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Abstract
Recent analysis of heavy ion collisions has shown clear signs of a temperature dependence of
the shear viscosity to entropy ratio. However, it is very difficult to compute the shear viscosity
theoretically in strongly coupled plasmas using traditional methods. One alternative method
is to use holographic correspondence. However, the standard holographic computation yields a
universal value for the shear viscosity to entropy ratio that is independent of temperature. In
this thesis, we modify the bottom-up QCD-like holographic theories with the goal of matching
the T-dependence of the shear viscosity to entropy ratio to the one observed for quark-gluon
plasma. For this, we use the Bayesian analysis of heavy ion collisions.
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1 Introduction
The strong nuclear force is the fundamental interaction that binds protons and neutrons

in the atom’s nucleus. The strength of this interaction is what causes the nucleus to store
a great amount of energy, around a million times more than the energy stored in electrons
bound in the typical atom. The prevailing theory describing the strong force is Quantum
Chromodynamics (QCD)[1]. In this theory, the strong force is a result of fundamental particles
called quarks and gluons interacting together. The strength of the interaction is encapsulated
in the coupling constant, a fundamental parameter of the theory. One of the most striking facts
of Quantum Field Theory (QFT) is that the value of this constant depends on the energy scale
-or equivalently length scale- of the experiment that probes the theory.

For QCD the coupling constant turns out to be small at high energies and becomes large
at low energies [2]. This presents a big challenge when doing theoretical calculations as the
traditional physics approach of calculating small perturbations around an exact solution, no
longer works. However, there are a number of other approaches for doing calculations in QCD
which can be summarized into two camps: Effective Field Theory and Lattice QCD. The former
is based on an effective description of the degrees of freedom in hadrons interacting weakly and
the latter is based on doing computer simulations of the theory on a lattice. Even though both
approaches are very successful in their own right, they both have limitations. The effective
field theory approach breaks down close to the QCD energy scale and the lattice field theory is
only effective at very small baryon chemical potential. This leaves many unanswered questions
regarding the phases of nuclear matter.

One such extreme phase of nuclear matter is Quark-Gluon Plasma (QGP). This is a phase
produced at the Relativistic Heavy Ion Collider (RHIC) and Large Hadron Collider (LHC)
in heavy ion collision experiments where heavy nuclei usually Au or Pb collide at very high
energies. This creates a hot, dense, strongly interacting plasma of quarks and gluons that is not
confined inside hadrons as we experience in everyday life. Studies have shown that this plasma
can be modeled very well as a relativistic fluid using hydrodynamics [3, 4]. The important
property of a fluid that distinguishes it from an ideal gas is dissipation. That is the return
of the fluid to equilibrium after a perturbation. For example, throwing a pebble at a pond
creates waves that propagate in the fluid which then quickly decay, and the fluid returns to
equilibrium. This effect is encapsulated in a parameter called viscosity. However, the shear
viscosity cannot be computed from hydrodynamics. Instead, it depends on the microscopic
details of the fluid and must be given as input to the theory. But as mentioned before, this
state of matter is strongly interacting, making it very hard to perform this calculation from first
principles. However, there is another technique called holographic correspondence, otherwise
known as AdS/CFT or gauge-gravity duality.

The holographic correspondence [5, 6, 7] is the idea that two seemingly quite different
theories are equivalent descriptions of an underlying physical system. On the one side, we have
a semi-classical gravitational theory in five dimensions, and on the other side a four dimensional
quantum field theory in four dimensions. The upside of this duality is that when the the QFT is
strongly coupled, the dual gravitational theory is weakly curved allowing us to make calculations
for QFT observables at strong coupling using the dual theory. One of the most elegant results
of this method to this day remains the calculation of the shear viscosity to entropy ratio for
strongly coupled plasmas[8, 9]:

η

s
= ℏ

4πkB

. (1.1)

This simple result was very successful when compared with initial data from accelerators and
lattice QCD. What is remarkable, is that it is a generic prediction of a wide class of gravitational
theories. However, we don’t expect this result to be accurate at all temperatures. In particular,
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the viscosity is roughly proportional to the mean free path which becomes longer as the cou-
pling becomes weaker. Thus since the QCD coupling becomes smaller as energy increases, one
would expect the shear viscosity to increase. This intuitive argument is supported by recent
results coming from Bayesian analysis of heavy ion collisions that have shown a temperature
dependence for the shear viscosity to entropy ratio [15, 17].

Motivated by this recent analysis, in this thesis, we explore the temperature dependence of
the shear and bulk viscosities by including higher derivative corrections to existing holographic
models. We constrain the nature of these higher derivative corrections by fitting to the Bayesian
results for the shear viscosity and we show that the only two derivative term contributing to
the shear viscosity is the Riemann squared term, even when the higher derivative terms are
coupled to the dilaton. We calculate the bulk viscosity to entropy ratio for a class of theories
with non-minimal dilaton coupling and compare it to data from heavy ion collisions. Finally,
we explore the UV and IR asymptotics of the modified theory and show that under certain
assumptions the theory still exhibits confinement.

This thesis is organized as follows. The second chapter is a brief review of the holographic
viscosity. The third and fourth chapters discuss the calculation of the shear viscosity to entropy
ratio for higher derivative theories and the fitting to the data from Bayesian analysis. The fifth
chapter discusses the general curvature squared action. The sixth chapter is devoted to the
calculation of the bulk viscosity and its comparison to Bayesian data. Finally, the seventh
chapter explores the equations of motion with a focus on the asymptotic behavior of the theory
and confinement.
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2 Holographic viscosity

2.1 The Classic Viscosity Picture
An excellent introduction into AdS/CFT and applications is the book by Natsuume "AdS/CFT
Duality User Guide" [32]. Much of what is covered in this subsection follows this book.

Let’s start by recalling the classical physics picture for the definition of shear viscosity in Figure
1. We have two plates separated by a distance L, with a viscous fluid between them. If we give

Bottom Plate (Stationary)

Top Plate (Moving) v

F

L

Figure 1: Classical picture for the definition of viscosity. Two plates are separated by a fluid,
the top plate is moving and the bottom plates feels a force due to friction in the fluid.

some velocity to the top plate v, then due to momentum transferring between the molecules
this will manifest as a force acting on the bottom plate. This force per unit area will be pro-
portional to the velocity v and inversely proportional to the distance L with a proportionality
constant η:

F

A
= η

v

L
. (2.2)

This proportionality constant η is the shear viscosity. So the higher η is the more force the
bottom plate experiences for the same top plate velocity. Now let’s do some dimensional analysis
to the formula (2.2). η has units of [η] = kg×m−1× s−1. So supposing that it depends on the
mass density ρ, mean particle velocity v̄ and mean free path l then by dimensional analysis:

η ∼ ρ v̄ l. (2.3)
So the shear viscosity is proportional to the mean free path, this means the more strongly
interacting a fluid is the lower it’s mean free path and thus the smaller it’s viscosity. Later when
we come to talk about quark-gluon-plasma we will discuss the famous result of η/s = 1/4π.
This is the lowest such ratio compared to other fluids in nature due to the strongly coupled
nature of QGP. In addition, when considering the fact that QCD becomes weakly coupled at
high energies then intuitively we expect the shear viscosity to increase as temperature increases
for QGP. This will be discussed in depth in the following sections of this thesis.

The next logical step is considering the viscosity for a relativistic fluid. But first let’s recall
the definition of the energy momentum tensor for the perfect fluid:

T µv = (ϵ+ P )uµuν + Pηµν , (2.4)
where ϵ is the energy density, P is the pressure density and ηµν is the Minkowski metric∗. If we
go to the rest frame of the fluid then the four velocity is simply uµ = (1, 0, 0, 0). This means
that the enrgy momentum tensor take the simple form:

T µν =


ϵ 0 0 0
0 P 0 0
0 0 P 0
0 0 0 P

 (2.5)

∗We use the (-+++) convention.
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Notice that here T 00 = ϵ and due to the rest frame P i = T 0i = 0. Also all the off-diagonal
elements are zero which, roughly speaking, means that we don’t have any friction between fluid
layers. Instead T ij = Pδij i.e. we have an isotropic fluid, meaning that the pressure is the same
in all directions.

But we can go a step further instead of just including functions of the four velocity we can
include also first derivatives of the four velocity. This will account for dissipation within the
fluid since now we will also include the variation of the four-velocity. The energy-momentum
tensor now takes the form:

T µv = (ϵ+ P )uµuν + Pηµν + τµν , (2.6)

where τµν is a new symmetric tensor we introduce to account for dissipation. To simplify things
we go to the rest frame, defining T 00 = ϵ as before. Now the extra term we introduced can
depend only on first derivatives of uµ and it has to be symmetric, therefore there are only two
possible terms we can include:

τij = − η
(
∂iuj + ∂jui −

2
3δij∂ku

k
)

︸ ︷︷ ︸
traceless

− ζδij∂ku
k︸ ︷︷ ︸

trace

. (2.7)

The coefficients multiplying these terms can be generic but we write them in such a way
to split the traceless with the trace part of τ ij. The constants η,ζ that appear are called
transport coefficients. What’s more, this formula gives a natural interpretation of the physics
each coefficient is related to. The shear viscosity η is associated with off-diagonal components
accounting for loss of energy to adjacent fluid layers. One the other hand, the bulk viscosity
ζ is only associated with diagonal components and accounts for loss of energy due to volume
deformations such as expansion or compression of the fluid. Finally, this derivative expansion
can continue to include second derivatives of uµ which will give rise to second order transport
coefficients, however, this analysis will not be needed for the purposes of this thesis.

Looking at the expression for τ ij we see that η,ζ are input parameters to the theory. From the
perspective of QFT, hydrodynamics is an effective theory whose parameters must be determined
from the microscopic details of the fluid. Of course in practice, this is done by using experiments
to measure these parameters. Still, one would like to be able to calculate these coefficients from
first principles. In the case of quark-gluon plasma, the fluid is so strongly interacting that this
calculation is very hard to do using QCD. There is however a different method one can use
called holographic correspondence.

2.2 Basics of Holography
The holographic correspondence [5],[6],[7] conjectures a duality between two seemingly different
theories. On the one side, a gravitational theory in d+1 dimensions admitting semi-classical
corrections and on the other side a QFT in d dimensions in the large N limit. This limit refers
to taking the rank of the gauge group (in the case of QCD the number of colors) to infinity.
The upside of this duality is that when the the QFT is strongly coupled, the dual gravitational
theory is weakly curved and vice-versa. This allows us to make calculations for QFT observables
at strong coupling from classical gravity computations. The precise formulation is given by the
GKPW formula: 〈

exp
(
i
∫
ϕ0O

)〉
= eiS[ϕ|u=0=ϕ0], (2.8)

where the left side of the formula refers to the generating functional of the gauge theory and
the right side refers to the generating functional of the gravitational theory. S represents the
on-shell action and u = 0 is the boundary of space. This boundary is where the QFT "lives".
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“source” ϕ0

bulk field ϕ

x

boundary bulk

u = 0 horizon u = 1

Figure 2: Illustration of the duality between a bulk scalar field and and a boundary scalar
operator. The bulk field ϕ evaluated at the boundary u = 0 becomes a source for a scalar
operator O in the dual quantum theory.

The bulk field ϕ evaluated at the boundary u = 0 becomes a source for a scalar operator O
in the dual quantum theory, as illustrated in Figure 2. This example is for a scalar field but
this relation also holds for other fields. A bulk theory gauge field is dual to a boundary theory
conserved current and the bulk theory metric is dual to the boundary theory energy-momentum
tensor as shown in the following table:

Boundary operators External sources
O ↔ ϕ
Jµ ↔ Aµ

T µν ↔ hµν

(2.9)

Now what happens at finite temperature? Well in that case the temperature in the QFT is
identified with the Hawking temperature of a black hole in the dual gravity description. For
example, a CFT at finite temperature is dual to an AdS black hole solution. This is because
black holes are actually thermodynamic systems admitting both a temperature and an entropy.
Consider a generic black hole solution given by the following metric:

ds2 = −f (r) dt2 + f−1 (r) dr2 + dx2. (2.10)

Then the temperature and entropy of the black hole are given by the following simple formulas

T = f ′ (rh)
4π , S = A

4G5
= 1

4G, (2.11)

where A is the area of the black hole horizon and rh is the value of the r coordinate at the
horizon. The derivation of the temperature formula is performed in the following chapter. The
fact that the entropy is proportional to the area of the horizon gives us a hint that the physics
can be described by a dual statistical system in one lower dimension.

Now for the purposes of this thesis, we are interested in calculating the shear viscosity at
finite temperature. But how does the notion of viscosity make sense for a black hole? Well,
Figure 3 illustrates an intuitive picture for this. When an object falls into a black hole, the
horizon becomes irregular but the effect quickly dissipates and the black hole returns to its
original state. This is in analogy with hydrodynamics, throwing a pebble into a pond creates
waves that propagate in the fluid but which quickly decay and the fluid returns to its original
state. These are both relaxation phenomena associated with viscosity and the holographic
correspondence helps us make this intuitive picture precise.
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Figure 3: A black hole horizon fluctuates when an object falls into it. The decay of this
fluctuation is analogous to a fluid relaxing after a perturbation.

2.3 Holographic QCD
The topic of holographic QCD theories includes a vast literature with many interesting and
successful approaches. We refer the reader to [20] and the references therein for a review on the
subject. We will not delve into this vast topic in this section, instead we introduce the specific
holographic models used in this thesis.

The first model we introduce is called Improved Holographic QCD (ihQCD)[25],[26]. This
is a holographic model for Yang-Mills theory and will also serve as the backbone for the next
theory we introduce, V-QCD. The first thing to consider as motivation, is that QCD is not a
CFT. Instead, there is a scale ΛQCD associated with the theory which can be thought of as the
cut-off scale introduced in the re-normalization procedure. This mean that, its dual gravita-
tional description should not have pure AdS geometry as in AdS/CFT. Instead the geometry
should asymptote to AdS in the UV where QCD becomes asymptotically free. In this model,
this is achieved by the introduction of a scalar field called the dilaton. The inspiration for this
is non-critical string theory. In this formulation, the introduction of the dilation allows for the
theory to exist in a non-critical dimension. The effective gravitational action is then obtained
by the condition that the beta function is set to zero. The action defining the model is five
dimensional Einstein-dilaton gravity:

SihQCD = M3
pN

2
c

∫
d5x
√
−g

[
R− 4

3
(∂λ)2

λ2 + V (λ)
]
. (2.12)

Where the following dualities are established between fields and operators.

gµν ↔ Tµν , eΦ = λ↔ Tr[GµνG
µν ]. (2.13)

Gµν is the YM field strength tensor and the trace is over group indices. The zero temperature
solution of the action in domain wall coordinates is given by the following metric:

ds2 = du2 + e2A(u)
(
−dt2 + dx2

)
, Φ = Φ (u) . (2.14)

So the energy scale of the four dimensional spacetime slice is given by e2A(u). Thus in ihQCD
there is a natural identification between the logarithm of the QFT energy scale and the scale
factor A encoding the bulk geometry.

logE ←→ A (u) . (2.15)

An important property of the theory which we briefly mention is that it exhibits confinement.
The test for confinement is an area law behaviour for the Wilson loop. The typical way this
is achieved is that the geometry ends at a finite value r0 of the holographic coordinate. This

10



is called a "hard-wall" model, but ihQCD is a "soft-wall" model in the sense that there is no
hard end of space, but rather the dilaton becomes very large for r > r0 thus the world-sheet
can only extend infinitesimally past this point.

V-QCD
Now we move on to an improved version of ihQCD called V-QCD [21], see [20] for a review. This
theory has many improved properties including fermions and a mechanism for chiral symmetry
breaking. It is divided into two sectors, a gluon sector and a flavor sector:

SV QCD = SihQCD + Sf . (2.16)

The gluon sector takes the form of ihQCD which we have already introduced:

SihQCD = M3
pN

2
c

∫
d5x
√
−g

[
R− 4

3
(∂λ)2

λ2 + Vg (λ)
]
. (2.17)

And the flavor action takes the following form:

Sf = −xfM
3
pNc

2
∫
d5xVf0 (λ) e−τ2

√
−det

(
gµν + κ (λ) ∂µτ∂ντ + w (λ) F̂µν

)
. (2.18)

This sector is based on a setup of two space filling D4− D̄4 branes. The brane action includes
a tachyon DBI action along with a Chern-Simons action. This last term however will not be
important for this work. The tachyon field τ is dual to the quark mass operator (τ ↔ q̄q)
and accounts for the breaking of chiral symmetry in QCD. The tachyon approaches zero in
the boundary limit of the theory which corresponds to the UV limit of QCD, thus restoring
chiral symmetry. Here we have assumed that the tachyon is proportional to the identity matrix
and so the quarks have equal masses. In fact, for the purposes of the thesis we will be setting
τ = 0 since we are interested in the chiraly symmetric phase. F̂µν is the Abelian component of
the field strength tensor. This also approaches zero in the UV and will not be important for
calculating the viscosity. The potentials κ (λ) , w (λ) , Vf0 (λ) appearing in Sf are assumed to
only depend on λ and are not derived from a specific brane setup but instead are determined
by fitting various properties of QCD.

An important aspect of the theory, which is where this theory gets it’s name from is the
Veneziano limit. In this limit, in addition to the large-N limit which is standard in Holography,
we also take the number of flavors to infinity, while keeping their ratio fixed. In summary, the
Veneziano limit is the following:

Nc →∞ , Nf →∞ , xf ≡
Nf

Nc

= fixed , λ ≡ g2Nc = fixed. (2.19)

The reason this limit is important is that if we were not taking Nf →∞ then the ratio xf → 0.
However, we know that in QCD there are 3 colors and 2-3 light quarks and so this number is
actually close to 1. Therefore, it is expected that important aspects of flavor physics are not
captured without this limit. Notice also that the flavor action is of the same order as the glue
action because of this limit. The potentials appearing in the action Vg, Vf take the following
form

Vg (λ) = 12
[
1 + V1λ+ V2λ

2

1 + λ/λ0
+ VIR e

−λ0/λ (λ/λ0)4/3
√

log (1 + λ/λ0)
]
,

Vf0 (λ) = W0 +W1λ+ W2λ
2

1 + λ/λ0
+ 12WIRe

−λ0/λ (λ/λ0)2 .

(2.20)
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In is important to note that all the parameters that appear in the potentials are fixed. On the
UV side, they are matched to the RG flow of QCD perturbation theory and on the IR side
they are determined by comparing to lattice data. We discuss the exact values that we use in
Section 4.3.

3 Temperature Dependence of the Shear Viscosity
In this section we calculate the shear viscosity to entropy ratio for Einstein-dilaton gravity,
including higher derivative corrections. The shear viscosity is extracted from the Kubo formula:

η = − lim
ω→0

1
ω

ImGR
xy,xy (ω, k = 0) . (3.21)

where the retarded Green’s function is given by

GR
xy,xy(ω,k = 0) = −i

∫
dtdxeiωtθ(t) ⟨[Txy(x), Txy(0)]⟩ . (3.22)

The action we consider is of the form [14]:

S = 1
16πG5

∫
d5x
√
−g

[
R− 2(∇Φ)2 + V (Φ) + ℓ2βG(Φ)RµνρσR

µνρσ
]
. (3.23)

This is the same form as the ihQCD action introduced earlier, with the addition of the Riemann
squared term coupled to the dilaton. As we discuss below, this term is crucial for obtaining a
non-trivial temperature flow. Here, β is a parameter that we take to be predicatively small.
We are interested in shear viscosity of the strongly coupled plasma dual to this theory. Using
holography, this is calculated by introducing a shear metric fluctuation hxy to our black hole
background solution. This will produce a response in the dissipative part of the energy mo-
mentum tensor thus allowing us to find its Green’s function. We introduce the following metric
perturbation:

gµν = g(0)
µν + hµν , (3.24)

where g(0)
µν is a general background metric. This action will not give rise to SAdS5 solution

since the scalar field acts as a source term and thus the Einstein field equations do not admit
vacuum solutions. We expand the metric fluctuation in Fourier modes:

h y
x =

∫
d4kϕk (u) e−iωt+ikz. (3.25)

Now we expand the action perturbatively up to second order in ϕk to obtain an effective
action from which we can read-off the shear stress tensor fluctuation Txy. We start with the
determinant term: √−g. We make use of the well-known formula:

ln (detM) = Tr (lnM) , (3.26)

to write (in matrix notation):
√
−g = elog(

√
−g) = e

1
2 log(−g(0)−h) =

√
−g(0)

(
e

1
2 log(1+(g(0)−1h))

)
=
√
−g(0)

(
e

1
2 T rlog(1+(g(0)−1h))

)
,

(3.27)
where in the last step we take the trace of the log of the matrices. Expanding the logarithm
up to second order in h and subsequently the exponential up to second order in h gives the
following result:

√
−g =

√
−g(0)

(
1 + 1

2Tr
(
g(0)−1h

)
− 1

4Tr
((
g(0)−1h

)2
)

+ 1
8
(
Tr

(
g(0)−1h

))2
)
, (3.28)
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which in index notation reads:
√
−g =

√
−g(0)

(
1 + 1

2h
µ
µ −

1
4h

µ
νh

ν
µ + 1

8h
µ
µh

ν
ν

)
. (3.29)

In our case the trace of the perturbation is zero thus only the second term contributes:

√
−g = −1

2

√
−g(0)

(
hx

y

)2
. (3.30)

So we see that the kinetic and potential terms of the dilaton will have a contribution to the
effective action proportional to ϕ (u)2. As we will see later terms of this type will not contribute
directly to the viscosity. Thus adding a free field to the action will not affect the shear viscosity.
In fact, to get a temperature flow one needs to add a non-trivial dilaton potential along with
non-minimaly coupled terms. The next step in the calculation is inserting the perturbation
into the action and keeping terms up to second order in h.

Effective Action
After expanding all the terms we come to an effective action for ϕ (u)

Seff =
∫ d4k

(2π)4du
[
A(u)ϕ′′

kϕ−k +B(u)ϕ′
kϕ

′
−k + C(u)ϕ′

kϕ−k

+D(u)ϕkϕ−k + E(u)ϕ′′
kϕ

′′
−k + F (u)ϕ′′

kϕ
′
−k

]
.

(3.31)

This is the general form of the effective action for any two derivative theory. The coefficients
A,B, .., F encode the information of our background solution. They are given in Appendix A.
The background solution used for our purposes is a black-brane solution parameterized in the
following way:

ds2 = −a2 (u) dt2 + c2 (u) du2 + b2 (u) dx2, Φ = φ(u). (3.32)
We can expand the metric functions around the horizon by assuming a first order zero in gtt

and a corresponding first order pole in guu,

a(u)2 = a0(1− u) + a1(1− u)2 + a2(1− u)3 + . . .

b(u)2 = b0(1 + (1− u) + . . .)
c(u)2 = c0(1− u)−1 + c1 + c2(1− u) + . . .

φ(u) = φh + φ1(1− u) + φ2(1− u)2 + . . .

(3.33)

This will be of use as we intend to formulate η
s

completely in terms of the horizon information.
Our goal now is to derive a formula that gives us the shear viscosity in terms of the A,B, .., E
coefficients [11]:

η = 1
8πG5

√−guu

gtt

(
A−B + F ′

2

)
+
(
E

(√
−guu

gtt

)′)′∣∣∣∣∣∣
u=uh

. (3.34)

where primes denote u derivatives and the whole expression is evaluated at the horizon. This
is is quite important as it allows us to expand our metric functions close to the horizon and
express the final answer in terms a0, a1, c0, c1 and so on. The following subsection is devoted to
proving this relation starting from (3.31).
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3.1 From the Kubo relation to corrections to 1/4π
This subsection follows [10, 11]. To calculate the viscosity we shall make use of the Kubo
relation. This gives us the viscosity in terms of the retarded Green’s function of the Energy
momentum tensor.

η = − lim
ω→0

1
ω

ImGR
xy,xy (ω, k = 0) . (3.35)

To find the Green’s function we need to evaluate the effective action (3.31) on shell and accord-
ing to the holographic correspondence our field ϕ will be a source for the dual theory energy
momentum tensor component Txy. Thus the on-shell action evaluated at the boundary will
allow us to compute the right hand side of (3.35).

With this goal in mind we wish to obtain the equation of motion for ϕ, so we begin by varying
the action (3.31):

δS =
∫
dkdu

(
∂L
∂ϕ

δϕ+ ∂L
∂ϕ′ δϕ

′ + ∂L
∂ϕ′′ δϕ

′′
)
, (3.36)

where dk = d4k
(2π)4 . In our case:

∂L
∂ϕ−k

= A (u)ϕ′′
k + C (u)ϕ′

k + 2D (u)ϕk,

∂L
∂ϕ′

−k

= 2B (u)ϕ′
k + C (u)ϕk + F (u)ϕ′′

k,

∂L
∂ϕ′′

−k

= A (u)ϕk + 2E (u)ϕ′′
k + F (u)ϕ′

k.

(3.37)

Notice that we can rescale k⃗ → −k⃗ in the integral to obtain our result only in terms of ϕk. We
can integrate (3.36) by parts to obtain

δS =
∫
dkdu

(
∂L
∂ϕ

δϕ−
(
∂L
∂ϕ′

)′

δϕ+
(
∂L
∂ϕ′′

)′′

δϕ

)

+
∫
dk
(
∂L
∂ϕ′ δϕ+ ∂L

∂ϕ′′ δϕ
′ −

(
∂L
∂ϕ′′

)′

δϕ

) ∣∣∣∣∣
boundary

.

(3.38)

The first term we recognise as the equation of motion ∂S
∂ϕ

= 0. In our case we have :

d2

du2 (A (u)ϕ′′
k + C (u)ϕ′

k + 2D (u)ϕk)− d

du
(2B (u)ϕ′

k + C (u)ϕk + F (u)ϕ′′
k)

+ A (u)ϕk + 2E (u)ϕ′′
k + F (u)ϕ′

k = 0.
(3.39)

However, an issue arises with the second row of (3.38). Even though the variation of the field
can be taken to vanish in the boundary as per usual δϕ|bdry = 0, this not necessarily true
for the derivative of the variation δϕ′. Thus as it stands the variation problem is not well
defined. To remedy this we introduce a generalized Gibbons-Hawking term: a boundary term
that exactly cancels our problematic δϕ′ term. This of course will modify our original action.
The generalized Gibbons-Hawking term should satisfy:

δSGH ∼ −
∫
dk

∂L
∂ϕ′′ δϕ

′
∣∣∣∣∣
boundary

, (3.40)

14



plus terms proportional to δϕ. In our case the generalized Gibbons-Hawking term takes the
following form:

SGH =
∫
dk
(
−Aϕkϕ

′
−k −

F

2 ϕ
′
kϕ

′
−k + E (p1ϕ

′
k + 2p0ϕk)ϕ′

−k

) ∣∣∣∣∣
boundary

, (3.41)

where p0 , p1 are defined as follows. Notice that in (3.39) we can always move terms of order β
to the right and divide by the coefficient of ϕ′′ to write.

ϕ′′
k + p1ϕ

′
k + p0ϕk = O (β). (3.42)

Keep in mind that the F and E coefficients will always be of order β since they come form our
R2

µνρσ term, thus third and fourth order derivatives of ϕ will be moved to the right. The exact
form of p0 , p1 does not matter for our purposes but formulating the EoM in this way allows us
to define the variational problem perturbatively and cancel the boundary term proportional to
E. Indeed, upon varying the GH term we find:

δSGH =
∫
dk (−Aϕ′

k + 2p0Eϕk) δϕ+ (−Aϕk − Fϕ′
k + 2E (p1ϕ

′
k + p0ϕk)) δϕ′

∣∣∣∣∣
boundary

. (3.43)

Thus we see that all terms cancel with the original action except for the E term which becomes:∫
dk 2E (ϕ′′

k + p1ϕ
′
k + p0ϕk) δϕ′

∣∣∣∣∣
boundary

. (3.44)

But according to (3.42) the term in parenthesis is of order β and so is E. Thus up to linear
order in β this term vanishes and we are saved.

Now that the action is properly defined we move to evaluate the on-shell action. We can
write the action as:

2Seff =
∫
dkdu

(
∂L
∂ϕ

ϕ+ ∂L
∂ϕ′ϕ

′ + ∂L
∂ϕ′′ϕ

′′
)

+ 2SGH . (3.45)

In classic fashion, we integrate by parts bringing the action to the following form:

2Seff =
∫
dkdu

(
∂L
∂ϕ
−
(
∂L
∂ϕ′

)′

+
(
∂L
∂ϕ′′

)′′)
ϕ

+
∫
dk
(
∂L
∂ϕ′ϕ+ ∂L

∂ϕ′′ϕ
′ −

(
∂L
∂ϕ′′

)′

ϕ

) ∣∣∣∣∣
boundary

+ 2SGH .

(3.46)

The first line is the EoM and vanishes on shell. The second line gives the on-shell action. This
is usually written as S =

∫
dkFk|boundary where Fk is called a flux factor. In our case:

Fk = 1
2

∫
dk
(
∂L
∂ϕ′ϕ+ ∂L

∂ϕ′′ϕ
′ −

(
∂L
∂ϕ′′

)′

ϕ

)
+ SGH . (3.47)

Furthermore, evaluating this expression gives :

2Fk = (B − A)ϕ′
kϕ−k + 1

2 (C − A′)ϕkϕ−k −E ′ϕ′′
kϕ−k −Eϕ′′′

k ϕ−k −
F ′

2 ϕ
′
kϕk +Ep0ϕkϕ

′
−k (3.48)

We can discard the second term in this expansion as it is real and will not contribute to the
viscosity. In addition, the final term is of order O (ω2) and can be discarded in our limit.
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The remaining expression is in-fact independent of u in the low frequency approximation and
so we can evaluate it at any point we wish. To generate the nice analytic formula (3.34) we
evaluate it at the black-brane horizon. The next important step in the calculation is considering
in-falling boundary conditions. An in-falling observer at the horizon perceives it as a regular
point, the seeming divergence is only a matter of our coordinate system. To get a clear picture
of what happens at the horizon we use Eddington-Finklestein coordinates. In particular the v
coordinate is defined as:

dv = dt+
√
guu

−gtt

du, (3.49)

which is non-singular at u = uh. So an in-falling observer should observe that a scalar field
at the horizon only depends on this specific non-singular combination of u, t. In other words,
ϕ (r, t,x)→ ϕ (v,x). This implies that [12]

∂uϕ (uh, t) =
√
guu

−gtt

∂tϕ (uh, t) , (3.50)

which upon Fourier transform gives:

∂uϕ (uh, ω) = −iω
√
guu

−gtt

ϕ (uh) ,

∂2
uϕ (uh, ω) = −iω∂u

(√
guu

−gtt

)
ϕ (uh) ,

∂3
uϕ (uh, ω) = −iω∂2

u

(√
guu

−gtt

)
ϕ (uh) .

(3.51)

All the pieces that we need are now in place, all that’s left is to substitute the above expression
into our formula for the flux factor Fk (3.47) to write it in terms of ϕ and not derivatives of ϕ.
We find the following:

2Fk = iω

√
guu

−gtt

(
A−B + F

2

)
ϕkϕ−k

∣∣∣∣∣
u=uh

+ iω

(
E

(√
guu

−gtt

)′)′

ϕkϕ−k

∣∣∣∣∣
u=uh

. (3.52)

According to the holographic correspondence the retarded Green’s function is now:

GR
xy,xy (ω, k) = − 2Fk

ϕkϕ−k

∣∣∣∣∣
u=uh

, (3.53)

and the Kubo relation reads:

η = − lim
ω→0

1
ω

ImGR
xy,xy (ω, k = 0) . (3.54)

Combining these three equations we obtain the desired formula (3.34)

η = 1
8πG5

√−guu

gtt

(
A−B + F ′

2

)
+
(
E

(√
−guu

gtt

)′)′∣∣∣∣∣∣
u=uh

. (3.55)

Shear viscosity for our theory
Evaluating the formula (3.34) using (3.32) along with the coefficients in the Appendix and
taking the horizon limit by expanding with (3.33) yeilds the following result [13]:

η = b
3/2
0

16πG5

[
1− 3a1c0 − a0c1 + a0c0

a0c2
0

ℓ2βG(ϕh)− 2a0c0

a0c2
0
ℓ2βϕ1G

′ (ϕh)
]
. (3.56)
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3.2 Entropy of a black-brane from Wald’s formula
One of the major discoveries of black hole physics has to do with their entropy. For a regular
black-hole the entropy is simply given by the area of the black-hole horizon, thus one can
take the horizon limit u → 1 and calculate the induced metric γαβ and the entropy will be
proportional to √γ. However, in our case this no longer holds as there are corrections to this
term stemming from our higher curvature term. In order to compute these corrections, we
calculate the entropy by using Wald’s formula:

S = −2π
∮

Σ
d3x
√
−h δL

δRµνρσ

ϵµνϵρσ, (3.57)

where h is the induced metric after applying Stokes’s theorem in the t direction. The tensor
ϵµν is binormal to Σ and is normalized as ϵµνϵ

µν = −2 and ϵµν = −ϵνµ. We have

L = 1
16πG5

[
R− 2(∇Φ)2 + V (Φ) + ℓ2βG(Φ)RµνρσR

µνρσ
]
. (3.58)

We can immediately see that only the first and last term will contribute as only they depend
on the Riemann tensor. We can write the Ricci scalar as

R = gµνRµν = gµνgαρRρµαν . (3.59)

So we find:
δL

δRµνρσ

= 1
16πG5

[
gνσgρµ + 2ℓ2βG(Φ)Rµνρσ

]
. (3.60)

and using (3.32) we calculate h = (b2 (u))3, so
√
h = b3 (u) →

√
h = b

3/2
0 where higher order

terms in (3.33) vanish at the horizon u = 1. Putting this all together we find:

S = b
3/2
0

4G5
V3
[
1− ℓ2βG(ϕh)Rµνρσϵµνϵρσ

]
, (3.61)

where we use ϵµνϵ
µν = −2 and

∫
d3x = V3 is the 3-dimensional volume that diverges. We are

however interested in the entropy density s = S
V3

so we don’t have to worry about this factor.
Since the only non-zero components of ϵµν are ϵut = −ϵtu we can simplify the above expression
to express the entropy density as:

s = b
3/2
0

4G5

[
1− 4ℓ2βG(ϕh)Rututϵ2

ut

]
. (3.62)

Since the correction term is already of order β we use only the background metric to find
Rututϵ2

ut.Using the defining property of gµρgνσϵµνϵρσ = −2 along with the fact that ϵµν is binor-
mal to Σ we have that:

guugttϵ2
ut = −1⇒ ϵ2

ut = −guugtt ⇒ ϵut = a (u) c (u) (3.63)

Thus after calculating the desired Riemann component and evaluating at the horizon using
(3.33) we find the final form of the entropy density[13]:

s = b
3/2
0

4G5

[
1− 3a1c0 − a0c1

a0c2
0

ℓ2βG(ϕh)
]
. (3.64)

Previously we found (3.56)

η = b
3/2
0

16πG5

[
1− 3a1c0 − a0c1 + a0c0

a0c2
0

ℓ2βG(ϕh)− 2a0c0

a0c2
0
ℓ2βϕ1G

′ (ϕh)
]
. (3.65)
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Thus dividing the two expressions and keeping terms up to first order yields[13, 14]:

η

s
= 1

4π

[
1− βℓ2

c0
(G (ϕh) + 2ϕ1G

′ (ϕh))
]
. (3.66)

An aside: calculating the temperature of the black-brane
The fastest and most elegant way to compute the Hawking temperature of our solution is by
requiring that the Euclidean version of the metric be smooth. By performing a Wick rotation
τ = it to the metric (3.32) we obtain:

ds2 = a2 (u) dτ 2 + c2 (u) du2 + b2 (u) dx2. (3.67)

Moreover we can expand this close to the horizon using (3.33):

ds2 = a0 (1− u) dτ 2 + c0

1− udu
2 + b0dx2. (3.68)

Now we introduce a new coordinate ρ = 2
√

(1− u)c0. This transforms the metric as follows:

ds2 = ρ2 a0

4c0
dτ 2 + dρ2 + b0dx2. (3.69)

Notice that for x = const this metric is simply the plane in polar coordinates. However
our "angular" coordinate needs to have a periodicity of 2π otherwise the metric has a conical
singularity at ρ = 0. Thus a0

4c0
dτ 2 = d

(
1
2

√
a0
c0
τ
)2

must have a periodicity of 2π. So the

periodicity of τ is β = 4π
√

c0
a0

which the inverse of the temperature so we obtain:

T = 1
4π

√
a0

c0
. (3.70)

As a final note, using the Hawking temperature one can calculate the free energy of the system
as F = T S̄ where the bar denotes the action is on-shell. In addition, this is an alternative way
of calculating the entropy by making use of S = −∂TF .

3.3 Connecting to the diatonic brane solutions
The corrections to the shear viscosity to entropy ratio in (3.66) are already of order β so we
don’t have to solve for the full action to find the behaviour of c (u) and ϕ (u) at the horizon.
Instead we may ignore the higher order corrections and relate the near horizon expansions to
the known black brane ansatz for the minimally coupled dilaton.

We introduce a new radial coordinate to write the metric as follows:

ds2 = f−1 (r) dr2 + e2A(r)
(
dx2 − f (r) dt2

)
, Φ = Φ (r) . (3.71)

where we can expand the metric functions close to the horizon :

A(r) = Ah + A1 (r − rh) + · · ·
f(r) = f1 (r − rh) + · · ·
Φ(r) = Φh + Φ1 (r − rh) + · · ·

(3.72)

Now to connect this near horizon expansion to the previous one (3.32) we match the two metric
function expansions at the horizon. Looking at the dx2 coefficient we find:

b0 (1 + (1− u)) = e2Ah (1 + 2A1 (r − rh)) , (3.73)
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which yields b0 = e2Ah and r − rh = 1
2A1

(1− u). Thus the transformation du = −2A1dr
connects the two expansions at the horizon and we find:

φh = Φh, φ1 = 1
2A1

Φ1, c0 = 1
2f1A1

. (3.74)

Substituting back to (3.66) we can relate η/s to f1, A1, Φh

η

s
= 1

4π

[
1− 2f1A1βℓ

2
(
G (ϕh) + Φ1

A1
G′ (ϕh)

)]
. (3.75)

3.4 Phase Variables
Having connected the two solutions at the horizon, our goal now is to express A1 and f1 in
terms of thermodynamic properties of the black brane, in particular we will derive a formula
that writes (3.56) in terms of the potential V (Φ) and V ′ (Φ). Of course in the end, we want to
express the result in terms of temperature to connect it to the data. This can be achieved by
relating the horizon value of the dilaton to the temperature. For simple exponential potentials
this can be done analytically.

The Einstein and dilaton equations of motion can be reformulated into five differential equa-
tions with the help of the phase variables method developed in [24]. We define the functions
X, Y :

X(Φ) ≡ ζ

4
Φ′

A′ , Y (Φ) ≡ 1
4
f ′

fA′ . (3.76)

To solve for X, Y we only need to solve two coupled first order differential equations:

dX

dΦ = −ζ
(
1−X2 + Y

)(
1 + 1

2ζ
1
X

d log V
dΦ

)
,

dY

dΦ = −ζ
(
1−X2 + Y

) Y
X
,

(3.77)

and the rest of the functions are simply determined in terms of X,Y as follows:

dA

dr
= −1

ℓ
e−ζ

∫ Φ
0 X(t)dt,

dΦ
dr

= − 4
ℓζ
X(Φ)e−ζ

∫ Φ
0 X(t)dt,

1
f

df

dr
= −4

ℓ
Y (Φ)e−ζ

∫ Φ
0 X(t)dt,

(3.78)

where ζ is a factor that depends on the normalization of the kinetic term, in our case ζ =
√

8
3 .

The temperature and entropy are given completely in terms of the dilaton horizon value.

T (Φh) = ℓ

12πe
A(Φh)V (Φh) eζ

∫ Φh
0 X(Φ)dΦ,

S = 1
4G5

e3A(Φh).
(3.79)

Combining these two expressions we can solve for the variable X and relate it to the scalar
potential evaluated at the horizon:

e−ζ
∫ Φh

0 X(Φ)dΦ = C
S

1
3

T
V (Φh) . (3.80)
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where C = ℓ(4π)− 4
3

3Mp
and the Planck mass is Mp = (16πG5)− 1

3 .

Combining (3.78) and (3.80) we find that close to the horizon:

dA

dr
= A1 = −C

ℓ

S
1
3

T
V (Φh) ,

dΦ
dr

= Φ1 = 3C
4ℓ

S
1
3

T
V ′ (Φh) ,

(3.81)

where to obtain the second equation we use the boundary conditions for X which follow from
demanding regularity at the horizon. Namely at Φ ∼ Φh we have X (Φ) = − 1

2ζ
V (Φh)
V ′(Φh) . In

addition, we have that
4πT = −f ′ (rh) eA(rh), (3.82)

which after substituting for the entropy (3.79) gives us

f1 = −Mp(4π) 4
3
T

S
1
3
. (3.83)

Substituting A1, Φ1 and f1 back into our expression for η/s (3.75) we find

η

s
= 1

4π

[
1 + 2

3βℓ
2
(
−G (Φh)V (Φh) + 3

4G
′ (Φh)V ′ (Φh)

)]
(3.84)

This is the main result of our analysis and the formula that we will use for matching to the
Bayesian analysis of heavy ion collisions. Notice that the final result only depends on the
behaviour of the potentials G, V evaluated at the horizon.

4 Fitting the data from Bayesian Analysis of Heavy Ion
collisions

Recent analysis of heavy ion collisions in [15, 16, 17] has revealed interesting results for the
behaviour of transport coefficients in quark gluon plasma. The authors of [15] determined that
there is a clear tendency for η/s to increase as temperature increases away from the QCD crit-
ical temperature. For low enough temperatures, it appears that the value of η/s is consistent
with 1/4π. However, it seems that higher order corrections need to be included capture the
temperature flow away from the constant result of the simple Einstein-Hilbert action. In this
model, the temperature flow will be determined by the choice of dilaton potential along with
the dilaton coupling (3.84). Below, we analyze the thermodynamics of different potentials and
fit their prediction for η/s to the data from heavy ion collisions. We start from the simplest
potential and progress to more realistic ones that capture various properties of QCD.

Bayesian analysis of Heavy Ion Collisions
The authors of [15] parameterize η/s as

η

s
= a+ b (T − Tc)

(
T

Tc

)c

. (4.1)

where Tc = 154× 10−3GeV and they determine

a = 0.065+0.038
−0.040, b = 0.9+0.81

−0.90 GeV−1, c = −0.04+0.75
−0.85. (4.2)

They plot this along with a 90% confidence band in Figure 4.
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Figure 4: Posterior distribution for the shear viscosity to entropy ratio versus temperature with
a 90% confidence band in blue.

4.1 Thermodynamics of the Chamblin-Reall black brane
The first potential we look at has the advantage of being analytically solvable and serves as
a simplistic model for obtaining a temperature flow. The Chamblin-Reall black brane has an
exponential potential of the form:

V (Φ) = V0

ℓ2 e
αΦ, (4.3)

where V0 is positive and dimensionless and ℓ sets the spacetime length scale. We choose α > 0.
We have dlogV

dΦ = α so using the phase variables formalism one can see that the equation for X
in (3.77):

dX

dΦ = −ζ
(
1−X2 + Y

)(
1 + 1

2ζ
1
X

d log V
dΦ

)
, (4.4)

is solved by
X (Φ) = x0 = − α

2ζ . (4.5)

From this we can calculate the background functions, in particular we are interested in A:

A (ϕ) = A (Φc) + ζ

4

∫ Φ

Φc

dΦ̃
X

= A (Φc) + ζ

4x0
(Φ− Φc) . (4.6)

Using A we can now calculate the temperature and entropy as a function of the horizon value
of the dilaton field Φh using the formula (3.79). We find:

T (Φh) = T0e
ζ

4x0 (1−4x2
0)Φh , S (Φh) = S0e

3ζ
4x0

Φh , (4.7)

where we defined
T0 = V0

12πℓe
Ac− ζΦc

4x0 , S0 = 1
4GN

e
3Ac−3 ζ

4x0
Φc . (4.8)

Inverting the temperature formula and solving for Φh yields

Φh = 4x0

ζ (1− 4x2
0)

log
(
T

T0

)
= − 6α

3− 3α2 log
(
T

T0

)
. (4.9)

This allows us to write the entropy as a function of temperature namely:

S = S0

(
T

T0

) 3
1−4x2

0 . (4.10)
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For the system to be thermally stable the specific heat C = T dT
dS

must be positive. To check
this we note that both S0 and T0 are positive so we have

C ∝
(

3
1− 4x2

0

)
T

3
1−4x2

0 > 0, (4.11)

which translates to

x2
0 <

1
4 , ⇒ 0 < α <

√
8
3 . (4.12)

For this potential to exhibit confinement we need α ≥
√

8
3 . So for this type of potential con-

finement and thermal stability are mutually exclusive.

Fitting the data for a simple exponential coupling
For our first attempt at making contact with reality we pick the simple coupling function
G (Φ) = eγΦ. Substituting into our general expression for η/s (3.84) we find

η

s
= 1

4π

[
1− 2

3V0

(
1− 3

4γα
)
e(α+γ)Φh

]
. (4.13)

Plugging in (4.9) we can replace Φh for T to obtain:

η

s
= 1

4π

1− 2
3βV0

(
1− 3

4γα
)(

T

T0

)− 6α(α+γ)
8−3α2

 . (4.14)

Without loss of generality we take T0 = Tc. This prediction has three free parameters {βV0, α, γ}
which we can fit to our experimental curve:

η

s
= a+ b (T − Tc)

(
T

Tc

)c

, (4.15)

with a, b, c and their uncertainties given in (4.2).

Figure 5: Best fit for the shear viscosity to entropy ratio for G (Φ) = eγΦ.The yellow line shows
the theoretical curve while the black line is η/s = 1/4π for reference. Optimal values for the
parameters where found to be: {βV0 = −0.239, α = 2.755, γ = −0.052}

.

Figure 5 shows the best fit for this setup. There are a few things to note about this fit:
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• After fixing the free parameters our function looks like: η/s = 0.080 + 4.02T 3.02.

• We have that α >
√

8
3 which means that we are in the confining but thermally unstable

region of the potential.

• With this formula the theoretical curve will asymptote to 1/4π for T → 0 when α >
√

8
3

and −γ > α.

• We were not able to determine a good fit in the thermally stable region since there, the
exponent of T goes negative and 1/4π is approached from below. For low temperatures
the curve falls off to minus infinity.

Furthermore, we investigated the case of γ = 0 which amounts to a constant correction from
the R2

µνρσ term and minimal coupling of the dilaton. The be best fit in this case is similar and
can be seen in figure 6. The same general comments hold in this case as well.

Figure 6: Best fit for the shear viscosity to entropy ratio for G (Φ) = 1. The yellow line shows
the theoretical curve while the black line is η/s = 1/4π for reference. Optimal values for the
parameters where found to be: {βV0 = −0.264, α = 2.805}

4.2 Determining the optimal G (Φ) function
Instead of arbitrarily picking functions for G, we would like to determine what the the optimal
function would be so as to get a better fit with the data. To achieve this, we solve (3.84) as a
differential equation in G. If we re-arrange some terms we can write it as:

G′ (Φh) + P (Φh)G (Φh) = R (Φh) , (4.16)

where
P (Φh) = −4

3
V (Φh)
V ′ (Φh) , R (Φh) =

[
4π
(
η

s

)
− 1

] 2
ℓ2βV ′ (Φh) (4.17)

This is a first order differential equation and the general solution is given by:

G (Φh) = F−1 (Φh)
∫
dΦhF (Φh)R (Φh) + c1F

−1 (Φh) , (4.18)

where F (Φh) = e
∫

P (Φh)dΦh . In place of η/s we plug in the experimental curve (4.1) where we
substitute T for Φh according to the relation determined by the thermodynamics of the chosen
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Figure 7: Best fit for the shear viscosity to entropy ratio for G (Φ) given in (4.20). The yellow
line shows the theoretical curve while the black line is η/s = 1/4π for reference.

potential. The integration constant c1 which multiplies the homogeneous solution and will not
play a role in the viscosity since the homogeneous solution drops out in (3.84).

In the case of the CR brane V (Φ) = V0
ℓ2 e

αΦ this solution is not too hard to find, we have:

F = e
−4Φh

3α , R = 2e−αΦh

βV0α

[
4π
(
a+ b

(
ecΦh(α

2 − 4
3α)
)(
−1 + eΦh(α

2 − 4
3α)
))
− 1

]
, (4.19)

where a, b, c are given in (4.2). Using this we can obtain the general solution for G:

G (Φh) = c1e
4Φh
3α +48bπTce

Φh(α′c−α)

V0β

[
3e−Φhα′c (1− 4aπ)

96bπTc

+ eΦha′

(3α2 − 8) (c+ 1)− 8 −
eΦha′c

(3α2 − 8) c− 8

]
,

(4.20)
with α′ = 3α2−8

6α
. Note that for our correction to remain perturbative we must have V0 >> 1.

The advantage of this method is that once we have handpicked our coupling, the curve we
obtain for η/s is identical to the one we are attempting to fit. In Figure 7 we plot the shear
viscosity for this coupling G.

4.3 Shear viscosity of improved holographic QCD
In this subsection we consider a more realistic model, where the dilaton potential is designed
to capture certain properties of QCD. In particular, we will look at a potential of the form:

V (Φ) = V0e
QΦΦP . (4.21)

Using the phase variables formalism we wish to solve for X (Φ) and using that to find the metric
functions and the temperature and entropy as a function of Φh. From (3.77) we have

dX

dΦ = −ζ
(
1−X2 + Y

)(
1 + 1

2ζ
1
X

d log V
dΦ

)
. (4.22)

We have dlogV
dΦ = Q + P

Φ , so in the region where Φ >> 1 we have an approximate solution of
[19] :

X (Φ) = − 1
2ζ

(
Q+ P

Φ

)
+O

( 1
Φ2

)
. (4.23)
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Using this we can calculate the metric function A:

A (Φ) = A (Φc)−
ζ2

2

∫ Φ

Φc

Φ
QΦ + P

dΦ, (4.24)

which gives

A (Φ) = A0 −
ζ2

2
QΦ− P log (P +QΦ)

Q2 , A0 = A (Φc) + ζ2

2
QΦc − P log (P +QΦc)

Q2 . (4.25)

The temperature and entropy are now given by (3.79) and read:

T (Φh) = T0e
Φh

(
Q
2 − ζ2

2Q

)
Φ

ζ2P

2Q2 + P
2

h ,

S (Φh) = S0e
−3ζ2Φh

2Q Φ
3ζ2P

2Q2
h .

(4.26)

where for the integral of X (Φ) to not diverge we require P > 0. Notice also we had to perform
the integral eζ

∫ Φh
0 X(Φ)dΦ where we know our approximation won’t hold for Φ ∈ [0, 1]. We

proceed assuming that this will be a small correction to the result. T0 and S0 are positive
constants:

S0 = e3A0Q
3ζ2P

2Q2 , T0 = ℓ

12πe
A0Q

ζ2P

2Q2 V0. (4.27)

To determine the thermal stability of this potential we look at the specific heat:

C = T
dS

dT
= T

dS

dΦh

dΦh

dT
> 0. (4.28)

Since the temperature is positive we must have both dS
dΦh

and dΦh

dT
either positive or negative.

From the previous equation for the temperature if we suppose dT
dΦh

< 0, we find

dT

dΦh

= T0e
Φh

(
Q
2 − ζ2

2Q

)
Φ

ζ2P

2Q2 + P
2

h

(
Q

2 −
ζ2

2Q +
(
ζ2P

2Q2 + P

2

)
1

Φh

)
< 0. (4.29)

This is equivalent to

Q

2 −
ζ2

2Q +
(
ζ2P

2Q2 + P

2

)
1

Φh

< 0 ⇒ 0 <
(
ζ2

Q
+ 1

)
P

Φh

< −Q+ ζ2

Q
. (4.30)

So we find

Q <

√
8
3 . (4.31)

So if we have dS
dΦh

< 0 this would mean that Q <
√

8
3 and the region of thermal stability is

outside the confining region. However if we have Q ≥
√

8
3 and dS

dΦh
> 0 then we have stability

and confinement. If we check this condition for the entropy we find:

dS

dΦh

= S0e
−3ζ2Φh

2Q Φ
3ζ2P

2Q2
h

3ζ2

2Q

(
−1 + P

QΦh

)
> 0. (4.32)

This sets an upper bound for the dilaton horizon value:

Φh <
P

Q
, ⇒ Φh <

3P
8 , (4.33)
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Figure 8: Best fit for the shear viscosity to entropy ratio for ihQCD with Q =
√

8
3 , P = 1/2

and G (Φ) given in (4.36). The yellow line shows the theoretical curve while the black line is
η/s = 1/4π for reference.

suggesting that our original approximation of Φ >> 1 breaks down and determining the thermal
stability would require a numerical treatment of the potential. Nevertheless, we proceed with
finding a fit for η/s in this setup. The most interesting case is that of Q =

√
8
3 and P = 1

2 .
This is because these parameter choices exhibit the best fit best with the QCD data. In this
case Φh is simply expressed as:

Φh =
(
T

T0

)2
. (4.34)

Using (4.18) we obtain the optimal coupling for this potential:

G (Φh) = e
√

2
3 Φh(3

2 + 2
√

6Φh)−1/4
(
c1+

∫ Φh

1
dΦ

e−
√

6ΦΦ1/2(3
2 + 2

√
6Φ)−3/4

(
−125 + 500aπ + 77bπΦc/2

(
−1 + Φ1/2

))
125ℓ2βV0

)
.

(4.35)

If we approximate (3
2 + 2

√
6Φ)−1/4 ≃ (2

√
6Φ)−1/4 and Φc/2 ≃ 1 since c ∼ −0.04, we can solve

the integral exactly and get a closed form for G:

G (Φh) = e
√

2
3 Φh

(3
2 + 2

√
6Φh)1/4

[
c1 + 12

125ℓ2βV0

(
0.079 + 43.45Φ3/4

h E 1
4

(√
6Φh

)
− 12.83Γ

(
5/4,
√

6Φh

))]
.

(4.36)
where Γ (s, x) =

∫∞
x ts−1et dt is the incomplete gamma function and En (x) =

∫∞
1

e−xt

tn dt is the
exponential integral function. In Figure 8 we plot the viscosity for this coupling. As can be
seen our approximations have only slightly shifted the theoretical curve.

4.4 Shear viscosity of V-QCD
In principle, we could perform our analysis for ihQCD again numerically and try to find a
thermally stable fit. However, since this is the point where analytic calculations stop, we will
move to an improved version of this theory called V-QCD[21], see [20] for a review. This theory
has many improved properties including fermions which we have so far neglected. It is divided
into two sectors, a gluon sector and a flavor sector:

SV QCD = SihQCD + Sf . (4.37)
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The gluon sector takes the form of ihQCD which we have already studied:

SihQCD = M3
pN

2
c

∫
d5x
√
−g

[
R− 4

3
(∂λ)2

λ2 + Vg (λ) + ℓ2βG(λ)RµνρσR
µνρσ

]
. (4.38)

where to keep up with convention we have changed the dilaton kinetic term normalization
to 4/3 and written the action in terms of λ = eΦ. The curvature squared term is not part
of "standard" vQCD but is there to serve our temperature dependence needs as discussed
previously. In addition, this action will also include a generalized Gibbons-Hawking term as in
(3.41). The flavor action takes the following form:

Sf = −xfM
3
pNc

2
∫
d5xVf0 (λ) e−τ2

√
−det

(
gµν + κ (λ) ∂µτ∂ντ + w (λ) F̂µν

)
. (4.39)

This sector is based on a setup of two space filling D4− D̄4 branes. The brane action includes
a tachyon DBI action along with a Chern-Simons action. The tachyon field is dual to the quark
mass operator (τ ↔ q̄q) and roughly speaking accounts for the breaking of chiral symmetry
in QCD. The potentials κ (λ) , w (λ) , Vf0 (λ) appearing in Sf are assumed to only depend on λ
and are not derived from a specific brane setup but instead are determined by fitting various
properties of QCD.

This theory is in Veneziano limit where in addition to the large-N limit which is standard
in Holography we also take the number of flavors to infinity, while keeping their ratio fixed. In
summary, the Veneziano limit is the following:

Nc →∞ , Nf →∞ , xf ≡
Nf

Nc

= fixed , λ ≡ g2Nc = fixed. (4.40)

For the physics of QGP that we are interested in, we have Nc = 3 and Nf = 3 accounting
for 3 light quarks {u,d,s}. Recall that the next heaviest quark is charm with a mass of order
1 GeV thus we don’t expect it to contribute in the energies that we are interested in namely
T ∼ (0.15− 0.35) GeV. So for the rest of the analysis we keep xf = 1.

The non-confining, chirally symmetric part of QCD corresponds to the near boundary behaviour
of the gravitational theory. It turns out [21] that the tachyon vanishes near the boundary while
the behaviour of F̂µν is not relevant for the viscosity. Thus, we may set them both to zero
τ = F̂µν = 0, in which case the flavor part of the action simply reduces to a "correction" for the
dilaton potential of ihQCD. In other words, our action reduces back to (3.23) with an effective
potential:

Veff (λ) = Vg (λ)− xfVf0 (λ) . (4.41)
These two potentials take the following form

Vg (λ) = 12
[
1 + V1λ+ V2λ

2

1 + λ/λ0
+ VIR e

−λ0/λ (λ/λ0)4/3
√

log (1 + λ/λ0)
]
,

Vf0 (λ) = W0 +W1λ+ W2λ
2

1 + λ/λ0
+ 12WIRe

−λ0/λ (λ/λ0)2 .

(4.42)

It is important to stress that all the parameters that appear above are fixed. On the UV side,
they are matched to the RG flow of QCD perturbation theory and on the IR side they are
determined by comparing to lattice data. Below we present the parameter values that we use,
they are potential set 7a in [20] which is an intermediate variant of the V-QCD equation of
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state:

V1 = 11
27π2 , V2 = 4619

46656π4 , W1 = 8 + 3W0

9π2 , W2 = 6488 + 999W0

15552π4

λ0 = 8π2/3 , VIR = 2.05 , W0 = 2.5 , WIR = 0.9 , ΛUV = 211MeV.

(4.43)

Fitting to the data from Bayesian analysis
Now that we have explained our setup we wish to fit the prediction of this theory to the
Bayesian data for η/s. The procedure we follow is the same: We relate the horizon value of the
dilaton (or equivalently λh) to the temperature using the thermodynamics of our potential. In
Figure 9 we plot this function which was determined by numerically solving for the background
functions. Note that the critical temperature denoted in the plot is Tc = 120MeV which is
different form the QCD crossover temperature of 154 MeV used in (4.2).

Figure 9: Temperature as a function of the dilaton horizon value in VQCD. The dotted line is
Tc/Λ.

Our next order of business is determining the optimal function for the coupling G (Φh). We
start with the simplest possible case of G = 1. In that case the theoretical prediction for the
shear viscosity is:

η

s
= 1

4π

[
1− 2

3βV (Φh)
]
. (4.44)

were we set ℓ = 1. Since V (Φh) is completely fixed we only have β as a free parameter. In
Figure 10 we plot the shear viscosity for this setup. As can be seen, G (Φ) = 1 does not provide a
good fit. Since the potential is fixed our parameter β simply sets the scale of the correction and
does not change the shape of the potential. This indicates that a simple curvature correction
term with constant coefficients is not adequate to explain the data and we require a non-trivial
dilaton coupling to the higher order term.
Since the fit for the simplest case was not very successful we move on to the general case
by solving the differential equation for G (Φh) (4.16) numerically to determine the optimal
coupling function. We take β = 0.1 without loss of generality. In Figure 11 we present the best
fit determined for G (Φh) and in in Figure 12 we plot the shear viscosity for this setup. As a
reminder, the theoretical curve for η/s is given by

η

s
= 1

4π

[
1 + 2

3β
(
−G (Φh)V (Φh) + 3

4G
′ (Φh)V ′ (Φh)

)]
. (4.45)

A few remarks about this fit:
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Figure 10: Best fit for the shear viscosity to entropy ratio for VQCD with G (Φ) = 1. The
yellow line shows the theoretical curve while the black line is η/s = 1/4π for reference. The
optimal value for the parameter was determined to be {β = −0.264}.

Figure 11: Dilaton potential and dilaton coupling as functions of the dilaton horizon value.

• The coupling function is in the range: −0.26 < βG (Φh) < 0.1 meaning that this remains
a perturbative correction.

• As mentioned before, our choice of initial conditions for G (Φh) does not matter for η/s
since the homogeneous solution drops out. We choose G (Φh = 4.5) = 1, this may matter
for other fits.

• We see that G crosses zero at around T ∼ 0.17 GeV where η/s ∼ 1/4π so the dilaton
decouples at around this universal value.

5 Curvature squared corrections: The full action
One might wonder why we have not included all possible couplings to R2 corrections in (3.23).
The most general action we could consider at this order would be:

S = 1
16πG5

∫
d5x
√
−g

[
R− 2(∇Φ)2 + V (Φ) + ℓ2β

(
G1 (Φ)R2 +G2 (Φ)RµνR

µν +G3(Φ)RµνρσR
µνρσ

)]
.

(5.1)
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Figure 12: Best fit for the shear viscosity to entropy ratio for VQCD with G (Φ) shown in
Figure (11). The yellow line shows the theoretical curve while the black line is η/s = 1/4π for
reference. We set β = 0.1 without loss of generality.

It turns out that the G1,G2 terms will not contribute to η/s. Even though they will effect the
shear viscosity and entropy individually, taking the fraction precisely cancels the extra contri-
butions and we get the same result as before. For constant coefficients G1 = λ1, G2 = λ2 these
two terms can be absorbed into a field redefinition for the metric. This explains the irrelevance
of the terms as η/s is a universal result independent of coordinates. The question is why does
this also happen in the coupled case?

This is because what we are actually interested in is the horizon behaviour of the couplings
since our entire calculation for both η and s is evaluated at the horizon. As we will argue later
the extra terms at the horizon effectively act as constants thus not changing the result. We
will start first with the constant coupling case, and build up our argument afterwards.

5.1 Warm up: Shear viscosity for constant coefficients
We examine the following action [18]

S = 1
16πG5

∫
d5x
√
−g

[
R− 2(∇Φ)2 + V (Φ) + ℓ2β

(
λ1R

2 + λ2RµνR
µν + λ3RµνρσR

µνρσ
)]
.

(5.2)
Following the same process as Section 1, using the formula:

η = 1
8πG5

√−guu

gtt

(
A−B + F ′

2

)
+
(
E

(√
−guu

gtt

)′)′∣∣∣∣∣∣
u=uh

, (5.3)

we find:

η = b
3/2
0

16πG

[
1− ℓ2β

(
6a0c0 + 3a1c0 − a0c1

a0c2
0

λ1 + 3 (a0 + a1) c0 − a0c1

2a0c2
0

λ2 + a0c0 + 3a1c0 − a0c1

a0c2
0

λ3

)]
.

(5.4)
The Lagrangian in this case is

L = 1
16πG5

[
R− 2(∇Φ)2 + V (Φ) + ℓ2β

(
λ1R

2 + λ2RµνR
µν + λ3RµνρσR

µνρσ
)]
. (5.5)
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so the entropy density using Wald’s formula (3.57) is:

s = 2π
√
h
[
1 + 4λ1R− 2λ2R

bdϵc
bϵcd − 2λ3R

abcdϵabϵcd

] ∣∣∣
u=uh

. (5.6)

Evaluating this as before and expanding around the horizon yeilds:

s = b
3/2
0

4G

[
1− ℓ2β

(
6a0c0 + 3a1c0 − a0c1

a0c2
0

λ1 + 3 (a0 + a1) c0 − a0c1

2a0c2
0

λ2 + 3a1c0 − a0c1

a0c2
0

λ3

)]
.

(5.7)
Dividing the two expressions and keeping terms up to order β we find:

η

s
= 1

4π

[
1− βℓ2

c0
λ3

]
= 1

4π
[
1− 2f1A1βℓ

2λ3
]

= 1
4π

[
1− 2

3βℓ
2λ3V (ϕh)

]
. (5.8)

So it turns out that the final result only depends on λ3. This can be explained as in our original
Lagrangian we can absorb the λ2 and λ1 terms into a field redefinition for the metric.

gµν → gµν + agµνR + bRµν . (5.9)

where a and b are O (β). To find how the inverse of the metric transforms we take the ansatz:

gµν → gµν + a′gµνR + b′Rµν . (5.10)

Then we use the fact that gµνg
νρ = δρ

µ. Expanding this we find:

(gµν + agµνR + bRµν) (gνρ + a′gνρR + b′Rνρ) = δρ
µ. (5.11)

Performing the multiplication and discarding higher order terms yields:

δρ
µ = δρ

µ + (a+ a′)Rδρ
µ + (b+ b′)Rρ

µ. (5.12)

Thus since the Kronecker delta maps to itself in the field redefinition we have a = −a′ and
b = −b′ and we find that the inverse of the metric transforms as follows:

gµν → gµν − agµνR− bRµν . (5.13)

The next order of business is to to calculate how the determinant of the metric transforms
under this field redefinition. We make use of the formula:

ln (detM) = Tr (lnM) . (5.14)

to write (in matrix notation):
√
−g = elog(

√
−g) = e

1
2 log(−g−agR−bR) =

√
−g

(
e

1
2 log(1+aR+bg−1R)

)
=
√
−g

(
e

1
2 T rlog(1+aR+bg−1R)

)
.

(5.15)
Expanding the logarithm and exponential up to first order in a, b gives:

√
−g →

√
−g

(
1 + 1

2Tr
(
aR + bg−1R

))
. (5.16)

or in index notation:
√
−g →

√
−g

(
1 + 5a+ b

2 R

)
, (5.17)

where the 5 comes from tracing over an implied Kronecker delta in the first term. The higher
derivative terms in the action are already of order β therefore we don’t need to calculate how

31



they transform and we keep only the zeroth order term. Finally, the only term that’s left to
calculate is the Ricci scalar. We find:

R→ R− aR2 − bRµνR
µν (5.18)

This brings the action to the following form [18] (we absorb ℓ2β into λ for simplicity) :

S = 1
16πG5

∫
d5x
√
−g

[
R

2κ − 2(∇Φ)2 + V (Φ) + λ̃1R
2 + λ̃2RµνR

µν + λ3RµνρσR
µνρσ

]
(5.19)

where
1
κ

= 2 + (5a+ b)
(
V (Φ)− 2(∇Φ)2

)
, λ̃1 = λ1 + 3a+ b

2 , λ̃2 = λ2 − b. (5.20)

We can pick b = λ2 and a = −2λ1−λ2
3 such that we set λ̃1 = λ̃2 = 0 and therefore eliminating

these terms from the action. The re-scaling of the Ricci scalar will not produce a deviation from
the universal result of 1/4π since the shear viscosity does not depend on κ. This is because
in formula (3.34) the field redefinition simply amounts to a re-scaling of the A,B,F and E
coefficients. If we define

A = A0 + βA1 , B = B0 + βB1, (5.21)
then we have the following rescaling:

A0 → A0

[
1 + 5a+ b

2
(
V (Φ)− 2(∇Φ)2

)]
,

B0 → B0

[
1 + 5a+ b

2
(
V (Φ)− 2(∇Φ)2

)]
.

A1 → Ã1 (λ3) , B1 → B̃1 (λ3)

(5.22)

The other two relevant coefficients, F,E also only depend on λ3 as they come from the higher
derivative corrections. If we write η = η0 + βη1, then shear viscosity will change to:

η0 → η0 + b
3/2
0

16πG
5a+ b

2
(
V (Φ)− 2(∇Φ)2

) ∣∣∣
u=uh

,

η1 → η̃1 (λ3) .
(5.23)

If we write s = s0 + βs1, it’s easy to see using Wald’s formula that the entropy changes to:

s0 → s0 + b
3/2
0

4G
5a+ b

2
(
V (Φ)− 2(∇Φ)2

) ∣∣∣
u=uh

, (5.24)

where again s̃1 only depends on λ3. Dividing the two expressions we have that:
η

s
= η0 + βη1

s0 + βs1
= η0 + βη1

s0

(
1− β s1

s0

)
. (5.25)

But importantly if we define x = b
3/2
0
4G

5a+b
2 (V (Φ)− 2(∇Φ)2)

∣∣∣
u=uh

we have that:

η0

s0
= η0 + x/4π

s0 + x
= η0 + x/4π

s0

(
1− x

s0

)
. (5.26)

Now making use of the fact that η0 = s0/4π and that x is order β we finally find:
η

s

∣∣∣
0
→ η

s

∣∣∣
0
,

η

s

∣∣∣
1

= η̃

s

∣∣∣
1

(λ3) . (5.27)

So the entire dependence on λ1 and λ2 is shifted to κ multiplying R. However, η/s does not
depend on κ since taking the ratio of the two cancels the factor in front. Therefore η/s will
only depend on the Riemann squared term.
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5.2 Shear viscosity with all terms coupled: why only R2
µνρσcontributes

Now we turn to the question of the dilaton couplings. As was mentioned before, what we are
interested in is the horizon behaviour of G1(Φ) and G2 (Φ) since this is where η/s is evaluated.
If we assume the couplings are regular at the horizon, we can expand them in the following
way:

G1 (Φ) = G1 (ϕh) + ϕ1G
′
1 (ϕh) (1− u) + . . .

G2 (Φ) = G2 (ϕh) + ϕ1G
′
2 (ϕh) (1− u) + . . .

G3 (Φ) = G3 (ϕh) + ϕ1G
′
3 (ϕh) (1− u) + . . .

(5.28)

So we see that the second term in the expansion will vanish in the exact u→ 1 limit. In that
case G = G (Φh) and the coupling is effectively constant at the horizon. We can see immedi-
ately see from this that the entropy density will not be effected by λ→ G (Φ). In fact the only
chance this has of effecting the result is if a derivative of G appears somewhere. In that case
at the horizon G′

i (Φ) = −ϕiG
′
i (ϕh) deviating from the case of λ.

Recall the formula for the shear viscosity (3.34)

η = 1
8πG5

√−guu

gtt

(
A−B + F ′

2

)
+
(
E

(√
−guu

gtt

)′)′∣∣∣∣∣∣
u=uh

. (5.29)

derivatives appear of the F,E functions so this is where there is a chance of contributing for G1
and G2 (and also where the G′

3 contribution comes from). Thus the only chance to deviate from
the constant result will come from these terms. The calculation of the effective action shows
that G1 does not contribute to F,E. G2 contributes to both F,E but the total contribution
after some calculations turns out to be

η ∼ b
3/2
0 ℓ2βϕ1G

′
2 (ϕh) (u− 1) (3− 3u+ u2)3/2

32πG (c0 + (u− 1) (c1 + c2 (u− 1))) . (5.30)

which at u = 1 is vanishing. This indicates that the metric redefinition is still valid even if the
coefficients are not constant.

6 Temperature Dependence of the Bulk Viscosity
In this section we calculate the bulk viscosity for the higher derivative theory we are considering.
In the first two subsections we work out the bulk viscosity to entropy ratio for some toy models
and motivate the fit to the Bayesian data. After deriving the formula for ζ/s we present the
zeroth order prediction of V-QCD for the bulk viscosity.

6.1 Bulk viscosity of a CR brane
The authors of [15] parameterized ζ/s as an unnormalized Cauchy distribution

ζ

s
= d

[
e2

(T − f)2 + e2

]
. (6.31)

where they determined:

d ≡ (ζ/s)max = 0.0060+0.0058
−0.0060, e ≡ (ζ/s)width = 0.10+0.15

−0.08 GeV, f ≡ (ζ/s)T0
= 0.202+0.047

−0.039 GeV.
(6.32)

33



This is plotted along with a 90% confidence band in Figure 13. As can be seen, the value of ζ/s
is very small and even consistent with zero hinting at a nearly conformal plasma. We note also
that the results of Jetscape [17] show a viscosity around an order of magnitude larger, however
both results have big uncertainties and are only in statistical disagreement for low temperatures.

The most convenient way to calculate the bulk viscosity to entropy ratio is by use of the

Figure 13: Posterior distribution for the bulk viscosity to entropy ratio versus temperature with
a 90% confidence band in blue. The left result is that of Trajectum [15] and the right is that
of Jetscape[17].

Eling-Oz formula [22, 23]:
ζ

s
= 1

4π

(
s
∂Φh

∂s

)2

. (6.33)

which relates ζ/s to derivatives of the dilaton horizon value with respect to entropy. This
formula was derived with a different normalization for the dilaton kinetic term: −1

2(∇Φ)2. To
normalize it correctly to our case we can re-scale the dilaton as:

Φ→ 2Φ , =⇒ −1
2(∇Φ)2 → −2(∇Φ)2. (6.34)

So this will change the formula in our case to:

ζ

s
= 1
π

(
s
∂Φh

∂s

)2

. (6.35)

For the moment we have set β = 0 and we will just look at the simple case of the CR brane
analyzed in Section 2.1. We determined

S = S0e
3ζ

4X0
Φh , (6.36)

where the constant ζ =
√

8/3 in the exponent is for correct normalization, not to be confused
with bulk viscosity. Thus we find:

∂Φh

∂s
= 2X0√

6
1
s
. (6.37)

So in this toy example we find a constant ζ/s:

ζ

s
= 2X2

0
3π = α2

16π . (6.38)
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The thermal stability for the CR brane requires X2
0 < 1/4 so this sets an upper bound on the

bulk viscosity:
ζ

s
<

1
6π ≃ 0.053. (6.39)

Comparing this to Figure 13 we see that the mean value peaks at just below that value. It
seems like in this simple case with α =

√
8/3 which is just the threshold for confinement we

have tension with the data as temperature increases. This is similar to the shear viscosity where
as temperature increases the tendency for η/s is to increase away from 1/4π. This also agrees
with the result of [28].

6.2 Bulk viscosity in the adiabatic approximation
Using the formula for the bulk viscosity, we would like in the case of V-QCD to relate it to the
dilaton potential, we have:

ζ

s
= 1

4π

(
s
∂Φh

∂s

)2

. (6.40)

This formula was derived with a the following normalization for the dilaton kinetic term:
−1

2(∇Φ)2 to normalize it correctly to the case of V-QCD we can rescale the dilaton as:

Φ→
√

8
3Φ , =⇒ −1

2(∇Φ)2 → −4
3(∇Φ)2. (6.41)

So this will change the formula in our case to:

ζ

s
= 2

3π

(
s
∂Φh

∂s

)2

. (6.42)

Now making use of the Bekenstein-Hawking entropy formula S = 1
4G5

e3A(Φh) we can write:∗

∂Φh

∂s
= ∂Φh

∂A

∂A

∂s
= ∂Φh

∂A

1
3s. (6.43)

Thus we find
ζ

s
= 2

27π

(
∂Φh

∂A

)2

= 2
27π

(
∂Φ (r)
∂A

∣∣∣
r=rh

)2

. (6.44)

Now we will make use of the phase variables formalism to write this in terms of the potential,
recall that from equation (3.78) we have:

dA

dr
= A1 = −C

ℓ

S
1
3

T
V (Φh) ,

dΦ
dr

= Φ1 = 2C
ζ2ℓ

S
1
3

T
V ′ (Φh) ,

(6.45)

with ζ depending on the kinetic term normalization, for the standard (−4/3 we have ζ = 4/3).
Thus we can write

∂Φ (r)
∂A

∣∣∣
r=rh

= ∂Φ (r)
∂r

∂r

∂A

∣∣∣
r=rh

= Φ1

A1
= −9

8
V ′ (Φh)
V (Φh) . (6.46)

∗This chain rule is not strictly correct, this is an approxiamtion.
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Finally we find that the bulk viscosity to entropy ratio is given by [28]:

ζ

s
= 3

32π

(
V ′ (Φh)
V (Φh)

)2

(6.47)

Using this formula we plot ζ/s for the V-QCD potential, in comparison with the Trajectum
results in Figure 14. As can be seen the agreement is not very good especially in the low
temperature range.

Figure 14: Bulk viscosity of VQCD without higher derivative corrections in the adiabatic
approximation.

Adiabatic approximation
The adiabatic approximation assumes that the potential is slowly varying or in other words
V ′

V
∼ constant. We checked this explicitly for V,G in the region we are interested in for the

Baysian data. This is plotted in Figure 15.

Figure 15: An explicit check of the adiabatic approximation for the dilaton potentials. For V
we used the fixed V-QCD potential while for G we used an analytic function given in Section
4.4.

While this is not a terrible approximation if one seeks an order of magnitude calculation,
it will certainly have a noticeable effect on the result. So to make contact with the data we
would need a more careful treatment of the fluctuations.
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6.3 Bulk viscosity with higher derivative corrections
In this subsection we employ a more careful treatment of the problem and derive an analytic
formula for the bulk viscosity to entropy ratio for the theory we are considering:

S = 1
16πG5

∫
d5x
√
−g

[
R− 4

3(∇Φ)2 + V (Φ) + ℓ2βG(Φ)RµνρσR
µνρσ

]
. (6.48)

We follow the analysis of [29],[30], extracting the bulk viscosity from a radially conserved
current. We extend the results of [30] to a class of theories with non-minimal dilaton coupling.
As we have argued in previous sections, this setup allows us to capture the temperature flow
of the QGP transport coefficients as we move away from the critical point. We start first by
presenting the formula and comparing it to the one derived in [30] and subsequently move on
to present the main steps of the calculation. Starting with (6.48) we find the following:

ζ

s
= 8z2

0
27π

[
1 + 1

2ℓ
2β

(
−4

3GV + G(V ′)2

V
+G′V ′

)]
. (6.49)

Where the entire expression is evaluated at the horizon. z0 is the gauge invariant fluctuation of
the scalar field Φ at lowest order in the hydrodynamic expansion [30]. Shifting V → −V + 12
and Φ→

√
3
8Φ to match the conventions of [30], we find:

ζ

s
= z2

0
9π

[
1 + 2

3ℓ
2β

(
G (V − 12)− 2G(V ′)2

V − 12 − 2G′V ′
)]

. (6.50)

This formula reduces to the result of [30] for a1 = 0, a2 = 0, G = a3.

Deriving the bulk viscosity to entropy ratio
We start from a generic metric ansatz:

ds2 = −c1 (r)2 dt2 + c2
2 (r) dx2 + c2

3 (r) dr2, Φ = Φ(r). (6.51)
Varying the action with respect to the metric, one obtains the background equations of motion,
see the next chapter for more details. Substituting this ansatz in the equations of motion we
obtain the following set of background equations:

Φ′′ + c′
1Φ′

c1
+ 3c′

2Φ′

c2
− c′

3Φ′

c3
+ 3

8c
2
3V

′ = 0 ,

(Φ′)2 + 3
4c

2
3V −

9c′
1c

′
2

2c1c2
− 9(c′

2)2

2c2
2

= 0 ,

c′′
2 + (c′

2)
2

c2
− c′

2c
′
3

c3
+ 2

9c2 (Φ′)2 − 1
6c2c

2
3V = 0 ,

c′′
1 + 2c′

1c
′
2

c2
− c′

1c
′
3

c3
+ c1(c′

2)2

c2
2
− 1

6c1c
2
3V + 2

9c1 (Φ′)2 = 0.

(6.52)

We present the result for the zeroth order equation as the β components are too cumbersome
to present here. To compute the relevant retarded Green’s function we expand the metric and
dilaton, considering SO(3) invariant perturbations:∗

c1 (r, t)→ c1 (r)
(

1 + λ
htt (r, t)
c2

1 (r)

)1/2

,

c2 (r, t)→ c2 (r)
(

1 + λ
h11 (r, t)
c2

2 (r)

)1/2

,

c3 (r, t)→ c3 (r) ,
Φ (r, t)→ Φ (r) + λΨ (r, t) .

(6.53)

∗Our definition for htt differs from [30] by a minus sign
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With this choice we fix the axial gauge by taking hrr = hrt = 0. We introduce new variables
H11, Htt, assuming harmonic time dependence:

htt (r, t) = e−iωtc2
1H00 (r) , h11 (r, t) = e−iωtc2

2H11 (r) . (6.54)

and the gauge invariant scalar fluctuations Z are defined as:

Ψ (r, t) = e−iωt

(
Z (r) + Φ′ (r) c2 (r)

2c′
2 (r) H11 (r)

)
(6.55)

Applying these expansions to the equations of motion and keeping terms up to O (λ), we derive
the equations of motion for the fluctuations:

H ′ + 8c2c3Φ′

9c′
2

Z + β{...} = 0 , H11 = c′
2

c2c3
H, (6.56)

H ′
00 −

8c2Φ′

9c′
2
Z ′ + c2

27c1(c′
2)2

(
24c′

1c
′
2Φ′ − c1c

2
3 (9c′

2V
′ + 8c2V Φ′)

)
Z

+
(
ω2c3

c2
1
− 1

3c3V + (c′
1)2

c3c2
1

+ 3c′
1c

′
2

c1c2c3

)
H + β{...} = 0,

(6.57)

coming from the 12 and 11 components of Einsteins equations respectively, where we made use
of the background equations of motion to simplify the above expressions. As before, we only
provide the zeroth order results as the first order expressions are too cumbersome to present
here. Remarkably, the equation for Z decouples from the other fluctuations once the constraints
above are used in tandem with the background equations. This yields the following equation:

Z ′′+
(
c1′
c1

+ 3c′
2

c2
− c′

3
c3

)
Z ′+c2

3

(
ω2

c2
1

+ 4
3V −

2c2
2c

2
3V

2

9(c′
2)2 + 4c2V c

′
1

3c1c′
2

+ 2c2V
′Φ′

3c′
2

+ 3
8V

′′
)
Z+β{...} = 0.

(6.58)
Where also the β terms are only functions of Z. Following the same expansion we derive the
effective action, following the prescription of [30]:

Sc = 1
16πG5

∫
drLc{h11,ω, h00,ω, pω, h

∗
11,ω, h

∗
00,ω, p

∗
ω}, (6.59)

where we define

htt(t, r) = e−iωth00,ω (r) , h11(t, r) = e−iωth11,ω (r) , ψ(t, r) = e−iωtpω (r) . (6.60)

Since the expression is very lengthy and does not add to the understanding of the derivation,
we do not present it here, we refer the reader to the citation for more details on the derivation.
In the following we suppress the ω indices and instead use "∗" to refer to conjugate fields. We
calculate the conserved current by integrating the effective action of the fluctuation by parts
as in (3.38), thus the conserved current is given by:

Jω = ∂L
∂h∗′

11
δh∗

11 + ∂L
∂h∗′′

11
δh∗′

11 −
(
∂L
∂h∗′′

11

)′

δh∗
11

+ ∂L
∂h∗′

00
δh∗

00 + ∂L
∂h∗′′

00
δh∗′

00 −
(
∂L
∂h∗′′

00

)′

δh∗
00

+ ∂L
∂p∗′ δp

∗ + ∂L
∂p∗′′ δp

∗′ −
(
∂L
∂p∗′′

)′

δp∗.

(6.61)
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After some lengthy but straightforward calculations, we find:

Jω = 1
12c4

1c
2
2c3

9c5
2h

∗
00h00c

′
1 − 9c2

1c
3
2h

∗
00h11c

′
1 − 3c1c

5
2(h00h

∗
00

′ + h∗
00h

′
00)+

c5
1

(
9c2h11h

∗
11

′ + 9h∗
11 (h11c

′
2 − c2h

′
11) + 16c5

2p
∗p′ + 24c3

2p
∗h11Φ′

)
+

c3
1c

2
2

(
−9h∗

11h00c
′
2 + c2

(
9h00h

∗
11

′ + 9h11h
∗
00

′ + 8c2
2p

∗h00Φ′
)) + β{...}

(6.62)

We specifically need the current in the hydrodynamic approximation thus we expand the fluc-
tuations as follows:

Z =
(
c1

c2

)−iw

(z0 + iwz1) , H = H0 + iwH1, H00 = H00,0 + iwH00,1, (6.63)

where w = ω
2πT

. We discuss boundary conditions later when we come to the solution of the
z equation. We note that the Noether current associated with the U(1) symmetry of Lc is
actually given by:

JN = −i (Jω − J−ω) = 2ImJω. (6.64)
where by J−ω we refer to the conserved current coming from the integration by parts of the
{h11, h00, p} action. The last equality holds because J−ω = (Jω)∗. To extract the bulk viscosity
using the Kubo relation, we will need only the order ω, imaginary part of the current J1:

Jω = J0 − iwJ1. (6.65)

After making use of the equations of motion for H,H00 we find that the expression simplifies
significantly and the conserved current only depends on z0, z1:

J1 =4c2
2 (c1z

2
0c

′
2 − c2 (z2

0c
′
1 + c1z1z

′
0 − c1z0z

′
1))

3c3

+ 16ℓ2β

27c2
1c

3
3c

′
2

2

(
c1z

2
0c

′
2 − c2

(
z2

0c
′
1 + c1z1z

′
0 − c1z0z

′
1

)) [
108c2

2G (Φ) c′
1

2c′
2

2−

6c1c2c
′
1c

′
2

(
4c2

2c
2
3G (Φ)V (Φ)− 21G (Φ) c′

2
2 + 6c2c

′
2G

′ (Φ) Φ′
)

+

c2
1

(
c4

2c
4
3G (Φ)V (Φ)2 − 9c2

2c
2
3G (Φ)V (Φ) c′

2
2 + 18G (Φ) c′

2
4−

18c2c
′
2

3G′ (Φ) Φ′ + c3
2c

2
3c

′
2 (5V (Φ)G′ (Φ) + 2G (Φ)V ′ (Φ)) Φ′

) ]
.

(6.66)

A key observation in this calculation is that since the current is radially conserved one may
evaluate it at any point in the holographic direction and in particular evaluate it at the black
hole horizon. This simplifies the expression and gives ζ only in terms of horizon data. We
expand around the horizon as in (3.33):

c2
1 (u) = a0(1− u) + a1(1− u)2 + a2(1− u)3 + . . .

c2
2 (u) = b0(1 + (1− u) + . . .)
c2

3 (u) = c0(1− u)−1 + c1 + c2(1− u) + . . .

Φ (u) = Φh + Φ1(1− u) + Φ2(1− u)2 + . . .

(6.67)

Regularity at the horizon gives the following constraints on the horizon functions:

c0 = 3
2Vh

, Φ1 = − 9V ′
h

16Vh

, c1 = 15
4Vh

+ 81 (V ′
h)2

128V 3
h

, a1 = a0

(
1
2 + 9(V ′

h)2

64V 2
h

)
, (6.68)
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Expanding the current at the horizon and making use of the constraints, we find the following:

J1h = 2
3

√
a0

c0
b

3/2
0 z2

0

(
1 + ℓ2β

2 V ′
(
G′ + GV ′

V

))
, (6.69)

where the entire expression is evaluated at the horizon. The bulk viscosity is given by the Kubo
relation:

ζ = −4
9 lim

ω→0

1
ω

ImGR = − 1
18πG5

lim
ω→0

1
ω

ImJω (6.70)

where the factor in front comes from the normalization of the Green’s function:

GR(ω) = −i
∫
dtdxeiωtθ(t)

〈[1
2T

i
i (t,x), 1

2T
j
j (0,0)

]〉
, (6.71)

since the fluctuations of the metric have a 1/2 factor in front. Thus we find for the bulk
viscosity:

ζ = w

27πG5

√
a0

c0
b

3/2
0 z2

0

(
1 + ℓ2β

2 V ′
(
G′ + GV ′

V

))
. (6.72)

The temperature for this metric is given by (3.70): T = 1
4π

√
a0
c0

, which was obtained from the
conical singularity. The entropy is given by Wald’s formula (3.64):

s = b
3/2
0

4G5

[
1− 3a1c0 − a0c1

a0c2
0

ℓ2βG

]
= b

3/2
0

4G5

[
1 + 2ℓ2β

3 GV

]
. (6.73)

Taking the ratio between the two expressions and keeping terms up to order β we arrive at eq.
(6.49):

ζ

s
= 8z2

0
27π

[
1 + 1

2ℓ
2β

(
−4

3GV + G(V ′)2

V
+G′V ′

)]
. (6.74)

6.4 Numerical solution of the fluctuation and fitting the Bayesian
data

Having presented the main steps in the derivation of (6.49) we now wish to make use of the
formula to fit the data from Bayesian analysis in Figure 13. As a starting point, we will set β
to zero and calculate the 0th order result for the V-QCD potential. There are a few steps we
take to simplify the numerical calculation starting from changing coordinates as follows:

c1 →
√
f (r)eA(r) , c2 → eA(r) , c3 →

eA(r)√
f (r)

. (6.75)

In addition, we introduce a new variable q (A) to replace the scale factor A (r) and change
variables to the scale factor instead of radial coordinate:

q (A) = eA (r)
A′ (r) (6.76)

The first step in computing the fluctuation is solving the background equations at zeroth order
in β. We expand the functions in β using:

f = f0 + βf1 , q = q0 + βq1,

λ = λ0 + βλ1 , z0 = z00 + βz01.
(6.77)

40



The three equations we solve are the following:

f ′′
0 (A)√
f0 (A)

+ q0 (A)2 V (λ0) f ′
0 (A)

3f0 (A)3/2 − f ′
0 (A)2

f0 (A)3/2 = 0,

q0 (A)
(
−f

′
0 (A)
f0 (A) − 4

)
+ q0 (A)3 V (λ0)

3f0 (A) + q′
0 = 0,

1
2

√√√√9f ′
0 (A) + 36f0 (A)− 3q0 (A)2 V (λ0)

f0 (A) + λ′
0 (A)
λ0 (A) = 0.

(6.78)

They are solved subject to the following horizon boundary conditions:

f0 = f00 (A− Ah) + f01 (A− Ah)2 + ...

λ0 = λ00 + λ01 (A− Ah) + ..

q0 = q00 + q01 (A− Ah) + ...

(6.79)

Regularity at the horizon in these coordinates implies:

q2
00 = 3f00

Vh

. (6.80)

Notice that in this form equations (6.78) are invariant under a resealing of the type:

f0 → αf0 , q0 →
√
αq0. (6.81)

We can use this fact to our advantage in the numerical solution as we want f0 → 1 at the
UV boundary such that the Hawking temperature is correctly defined. Thus the procedure we
follow is:

• Solve the system of equations numerically assuming the horizon behaviour (6.79) where
we take f00 = 1 for simplicity.

• Rescale f → f/fUV , q → q/
√
fUV using (6.81) so that f0,UV → 1.

In this way the solution is correctly normalized. The next step is solving the z0 equation
numerically, in these coordinates this equation reads:

z′′
00 + z′

00

(
f ′

0
f0
− q′

0
q0

+ 4
)

+

z00
q2

0 (3f0 (64V (λ0) + (16λ′
0 + 9λ0)V ′(λ0) + 9λ2

0V
′′(λ0)− 16V (λ0) (q2

0V (λ0)− 3f ′
0))

72f 2
0

= 0.

(6.82)
We assume that z00 is regular at the horizon admitting an expansion of the form:

z00 = c0 + c1 (A− Ah) . (6.83)

Plugging this into the z00 equation along with the horizon expansion (6.79), we relate c0 to c1
by demanding that the pole at the horizon vanishes such that the z00 equation is well defined.
We find:

c1 = c0
9
8

(
V ′(Φh)2

V (Φh)2 −
V ′′(Φh)
8V (Φh)

)
(6.84)

In addition we must require that the dilaton perturbation Ψ is not sourced, since only the
metric should be sourced to compute the bulk viscosity. This sets the leading behavior of z00
towards the boundary to be:

z00

∣∣∣
UV
∼ 1/2A (6.85)

Using these two conditions we solve the fluctuation equation using the following procedure:
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• We solve the equation making use of the background solution along with (6.84), where
we take c0 = 1.

• We rescale the solution appropriately such that z00 satisfies (6.85). Notice that (6.82) is
invariant under the rescaling of z00.

In this way we correctly normalize our solution for z00 to match the boundary conditions.
Following this process we solve the background and fluctuation equations at zeroth order for
different values of the dilaton horizon value. Using the temperature relation depicted in figure
9, we can translate this into solving the equations for different temperatures. The bulk viscosity
is then given by the simple formula:

ζ

s
= 8z00 (Ah)2

27π (6.86)

We plot this in figure 16 for the the values of Φh relevant for comparison to data. In addition,

Figure 16: Bulk viscosity as a function of the dilaton horizon value for the V-QCD potential.

as a check for our numerical calculation we compare this result with the result of the Elling-Oz
formula [22, 23] which reads:

ζ

s
= 2

3π

(
s
∂Φh

∂s

)2

(6.87)

We plot this comparison in figure 17. As can be seen, the two formulas are in agreement with a
∼ 1% discrepancy. The two methods were originally shown to agree in [31] for ihQCD. However
the agreement is not expected to hold as higher derivative corrections are included [30].
Finally, we come to the main motivation of this calculation which is to compare this result
with the Bayesian analysis of heavy ion collisions. In figure 18 we plot the bulk viscosity as
a function of temperature along with the 90% confidence bands of the two data sets. Some
comments about this fit:

• The fit has zero additional free parameters as the V-QCD potential used is completely
fixed by other demands.

• We observe a better agreement with the data from Jetscape for the zeroth order result.
Thus the zeroth order prediction coming from V-QCD is that the bulk viscosity is not
heavily suppressed compared to the shear viscosity hinting at a soft but not negligible
break of conformality.

• We expect the first order correction to be important as it was for the shear viscosity and
thus change the agreement with the data.
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Figure 17: Comparison between the conserved current and EO methods of deriving ζ/s for the
V-QCD potential. The conserved current method is shown in orange and the Elling-Oz method
is shown as a dotted line.

Figure 18: Bulk viscosity as a function of temperature for V-QCD. The orange line is the
prediction coming from V-QCD. The blue error-bars are data from the Jetscape collaboration
and the green errobars are data from the Trajectum collaboration.

7 Equations of Motion
So far in our analysis we have assumed that the higher derivative corrections are small com-
pared to the background geometry and thus we would not expect it to change the properties of
the holographic-QCD theories dramatically. In our analysis of the shear viscosity the correc-
tion to the background geometry is a second order effect and thus was unimportant. However,
corrections to the asymptotics of background functions will be linear in β and so it is natural
to ask how confinement will be affected. In addition, corrections to the thermodynamics will
also be a first order effect and so it is natural to ask how the thermal stability will be affected.
Answering these questions will hopefully constrain the function G (Φ) with the ultimate goal
in mind of giving the theory predictive power.

Beyond this, it is also important to note that we don’t expect these corrections to be small in
the entire spectrum of energies. In particular, in the UV limit we know that the supergravity
approximation breaks down and we have to think of the potentials as effectively resuming all
possible corrections by matching to the QCD behaviour. For this reason, it is important to
have a full analysis of the action (3.23), starting of course with the equations of motion.
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We start with the EoM for Φ. The least action principle δSϕ

δϕ
= 0 gives:

8
3∇µ∇µΦ + ℓ2βRµνρσR

µνρσG′ (Φ) + V ′ (Φ) = 0. (7.1)

And by varying the action with respect to the metric we obtain Einstein’s equations:

Rµν −
1
2gµνR−

1
2gµνV (Φ)− 4

3 (∇µΦ) (∇νΦ) + 2
3gµν (∇σΦ) (∇σΦ) +

ℓ2β
[
2G (Φ)R ρσα

µ Rνρσα −
1
2gµνG (Φ)RµνρσR

µνρσ + 2G (Φ)∇ρ∇σRµρνσ + 2G (Φ)∇σ∇ρRµρνσ+

4 (∇ρΦ)∇σRµρνσG
′ (Φ) + 4 (∇ρΦ) (∇σRµσνρ)G′ (Φ) + 2Rµρνσ (∇σ∇ρΦ)G′ (Φ) +

+2Rµρνσ (∇ρ∇σΦ)G′ (Φ) + 4Rµρνσ (∇ρΦ) (∇σΦ)G′′ (Φ)] = 0.
(7.2)

It’s easy to see that setting β = 0 to the equations above reduces to the Einstein-Dilaton
equation of motion. Now we look for background solutions with T = 0 using the following
ansatz:

ds2 = e2A(r)
(
dr2 − dt2 + dx2

)
, Φ = Φ (r) . (7.3)

Adding the rr and tt components of Einstein’s equations and substituting this ansatz yields:

e−2A(r)
(
108ℓ2βG (Φ) Ȧ (r)4 − 36ℓ2βȦ (r)3 G′ (Φ) Φ̇ (r)− 9e2A(r)Ä (r) + 48ℓ2βG (Φ) Ä (r)2 +

3Ȧ (r)2
(
3e2A(r) − 52ℓ2βG (Φ) Ä (r)

)
− 4Φ̇ (r)2

(
e2A(r) − 3ℓ2βÄ (r)G′′ (Φ)

)
+ 12ℓ2βG′ (Φ) Ä (r) Φ̈ (r) + 24ℓ2βG′ (Φ) Φ̇ (r)A(3) (r)− 36ℓ2βȦ (r)

(
G′ (Φ) Φ̇ (r) Ä (r)

+G (Φ)A(3) (r)
)

+ 12ℓ2βG (Φ)A(4) (r)
)

= 0 ,
(7.4)

where primes denote Φ derivatives and dots denote radial derivatives. In this combination
of equations the potential drops out and we can analyze the asymptotics of the rest of the
functions. Subtracting the rr and tt components of Einstein’s equations gives:

e−2A(r)
(
e4A(r)V (Φ)− 3e2A(r)Ä (r)− Ȧ (r)2

(
9e2A(r) + 20ℓ2βG (Φ) Ä (r)

)
− 36ℓ2βG (Φ) Ȧ (r)4−

12ℓ2βȦ (r)3 G′ (Φ) Φ̇ (r) + 4ℓ2βΦ̇ (r)2 Ȧ (r)G′′ (Φ) + 4ℓ2βG′ (Φ) Ä (r) Φ̈ (r) + 8ℓ2βG′ (Φ) Φ̇ (r)A(3) (r) +
20ℓ2βȦ (r)

(
G′ (Φ) Φ̇ (r) Ä (r) +G (Φ)A(3) (r)

)
+ 4ℓ2βG (Φ)A(4) (r)

)
= 0.

(7.5)
In the β = 0 limit equations (7.4) and (7.5) reduce to equation (2.11) of [26] as expected.

7.1 UV Asymptotics
In the UV QCD becomes asymptotically free and conformal. It is natural then to assume that
on the dual side, the geometry asymptotes to AdS5. So in the limit of r → 0 we have:

A (r)→ − log (r/ℓ) . (7.6)

Substituting this into (7.3) we see that the metric indeed goes to AdS5:

ds2 = ℓ2

r2

(
dr2 − dt2 + dx2

)
. (7.7)

Plugging these asymptotics for A (r) into equation (7.4) we find that it reduces to the following:

−Φ̇ (r)2 + 3β
[
Φ̇ (r)2 G′′ (Φ) +G′ (Φ)

(
2Φ̇ (r)
r

+ Φ̈ (r)
)]

= 0. (7.8)
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As can be seen, only derivatives of G (Φ) appear in the equation and thus a simple solution is
G (Φ) → constant at the UV. This then reduces the EoM to simply: Φ̇ (r)2 = 0 in which case
we can take Φ (r)→ constant which solves the EoM and we asymptote to pure AdS. However,
if we want to preserve the ihQCD asymptotics in the UV namely: Φ (r) → − log (− log (rΛ))
we need to include higher order terms in the expansion of the scale factor, we look at this case
below.

Now looking at the potential equation (7.5) and plugging in A (r) → − log (r/ℓ) we find the
following:

ℓ2V (Φ)− 12
r2 + 8βG (Φ)

r2 +
4βG′ (Φ)

(
−6Φ̇ (r) + rΦ̈ (r)

)
r

+ 4βΦ̇2G′′ (Φ) = 0. (7.9)

Solving this equation at zeroth order, assuming G → G0 gives a β correction to the AdS
cosmological constant:

V (Φ)→ V0 = 12
ℓ2 −

8βG0

ℓ2 . (7.10)

The magnitude of this correction is determined by the asymptotic value of G (Φ).

Preserving ihQCD in the UV
We now take the following expansion for the scale factor [26]:

A (r) = − log (r/ℓ) + 4
9 log (rΛ) +O

(
− log (log (rΛ))

log (rΛ)2

)
. (7.11)

Plugging this into the equations of motion (7.4), we find the following up to leading order in
the r → 0 limit:

4
9 (log (Λr))8 r2

[
3 (log (Λr))2

(
(log (Λr))4 − (log (Λr))6 r2Φ̇2 (r)

)
− 4βG (Φ) (log (Λr))6

3βG′ (Φ)
(
6 (log (Λr))6 Φ̇ (r) + 9 log (Λr)6 rΦ̈ (r)

)
+ 9βG′′ (Φ) (log (Λr))6

]
= 0.

(7.12)

A simple solution to this equation is:

G (Φ) = G0,

Φ (r) = − log (− log (rΛ))
(

1− 4
3βG0

)
.

(7.13)

Giving us a β correction to the asymptotics of the dilaton. It’s important to stress that this is
not a perturbative result in β.

Moving on to the potential equation, to first order we find the same result. This is expected
since in this combination of the EoM the Φ̇ (r) term drops out. For completeness, we find the
following for the potential equation to first order in r:

ℓ2V (Φ)− 12
r2 + 8βG (Φ)

r2 ∼ G′ (Φ) +G′′ (Φ) . (7.14)

So as before (7.10) we find a correction to the cosmological constant or AdS length-scale:

V (Φ)→ V0 = 12
ℓ2 −

8βG0

ℓ2 . (7.15)
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7.2 IR Asymptotics and Confinement
In this subsection we discuss the IR Asymptotics of the theory. We want to preserve desirable
properties of ihQCD in the IR such as confinement. So our starting approach is to assume
that ihQCD asymptotics in [25, 26] hold and admit small β corrections. Ideally, we would like
to leave V (Φ) unchanged, therefore we will start by looking at equation (7.4). We have the
following asymptotics:

A (r)→ −Crα + βδA (r) , α > 0 , C > 0

Φ (r)→ −3
2A (r) + 3

4 log
∣∣∣Ȧ (r)

∣∣∣+ βδΦ (r) .
(7.16)

Now we ask the following question: How should G (Φ) behave in the Φ → ∞ limit such that
the equations of motion are still satisfied? And how should δA (r) and δΦ (r) behave in the
r →∞ limit so as to not cause any issues? Plugging (7.16) into (7.4) and keeping only terms
linear in β, we find the following for the leading order terms:

e2Crα

r4

(
144C5ℓ2α5βG (Φ) r4α − 72C5ℓ2α5βG′ (Φ) r4α + 36C4ℓ2α4βG′′ (Φ) r3α (α− 1)

)
=

1
r2

(
3Cα− 6Cα2 + 3Cα3 + 6βr1−αδȦ (r)

(
1− 2α + α2

)
+ 16C2α2βr1+αδΦ̇ (r)

+ 6βr2−αδÄ (r) (1− α)
)
.

(7.17)
We observe that δA and δΦ are exponentially suppressed in the EoM. Now we proceed by
solving the equation order by order in β. At zeroth order we recover the ihQCD result and the
equation is solved up to an 1/r2 term.

1
r2

(
3Cα− 6Cα2 + 3Cα3

)
→ 0. (7.18)

Loking at the first order terms we observe that the left side of the equation is multiplied by
an exponential that diverges in the r → ∞ limit. In addition we expect δA and δΦ to be
polynomial or logarithmic functions such that they are actually sub-leading in this regime.
Therefore we take the following ansatz for G:

G (Φ) = GIRe
γΦΦδ. (7.19)

Using the Φ asymptotics (7.16), to first order in β and r this gives:

βG (r) = βGIR (Cα)
3
4 γ (−C)δ e

3
2 γCrα

r(α−1)3γ/4+αδ. (7.20)

Plugging this back into the equation and keeping the leading terms in r and β we find the
following:

βG̃IRe
Crα(2+ 3

2 γ)r(α−1)(3γ/4+4)+αδ = 6βr−α−1δȦ (r)
(
1− 2α + α2

)
+ 16C2α2βrα−1δΦ̇ (r) + 6βr−αδÄ (r) (1− α) .

(7.21)

where G̃IR = 72C5ℓ2α2GIR (−C)δ (Cα)3γ/4 . If we want the left side to behave well in the IR
we need the exponential to converge thus have to impose

γ ≤ −4
3 . (7.22)

For the strictly smaller case we don’t have a restriction on δ since the left side decays exponen-
tially in the r →∞ limit. We analyze the special case of γ = −4

3 below. As for the right side
we have a few possible solutions. We start be assuming a polynomial behaviour for δΦ and δA:

δA (r) = CAr
ζ ,

δΦ (r) = CΦr
η.

(7.23)
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Plugging in these assumptions we find the following for the O (β) equation:

6βCAr
ζ−α−2

(
α2ζ − αζ + ζ2 (1− α)

)
+ 16CΦηC

2α2βrα−2+η + vanishing = 0. (7.24)

Here there’s two perspectives we can take, one is that again we can have the equation solved
up to a term of 1/r2 in which case we impose ζ ≤ α and η ≤ −α < 0. Notice that this requires
that δΦ vanishes in the IR. The other option, is to solve the equation exactly. In that case we
equate the exponents of r which gives

ζ − η = 2α. (7.25)

Special case of γ = −4
3

Now, we look at the case of γ = −4
3 which exactly cancels the exponential and gives, to leading

order:
βG (r) = βG̃IR

e−2Crα

Cα
(−C)δ r1+α(δ−1). (7.26)

Now asyming the same polynomial behaviour for δA, δΦ (7.23), to leading order, we find the
following for the O (β) equation

6βCAr
ζ−α−2

(
α2ζ − αζ + ζ2 (1− α)

)
+ 16CΦηC

2α2βrα−2+η = βG̃IRr
3(α−1)+αδ. (7.27)

Now solving this equation exactly requires matching the coefficients to leading order, the ex-
pression above simplifies to:

6βCAr
ζ−α

(
α2ζ − αζ + ζ2 (1− α)

)
+ 16CΦηC

2α2βrα+η = βG̃IRr
3α−1+αδ. (7.28)

To proceed, we take two cases, if ζ − η < 2α then the η term is dominant and we find:

δ = η + 1− 2α
α

. (7.29)

On the other hand, if ζ − η ≥ 2α than the ζ term dominates and we find

δ = ζ + 1− 4α
α

. (7.30)

Asymptotics of the Dilaton Potential
We investigate now equation (7.5) which includes V (Φ). We want to find out if the same
asymptotics of ihQCD hold and if there are any more contraints for the δA, δΦ functions. We
start by substituting the same ansatz (7.16). For V (Φ) we assume the following asymptotic
behaviour:

V (Φ)→ VIRe
QΦΦP . (7.31)

Keeping only the higher order terms in the r →∞ limit we find the following:

e2Crα

r4

(
− 36C4ℓ2α4βG (Φ) r3α + 18C4ℓ2α4βG′ (Φ) r3α

)
=

1
r4

[
− 3Cαr2 + 3Cα2r2 − 9C2α2r2+α + 18Cαβr3δA′ (r)− 3βr4−αδA′′ (r) +

ṼIRe
1
2 C(−4+3Q)rα

r4−α+αP + 3Q
4 (α−1)

(
1 + 4− 3Q

2 βδA (r) +QβδΦ (r)− 3Q
4Cαr

1−αβδA′ (r)
) ]
.

(7.32)
where ṼIR = VIR 4−P (6C)P (−Cα)3Q/4. We proceed to solve the equation order by order in β.
To zeroth order we recover the ihQCD result:

−3Cαr−2 + 3Cα2r−2 − 9C2α2rα−2 + ṼIRe
1
2 C(−4+3Q)rα

r4−α+αP + 3Q
4 (α−1) = 0. (7.33)
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The third term in the equation is an exponential coming from the potential. In order to cancel
this we have to impose Q = 4

3 . After imposing this, we are left with two terms of O (1) which
are potentially divergent, the first one is proportional to rα−2 and the other coming from the
potential is proportional to rαP −1. If we want these two terms to cancel we require P = α−1

α
.

After this we see that the equations of motion are solved up to a term of 1/r2. Thus we find
that the same result of [26] holds:

Q = 4
3 , P = α− 1

α
. (7.34)

There are still some subtleties regarding the behaviour of the β corrections, after fixing Q,P
we look at the O (β) equation:

βG̃IRe
Crα(2+ 3

2 γ)r3α−4+(α−1)3γ/4+αδ =

18Cαβr−1δA′ (r)− 3βr−αδA′′ (r) + 4
3 ṼIRr

α−2βδΦ (r)− ṼIR

Cα
r−1βδA′ (r) .

(7.35)

We found before that γ ≤ −4/3. For the strictly smaller case the first term is subleading.
Substituting the asymptotic behaviour for δA, δΦ (7.23) we find the following(

18CαCA −
ṼIR

Cα

)
βζrζ−2 − 3βCAζ (ζ − 1) rζ−α−2 + 4

3 ṼIRβCΦr
α−2+η = 0. (7.36)

Since α > 0 then the second term is sub-leading, thus equating the first and third term gives:

ζ − η = α. (7.37)

However, combining this with out previous constraint from the other equation ζ − η = 2α we
find α = 0 which is a contradiction. Therefore for this solution to hold the first term in the
equation above must vanish. This fixes the coeficient CA such that:

CA = ṼIR

18 (Cα)2 . (7.38)

Equating the two terms that are left, we find the same condition for ζ, η

ζ − η = 2α. (7.39)

Finally, the special case of γ = −4/3 gives the same result as the previous equation, after fixing
CA.

So it seems that if G falls off fast enough in the IR the EoM are still satisfied with ihQCD
asymptotics. In Figure 19 we present two fits for G (Φh) in VQCD where G drops off when
approaching the IR.

Confinement
Technically speaking, confinement is defined as an area law for the Wilson loop. As explained
in [26], for a generic 5D metric, the large L behavior of the quark-antiquark potential is:

E (L) ∼ Tfe
2AS(r∗)L. (7.40)

which exhibits an area law if AS (r∗) is finite. AS is the string-frame scale factor given by:

AS (r) = A (r) + 2
3Φ (r) . (7.41)

48



Figure 19: Dilaton coupling as a function of the dilaton horizon value. The plots have G(4.5) =
0.1 and G(4.5) = 0 as initial conditions, giving a fit where G drops to zero in the IR

In our case assuming the IR asymptotics (7.16) it is given by

AS (r) = 1
2 log

∣∣∣Ȧ (r)
∣∣∣+ 2

3βδΦ (r) . (7.42)

In the limit of r → 0 we have: A (r) ∼ − log (r/ℓ)→ +∞ as discussed in the UV asymptotics.
Therefore we want AS to not asymptote to −∞ at r →∞ such that e2AS does not go to zero
in the IR limit and we have confinement. If we expand (7.42) according to (7.16), we find:

AS (r) = 1
2 (α− 1) log

(
r

R

)
− 1

2
βδȦ (r)
Cαrα−1 + 2

3βδΦ (r) . (7.43)

where C = R−α. We see that the logarithm is still the leading term in the β expansion and we
find that α > 1 still leads to confinement. And for α < 1 there is no confinement. However,
there is a difference with ihQCD for the α = 1 case where now the sub-leading terms are no
longer constants and we don’t necessarily reduce to 5D flat space.

Instead, assuming the asymptotics (7.23) we find:

AS (r) = 1
2 (α− 1) log

(
r

R

)
− β ζṼIR

36 (Cα)3 r
ζ−α + 2

3βCΦr
η. (7.44)

Substituting α = 1 and ζ = 2α+ η we find that the leading behaviour in this case is given by:

AS (r) = −β ζṼIR

36 (Cα)3 r
η+1 = β

ζVIR

36 (Cα)2

(3C
2

)P

rη+1. (7.45)

So for confinement we need βζVIR > 0, and assuming βVIR > 0 this gives the requirement of
ζ > 0 or equivalently η > −2. The case of ζ = α = 0 is also confining as AS goes to a constant.
This special case however will not matter for our fits since the physical case is α = 2 which
corresponds to P = 1

2 in the V-QCD potential.

7.3 Alternative fits for G (Φ)
In the previous fits for G (Φh) the function crosses zero and changes sign. If for some string
theoretic reason or for some other reason such as causality or unitarity, we want G to be posi-
tive or negative definite then these fits won’t suffice. In Figure 20 we provide some alternative
fits for G where it is either positive or negative definite. The right graph clearly looks like an
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exponential, however recall that we set β = 0.1 so G is now of the same order as V meaning
that perturbation theory breaks down. In that case, it’s not clear even if the formula used
for the fitting would still hold since in deriving it we set β2 terms to zero. Even the variation
problem for the shear fluctuations is defined up to linear order in β in (3.41).

Figure 20: Dilaton coupling as a function of the dilaton horizon value. The plots have
G(4.5) = −1 and G(2.22) = 1 as initial conditions, giving a fit where G is negative definite and
positive definite respectively.

What violation of 1/4π implies for G (Φh)
The Bayesian analysis data of Trajectum have the mean value of η/s drop below the universal
1/4π. However, 1/4π is well within the 90% confidence so it is still not certain if the viscosity
bound is violated. The implication that this has on our fits as we will show is that either G
must be zero at this point or grow exponentially.

To see this, we start by re-writing formula (3.84) as:

η

s
− 1

4π = βℓ2

6π

(
−G (Φh)V (Φh) + 3

4G
′ (Φh)V ′ (Φh)

)
(7.46)

Now if we assume that η/s breaks the bound then this would mean that there would be a point
where this function is zero. If Φh = Φv at that point then this would imply:

G (Φv)V (Φv) = 3
4G

′ (Φv)V ′ (Φv) (7.47)

This has two possible solutions:

G (Φv) = G′ (Φv) = 0 or G′ (Φv)
G (Φv) = 4

3
V (Φv)
V ′ (Φv) (7.48)

This explains the two types of fits we were producing since we are fitting to the mean value
which indeed goes below 1/4π.

7.4 An analytic example for G (Φ)
Given the previous discussion in this chapter, one would like to find an analytic function G (Φ)
that satisfies the constraints imposed by the asymptotics in the IR and UV and also fits to the
shear viscosity data in the intermediate region. Here we focus on a simple example of one such
function. Consider :

G (Φ) = eαΦ + γ

1 + eδΦ−ζ
, α, δ > 0. (7.49)
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with α, γ, δ, ζ being constants. This function in the UV for Φ→ −∞ goes to

GUV ∼ γ. (7.50)

In the IR for Φ→ +∞ this function behaves like

GIR (Φ) ∼ e(α−δ)Φ. (7.51)

demanding that
α− δ ≤ −4/3. (7.52)

Such that the equations of motion are satisfied in the IR. By fitting to the Bayesian data in
the intermediate region we estimate the optimal values for these parameters to be:

{α = 1.8145, γ = −275.28, δ = 3.1485, ζ = 2.5514}. (7.53)

We find that the optimal fit gives an (α− δ) ∼ −1.3340 close but slightly smaller than
−4/3 ∼ −1.3333. In Figure 21 we plot this function with the optimal parameter values. We
see that indeed it falls off exponentially in the IR and goes to a constant in the UV.

Figure 21: Example of an analytic function G (Φ) = eαΦ+γ
1+eδΦ−ζ fitting all the constraints. The

right plot is the region of Φ relevant for the shear viscosity fit.

In Figure 22 we present the shear viscosity to entropy ratio as a function of temperature for
this function. As in previous fits we transition from functions of Φh to functions of temperature
by numerically relating the two through the VQCD thermodynamics.
As a final note, looking at the equation for the λ correction (7.10), using this fit we find that
the correction is positive and in fact large with βG0 = βγ ∼ −27.5. This gives V0 = 232

ℓ2 .

7.5 Domain wall coordinates and holographic c-theorem
An important idea in holography is that the radial (or holographic) direction in the 5D theory
serves as a measure of energy in the 4D theory. In the case of AdS/CFT it is conjectured
that E ↔ 1/r. This gives a natural correspondence between UV divergences and geometric
singularities. In Einstein-dilaton gravity it is argued in [25] that the natural identification is

logE ←→ A (u) . (7.54)

where A (u) is the scale factor in domain wall coordinates defined by the following metric:

ds2 = du2 + e2A(u)
(
−dt2 + dx2

)
, Φ = Φ (u) . (7.55)
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Figure 22: Best fit for the shear viscosity to entropy ratio for VQCD with G (Φ) = eαΦ+γ
1+eδΦ−ζ .

The optimal values for the parameters are given in (7.53). The yellow line shows the theoretical
curve while the black line is η/s = 1/4π for reference. We set β = 0.1 without loss of generality.

This is related to the conformal coordinates (7.3) by the transformation: dr = e−2A(u)du. Thus
the argument follows from the fact that in (7.55), the energy scale of the four dimensional slice
is given by e2A(u).

It is a fact of nature that many different systems are described by the same low energy physics.
A striking example is hydrodynamics. It describes both water and honey equally well, even
though they are made of different molecules. In terms of the renormalization group this is
explained by the fact that many different theories "flow" to the same IR conformal point. The
reason for this is that the microscopic degrees of freedom are irrelevant at low energies. These
universal points are characterised by zeros of the beta function.

Now connecting this to holography, if we propose a geometric theory as being dual to a QFT,
this would would imply that, given (7.54), we should have some function of the radial coordi-
nate u that is monotonic. This function would then serve as the renormalization group flow
between a UV fixed point and an IR fixed point of the dual QFT. To construct such a function
we can look at the equations of motion in domain wall coordinates. Combining the rr and tt
components gives the following:

− 4
3Φ̇ (u)2 = 3Ä (u)− ℓ2βG′′ (Φ)

(
4Ȧ (u)2 Φ̇ (u)2 + 4Φ̇ (u)2 Ä (u)

)
+ ℓ2βG′ (Φ)

[
− 4Ȧ (u)2 Φ̈ (u) +

4e−2A(r)
(
6 + e2A(u)

)
Ȧ (u)3 Φ̇ (u) + 8e−2A(u)

(
−3 + 4e2A(u)

)
Ȧ (u) Φ̇ (u) Ä (u)− 4Ä (u) Φ̈ (u)−

8Φ̇ (u)A(3) (u)
]
− 4e−4A(u)ℓ2βG (Φ)

[
6
(
−3 + 52A(u)

)
Ȧ (u)4 +

(
18− 37e2A(u) + 12e4A(u)

)
Ȧ (u)2 Ä (u)−

e2A(u)
(
−2 + 5e2A(u)

)
Ȧ (u)A(3) (u) + e4A(u)A(4) (u)

]
.

(7.56)
We can write this as:

−4
3Φ̇ (u)2 = 3Ä (u)− ℓ2βG̃ (u) . (7.57)

And we see that the equations of motion give:

3Ä (u)− ℓ2βG̃ (u) ≤ 0. (7.58)
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Thus the following function is monotonically decreasing.

f (u) = 3Ȧ (u)− ℓ2β
∫
du G̃ (u) . (7.59)

What we have found are β corrections to the familiar result of Ä (u) ≤ 0 which is shown to be
equivalent to the Null Energy Condition [27]. In the IR where G decays exponentially we see
that this function tends to the ihQCD one. However in the UV where corrections become large
we expect deviations from this result. This is also what is expected from an RG flow perspective.
In our case it’s hard to construct an explicit function since one would have to know A,G as
functions of u to perform the integral. In addition, because of the higher derivative term it’s
not clear what the proper definition of the energy momentum tensor is in this case. If one
wanted to retain the condition Ä (u) ≤ 0 then one would have to prove that ℓ2βG̃ (u) ≤ 0
which appears a daunting task especially because many of the fits we are producing for G are
not positive or negative definite.

8 Conclusions and Outlook
In this thesis, we explored the temperature dependence of the shear and bulk viscosities for

holographic QCD theories. We argued that higher derivative corrections are needed to obtain a
temperature dependence consistent with results from Bayesian analysis of heavy ion collisions.
We constrained the form of the higher derivative corrections by fitting to these results. We
derived the full equations of motion and analyzed the UV and IR asymptotics of the modified
theory showing that under certain assumptions the theory still exhibits confinement. Finally,
we derived an analytic formula for the bulk viscosity to entropy ratio that includes higher
derivative corrections coupled to the dilaton and analyzed its zeroth order solution for the
V-QCD potential.

There are numerous directions for the improvement of the work presented here. Obvious
examples include the effect of the higher curvature terms on the thermodynamics of the theory
including the phase structure and phase transitions. Since in our analysis, the higher-order
corrections were quite large, we would expect non-trivial changes to the thermodynamics. In
addition, we would also expect non-trivial effects on particle spectra.

Our analysis of the equations of motion and asymptotic behavior was by no means exten-
sive. An interesting direction for future work would be constructing a general solution for the
equations with numerical checks for the fitting functions used.

For the same reasons, the β correction to the bulk viscosity is expected to be important and
change our fit significantly. Furthermore, the other two curvature squared correction terms in
this order will contribute to ζ/s, unlike the case of η/s. These calculations are the subject of
future work.
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9 Appendix

9.1 Effective Action coefficients
The coefficients of the effective action (3.31) starting from the original action (3.23) are the
following:

A (u) = 2a (u) b2 (u) (b (u) c3 (u) + 4ℓ2βG (Φ) (b′ (u) c′ (u)− c (u) b′′ (u)))
c (u)4 ,

B (u) = b (u)
2a (u) c5 (u)

[
4ℓ2βb2 (u) c2 (u)G (Φ) (a′ (u))2 + a2 (u)

(
16ℓ2βc2 (u)G (Φ) (b′ (u))2

+ b2 (u)
(
3c4 (u) + 4ℓ2βG (Φ) (c′ (u))2)− 8ℓ2βb (u) c (u)G (Φ) (b′ (u) c′ (u) + c (u) b′′ (u))

)]
,

C (u) = − 1
c5 (u) a (u)

[
− a (u) b3 (u) c4 (u) a′ (u) + 4ℓβb2 (u) c2 (u)G (Φ) (a′ (u))2

b′ (u) +

+ a2 (u)
(
8ℓ2βc2 (u)G (ϕ) (b′)3 + b3 (u) c3 (u) c′ (u)− 8ℓ2βb (u) c (u)G (Φ) b′ (u) (b′ (u) c′ (u)− c (u) b′′ (u))

− 4b2 (u)
(
c4 (u) b′ (u)− ℓ2βG (Φ) b′ (u) (c′ (u))2 + ℓ2βc (u)G (Φ) c′ (u) b′′ (u)

) )]
,

D (u) = 1
2c5 (u) a (u) b (u)

[
2a (u) b3 (u) c3 (u) (−b (u) a′ (u) c′ (u) + c (u) (3a′ (u) b′ (u) + b (u) a′′ (u)))−

4ℓ2βb2 (u)G (Φ)
(
b2 (u) (a′ (u))2 (c′ (u))2 − 2b2 (u) c (u) a′ (u) c′ (u) a′′ (u) +

+ c2 (u)
(
3 (a′ (u))2 (b′ (u))2 + b2 (u) (a′′ (u))2)+ a2 (u)

(
b4 (u) c6 (u) (2∂uΦ∂uΦ− V (Φ))−

− 12ℓ2βc2 (u)G (Φ) (b′)4 + 6b3 (u) c3 (u) (−b′ (u) c′ (u) + c (u) b′′ (u)) + 6b2 (u)
(
c4 (u) (b′ (u))2−

− 2ℓ2βG (Φ) (b′ (u))2 (c′ (u))2 + 4ℓ2βc (u)G (Φ) b′ (u) c′ (u) b′′ (u)− 2ℓ2βc2 (u)G (Φ) (b′′ (u))2 ))]
,

F (u) = 4ℓ2βa (u) b2 (u)G (Φ) (2c (u) b′ (u)− b (u) c′ (u))
c4 (u) ,

E (u) = 2ℓ2βa (u) b3 (u)G (Φ)
c3 (u) .

(9.60)

where we have already applied the relevant limit of ω → 0 and k = 0.
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9.2 Summary of the asymptotic behaviour

UV IR

r r → 0 r → +∞

A (r) − log (r/ℓ) + 4
9 log(rΛ) −Crα + βδA (r) , α, C > 0

Φ (r) − log (− log (rΛ))
(
1− 4

3βG0
)
−3

2A (r) + 3
4 log

∣∣∣Ȧ (r)
∣∣∣+ βδΦ (r)

δΦ (r) - CΦr
η , η = ζ − 2α

δA (r) - CAr
ζ , CA = ṼIR

18(Cα)2

G (Φ) G0 GIRe
γΦΦδ , γ ≤ −4

3

V (Φ) V0 = 12
ℓ2 − 8βG0

ℓ2 VIRe
QΦΦP , Q = 4

3 , P = α−1
α

Table 1: Summary of the asymptotic behaviour, assuming polynomial ansatz for δA, δΦ.
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