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Abstract
Linked data has become an integral part of modernizing cultural heritage collections. Similarly, the
Rijksmuseum has transformed its digital collection into a linked data format. In partnership with
Q42, the museum is developing a search and browse engine that allows both casual and professional
users to explore this rich dataset. This thesis explores the intersection of linked data and graph theory
to extract knowledge from the dataset’s topology. By utilizing community detection algorithms, we
identify clusters of similar actors which can be used in a recommendation engine to facilitate users’
ability to explore unknown parts of the cultural heritage collection. This thesis proposes several
data aggregation methods, several community detection algorithms, and a novel iterative approach
to community detection. In our experiments, these techniques are applied to real-world cultural
heritage data from the Rijksmuseum. The resulting clusters are evaluated against a validation set
and shown to real-world users in a survey. The findings indicate our approach is promising, with the
resulting clusters suitable for use in the recommendation engine.

2012 ACM Subject Classification Mathematics of computing → Graph theory; Information systems
→ Resource Description Framework (RDF)

Keywords and phrases Graph Theory, Community Detection, Graph Clustering, Linked Data,
Cultural Heritage Data, Iterative Community Detection

Acknowledgements I would like to thank my thesis supervisor, Hans Bodlaender, for his general
help in structuring my research and insightful feedback on my thesis. I want to thank my colleagues
at Q42, especially Leonard Punt and Joris Bruil, for the support, help and truly amazing time at this
company. Furthermore, I want to thank Nara Prasetya and Ismay de Jong for helping me proofread
my thesis and structure my results during the final parts of my thesis. Lastly, I want to thank my
friends and family for their unwavering support during the entire duration of my thesis research.

Disclaimer Generative AI tools have been used to aid in the writing of this thesis, by helping with
structuring sentences and providing automated feedback.

1 Introduction

With the ever-growing importance of a strong online presence for cultural heritage organiza-
tions, the Rijksmuseum is increasing its use of linked data for its virtual collection of cultural
heritage resources. Over the past few years, the museum has been working on expanding its
linked data collection. In collaboration with the company Q42, they are fully embracing this
new approach of storing and leveraging data, focusing on the development of a new search
and browse engine for the museum’s digital collection.

As part of this new search and browse engine a recommendation engine will be integrated,
suggesting related search keywords to users based on their existing search keywords. Given
the absence of information on which keywords relate to which other keywords, Q42 aims to
employ innovative methods of exploring the linked data collection to generate this information.

This study aims to determine the feasibility of utilizing graph theory techniques to extract
knowledge from the topology of linked data, by applying multiple community detection
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2 Linked Data and Graph Theory

techniques on multiple aggregate datasets. More specifically, we focus on creating clusters of
actors in the Rijksmuseum linked data collection such that the search and browse engine
knows which actors relate to which other actors.

This paper is structured as follows: in Section 2 we discuss relevant literature; in Section 3
we explore the context in which this paper was written as well as dive into the dataset used;
in Section 4 we outline the proposed methodology to gain more knowledge from linked data
by applying community detection techniques; in Section 5 we outline the experiment setup
as well as which metrics are gathered and how; in Section 6 we outline the results collected
through the experiments; in Section 7 we discuss the results.

2 Literature review

The utilization of linked data concepts for modelling and disclosing cultural heritage data has
a longstanding history. As early as the early 2000s, museums have started to digitize their
collections into linked data formats. One notable example is the MuseumFinland project [14],
which, at the time, disclosed 4 000 cultural heritage objects from three different museums in
a linked data format utilizing seven different ontologies. These cultural heritage objects have
remained freely searchable on the MuseoSuomi website1 ever since.

As more cultural heritage organizations embraced the utilization of linked data themselves,
research quickly commenced on leveraging this novel form of data disclosure and modelling
within the cultural heritage domain. In 2005, the REACH project [7] introduced a novel hybrid
approach integrating content-based visual search with ontology-based search, enhancing the
search results. Following this, in 2006, the MultimediaN E-Culture project [21] demonstrated
how linked data could enhance the effectiveness of simple text searches on cultural heritage
data. It achieved this by mapping search text to related cultural heritage objects through
paths in the linked data. In 2008, the CHIP demonstrator [23] further explored the potential
of linked data by combining it with user preferences of cultural heritage objects to create
personalized museum tours.

The relevance of utilizing linked data to model cultural heritage data continues to be
significant. This is shown by the ongoing development and adoption of the Europeana data
model [2, 11] and the Linked Art data model2. Notably, the Rijksmuseum has conducted
extensive research into the utilization of linked data to model cultural heritage data [4, 6, 5]
as well, transitioning from multiple data models to adopting the Linked Art data model
to disclose its cultural heritage data. This model is collaboratively developed by a global
consortium of cultural heritage organizations, including the Rijksmuseum. Further details
about the Linked Art data model are provided in Section 3.2.

Research into the use of graph clustering algorithms to cluster semantic data is nothing new.
In 2007, Fanizzi and d’Amato [9] proposed a novel distance measure to enable hierarchical
clustering of semantic data. Given a feature set, distances between nodes of interest can be
calculated to which a hierarchical clustering method can be applied. In 2008, Grimnes et.
al [13] proposed three similarity measures for semantic data clustering. The first is quite
similar to the method proposed by Fanizzi and d’Amato, a feature-vector-based distance
measure. Secondly, they proposed a graph-based distance and lastly an ontology-based
distance measure. Traditional community detection methods that solely rely on the graph
topology can be applied to linked data as well. In 2012 Giannini [12] compares the use of an

1 http://museosuomi.fi/
2 https://linked.art/
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overlapping community detection method [1] as well as a non-overlapping community detection
method [3]. The clusters the non-overlapping community detection method found were not
an aggregation of homogeneous resources but still, were useful as a way of summarizing
linked data. In 2016, Martínez-Rodríguez et. al [15] continued this research into the use
of traditional community detection methods by comparing multiple community detection
algorithms on a linked data dataset. Their results consist of objective measurements of
the communities found such as modularity score, where the multilevel/Louvain community
detection algorithm [3] scored best.

3 Background and Dataset

3.1 Thesis context
This research has been conducted as part of a research internship for Q42 and the Rijksmuseum.
For the past year, Q42 and the Rijksmuseum have been working on a new search and browse
engine for the museum’s online collection. The results of this research will be used in the
development of this new search engine.

The Rijksmuseum is the largest and one of the most influential museums in the Netherlands,
welcoming up to 2.7 million visitors annually. Its collection consists of over a million cultural
heritage objects of which 770 000 objects have been digitized and disclosed using Rijksstudio3.

Q42 is a strategic software development company with about 80 employees and is based
in The Hague and Amsterdam. Some of their most notable projects include the HEMA
app, the PostNL app, and the software behind Philips Hue. Besides this, they have been
working together with The Rijksmuseum for over two decades, creating Rijksstudio, the
current website, the Rijksmuseum app, and several other projects.

3.2 Dataset
For this thesis, we will examine the Rijksmuseum collection as a specific instance of linked
data. The Rijksmuseum has progressively disclosed its cultural heritage collection data online
utilizing linked data techniques as detailed in previous studies [4, 6, 5]. The collection is
structured according to the Linked Art data model, a self-prescribed Linked Open Usable
Data model. The “usable” aspect refers to a set of design principles aimed at making the data
more accessible and practical. The data model describes the vocabularies used for storing
cultural heritage objects and their related metadata as Resource Description Framework
(RDF) triples. RDF triples are formatted as (subject, predicate, object), where the
subject and object are entities and the predicate is a relation linking them. The resulting
linked data forms a heterogeneous directed graph, with entities as nodes and predicates
as edges. This knowledge can be utilized to extract information from the data’s structure,
rather than its semantics.

The Rijksmuseum Linked Art dataset contains a significant portion of the museum’s
physical collection, including many items not currently on display. It contains 17 498 421
unique entities, of which 809 656 cultural heritage objects, and a total of 99 770 219 triples.
The data is managed within a Blazegraph4 RDF database, which can be queried using
SPARQL5, a specialized querying language for querying RDF databases.

3 https://www.rijksmuseum.nl/nl/rijksstudio
4 https://blazegraph.com/
5 https://www.w3.org/TR/rdf-sparql-query/
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4 Linked Data and Graph Theory

In the Linked Art data model, a cultural heritage object is described as an entity with
the type of “human-made object” to give a unified definition that would apply to any object
a museum might have in its collection. More specifically, the CIDOC-CRM (a vocabulary
used by Linked Art) definition crm:E22_Human-Made_Object is used. Similarly, we use
the definition crm:E39_Actor for any person or organization, and crm:E12_Production
for production events. Entities can be linked with predicates, just like the entities these
predicates are also typed using the CRM vocabulary. An example of what such triples would
look like in practice is given in Listing 1 with a visual representation in Figure 1.

Listing 1 Example of RDF triples related to the Night Watch and its creator
prefix crm: <http :// cidoc -crm.org/cidoc -crm/>
prefix id: <https :// id. rijksmuseum .nl/>

id :2005216 rdf:type crm:E22_Human - Made_Object
id :2005216 crm: P1_is_identified_by t11569244
id :2005216 crm: P108i_was_produced_by t11611745

t11569244 rdf:type crm: E33_E41_Linguistic_Appellation
t11569244 crm: P190_has_symbolic_content "... ‘The Night Watch ’"

t11611745 rdf:type crm: E12_Production
t11611745 crm: P14_carried_out_by id :2105706

id :2105706 rdf:type crm: E39_Actor
id :2105706 crm: P1_is_identified_by t19497120

t19497120 rdf:type crm: E33_E41_Linguistic_Appellation
t19497120 P190_has_symbolic_content "Rijn , Rembrandt van"

crm:E22_Human-Made_Object

crm:E12_Production

crm:E39_Actor

crm:E33_E41_Linguistic_Appellation

“Rijn, Rembrandt van”

crm:P108i_was_produced_by

crm:P14_carried_out_by

crm:P1_is_identified_by

crm:P190_has_symbolic_content

crm:E22_Human-Made_Object

crm:E33_E41_Linguistic_Appellation

“...‘The Night Watch’”

crm:P1_is_identified_by

crm:P190_has_symbolic_content

Figure 1 Linked Art structure



G.J. de Jong 5

The Linked Art data model is event-centered. This means rather than directly linking a
human-made object and its creator, a human-made object is linked to a primary production
event, which in turn is linked to a creator. For instance, in the example given before,
t11611745 is the id of the entity resembling the primary production event of the Night
Watch. This in turn is linked to its primary maker, Rembrandt van Rijn.

Besides the limited set of object and predicate types shown here, Linked Art includes many
more concepts. The ones in use by the Rijksmuseum can seen in Figure 13 in Appendix A or
be explored in an interactive graph at https://blazegraph-graph-vis.denni.dev/.

3.3 Community Detection
Community detection algorithms are a set of well-known algorithms within the field of graph
theory. These algorithms analyze the structure of a graph to identify clusters of nodes, or
communities, within the graph [10]. There are various approaches to community detection,
including modularity maximization methods, information-theoretic methods, and statistical
inference methods [17]. Typically, these methods are applied to social networks, which are
homogeneous6 compared to the heterogeneous7 graphs we encounter in our dataset.

In this research, we aim to use community detection to identify communities of actors
within the Rijksmuseum’s linked data. To enable us to do this, we aggregate the data to
create a structure similar to a social network. This structure allows community detection
algorithms to be applied, resulting in clusters of actors which share similarities based on the
aggregation techniques used. Detailed descriptions of the specific data aggregation techniques
and community detection algorithms utilized in this study are provided in Section 4.

4 Methodology

This section outlines the methodologies used to apply community detection to the linked
data dataset and is structured as follows: in Section 4.1 we discuss methods of data filtration;
in Section 4.2 the techniques used to aggregate the linked data into a homogeneous graph are
detailed; in Section 4.3 we describe three community detection methods utilized in this study;
and lastly, in Section 4.4 we introduce a novel technique of iteratively running community
detection algorithms to ensure smaller communities.

4.1 Data filtration
The Rijksmuseum Linked Art dataset contains 809 656 cultural heritage objects created by
155 186 distinct actors. Among these, only 71 264 actors have participated in a production
event, and a smaller subset of only 20 137 actors have contributed to the production of at
least one cultural heritage object with a picture shown on the website, in “Rijksstudio”. This
highlights that a significant portion of the actors in the dataset have minimal information
available. To mitigate the risk of wrong conclusions drawn from sparse data, we propose two
filtration methods:

1. Limiting the dataset to actors with at least one picture available on Rijksstudio, resulting
in a filtered dataset of 20 137 actors.

6 All nodes are the same type
7 Nodes are of different types

https://blazegraph-graph-vis.denni.dev/
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2. Limiting the dataset to actors with at least four pictures available on Rijksstudio, resulting
in a filtered dataset of 5 830 actors.

4.2 Data aggregation
Transforming the heterogeneous linked data dataset into a homogeneous graph structure is
crucial for the application of traditional community detection techniques. To achieve this,
we developed a Python program that interfaces with a Neo4j graph database containing
the linked data dataset. This program utilizes the Cypher query language to extract the
necessary data, which is then aggregated into an undirected multigraph using one of the four
methods mentioned in this section.

Collaboration

In the original dataset, certain production events (denoted by E12_Production) are comprised
of multiple sub-events through the P9_consists_of relationship. Each sub-event has an
actor associated with it through the P14_carried_out_by relationship. To construct a
network of actors who have collaborated on the same cultural heritage object, we iterate
over these composite production events and create an edge between any two actors that
are part of the same production event. If actors have collaborated in multiple production
events, multiple edges are created between their nodes, making them strongly connected.
This process is visually represented in Figure 2. The underlying assumption is that actors
collaborating on cultural heritage objects will likely produce works that share similarities in
style, category, or other attributes.

crm:E12_Production

crm:E12_Production crm:E12_Production

crm:E39_Actor crm:E39_Actor

crm:P9_consists_of crm:P9_consists_of

crm:P14_carried_out_by crm:P14_carried_out_by

q42:has_worked_with

q42:has_worked_with

Figure 2 Visualization of collaboration aggregation

The number of edges and nodes in each resulting aggregate graph are detailed in Table 1.

File name # edges # nodes

collaboration.nt 1 491 958 55 285
filtered-collaboration.nt 507 782 7 982
filtered4-collaboration.nt 255 524 3 483

Table 1 # of edges and # of unique actors in each collaboration dataset
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Technique

In addition to examining the actors themselves, it is also insightful to consider the cultural
heritage objects they have created. Each production event may have one or more E55_Type
nodes associated with it through the P32_used_general_technique relationship, represent-
ing which technique is used during the production of the cultural heritage object. The dataset
contains a total of 1 010 distinct techniques, ranging from broad categories like “painting”,
“sculpting”, and “casting”, to more specific techniques like “aizuri-e”8, “chiaroscuro”9, and
“Façon de Venise”10. To construct a network of actors who have used the same techniques, we
create an edge between two actors for every technique they share. Consequently, actors who
share many techniques will be more strongly connected. This process is visually represented
in Figure 3.

crm:E55_Type

crm:E12_Production crm:E12_Production

crm:E39_Actor crm:E39_Actor

crm:P32_used_general_technique crm:P32_used_general_technique

crm:P14_carried_out_by crm:P14_carried_out_by
q42:has_same_technique_as

q42:has_same_technique_as

Figure 3 Visualization of technique aggregation

The number of edges and nodes in each resulting aggregate graph are detailed in Table 2.

File name # edges # nodes

technique.nt 91 147 760 23 441
filtered-technique.nt 63 786 788 17 972
filtered4-technique.nt 13 789 038 5 624

Table 2 # of edges and # of unique actors in each technique dataset

Location

In addition to information about techniques and collaboration, the Rijksmuseum linked
data collection also contains information about the location of production events. A pro-
duction event may have one or more E53_Place nodes associated with it through the
P7_took_place_at relationship denoting the location where a production event took place.
The dataset includes 17 430 distinct locations, ranging from local neighbourhoods and cities

8 Predominantly blue Japanese woodblock prints
9 The use of strong tonal contrasts in lighting to portray depth and volume in paintings
10 Venetian style of glass from the 16th/17th century
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to countries, continents and even planets. To construct a network of actors who have worked
in the same location, we create a mapping of locations and which actors have been involved
in production events in these locations. An edge is created between any two actors for every
location they share as detailed in Figure 4. Consequently, actors who have worked in many
of the same locations are more strongly connected.

crm:E53_Place

crm:E12_Production crm:E12_Production

crm:E39_Actor crm:E39_Actor

crm:P7_took_place_at crm:P7_took_place_at

crm:P14_carried_out_by crm:P14_carried_out_by
q42:has_worked_in_same_location_as

q42:has_worked_in_same_location_as

Figure 4 Visualization of location aggregation

The number of edges and nodes in each resulting aggregate graph is detailed in Table 3.

File name # edges # nodes

location.nt 98 779 582 43 757
filtered-location.nt 20 817 814 15 691
filtered4-location.nt 5 313 702 5 151

Table 3 # of edges and # of unique actors in each location dataset

Teacher-Student

The RKD (Netherlands Institute for Art History) offers an openly available dataset called
RKDartists, which provides data on 257 792 distinct actors11. This dataset contains extensive
information on actors including the locations in which they were active, their family relations,
which actors influenced them, which actors taught them and which actors they have taught,
all available in a linked data format. Especially the teacher-student relations offer valuable
insights into which actors might be closely related to which other actors.

Given that these actors are only linked within the RKD dataset, a mapping from RKD
URI to Rijksmuseum URI based on the actors’ names has to be created. To construct a
network of actors who have had a teacher-student relationship, we use this mapping and
create an edge between any two actors who have had a teacher-student relationship in the
RKD dataset as illustrated in Figure 5. In contrast to the aforementioned aggregate networks,
this network does not contain any parallel edges between actors. The RKDartists dataset

11 https://research.rkd.nl/
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does not give any information on how strong the teacher-student relationship was between
any two actors, thus we consider every teacher-student relationship equally strong.

sch:Person sch:Person

["..."] ["..."]

["..."] ["..."]

crm:E42_Identifier crm:E42_Identifier crm:E42_Identifier crm:E42_Identifier

crm:E39_Actor crm:E39_Actor crm:E39_Actor crm:E39_Actor

rkd:teacher_of

rkd:student_of
sch:namesch:alternateName sch:alternateNamesch:name

crm:P190_has_symbolic_content

crm:P190_has_symbolic_content

crm:P190_has_symbolic_content

crm:P190_has_symbolic_content

crm:P1_is_identified_by crm:P1_is_identified_by crm:P1_is_identified_by crm:P1_is_identified_by

la:equivalent la:equivalentq42:has_taught

RKD
Linked Art

Figure 5 Visualization of teacher-student aggregation

The number of edges and nodes in each resulting aggregate graph is detailed in Table 4.

File name # edges # nodes

teacher-student.nt 8 896 7 345
filtered-teacher-student.nt 3 274 2 927
filtered4-teacher-student.nt 1 372 1 265

Table 4 # of edges and # of unique actors in each teacher-student dataset

Combinations

While individual datasets provide valuable insights into the relations of actors based on each
particular aggregation technique, it might not be sufficient to find small clusters of similar
actors. For example, clustering actors based on technique alone could create clusters of
actors who all have created paintings, but with wildly different art styles. To address this
issue, we propose a method that combines the aggregate datasets into supersets. This results
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in |P (S) \ {{}}| = 2|S| − 1 = 24 − 1 = 15 distinct combinations. The number of edges and
unique actors in each resulting combined graph is detailed in Table 5.

unfiltered filtered filtered4

File name # edges # nodes # edges # nodes # edges # nodes

teacher-student 8 896 7 345 3 274 2 927 1 372 1 265
collaboration 1 491 958 55 285 507 782 7 982 255 524 3 483
technique 91 147 760 23 441 63 786 788 17 972 13 789 038 5 624
location 98 779 582 43 757 20 817 814 15 691 5 313 702 5 151
teacher-student-collaboration 1 500 854 57 338 511 056 8 731 256 896 3 685
teacher-student-technique 91 156 656 26 907 63 790 062 18 356 13 790 410 5 664
teacher-student-location 98 788 478 46 988 20 821 088 16 365 5 315 074 5 280
collaboration-technique 92 639 718 68 452 64 294 570 18 574 14 044 562 5 711
collaboration-location 100 271 540 66 249 21 325 596 16 728 5 569 226 5 391
technique-location 189 927 342 49 240 84 604 602 19 323 19 102 740 5 783
teacher-student-collaboration-technique 92 648 614 69 413 64 297 844 18 715 14 045 934 5 718
teacher-student-collaboration-location 100 280 436 67 688 21 328 870 17 080 5 570 598 5 438
teacher-student-technique-location 189 936 238 51 532 84 607 876 19 544 19 104 112 5 802
collaboration-technique-location 191 419 300 70 249 85 112 384 19 568 19 358 264 5 810
teacher-student-collaboration-technique-
location 191 428 196 71 144 85 115 658 19 677 19 359 636 5 814

Table 5 Number of edges and number of unique actors in each combined dataset

As mentioned in Section 4.1, the unfiltered datasets contain many actors of which very
little information is available. A 55.5% decrease in edges and a 72.3% decrease in nodes
between the largest unfiltered and filtered datasets can be seen in Table 5, indicating actors
with little to no information make up significant parts of the unfiltered datasets, which could
lead to erroneous conclusions in our experiments. In contrast, the datasets only containing
actors with four or more pictures available on Rijksstudio (filtered4) eliminate too many
actors, potentially missing out on classifying valuable actors by including these datasets in
our analysis. Therefore, our analysis only includes the datasets containing actors with one
or more pictures available on Rijksstudio (filtered). Table 11 in Appendix B provides
detailed graph metrics of each combined filtered dataset.

4.3 Algorithms

To process these aggregate datasets and create communities of actors who might be similar
to one another, we propose three community detection algorithms.

Louvain

The Louvain community detection method, introduced in 2008 by Blondel et al. [3], is one
of the most widely used community detection methods. It aimed to speed up community
detection in large graphs through the local moving of nodes by calculating a difference in
modularity score for each move. Modularity is defined as the measure of the density of edges
within a community versus the density of edges between communities [16]. The formula for
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this is as follows:

Q = 1
2m

∑
i,j

[
Aij − kikj

2m

]
δ (ci, cj) (1)

In Equation (1), Ai,j is the sum of the weights of edges between i and j, ki =
∑

j Ai,j is the
sum of all weights of edges connected to i, ci is the community i is in, δ (u, v) is the function
that returns 1 if u = v and 0 otherwise and m = 1

2
∑

i,j Ai,j is the sum of all weights in the
graph.
The Louvain method is a two-part algorithm that is run iteratively:
1. Local Moving Each node is initially considered as its own community. For each com-

munity, it will calculate a difference in modularity if it were to merge with its neighbouring
community. It will then merge the community with the neighbour with the largest positive
change in modularity.

2. Aggregation An aggregate graph is created by merging all nodes in the same community
into a single node in the aggregate graph.

This iterative process is repeated until no improvement in modularity is possible, resulting
in a clustering of nodes where modularity is maximized across the entire graph.

Leiden

The Leiden community detection method, introduced in 2019 by Traag et al. [22], is a
variation of the Louvain community detection method designed to ensure well-connected
communities. This method modifies the Louvain method by adding a refining phase after
the local moving phase to prevent disconnected communities from being created.

Due to the deterministic behaviour of the Louvain community detection method, a node
might be added to a neighbouring community before another node is removed from the
same community, causing the community to become disconnected. To prevent this issue, the
refining phase in the Leiden community detection method re-applies the local moving phase
on each community found in the initial local moving phase, breaking up any disconnected
communities into separate communities before they are aggregated in the next phase.

Infomap

Unlike the modularity-based Louvain and Leiden community detection methods, the Infomap
community detection method has a flow-based approach [20, 19]. This approach aims to
minimize the map equation, a measure to calculate the expected description length of a
random walk through the graph, measured in bits per step.

A random walk represents a random sequence of connected nodes in a graph such that a
path is formed. This path can be described using bits by creating a sequence of bits which
is unique to this path. In large graphs, giving each node its own binary representation can
lead to extensive path descriptions. The Infomap method aims to minimize the length of
such a description by applying Huffman coding, grouping often sequentially visited nodes to
decrease their description length, decreasing the overall description length of any random
walk.

The Infomap algorithm simulates random walks through the graph, measuring the visit
frequencies of each node. It then applies a deterministic greedy search algorithm to the
results, refining them using a simulated annealing approach, to minimize the map equation
over the entire graph. This results in communities of nodes, such that the expected binary
description, the codelength, of a random walk is minimized.
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4.4 Iterative Approach

Given that the resulting communities will be used to generate labels for a recommendation
engine, it is impractical for these communities to be excessively large. Labelling an actor as
similar to a large number of other actors defeats the purpose of the recommendation engine.

To ensure usable results we introduce a novel iterative strategy that reduces the size of the
discovered communities. This strategy iteratively applies community detection algorithms to
the largest community, subdividing it into smaller communities. If the algorithm is unable to
subdivide the largest community into smaller communities it is skipped and the next largest
community is used. This process repeats until one of the following stopping conditions is
met: a maximum number of iterations has been reached, the largest community is below a
minimum community size, or none of the communities can be subdivided any further. In all
of our experiments, we use a maximum of 1 000 iterations and a minimum community size of
10 nodes.

This strategy no longer optimizes for a global measure of community structure but rather
optimizes for these locally. The main goal of this strategy is to reduce community sizes to
increase the usability of the results, rather than optimizing for a global measure of community
structure.

5 Experiments

Given the 15 datasets, three community detection techniques and whether to run the
community detection algorithm iteratively, there are 15 · 3 · 2 = 90 distinct combinations to
test. Since these datasets do not have a ground truth, validating the results is quite hard.
Firstly, we focus on bringing the number of results down. We will look at a combination of
objective measures as well as compare the results to an approximate form of ground truth.
Secondly, we will present a select number of results to real-world users in a survey and
perform validation this way.

5.1 Implementation

To gather results we have written an application in Python which can run any of the
community detection algorithms with any of the datasets, iteratively or not. This program
uses CDLib12 to provide a common interface for all community detection algorithms as
well as a common interface for the results (NodeClustering). Under the hood, CDLib uses
pre-existing implementations of each of the algorithms used in this paper. For the Louvain
algorithm, this is the python-louvain implementation available on PyPi and GitHub13. For
the Leiden algorithm, this is the leidenalg implementation, created by the original authors
of the Leiden paper [22], available on PyPi and GitHub14. And lastly, for the Infomap
algorithm, this is the infomap implementation [8], available on PyPi and GitHub15. The
program is run on a Dell XPS 15 7950 with an Intel i7-9750H (12) @ 4.500GHz and 64GB of
memory and all resulting NodeClusterings are saved to the disk for later processing and
gathering of metrics.

12 https://github.com/GiulioRossetti/cdlib
13 https://github.com/taynaud/python-louvain
14 https://github.com/vtraag/leidenalg
15 https://github.com/mapequation/infomap

https://github.com/GiulioRossetti/cdlib
https://github.com/taynaud/python-louvain
https://github.com/vtraag/leidenalg
https://github.com/mapequation/infomap
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5.2 Objective metrics
Given a graph G = (V, E) and a set C = {C1, . . . , Cn} of non-overlapping communities with
V =

⋃n
i=1 Ci, we can calculate a set of metrics which can be used to gain insights into the

quality of the results. These metrics are collected from the previously saved NodeClusterings
using a Python script. We collect the following metrics:

Community count The number of communities found by the community detection algorithm.
Calculated as: |C|.

Average community size The average community size is the average size of communities
found by the community detection algorithm. A high average community size is a sign
of broad general communities whereas a lower average community size is a sign of more
specific communities. Calculated as:

∑|C|
i=1{|Ci|}/|C|.

Max community size The maximum size of the communities found. A larger max size means
there is a large community with a very broad set of actors, whereas a smaller max size
means the community detection was able to find more specific communities. Calculated
as: maxCi∈C |Ci|.

5th percentile community size The 5th percentile community size shows the smallest com-
munity size, accounting for any outliers.

95th percentile community size The 95th percentile community size shows the largest com-
munity size, accounting for any outliers. If this number is substantially lower than the
max community size, we can assume there are only very few outlying communities in
terms of size.

Modularity Modularity measures the community structure in a graph. Given the graph
topology and a set of communities, we can calculate the modularity using Equation (1).
A high modularity score is a sign of communities with strongly intra-connected nodes
and weak inter-connected nodes between communities.

Codelength The lower bound of the average bits needed to describe a single step in a random
walk of the graph. A lower codelength means the partitions allow for efficient mapping
of a random walk across the graph, whereas a higher codelength means more bits per
step are needed to describe such a path. The codelength is explained more in-depth in
Section 4.3.

5.3 Semi-supervised learning
A form of semi-supervised learning has been performed to gain more insights into the results.
The Rijksmuseum website includes a feature called Rijksstudio16, which allows users to
create curated sets of cultural heritage items for others to explore and interact with. For
our semi-supervised learning, we take these user sets and compare the actors of the works
in the set with the communities in our results. Rijksstudio contains a total of 196 976 of
these user sets. However, many of these user sets are expected to be of very low quality,
e.g. a user simply making collections of works that they would like to see in the museum.
Therefore, we have chosen to filter out all user sets which have less than 500 views, contain
works of 50 or more distinct actors, or contain works of two or fewer distinct actors. For
each dataset, we “equalize” the result set and validation set by taking the intersection of
all actors appearing in both sets. The resulting actor counts for each dataset are shown in

16 https://www.rijksmuseum.nl/rijksstudio

https://www.rijksmuseum.nl/rijksstudio
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Table 6. While this method does not cover the entire result set, we still expect it to give an
accurate representation.

Dataset # nodes Intersection

teacher-student 2 927 1 615
collaboration 7 982 3 557
technique 17 972 4 846
location 15 691 4 956
teacher-student-collaboration 87 31 3 798
teacher-student-technique 18 356 5 094
teacher-student-location 16 365 5 240
collaboration-technique 18 574 5 199
collaboration-location 16 728 5 297
technique-location 19 323 5 417
teacher-student-collaboration-technique 18 715 5 287
teacher-student-collaboration-location 17 080 5 404
teacher-student-technique-location 19 544 5 560
collaboration-technique-location 19 568 5 567
teacher-student-collaboration-technique-location 19 677 5 633

Table 6 The intersection between each dataset and the validation set

Using these equalized sets we can compare all results using the Rand index [18]. The
Rand index measures the similarity between two sets of clusters and is commonly used to
compare the results of clustering algorithms. It gives a value between 0 and 1, where 0
indicates randomness and 1 indicates perfect similarity. It is computed by iterating over all
pairs of actors and checking if they are in the same cluster in the result set and the validation
set. We count the times a pair is either in the same cluster in both sets or not in the same
cluster in both sets. These are the true positives and true negatives. From this, we can
calculate the Rand index using Equation (2).

R = TP + TN

n(n − 1)/2 (2)

In Equation (2), TP is the number of true positives, TN is the number of true negatives
and n is the number of actors.

The Rand index assumes that neither of the sets contains overlapping clusters. However, in
our case, the validation set does have overlapping clusters. This is not necessarily undesirable,
because we can still calculate the Rand index. It is irrelevant whether a pair occurs only in
one cluster or in multiple clusters in the validation set for the index to work, as long as the
result set only contains non-overlapping clusters, which it does.

5.4 Validation survey
The metrics mentioned in Section 5.2 and Section 5.3 give insights into which datasets and
techniques provide the most valuable communities to be utilized in a recommendation engine.
To validate these results, we survey real-world users to validate whether the results are of
sufficient quality. Users are asked to give a subjective rating of a set of actors on a scale
from 1 through 5 where 1 means the actors do not match and 5 means the actors match
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well. Besides this, the users can provide additional textual feedback. Since many actors
in the dataset are not well-known, we aid the respondents by showing the four top-rated
human-made objects of each actor, obtained from the Rijksstudio platform.

The survey consists of a website created with React and TypeScript and a back-end
created solely in TypeScript. A Google Datastore is used to store the questions and the
responses from users. Before the survey, the datastore is populated with a set of “questions”.
Each question is simply a set of actors, which is generated from the communities in our
result sets. For every community with at least four actors, we take the six actors whose
works cumulatively have the most likes on Rijksstudio. This results in questions with four
to six actors. Whenever a new user starts the survey they are pseudo-randomly assigned a
total of 24 questions from each result set, such that questions from every result set appear
approximately just as often as any other. Screenshots of what the survey looks like in practice
can be found in Appendix D. When the user has completed the survey they can request 12
more questions to be assigned to them in the same way as before, ensuring no duplicate
questions are assigned. The user can do this as often as they want.

6 Results

This section presents the results of the experiments outlined in Section 5. All results presented
in this section are obtained by running the algorithms on the filtered datasets as described in
Section 4.1, both using the non-iterative and iterative approach as described in Section 4.4.
The figures in this section will use abbreviated dataset names. Table 7 shows a conversion
table for each dataset and its abbreviated counterpart. A complete set of all results can be
found in Table 12 in Appendix C.

Dataset Abbr. Dataset

filtered-collaboration col
filtered-collaboration-location col-loc
filtered-collaboration-technique col-tec
filtered-collaboration-technique-location col-tec-loc
filtered-location loc
filtered-teacher-student tea
filtered-teacher-student-collaboration tea-col
filtered-teacher-student-collaboration-location tea-col-loc
filtered-teacher-student-collaboration-technique tea-col-tec
filtered-teacher-student-collaboration-technique-location tea-col-tec-loc
filtered-teacher-student-location tea-loc
filtered-teacher-student-technique tea-tec
filtered-teacher-student-technique-location tea-tec-loc
filtered-technique tec
filtered-technique-location tec-loc

Table 7 A conversion table for the abbreviated dataset names
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6.1 Community Structure
The applied algorithms use two distinct measures of community structure for which they
optimize. The Louvain and Leiden algorithms both use the modularity score, whereas the
Infomap algorithm uses the codelength as calculated by the map equation. Both are detailed
in Section 4.3. We expect these measures to be correlated with one another in our output.
The modularity and codelength for each of our result sets are plotted in Figure 6. This
figure shows an inverse correlation between the modularity and codelength, which indicates
both metrics give relevant insights into the quality of the community structure of the given
result. The figure also shows how the iterative approaches generally perform worse than the
non-iterative approaches. This is to be expected, given that the algorithms are run locally on
increasingly smaller sets of nodes and are no longer optimizing their measure of community
structure globally across the graph.
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Figure 6 Codelength versus modularity

This phenomenon is even more apparent in Figure 7 where it’s clear the modularity-based
community detection methods have a much lower modularity score when run iteratively.
Surprisingly, the Infomap algorithm seems to be largely unaffected. The iterative approaches
do seem to be very effective at reducing community sizes. But again, the Infomap algorithm
seems largely unaffected. It seems like the Infomap algorithm has trouble reducing the
size of existing communities, presumably because these communities already have close to
the optimal codelength. This would also explain why the modularity barely changes, the
communities aren’t changing either.
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Figure 7 The average modularity and mean community size per algorithm
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Figure 8 The maximum modularity and minimum codelength per dataset

The maximum modularity and minimum codelength for each dataset are plotted in
Figure 8 ordered by maximum modularity from left to right. We observe the teacher-student
dataset has both the maximum modularity and the minimum codelength out of all datasets.
This means this dataset has an inherently strong community structure. This is to be expected;
many of these teacher-student pairs are likely from the same region and time period and thus
will create tightly-knit communities that are not well connected to other communities. On
the other hand, we can see there are four worst-scoring datasets, each of which contains the
technique-location pair of datasets. Looking back at Table 5 we can see that this combined
dataset contains 84 604 602 edges, while the combination of all datasets contains 85 115 658
edges. The technique-location combination by far overshadows the other datasets in the fully
combined dataset in terms of size and it therefore scores just as low as the technique-location
dataset. Looking at the modularity scores of the other datasets, we observe the collaboration
datasets also have an above-average community structure. Combining the collaboration
dataset with the teacher-student dataset even increases its modularity score. Looking at the
location modularity scores, we can see it performs the worst of all single dataset datasets.
Combined with any other dataset, the location dataset lowers the community score.

6.2 Semi-supervised learning

Besides running the experiments, the results are also validated against a validation set as
described in Section 5.3. In Figure 9 the mean community size is plotted against the Rand
index. The figure shows an inverse correlation between the mean community size and the
Rand index, indicating that having smaller more specific communities increases how well the
results overlap with the validation set. Furthermore, we find that especially the iterative
approaches result in a higher Rand index because these approaches lead to a smaller mean
community size. We see that mostly the Louvain and Leiden algorithms perform very well
whereas the Infomap algorithm generally scores lower in terms of the Rand index. We again
see a clear difference in the performance of the iterative approach versus the non-iterative
approach for the Louvain and Leiden algorithms, where this, just like in Figure 6, lacks for
the Infomap algorithm.
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Figure 9 Rand index versus mean community size

The aggregate results of each algorithm are summarized, in order of Rand index from
left to right, in Figure 10. The Leiden and Louvain algorithms outperform the Infomap
algorithm whether run iteratively or not. Furthermore, the figure shows that especially the
Leiden algorithm sees a notable decrease in mean community size when run iteratively. This
is also supported by the large drop in modularity as seen in Figure 7 as opposed to the smaller
drop in modularity for the Louvain algorithm. Similarly, we find that the Leiden algorithm
outperforms the Louvain algorithm in terms of the Rand index when run iteratively. This is
quite surprising as both techniques are quite similar. This could be an interesting subject of
future research.
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Figure 10 The average Rand index and mean community size per algorithm

Figure 11 shows the average Rand index and mean community size aggregated by each of
the datasets. Similarly to Figure 8 we find that the teacher-student dataset, the collaboration
dataset and the combination of the two appear as the top three best-performing datasets.
Surprisingly, the location datasets now score better than the technique datasets. The Rand
indices are slightly higher but especially the mean community sizes are much lower for
any dataset with the location dataset in it. However, similarly to before, any dataset with
the combination of the technique and location datasets performs quite badly, since this
combination still overshadows any other datasets because of its sheer size.
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Figure 11 The average Rand index and mean community size per dataset

6.3 Validation survey results

A selection of six result sets has been made to be included in the validation survey described in
Section 5.4, based on the metrics shown in this section and discussions with a domain expert.
The teacher-student-collaboration and the teacher-student-collaboration-technique datasets
were selected because these datasets have a high average modularity and Rand index across
all algorithms. For the techniques, the non-iterative Louvain algorithm and the iterative
Louvain and Leiden algorithms were selected to create a comparison against the iterative
versus the non-iterative approach, as well as a comparison between the effectiveness of using
the Leiden algorithm over the Louvain algorithm when applied iteratively. Table 8 shows
the number of communities and questions in each result set. The questions are generated
from the communities in the result set as described in Section 5.4, resulting in a total of
2 722 questions across the six result sets. Note the discrepancy in the number of communities
versus the number of questions, denoting many communities contain less than four actors.

Technique Dataset # Communities # Questions

Louvain tea-col 175 27
Louvain Iteratively tea-col 1 683 974
Leiden Iteratively tea-col 1 621 816
Louvain tea-col-tec 21 7
Louvain Iteratively tea-col-tec 570 240
Leiden Iteratively tea-col-tec 1 050 658

Table 8 The result sets presented in the validation survey

The survey received answers from 525 distinct users, answering 13 361 questions in total.
Table 9 shows the average rating over all answered questions corresponding to each result
set, with Figure 12 providing a visual representation of the average rating versus the Rand
index. It’s interesting to see the Louvain algorithm performs well on the smaller dataset,
but does much worse on the larger dataset. Inversely, the two iterative approaches perform
much better on the larger dataset than on the smaller dataset.
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Technique Dataset # Answers Avg. Rating Rand Index

Louvain tea-col 2 329 3.74 0.85
Louvain Iteratively tea-col 2 231 3.53 0.96
Leiden Iteratively tea-col 2 232 3.54 0.95
Louvain tea-col-tec 2 083 3.08 0.78
Louvain Iteratively tea-col-tec 2 277 3.67 0.93
Leiden Iteratively tea-col-tec 2 209 3.80 0.97

Table 9 The results of the validation survey
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Figure 12 The Rand index and mean rating for every result set; the error bars show the 95%
confidence interval

Result Set A Result Set B P-Value

Leiden Iteratively tea-col-tec Louvain tea-col 0.052
Leiden Iteratively tea-col-tec Louvain Iteratively tea-col-tec 0.000
Leiden Iteratively tea-col-tec Leiden Iteratively tea-col 0.000
Leiden Iteratively tea-col-tec Louvain Iteratively tea-col 0.000
Leiden Iteratively tea-col-tec Louvain tea-col-tec 0.000
Louvain tea-col Louvain Iteratively tea-col-tec 0.068
Louvain tea-col Leiden Iteratively tea-col 0.000
Louvain tea-col Louvain Iteratively tea-col 0.000
Louvain tea-col Louvain tea-col-tec 0.000
Louvain Iteratively tea-col-tec Leiden Iteratively tea-col 0.000
Louvain Iteratively tea-col-tec Louvain Iteratively tea-col 0.000
Louvain Iteratively tea-col-tec Louvain tea-col-tec 0.000
Leiden Iteratively tea-col Louvain Iteratively tea-col 0.681
Leiden Iteratively tea-col Louvain tea-col-tec 0.000
Louvain Iteratively tea-col Louvain tea-col-tec 0.000

Table 10 The results of applying a Student’s t-test to each pair of result sets



G.J. de Jong 21

To give a statistical analysis of our findings, we applied the Student’s t-test to the ratings
of each pair of result sets, as detailed in Table 10. With a significance level of α = 0.01, we
find that almost all pairs of result sets have a statistically different mean rating from one
another (p-value < α). Interesting here is how statistically insignificant the two iterative
approaches are when run on the small dataset, but when run on the larger dataset there is a
clear statistical difference between the two, signifying that besides the technique used, the
dataset strongly influences the results as well.

7 Conclusion

This study has demonstrated the effectiveness of community detection in extracting knowledge
from the topology of linked data, supported by a series of experiments (Section 5) and a
subsequent survey (Section 5.4) conducted on real-world users. The findings (Section 6)
indicate that the quality of the results is influenced by the choice of community detection
algorithm, whether the algorithm is run iteratively, and the aggregation method used.

The data aggregation methods presented in Section 4.2 transform heterogeneous linked
data into a homogeneous graph, enabling the application of community detection algorithms
on this data. This method allows for the effortless inclusion or exclusion of relevant or
irrelevant data ensuring communities can be found that reflect the properties of the ag-
gregation methods used. This allows for highly specific datasets to be created and used.
Our findings indicate the choice of dataset drastically changes the performance of com-
munity algorithms used, with iterative approaches performing better on larger datasets and
non-iterative approaches performing better on smaller more specific datasets.

Furthermore, a novel approach that iteratively runs community detection methods
is proven to be an effective strategy for reducing community sizes without diminishing
community quality, supported by the results of the survey on real-world users (Section 6.3).
This effect is particularly evident in modularity-optimizing community detection algorithms
such as the Louvain and Leiden algorithms (Section 6.1).

In conclusion, the iterative application of community detection algorithms on aggregated
linked data offers a robust method for creating small, meaningful communities of actors
within cultural heritage data, demonstrating significant potential for further research and
application.

Future Research

This study has shown the effectiveness of applying graph theory to linked data to extract
knowledge from its topology. Future research could explore several promising areas:

Weighted Data Adding weights to the data may prevent smaller datasets from being over-
shadowed in combined datasets. Additionally, by adjusting these weights to emphasize
specific properties, researchers can more accurately discern which properties contribute
to better results.

Additional Community Detection Algorithms Applying additional community detection
algorithms could result in better results. The behaviour of the algorithms when run
iteratively is quite erratic, therefore other community detection algorithms may respond
in different ways than we have observed.

Cross-Disciplinary Applications This study has shown community detection algorithms are
an effective way of extracting knowledge from linked cultural heritage data. Applying
these techniques to linked data in other fields will validate their adaptability.
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Iterative Algorithm Analysis The novel iterative approach used in this study showed that the
Leiden algorithm reduces community sizes significantly more compared to the Louvain
algorithm. Further research is needed to understand why these differences occur.
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A Linked Art Visualization

Figure 13 Graph showing how Linked Art entities are interconnected
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B Datasets

Dataset Diameter APL Transitivity # CCs # nodes # edges

teacher-student 32 11.04 0.0231777 316 2 927 3 274
collaboration 9 2.91 0.0264787 117 7 982 50 7782
technique 4 1.84 0.7667573 1 17 972 63 786 788
location 5 1.94 0.7424659 58 15 691 20 817 814
teacher-student-collaboration 10 3.06 0.0271253 149 8 731 511 056
teacher-student-technique 9 1.88 0.7667262 15 18 356 63 790 062
teacher-student-location 8 2.02 0.7423577 86 16 365 20 821 088
collaboration-technique 5 1.87 0.7662950 6 18 574 64 294 570
collaboration-location 7 2.01 0.7413177 57 16 728 21 325 596
technique-location 4 1.82 0.6499929 5 19 323 84 604 602
teacher-student-collaboration-technique 6 1.88 0.7662660 11 18 715 64 297 844
teacher-student-collaboration-location 7 2.05 0.7412147 67 17 080 21 328 870
teacher-student-technique-location 6 1.84 0.6499798 12 19 544 84 607 876
collaboration-technique-location 5 1.83 0.6498781 5 19 568 85 112 384
teacher-student-collaboration-technique-
location 6 1.84 0.6498653 8 19 677 85 115 658

Table 11 Graph metrics of each combined dataset
# CCs = the number of connected components in the graph
APL = the average path length across the graph
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C Results

Table 12 The full results for every combination of technique and dataset.

Algorithm Short
Dataset

#
Actors

#
Comms

Mean
Comm

Size

Max
Comm

Size
5th
%

95th
% Modularity Codelength Rand

Index
Validation

Set
Overlap

Infomap col 7 982 543 14.70 915 2 42 0.49 8.30 0.93 3 557
Infomap col-loc 16 728 362 46.21 4 713 2 108 0.37 12.21 0.79 5 297
Infomap col-tec 18 574 57 325.86 4 292 2 2 091 0.51 12.83 0.81 5 199
Infomap col-tec-loc 19 568 61 320.79 12 616 2 652 0.30 13.36 0.40 5 567
Infomap loc 15 691 334 46.98 4 720 2 88 0.37 12.21 0.78 4 956
Infomap tea 2 927 317 9.23 1 365 2 5 0.59 8.43 0.70 1 615
Infomap tea-col 8 731 600 14.55 820 2 36 0.49 8.30 0.94 3 798
Infomap tea-col-loc 17 080 440 38.82 5 028 2 81 0.37 12.22 0.79 5 404
Infomap tea-col-tec 18 715 86 217.62 8 991 2 754 0.42 12.84 0.64 5 287
Infomap tea-col-tec-loc 19 677 84 234.25 12 771 2 304 0.30 13.37 0.40 5 633
Infomap tea-loc 16 365 424 38.60 5 507 2 77 0.35 12.22 0.76 5 240
Infomap tea-tec 18 356 93 197.38 4 350 2 910 0.51 12.82 0.81 5 094
Infomap tea-tec-loc 19 544 77 253.82 12 862 2 467 0.30 13.36 0.37 5 560
Infomap tec 17 972 42 427.90 8 169 3 1 560 0.43 12.83 0.66 4 846
Infomap tec-loc 19 323 54 357.83 12 473 2 674 0.30 13.37 0.40 5 417
Infomap Iteratively col 7 982 1 094 7.30 915 2 15 0.38 8.61 0.95 3 557
Infomap Iteratively col-loc 16 728 593 28.21 4 630 2 60 0.37 12.21 0.80 5 297
Infomap Iteratively col-tec 18 574 125 148.59 4 292 2 490 0.50 12.84 0.82 5 199
Infomap Iteratively col-tec-loc 19 568 84 232.95 12 613 2 402 0.30 13.36 0.40 5 567
Infomap Iteratively loc 15 691 551 28.48 4 346 2 64 0.37 12.20 0.80 4 956
Infomap Iteratively tea 2 927 716 4.09 29 2 9 0.71 5.29 0.93 1 615

Continued on next page
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Table 12 Continued from previous page

Algorithm Short
Dataset

#
Actors

#
Comms

Mean
Comm

Size

Max
Comm

Size
5th
%

95th
% Modularity Codelength Rand

Index
Validation

Set
Overlap

Infomap Iteratively tea-col 8 731 1 306 6.69 818 2 13 0.36 8.72 0.96 3 798
Infomap Iteratively tea-col-loc 17 080 675 25.30 4 722 2 55 0.37 12.21 0.81 5 404
Infomap Iteratively tea-col-tec 18 715 162 115.52 4 342 2 417 0.50 12.84 0.82 5 287
Infomap Iteratively tea-col-tec-loc 19 677 106 185.63 12 771 2 293 0.30 13.36 0.40 5 633
Infomap Iteratively tea-loc 16 365 645 25.37 4 597 2 59 0.37 12.20 0.80 5 240
Infomap Iteratively tea-tec 18 356 136 134.97 4 350 2 477 0.51 12.83 0.82 5 094
Infomap Iteratively tea-tec-loc 19 544 104 187.92 12 777 2 290 0.30 13.36 0.39 5 560
Infomap Iteratively tec 17 972 89 201.93 8 169 2 648 0.42 12.83 0.67 4 846
Infomap Iteratively tec-loc 19 323 81 238.56 12 470 2 360 0.30 13.36 0.40 5 417
Leiden col 7 982 193 41.36 2 431 2 238 0.49 7.80 0.86 3 557
Leiden col-loc 16 728 67 249.67 4 489 2 2 158 0.44 12.44 0.83 5 297
Leiden col-tec 18 574 12 1 547.83 5 452 2 4 785 0.51 12.86 0.77 5 199
Leiden col-tec-loc 19 568 9 2 174.22 7 092 2 5 996 0.41 13.45 0.72 5 567
Leiden loc 15 691 70 224.16 3 928 2 1 631 0.44 12.40 0.83 4 956
Leiden tea 2 927 347 8.44 186 2 60 0.87 6.09 0.91 1 615
Leiden tea-col 8 731 220 39.69 2 292 2 248 0.49 7.80 0.87 3 798
Leiden tea-col-loc 17 080 76 224.74 4 034 2 1 886 0.44 12.43 0.82 5 404
Leiden tea-col-tec 18 715 19 985.00 5 453 2 4 729 0.51 12.86 0.77 5 287
Leiden tea-col-tec-loc 19 677 13 1 513.62 6 457 2 5 227 0.41 13.45 0.73 5 633
Leiden tea-loc 16 365 103 158.88 3 182 2 1 185 0.44 12.42 0.84 5 240
Leiden tea-tec 18 356 39 470.67 5 423 2 4 110 0.51 12.85 0.77 5 094
Leiden tea-tec-loc 19 544 24 814.33 6 659 2 4 296 0.41 13.45 0.73 5 560
Leiden tec 17 972 5 3 594.40 5 417 2 199 5 169 0.51 12.85 0.77 4 846
Leiden tec-loc 19 323 9 2 147.00 6 307 2 5 525 0.41 13.45 0.73 5 417
Leiden Iteratively col 7 982 1 442 5.54 1 048 2 10 0.22 8.22 0.95 3 557

Continued on next page
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Table 12 Continued from previous page

Algorithm Short
Dataset

#
Actors

#
Comms

Mean
Comm

Size

Max
Comm

Size
5th
%

95th
% Modularity Codelength Rand
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Validation

Set
Overlap

Leiden Iteratively col-loc 16 728 1 573 10.63 1 094 2 23 0.14 13.88 0.97 5 297
Leiden Iteratively col-tec 18 574 1 034 17.96 2 550 2 36 0.15 14.58 0.96 5 199
Leiden Iteratively col-tec-loc 19 568 1 540 12.71 906 2 35 0.02 15.47 0.97 5 567
Leiden Iteratively loc 15 691 970 16.18 1 282 2 50 0.17 13.68 0.96 4 956
Leiden Iteratively tea 2 927 741 3.95 13 2 9 0.68 5.50 0.93 1 615
Leiden Iteratively tea-col 8 731 1 621 5.39 1 002 2 10 0.21 8.26 0.95 3 798
Leiden Iteratively tea-col-loc 17 080 1 642 10.40 1 118 2 24 0.14 13.88 0.97 5 404
Leiden Iteratively tea-col-tec 18 715 1 050 17.82 2 551 2 39 0.15 14.58 0.97 5 287
Leiden Iteratively tea-col-tec-loc 19 677 1 571 12.53 906 2 34 0.02 15.48 0.97 5 633
Leiden Iteratively tea-loc 16 365 1 124 14.56 1 275 2 37 0.17 13.70 0.96 5 240
Leiden Iteratively tea-tec 18 356 662 27.73 2 661 2 62 0.17 14.48 0.96 5 094
Leiden Iteratively tea-tec-loc 19 544 1 399 13.97 913 3 38 0.02 15.48 0.97 5 560
Leiden Iteratively tec 17 972 602 29.85 2 660 3 71 0.17 14.48 0.96 4 846
Leiden Iteratively tec-loc 19 323 1 382 13.98 887 3 38 0.02 15.48 0.97 5 417
Louvain col 7 982 134 59.57 2 223 2 408 0.55 8.65 0.84 3 557
Louvain col-loc 16 728 67 249.67 3 279 2 2 258 0.44 12.46 0.85 5 297
Louvain col-tec 18 574 12 1 547.83 4 760 2 4 520 0.51 12.93 0.77 5 199
Louvain col-tec-loc 19 568 9 2 174.22 4 639 2 4 539 0.41 13.47 0.77 5 567
Louvain loc 15 691 69 227.41 2 586 2 2 060 0.44 12.45 0.84 4 956
Louvain tea 2 927 347 8.44 228 2 56 0.86 6.15 0.91 1 615
Louvain tea-col 8 731 175 49.89 2 225 2 226 0.56 8.72 0.85 3 798
Louvain tea-col-loc 17 080 79 216.20 3 021 2 2 098 0.44 12.45 0.83 5 404
Louvain tea-col-tec 18 715 21 891.19 4 733 2 4 200 0.51 12.88 0.78 5 287
Louvain tea-col-tec-loc 19 677 13 1 513.62 6 900 2 5 462 0.41 13.47 0.73 5 633
Louvain tea-loc 16 365 99 165.30 2 968 2 1 408 0.44 12.45 0.85 5 240

Continued on next page
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Table 12 Continued from previous page

Algorithm Short
Dataset

#
Actors
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Comms
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%

95th
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Index
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Louvain tea-tec 18 356 40 458.90 4 938 2 3 650 0.51 12.87 0.77 5 094
Louvain tea-tec-loc 19 544 19 1 028.63 6 261 2 4 629 0.41 13.48 0.73 5 560
Louvain tec 17 972 6 2 995.33 4 621 1 683 4 477 0.52 12.86 0.78 4 846
Louvain tec-loc 19 323 9 2 147.00 6 400 2 5 583 0.41 13.48 0.73 5 417
Louvain Iteratively col 7 982 1 474 5.42 991 2 10 0.23 9.79 0.95 3 557
Louvain Iteratively col-loc 16 728 1 190 14.06 2 101 2 28 0.32 12.94 0.92 5 297
Louvain Iteratively col-tec 18 574 464 40.03 3 300 2 95 0.32 13.64 0.92 5 199
Louvain Iteratively col-tec-loc 19 568 420 46.59 3 084 2 155 0.23 14.31 0.93 5 567
Louvain Iteratively loc 15 691 724 21.67 2 268 2 53 0.36 12.72 0.90 4 956
Louvain Iteratively tea 2 927 738 3.97 13 2 9 0.68 5.49 0.93 1 615
Louvain Iteratively tea-col 8 731 1 683 5.19 921 2 9 0.23 9.91 0.96 3 798
Louvain Iteratively tea-col-loc 17 080 1 399 12.21 2 007 2 22 0.30 13.04 0.93 5 404
Louvain Iteratively tea-col-tec 18 715 570 32.83 3 367 2 81 0.31 13.69 0.93 5 287
Louvain Iteratively tea-col-tec-loc 19 677 514 38.28 3 023 2 113 0.22 14.34 0.94 5 633
Louvain Iteratively tea-loc 16 365 1 160 14.11 1 988 2 27 0.32 12.94 0.93 5 240
Louvain Iteratively tea-tec 18 356 445 41.25 3 297 2 113 0.30 13.71 0.92 5 094
Louvain Iteratively tea-tec-loc 19 544 439 44.52 3 046 2 166 0.22 14.33 0.94 5 560
Louvain Iteratively tec 17 972 185 97.15 3 330 2 535 0.32 13.62 0.91 4 846
Louvain Iteratively tec-loc 19 323 286 67.56 2 918 2 292 0.21 14.35 0.93 5 417

Concluded
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D Survey

Figure 14 A screenshot of the survey website
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Figure 15 A screenshot of a question on the survey website
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