe, additionally enhanced
model capabilities by providing dense and meaningful representations of words based on
their usage in large corpora.

2.1.4 Transfer Learning and Pre-trained Language Models

The newest development in the field of hate speech detection came from the adoption
of transfer learning approaches. Pre-trained language models like BERT (Bidirectional
Encoder Representations from Transformers), GPT (Generative Pre-trained Transformers),
and their variants setting new benchmarks in hate speech detection (Devlin et al., 2019
[11], Radford et al. [33], 2018 and Caselli et al., 2020 [8]). These models, which are
pre-trained on vast text corpora, are able to capture a deep understanding of language,
which can be fine-tuned on smaller hate speech datasets to achieve remarkable accuracy.
The ability of these models to understand context, ambiguity, and even implicit expressions
of hate speech has significantly advanced the field.
Drawing from these recent advancements in the field, the present project will take inspira-
tion from the work of (Davani et al. 2022) [9]. Indeed, in their study, the main problem
affecting the algorithm was the extended period of training for an increased number of
annotators. The model uses a pre-trained layer based on BERT and then trains a single
classifier for each individual annotator. The mentioned method showed promising results,
although it must be noted that only accuracy rate and F score were provided for the ex-
periment. This study will seek to address the gaps in Davani and colleagues’ 2022 study,
namely the exponential training time in accordance with the number of annotators and
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more sophisticated performance scores.

2.2 Disagreement

In the realm of annotated data for machine learning, various pieces of the literature show
that a single ground truth is often unrealistic (Aroyo et al., 2014) [3] (Geva et. al 2019)
[15], but the disagreement among annotators is often regarded as mere noise that should be
filtered out to achieve a clean dataset. However, this perspective overlooks the rich insights
that such disagreements can offer, particularly in complex tasks like hate speech detection,
where subjective interpretation plays a crucial role [22]. Annotator disagreements can
reflect genuine ambiguities in the content, diverse perspectives, and the complex nature of
language, rather than simple human errors or inconsistencies. The consensus on the most
recent literature is to take disagreement and ambiguity into account (Massimo Poesio &
Ron Artstein, 2005) [31].

One common method used to resolve annotator disagreement is majority voting, which
is based on selecting the label with the most annotator support. The problem with this
method is that it may not always yield the most accurate or nuanced understanding of the
data. The most critical risk is to oversimplify complex issues and even silencing minority
perspectives that may actually be crucial for understanding subtle or context-dependent
instances of hate speech. Treating disagreement as an asset rather than an annoying
obstacle encourages a deeper exploration of the data and leads to the development of
more sophisticated models that can handle the inherent complexity of human language
and judgment. As Aroyo and Welty state, “truth is a lie” and disagreement is inevitable
as much as it is valuable and representative, since “measuring annotations on the same
objects of interpretation [. . . ] across a crowd will provide a useful representation of their
subjectivity and the range of reasonable interpretations” (Aroyo & Welty, 2015, p. 21) [4].

Recent examples of research on annotator disagreement, such as the work of Basile and
colleagues (2021) [6], challenge the traditional reliance on a single "ground truth" in
NLP evaluation. Indeed, they advocate for a reevaluation of current practices in light of
the fact that annotator disagreement is impossible to avoid. This perspective is further
explored by Leonardelli and colleagues (2023) [24], who explore the potential of learning
from disagreements to enhance model training, thus suggesting that understanding the
nature and reasons behind annotator variances can lead to more robust models. Similarly,
Sandri and colleagues (2023) [39] contribute to this dialogue by proposing a taxonomy
to categorize the roots of disagreement, emphasizing that such differences can stem from
subjective interpretations, contextual ambiguities, or even the annotators’ backgrounds.
These insights collectively argue against the oversimplification of complex linguistic
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phenomena through majority voting, highlighting the need for models that can navigate
and incorporate the variety of human judgment and language interpretation.

The concept of perspectivism (Cabitza et al., 2023) [7], has been proposed to advocate for a
paradigm that values and preserves the diversity of opinions in the annotation process. This
approach recognizes that annotator disagreements often stem from legitimate variances in
perspective and subjectivity, rather than from mere errors. By integrating these multiple
perspectives into the "ground truthing" process, perspectivism aims to develop ML models
that are more nuanced and representative of the complex nature of human language and
cognition. This shift towards acknowledging and leveraging annotator diversity aligns with
the solutions proposed by other researchers (Basile et al., 2021 [6]; Leonardelli et al., 2023
[24]; Sandri et al., 2023 [39]). This consensus suggests that there is an acknowledged need
in the field of NLP to develop models that can accommodate the inherent subjectivity in
tasks like hate speech detection.

Indeed, the state-of-the-art methods for addressing annotator disagreement in classification
tasks have become increasingly nuanced. Techniques such as Bayesian models (Fornaciari
& Poesio, 2021) [14] take into account the reliability and expertise of each annotator,
providing a probabilistic framework to weigh their annotations differently. Additionally,
machine learning algorithms that factor in annotator characteristics into the training process,
as explored by Rodrigues and Pereira (2018) [36], offer a way to personalize model learning
to account for individual biases and interpretation styles, thus enriching the model’s
understanding and handling of diverse data interpretations. Overall, these approaches
signify a shift towards more adaptive and annotator-aware methodologies for dealing with
disagreement, emphasizing the complexity and subjectivity inherent in human-labeled
data.

For what concerns the evaluation metrics used to assess the performance of the types of
models used to study annotator disagreement, the consensus found in recent literature
indicates the need for a soft-score approach (Uma et al., 2021)[45] and (Rizzi et al., 2023)
[35]. Therefore, the model evaluated in this thesis will be assessed using the cross-entropy
measure, which calculates the difference between the calculated probability distribution of
a classification model and the values that it predicts.

2.2.1 Challenges and Ethical Considerations

Despite the reviewed technological advancements, the path towards achieving accurate
hate speech detection methods yet remains filled with challenges. The ambiguity of
language, the evolving nature of forms of hate speech itself, and contextual dependence
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make automated detection difficult. Furthermore, issues of bias and fairness in models are
another crucial point to keep in mind, and they are due to imbalanced or non-representative
training data, which pose significant ethical concerns (Dixon et al., 2018) [12]. The risk of
over-policing certain dialects, languages, or demographic groups highlights the need for
careful consideration of ethical implications in model development and deployment.

2.3 Clustering

A multi-task classification on hate speech can be a potentially very time-consuming task
that requires a lot of resources, particularly if - for the sake of a high metrics score - each
annotator is considered as a single task and a classification layer is trained for each of them.
A way to overcome this issue by not classifying each annotator would be to create different
clusters of annotators instead, considering clusters as representative for each group of
annotators [9]. With this approach, it should be possible or increase to preserve a high
score metric without using a heavy computational power, thus reducing time and resources
for the classification.

2.3.1 Introduction

Clustering methodologies play a pivotal role in annotator behavior analysis, especially in
tasks requiring subjective judgment, such as hate speech detection. These methodologies
aim to identify patterns within annotator responses, thus yielding a more nuanced under-
standing of variability and consensus among annotators. The literature review reported
below describes two primary clustering approaches: metadata-based clustering, which
focuses on demographic and background information, and algorithm-based clustering,
which focuses on annotator choices and response patterns.

2.3.2 Metadata-Based Clustering

Metadata-based clustering involves grouping annotators based on their demographic char-
acteristics such as age, ethnicity, gender, educational background, or cultural context. This
approach is based on the premise that annotators’ backgrounds influence their perception
and interpretation of content and language [18], and that therefore it could potentially
lead to systematic differences in their annotations (Hovy and Søgaard, 2015) [16]. For
instance, (Davidson et al., 2019) [10] spotted a clear difference in annotation based on
race, while (Waseem & Hovy 2016) [17] demonstrated how annotators’ cultural and social
backgrounds could affect their judgments on what constitutes hate speech, suggesting
that metadata-based clustering could help in understanding these biases and improving
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the generalizability of NLP models by incorporating diverse perspectives. Furthermore,
Sap and colleagues’ research (2019) [41] state that annotations might be racially biased,
basing their claim on the finding that phrases in the African American English dialect
(AAE) tend to be identified as more toxic than their general American English equivalent
when toxicity detection tools are used, compared to when they are evaluated by African
American English speakers themselves (Sap et al., 2019; Spears 1988) [41] [44].

The work of Fleisig and colleagues (2023) [13] shows that is also possible to predict
individual annotator ratings based on their demographic and social background and in
doing so increase the performance score of the classifier. Additionally, the study of Sap
and colleagues (2021) [40] highlights the link between the annotator’s choice and their
social background, contextualizing toxicity labels with social variables.

Despite its potential, metadata-based clustering inevitably faces challenges related to
privacy concerns, the availability and reliability of metadata, and the risk of reinforcing
stereotypes or introducing bias by assuming homogeneous behaviour within demographic
groups (Sen and Wasow, 2016) [42]. This possible bias reinforcement is cause for ethical
concern. Moreover, the complexity of human perception and the influence of implicit
biases imply that demographic metadata may not always provide a complete picture of
annotator behaviour patterns.

This last point is reinforced by the study of Orlikowski and colleagues (2023) [29],
which showed that individual annotation behaviour depends on much more than just
sociodemographics.

2.3.3 Voting-Behaviour-Based Clustering

Algorithm-based clustering, on the other hand, focuses on the analysis of annotator choices
and labelling patterns, and this analysis is independent of their demographic characteristics.
This approach employs machine learning algorithms to identify clusters of annotators who
exhibit similar behaviours in their responses, potentially reflecting shared understanding,
biases, or interpretation strategies. Techniques such as K-means clustering, hierarchical
clustering, and model-based clustering have been applied to capture the latent structure in
annotator responses (Raykar et al., 2010) [34].

A significant advantage of algorithm-based clustering is its ability to dynamically adapt to
the data, uncovering patterns that may not be apparent from metadata alone. For instance,
Raykar and colleagues (2010) [34] investigated a model that identifies reliable annotators
and estimates true labels from noisy annotations, effectively revealing underlying patterns
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of agreement among annotators. This approach highlights the diversity in interpretation
and the potential for clustering annotators based on their labeling consistency, even within
groups that might seem homogeneous from a demographic perspective. Insights from such
methodologies are invaluable for developing more robust and adaptive NLP models, as
they facilitate the integration of annotations based on nuanced agreement patterns rather
than relying exclusively on static demographic categories.

2.3.4 Comparative Analysis and Challenges

Comparing metadata-based and voting behavior-based clustering reveals advantages and
disad- vantages between the two approaches. Metadata-based clustering offers an intuitive
way to account for diversity and potential biases but may oversimplify the complex
influences on annotator behavior. In contrast, voting behavior-based clustering provides
a data-driven perspective that captures dynamic patterns in annotator responses but may
lack interpretability and the ability to directly account for known sources of bias. Overall,
both approaches face challenges related to the representativeness of the data, the risk of
introducing or overlooking biases, and the ethical implications of clustering decisions.
Furthermore, the effectiveness of each clustering method can vary significantly depending
on the task, the nature of the data, and the specific objectives of the analysis. In this study,
both approaches will be used and a comparison between their effectiveness will be carried
out, since both cluster-resulting datasets will be trained into the model. From a theoretical
point of view, a voting-behavior approach might seem preferable since it should better
capture and understand similarities on the data, However, it is important to note that the
performance of this method highly depends on the amount, quality and sparsity of the data.
Indeed, it requires a substantial number of both annotations per annotator and annotations
per comment. As described in the methodology section below, the dataset used in this study
does present some challenges in this respect, it is plausible that the metadata clustering
approach might prove to be more efficient, as it does not rely on specific conditions, but
only on the existence of metadata information.

In summary, clustering techniques in annotator behavior analysis offer powerful tools
for understanding the variability and consensus among annotators in tasks such as hate
speech detection. While metadata-based clustering provides a straightforward means to
incorporate diversity and background influences, voting behavior-based clustering offers a
flexible, data-driven approach to uncovering latent patterns in annotator responses. The
choice between these approaches — or a hybrid strategy that combines elements of both —
should be informed by the specific research questions, the available data, and the ethical
considerations inherent in the analysis of annotator behaviour. Future research goals in
this area involve further refining these methodologies, enhancing their applicability and
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efficacy in the development of NLP models that are both robust and sensitive to the nuances
of human judgment.
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3. Data

3.1 Dataset

This project will employ a dataset presented in Kennedy and colleagues (2020) [21] and
Sachdeva and colleagues (2022) [38]. The Dataset was downloaded from HuggingFace,
a notorious repository for dataset and models [19]. It constitutes an expansive corpus of
annotated social media comments, designed to facilitate a detailed examination of hate
speech dynamics online. Comprising 39,565 comments, each subjected to annotation by
one of 7,912 distinct annotators, the dataset has a total of 135,556 data points sourced from
YouTube, Twitter, and Reddit and labelled by US-based Amazon Mechanical Turk workers.
Central to this study is the "hatespeech" column in particular, a categorical variable that
quantifies the existence of hate speech within a comment, but the dataset also includes
different other additional parameters, for example: sentiment, respect, insult, humiliate,
violence, genocide, dehumanize and status. As explained by Kennedy and colleagues
(2020) each annotator received a random sample of comments to annotate and there was
no specified aim to annotate certain comments (such as particularly ambiguous ones) more
than others.
Each entry in the dataset is uniquely identified by a comment ID and has been evaluated
by an annotator, who in turn has been assigned a unique ID. The dataset also provides
a rich array of metadata for each comment, including the text of the social media post.
Additionally, detailed demographic information for each annotator is provided, including
variables such as gender, education level, income bracket, and political ideology. This
demographic data opens avenues for analyzing the influence of annotator backgrounds on
hate speech perception and annotation, which is critical for understanding potential biases
in hate speech detection. In the context of hate speech detection, the utility of annotator
metadata for clustering purposes is a key component, which motivated the choice to focus
on this specific dataset. Indeed, using these data allows to identify and distinguish patterns
regarding how different groups perceive and categorize hate speech, thereby shedding light
on subjective biases in annotation. This insight is particularly valuable for enhancing the
accuracy and fairness of automated hate speech detection systems. Some examples of
annotator’s metadata are the following columns visualized in Table 1

It is important to acknowledge that while the dataset contains extensive metadata regarding
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Table 1. Annotator Demographic Breakdown

Category Values

Education Some High School, High School Grad, Some College,
College Grad (AA), College Grad (BA), Professional
Degree, Masters, PhD

Gender Men, Women, Non Binary, Prefer Not to Say, Self Describe

Income <10k, 10k-50k, 50k-100k, 100k-200k, >200k

Ideology Extremely Conservative, Conservative, Slightly
Conservative, Neutral, Slightly Liberal, Liberal, Extremely
Liberal, No Opinion

Race Asian, Black, Latinx, Middle Eastern, Native American,
Pacific Islander, White, Other

Religion Atheist, Buddhist, Christian, Hindu, Jewish, Mormon,
Muslim, Nothing, Other

Sexuality Bisexual, Gay, Straight, Other

the annotator, it also includes various metadata columns about the targets of the comments
subjects to hate speech detection. This study will include only the annotator’s metadata,
leaving the target’s information for further analysis.
In essence, this dataset provides a comprehensive framework for the detailed analysis of
hate speech on social media, offering broad quantitative measures that lend themselves
for a variety of applications. By leveraging annotator demographics for clustering, it is
possible to discover significant patterns in hate speech annotation, contributing to the
ongoing refinement of detection methodologies and the broader discourse on online hate
speech.

3.2 Dataset: preliminary observations

The first notable obaservation is that the dataset presents high levels of variance, which
can be attributed to its crowdsourced nature. This characteristic often leads to a wide
range of annotations per comment and per annotator due to the diverse backgrounds and
perspectives of the contributors. The provided tables illustrate these core numbers: Table 2
details the distribution of annotations per comment, highlighting variations in engagement
levels across different content. Table 3 describes the numbers of contributions per annotator,
reflecting the varying degrees of participation. The observed concentration of comments
with a lower number of annotators, predominantly within the 1 to 5 range, juxtaposed
against the rarer instances of comments with a higher annotator count, indicates a skewed
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annotative effort. This skewness suggests that the majority of comments are subjected
to a relatively limited diversity of perspectives, which could impact the robustness and
generalizability of hate speech detection models trained on this dataset.

Annotations Count Number of Comments

1 or 2 22,213

3 to 5 17,279

More than 5 73

Table 2. count of annotations per comment

Annotations Counts Number of Annotators

Less than 5 0

5 to 10 251

10 to 15 1,706

15 to 25 5,869

More than 25 86

Table 3. count of annotations per annotator

From an NLP perspective, the variance in annotator engagement could introduce biases
or inconsistencies in the labeling process, thus potentially affecting the model’s ability
to accurately identify and classify hate speech across a broad range of instances. The
presence of comments with a significantly higher number of annotators might indicate
ambiguous cases, which, while valuable for understanding complex hate speech nuances,
may also introduce variability in the training data that could challenge the model’s learning
process.
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4. Methodologies

4.1 Data pre-processing

The first step of the dataset preparation process involved a strategic filtration criterion,
namely to exclude all comments with fewer than three annotators and all comments anno-
tated by annotators with less than 15 annotations. This threshold was established to ensure
a minimum level of comparability among annotators, thus enhancing the quality of the data
used for training hate speech detection models. However, this filtering process presents its
own inherent complexities which require consideration. Indeed, the reciprocal dependency
between tweets and annotators is a critical aspect that complicates the refinement of
the dataset. For example, the removal of an annotator with a relatively low number of
annotations may inadvertently decrease the annotation count of certain tweets that initially
surpassed the annotation threshold. Similarly, maintaining tweets that marginally meet the
annotation threshold could disproportionately favor annotators with minimal contributions,
thus impacting the overall dataset quality.

This is a recursive dilemma that lacks a flawless resolution due to the intertwined
nature of the annotations between tweets and annotators. To address it, an additional
filtering methodology was applied, in the form of a min-max optimization algorithm.
The algorithm’s objective was to maximize the annotations per tweet and per annotator
simultaneously, ensuring a more balanced representation and utilization of both annotators
and comments within the dataset. This approach allows for a strategic allocation of re-
sources that aims to enhance the integrity of the annotation process, while acknowledging
the constraints imposed by the underlying dataset structure. The rationale behind this
decision is that a greater number of annotators per instance may lead to more accurate
and dependable annotations, as it mitigates the impact of individual biases and errors.
Following the filtering phase, the shape of the resulting dataset is the following: from
7912 to 1603 unique annotators and from 39565 to 1020 unique comments. The counts of
annotations per tweet and per annotator for the filtered dataset are reported in table 4 and
table 5
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Annotations Count Number of Comments

1 or 2 0

3 to 5 950

More than 5 70

Table 4. count of annotations per comment

Annotations Counts Number of Annotators

Less than 5 6

5 to 10 1242

10 to 15 250

15 to 25 105

More than 25 0

Table 5. count of annotations per annotator

Three essential preprocessing steps remain, which are pivotal to preparing the data for
subsequent anal- ysis via a machine learning model. The necessity for these steps arises
from the structural discrepancy between the existing format of the raw dataset and the
format required by the learning model. The filtering process had also an important role on
the limitation of the variance from the annotators, since picking only the "high quality"
data reduced the variance present on the number of annotations per annotator and per
comment. Table 6 summarizes the datasets before and after the filtering process.

Comments Annotator

Original dataset 39565 7912

Filtered dataset 1020 1603

Table 6. Dataset Annotations Overview

Step 1: Pivoting the Dataset: The original format of the dataset presents a challenge for
data analysis and model training as each line represents a unique annotation, including
different fields such as the tweet ID, annotator ID, the specific annotation, and detailed
annotator metadata. This structure is inherently complex for models that are designed
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to process each tweet as a single observational unit with features derived from multiple
annotations. To rectify this, a pivoting transformation was necessary. By reorganizing the
data, where each row now corresponds to a unique tweet and each column to a different
annotator’s annotations, we facilitate a more structured and model-friendly dataset. This
transformation aligns with the analytical needs of typical learning algorithms (which
expect a row-wise representation of data points), and it also enhances the efficiency of data
handling and model computation, since it reduces the complexity of the data structure.

Step 2: Creating a Support Database: Given the richness of the metadata associated
with each annotation, it is important to retain this information for a comprehensive
analysis. However, incorporating such metadata directly into the pivoted dataset could
lead to redundancy and an unwieldy number of columns, potentially diminishing the
model’s performance due to high dimensionality. To address this, a secondary support
database was developed. This database, keyed on a composite primary key of tweet ID
and annotator ID, meticulously preserves the relationship between tweets, annotators,
and their respective metadata. This design allows for an efficient connection back to the
original detailed data without overbur- dening the primary analysis dataset. It enables
detailed queries to be performed without compromising the structure of the training dataset.

Step 3: Metadata Integration and Feature Engineering: this last apreprocessing step
in- volves the integration of selected metadata elements back into the primary dataset as
new features. This step is guided by the initial exploratory data analysis, which identifies
metadata attributes that could potentially enhance model predictions, such as annotator
expertise or the timestamp of annotations. By systematically incorporating these features,
the model’s input space is enriched, potentially improving its predictive accuracy and
providing deeper insights into the factors influencing the sentiment or content of comments.

4.2 Clustering

In the development of machine learning models reliant on annotated data, understanding
the variability and biases among annotators is critical. Research has shown that annotators’
decisions can be influenced by a myriad of personal factors, including demographic
backgrounds and socio-political beliefs (Hovy & Spruit, 2016) [17]. In this section,
we explore the application of clustering techniques to segment annotators based on their
metadata and voting behavior, aiming to optimize model training and enhance the reliability
of annotations.
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4.2.1 Metadata Based Clustering

The rationale behind using metadata for clustering is based on the premise that an annota-
tor’s background can significantly influence their annotations. By identi- fying and under-
standing these clusters, we can tailor model training processes, potentially compensating
for these inherent biases.

Data Preparation

To understand the influence of annotator characteristics on annotation behavior, we first
compiled a comprehensive dataset capturing a wide array of metadata, extracted from
the original filtered dataset, with each row uniquely identifying an annotator and each
column representing associated metadata. This dataset includes 56 columns that capture
demographic information, educational background, political ideology, and other personal
attributes, structured as follows:

■ Demographic and Socio-economic Features: Includes gender, income levels, and
educational attainment. These features are crucial as they often influence an individ-
ual’s perspective and, potentially, their annotations.

■ Ideological Orientation: Captured to assess if political or ethical beliefs correlate
with annotation tendencies.

■ Ethnic and Religious Backgrounds: Included to explore the diversity of cultural
contexts among annotators.

■ Sexual Preferences

Each annotator is represented uniquely within the dataset, with duplicated entries removed
to maintain the integrity of the clustering analysis.

Methodology

Following dataset construction, a distance matrix was generated using both Euclidean and
cosine distance metrics to assess the dissimilarity among annotators. For clustering, we
employed the Ward method for a hierarchical clustering [26], which is known to reduce
variance within clusters (Murtagh, Fionn & Legendre, 2014) [27], thereby ensuring a more
uniform distribution of items per cluster.

Extensive testing was conducted to identify the optimal number of clusters. This involved
calculating the Silhouette score [43] and Davies-Bouldin Index [49] for potential cluster
sizes ranging from 5 to 25. Based on these evaluations, clusters of sizes 10, 15, and 25
were selected for further model training.
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Three distinct datasets corresponding to these cluster sizes were subsequently created
using hierarchical clustering. The accompanying visualization in figure 1 illustrates
the structure of the 25 clusters derived using the Euclidean distance for metadata-based
clusters, showcasing the detailed grouping and separations achieved through this analytical
approach.

Figure 1. t-SNE Visualization of 25 clusters for metadata-based clustering. Distance:
cosine distance

After the clustering process was completed, the votes within each cluster were aggregated
using a majority voting system. Although we acknowledge that majority voting may not be
the most effective method for examining these phenomena, we believe that this aggregation
approach reflects a sufficient commonality based on the socio-economic backgrounds
of the annotators. In other words, this method aims to capture the predominant trends
and opinions within each distinct group, providing a generalized perspective based on
collective attributes.

In addition, some analysis have been carried out for the metadata clustering. The hierar-
chical clustering of annotators revealed distinct profiles based on various demographic,
ideolog- ical, and educational characteristics. Each cluster was defined by the top five
features that demonstrated the highest variance and provided the most significant insight
into the clustering logic. The analysis used a range of binary and categorical features, with
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emphasis placed on ensuring each cluster was uniquely characterized by its top features.
To distinguish the unique characteristics that define each cluster within a complex dataset,
such as those involving human annotators, it is effective to employ a feature importance
analysis using Random Forest classifiers. This approach entails transforming the cluster
analysis into a set of binary classification problems, where each cluster is contrasted
against the others. By applying Random Forest, which is a method that is well-known for
its ability to handle high-dimensional data and to provide interpretable results regarding
the importance of features, we can accurately identify which features most significantly
influence the assignment of data points to specific clusters. The model quantifies the
importance of each feature based on its impact on model accuracy, specifically through the
reduction in node impurity across the decision trees that make up the forest. The results
are shown in table 9. This methodology ensures that the derived importance of features
directly correlates to their capability to define the cluster, offering detailed insights into the
underlying patterns and behaviors that differentiate data groups.

4.2.2 Clustering Based on Voting Behavior

Clustering based on voting behavior allows for an examination of annotator reliability and
the identification of outlier behaviors, which are crucial for ensuring the quality of training
datasets (Artstein and Poesio, 2008) [5]. This approach is functional to uncovering potential
biases and areas of ambiguity among annotators, directly impacting model accuracy.

Data preparation

In parallel to the metadata-based approach, we also clustered annotators based on their
actual annotation behavior — specifically, their voting on a binary scale across various
texts. This approach directly quantifies the agreement and consistency among annotators,
offering a dynamic insight into their decision-making patterns.

Methodology

Again using hierarchical clustering, we adjusted our approach to focus on the patterns of
agreement and disagreement among annotators. To analyze these patterns, we constructed
another dataset where each row represented a unique annotator and each column a unique
comment. We explored various distance metrics—such as cosine similarity, Hamming
distance, and Euclidean distance—to construct the distance matrix. Different linkage
methods were tested, including the "average" and "Ward" methods. The Ward method
proved superior in terms of the distribution of elements within the clusters.

Although the clusters were well-balanced and the silhouette scores were comparable to
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those calculated using the metadata-based method, the clustering results were ultimately
unconvincing. For visualization using the t-SNE method, we needed to address the
presence of NaN values in the dataset, which represent comments not annotated by some
annotators. These NaN values were substituted with a placeholder value of -1, as the t-SNE
algorithm does not accommodate null values. However, the t-SNE plots did not reveal a
clear partition among the clusters as observed in the metadata case. This discrepancy may
stem from several factors: notably, the high dimensionality of the data, with more than
1000 dimensions compared to 50 in the metadata case, which potentially overwhelmed the
dimensionality reduction capabilities of the t-SNE algorithm. Additionally, the placeholder
substitution for missing annotations may have distorted the true distances among annotators,
further complicating the clustering outcome.

The results of this behavioral clustering procedure are reported in Figure 2

Figure 2. t-SNE Visualization of 25 clusters for behavioural based clustering. Distance:
cosine distance

As we did with the metadata-based clusters reported above, we applied the majority voting
system to the behavioural clusters as well, meaning that we aggregated the votes within
each cluster into a single array. However, it is important to note that the boundaries of the
behavioral clusters are less defined and show more overlapping tendencies compared to
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the metadata-based clusters. Therefore, the vote aggregation procedure inevitably yields a
weaker degree of accuracy and representative potential in this case.

4.3 Comparison

Numerous tests have been carried out to determine the number of clusters to adopt,
especially on the metadata-based cluster that was giving more promising results. A first
attempt has been carried out calculating the silhouette score for a range 2-500. Silhouette
score gave the best value to 292 clusters, a first attempt has been carried out but the model
performed poorly, in the author’s opinion that is because the data was still too sparse, we
would see the same behavior later in the results for the model trained on the whole dataset.
A more conservative second attempt has been carried out for a range between 5 and 27
included, both the Silhouette Scores and the Davies-Bouldin Index agreed on 25 as the
optimal number of clusters.

Table 7 reports the scores for the range 5-27.

Table 7. Cluster Evaluation Metrics

Rank Silhouette Score Davies-Bouldin Index

1: 25 clusters 0.1517 1.5888

2: 26 clusters – 1.5994

2: 22 clusters 0.1505 –

3: 21 clusters 0.1442 1.6300

Upon applying these methodologies, we determined that 25 clusters provided the optimal
balance of within-cluster homogeneity and between-cluster heterogeneity, as indicated by
silhouette scores (Rousseeuw, 1987) [37] calculated on a range from 7 to 30.
The comparison between metadata-based and voting-based clustering revealed that meta-
data clustering grouped annotators more clearly and without overlapping, while the voting
behavior approach lacked consistency. Both clustering methods could provide valuable
insights but they relate to different aspects of annotator analysis. By incorporating both
approaches, when possible, we can achieve a more comprehensive understanding of an-
notator behavior, which is essential for developing robust and accurate machine learning
models.
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4.4 The Model

In the realm of text classification, modeling the variance among annotators presents a
complex challenge. Traditional approaches often aggregate annotations to form a single
label per instance, potentially obscuring valuable insights into the diversity of human judg-
ment. The proposed BERT-based ensemble model addresses this issue by implementing
a multi-task learning architecture that treats each annotator’s decision as a separate but
related task.

4.4.1 Model Architecture

The architecture in Davani and colleagues’ model (2022), which this thesis draws from
and builds on, utilizes BERT, a pre-trained transformer model, known for its effectiveness
in generating contextual embeddings (Devlin et al., 2018 BERT) [11]. The model extends
the BERT architecture by adding multiple output layers (one for each annotator) following
the shared transformer layers.

The model employs the BERT base model to extract deep contextual representations from
input texts. This choice is motivated by BERT’s ability to understand subtle nuances in
language due to its bidirectional training, which captures the context of each word from
both left and right sides of the text. For each annotator, a dedicated linear layer is attached
to the top of the BERT model. These layers are trained to predict the labeling behavior of
individual annotators based on the embeddings provided by BERT.
The linear nature of these layers allows for maintaining computational efficiency while
being flexible enough to model the complex decision boundaries that might characterize
each annotator’s judgments. A significant innovation in the training process of Davani and
colleagues’ model is the dynamic computation of class weights. This strategy addresses
the issue of class imbalance that is often seen in datasets involving subjective judgments,
such as hate speech, where one class may significantly outnumber others. By adjusting the
weights during training, the model maintains sensitivity to less frequent but crucial classes,
enhancing its detection capabilities.

4.4.2 Advantages of the Multi-Annotator Approach

Unlike methods that treat individual differences by aggregating annotations, this model
preserves the granularity of each annotator’s judgments. By sharing the lower layers
of BERT across all tasks (annotators), the model reduces the number of parameters
needed compared to completely separate models for each annotator. This shared learning
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mechanism improves learning efficiency, and it but also helps in regularizing the model,
reducing the risk of overfitting individual annotator patterns. The model is inherently
adaptable to different numbers of annotators and can handle varying levels of annotation
complexity, from binary to multi-class scenarios. Furthermore, the model is trained using
a task-specific cross-entropy loss function, which is well-suited for classification tasks.
Each annotator’s model component computes its loss independently, allowing the process
to assess the model weights in a way that best predicts each annotator’s labeling patterns.
This choice of loss function reflects its effectiveness in handling classification problems
where the output can be treated as a probability distribution over classes. The loss penalizes
the divergence between the predicted probability distribution and the actual distribution,
effectively guiding the model towards better accuracy.
In addition, by optimizing each annotator’s output layer independently, the model can adjust
to the specificities of each annotator’s decision-making process without compromising
the integrity of the shared features learned from the BERT layers. For what concerns
evaluation metrics, the model’s performance is assessed not just on traditional metrics
like accuracy, precision, recall and F1-score, but also on measures that reflect its ability to
model annotator disagreement, such as inter-annotator agreement indices. This twofold
focus ensures that the model is robust not only in terms of predicting general trends, but
also in capturing the variability among annotators. In addition to Davani and colleagues’
model, for this study we have implemented additional score metrics, namely cross-entropy.
More details on Training and implementation section.

4.4.3 Challenges and Limitations

Among other challenges, the major ones that the model faces are:
Scalability: : the model’s scalability could be challenged as the number of annotators
increases, due to the linear increase in the number of output layers and associated parame-
ters. (i.e. the more annotator the more time and complexity)
Complexity in Aggregation: determining the best way to aggregate individual annotator
predictions into a final decision remains important, requiring further research into effective
ensemble methods. (i.e. as the output for all models is aggregated using majority vote.
Some other method could be applied)
Dependency on Annotator Representation: the effectiveness of the model assumes
a relatively balanced representation of each annotator in the training data, which might
not always be available. (i.e. the model suffer from the sparsity of data, especially for
annotations per annotator).
Notwithstanding these limitations, the BERT-based ensemble model for annotator-specific
classification still represents a significant advancement in handling subjectivity in anno-
tated datasets. By respecting individual annotator biases while leveraging the power of

26



shared learning, the model enhances the accuracy of predictions, while also providing
deeper insights into the annotation process itself.

In this study, we will try to address the Scalability and the Dependency on Annotator

Representation limitations, with the addition of the clustering techniques, while the Com-
plexity in Aggregation is suggested as the basis for future research endeavors. This thesis
adopts the assumption that clustering might address both limitations taken into account.
The Scalability issue is resolved by reducing the number of annotators, since the clusters
will become the new annotators. This process will also address the representation of the
annotator in the training data since the data will result more "dense" after the clusterization
process.

4.4.4 Training and implementation

The architecture of the BERT-based ensemble model used in this thesis has been refined
to include the calculation of cross-entropy as a performance metric. Specific adjustments
were made to the loss function and the forward function to facilitate the computation of
logits in a format suitable for cross-entropy evaluation. This adjustment allows for a more
refined assessment of model performance by directly comparing the predicted probability
distributions with the true labels.

Additionally, modifications were implemented in the results function to not only compute
traditional metrics such as Accuracy, Recall, Precision, and F1-Score but also to integrate
the calculation of the cross-entropy loss. This comprehensive metric assessment enables a
more detailed evaluation of the model’s classification effectiveness.

The model employed a set of selected training parameters optimized for performance:

■ Batch Size: Set to 4 to balance memory usage and gradient estimation.
■ Learning Rate: A low rate of 1× 10−7 to facilitate gradual convergence.
■ Maximum Token Length: Fixed at 128 to manage context retention and computa-

tional demands.
■ Number of Epochs: Limited to 10 to prevent overfitting while allowing adequate

learning.
■ Random State: Set at 9999 for reproducibility.
■ Number of Folds: Employed 5 folds in cross-validation to evaluate model stability.
■ Ensemble Mode: Enabled to utilize the strengths of multiple model instances.
■ Stratification: Applied in data splitting to maintain class proportionality.
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■ Prediction Mode: Focused on label prediction to emphasize classification accuracy.
■ Monte Carlo Passes: Conducted 10 passes to enhance the robustness of uncertainty

estimates.

These parameters were dynamically adjustable to respond to different training scenarios,
ensuring flexibility and adaptability of the training process to various data characteristics.
This configuration supports the enhanced performance metrics but aligns with the model’s
goal of providing reliable and nuanced insights into annotator-specific classifications.

The model was trained on three distinct datasets to evaluate its performance across various
scenarios:

Complete Dataset: The first training scenario utilized the entire dataset without any
application of clustering algorithms. This approach provides a baseline for performance
assessment, representing the model’s capability to handle diverse annotator perspectives
without prior segmentation.
Metadata-Based Clustering: The second dataset was derived from applying hierarchical
clustering based on metadata to group annotators into 25 clusters. This dataset helps
assess how well the model performs when annotators are segmented according to their
demographic and background characteristics.
Voting Behavior-Based Clustering: The third dataset resulted from clustering annotators
into 9 groups based on their voting behaviors using hierarchical clustering. This method
aims to explore the model’s efficiency in contexts where annotator judgments are aligned
more by decision patterns than by personal metadata.

The results section below will detail the outcomes of the analyses conducted on these
datasets. Each dataset’s results sheds light on the model’s adaptability and accuracy in
varying clustering contexts.
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5. Results

This section presents the performance results of the model trained on three distinct datasets:
the full dataset, the metadata-based clustered dataset, and the voting behavior-based clus-
tered dataset. The evaluation metrics used to assess the model’s performance include
Accuracy, Precision, Recall, F1-Score, and cross-entropy. These metrics provide a compre-
hensive view of the model’s effectiveness across different data segmentation strategies.

Table 8 below summarizes the results for various datasets on ensemble mode:

Dataset Accuracy Precision Recall F1 Cross Entropy

Full Dataset Single 0.7799 0.6973 0.7463 0.721 0.4233

Full Dataset Ensemble 0.5706 0.4204 0.4771 0.447 0.6804

Metadata Cluster 0.8251 0.7039 0.7816 0.7407 0.3797

Behavior Cluster 0.8158 0.7156 0.7621 0.7382 0.4081

Table 8. Model performance across different datasets

All models were trained using a V100 GPU within a high RAM cloud computing envi-
ronment, reflecting robust computational resources aimed at efficiently handling large
datasets.

The results for different number and type of clusterization can be visualized on figure 3
where lower score means better performance.

The low performance of the whole dataset training with Ensemble mode is probably caused
by the fact that there are not enough annotation per annotator, a situation that is fairly
common in crowd-sourced dataset, for the model to generalize the pattern, thus resulting in
a poor performance. More interesting is the fact that the model trained with the Ensemble
mode, but clustered performed better in both cases (metadata and behaviour) than the
baseline model that captures the most common approach: a single-task classifier trained to
predict the aggregated label for each instance (i.e. majority vote).
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Figure 3. Cross Entropy metric for different clusters

5.0.1 Training Time Breakdown

Full Dataset: For the comprehensive dataset comprising 1,603 annotators and 1,000 unique
comments, the training duration for each annotator averaged approximately 1:30 minutes.
Consequently, the total training time for the full dataset was calculated to be 2,404.5
minutes. Clustered Datasets: In contrast, each clustered dataset, which included 25 clusters
of annotators, exhibited a longer average training time of about 2:30 minutes per cluster.
This increase to 2.5 minutes per cluster is attributed to the less sparse data in these segments.
The total training time for all clustered datasets thus amounted to 62.5 minutes.

The increased training time for clustered datasets is primarily due to the higher data den-
sity within each cluster, which requires more comprehensive computational processing.
Comparing annotations between average individual annotators and clustered groups re-
vealed significant discrepancies, thus highlighting the impact of data sparsity on training
dynamics.

Overall, these results provide critical insights into the scalability and efficiency of training
annotator-specific models, highlighting the trade-off between training duration and data
comprehensiveness.
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6. Conclusions

The exploration of clustering methodologies to enhance resource efficiency and improve
model performance in hate speech detection has provided interesting findings. The central
research question addressed whether clustering annotators could be an effective strategy to
reduce resource consumption while maintaining or enhancing evaluation score metrics.

The results indeed indicate a notable increase in performance when annotators are clustered.
This improvement is likely attributed to the densification of the data within clusters, which
seemingly facilitates model generalization. Notably, both metadata-based and voting
behavior- based clustering strategies outperformed the baseline model, which relies on a
single-task classifier trained to predict aggregated labels for each instance (i.e., majority
vote).
This suggests that clustering, by consolidating similar annotator characteristics or response
patterns, enhances the contextual density of the training data, thus enabling more effective
learning and prediction by the models. However, it is important to note that, when
compared individually, the metadata-based clustering method has proven to be a more
effective method than the voting-behavior clustering method. This outcome is aligned with
the hypotheses presented in the theoretical framework, where it was noted that the success
of a voting-behavior clustering strategy is highly dependent on the characteristics of the
dataset used in a specific study.
Overall, these indings seem to support that annotator alustering in the context of a multi-
annotator model, represents a promising approach to reducing computational time, since it
effectively addresses the variability in annotator responses. By grouping annotators with
similar traits or behaviors, models can potentially consider shared informational contexts
that would otherwise be diluted in a more heterogeneous dataset. However, this approach
does not come without trade-offs. The aggregation of annotators, whether by metadata or
voting behavior, still inevitably leads to a loss of individual annotator perspectives, at least
to a certain degree.

6.0.1 Limitations and Future Research

Several limitations affect the current study. The effectiveness of individualized model
training is dependent on having a densely annotated dataset, however obtaining the ideal
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dataset was not feasible, as it often is in crowd-sourced environments due to the sparse
nature of annotations per annotator. Furthermore, the reliance on metadata for clustering
necessitates comprehensive demographic data, which is not commonly available in many
crowd-sourced datasets.

Future research should build and subsequently analyze datasets where each annotator
contributes more extensively, in order to investigate if behavior-based clustering does
outperform metadata-based clustering in these scenarios. Moreover, integrating both
clustering approaches could potentially enhance the strengths of each method, eventually
providing a more robust framework for handling annotator diversity in machine learning
applications.

In conclusion, while clustering by annotator metadata and response patterns presents a
viable method to enhance computational efficiency and model accuracy, it is crucial to
balance these benefits against the loss of individual annotator insights. Based on the
preliminary results observed in this thesis, further studies are necessary to refine these
clustering techniques and fully realize their potential in practical applications.
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A. Appendix A

Table 9. Top 5 features per cluster

Clusters Features

cl 1

_gender_self_describe_True _gender_self-describe

_gender_self_describe_False _sexuality_other_False

_ideology_extremely_liberal

cl 2

_gender_non-binary _gender_non_binary_False

_gender_non_binary_True _sexuality_other_False

_sexuality_other_True

cl 3

_transgender_prefer_not_to_say_False _transgender_prefer_not_to_say_True

_trans_prefer_not_to_say _cisgender_True

_cisgender_False

cl 4

_transgender_True _transgender_False

_trans_yes _trans_no

_cisgender_True

cl 5

_income_>200k_False _income_>200k

_income_>200k_True _educ_phd

_age

cl 6

_education_phd_False _education_phd_True

_educ_phd _age

_income_>200k

34



Table 9. Top 5 features per cluster (continued)

Clusters Features

cl 7

_gender_prefer_not_to_say_True _gender_prefer_not_to_say_False

_gender_prefer_not_to_say _gender_male

_id

cl 8

_education_professional_degree_False _educ_professional_degree

_education_professional_degree_True _id

_age

cl 9

_religion_hindu_False _religion_hindu_True

_age _id

_race_asian_True

cl 10

_sexuality_gay_True _sexuality_gay_False

_sexuality_straight_False _sexuality_straight_True

_age

cl 11

_sexuality_bisexual_True _sexuality_bisexual_False

_sexuality_straight_True _sexuality_straight_False

_id

cl 12

_educ_masters _education_masters_True

_education_masters_False _education_some_college_False

_age

cl 13

_income_100k-200k _income_100k-200k_True

_income_100k-200k_False _income_50k-100k_False

_income_50k-100k

cl 14

_religion_mormon_True _religion_mormon_False

_age _id
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Table 9. Top 5 features per cluster (continued)

Clusters Features

_religion_christian_True

cl 15

_sexuality_straight_False _sexuality_straight_True

_education_college_grad_ba_False _education_college_grad_ba_True

_education_some_college_True

cl 16

_race_other_False _race_other_True

_id _age

_race_white_True

cl 17

_religion_jewish_False _religion_jewish_True

_sexuality_other_True _sexuality_other_False

_id

cl 18

_race_native_american_False _race_native_american_True

_id _age

_race_black_True

cl 19

_education_college_grad_aa_True _education_college_grad_aa_False

_educ_college_grad_aa _id

_sexuality_straight_True

cl 20

_ideology_conservative _ideology_conservative_True

_ideology_conservative_False _education_high_school_grad_False

_age

cl 21

_ideology_slightly_conservative _ideology_slightly_conservative_True

_ideology_slightly_conservative_False _race_white_True

_race_white_False

cl 22

_religion_buddhist_False _religion_buddhist_True
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Table 9. Top 5 features per cluster (continued)

Clusters Features

_id _age

_religion_christian_False

cl 23

_religion_muslim_True _religion_muslim_False

_id _age

_race_asian_True

cl 24

_race_middle_eastern_False _race_middle_eastern_True

_id _age

_race_white_False

cl 24

_ideology_extrem_conservative _ideology_extrem_conservative_True

_ideology_extrem_conservative_False _id

_age
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