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1 Abstract

This thesis investigates the integration of multiple explicit and implicit flexibility incentives
at the household level to identify a cost-effective solution to mitigate congestion on low-
voltage (LV) networks using electric vehicles and heat pumps. Explicit flexibility allows
for real-time adjustments in energy usage during periods of congestion, while implicit
flexibility involves shifting demand based on price signals such as Time-of-Use tariffs and
the Day-ahead market. An agent-based modeling approach is used to simulate household
energy consumption patterns and responses to these flexibility incentives.

The findings showed that implicit flexibility is effective up to a 20% participation rate
in reducing congestion and resulted in the highest cost savings. However, beyond this
participation point effectiveness diminished eventually creating more congestion. Explicit
flexibility provided more consistent congestion relief. The combination of both flexibility
types enhances congestion mitigation and also increases cost savings for households
compared to explicit flexibility, while comfort can be maintained using comfort limits.
This integrated approach promotes a more efficient LV network system, benefiting both
network operators and residents.
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Acronyms

ABM Agent-Based Modelling.

COP Coefficient of Performance.
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Nomenclature

ηcharging Charging efficiency [%]
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Tin, desired Desired inside temperature [°C]
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Tsink Sink temperature [°C]
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2 Introduction

2.1 Problem description

The global transition from fossil fuels to renewable energy sources requires a substantial
overhaul of the energy system. As households and businesses transition towards renewable
electricity, the Low Voltage (LV) grid is expected to face significant challenges such
as congestion and grid capacity reduction in distribution networks (Damianakis et al.,
2023). Without intervention, these challenges are projected to impact approximately one
and a half million small consumers by the year 2030 in the Netherlands (Actieagenda
Netcongestie Laagspanningsnetten, 2024).

Electrification is one of the causes of these challenges. Households are increasingly
adopting induction cooking, Electric Vehicle (EV) charging, and Heat Pumps (HPs)
resulting in increased electricity consumption and peak demands (Actieagenda Netcon-
gestie Laagspanningsnetten, 2024). This increased demand often leads to congestion, a
situation wherein the supply or demand of electricity surpasses the network’s capacity,
particularly during peak periods of electricity demand (Verzijlbergh et al., 2014).

Another cause is the strong correlation between social routines and a morning and evening
peak in electricity demand. In the morning, there is an increase in energy consumption
as people wake up and use appliances, to prepare for work or school. Similarly, in the
evening, there is another surge in demand as people return home and use various electrical
devices. Additionally, households adhere to routines such as charging EVs after returning
from work and adjusting heating devices according to school and work schedules (Hanmer
et al., 2018; Zarnikau et al., 2015). These social routines lead to peak periods of energy
demand in the morning and evening, potentially surpassing the network’s capacity and
leading to congestion.

Finally, an increase in solar power generation is anticipated, particularly on sunny
summer days when the supply of solar power is much higher than electricity demand.
This imbalance occurs when the supply of solar energy to the grid surpasses the grid’s
capacity. However, the generated energy from solar panels can only be fed back into
the electricity grid if the voltage from the inverter is higher than the grid voltage. As
a result, solar energy gets curtailed during over-voltage situations, preventing excess
energy from being efficiently utilized (Actieagenda Netcongestie Laagspanningsnetten,
2024; Maharjan et al., 2021).

Flexibility is an important tool to effectively mitigate congestion issues on the LV grid.
These incentives can encourage consumers to adjust their energy consumption in response
to grid conditions. Flexibility can take various forms, including flexibility from batteries,
smart charging, or direct control of HPs. The flex-pyramid of Figure 2.1 summarises
the main focus of achieving flexibility, sorted from least to most impact on individuals
(VREG, 2022).
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Figure 2.1: Flex-pyramid (Adapted from VREG (2022))

In the flex-pyramid model, the initial focus on achieving flexibility corresponds to the
first layer, which is preventive measurements through enhanced grid infrastructure. This
involves implementing various technical solutions within the grid infrastructure to enhance
its resilience and adaptability. These solutions typically include upgrading transmission
and distribution lines and enhancing substation capabilities.

Not all grid reinforcements can be finished on time due to the significant scale of the
process. Grid reinforcements are time-consuming due to the required procedures and face
challenges such as insufficient availability of materials, labor, and finances (Actieagenda
Netcongestie Laagspanningsnetten, 2024).

The second layer of the flex-pyramid is referred to as implicit flexibility and can be in the
form of tariffs. This type of flexibility is implicit as it influences the behavior of market
participants in response to changing conditions within the market (SEDC, 2016). An
example of this is Time-of-Use (ToU) tariffs, which is described in more detail in Section
3.1.1.

The last two layers of the flex-pyramid use a reactive approach and are referred to as
explicit flexibility (SEDC, 2016; Freire-Barceló et al., 2022). This can be in the form of
financial compensation for the usage of flexibility incentives such as Direct Load Control
(DLC) and smart charging. This type of flexibility intends that it is voluntary and not
mandatory, but during critical peak moments, mandatory flexibility can be used as a last
resource in the form of Critical Peak Control (CPC).
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2.2 Modelling approaches

In the literature, several methods to study flexibility have been used. Jin et al. (2020)
identified four main modelling approaches for flexibility: centralized optimization models,
game theory-based models, auction theory-based models, and simulation models.

Centralized optimization models use an objective that has to be optimized, using technical
and financial constraints. An example of this is a cost-optimization model used by Wesseh
and Lin (2022). The study showed that ToU pricing contributes to a reduction of peak
load electricity consumption, while off-peak consumption remains stable or only has a
slight increase.

Game theory-based models are a mathematical methodology used to analyze strategic
interactions among participants, where decisions made by each participant are influenced
by the actions of others, particularly in competitive scenarios (Tushar et al., 2018). Stute
and Kühnbach (2023) used a game-theory approach to model the strategic decision-
making of households regarding different ToU tariffs. The ToU tariffs caused an increase
in peak demand at the individual household level but also resulted in a more evenly
distributed peak load across the grid, consequently reducing the need for extensive grid
expansions.

Auction theory-based models can be used to model auctions such as balancing the supply
and demand of electricity. Zaidi and Hong (2017) used an auction mechanism to model
energy trading between two micro-grids. The goal of an auction is to minimize costs with
maximum economic efficiency.

Finally, simulation models can be used to model innovations in complex systems by
exploring different scenarios and can help in understanding system behavior (Jin et al.,
2020).

2.2.1 Agent-Based modelling

A simulation model used to model the impact of various flexibility incentives is through
Agent-Based Modelling (ABM). An ABM is used to study complex systems by representing
agents and their interactions within an environment. Wilensky and Rand (2015) describe
an agent as ”an autonomous individual or object with particular properties, actions, and
possibly goals”. An advantage of using an ABM-approach over other modelling methods
is that it can model individual agents and thus represents a heterogeneous population
instead of making assumptions of homogeneity (Wilensky and Rand, 2015).

When considering LV grids, ABM can be used to model the varied energy consumption
patterns and responses among households in reaction to flexibility incentives and pricing
signals. By using an ABM-approach, flexibility is provided in modelling different scenarios
for the implications of flexibility incentives. This can be done by adjusting or modifying
the agent behaviors or parameters (Mehdizadeh et al., 2022).

In the literature various ABM-approaches were used to study complex energy systems.
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Van Der Kam et al. (2019) used ABM to explore the impact of different policy interventions
among which financial incentives, automated smart charging, information campaigns, and
social charging on EV charging patterns. Results showed that automated smart charging
resulted in lower grid capacity requirements compared to the other policy interventions.
A limitation of the research was that it only looked at maximizing Renewable Energy
(RE) consumption and did not look specifically at mitigating congestion and peak load
reduction.

Reis et al. (2018) utilized an ABM-approach to analyze energy trading dynamics within
a community, focusing on end-users behaviors and demand-side flexibility in response
to renewable generation and automation changes in power systems. Similarly, Nunna
et al. (2016) employed an ABM to study smart micro grids, emphasizing management
strategies for price-sensitive consumers.

Vellei et al. (2021) used an ABM-approach to model how individual residents interact
with the thermostat based on their thermal comfort needs and presence. However, no
studies were found that specifically use an ABM approach to model the flexibility of both
HPs and EVs in mitigating LV congestion.

2.3 Scientific background

Several studies have been conducted on the impact of flexibility. Enrich et al. (2024)
observed that ToU tariffs contributed to a 1 - 9% consumption reduction in Spain, during
peak periods. Price-elasticity of households ranges between 0 and -0.4 according to Wesseh
and Lin (2022), while empirical research from Khanna et al. (2016) found a price-elasticity
of -0.51 in Chinese households. This means that a 1% price increase leads to a 0.51%
decrease in demand. Enrich et al. (2024) stated that pre-determined pricing increases
awareness and price-elasticity and that responsiveness is income-dependent.

In terms of smart charging, Sadeghian et al. (2022) highlighted its potential benefits,
such as a 10% reduction in grid operational costs, a 40% decrease in renewable energy
curtailment, and a 30% reduction in charging costs. Simulations by Crozier et al. (2020)
showed that smart charging reduced the need for grid reinforcements from 28% to 9%.
Research from Chen and Wu (2018) showed similar results, stating that 1 million EVs
with smart charging in Guangzhou, China could reduce peak load by 43 to 50%. A
real-world case study in Amsterdam illustrated that smart charging impacts the charging
of consumers 4% of the time positively and 5% of the time negatively (Bons et al.,
2020).

Moreover, a proof of concept model from Brus et al. (2023) showed that hybrid HPs
significantly reduced the degree and duration of grid overload in 8 out of 9 instances of
grid congestion, when DLC was implemented. Barani et al. (2023) stated that ambitious
participation of DLC, of multiple appliances such as EV, HPs and refrigeration, can
contribute to about 1% cost savings for households versus not introducing DLC, excluding
compensation. According to Yılmaz et al. (2022), the acceptance of DLC ranges between
33 and 71%. For heat pumps, financial incentives were the factor with the highest impact,
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while for EVs it was the option to have an overriding option.

2.4 Research gap

While existing research has examined the impacts of individual flexibility incentives,
several areas remain unexplored. Existing research has primarily focused on isolated
flexibility measures, such as ToU tariffs or DLC strategies for specific appliances like
EVs and HPs. However, the integrated impact of combining different types of flexibility
incentives and their aggregate effects on the LV grid, particularly when considering user
comfort constraints, is not well understood.

Faria and Vale (2023) has researched the technical and economic viability of flexible heat
pump operations under real-time pricing, using control strategies. The findings indicate
that while flexible heat pumps can offer operational cost savings and enhance demand-side
management, the economic benefits are highly dependent on specific technical setups and
market conditions.

Van Der Kam et al. (2019) used ABM to explore the impact of policy interventions like
financial incentives and smart charging on EV charging behaviors, aligning them with
renewable energy production. The study concluded that while these interventions can
significantly enhance the alignment of EV charging with renewable energy availability,
the effectiveness of these policies varies, with automated smart charging demonstrating
the most potential. The research didn’t focus on congestion mitigation and the impact
of comfort constraints.

Shi et al. (2022) analyzed different HP control strategies for flexibility while remaining
at a constant temperature. However, it did not examine the effects of varying the
temperature within comfort limits and didn’t consider costs. Srithapon and Månsson
(2023) modeled the flexibility of a combination of HPs, EVs, and thermal energy storage
and found that it can enhance energy flexibility while reducing operational costs. The
study didn’t research how it can be combined to mitigate congestion and focused solely
on cost savings as a flexibility strategy.

Van Den Berg et al. (2021) investigated the impact of EV charging demand on transformers
in an office area. The study highlighted that strategic placement of charging stations and
utilizing the flexibility of EV demand could mitigate transformer overloads. However,
the research focused on office areas and did not explore the integrated impact of multiple
flexibility strategies in residential settings.

This research aims to fill these gaps by examining the integrated impact of various
flexibility incentives on the LV grid while considering user comfort constraints. By
investigating how different strategies can be combined to optimize both flexibility and
economic benefits, my study provides a comprehensive understanding of the potential of
alleviating grid congestion.
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2.5 Research question

This observation mentioned in Section 2.4 prompts the following research question:

How can the integration of multiple explicit and implicit flexibility incentives at the
household level effectively mitigate congestion on low voltage networks while optimizing
costs for both the network operator and residents?

This main research question is broken down to the following sub-questions:

• How can explicit flexibility for electric vehicles and heat pumps be integrated effec-
tively, while accounting for constraints like minimum driving distance and tempera-
ture, to minimize their impact on the grid?

• How do different combinations of implicit and explicit flexibility incentives interact
and complement each other in mitigating congestion on low voltage networks?

• What are the optimal set-points and recommendations for implementing a combina-
tion of implicit and explicit flexibility incentives to effectively alleviate congestion
on low voltage networks while optimizing costs for both the network operator and
residents?

The first question sub-question focuses on the practical implementation of explicit
flexibility incentives. In this question, the impact of comfort constraints will be examined
by comparing scenarios with and without the constraints.

In the second sub-question, the synergistic effects of various incentive mechanisms will
be explored, which is crucial for understanding the overall effectiveness of congestion
mitigation strategies. During this research question, combinations of both implicit and
explicit will be examined and compared to see the impact of different combinations of
these flexibility incentives.

The final sub-question focuses on actionable insights that can inform decision-making
for both network operators and residents. Specifically, the aim is to identify the most
cost-effective solution with minimal congestion.

2.6 Research Scope

The scope of the research is the LV grid in the Netherlands. This will consist of a
single transformer and multiple households connected to the transformer, representing a
typical Dutch neighborhood. Data from Distribution System Operator (DSO) Alliander
is used for the model. The households can provide flexibility through EVs and HPs when
installed. By integrating adoption rates of EVs and HPs, different years can be simulated
by using the expected adoption rates of that particular year. The goal of the model is to
make it adaptable to different scenarios. In this research, the adoption rates of 2030 are
used for analysis and the climate year of 2023 is used.
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3 Literature review

In this section, the concepts of implicit and explicit flexibility that are the foundation of
this research will be explained in more detail based on the literature review.

3.1 Implicit Flexibility

An electricity bill in the Netherlands is composed of three elements: energy costs, taxes,
and grid fees, from which the latter accounts for around 25% of the total price (Rodriguez
et al., 2022). Grid fees are used to finance the capital and operational costs of the
electricity network. In exchange for a fixed tariff, the grid operator ensures that there
is always enough capacity available to serve the peak load of the connection (Alliander,
nd). Under the traditional flat-rate tariff currently used in the Netherlands, there is no
incentive to reduce electricity usage during peak periods (Yang et al., 2013). Implicit
flexibility can be used to incentivize behavior change in energy consumption.

3.1.1 Time-of-Use tariffs

A ToU tariff is a grid fee, which varies during the day based on grid availability and is a
form of implicit flexibility. The goal of ToU tariffs is to encourage households to reduce
their electricity consumption during periods of high demand and limited grid availability,
typically by raising prices during peak hours and lowering them during off-peak times.
Conversely, during periods of low demand and sufficient grid supply, prices are decreased
to incentivize consumption (Nicolson et al., 2018). Examples of ToU tariffs are visualized
in Figure 3.1.

Figure 3.1: Static ToU (a) and Real-time ToU tariff (b) (Alliander, nd).

There are many different types of ToU tarrifs, some examples include (Nicolson et al.,
2018):

• Static ToU: Prices follow a consistent pattern during the day, with fixed fluctuations.
For example a fixed increase in price during the morning and evening, with a lower
price during the remaining hours.
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• Dynamic ToU: Fixed prices, with fluctuating times at which the prices are applied.
For example a high, medium, and low price tariff for fluctuating times of the day.

• Real-time ToU: Fluctuating prices for fluctuating times of the day. Prices can vary
hourly based on wholesale prices or grid availability.

• Critical peak ToU: Prices typically remain stable for the majority of the time,
resembling a flat-rate tariff. However, occasionally prices are increased during
critical peaks, which are communicated to customers in advance.

To effectively optimize the efficiency and sustainability of ToU tariffs different constraints
to the implementation of ToU are needed. Wesseh and Lin (2022) stated that ToU models
mainly used the following three constraints:

• Mutual benefit of ToU tariffs: The end result of ToU tariffs has to be beneficial for
both consumers and producers.

• Demand constraint: The ToU tariffs lead to more stability of the LV grid.

• Renewable energy integration constraint: ToU effectively promotes the utilization
of RE sources like wind and solar.

These constraints underscore the importance of carefully designing and implementing
ToU tariffs to achieve optimal outcomes for all stakeholders involved.

3.2 Explicit flexibility

Explicit flexibility refers to a situation where a consumer is committed to providing
flexibility in return for a financial reward (Rodriguez et al., 2022). Explicit flexibility can
be delivered through various device types, yet with the rapid expansion of electrification,
particularly in EVs and HPs, emphasis will be placed on these two technologies. In this
thesis also referred to as smart charging and DLC.

3.2.1 Smart Charging

Sales of EVs are growing rapidly due to among others increasing environmental awareness,
advancements in technology, and government incentives (ElaadNL, 2021). An outlook of
expected EV and charging stations is visualized in Figure 3.2.
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Figure 3.2: Projected growth of EVs and charging points in the Netherlands (2020-2050). Yellow
and grey lines represent EV outlooks for 2021 and 2019. Blue and light blue bars show charging

point outlooks for 2019 and 2021. Y-axis shows numbers in millions (ElaadNL, 2021).

Smart charging can offer a solution for the increasing grid impact of EVs and RE. Smart
Charging involves shifting charging, through direct control, from peak loads to times
of the day when there is sufficient capacity on the electricity grid (Daina et al., 2017).
While smart charging typically extends charging time, it can usually be implemented
without the EV driver noticing, as parking time usually exceeds charging time. In the
Netherlands, for instance, the average car is stationary 95% of the time (Flexpower,
2022).

In the literature, a distinction is made between centralized and decentralized smart
charging (Daina et al., 2017). In a centralized framework, EV load aggregators serve
as middlemen between electric vehicle owners and grid markets. A typical approach to
do this is by direct control without the involvement of EV owners (Galus et al., 2019).
The aggregator has to identify in such case the charging requirements of the EV owner.
Sundström and Binding (2011) highlighted two key requirements in the context of EV
charging: the energy needed to reach a desired distance upon completion of charging,
and the time by which the charging process must be completed.

In the decentralized framework EV owners adapt their charging behavior based on market
information (Daina et al., 2017; Galus et al., 2019). An example of this is ToU pricing as
described in Section 3.1.1.
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One smart charging approach involves implementing load shedding with a guaranteed
capacity of 4kW during peak hours. A downside of this is that after load shedding, a
new power peak can be formed when the charging restriction is revoked, as can be seen
in Figure 3.3 (Flexpower, 2022).

Figure 3.3: Charging using load shedding can lead to a new peak load after charging restrictions
are revoked (blue line). The graph compares load profiles with (red line) and without (blue line)

flexibility over 24 hours (Flexpower, 2022).

To solve this EV chargers have to be turned on and off in different time steps. As a
result, the charging sessions extend further into the night, creating a flatter overall profile
and utilizing the available power for the charging stations more effectively compared to if
no smart charging is applied.

3.2.2 Direct Load Control Heat pumps

Similar to EVs, sales of HPs are expected to grow rapidly, as can be seen in figure
3.4.
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Figure 3.4: Annual heat pump sales in the Netherlands from 2015 to 2022 with forecasts until
2030. The lines represent different scenarios: new buildings only (yellow), current pace (orange),
focus on starting districts (green), and action plan for hybrid heat pumps (blue). The y-axis

shows the total number of heat pump installations in millions (DNE Research, 2021)

The surge in popularity in HPs provides opportunities for leveraging flexibility. Yılmaz
et al. (2022) identified three different types of flexibility provided by HPs:

• Manually: households shift the device on and off manually, which requires significant
behavior changes.

• Home-Energy Management Systems (HEMS): automated control of the device
which involves setting up rules to operate based on factors such as time of day,
energy prices, or user preferences.

• DLC: is typically implemented through agreements between companies and con-
sumers who allow remote control of their devices in exchange for lower rates.

The advantage of DLC is that it can reduce peak loads more accurately, as well as make
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it effortless for households. While HEMS systems also collect data on energy usage
within a household, the scope is typically limited to the devices and appliances connected
to the system, while DLC can optimize the system more holistically using data from
participating households (Goulden et al., 2018).

Shi et al. (2022) conducted a comparison of various HP control strategies, specifically
focusing on peak shaving and power flow control, while remaining thermal comfort. The
peak shaving strategy requires no coordination between households and turns the HP off
when the baseload of a household is higher than a certain threshold value. During the
power flow control strategy, the DSO operator dispatches the HPs of multiple households
to find the optimal solution. The results can be seen in Figure 3.5.

Figure 3.5: Heat pump profile compared to baseload. From left to right: reference scenario, peak
shaving, and power flow control (Shi et al., 2022)

From Figure 3.5 can be concluded that the peak shaving strategy forces the HP to be
turned off during a high baseload while maintaining a level of thermal comfort by staying
on longer before and after the peak load. The power flow control strategy also results in
lower HP energy consumption during peak moments. This is compensated for during the
morning when the baseload consumption is negligible.

The peak shaving scenario resulted in a 2% increase of HP-hosting capacity compared to
49% in the reference scenario. The power flow control strategy resulted in 100% hosting
capacity without causing grid congestion, an increase of 51% (Shi et al., 2022). The
power flow control strategy however requires more advanced real-time smart meters and
forecast algorithms, compared to peak shaving.

3.2.3 Critical Peak Control

CPC is a type of explicit flexibility which applies DLC during critical peak moments
(Aghaei and Alizadeh, 2013). This can be achieved by taking control of a large number of
electrical appliances while maintaining a level of comfort. Wang and Li (2016) defined a
critical peak as an event where electricity consumption is exceptionally high for a certain
amount of time. By applying much higher prices during critical peaks, consumers can
be stimulated to reduce energy consumption during these periods or potentially make
dispatch mandatory for appliances with DLC.
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4 Methodology

This research investigates the integration of multiple explicit and implicit flexibility
incentives at the household level to address congestion mitigation on low-voltage networks.
The methodology to explore these aspects is structured around the three sub-questions
outlined in Section 2.5. The following sections describe the methodology, beginning with
a simplified overview of the model in Section 4.1.

4.1 Simplified model overview

A simplified overview of the model is visualized in Figure 4.1.

Figure 4.1: Simplified model design.

The model is constructed as an ABM using Python Mesa, comprising 300 individual
’household agents’ and a single ’transformer’ agent. Each household agent has a unique
energy consumption pattern, which includes a baseload profile, and when adopted, a
HP profile, EV charging profile, and a solar profile. These profiles are generated in
15-minute intervals over a full year (detailed descriptions of these profiles are provided in
Sections 4.3, 4.4, and 4.5). The transformer agent calculates the total load by summing
all individual energy consumption patterns. The transformer experiences congestion
when the total load exceeds its maximum capacity.

This model addresses the three sub-questions. First, it demonstrates how explicit
flexibility systems for EVs and HPs can be integrated effectively considering minimum
driving distance and temperature, addressing the first sub-question. Explicit flexibility is
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achieved by adjusting the energy consumption profiles of EVs and HPs during periods
of congestion. The model limits flexibility with the constraints of a minimum State
of Charge (SOC) for EVs and minimum temperature for HPs, thereby minimizing the
impact on the grid while maintaining comfort for household agents. This is explained
more in detail in Section 4.6.

Second, the model demonstrates how combinations of implicit and explicit flexibility
incentives can interact and complement each other in mitigating congestion, addressing the
second research sub-question. Implicit flexibility is achieved through optimization based
on prices, explained in more detail in Section 4.7. By modelling scenarios where implicit
flexibility is applied first, followed by explicit flexibility during periods of congestion, the
model allows for a comparison of the individual and combined effects of implicit and
explicit flexibility on grid stability and costs.

Third, the model helps to identify the optimal set-points and recommendations for
implementing a combination of implicit and explicit flexibility incentives, addressing the
third research sub-question. By simulating various scenarios, the model offers insights
into the most effective strategies for implementing flexibility through EVs and HPs,
ensuring a balance between cost savings and grid stability.

4.2 Detailed model overview

Building on the simplified model, a more detailed model design is illustrated in Figure
4.2. This figure highlights the steps performed by the transformer agent in green and
those performed by the household agents in yellow.

Figure 4.2: Detailed overview of the final model design, highlighting the steps performed by the
transformer agent in green and those performed by the household agents in yellow.

Initially, household agents are created based on adoption rates, generating baseload, solar,
EV, and HP profiles for each agent. If agents have a positive participation rate for implicit
flexibility, their HP and/or EV profiles are re-generated based on price optimization.
For EVs, charging is constrained to periods when the vehicle is connected to a charging
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station, ensuring a 100% SOC by the end of the session. For HPs, the temperature is
maintained within the specified minimum and maximum temperature.

The transformer agent calculates the total load by summing all individual profiles from
each household agent. If the transformer load exceeds the maximum power capacity,
explicit flexibility is applied for agents with a positive participation rate for explicit
flexibility. For EVs, explicit flexibility can only be applied when the vehicle is connected
to a charging station and the SOC is above the minimum required level. Similarly, for
HPs, flexibility can be applied as long as the temperature remains above the minimum
temperature. If these conditions are not met, explicit flexibility cannot be applied to
the respective agent. The power for all agents applying flexibility is reduced, and the
reduced power is redistributed while preventing new congestion. New temperature and
SOC values are calculated based on the adjusted profiles.

Finally, the new transformer load is recalculated. If the load exceeds the minimum
capacity, solar panels for each agent will be curtailed. The model provides outputs
including transformer load, costs, SOC, temperature, and energy profiles.

4.3 Heat pump

To generate a profile of a heat pump, the heat demand of a house is needed. This is
generated by calculating the temperatures and heat losses of a building, using the method
described in Koene et al. (2022) and Koene and Eslami-Mossallam (2023). The building
model consists of two thermal masses and four thermal resistances and is visualized in
Figure 4.3.
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Figure 4.3: Visualization of thermal model used for a house, showing how temperatures, heat
flows, and thermal resistances interact within the system (Koene et al., 2022).

4.3.1 Building model parameters

This section describes the parameters used as input for the building model described in
Figure 4.3.

The building model has two thermal masses CIN and COUT. CIN [J/K] is the thermal
mass of the indoor area, furniture, and a few centimeters of the walls, roof, and floor’s
inner layer. COUT [J/K] is the remaining part of the building envelope, which is found
to be three times larger than COUT (Koene et al., 2022). CIN and COUT is calculated
using the following equations:

CIN = (0.055 · V + 0.8) · 106 (4.1)

COUT = 3 · CIN (4.2)

V [m3] is the Volume of the building, which is assumed to be a random value between
380 and 420 m3 for each house (Alliander, nd).

CIN and COUT are dependent on each other through conduction between the inside and
outside of the building through the windows, roof and walls, represented as thermal
resistance Rcond [K/W]. Rcond is assumed to be a random value in the range 0.002 - 0.03
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K/W for each house, based on houses built in 1970 with different sizes and levels of
insulation (Alliander, nd).

The thermal resistance of the floor Rfloor is set as a random value between 0.003 and
0.07 K/W and for the thermal resistance of infiltration and ventilation Rvent + inf a
random value in the range 0.01 and 0.03 K/W is used (Alliander, nd). The method used
to calculate the individual thermal resistance of each house is described in Appendix
A.1.

fr represents the fraction rate between heat losses from CIN to COUT, which is 0.35
(Koene and Eslami-Mossallam, 2023). This is used to calculate which fraction of heat
losses from Rcond is between CIN, COUT and ambient.

The internal heat gain of the building consists of three factors Qinternal, Qsolar and
Qhp.

Qinternal [W] is the internal heat gain of the building, caused by appliances, lighting, and
residents. This is assumed to remain constant at 5 W/m2 floor area throughout the year
(Koene et al., 2022).

Qsolar [W] is the internal heat gain through solar radiation. For simplicity, this factor is
assumed to be zero, as it depends on many factors such as window area, angle of the sun,
solar radiance, and cloud coverage. This will result in a higher energy usage of the heat
pumps.

Qhp [W] is the internal heat gain through the heating of a full-electric heat pump. The
heat input of the heat pump is calculated by calculating how much heat is required to
bring the building back to the desired temperature.

4.3.2 Temperatures

The building model can be written using Equation 4.3 and 4.4:

Cin
dTin

dt
=

1

Rfloor
(Tcrawl−Tin)+

1

fr ·Rcond
(Tout−Tin)+

1

Rvent+infil
(Tamb−Tin)+Qinternal

(4.3)

Cout
dTout

dt
=

1

fr ·Rcond
(Tin − Tout) +

1

(1− fr) ·Rcond
(Tamb − Tout) (4.4)

Tin is the inside temperature of the building, which was assumed to be 19°C as an initial
value. Tout is the temperature of the building envelope. For the initial value, it was
assumed that the building was in steady-state, calculated using Equation 4.5.

Tout = Tamb +
(1− fr) ·Rcond

(1− fr) ·Rcond + fr ·Rcond
· (Tin − Tamb) (4.5)
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Tamb represents the ambient temperature, as reported by KNMI (2024). The data was
sourced from the De Bilt weather station, using hourly observations from 2023, which
were then interpolated to 15-minute intervals. Tcrawl is the crawling space temperature
which is assumed constant at 12 °C (Koene et al., 2022).

Finally, Equation 4.3 and 4.4 could be rewritten using the forward difference method to
calculate the inside and envelope temperature for each time step i, using Equation 4.6
and 4.7.

Tout[i] = Tout[i−1]

(
1− ∆t

Cout

(
1

fr ·Rcond
+

1

(1− fr) ·Rcond

))
+

∆t

Cin

(
1

fr ·Rcond
· Tin[i−1] +

1

(1− fr) ·Rcond
· Tamb[i−1]

) (4.6)

Tin[i+1] = Tin[i]

(
1− ∆t

Cin

(
1

Rfloor
+

1

fr ·Rcond
+

1

Rvent inf

))
+

∆t

Cin

(
1

Rfloor
Tcrawl +

1

fr ·Rcond
Tout[i] +

1

Rvent+infil
Tamb[i] +Qinternal[i]

) (4.7)

∆t is in this case 900 seconds (15 minutes).

The inside temperature (Tin) allows for the calculation of the necessary heat input from
the heat pump (Qhp) [W] to restore the temperature to the desired level, in this case 19
°C. For each time step, this was calculated using Equation 4.8.

Qhp[i] = (Tin,desired − Tin[i]) ·
Cin

∆t
(4.8)

The inside temperature could then be updated using Equation 4.9.

Tin[i] = Tin[i] +Qhp[i] ·
∆t

Cin
(4.9)

4.3.3 Power Heat Pump

It is assumed that all HPs are fully electric, air-sourced, and modulating. Additionally,
the heat pumps are utilized exclusively for heating purposes, with no cooling functional-
ity.

The efficiency of these HPs depends on the temperatures and heat transfer conditions at
both the heat source and the heat sink, influenced by the pump’s technical properties and
weather conditions. Ruhnau et al. (2019) used quadratic regression to find Equation 4.10
for the Coefficient of Performance (COP) under different temperature conditions:

COP = 6.09− 0.09 ·∆Tsink-amb + 0.0005 ·∆Tsink-amb (4.10)
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∆Tsink-amb is the difference between the sink temperature of the central heating system
and the ambient temperature. The sink temperature is assumed to be 55°C for all
buildings, corresponding to a medium temperature central heating system (Alliander,
nd). The resulting COP of the HP under different ambient temperatures can be seen in
Figure 4.4.

Figure 4.4: The coefficient of performance of the heat pump as a function of ambient temperature.

The COP is used to calculate the power of the HP [W] for each time step using Equation
4.11.

Php(t) =
Qhp(t)

COP
(4.11)

The resulting HP profile and temperatures of a single house are visualized in Figure
4.5.
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(a) Heatpump profile. (b) Temperature variation over time.

Figure 4.5: Heatpump and temperature profile of a house for a full year.

The temperature will be maintained at 19°C unless it naturally increases, as no cooling
is assumed. The results were compared with Matthijssen et al. (2022) and simulated
HP-profiles from Alliander (nd), which showed similar results.

4.4 Electric Vehicle

To acquire the electric vehicle loads, the load profile generator from ElaadNL (nd) was
used. A total of 100 different charging profiles for home charging stations, each with a
maximum power of 11 kW, were utilized. The data contained both the power of each
time step and the arrival and departure times of the EV. In the generator, the EV starts
charging immediately when connected to a charging station.

4.4.1 Battery size

The battery size (Cbat) of each car was determined using the following Equation 4.12,
based on the assumption that the car traveled the maximum possible distance during its
longest charging session:

Cbat =

∑Tmax
t=1 Pcharge(t) ·∆t · ηcharging

DoD
(4.12)

where:

• Cbat is the battery capacity [kWh].

•
∑Tmax

t=1 Pcharge(t) the total power used during the longest charging session, where
Pcharge(t) is the power [kW] at each time step t, and Tmax is the total duration of
the longest charging session.

• ∆t is the time step duration [hours]

• ηcharging is the charging efficiency, assumed to be 95% (Chakraborty et al., 2022).
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• DoD is the Depth of Discharge, assumed to be 80% (Rastgoo et al., 2022).

4.4.2 State of Charge

To determine the starting SOC of each car, it was assumed that the SOC is always 100%
at the end of each charging session.

First, the initial SOC [%] of each charging session was determined using Equation
4.13.

SOCinitial = 100−
∑T

t=1 Pcharge(t) ·∆t · ηcharging
Cbat

· 100 (4.13)

Here, T represents the total duration of each charging session. This calculation results in
an initial SOC of 20% for the longest charging sessions, given that the DoD is assumed
to be 80% and the battery size is based on the longest charging session.

This initial SOC value is then used to calculate the SOC for each time step using Equation
4.14.

SOC(t) = SOCinitial +

∑t
t=1 Pcharge(t) ·∆t · ηcharging

Cbat
· 100 (4.14)

The SOC was used to compare the SOC under various flexibility strategies compared to
the reference scenario. The SOC and power output of the charging station over a week
for the reference scenario are presented in Figure 4.6. The SOC remains at 100% when
the car is connected to the charging station but not actively charging. Discharge is not
considered.

(a) Charging profile of an EV for a week. (b) SOC of an EV for a week.

Figure 4.6: Charging and SOC profile of a house for a week.
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4.5 Baseload and Solar

Finally, the profile of the baseload and solar energy was generated. The baseload profile
was generated based on the average baseload profile of a Dutch neighborhood in 2022
(Alliander, nd). For every household, the same baseload profile was used. This approach
may oversimplify household energy consumption patterns by not accounting for variability
between different households, potentially leading to more extreme cases of congestion as
all baseloads will exhibit the same aggregated power peaks.

The solar profile was developed based on the measured solar irradiance data from the
weather station in De Bilt, using hourly observations from 2023. This data was then
interpolated to 15-minute intervals to meet the required data points (KNMI, 2024). To
determine the power generated by the solar panels at each time step, Equation 4.15 was
used.

Psolar(t) = G(t) ·Apanel ·Npanels · ηsolar (4.15)

where:

• G is the solar irradiance [kW/m2].

• Apanel is the area of a single solar panel [m2], which was assumed to be 1.7 m2

(Svarc, 2024).

• Npanels is the number of solar panels, for each house a random value was used in
the range 6 to 12.

• ηsolar is the efficiency of the solar panels, which was assumed to be 20% (Svarc,
2024).

Solar production is measured as negative power consumption in this model. A solar and
baseload profile of a house is visualized in Figure 4.7.

(a) Baseload profile house for full year. (b) Solar profile house for full year.

Figure 4.7: Baseload and Solar profile of a house for a full year.
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When the amount of solar energy fed back into the grid exceeds the transformer’s total
load capacity, the excess solar energy is curtailed.

4.6 Explicit Flexibility

During explicit flexibility, the goal is to mitigate congestion by reducing the load during
congestion and redistributing the load to a period with more available load. The
methodology used for this is described in more detail in the following section.

4.6.1 Transformer load

First, all individual profiles of each household agent were combined to calculate the total
transformer load. The adoption rates were determined based on the Climate Ambition
Scenario for 2030 from NetbeheerNederland (2023), which reflects the Dutch government’s
energy and climate policies.

For solar panels, an adoption rate of 55% was used. EVs were assumed to have an
adoption rate of 26%. NetbeheerNederland (2023) distinguishes between hybrid heat
pumps and fully electric HPs, with adoption rates of 15% and 12% respectively. According
to Milieu Centraal (2024c), hybrid HPs use electricity 60% of the time and gas 40% of
the time. Since all HPs in this model are fully electric, it was assumed that 60% of the
hybrid HPs would be considered as fully electric, resulting in an overall adoption rate of
21% for fully electric HPs.

The maximum active load was set at 250 kW. When the total loads exceed this threshold,
explicit flexibility is applied. This means that every agent capable of providing explicit
flexibility will shift its production forward until the congestion is resolved. It is assumed
that 50% of the HPs and 50% of the EVs can offer this flexibility.

4.6.2 Flexibility provision and constraints

For EVs and HPs, the flexibility provided per household at each time step was calculated
using Equation 4.16 and Equation 4.17.

Fagent,ev,n(t) =
Pcharge,min,n(t)∑N
n=1 Pcharge,min,n(t)

· (Ptotal(t)− Ptrafo) (4.16)

Fagent,hp,n(t) =
Php,n(t)∑N
n=1 Php,n(t)

· (Ptotal(t)− Ptrafo) (4.17)

where:

• Fagent,ev,n(t) and Fagent,hp,n are the amounts of flexibility that the individual agent
n provides [kW].

• N is the total number of houses with the flexibility source.
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• Ptotal is the total load of the transformer [kW].

• Ptrafo is the maximum load of the transformer [kW].

• Pcharge,min,n is the power of the EV when the SOC is higher than the minimum
[kW].

• Php,n is the power of the HP [kW].

As a result, each household with an EV or HP will provide a proportional share of
flexibility based on the extent to which they contribute to congestion. This ensures that
all HPs and EVs reduce their load by the same proportion, distributing the effort evenly
across all participating households.

For the EVs a minimum SOC is used as a constraint to provide flexibility, which is set at
50% in the reference scenario. When the SOC is lower than 50% an EV will not provide
flexibility. For the HPs the minimum temperature constraint is assumed to be 18 °C, as
recommended by WHO (2018).

Finally, the required flexibility for each household agent is subtracted from its power
consumption. If the required flexibility exceeds the power consumption, the power
consumption is set to zero, resulting in unresolved congestion.

4.6.3 Redistribution of flexibility

The redistribution of the reduced load relies on the available capacity in the transformer.
Each agent iterates over a series of time steps to shift the reduced load to periods with
available capacity. A visualization of this process is shown in Figure 4.8.
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Figure 4.8: Redistribution of flexibility (Adapted from BeXema (nd)).

When available capacity is identified, the maximum possible amount of flexible load is
shifted to that time step. In Figure 4.8 this is shown with the arrow shifting the blue area
forward in time. The shifted load is subtracted from the load to be redistributed, and the
available capacity for that future time step is reduced accordingly. This process continues
until all possible flexibility is utilized. Finally, the new energy profiles for the HPs and
charging stations are calculated by adding the shifted energy profile to the original HP
and charging profile. This approach ensures that energy demand is redistributed to better
align with the available capacity.

4.7 Implicit Flexibility

To model the effect of implicit flexibility an optimization approach was used, using linear
programming and the Pulp library. During the optimization, the electricity costs of the
HP and EV were minimized based on price. The way the optimization works is explained
using Figure 4.9.
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Figure 4.9: Total electricity price breakdown and optimization periods (arrows).

The total electricity price is divided into three components: the Day-ahead Price, ToU
tariffs, and the energy tax. Most recent prices were used, including the projected ToU
tariffs for 2030 (Alliander, nd). The Day-ahead prices of the Netherlands for 2023 were
sourced from ENTSO (2024). The energy tax for 2024, is 13.2 cents per kWh including
Value Added Taxes (VAT) (CBS, 2024).

The Day-ahead prices in the Netherlands are released every day at 12:00 PM 1(TenneT,
nd). Consequently, the model’s optimization occurs every day at 12:00 PM based on the
prices known at that time, as indicated by the white arrows.

EVs are constrained to charge only when connected to the charging station and must
reach 100% SOC by the end of each charging session. For HPs, the temperature must
be maintained within a set range, specifically between 18°C and 22°C. The energy
consumption of both EVs and HPs is optimized for each period by shifting the load to
times when electricity prices are lower, thereby minimizing costs. When an overlap in
optimization periods takes place, the numbers from the latest optimization are used.

The ToU tariffs consist of summer and winter tariffs with fixed prices that vary each hour,
offering an alternative to the regular flat-rate grid tariff, as seen in Figure 4.10.

1Just before the deadline for this thesis, it was brought to attention that the Day-ahead prices are
released at 12:40 PM. This slight discrepancy does not affect the core results and conclusions of the
model, but it is important to acknowledge the correct release time for accuracy.
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Figure 4.10: Time of Use Tariffs summer and winter.

The switch from summer to winter tariffs takes place when the clock is switched from
summer to winter time in the Netherlands. The total price of electricity for the full year
is seen in Figure 4.11.

Figure 4.11: Total electricity price for a full year.
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4.8 Scenarios

In the reference scenario for this research, the neighborhood comprises 300 households.
According to the Climate Ambition Scenario for 2030 by NetbeheerNederland (2023),
55% of the households have solar panels, 21% have HPs, and 26% have EVs. The nominal
capacity of the transformer is assumed to be 250 kW.

In all scenarios, it is assumed that 50% of the HPs and EVs are capable of providing
flexibility. The scenarios include a reference scenario with no flexibility, a scenario
with explicit flexibility, a scenario with implicit flexibility, and a scenario combining
both implicit and explicit flexibility. Additionally, a sensitivity analysis is performed to
assess the impact of varying comfort constraints, price sensitivity, and the proportion of
households applying flexibility.
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5 Results

This section investigates the effects of implicit and explicit flexibility, as well as a
combination of both. First, the results for the reference scenario are presented in Section
5.1, followed by the results of explicit flexibility in Section 5.2 and the results of implicit
flexibility in Section 5.3. Section 5.4 covers a combination of implicit and explicit flexibility
after which a comparison is made between all scenarios in Section 5.5. Additionally, a
sensitivity analysis evaluates the effects of varying comfort constraints, price sensitivity,
and the proportion of households applying flexibility. The findings of these analyses are
detailed in the subsequent subsections.

5.1 Reference Scenario

The resulting combination of all profiles and the net transformer profile of the reference
scenario is visualized in Figure 5.1.
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(a) Combined profiles for a year.
(b) Transformer profile for a year.

(c) Combined profiles for a week in winter.
(d) Transformer profile for a week in winter.

(e) Combined profiles for a week in summer.
(f) Transformer profile for a week in summer.

Figure 5.1: Combined and transformer power profiles over a year and week in summer and
winter in the reference scenario.

Figure 5.1a, 5.1c and 5.1e visualize the combined power profiles of the baseload, HPs,
EVs, and solar panels of all individual households. Figure 5.1b, 5.1d and 5.1f display
the sum of these profiles, representing the transformer load. The dashed lines indicate
the maximum capacity of the transformer. In this scenario, congestion is experienced
for 255.75 hours throughout the year, while solar energy curtailment occurs for 283.5
hours.
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Figure 5.1c and 5.1e highlight the difference between a week in summer and winter. In
the summer, there is generally more solar production, which often leads to increased solar
curtailment as the grid’s capacity is exceeded by the excess energy generated. During this
time, HPs use little to no energy, thus contributing minimally to the overall load.

In contrast, winter weeks are marked by higher energy consumption from HPs and the
baseload. This is due to the increased need for heating and the fact that people tend to
stay indoors longer, leading to more usage of lighting and electrical devices. As a result,
winter experiences more instances of curtailment caused by the transformer’s maximum
capacity being exceeded. Therefore, while summer mainly deals with solar curtailment,
winter is characterized by more congestion due to higher overall energy usage, as can be
seen in Figure 5.1b

For a clearer visualization, the figures used for further analysis focus on the week of
January 21, as shown in Figures 5.1c and 5.1d. This particular week is selected because
it represents a typical period during which congestion is experienced caused by the usage
of HPs and EVs.

The average energy consumption and production of the baseload, HPs, EVs, and solar
panels in the reference scenario are 2238, 2356, 4346, and 3397 kWh.

5.2 Explicit Flexibility

First, the effect of explicit flexibility for HPs and EVs was analyzed separately to facilitate
a clear comparison between the two. This analysis helps in understanding the individual
impact of each asset on mitigating congestion.

5.2.1 Explicit Flexibility Heat Pumps

For HPs, the flexibility constraint includes maintaining a minimum temperature of 18°C
to ensure comfort. In the reference scenario, it was assumed that the temperature is
maintained at a constant 19°C without active cooling, allowing it to naturally rise but
not fall below this point due to heating. The maximum power for all HPs was assumed
to be 5 kW. The effect of explicit flexibility for HPs is visualized in Figure 5.2
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(a) Temperature houses for a week in the reference
scenario.

(b) Temperature houses for a week after explicit
flexibility.

(c) HP profile houses for a week in the reference
scenario.

(d) HP profile houses for a week after explicit
flexibility.

Figure 5.2: Temperature and HP profiles before and after explicit flexibility.

Figure 5.2 visualizes the temperature and power output of the HP before and after
explicit flexibility. In the reference scenario, it is assumed that a constant temperature
of 19°C is maintained, as shown in Figure 5.2a. Figure 5.2c shows the HP profiles used
to maintain a constant temperature of 19°C, with variations based on different levels of
insulation. After flexibility is provided the temperature and power of the houses and
HPs that apply flexibility will be reduced until congestion is solved. In Figure 5.2b can
be seen that the minimum temperature of 18 °C serves as a limiting factor for flexibility.
When capacity becomes available in the grid, the temperature is increased back to the
original 19 °C. This causes peaks in power consumption as seen in Figure 5.2d. The effect
this will have on the transformer load is shown in Figure 5.3.
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(a) Combined profiles for a week after explicit
flexibility HPs.

(b) Transformer profile for a week after explicit
flexibility HPs.

Figure 5.3: Combined and transformer power profiles over a week after explicit flexibility HPs.

Figure 5.3 shows a reduction in peak loads and shorter periods of load exceeding of the
transformer’s nominal capacity compared to Figure 5.1. However, despite the applied
flexibility, the HPs were unable to fully resolve the congestion during any of the days in
this week. The total hours of congestion was reduced from 225.75 hours to 186.25 hours
over the year.

Furthermore, the average electricity consumption of HPs decreased from 2356 kWh to
2351 kWh per year. However, the HPs that applied flexibility experienced an average
cost increase from 790AC to 873AC per year.

5.2.2 Sensitivity Analysis Heat Pumps

A sensitivity analysis was conducted on the minimum temperature constraint and the
number of HPs applying flexibility to evaluate their impact on the reduction of total
congestion. The maximum amount of flexibility of the HPs was achieved when the
temperature constraint was reduced to 14.9 °C or lower, as can be seen in Figure 5.4.
In this case, total congestion could be reduced to 169.25 hours. In this case, energy
consumption of the HPs was reduced to zero, indicating that HPs are not responsible for
congestion during these hours.

The limiting constraint of the minimum temperature, however, depends on the insulation
level of the house. Houses with poorer insulation will cool down faster than those with
better insulation. The results of the sensitivity analysis for minimum temperature are
shown in Figure 5.5.
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Figure 5.4: Temperature profile houses for a full year after explicit flexibility HPs with no
temperature constraint.

Figure 5.5: Sensitivity analysis minimum temperature.
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Figure 5.5 illustrates that reducing the minimum temperature constraint helps resolve
more congestion. The most significant impact occurs when the temperature is lowered
from 19 °C to 18 °C, resulting in a reduction of congestion hours from 225.75 to 186.25.
Further reductions in the minimum temperature have a smaller effect, with congestion
hours decreasing from 186.25 to 169.25 when the temperature is lowered from 18 °C to
the minimum of 14.9 °C.

A sensitivity analysis was also performed on the percentage of HPs that apply flexibility.
The results of this are shown in Figure 5.6.

Figure 5.6: Sensitivity analysis percentage of HPs with flexibility.

Figure 5.6 demonstrates that increasing the number of HPs applying explicit flexibility
results in a greater reduction of congestion. The effect of adding more HPs remains
relatively consistent in terms of resolving congestion. The effectiveness of each HP in
reducing congestion is linked to its contribution to the overall electrical load; HPs that
consume more electricity have a higher impact. However, since all HPs operate similarly,
with heat output dependent on the ambient temperature, the overall effect remains fairly
constant.

5.2.3 Explicit Flexibility Electric Vehicles

EVs have the constraint that explicit flexibility can only be applied when the SOC
of the car is higher than 50%, ensuring the car can always drive a minimum distance.
This means that the car will be charged to a SOC of 50% as quickly as possible before
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any flexibility can be applied, resulting in a guaranteed SOC of 50% or higher. In the
reference scenario, it is assumed that the SOC must be 100% at the end of the charging
session. The maximum power output of the charging station is set at 11 kW. It is again
assumed that 50% of the EVs can apply explicit flexibility. The effect of applying explicit
flexibility to EVs is visualized in Figure 5.7. For a clearer visualization, the power and
SOC of only three cars that apply flexibility are shown.

(a) EV profile houses for a week in the reference
scenario.

(b) EV profile houses for a week after explicit
flexibility.

(c) SOC houses for a week in the reference
scenario. (d) SOC houses for a week after explicit flexibility.

Figure 5.7: EV profiles and SOC before and after explicit flexibility.

Figure 5.7a and 5.7b illustrate the differences in charging power before and after the
application of explicit flexibility. Most charging sessions remain unaffected as they occur
during periods without congestion. The first green charging session demonstrates how
the power output of the car is reduced during a congestion period and subsequently
shifted forward. In the reference scenario is was asumed that at the end of each charging
session the final SOC would achieve a 100% SOC as seen in Figure 5.7c. After applying
explicit flexibility as shown in Figure 5.7d, the car still achieves a full SOC by the end of
the charging session, despite the adjustments. The effect of applying explicit flexibility
on the final SOC for cars that apply flexibility is shown in Figure 5.8.
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(a) Final SOC of cars before flexibility. (b) Final SOC of cars after explicit flexibility.

Figure 5.8: Final SOC of cars before and after explicit flexibility.

Figure 5.8 shows that applying flexibility can result in a final SOC that is not 100%. Out
of the cars that used explicit flexibility, 9269 out of 9303 charging sessions achieved a full
SOC, which equates to 99.6%. When considering all cars in the neighborhood, 15032 out
of 15066 charging sessions ended up with a full SOC, meaning that 99.8% of all charging
sessions achieved a full SOC. The lowest final SOC was found to be 67.9%.

The impact of explicit flexibility from EVs on mitigating congestion is shown in Figure
5.9.

(a) Combined profiles for a week after explicit
flexibility EVs.

(b) Transformer profile for a week after explicit
flexibility EVs.

Figure 5.9: Combined and transformer power profiles over a week after explicit flexibility HPs.

Figure 5.9 shows that in all cases, congestion was fully resolved. This effect was consistent
throughout the year, with the total hours of congestion being significantly reduced from
255.75 hours to 0.5 hours.

The average electricity consumption for all EVs slightly decreased from 4346 kWh to
4344 kWh. Additionally, EVs that applied flexibility saw a reduction in annual costs,
from 1517AC to 1508AC.
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5.2.4 Sensitivity Analysis Electric Vehicles

The impact of the minimum SOC constraint before applying explicit flexibility was also
analyzed using a sensitivity analysis. The sensitivity analysis was conducted on the total
hours of congestion per year, and the minimum final SOC. The results are shown in
Figure 5.10.

(a) Total hours of congestion for different
minimum SOC constraints.

(b) Minimum final SOC for different minimum
SOC constraints.

Figure 5.10: Sensitivity analysis minimum SOC constraint.

In Figure 5.10a illustrates how varying the minimum SOC threshold, after which flexibility
can be applied, impacts the total hours of congestion that can be resolved. The graph
shows that as the minimum SOC constraint increases, the ability to resolve congestion
decreases.

At lower SOC thresholds (0% to 60%), the total congestion remains low, at 0 hours and
2 hours respectively. However, beyond a minimum SOC of 60%, there is a noticeable
rise in congestion hours. The trend shows an exponential increase, indicating that higher
minimum SOC constraints significantly limit the flexibility to reduce congestion.

Figure 5.10b demonstrates that increasing the minimum SOC constraint positively
impacts the minimum final SOC. This effect becomes noticeable when the constraint is
raised above 60%. If the constraint is set below 60%, the cars end up with the minimum
final SOC of 67.9%.

A sensitivity analysis was also performed for the number of electric vehicles that apply
flexibility, as illustrated in Figure 5.11.
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(a) Total hours of congestion for different
percentages of EV providing flexibility.

(b) Minimum final SOC for different percentages
of EV providing flexibility.

Figure 5.11: Sensitivity analysis EVs with flexibility.

Figure 5.11a illustrates the relationship between the percentage of EVs providing flexibility
and the total hours of congestion. As the percentage of EVs providing flexibility increases,
there is a significant reduction in total congestion hours. Notably, when 50% or more
of the cars provide flexibility, congestion is reduced to 0.5 hours or less. Beyond this
point, additional reductions in congestion are minimal. The majority of the benefits from
flexibility in this scenario are realized once half of the EVs participate.

Figure 5.11b shows the relation between the percentage of EVs providing flexibility and
the minimum final SOC. As the proportion of EVs providing flexibility increases up to
50%, the minimum final SOC decreases. When more than 50% of EVs provide flexibility,
an increase in the minimum final SOC is seen.

5.2.5 Explicit Flexibility Electric Vehicles and Heat Pumps

A comparison was also made between the explicit flexibility provided by HPs and EVs,
as well as a combination of both. In the model, priority was given to EVs for providing
flexibility, as the comfort constraint of having a lower final SOC is less impactful than
the discomfort caused by a lower temperature from HPs. The results are shown in Figure
5.12.
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Figure 5.12: Sensitivity analysis percentage of assets with explicit flexibility.

The comparison highlights the difference between the explicit flexibility provided by EVs
and HPs, as well as a combination of both. EVs are demonstrated to be more effective
in providing flexibility compared to HPs.

5.3 Implicit Flexibility

This section begins with an analysis of the effect of implicit flexibility on HPs and EVs
in Section 5.3.1. This is followed by a sensitivity analysis on the impact of ToU tariffs in
Section 5.3.2.

5.3.1 Implicit Flexibility Heat Pumps and Electric Vehicles

The HP profiles and temperature after implicit flexibility can be seen in Figure 5.13.
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(a) HP profiles after price optimization. (b) Temperature houses after price optimization.

Figure 5.13: Temperature and HP profiles after implicit flexibility.

Figure 5.13a shows the power output of HPs after applying implicit flexibility. During
periods of the lowest electricity prices, HPs are turned on at maximum power. This
allows the HPs to reduce the power consumption to a minimum while maintaining the
indoor temperature above the minimum threshold of 18°C. As shown in Figure 5.13b,
the temperature increases during these low-price periods and then gradually decreases
until it reaches 18°C. This cycle usually occurs twice daily in the winter, once with a
small increase in temperature at 4 AM and once with a bigger increase at 12 PM, which
aligns with the lowest ToU tariffs during the winter.

The average annual electricity cost for a HP after applying implicit flexibility is 665AC, a
reduction of 125AC compared to the reference scenario where the average cost was 790AC
per year.

The EV profiles and SOC for three cars with flexibility are seen in Figure 5.14.

(a) Charging profiles after price optimization. (b) SOC cars after price optimization.

Figure 5.14: SOC and EV profiles after implicit flexibility.

A similar effect to the HPs is seen for the EVs in Figure 5.14. The cars will charge at
maximum power during the cheapest price periods and charge until a SOC of 100% is
reached. For the EVs, this usually takes place once a day, during the cheapest period

46



when the car is connected to the charging station. The average price an EV pays after
implicit flexibility is 1112AC, compared to 1517AC a year in the reference scenario.

The effect of implicit flexibility on the transformer load for a combination of HP and EV
flex is seen in Figure 5.15.

(a) Combined profiles after price optimization.
(b) Transformer load after price optimization.

Figure 5.15: Combined and transformer power profiles over a week after explicit flexibility HPs

After implementing implicit flexibility, congestion was reduced from 255.75 hours to 205
hours. This reduction occurs as demand is shifted to periods with higher solar energy
supply or to times of low baseload consumption in the morning or at night. However,
since 50% of the HPs and EVs are using implicit flexibility, new peaks were created
during low-cost periods, leading to new periods of congestion. These new peaks are
generally shorter and occur at the lowest price points. The maximum peak load tends to
increase with higher participation rates due to greater concurrency.

Finally, a sensitivity analysis was done on the percentage of EVs and HPs that apply
implicit flexibility as seen in Figure 5.16.
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Figure 5.16: Sensitivity analysis percentage of assets with implicit flexibility.

Figure 5.16 shows that congestion initially decreases when implicit flexibility is applied
but later increases. This trend occurs because, initially, demand is shifted to periods with
lower demand and cheaper prices, reducing congestion. However, as more households
adopt this strategy, the combined demand during these low-cost periods increases, leading
to new congestion.

5.3.2 Implicit Flexibility Price Sensitivity

A sensitivity analysis was also conducted on the expected ToU tariffs for 2030 by
comparing the effects of having higher or lower ToU tariffs. Additionally, prices were
compared to the current situation without ToU tariffs and a scenario combining ToU
tariffs with a fixed energy contract instead of a variable one.

The results of the sensitivity analysis of ToU prices are shown in Figure 5.17.
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Figure 5.17: Sensitivity analysis ToU price.

Figure 5.17 illustrates that increasing the ToU price leads to reduced congestion while
decreasing the ToU price results in increased congestion. The relationship appears to
be nearly linear. On average, a 1% increase in price corresponds to a reduction of 0.38
hours of congestion in the reference scenario.

Instead of using Day-ahead market prices, a scenario with a fixed energy contract
combined with ToU tariffs was modelled. The prices in this scenario depend on the
energy provider, the timing of the contract, and previous energy usage. In this model, a
price of 0.40AC/kWh was used. This represents the maximum price cap in the Netherlands,
which was paid by 6% of households with a fixed contract (Milieu Centraal, 2024b). A
scenario was also used with a combination of the Day-ahead market and with a regular
flat-rate tariff. The cost savings and total congestion in each scenario are shown in Table
1.

Table 1: Total congestion and cost savings under different scenarios.

Scenario Total congestion (hours) EV cost savings HP cost savings

ToU + Day-ahead 205 AC 406 AC 125

ToU only 112 AC 296 AC 116

Day-ahead only 286.5 AC 162 AC 60

Table 1 demonstrates that the scenario with a ToU tariff and a fixed energy contract
achieved the greatest reduction in congestion. Conversely, the highest total congestion
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occurred in the absence of a ToU tariff. The reference scenario that combined both ToU
tariffs and day-ahead price variation yielded the highest cost savings. The results show
that the ToU tariff not only provides additional incentives for implicit flexibility but also
contributes to reducing congestion.

5.4 Implicit and Explicit Flexibility

Finally, a scenario combining implicit and explicit flexibility was modeled. In this scenario,
HPs and EVs first applied implicit flexibility to achieve cost savings and then utilized
explicit flexibility during periods of congestion.

As a result, congestion was reduced from 205 hours, when 50% of the EVs and HPs
provided implicit flexibility, to 0 hours when explicit flexibility was subsequently applied.
The effect this had on the transformer load and combined power is shown in Figure
5.18.

(a) Combined power after implicit and explicit
flexibility.

(b) Transformer load after implicit and explicit
flexibility.

Figure 5.18: Combined and transformer power profiles over a week after implicit and explicit
flexibility.

Figure 5.18 illustrates how the power peaks created by implicit flexibility are shifted
forward to mitigate congestion. The impact of this adjustment on comfort constraints
was also modeled, as shown in Figure 5.19.
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(a) Final SOC after implicit and explicit flexibility.

(b) Temperature houses after implicit and explicit
flexibility.

Figure 5.19: Final SOC and Temperature after implicit and explicit flexibility.

Of the EVs that applied a combination of implicit and explicit flexibility, 8928 out of 9303
charging sessions (96.0%), resulted in a full final SOC, as shown in Figure 5.19a. The
lowest final SOC observed was 86.9%. The average power consumption of EVs decreased
from 4346 kWh to 4314 kWh compared to only implicit flexibility. Consequently, average
electricity costs declined from 1112AC to 1102AC after applying explicit flexibility, despite
implicit flexibility being optimized for cost. This reduction is attributed to some cars not
charging to 100% in this scenario.

For HPs the average energy consumption increased from 2225 to 2444 kWh, and costs
increased from 665AC to 776AC per year. The energy consumption and costs of the HPs
are higher than optimal because pre-heating was used to overcome increased congestion
resulting from maintaining comfort limits. The impact this has on the temperature is
shown in Figure 5.19b.

5.5 Comparison of Scenarios

The final results found in each scenario, when 50% of the assets provide flexibility are
summarized in Table 2.
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Table 2: Comparison results of each type of flexibility.

Category
No

flexibility
Explicit

flexibility
Implicit
flexibility

Implicit &
Explicit
flexibility

Total congestion (hours) 255.5 0 205 0

Peak load (kW) 383 250 468 250

Total curtailment (hours) 283.5 283.5 225 223.75

Cost savings per EV 0AC 9AC 406AC 416AC
Cost savings per HP 0AC -83AC 125AC 19AC
Comfort impact EV No impact Medium Low High

Comfort impact HP No impact Low Medium High

Total compensation DSO 0AC 300AC 0AC 3300AC

Table 2 demonstrates that explicit flexibility, or the combination of implicit and explicit
flexibility, is most effective in mitigating congestion and reducing peak load. While
implicit flexibility is more effective than having no flexibility at all, it increases the
maximum peak load.

Total solar curtailment was reduced the most when both implicit and explicit flexibility
were utilized. This is primarily due to implicit flexibility shifting demand to periods with
higher solar energy.

The highest average cost savings for HPs were achieved when implicit flexibility was
applied, while explicit flexibility negatively impacted cost savings. For EVs, the greatest
cost savings were realized when both implicit and explicit flexibility were applied. This
increased savings partly stemmed from EVs not always being charged to a 100% final
SOC under explicit flexibility, resulting in lower overall charging costs.

Comfort was most impacted when both implicit and explicit flexibility were applied to
both EVs and HPs. This led to the highest number of cars not achieving a full SOC and
the greatest deviation from maintaining a constant temperature of 19°C. Less comfort
was impacted when only implicit flexibility was applied, as it primarily increased charging
time but still ensured a final SOC of 100%. For HPs, explicit flexibility resulted in the
least comfort impact, with temperature drops occurring during periods of congestion. In
contrast, implicit flexibility caused high-temperature fluctuations, frequently bringing
the temperature closer to the minimum threshold.

Finally, the total compensation for the DSO to offset the cost losses from households
applying explicit flexibility was calculated. The combined use of implicit and explicit
flexibility resulted in the highest total compensation costs of 3300AC, averaging 11AC per
household. In contrast, applying only explicit flexibility led to lower compensation costs
of 300AC.

A comparison of the sensitivity analyses between the different types of flexibility using
both EV and HP flexibility is given in Figure 5.20.
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Figure 5.20: Sensitivity analysis percentage of EVs and HPs with flexibility for different types of
flexibility.

Figure 5.20 shows that there is little difference in mitigating congestion when using
participation rates up to 20% across all three flexibility strategies. Beyond this point,
implicit flexibility starts to increase congestion, while both variants of explicit flexibility
result in a sustained decrease in congestion.

5.6 Validation

In this section, results are compared with empirical data for validation of the model.

The energy usage of an HP depends on the matter of insulation of a house, the ambient
temperature, and the type of HP. vanhetgasafgegaan.nl (2024) reported that a fully
electric HP used 2039 kWh of electricity for heating only between December 1, 2022, and
November 30, 2023, in the Netherlands. This is comparable to the average electricity
usage of 2356 kWh for HPs in this model.

Refa et al. (2023) reported that EVs are expected to drive an average distance of 16,890
km per year in 2030, with an average energy usage of 0.2 kWh per km, resulting in an
average annual usage of 3378 kWh. In contrast, data from ElaadNL (nd) used in this
model showed an average usage of 4346 kWh per EV, potentially resulting in higher
levels of congestion from EVs in this model than in practice. This can be due to higher
assumed usage rates or lower charging efficiency assumed by ElaadNL (nd).

The solar panels in this model produced an average of 3397 kWh, while Milieu Centraal
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(nd) reported that 10 solar panels facing south produced an average of 3500 kWh.
Additionally, Milieu Centraal (2024a) reported an average household electricity usage of
2497 kWh in the Netherlands in 2023. In comparison, the baseload consumption in this
model was 2238 kWh per year.

A pilot project in Houten where HPs were used to apply flexibility, reported that the pilot
houses cooled down by 0.3 °C per hour when no heating was applied (GO-E, 2024). These
findings align with the cooling rate observed in this model, with variations depending on
insulation quality and ambient temperature.

In addition to the empirical data comparison, results were visually compared with models
used by Alliander (nd) and by colleagues. However, validation using actual transformer
congestion data has not been performed. These results suggest that the model provides
a reasonable representation of real-world outcomes, despite the simplifications and
assumptions made. Further validation with actual transformer congestion data would be
a valuable addition to enhance the model’s accuracy and reliability.
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6 Discussion

In this section, the results will be discussed and interpreted, followed by an outline of
the limitations of this research and recommendations for future research and extensions
to the model.

6.1 Explicit Flexibility

In section 5.2, the effectiveness of explicit flexibility in reducing grid congestion was
examined. EVs were more effective in reducing grid congestion compared to HPs. A
reduction from 255.75 hours to 0.5 hours was seen when 50% of the EVs were providing
explicit flexibility. In contrast, the same percentage of HPs providing explicit flexibility
resulted in a more modest reduction from 255.75 hours to 186.25 hours. The sensitivity
analysis further highlighted the difference. Only 10% of EVs providing flexibility achieved
a reduction in congestion to 162.75 hours, which is comparable to the 162.5-hours
reduction attained by 90% of HPs.

There are several reasons why EVs are more effective than HPs in providing flexibility
in the model. Firstly, the anticipated number of EVs in 2030 is higher, with 26% of
households expected to own EVs compared to 21% for HPs. Additionally, EVs consume
more electricity, averaging 4346 kWh per EV annually, compared to 2238 kWh for
HPs.

The profiles of HPs and EVs also differ significantly. HPs have a relatively constant profile
throughout the day, driven by ambient temperature, with a maximum power output of
5 kW that is only reached during extremely cold periods for poorly insulated homes.
In contrast, EVs exhibit more variability and concurrency, as their charging patterns
depend on human behavior, with a peak typically occurring when people return home
from work. Furthermore, EVs have a higher maximum power output of 11 kW, which is
utilized as soon as they are connected to the charging station to charge the vehicle as
quickly as possible. These factors combined make EVs more effective in mitigating grid
congestion compared to HPs.

6.1.1 Comfort contraints

Furthermore, the impact of the comfort constraints of minimum temperature and driving
distance was analyzed. In the reference scenario, the lowest temperature found was 14.9
°C when no minimum temperature constraint was used. For EVs, the lowest final SOC
was found to be 67.9%.

The sensitivity analysis in Figure 5.5 showed how the minimum temperature for HPs
impacts congestion reduction. Lowering the minimum temperature from 19 °C to 18 °C
led to the highest decrease in congestion hours, from 225.75 to 186.25. However, further
reductions in the minimum temperature showed less effect. Lowering the temperature
from 18 °C to 14.9 °C only resulted in an additional decrease in congestion hours, from
186.25 to 169.25 hours. The maximum potential for mitigating congestion with HPs
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is thus up to 169.25 hours when temperature constraints are ignored. In this scenario,
HPs would be completely turned off during congestion periods, thus not contributing
to it. This demonstrates that the HPs providing flexibility are not responsible for this
remaining congestion.

The minimum temperature constraint closest to the assumed constant temperature of 19
°C has the highest impact, as this threshold is reached more frequently. As the minimum
temperature constraint is lowered, it becomes less of a limiting factor. In Figure 5.4 where
no constraint is used, the temperature to which the house drops differs as it depends
on the matter of insulation of the house, the ambient temperature, and the duration of
congestion. Poorly insulated houses experience faster temperature drops, and during
colder periods, heat losses are greater, causing the temperature to drop more quickly.
Additionally, the longer the congestion period, the more the temperature can drop, as
the HPs are providing flexibility longer during these times.

A similar effect was seen in the sensitivity analysis for the minimum SOC after which
explicit flexibility was applied, as shown in Figure 5.10. The constraint closest to a SOC
of 100% had the greatest impact in limiting flexibility. When the constraint was lowered
to 60% or below, little to no effect was observed. This occurs because most charging
sessions begin when the SOC is already close to 100%, as cars often do not drive far
enough distances to significantly reduce the SOC. There are a few instances when a
car’s SOC drops below 60% due to longer trips. Therefore, the impact of this comfort
constraint diminishes, as it rarely comes into play.

When 50% of the cars used explicit flexibility, 99.8% of all charging sessions still resulted
in a full state of SOC by the end of the session. This is because vehicles are often
connected to a charging station but not actively charging. With explicit flexibility, the
charging time is deferred to a later period, but in most cases, the final SOC still reaches
100%. The lowest final SOC was found to be 67.9%.

The relationship between cars that apply flexibility and minimum final SOC was also
analyzed, as seen in Figure 5.11. Initially, as the proportion of EVs providing flexibility
increases up to 50%, the minimum final SOC decreases. This decline occurs because more
cars are simultaneously adjusting their charging schedules and redistributing flexibility,
which strains the grid to its maximum load for a longer period. This increases the
likelihood that some vehicles will not fully charge within the desired time frame, as
not all flexibility can be redistributed. However, when more than 50% of EVs provide
flexibility, the minimum SOC starts to increase. This improvement is because as more
cars reduce their load simultaneously, the overall flexibility required to be redistributed
per car decreases, leading to a more evenly distributed load and higher minimum SOC
levels for each vehicle.

6.2 Implicit Flexibility

The effect of implicit flexibility was examined in Section 5.3. In the reference scenario, the
flexibility for EVs decreased from 255.75 hours to 156.75 hours, while for HPs, congestion
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hours were reduced to 211.75. When combining HPs and EVs, the congestion hours
further decreased to 205 hours.

The sensitivity analysis in Figure 5.16 demonstrated that implicit flexibility initially
reduces total congestion, followed by an increase. For EVs, the greatest reduction
was achieved when 30% of the EVs used implicit flexibility, resulting in 50 hours of
congestion. However, when more EVs began to apply flexibility, congestion increased
again. For HPs, the most significant reduction occurred when 50% of the HPs used
implicit flexibility, reducing congestion to 211.75 hours. A combination of HPs and EVs
showed the best results when 20% of the assets provided flexibility, resulting in 68,25
hours of congestion.

When comparing implicit and explicit flexibility, EVs showed similar results when up
to 20% of the assets provided flexibility. Explicit flexibility resulted in 69.5 hours of
congestion, compared to 72.25 hours for implicit flexibility. Interestingly, when 10% of
the EVs provided flexibility, implicit flexibility slightly outperformed explicit flexibility,
with 161 hours of congestion versus 162.75 hours. This difference can be attributed
to implicit flexibility’s ability to shift the charging session to any moment during the
cheapest price periods. In contrast, explicit flexibility shifts power forward to the first
possible future moment, only when the SOC is higher than 50%.

As more assets begin to use implicit flexibility, the effectiveness diminishes compared
to explicit flexibility, eventually leading to increased congestion. This occurs because
all assets shift power consumption to periods with lower prices, creating new congestion
during these times. This trend was observed in the sensitivity analysis, where congestion
began to rise again at a certain point.

In contrast, explicit flexibility resulted in a sustained decrease in congestion because the
assets communicate with each other to avoid creating new congestion. This coordination
among assets using explicit flexibility helps manage the load more effectively, preventing
the shifting of congestion to different periods.

6.2.1 ToU tariffs

The impact of ToU tariffs on mitigating congestion was also analyzed in Section 5.3.2.
The reference scenario, which combined the Day-ahead market with ToU tariffs, resulted
in the highest cost savings through the use of implicit flexibility and reduced congestion
to 205 hours. In the scenario where only ToU tariffs were applied, congestion was reduced
to its lowest level of 112 hours. Conversely, the scenario with only the Day-ahead market
and no ToU tariffs demonstrated the least effective mitigation of congestion and the
lowest cost savings. These results indicate that ToU tariffs contribute significantly to
both cost savings and congestion mitigation.

The sensitivity analysis of ToU prices also revealed that increasing ToU tariff prices
leads to a greater reduction in congestion. This aligns with the scenarios, as higher ToU
tariffs reduce congestion more effectively when they constitute a larger portion of the
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overall price. The relationship appeared nearly linear, with a reduction of 0.38 hours
of congestion for every 1% increase in ToU prices. However, it is anticipated that this
relationship will reach saturation, as the scenario with only ToU tariffs still resulted in
112 hours of congestion. This indicates that the relationship cannot be entirely linear.
Additionally, the extent of congestion reduction depends on various factors, such as the
number of assets providing flexibility, ambient temperature, and the concurrency of EV
usage at a given time step.

The reason ToU tariffs are more effective in reducing congestion compared to Day-ahead
prices is that Day-ahead prices do not accurately reflect congestion on the LV grid.
For example, during periods of high offshore wind production, prices may be low even
when electricity demand on the LV grid is high. This discrepancy can negatively impact
congestion mitigation on the LV grid due to increased demand during these times. In
contrast, ToU tariffs are more representative of this type of congestion, as their prices
are based on the time of day when congestion on the LV grid is expected.

However, ToU tariffs are not a perfect solution, as congestion is not fully resolved. New
congestion can emerge when more assets shift demand to periods with lower prices, a
phenomenon known as the rebound effect. This effect was observed in the sensitivity
analysis shown in Figure 5.16 as more assets provided implicit flexibility.

6.3 Implicit Flexibility and Explicit Flexibility

In Section 5.4, the combination of implicit and explicit flexibility was modeled. This
approach reduced congestion from 205 hours, when only implicit flexibility was used, to
0 hours with the subsequent application of explicit flexibility. The peaks initially created
by implicit flexibility were effectively mitigated by shifting them forward with explicit
flexibility.

Combining implicit and explicit flexibility overall has the highest impact on comfort. For
EVs, 96.0% of the cars that applied flexibility achieved a full SOC, whereas only applying
explicit flexibility resulted in 99.6% of the cars reaching a full SOC. This difference occurs
because implicit flexibility increases the charging time, as cars now charge during the
cheapest periods instead of starting immediately when connected to a charging station.
Consequently, there is less charging time available to redistribute demand, leading to a
higher likelihood of not achieving a full SOC.

For HPs, the minimum temperature constraint becomes more limiting when combining
implicit and explicit flexibility. During implicit flexibility, the temperature often drops to
the minimum threshold of 18°C, with spikes of maximum power usage during cheaper
price periods, allowing for reduced power consumption during more expensive periods.
This limits the flexibility of HPs, as explicit flexibility will require additional power to
maintain the temperature above the minimum 18°C during certain periods if flexibility is
applied, thus increasing power usage during those times.

To overcome this issue pre-heating was applied during the redistributing to still reach
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optimal results, resulting in 0 hours of congestion instead of 94 hours without using pre-
heating. This was however not done using the most cost-effective approach as described
as a limitation in more detail in Section 6.3. Combining implicit and explicit flexibility
has the most negative impact on comfort, as it deviates further from the original situation
without comfort impact.

6.4 Comparison Flexibility

Finally, a comparison was made between all different types of flexibility in Section 5.5 as
seen in Table 2. A comparison was made based on congestion mitigation, cost savings,
and comfort impact.

6.4.1 Congestion mitigation

A scenario that includes explicit flexibility is the most effective in mitigating congestion,
resulting in 0 hours of congestion with 50% participation. While there is little difference
between the effectiveness of explicit flexibility alone and the combination of implicit and
explicit flexibility, the primary distinction lies in the comfort constraints. However, this
difference had minimal impact on the overall outcomes, as was seen in Figure 5.20.

The effectiveness of implicit flexibility in mitigating congestion depends on the partic-
ipation rate. Up to a 20% participation rate, the effectiveness of implicit flexibility is
comparable to that of explicit flexibility. However, beyond this participation rate, the
effectiveness diminishes and eventually leads to more congestion than the original scenario.
This occurs because as the participation rate increases, the concurrency of assets also
increases, which ultimately causes more congestion at different periods. Additionally, this
will result in higher peak power compared to no flexibility, as the increased concurrency
of assets leads to higher simultaneous power demand.

Implicit flexibility had the most positive effect on reducing solar curtailment. Although
this was not directly considered in the price optimization, the lowest prices usually occur
during periods of high solar irradiance, leading to increased demand during these periods
and ultimately reducing solar curtailment. When explicit flexibility was applied after
implicit flexibility, curtailment was further reduced as the redistribution of peaks forward
now occurred during periods with higher solar production.

6.4.2 Cost Savings

Cost savings were highest for HPs with implicit flexibility, as this approach is optimized
based on cost. In contrast, explicit flexibility led to increased costs. This outcome is
expected for the combination of implicit and explicit flexibility since it deviates more
from the optimal cost solution. Surprisingly, a cost increase was observed when only
explicit flexibility was applied, despite a decrease in energy consumption. This primarily
occurs because explicit flexibility results in high power peaks for HPs rather than a more
distributed profile. If these peaks occur during more expensive periods, the overall costs
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will rise. However, this doesn’t always have to be the case, as the costs depend on the
period to which flexibility is redistributed.

A different result was observed for EVs, where the most cost-effective solution was
the combination of implicit and explicit flexibility, with costs decreasing when explicit
flexibility was applied. This occurred because explicit flexibility led to a reduction in
energy consumption, as cars did not always charge to 100%, thereby reducing overall costs.
However, this comparison is not entirely fair, as it does not account for the increased cost
of charging during subsequent sessions, which was not considered in this research.

In addition to cost savings, the total costs that the DSO would have to compensate
for the additional expenses of explicit flexibility were also calculated. Applying explicit
flexibility alone resulted in a total compensation cost of 300AC per year, averaging 1AC
per household. For the combination of implicit and explicit flexibility, this cost rose to
11AC per household. This increase was primarily due to HPs causing more congestion
during implicit flexibility, necessitating more intervention to mitigate congestion. Since
the additional costs associated with HPs were higher than those for EVs, this led to
higher overall costs. However, this comparison is not entirely fair, as the costs associated
with the loss of SOC for EVs were not accounted for. Given that the combination of
implicit and explicit flexibility resulted in more cars with an incomplete SOC compared
to only explicit flexibility, it is expected that this cost difference would be even greater if
SOC losses were considered.

6.4.3 Comfort impact

All forms of flexibility impacted comfort levels. Without flexibility, EVs would charge
immediately when connected to a charging station, and HPs would consistently maintain
the desired temperature. Introducing flexibility deviates from these conditions.

For EVs, implicit flexibility had the least impact on comfort as it still ensured a 100% final
SOC, although charging time increased. Explicit flexibility didn’t have this guarantee
but with a 99.6% chance of having a full SOC this was still high. The combination of
implicit and explicit flexibility had the highest impact on comfort, resulting in both the
longest charging times and the lowest likelihood of achieving a full SOC of 96.0%.

For HPs, the least impact on comfort was observed when only explicit flexibility was
applied. In this scenario, the temperature deviated from the desired level only during
periods when flexibility was applied. Implicit flexibility, however, had a much higher
impact on comfort, as it consistently deviated from the desired temperature to minimize
costs. Most of the time, the temperature remained close to the minimum constraint of
18°C, with occasional spikes in temperature during cheaper periods. Combining implicit
and explicit flexibility made the temperature even more unpredictable and showed the
highest fluctuation thus impacting comfort the most.
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6.5 Limitations

To make this model several assumptions and simplifications were made. The main
limitations are discussed in this section.

6.5.1 Limitations Heat Pump profile

To model the profile of an HP, several simplifications were made. Firstly, it was assumed
that all HPs in this model are fully electric, air-sourced, and modulating. In practice,
there are various types of HPs, such as hybrid HPs and groundwater HPs, each with
different efficiencies and use-cases. Additionally, while the model assumes modulating
HPs that can continuously adjust their power output to maintain a constant temperature,
many real-world HPs are on-off types, operating only at minimum and maximum power
levels.

Further simplifications were made by randomizing the R-values for a neighborhood
consisting of houses from the 1970s with different levels of insulation. For a more accurate
representation, the R-values of each house should be specifically defined and calculated
based on individual house properties, as explained in Appendix A.1. Typically, houses
with good insulation are more likely to adopt HPs, as they result in greater cost savings.
As well-insulated homes have lower heat losses, this will result in lower energy output of
the HPs.

The temperatures of the house and crawl space were also assumed to be constant at 19°C
and 12°C, respectively. In reality, these temperatures vary based on personal preferences
and, for the crawl space, based on seasonal temperatures, ground temperatures and heat
losses.

Lastly, the heat input from the sun was not considered, resulting in a higher energy
consumption profile than what would occur in reality. This omission affects both the
envelope temperature and the heat losses of the house. On the contrary, the model used
climate data from 2023, which was the hottest year ever recorded in the Netherlands
(Klimaatadaptatie, 2023). Selecting a different climate year with a colder winter would
therefore result in higher energy consumption for the HP.

6.5.2 Limitations Charging profile

To model the SOC of an EV, two simplifications were made. First, the battery size was
determined based on the longest charging sessions of each year, assuming a DOD of 80%.
This implies that each car’s SOC will drop to 20% at least once per year. Secondly, it
was assumed that all cars would achieve a final SOC of 100% in the reference scenario.
In reality, cars may charge for shorter periods, resulting in less than a full SOC.

When flexibility was applied a car could achieve a final SOC that is not 100%. This would
result in more charging for the next charging session to compensate for this loss. However,
this was not considered in the model, as the SOC starting values were predetermined,
and charging could also occur at different locations.
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Finally, all charging stations in this model had a maximum power of 11 kW, while many
home charging stations have a maximum power of 3.7 or 7.4 kW (ENGIE, nd). Because
of this the EVs might have caused higher peaks in consumption than in practise.

6.5.3 Limitations Transformer Load

To model the load on the transformer, the projected average adoption rates for the
Netherlands in 2030 were used. In practice, some neighborhoods will experience higher
adoption rates, leading to increased congestion. For example, an adoption rate of 21%
was used for HPs, reflecting the national average expected in 2030. However, some
neighborhoods may have district heating networks, resulting in few to no HPs, while
others may have significantly higher adoption rates. For more accurate results, using the
actual adoption rates of specific neighborhoods would provide a better understanding of
where congestion is likely to occur.

The modeled neighborhood consisted of 300 houses, with the transformer’s maximum
active load assumed to be 250 kW. Varying the number of houses or the maximum load
capacity will affect the overall congestion levels. Additionally, this model focused solely
on transformer congestion, neglecting transmission line losses and congestion, which
could further impact the results.

6.5.4 Limitations Flexibility

To model the flexibility of the HPs and EVs, technical constraints were neglected. HPs
have a constraint that they should not be turned on or off too frequently in a short
period, as this can cause short cycling and shorten compressor lifetime. Using a buffer
cylinder can minimize this issue, but this was not considered in this research (Magloff,
2024).

Charging of EVs cannot be fully turned on and off from 11 kW to 0 kW during flexibility
periods due to several technical and safety reasons. Completely stopping the charge can
lead to temperature fluctuations within the battery, which can affect its performance and
lifespan. Maintaining a minimal charging level can mitigate these issues, though this was
not considered in the model (Li et al., 2023). Ortiz et al. (2024) highlighted that new
advancements in thermal management strategies can potentially address these challenges.
Ignoring these technical constraints may overestimate the flexibility potential of HPs and
EVs.

6.5.5 Limitations Implicit and Explicit Flexibility

To correctly model the combination of implicit and explicit flexibility, a simplification was
made in the redistribution of heat pumps, leading to higher costs and energy consumption
than necessary. Due to implicit flexibility minimizing costs, the temperature constraint
of 18°C became a more significant limiting factor compared to the reference scenario,
where the temperature was assumed to be constant at 19°C. As a result, total congestion
increased significantly. When the temperature approached 18°C and explicit flexibility
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was applied, additional power consumption was needed to maintain the temperature
above 18°C, leading to new congestion during periods when the heat pump was not
consuming energy, compared to the scenario with only implicit flexibility. This resulted
in 94 hours of congestion.

To address this issue, pre-heating was modeled for more optimal results. In this scenario,
instead of restoring the temperature to its original level during redistribution, it was main-
tained within the minimum and maximum temperature bounds. Normally, redistributing
power would decrease energy consumption due to the absence of heat losses, however,
this function was now omitted, resulting in a higher overall temperature. This can be
seen in Figure 5.19b where the temperature now doesn’t reach its minimum temperature
constraint. Consequently, this approach did not reduce energy consumption and thus led
to increased costs, but it did reduce congestion, bringing the results closer to optimal
and resulting now in 0 hours of total congestion. To further enhance optimization, a new
optimization process should be conducted after applying explicit flexibility. However,
this step was not applied in the current model, resulting in higher overall costs than the
optimal solution.

6.6 Potential extension and future research

In this research, the analysis focuses on a single scenario using the average adoption
rates projected for 2030 in the Netherlands. For future research, it is recommended to
explore different years, various adoption rates, different price years, and diverse climate
conditions. Additionally, moving beyond the national average for the Netherlands to
examine neighborhood-specific adoption rates and transformer data would be beneficial.
This approach would help predict how congestion might increase over time and identify
the necessary adoption rates of flexibility to mitigate these issues. Moreover, the model
can be adapted for use in other countries if data from those regions are included. Such
insights could guide decisions on deferring investments in new grid infrastructure and
determining times for transformer replacements. It is also recommended to run the
model with multiple simulations instead of using a single seed for scenario comparisons,
enhancing the internal validity of the results.

For future extensions of the model, several additional applications could be incorporated
to provide a more accurate picture of congestion mitigation. These include batteries,
hybrid HPs, vehicle-to-grid technology, and AC cooling systems. The model could also be
adapted to explore other flexibility strategies such as real-time pricing, ancillary services,
and critical-peak pricing. Additionally, it is recommended to expand the focus beyond
transformer congestion to include transmission-line congestion and losses.
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7 Conclusion

This section addresses the research questions defined in Section 2.5 and provides corre-
sponding recommendations.

7.1 Answers sub-questions

First, the sub-question ”How can explicit flexibility systems for electric vehicles and heat
pumps be integrated effectively, while accounting for constraints like minimum driving
distance and temperature, to minimize their impact on the grid?” was explored.

The analysis showed a trend concerning the balance between flexibility provision and
user comfort. When more assets, such as EVs and HPs, are providing flexibility, the
initial effect is a decrease in comfort. This is due to the increased competition among
assets to redistribute flexibility, making it harder to shift a reduction in load forward to
meet desired comfort levels. This specifically results in reduced driving distance for EVs
and lower temperature comfort for HPs.

However, a turning point was observed. As more assets participate in providing flexibility,
grid congestion decreases. This reduction in congestion means that each asset has to
provide less flexibility. As a result, comfort levels begin to improve again.

The comfort constraints, of maintaining a minimum temperature and ensuring a minimum
final SOC, were the most limiting factors when closest to the desired temperature and
final SOC of 100%. When the comfort constraints were lowered more, the limitation in
providing flexibility was reduced.

The second sub-question explored was ”How do different combinations of explicit and
implicit flexibility incentives interact and complement each other in mitigating congestion
on LV networks?”

Implicit flexibility proved effective in providing flexibility up to a 20% participation
rate. However, beyond this point, increased participation led to greater congestion. In
contrast, explicit flexibility effectively sustained a decrease in congestion. Combining
implicit and explicit flexibility resulted in greater cost savings, but comfort levels were
lower compared to scenarios with only explicit flexibility. However, in all cases, comfort
losses were minimized due to the minimum comfort limits ensuring an acceptable level of
comfort.

EVs were found to be more effective in mitigating congestion compared to HPs. The
adoption of 50% or more explicit flexibility for EVs demonstrated that congestion could
be fully resolved. Comfort was also impacted less for EVs as in most cases a full final
SOC was still achieved. For HPs comfort is impacted more directly as in all cases the
temperature will be reduced when flexibility is applied.
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7.2 Recommendations

The sub-question ”What are the optimal setpoints and recommendations for implementing
a combination of flexibility incentives to effectively alleviate congestion on low voltage
networks while optimizing costs for both the network operator and residents?” will be
addressed in this section. Based on the results the following recommendations are
given:

• Implement ToU tariffs effectively.

ToU tariffs were found to be effective up to 20% participation. Beyond this point, the
effectiveness diminishes eventually resulting in increased congestion. It is recommended to
create a new incentive that can effectively mitigate congestion beyond this participation
threshold. This approach ensures that initial benefits are maximized and prepares for
continued effectiveness as participation grows.

• Facilitate asset communication.

To mitigate the rebound effect, which can occur when multiple assets shift their usage
simultaneously, assets providing flexibility must communicate with each other. Imple-
menting a communication protocol or system that allows assets to coordinate will lead
to more efficient network operation.

• Prioritize EV flexibility.

Prioritizing the flexibility of EV charging over HP flexibility is recommended. EV
flexibility has been found to be more effective in alleviating network congestion while
having a lesser impact on comfort. This prioritization can optimize network performance
and maintain higher levels of resident satisfaction.

• Mandate flexibility for social effectiveness.

From a social perspective, obliging flexibility participation will be the most effective
approach. By mandating certain levels of participation in flexibility, network operators
can ensure a consistent and reliable level of congestion mitigation. This approach also
minimizes the impact on individual comfort by distributing the flexibility requirement
across a larger number of assets, thereby reducing the amount of flexibility each asset
needs to provide.

• Quantify loss in comfort to ensure fair compensation.

It is important to quantify any potential loss in comfort experienced by residents due to
participation in flexibility programs. This quantification allows for fair compensation,
ensuring that residents are adequately compensated for any discomfort caused by partici-
pation. This can increase willingness to participate and maintain a positive relationship
between network operators and residents.

• Design price incentives aligned with LV congestion.
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By developing a price incentive structure that closely aligns with LV congestion, implicit
flexibility can be achieved more effectively. This approach results in better congestion
mitigation and delays the rebound effect. The pricing strategy should be transparent and
easy to understand, ensuring that residents can manage their electricity usage without
encountering unexpected costs.

7.3 Final conclusion

Finally, the main research question ”How can the integration of multiple explicit and
implicit flexibility incentives at the household level effectively mitigate congestion issues on
low-voltage networks while optimizing costs for both the network operator and residents?”
will be answered.

The integration of multiple explicit and implicit flexibility incentives at the household
level can effectively mitigate congestion problems on LV networks by using the strengths
of both types of flexibility. Implicit flexibility, driven by price signals from ToU tariffs
and the Day-ahead market, encourages households to shift their energy use to off-peak
times, helping to reduce congestion. This type of flexibility is shown effective up to a
20% participation rate and resulted in the highest costs savings. Beyond this point, using
implicit flexibility alone becomes less effective as it can create new peaks in demand as
more households shift their energy use to the same low-price periods.

Explicit flexibility is more effective at higher participation rates, as it allows for a sustained
reduction in congestion. It provides real-time adjustments to energy use during peak
periods, offering immediate relief to grid congestion.

Combining implicit flexibility with explicit flexibility not only reduces congestion but
also results in more cost savings for households. Ensuring resident comfort through
proper limits and compensation makes these flexibility programs more acceptable and
effective.

In short, using both explicit and implicit flexibility, supported by communication between
assets and well-designed financial incentives and comfort limits, can significantly reduce
congestion, lower costs for network operators, and reduce energy costs for residents,
creating a more efficient LV network system.

66



8 Acknowledgments

I am grateful to everyone who has helped me complete this thesis. I want to thank all my
Alliander colleagues for their support and guidance during this journey and for giving
me this opportunity. A special thanks to Hans Becker for his dedicated supervision at
Alliander. I also want to thank Dr. ir. Ioannis Lampropoulos and Hossein Nasrollahi for
their valuable feedback and guidance during my thesis.

67



References

Actieagenda Netcongestie Laagspanningsnetten (2024). Probleemanalyse Congestie in
het laagspanningsnet. Technical report.

Aghaei, J. and Alizadeh, M. I. (2013). Critical peak pricing with load control demand
response program in unit commitment problem. Iet Generation Transmission &
Distribution, 7(7):681–690.

Alliander (n.d.). Internal documents.

Barani, M., Backe, S., O’Reilly, R., and Del Granado, P. C. (2023). Residential demand
response in the European power system: No significant impact on capacity expansion
and cost savings. Sustainable Energy, Grids and Networks, page 101198.

BeXema (n.d.). Peak shaving.

Bons, P., Buatois, A., Ligthart, G., Geerts, F., Piersma, N., and Van Den Hoed, R.
(2020). Impact of Smart Charging for Consumers in a Real World Pilot. World Electric
Vehicle Journal, 11(1):21.

Brus, W., de Korte, F., and Schiphorst, C. (2023). Hybride Warmtepompen proof-of-
concept. Technical report.

CBS (2024). 3. De ontwikkeling van de prijs van energie.

Chakraborty, P., Parker, R., Hoque, T., Cruz, J., Du, L., Wang, S., and Bhunia, S.
(2022). Addressing the range anxiety of battery electric vehicles with charging en route.
Scientific reports, 12(1).

Chen, L. and Wu, Z. (2018). Study on the effects of EV charging to global load
characteristics via charging aggregators. Energy Procedia, 145:175–180.

Crozier, C., Morstyn, T., and McCulloch, M. (2020). The opportunity for smart charging
to mitigate the impact of electric vehicles on transmission and distribution systems.
Applied Energy, 268:114973.

Daina, N., Sivakumar, A., and Polak, J. (2017). Electric vehicle charging choices:
Modelling and implications for smart charging services. Transportation Research Part
C: Emerging Technologies, 81:36–56.

Damianakis, N., Mouli, G. R. C., Bauer, P., and Yu, Y. (2023). Assessing the grid
impact of electric vehicles, heat pumps & PV generation in Dutch LV distribution
grids. Applied Energy, 352:121878.

DNE Research (2021). Warmtepomp-Trendrapport. Technical report.

ElaadNL (2021). Elektrisch rijden in stroomversnelling. Technical report.

ElaadNL (n.d.). Low-voltage profiles generator. Accessed: 2024-05-27.

68



ENGIE (n.d.). Alles wat je moet weten over de 11 kW laadpaal — ENGIE.

Enrich, J., Li, R., Mizrahi, A., and Reguant, M. (2024). Measuring the impact of time-of-
use pricing on electricity consumption: Evidence from Spain. Journal of Environmental
Economics and Management, 123:102901.

ENTSO (2024). ENTSO-E Transparency Platform.

Faria, P. and Vale, Z. (2023). Demand response in smart grids. Energies, 16(2):863.

Flexpower (2022). Flexpower3: meer laden op een vol elektriciteitsnet. Technical report.
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Ortiz, Y., Arévalo, P., Peña, D., and Jurado, F. (2024). Recent Advances in Thermal
Management Strategies for Lithium-Ion Batteries: A Comprehensive review. Batteries,
10(3):83.

Rastgoo, S., Mahdavi, Z., Nasab, M. A., Zand, M., and Padmanaban, S. (2022). Using
an intelligent control method for electric vehicle charging in microgrids. World electric
vehicle journal, 13(12):222.

Refa, N., Hammer, D., Slobben, T., and ElaadNL (2023). Outlook Laadprofielen
Personenauto’s. Technical report.

Reis, I. F. G., Lopes, M. A. R., and Antunes, C. H. (2018). Energy Transactions Between
Energy Community Members: an Agent-Based Modeling Approach. 2018 International
Conference on Smart Energy Systems and Technologies (SEST).

Rodriguez, P. B., Van Den Akker, W. F., and Paterakis, N. G. (2022). A tariff structure for
reliability of power supply levels in congested low voltage networks. 2022 International
Conference on Smart Energy Systems and Technologies (SEST).

70



Ruhnau, O., Hirth, L., and Praktiknjo, A. (2019). Time series of heat demand and heat
pump efficiency for energy system modeling. Scientific data, 6(1).

Sadeghian, O., Oshnoei, A., Mohammadi-Ivatloo, B., Vahidinasab, V., and Guerrero,
J. M. (2022). A comprehensive review on electric vehicles smart charging: Solutions,
strategies, technologies, and challenges. Journal of Energy Storage, 54:105241.

SEDC (2016). Explicit and Implicit Demand-Side Flexibility. Technical report.

Shi, Z., Gu, T., Van Den Akker, W., Brus, W., Van Der Molen, A., and Morren, J.
(2022). Towards congestion management in distribution networks: A Dutch case study
on increasing heat pump hosting capacity. IEEE.
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Vellei, M., Martinez, S., and Dréau, J. L. (2021). Agent-based stochastic model of
thermostat adjustments: A demand response application. Energy and buildings,
238:110846.

Verzijlbergh, R., De Vries, L., and Lukszo, Z. (2014). Renewable energy sources and
responsive demand. Do we need congestion management in the distribution grid? IEEE
Transactions on Power Systems, 29(5):2119–2128.

71



VREG (2022). Flexibiliteit.

Wang, Y. and Li, L. (2016). Critical peak electricity pricing for sustainable manufacturing:
Modeling and case studies. Applied Energy, 175:40–53.

Wesseh, P. K. and Lin, B. (2022). A time-of-use pricing model of the electricity market
considering system flexibility. Energy Reports, 8:1457–1470.

WHO (2018). Report of the systematic review on the effect of indoor cold on health.
Technical report, Geneva, ch.

Wilensky, U. and Rand, W. (2015). An Introduction to Agent-Based Modeling: Modeling
Natural, Social, and Engineered Complex Systems with NetLogo.

Yang, L., Dong, C., Wan, C., and Ng, C. T. (2013). Electricity time-of-use tariff with
consumer behavior consideration. International Journal of Production Economics,
146(2):402–410.

Yılmaz, S., Chanez, C., Cuony, P., and Patel, M. K. (2022). Analysing utility-based direct
load control programmes for heat pumps and electric vehicles considering customer
segmentation. Energy Policy, 164:112900.

Zaidi, B. H. and Hong, S. H. (2017). Combinatorial double auctions for multiple microgrid
trading. Electrical Engineering, 100(2):1069–1083.

Zarnikau, J., Zhu, S., Russell, R., Holloway, M. L., and Dittmer, M. (2015). How Will
Tomorrow’s Residential Energy Consumers Respond to Price Signals? Insights from a
Texas Pricing Experiment. The Electricity Journal, 28(7):57–71.

72



A Appendix A

A.1 Equations thermal resistance

This subsection describes how thermal resistance Rcond, Rfloor and Rvent+inf can be calcu-
lated and is based on Koene et al. (2022) and Koene and Eslami-Mossallam (2023).

Rcond [W/K] represents the thermal resistance of the floor, walls and windows of a
building and can be calculated with the corresponding RC-values [m

2*K/W] and area’s
(A) [m2] using Equation A.1.

Rcond =
1

1
Rc,roof·Aroof

+ 1
Rc,wall·Awall

+ 1
Rc,glass·Aglass

(A.1)

Similarly, thermal resistance Rfloor can be calculated using Equation A.2

Rfloor =
Rc,floor

Afloor
(A.2)

For ventilation, a distinction can be made between mechanical ventilation (A), natural
ventilation (B), and a balanced ventilation system (C) (Koene et al., 2022). The thermal
resistance of ventilation and infiltration Rvent+inf [W/K] can be calculated using the
following Equations:

Hvent+inf(A) =
Cp · (0.383 · qv10 + 91)

3600
(A.3)

Hvent+inf(B) =
Cp · (0.349 · qv10 + 53)

3600
(A.4)

Hvent+inf(C) =
Cp · (0.349 · qv10 + 21)

3600
(A.5)

Rvent+inf =
1

Hvent+inf
(A.6)

qv10 [l/s] is the infiltration flow rate during a pressure difference of 10 Pa and Cp is the
heat capacity of air (1230 J/m3K).
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