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Not Too Local type inference

by Maksymilian Demitraszek

The type inference in statically typed, object-oriented languages is local because it
needs to know the type of an object when a method is called or a property accessed
on it, as multiple classes can implement the method/parameter with the same name.
This is necessary to determine the type of the method/parameter. We introduce a
language Inferable Featherweight Java (IFJ) which models statically typed, object-
oriented programs with type information inferred partially. We define the type in-
ference progression property for IFJ programs. If a program holds this property it
has sufficient information inferred, so the type inference algorithm can determine all
types of methods/parameters. We prove that type variables substituting phantom
type parameters and type parameters used only on contravariant positions do not
have to be inferred for a program to hold this property. Furthermore, we use this
result to extend the reference type inference algorithm based on the programming
language Kotlin, so it does not fail if unable to infer certain type variables based only
on the local context. We consolidate those results as a feature proposal for the pro-
gramming language Kotlin and integrate it partially into Kotlin’s compiler. The new
type inference algorithm allows certain type annotations to be left out in programs,
most notably when working with algebraic data types.
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Chapter 1

Introduction

The most popular statically typed programming languages these days support type
inference. It is a huge convenience for the programmer as it allows the compiler
to automatically deduce type information, allowing the programmer to skip the ex-
plicit type annotations. It results in succinct code with less boilerplate. How power-
ful the type inference algorithm is and what annotations the programmer can omit
may differ between languages.

Haskell is a functional programming language based on the Hindley-Milner type
system. Because of that Haskell’s compiler can infer types considering the global
context. Introducing more advanced features, like arbitrary-rank types, makes type
inference harder (Jones et al., 2007), and manual annotations from the programmer
are sometimes required.

Kotlin and Scala are statically typed, object-oriented languages based on the Java
virtual machine. Kotlin and Scala rely only on the local type inference where vari-
ables are inferred considering only a limited, local context. The compilers can infer
the type information for the simple cases but often the programmer has to provide
the type annotations manually. This limitation is dictated by several factors originat-
ing from the fact that those languages are object-oriented. The major factor is that
object-oriented languages generally include subtyping, and with its presence type
inference algorithms have huge time complexity (Hoang and Mitchell, 1995).

An example situation in Kotlin, when type inference based on a limited context
is not sufficient, is when the programmer uses a common pattern of Algebraic Data
Types (ADTs). The language does not support algebraic data types natively, but the
programmer can emulate them using classes to emulate product types and inher-
itance hierarchies to emulate sum types. As an example, Boolean ADT could be
defined as:

class Boolean
class True: Boolean
class False: Boolean

Classes True and False inherit from the class Boolean, which implies that both
are subtypes of the class Boolean. It means that both can be used in places when the
type Boolean is required.

Such a definition exposes a problem of local type inference when dealing with
mutable variables.
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var x = True() // infers type True for x
x = False() // type checking fails, False is not a subtype of True

The code presented above will not compile, as the type of x will be inferred as True,
not Boolean. It is because the compiler infers the type of the variable considering
only a local context, in this case, the context of a single statement. To fix this, the
programmer has to provide an explicit type annotation Boolean in the first state-
ment, as presented below.

var x: Boolean = True() // infers type True for x
x = False() // type checking fails, False is not a subtype of True

This code compiles. The programmer can work around this annotation requirement
by providing helper functions to construct types, which would upcast the type to
the supertype Boolean.

fun true(): Boolean { return True() }
fun false(): Boolean { return False() }
var x = true() // infers type Boolean for x
x = false() // type checking passes

This pattern is commonly used by Kotlin programmers and the native implementa-
tion of the sum types in Scala desugars to a very similar code.

It works for non-generic ADTs, but when the programmer would like to create
a sum type with generic parameters, this workaround would be no longer viable.
Consider an Option type.

class Option[T]
class Some[T](value: T): Option[T]
class None[T](): Option[T]
fun some[T](x: T): Option[T] { return Some(x) }
fun none[T](): Option[T] { return None() }

This type is either a value or nothing. The program below, that uses this type, fails.

// fails, cannot infer the type of the parameter T.
var x = none()
// this has information sufficient to infer the type of the type parameter T
x = some(5)

The compiler cannot infer the type of the parameter T considering only the context
of the first statement. There is not enough type information. The programmer has to
either manually provide the type argument to none:

var x = none<Int>()
x = some(5)

Or manually annotate the declaration of the variable x with Option<Int>:

var x: Option<Int> = none()
x = some(5)

to make this example work.
However, the information is there, if we have declared the type with a default

value of the type Some, no annotation would be required.
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// Infers the type of x as Option<Int>
var x = some(5)
x = none()

The example above works in Kotlin.

The problem with type inference for ADTs is the motivating example for our
work. We explain the unique problems of type inference for object-oriented lan-
guages. We explain how those problems rationalize limitations in the inference al-
gorithm. Later we propose a solution to the presented ADTs problem. Our contri-
butions are:

1. We formally define a small language, Inferable Featherweight Java, which rep-
resents statically typed, object-oriented programs with type information in-
ferred partially.

2. We formalize a reference type inference algorithm for Inferable Featherweight
Java, based on the existing type inference algorithm in Kotlin.

3. We formalize a property - type inference progression. We prove that two sub-
sets of Inferable Featherweight Java hold this property.

4. We extend the reference inference algorithm, using the type inference progres-
sion theory. We refer to the new algorithm as Not Too Local Type inference.
The new algorithm is more complete than the original one, can type more pro-
grams, including the ADTs example.

5. We encapsulate the research results as a proposal for a feature of the Kotlin
programming language. We partially implement it into the Kotlin compiler.

6. We provide a vast list of possible future work based on the foundations we
laid.
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Chapter 2

Literature Review

In this chapter we introduce the concepts which we refer to in the later chapters. We
also discuss the related work.

2.1 The programming language Kotlin

Kotlin is an object-oriented, statically typed programming language targeting Java
Virtual Machine (JVM). It is a well-established language used in different domains,
such as mobile and web programming. In this section, we give a brief overview of
some of the language’s interesting features.

2.1.1 The overview

Kotlin supports class inheritance and interfaces with subtyping. Subtyping is a form
of polymorphism that allows the use of the value of a particular type as an instance
of its supertype. If A is a subtype of B, we write it as A <: B. Specifically, it means
that one can use the type A in a context where an expression of type B is expected
(Pierce, 2002). Inheritance hierarchies of classes and interfaces imply subtyping re-
lations between types. A class can inherit only from one class but can implement
multiple interfaces, as presented in fig. 2.1. In addition to classes, the programmer
can also define standalone functions which are not class members.

Additionally, Kotlin supports parametric polymorphism. Parametric polymor-
phism allows a single piece of code to be typed "generically," the programmer can
use type parameters instead of actual types. Type parameters, later, can be instanti-
ated with specific types (Pierce, 2002).

interface A
interface B
open class C : A, B
class D : C

FIGURE 2.1: Inheritance in Kotlin
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2.1.2 Method overloading

In Kotlin, multiple functions/methods can be defined with the same name but differ-
ent type signatures and implementations. The compiler selects the most appropriate
based on the type information it has.

class Containter {
// ...
fun add(val: Int) {

// ...
}
fun add(val: String) {

// ...
}

}

For the example above, if the programmer calls the method add with an argument
of type Int, the first implementation is executed. However, if they call the method
with an argument that is a subtype of Int and String, then it would be ambiguous,
and the compiler would return an error.

Kotlin’s compiler can sometimes resolve such conflicts and pick the most appro-
priate one from multiple candidates. The interested reader can read further on that
in the language specification (Kotlin language specification n.d.).

Because the method/function is selected based on the type information, the in-
ference algorithm and overloading cut across. The impact of the type inference al-
gorithm changes on the overloading is discussed in the chapter 7.

2.1.3 Mixed-site variance

Variance is the relation between types implied by the relation between its param-
eters. It is present in languages that support subtyping and parametric polymor-
phism (Igarashi and Viroli, 2002). The type can be invariant, covariant, contravari-
ant, or bivariant on a type parameter.

1. The type A[U] is covariant on the type parameter U when, if X <: Y, then
A[X] <: A[Y].

2. The type A[U] is contravariant on the type parameter U when, if X <: Y, then
A[Y] <: A[X].

3. The type A[U] is bivariant on the type parameter U when, if X <: Y, then
A[X] <: A[Y] and A[Y] <: A[X].

4. If neither of those implications is true, we say the type is invariant on the type
parameter U.

Another important characteristic of the variance is how it is integrated into the
language from the programmer’s perspective.

The authors of Mixed-site variance (Tate, 2013) propose and integrate the vari-
ants into the programming language Kotlin. They base their work on the limitations
and problems in the previous approaches to the issue in Java, C#, and Scala.
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class A<L, R> {}

fun main() {
// The type of A() is invariant on L and R
// The type of sth is covariant on L, invariant on R
val sth: A<covariant Int, Int> = A()

}

FIGURE 2.2: Use-site variance

class A[covariant L, R] {}

fun main() {
// The type of A() is covariant on L, invariant on R
// The type of sth is covariant on L, invariant on R
val sth = A<Int, Int>()

}

FIGURE 2.3: Declaration-site variance

Java implements the variance annotations use-site through wildcards fig. 2.2. To
avoid introducing syntaxes of multiple languages, we present those different ideas
in Kotlin-like pseudocode, using covariant and contravariant annotations. Vari-
ance annotations being use-site means that the programmer provides the variance
annotation in the place where they use the type. This approach is very powerful
and expressive. However, it often leads to unnecessary complexity and confusing
behavior.

Based on this experience, C# and Scala adopted a more restrictive approach,
declaration-site variance annotations. Declaration-site variance annotations mean
that the programmer has to provide the variance annotations for the parameters in
the declaration of the type fig. 2.3.

The authors of Mixed-site variance found this approach too restrictive, so they
proposed an intermediary approach between the previous two. The mixed-site vari-
ance allows the programmer to provide the variance annotations in the declarations.
However, those can be overridden use-site, as long as it is consistent with the de-
clared variance fig. 2.4.

class A<L, contravariant R> {}

fun main() {
// The type of A() is invariant on L, contravariant on R
// The type of sth is covariant on L, invariant on R
val sth: A<covariant Int, Int> = A() // A is

}

FIGURE 2.4: Mixed-site variance in Kotlin
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In Kotlin, the programmer uses the keyword out to mark a covariant type param-
eter and in to mark a contravariant type parameter. Variance on type parameters in
Kotlin imposes certain restrictions. Covariance, represented with the keyword out,
restricts the programmer to use the type parameter only on output positions. This
restriction means the programmer can only use those, for example, as a type of read-
only value or a type returned by a function. Contravariance, represented with the
keyword in, restricts the programmer to use type parameter only on input positions.
This restriction means that it can be used, for example, as a function argument type
(Kotlin language specification n.d.).

class A<L, in R> {}

fun main() {
// The type of A() is invariant on L, contravariant on R
// The type of sth is covariant on L, invariant on R
val sth: A<out Int, Int> = A() // A is

}

2.1.4 Type inference

Type inference in Kotlin is based on the Local Type Inference (Dunfield and Kr-
ishnaswami, 2021; Odersky, Zenger, and Zenger, 2001; Pierce and Turner, 2000).
Kotlin’s type inference algorithm uses constraint sets. Mapping the algorithm onto
the idea of Local Type Inference, all inference rules in the algorithm are type syn-
thesis rules, but additionally to the type, a set of constraints is synthesized. The
algorithm performs type-checking as a part of constraint solving. Locality comes
from the fact that it does not solve the constraint set for the whole program, but only
for local contexts e.g. a single statement.

There might be multiple solutions of a constraint system. In Kotlin’s compiler, to
help disambiguate it and guide the constraint solver, the type constraint set might
include push-up ↑ T and push-down ↓ T constraints. Those imply that the resolved
type should be respectively largest and smallest, according to the subtyping relation
and complying with type constraints.

2.1.5 Smart casts

Kotlin’s inference algorithm can derive some additional, flow-specific type informa-
tion. It allows the programmer to avoid explicit type casts when the compiler can
guarantee, based on the data-flow information, that a value conforms to a specific
type.

class Boolean
class True: Boolean
class False: Boolean

val x: Boolean = True
if (x is True) { // in this scope x is assumed to be true

val z: True = x // type checking passes
}
if (x is False) { // in this scope x is assumed to be true
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val z: False = x // type checking passes
}

In this case, the compiler assumes the type of x is True when analyzing the state-
ments inside the if-clause. The programmer can use this mechanism to decompose
ADTs.

2.1.6 Builder-style inference

We have mentioned before that the type inference in Kotlin is local. We have also
introduced local inference shortcomings regarding ADTs. A similar problem with
the local type inference occurs when the programmer tries to build a list, like in the
code below.

var list = List()
list.add(1)
list.add(2)

Such code does not compile and requires an explicit type annotation in the first state-
ment. It is because the type of list is List<T>, and in the first statement there is no
sufficient type information to infer the type of T. The information that the type is Int
is present in the second and third statements, but the local type inference in Kotlin
is not able to infer it, because it only considers the context of a single statement.

Kotlin provides a workaround known as type-safe builders. In general, type-
safe builders are a very flexible feature that the programmer can use to create semi-
declarative domain-specific languages directly in Kotlin (Kotlin documentation n.d.).
Due to their flexibility and complexity, we will skip an introduction of all the possi-
bilities they enable and focus only on a short overview of the part relevant to our list
example. With a type-safe list builder, the programmer could rewrite the previous
code as

var list = buildList {
this.add(1)
this.add(2)

}

Kotlin can infer types for such code. Let’s first decode this example a bit, before we
explain how exactly it works. If we look at the definition of buildList, it is defined
as

inline fun <E> buildList(
builderAction: MutableList<E>.() -> Unit

): List<E> {
var list = mutableListOf<E>()
builderAction(list)
return list

}

It is just a higher-order function that takes a function as an argument. The func-
tion builderAction takes a MutableList<E> as a receiver argument. Receiver argu-
ment is just an argument that binds to this keyword. Returned Unit type is a special
type, which can be interpreted as it is lambda does return nothing.
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Kotlin supports lambda expressions, the programmer can declare one as { a:
Int , b: Int -> a + b }. So, the code wrapped in the curly braces we pass as an
argument in the example is just a lambda expression without any arguments.

Coming back to the original question, why does the type inference for such code
work? The statement does not have sufficient information to infer the type param-
eter of List. Kotlin can, in this case, infer the type parameter of lambda, based on
the lambda’s body. It is unusual because we infer a generic type parameter of the
function based on its body, which is supposed to be generic over this argument. It
makes sense only in the context of lambda functions. It is known as builder-style
inference. It only applies to type-safe builders. Interesting to note, the code below
also would compile.

var list = buildList {
this.add(1)
this.add("example")

}

The builder inference resolves the type parameter based on the whole body of a
lambda. It builds a shared constraint system. In this case, the type parameter is
resolved to the least upper bound of Int and String (Kotlin language specification
n.d.).

2.1.7 Algebraic Data Types

In this section, we discuss how programmers usually emulate the Algebraic Data
Types in Kotlin. The Option type presented in the chapter 1 is a simplification. In
Kotlin it usually would be represented as:

sealed class Option<out T> {}
class None: Option<Nothing>() {}
class Some<T>(val value: T): Option<T>() {}

fun none(): Option<Nothing> { return None() }
fun <T>some(value: T): Option<T> { return Some(value) }

First, the sum type is represented as sealed class. It means that the class cannot
be instantiated and all of its subclasses have to be defined in the scope of the same
library.

Another important difference is the covariance annotation out, and the fact that
the definition does not include a type parameter for none and instead uses the Nothing
type as a placeholder. It uses Nothing, because it is a subtype of every type, com-
bined with the covariance it implies that None is a subtype of every instance of
Option. Let’s go over a few examples.

var x: Option<Int> = None()

It works because None<Nothing> <: Option<Nothing> and Option<Nothing> <:
Option<Int> because of the covariance.
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var x = none()

It works because none has no type parameters to infer.

var x = none() // x initialized as Option<Nothing>
x = some(1) // Option<Int> is not a subtype of Option<Nothing>

Unfortunately, the case from the chapter 1 still fails. The type of the variable is ini-
tialized as Option<Nothing>. Inference fails for the second statement as Option<Int>
is not a subtype of Option<Nothing>, it is the other way around.

We see that this approach improves the situation slightly but does not solve the
problem completely. It is also very complicated and confusing for programmers.

2.1.8 Language specification

Kotlin does not yet have a formalized core calculus akin to Featherweight Java (Igarashi,
Pierce, and Wadler, 2001) or Featherweight Scala (Cremet et al., 2006). Strict formal-
ization of the language that considers its distinctive features would require signifi-
cant work and is outside the scope of this paper. Kotlin has language specification
(Kotlin language specification n.d.), but it is more of a detailed overview of the lan-
guage than a formal specification.

2.2 Type parameters categorizations and phantom type pa-
rameters

Type parameters were previously categorized to utilize properties of the particular
categories.

In Safe zero-cost coercions for Haskell (Breitner et al., 2014), authors provide a
method to automatically infer which types in Haskell can coerce into each other
without breaking the soundness of the type system. As a foundation of the work
authors present a framework of roles for type parameters assigning them into nom-
inal, representational, and phantom roles. Their work is based on Generative type
abstraction and type-level computation (Weirich et al., 2011).

Phantom type parameters are a special category of type parameters that are not
used anywhere in a declaration of the type except as arguments to phantom type
parameters for other type constructors. Those have various interesting applications.
Phantom type parameters have been used to build type-safe Domain Specific Lan-
guages in Haskell (Leijen and Meijer, 2000) or to provide an additional type safety
in Scala (Stucki, Biboudis, and Odersky, 2017).

2.3 Type inference in presence of subtyping

Type inference is a process of automatically deducing type annotations from the
context. In this section, we review the development of the type inference algorithms,
focusing on the type systems with the notion of subtyping.
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2.3.1 Hindley-Milner type inference

Often discussed type inference algorithm is Algorithm W for the Hindley-Milner
type system (Milner, Morris, and Newey, 1975). Languages with type systems based
on the extended Hindley-Milner type system, like Haskell or Rust, enjoy a more
complete type inference algorithm. This comes with a set of limitations. One of
them is the support of subtyping, which those languages have very restricted.

There have been approaches to extend the Hindley-Milner type system with the
notion of subtyping. One of the approaches was extending the types with an asso-
ciated set of constraints (Odersky, Sulzmann, and Wehr, 1999; Pottier, 1996, 1998;
Trifonov and Smith, 1996). The produced constraint sets in this approach tend to
be colossal. The papers in this line of work often contemplate solutions to simplify
those constraint sets.

Constraint-based type inference utility is not limited to the type systems with
the notion of subtyping. (Heeren, Hage, and Swierstra, 2003) used a constraint-
based type inference in the Haskell compiler Helium, to improve the error messages
provided to the programmer. (Vytiniotis et al., 2011) used constraint-based approach
to extend the type inference with support for GADTs, type classes, and type families.

A more recent approach to integrate subtyping into the Hindley-Milner type sys-
tem is Polymorphism, subtyping, and type inference in MLsub (Dolan and Mycroft,
2017). The authors present a type system with parametric polymorphism and alge-
braic subtyping. They present an inference algorithm for the type system. Addition-
ally, the authors map the type simplification problem into automata theory, allowing
the usage of any algorithm for automata simplification to simplify the types. The
work presented in the paper was heavily theoretical. To encourage the adoption the
authors of The Simple Essence of Algebraic Subtyping (Parreaux, 2020) provided a
more accessible explanation of the techniques, not relying on the complex concepts
from abstract algebra.

Another part of the work to encourage the adoption of this type system is to
improve the error messages in the inference algorithm. The authors of Getting into
the Flow (Bhanuka et al., 2023) introduce a technique to improve the error messages
in the inference algorithm for the type system with algebraic subtyping. The au-
thors take inspiration from the constraint-based inference algorithms with a notion
of subtyping.

2.3.2 Bidierctional type inference

Type inference for F≤, the system F with subtyping and parametric polymorphism
had been researched, but it did not result in any real-life language applications.

The breakthrough was Local Type Inference by Pierce and Turner (Pierce and
Turner, 2000). The authors identified that, in practice, there is no need for a complete
type inference algorithm. Type annotations in function signatures serve as a source
of documentation. On the other hand, there are certain places in which manual type
annotations are the cause of most of the overall inconvenience, namely local vari-
ables declarations, anonymous function arguments, and type arguments provided
to functions. The authors propose two kinds of inference rules, type synthesis (infer-
ence) and type checking. They combine type propagation with constraint solving to
infer the type parameters for function calls. This leads to an algorithm which, even
though, is not complete, is very comfortable to work with in practice, which authors
prove in a quantitative study.
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Local Type Inference has been developed further in Colored Local Type Inference
(Odersky, Zenger, and Zenger, 2001). Contrary to the previous work, the authors
propose type inference rules where the type does not synthesize/check as a whole,
instead different parts of the type can either synthesize or check. The authors mark if
a part of a type synthesizes or checks using colors, which is the origin of the paper’s
title.

(Jones et al., 2007) use bidirectional type inference ideas to improve the type in-
ference algorithm in Haskell to support arbitrary-rank types.

The idea of bidirectional typing and the past research on it has been recently sum-
marized in (Dunfield and Krishnaswami, 2021). The idea of bidirectional typing and
type information propagation influenced the design of many modern programming
languages including Scala and Kotlin.

2.4 Weak type variables

The programming language OCaml introduces a concept of weak type variables
(OCaml Weak Type Variables n.d.). At first glance, those might seem related to the
problem of ADTs described in the introduction. In OCaml, the programmer can en-
counter weak type variables, among others, when initializing algebraic types under
mutable references. In the example below the type None has a generic type parameter
but it is not able to infer it from the constructor.

let x = ref None ;;
(* val x : '_weak1 option ref = {contents = None} *)
x:= Some 1 ;;
(* val x : int option ref = {contents = Some 1} *)

This compiles, first x is initialized with generic weak type variable ’_weak1. Then
this type variable is fixed greedily when the reference is mutated. That is the differ-
ence between weak and normal type variables, as a normal type variable is not fixed
when the value is applied, it remains generalized.

This concept was introduced in Relaxing the Value Restriction (Garrigue, 2004).
However, the problem the authors deal with is extending the type system, not the
type inference algorithm. They extend the type system to relax the value restric-
tion, without breaking the soundness property. Value restriction is a solution to the
problem that is introduced when adding mutable references to a language. Mutable
reference cannot hold a generalized list as it would mean anything could be written
into it, even though the type would remain generalized. Weak type variables are in
a way, externally exposed inference variables, which are greedily fixed. (Garrigue,
2004) achieve it by proving that the bottom type (the subtype of every type) on co-
variant positions, can be recovered into a type variable without compromising the
soundness of the type system.

Because of that, even though it at first sight might look like a similar problem
to ours, it is not. The Kotlin’s type system is, by design, different. It does not al-
low generic types of variables at all. However, interesting to note that (Garrigue,
2004), akin to us, exploits properties of specific type parameters and serves us as an
inspiration for our ideas.

Worth noting is that further in this paper we use the name type variable for a
slightly different concept. It is not the same thing as in this section, those should not
be confused.
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Chapter 3

Inferable Featherweight Java

In this chapter, we introduce a small language that we use throughout the whole
thesis. The language is heavily influenced by Generic Featherweight Java (GFJ)
(Igarashi, Pierce, and Wadler, 2001), which is Featherweight Java extended with
parametric polymorphism. Our language is also influenced by Inherently-typed
Featherweight Java (Feitosa et al., 2019), where the program contains the set of pre-
defined classes (a class table), which are assumed to be correct by definition. This
work introduces the novel concept of type variables included in programs explicitly.
The purpose of the language is the type inference algorithms analysis, which is why
we refer to our language as Inferable Featherweight Java (IFJ).

Our language is a somewhat restricted version of GFJ to the set of features that
concern us, then extended with imperative programs and explicit type variables. We
introduce a new language instead of using GFJ for two main reasons:

• The GFJ does not include imperative programs. In GFJ a body of a method is
a single expression.

• Our language makes it much easier to formalize our ideas as we are not con-
cerned with the language’s type system, semantics, or program’s well-formedness.
Additionally, decoupling from elements we do not rely on makes our results
much more general.

3.1 The overview

Every program in IFJ consists of two parts, declarations fig. 3.1 and a list of state-
ments fig. 3.2. The declarations part consists of definitions of classes. Those describe
all classes available in the scope of the program. We do not define the semantics of
the language, it is designed to analyze the type inference algorithms, thus we are
only interested in types. However, for a better intuitive understanding, the reader
can imagine semantics being very similar to any existing, statically typed, object-
oriented language. Another consequence of the fact that we are only interested in
types is that declarations of classes do not include the method bodies, only the sig-
natures.

All the classes from the declarations part are available in the scope of the list of
statements. Here is an example program in IFJ.

// Declarations
class Any {}



Chapter 3. Inferable Featherweight Java 14

class Pair: Any {
first: Any
second: Any

Pair(first: Any, second: Any) {}

fun get_first(): Any {}
fun get_second(): Any {}

}

class Elem: Any {}

// Statements
var x = Pair(Pair(Elem(), Elem()), Elem())
return x.get_first()

Classes can inherit from each other. If a class inherits from another class it means
that it acquires all the properties and methods of the class it inherits from. Every
class inherits from zero or one other class. In the example above classes Pair and
Elem inherit from the class Any.

Classes inheritance hierarchies imply subtyping relations between their corre-
sponding types. If a class inherits from another class, then it is a subtype of this
class. A subtype can be used in places where its supertype is required. In the exam-
ple above types Pair and Elem are subtypes of the type Any.

If a class implements the same parameter or method as its parent, the parent’s pa-
rameter or method is overridden. To override a property its type has to be a subtype
of the corresponding parent’s property type. To override a method its arguments
have to be supertypes of the corresponding parent’s method arguments types. Its
return type has to be a subtype of the corresponding parent’s method return type.

In the second statement, the method get_first is called on the Pair object. We
refer to the expression on which a method is called, or a property accessed as receiver.
In the second statement, of the example above, x is the receiver expression, and Pair
is the type of the receiver.

IFJ supports parametric polymorphism. When defining a class or a class’s method,
type parameters can be introduced and used instead of specific types. Those can
later be instantiated with concrete types. A type representing pairs can be imple-
mented using parametric polymorphism, as presented in the example below.

// Declarations
class Pair[L, R] {

first: L
second: R

Pair(first: L, second: R) {}

fun get_first(): L {}
fun get_second(): R {}

}



Chapter 3. Inferable Featherweight Java 15

class Elem {}

// Statements
var x = Pair[Pair[Elem,Elem], Elem](Pair[Elem, Elem](Elem(), Elem()), Elem())
return x.get_first()

As we see in the example above, in IFJ type arguments in the constructor and
method calls have to be provided explicitly.

3.2 Type variables

In the previous section, we mentioned that type arguments in the constructor and
method calls have to be provided explicitly. Though, the language purpose is to
analyze the type inference, hence we need to make it possible to omit explicit type
parameters, so the inference algorithm can infer them. That is why explicit type
variables are introduced. A type variables are different from type parameters. Type
parameters appear only in the declarations part, and represent any type. Type vari-
ables, on the other hand, can only be used in the method and constructor calls in the
statements part of the program. Type variable is a specific, fixed type, which is just
unknown. Type variables are akin to unification variables in Algorithm W.

The goal of the type inference, which is described later, in the chapter 4, is to
replace all type variables in an IFJ program with concrete types, in a way that results
in a sound program. We assume that every type variable in the statements part is
unique for a single program.

If we would like the type arguments to be inferred by the inference algorithm,
the Pair constructor from the previous section could be reformulated as:

var x = Pair[α0, α1](Pair[α2, α3](Elem(), Elem()), Elem())

For a type used in a statement, to substitute a type parameter, we refer to as a
type argument. In the example above type arguments are α0, α1, α2, α3.

Other papers discussing local type inference algorithms (Odersky, Zenger, and
Zenger, 2001; Pierce and Turner, 2000) rely on two languages, external and internal,
where in the external one, type arguments can be omitted. The type inference is a
process of mapping the external language to the internal one. We diverge from this
model and make type variables explicit because it allows us to represent partially
inferred programs, which proves itself useful in further sections. It captures the
type inference as a process, with programs with more and less information inferred,
instead of just two states, not inferred and inferred.

3.3 IFJ formulation

We have introduced the language on a high level, in this section we provide a for-
malization of the previously introduced concepts. In the whole work, we often use
x shorthand of a sequence x1, . . . , xn, where x can be replaced with any object.
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Cld ::= class C[X] : ρ { p: τ Cod Md } Class Declaration

Cldni ::= class C[X] { p: τ Cod Md } Class Declaration Without Inheritance

Cod ::= C( p: τ) Constructor Declaration

Md ::= fun [X] m(a: τ ): τ Method Declaration

FIGURE 3.1: Class declaration

3.3.1 Declarations

The declarations part is a set of declared classes fig. 3.1. Each class consists of zero
or more properties with explicit type annotations. A class contains a single construc-
tor with arguments equal to the class’s properties. It also consists of zero or more
methods with explicit type signatures. Each class has an arbitrary number (greater
or equal to zero) of generic type parameters. Each method also has an arbitrary
number (greater or equal to zero) of generic type parameters. Method bodies are not
included in the language. In a well-formed program, if a class is inherited from, then
it is declared. Class declarations do not contain type variables in the type signatures.

3.3.2 Statements

A statement fig. 3.2 is either a variable declaration with or without a type annotation,
a variable assignment, or a return statement. Variable declaration and assignment
statements have an expression whose value binds to the variable. An expression fig.
3.3 is either a property access, a variable access, a method, or a constructor call. If
there is a constructor call in the program, then the corresponding class declaration
exists. Method and constructor calls require providing type parameters explicitly,
though type variables can be used there. Type parameters cannot be used in the
statements part of the program. Type variables cannot be used in the variable dec-
laration’s explicit type annotation. Every program also includes an expected return
type which does not contain type variables or parameters.

3.3.3 Types

Type is either a type parameter, type variable, or class type fig. 3.4. If a type contains
type variables we refer to it as a partially inferred type. We refer to a type without
type variables as a fully inferred type. If type A[] is a subtype of the type B[], we
write it as A[] <: B[]. We mentioned in the first section that subtyping relations are
implied by inheritance. However, this is only specified to help the reader build an
intuitive understanding. We do not rely on any semantics of subtyping relation in
this work. Actually, we do not rely on the subtyping relation at all, we just rely on
some relation that the inference algorithm uses to represent the type constraints. We
refer further to the subtyping relation <:, though keep in mind it can be substituted
with another relation.

3.3.4 Helper functions

We also introduce a set of utility functions that are used in the later chapters.
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Body ::= acc = e; Body Assignment
| var v : τ = e; Body Declaration with annotation
| var v = e ; Body Declaration
| return e Method return

acc ::= v.acc
| v

FIGURE 3.2: Statements

e ::= e.m[τ⋄](e) Method call
| e.p Parameter access
| new C[τ⋄](e) Constructor call
| v Variable access

FIGURE 3.3: Ex-
pressions

τ, γ, υ ::= X Type parameter
| ρ Class type

ρ ::= C[τ] Class type

τ⋄, γ⋄, υ⋄ ::= α Type variable
| ρ⋄ Partial class type

ρ⋄ ::= C[τ⋄] Paritial class type

FIGURE 3.4: Types

1. TV : τ → Set[α] - returns all type variables in the given type, including type
variables in the nested types.

2. type_params : C → X - returns the list of the type parameters of the given class

3. prop_type : C, p → τ - returns the type of the given property of the given class

4. prop_types : C → τ - returns the list of the types of the type properties of the
given class

5. method_type : C, m → X, τ, τ - returns the signature of the given method. It
returns respectively: type parameters, type arguments, and return type.

6. return_type : () → τ - returns the return type of the program

3.3.5 Substitutions

Substitution traverses a type or an expression recursively replacing types with de-
fined in the substitution, corresponding types. We represent a substitution as σ and
the substitution application as σe. Sometimes we represent a substitution as [x/y],
which means that it replaces occurrences of y with x. Substitutions can be composed
together using the ◦ operator.

3.3.6 Free functions

Even though the core language does not include free functions (functions that are not
members of any class), for brevity, we sometimes use those in declarations in further
examples. Free functions can be easily desugared to a class without any properties,
containing all of them as methods.
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Chapter 4

Type inference in statically typed,
object-oriented languages

In this chapter, we dive into the characteristics of type inference in statically typed,
object-oriented languages. We model a type inference algorithm for IFJ. The de-
scribed type inference algorithm is based on the existing type inference algorithm in
the programming language Kotlin. Even though the algorithm is based on Kotlin,
we try to capture the essence of the type inference in statically typed, object-oriented
languages, thus the introduced concepts also apply to languages like C# and Scala.
We explain what unique problems for the type inference are associated with this
paradigm. We explore those problems and later dive into possible solutions.

4.1 Kotlin inspired type inference overview

The type inference’s goal is to map an IFJ program to the corresponding, type cor-
rect, IFJ program without type variables. The inference algorithm is defined by the
translation relation:

Body → Body

It takes a program and returns a new program with all type variables replaced with
fully inferred types. It uses two important components, constraint generation and
constraint solving.

Constraint generation is defined by the inference relation:

e ⇒ τ⋄, C, σ

For an expression e, it infers a partially inferred type τ⋄ of the expression, with corre-
sponding set of constraints C. It also includes a substitution σ which might contain
information learned during the inference. The substitution maps from the type vari-
ables to fully inferred types.

The constraint solver is defined by the function

solve : C, Set[α] → σ

It takes a set of constraints and a set of all type variables that have to be fixed. It
returns a substitution.
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4.2 Constraint generation

First, we look into constraint generation for a single expression in IFJ. Let’s go back
to the Pair example from the chapter 3.

Pair[α0, α1](Pair[α2, α3](Elem(), Elem()), Elem())

The algorithm traverses the AST bottom-up.

Elem() ⇒ Elem,∅,∅

For the Elem() expression the type is known, it is Elem, and the same goes for the
second one. There are no constraints or substitution generated.

Elem() ⇒ Elem,∅,∅
Elem() ⇒ Elem,∅,∅

Pair[α2, α3](Elem(), Elem()) ⇒ Pair[α2, α3],
{Elem <: α2, Elem <: α3},∅

For the Pair constructor call, we know the types of the arguments, though we
do not know what are the type parameters of the constructor. For this program to
be sound, types of arguments have to be subtypes of the expected types of argu-
ments. Thus, the relevant constraints are generated. The algorithm returns the type
containing type variables, the constraints set, and an empty substitution.

Pair[α2, α3](Elem(), Elem()) ⇒ Pair[α2, α3],
{Elem <: α2, Elem <: α3},∅

Elem() ⇒ Elem,∅,∅

Pair[α0, α1](Pair[α2, α3](Elem(), Elem()), Elem()) ⇒ Pair[α0, α1]

{Elem <: α2, Elem <: α3, Elem <: α1, Pair[α2, α3] <: α0},∅

The same idea follows for the top-level constructor call, the constraints from the
subexpressions are merged into the returned set with the new constraints.

The algorithm can pass the generated constraints to the constraint solver. The
constraint solver receives a set of constraints and, based on it, builds a substitution
function, that maps all type variables to fully resolved types. Adherence to the con-
straints guarantees type correctness. Sometimes constraints might be contradictory
or insufficient to build a substitution. In such a case, the constraint solver returns
an error and it fails the whole algorithm. If we apply the substitution to the inferred
partial type of an expression, the result is a fully inferred type for the expression. If
we apply the substitution to the expression, the result is an expression in IFJ with all
type information resolved.
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4.3 Constraints generation for expressions with receivers

In the previous section, we have shown the high-level idea of the constraint gen-
eration for a single expression. However, the example expression in the previous
section consists only of constructors and does not include method calls or property
accesses. Both make things slightly more complicated. In this section we stay in
the context of the constraint generation for a single expression, though this time we
discuss one, that includes method calls and properties accesses. The core problem
we face is the fact that multiple classes might implement methods or properties with
the same name. Let’s introduce a new example:

class ClassOne {
fun foo() -> Int {}

}

class ClassTwo {
fun foo() -> String {}

}

class Functions {
fun identity[T](x: T): T {}

}

We have two classes ClassOne and ClassTwo implementing the method foo but with
different type signatures. We also have a class Function which holds a helper, free
function, identity. Given an expression

Function().identity[α0](ClassOne()). f oo()

Let’s try to apply the algorithm from the previous section.

Function() ⇒ Function,∅,∅

The type of the Functions() constructor call is trivially inferred without any con-
straints.

Function() ⇒ Function,∅,∅

ClassOne() ⇒ ClassOne,∅,∅

Function().identity[α0](ClassOne()) ⇒ α0, {ClassOne <: α0},∅

We know the type of the receiver Functions() thus, we can deduce the type signa-
ture of the method based on the declaration. As method_type(Functions, identity) =
T, T, T thus, the algorithm progresses forward, including the new type constraint
from the method argument

Function().identity[α0](ClassOne()).foo()

However, in the next step it runs into a problem, we know that the type of the re-
ceiver is α0. Based on that we cannot determine the signature of the method foo.
There are multiple classes implementing this method which makes this call ambigu-
ous. As the signatures are different, progressing with each of them later could fur-
ther lead to completely different constraint sets and results. Some of them could
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later turn out contradictory and be rejected, though the complexity of such a process
would be exponential, the result often would be ambiguous and the outcome could
often be confusing for the programmer who could have different intentions.

We do not need our type inference algorithm to be able to type all IFJ programs.
That is why we make the algorithm greedy. It executes the constraint solver on the
constraint set inferred from the receiver type, fixing all type variables. The type
of the receiver is inferred locally, based only on the information collected from the
receiver expression. If it is not possible, such a program is rejected.

σ = solve({ClassOne <: α0}, {α0})

For this example, constraint solver produces a substitution σ = {α0 → ClassOne},
which allows the algorithm to progress forward as

σα0 = ClassOne

and
method_type(ClassOne, f oo) = () → Int

Function().identity[α0](ClassOne()).foo() ⇒ Int,∅, {α0 → ClassOne}

It further does not return the constraints as those are already resolved. Instead, it
returns the created substitution.

Looking at this case closer, we do not need all type variables in the receiver fixed
to determine the method/parameter type. We just need the inferred type of the re-
ceiver to be in a form such top-level class is fixed, though there might be remaining
type variables as type parameters. We refer further to such form of a partially in-
ferred type as fixed-head form.

4.4 Inference for programs with multiple statements

Now let’s apply the constraint generation and constraint solver concepts to formu-
late the translation relation of the whole inference algorithm. Let’s go back again to
the Pair example, take the program with the return type Any.

var x = Pair[α0, α1](Pair[α3, α4](Elem(), Elem()), Elem())
return x.get_first()

In the first statement, from the section 4.2 we know that:

Pair[α0, α1](Pair[α2, α3](Elem(), Elem()), Elem()) ⇒ Pair[α0, α1]

{Elem <: α2, Elem <: α3, Elem <: α1, Pair[α2, α3] <: α0}

Variable x declaration does not include an expected type annotation, so we pass the
constraint set to the constraint solver in the same form as it was generated from
the expression. If the statement included an expected type, would be a variable
assignment or a return statement we would add a constraint Pair[α0, α1] <: τ, where
τ is respectively the expected type, a type of the variable or the predefined return
type. The constraint solver based on the constraints produces a substitution σ, which
maps the type variables to fully inferred types. We set the type of the variable x as
σPair[α0, α1]. We map the statement to var x : σPair[α0, α1] = σe. For the second
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statement:
x.get_first() ⇒ Pair[Elem, Elem],∅,∅

type of x is included in the context so it infers the type Pair[Elem, Elem] with an
empty constraint set. The algorithm adds a constraint { Pair[Elem, Elem] <: Any }
from the return type and passes those to the constraint solver, which returns an
empty substitution σ1. Then maps the statement to return σ1 x.get_first(), which
in this case is the same as the original. The only thing that the algorithm does for this
statement, is that it validates if the expression type is a subtype of the return type.

An important question is why we execute the constraint solver for the statements
without explicit expected type annotations. Instead, we could keep the inferred type
with constraints in the context, collect more constraints in subsequent statements,
and solve those for the whole program. There are three main reasons why this deci-
sion was taken for the Kotlin inference algorithm.

1. Errors far away from the issue - If in the subsequent statement variable is
used in a receiver, the inference algorithm will still force the fix. This might
be confusing for the programmer if, for example, a method call or a parameter
access would trigger an inference error a few statements above the modified
code.

2. Inflated types of variables - If a language includes type Any, a supertype of
every type, variable would often be resolved to it. In practice, it is better to
keep the variable type fixed. The programmer often wants type system to
keep them in check, validating if the type of value assigned to the variable is
correct, instead of accepting everything and resolving the type of the variable
to Any. An example case is included below.

var x = 1
x = None()

In this case, the type of x would be resolved to Any, which is not desired. The
programmer would generally prefer to have the type of x resolved to Int, and
have the second statement rejected.

3. Computational complexity - Constraint solving cost can grow exponentially,
thus collecting the constraints for the whole function could have a big impact
on the performance of the type inference algorithm.

4.5 Inference algorithm rules

Those informal descriptions from this and previous sections lead us to the formal
definition of the inference relation for IFJ fig. 4.1, constraint solver and the trans-
lation relation fig. 4.2 which encapsulates the whole inference algorithm. The pre-
sented algorithm logic is based on the Kotlin type inference algorithm, thus we fur-
ther refer to this algorithm as Kotlin inspired type inference.

One thing that might seem controversial is the fact that we do not discuss the
correctness of the proposed algorithm. The goal of our work is to present a possi-
ble adjustment that could be introduced to an existing type inference algorithm in
Kotlin, or other similar language. The fact that we formalize this algorithm on our
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Γ(v) = τ

Γ ⊢ v ⇒ τ,∅,∅
CGEN-LOCALVAR

Γ ⊢ e ⇒ τ⋄, C, σ
σ′ = solve(C, TV(σe)) C[τ] = σ′στ⋄ prop_type(C, p) = υ

Γ ⊢ e.p ⇒ [τ/type_params(C)]υ, ∅, σ′ ◦ σ
CGEN-PROP

Γ ⊢ e ⇒ τ⋄, C, σ σ′ = solve (C, TV(σe))
C[τ] = σ′στ⋄ method_type(C, m) = X, γ, γ Γ ⊢ e ⇒ τ⋄, C, D, σ′′

Γ ⊢ e.m[υ⋄](e) ⇒ [υ⋄/X][τ/type_params(C)]γ,( ⋃
i∈1...n

Ci

)
∪ {τ⋄ <: [υ⋄/X][τ/type_params(C)]γ}, ◦i∈1...nσ′′

i ◦ σ′ ◦ σ

CGEN-MCALL

Γ ⊢ e ⇒ τ⋄, C, D, σ

Γ ⊢ new C[υ⋄](e) ⇒ C[υ⋄],( ⋃
i∈1...n

Ci

)
∪ {τ⋄ <: [υ⋄/type_params(C)]prop_types(C)}, ◦i∈1...nσi

CGEN-CONSTR

FIGURE 4.1: Kotlin inspired type inference, expressions

language serves merely as a reference point for our work, based on which we pro-
vide the adjustments. We argue that this lack of proved correctness is not a limitation
of our work. It is an advantage, as the results we prove in the next chapter do not
rely on semantics of the constraint generation, only on its control flow, thus those can
be applied to any object-oriented language with any type system that implements a
type inference algorithm with the comparable control flow. If the base algorithm
generates the sound constraints, the modified version preserves this property.

We define the type environment as

Γ : v → τ

It takes a variable name and returns a fully inferred type. Let’s first look into the
proposed inference rules fig. 4.1 for expressions.

For a variable access CGEN-LOCALVAR, it just accesses the type from the envi-
ronment and returns it with an empty set of constraints and empty substitution. We
know that all types in the environment are fully inferred.

For a property access CGEN-PROP, it first infers the receiver type with con-
straints. It passes those constraints to the constraints solver, which we know, results
in a substitution which produces fully inferred type. It accesses the head of the type
and queries the property type. All constraint have been solved so it returns an empty
set, though it returns the inferred type information in the substitution.

For a method call CGEN-MCALL, the logic remains the same as for the property
access. It differs only in the fact that after getting the method signature, the argument
types are inferred. Those constraints are merged with the new constraints implied
by the required method’s arguments types. It also returns composed substitution
with all inferred type information.
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Γ ⊢ eval ⇒ τ⋄, C, σ C′ = C ∪ {τ⋄ <: γ}
σ′ = solve(C′, TV(σeval)) Γ′ = Γ; x → σ′στ⋄ Γ′ ⊢ St → St′

Γ ⊢ var v : γ = eval → var v : γ = σ′σ(eval); St′
KI-ANN-DECL

Γ ⊢ eval ⇒ τ⋄, C, σ

σ′ = solve(C′, TV(σeval)) Γ′ = Γ; x → σ′στ⋄ Γ′ ⊢ St → St′

Γ ⊢ var v = eval → var v : σ′σ(τ⋄) = σ′σ(eval); St′
KI-DECL

Γ ⊢ eval ⇒ τ⋄, C, σ Γ(lval) = γ

C′ = C ∪ {τ⋄ <: γ} σ = solve(C′, TV(σeval)) Γ ⊢ St → St′

Γ ⊢ lval = eval ; St → lval = σ′σ(eval); St′
KI-ASSIGN

Γ ⊢ eval ⇒ τ, C

C′ = C ∪ {τ <: return_type()} σ′ = solve(C′, TV(σeval))

Γ ⊢ return e → return σ′σ(e)
KI-RETURN

FIGURE 4.2: Kotlin inspired type inference, statements

Constructor call CGEN-CONSTR, is similar to the method call but without the
receiver resolving. It just introduces the constraints implied by the required con-
structor’s arguments types and merges them with the constraints implied by the
arguments.

Let’s now look into the type inference algorithm fig. 4.2 for the whole program.
For a variable declaration with annotation KI-ANN-DECL, it infers the type of the
initializer expression, adds the expected type constraint and solves the constraint
set. Then returns a new statement with initializer expression with resolved type
variables. It adds the variable type to the type context.

For a variable declaration, without annotation KI-DECL, it infers the type of the
initializer expression and solves the constraint set. Then returns a new statement
with initializer expression with resolved type variables and the type of inferred ex-
pression, with applied substitution, as an annotation. It adds the fully resolved type
of the variable to the type context.

For a variable assignment KI-ASSIGN, it works exactly the same as for a variable
declaration with annotation. The only difference is the expected type is extracted
from the type context.

For a return statement KI-RETURN, it infers the type of the initializer expression,
adds the expected return type constraint and solves the constraint set.

4.6 Kotlin inspired type inference limitations

We have provided a base algorithm which adheres to the current limitations of the
Kotlin inference algorithm. We see that the points of friction, which restrict collection
of the information from a broader context are

1. Algorithm fails if it cannot solve all type variables in the receiver, using only
the information collected from this receiver
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2. Algorithm fails if it cannot solve all type variables in the statement, using only
the information collected from this statement

Looking on the Option type example, from the chapter 1.

var x = none[α0]()

x = some[α1](5)

We know that none[α0]() ⇒ Option[α0],∅,∅, though if we execute the constraint
solver, it fails. It cannot fix the type variable α0, because it has no constraints.

If we think about the declarations of the classes Some and Option, it not seem
possible to leak the type variable α0 from the type in a way that it can become the
type of a receiver.

If we defer the only such variables that are never inferred as a type of a receiver,
then it avoids the problem for the calls on receivers mentioned in the section 4.3. If
we limit those variables to unconstrained ones, such approach avoids the problems
listed for the statements in the section 4.4 because, respectively

1. Inflated types of variables - We do not defer any variables with existing con-
straints, thus the inflation of types never occurs.

2. Computational complexity - We do not defer any variables with existing con-
straints, thus the accumulation of constraints never occurs.

3. Errors far away from the issue - There are never any problems with forced
fixes as such deferred type variables are never necessary to decide the method/parameter
type, thus this problem never occurs.

In the next chapter we formalize the intuitive concept of type variables that are
never inferred as a type of a receiver.
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Chapter 5

Type inference progression

In this chapter, we formally capture the problem of determining the type of a method/parameter,
described in the section 4.3. We define type inference progression property. Expres-
sions that hold this property have enough type information inferred, so the inference
algorithm can always determine the type of a method/parameter.

5.1 Type inference progression property

In this section, we define the type inference progression property e ≫ τ⋄. It reads as,
the expression e progresses to the type τ⋄. This property captures only the control
flow of the inference algorithm and is not concerned with constraint generation. If
an expression progresses to a type, then it means that type inference can decide the
types of all method calls/property accesses in the expression, based only on the
information that is already provided explicitly as type arguments.

As an example, for declarations and an expression:

class ClassOne {
fun foo() -> Int {}

}

class ClassTwo {
fun foo() -> String {}

}

fun identity[T](x: T): T {}

identity[ClassOne](ClassOne()).foo()

This expression progresses to the type Int

ClassOne() ≫ ClassOne

identity[ClassOne](ClassOne()) ≫ ClassOne

identity[ClassOne](ClassOne()).foo() ≫ Int

However, if the expression was:

identity[α0](ClassOne()).foo()
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Γ(v) = τ⋄

Γ ⊢ v ≫ τ⋄
TYPEINFPROG-LOCALVAR

e ≫ C[τ⋄] prop_type(C, p) = γ

e.p ≫ [τ⋄/type_params(C)]γ
TYPEINFPROG-PROP

e ≫ C[τ⋄] method_type(C, m) = X, γ, γr

e.m[υ⋄](e) ≫ [υ⋄/X][τ⋄/type_params(C)]γr
TYPEINFPROG-MCALL

new C[τ⋄](e) ≫ C[τ⋄]
TYPEINFPROG-CONSTR

FIGURE 5.1: Type inference progression rules

It would not progress.

ClassOne() ≫ ClassOne

identity[alpha_0](ClassOne()) ≫ alpha_0

identity[alpha_0](ClassOne()).foo() − Does not progress

It is because the receiver does not progress to a type in the fixed-head form. We
use this property to analyze how much type information is required for the type
inference algorithm to progress. Later we will see that there are type variables that
do not break the inference progression property.

We present the full set of rules for the type inference progression property fig.
5.1. The crucial requirement that does rules state is that subexpressions that are
receivers have to progress to a type in fixed-head form. If every expression in a
language progresses, then we say that this language has type inference progression
property.

In the next section, we show that the subset of IFJ with all type information in-
ferred holds the type inference property. Later, we show that certain type variables,
substituting not-leakable type parameters, are unnecessary. We show that a subset
of IFJ where those type variables are not fixed still holds type inference progression
property.

Additionally, we define a well-formed accesses property. This property has low
significance. It is present only because of formality reasons. It guarantees that meth-
ods/properties called/accessed on a receiver exists or accessed variable is in the
context. In a real type inference algorithm implementation we would just reject pro-
grams that not hold it.

Definition 1. If for a sublanguage of IFJ

1. All accessed local variables are in the typing environment

2. If an expression progresses to a fixed-head form type, and is a receiver then the method
or property exists in the head’s corresponding class.

we say that the sublanguage has well-formed accesses.
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If we restrict IFJ to IFJ with well-formed accesses, then the only condition that its
sublanguage has to meet to have the type inference progression property is that if
an expression is a receiver, then it has to progress to a type in the fixed-head form.

5.2 Fully inferred type parameters

In this section, we show that there are no type variables and everything is inferred
then indeed the language holds type inference progression property. It is a proof that
the way that the existing, Kotlin inspired type inference algorithm works, implies the
inference progression property.

Lemma 2. Assuming that in the typing context, there are only fully inferred types, in the
sublanguage of IFJ with well-formed accesses, with all type arguments being fully resolved,
every expression progresses to a fully inferred type.

Proof. By induction, base cases:

• Case: LOCALVAR: We know that all expressions have well-formed accesses,
thus we know that the expression progresses to a type. We know that all types
in typing context are fully inferred thus the type the expression progresses to
is fully inferred.

• Case: CONSTRUCTORCALL: We know that the expression progresses to a type
as there are no preconditions. We know that in the call there are no type vari-
ables, thus the type the expression progresses to is fully inferred.

As the inductive hypothesis, we assume that every expression e progresses to a
fully inferred type e ≫ τ⋄

• Case: PROPERTY: We know that e ≫ τ⋄ from the inductive hypothesis. We
know that τ⋄ is fully inferred, thus it must be a fully inferred class type C[τ⋄].
From the well-formedness of accesses, we know that the acessed property ex-
ists in the class. The type of the property contains only the type parameters of
the associated class. Hence, if we override those properties with fully inferred
types τ⋄, the type is fully inferred.

• Case: MCALL: We know that e ≫ τ⋄ from the inductive hypothesis. We know
that τ⋄ is fully inferred, thus it must be a fully inferred class type C[τ⋄]. From
the well-formedness of accesses, we know that the method exists in the class.
We know that type arguments of the method are fully inferred types. The type
of the property contains only the type parameters of the associated class and
the method. Hence, if we override those properties with fully inferred types
τ⋄ and method type arguments, the type is fully inferred.

Thus, by induction the theorem is true.

Theorem 3. Assuming that only fully inferred types are in the typing context, the sublan-
guage of IFJ with well-formed accesses, with all type arguments being fully resolved, has the
type inference progression property

Proof. From the lemma 2 we know that every expression in this language progresses
to a fully inferred type. From this fact, the weaker theorem that every expression
progresses is also true. Hence, the theorem is true.
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5.3 Not-leakable type parameters

In the previous section, we have shown that if all type variables are resolved then ev-
ery expression in such language progresses. In this section, we define not-leakable
and leakable type parameters. Later we show that if we do not fix the type variables
substituting not-leakable type parameters, then such a subset of IFJ still holds type
inference progression property.

We split type parameters into two mutually exclusive categories. The first cate-
gory we name not-leakable, type parameters.

Definition 4. Type parameter is not-leakable if

• If is a type parameter of a class:

– If used in a inherited type, then it can be used only as argument for not-leakable
type parameters

– If used in a property type, then it can be used only as argument for not-leakable
type parameters

– If used in a method type, then:

* In the types of the arguments, it can be used in any way

* In the return type, then it can be used only as argument for not-leakable
type parameters

• If is a type parameter of a method

– In the types of the arguments, it can be used in any way

– In the return type, then it can be used only as argument for not-leakable type
parameters

Definition 5. Type parameter is leakable if is not not-leakable

The intuition behind not-leakable type parameters is, that those are defined in
such a way, that we cannot leak those type parameters from an object to be the type
of an expression through any sequence of transformations. So if a type variable is
used as a type argument for a not-leakable type parameter, then the expression will
never progress to this variable. Thus, we never end up with a type variable as a
receiver type. To help the reader understand what being not-leakable means, let’s
go over a few examples.

class Empty[W] {
Empty()

}

In this case, W is not-leakable, not used at all.

class Containter [X] {
value: X
Containter(value: X)

}

In this case, X is leakable. You can read the property value.
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class Empty[W] {
Empty()

}
class Containter [X] {

value: Empty[X]
Containter(value: Empty[X])

}

In this case, X is not-leakable. You can read the property value, but you cannot read
it from the Empty[X] object.

class Empty[W] {
Empty()

}
class Containter [X] {

fun foo(value: X): Int
fun foo(value: Empty[X]): Int

}

In this case, X is not-leakable, in method arguments you can use the type parameter
in any way. You cannot read if from the object.

class Empty[W] {
Empty()

}
class Containter [X] {

fun foo(): X
}
class Containter2 [Y] {

fun foo(): Empty[Y]
}

In this case, X is leakable and Y is not leakable. For method’s return type rationale is
the same as for properties.

5.4 Not-leakable type parameters and inference progression

In this section, we prove that the intuition from the end of the previous section is
correct. We show that if we leave out the type variables used for not-leakable type
parameters, such a subset of IFJ will hold the type inference progression property.

Definition 6. We define a property not_leakable_c(C, n) in such a way that if for a class
C, it holds for a given n if and only if nth type parameter in the class C is not-leakable.

Definition 7. We define a property not_leakable_m(C, m, n) in such a way that if for a
class C, and method m it holds for a given n if and only if nth type parameter in the method
m is not-leakable.

Definition 8. We say τ⋄ is in inference progressive form if:

• it is in fixed-head form C[γ⋄]
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• ∀i∈1...n in C[γ⋄]:

– if γ⋄i is not_leakable_c(C, n) (is on not-leakable position), it is in any form

– if γ⋄i is not not_leakable_c(C, n) (is on leakable position), it is in inference
progressive form

Inference progressive form is a stronger guarantee that the fixed-head form, but
it is a weaker guarantee than the fully inferred form.

Definition 9. We say that a type argument is inference sufficient if:

• if used on a not-leakable position, then it is in any form

• if used on a leakable position, then it is in inference progressive form

To give a better understanding what a inference sufficient type argument is, we
could say that a type is inference progressive if is in the fixed-head form and its type
arguments are inference sufficient.

Lemma 10. Assuming that in the typing context, there are only types in inference progres-
sive form, IFJ with well-formed accesses, with all type arguments being inference sufficient
every expression progresses to a type in inference progressive form.

Proof. By induction, base cases:

• Case: LOCALVAR: From assumptions, we know that all expressions have well-
formed accesses, thus we know that the expression progresses to a type. From
assumptions, we know that in the typing context, there are only types in infer-
ence progressive form, thus the type the expression progresses to is in inference
progressive form.

• Case: CONSTRUCTORCALL: We know that the expression progresses to a type
as there are no preconditions. From assumptions, we know that all type ar-
guments are inference sufficient. Hence, the returned type is in inference pro-
gressive form, because the leakable type parameters will be substituted with
types in inference sufficient form.

As the inductive hypothesis we assume that every expression e progresses to a
type in inference progressive form e ≫ τ⋄

• Case: PROP: We know that e ≫ τ⋄ from the inductive hypothesis, and that τ⋄ is
inference progressive. Thus, it must be a form C[τ⋄]. From the well-formedness
of accesses, we know that the property exists in the class. The parameter type
contains only the class’s type parameters. We know that the type arguments
τ⋄ are inference sufficient. Because arguments in the class are inference suffi-
cient, then the leakable type parameters are substituted with types in inference
progressive form. Thus the type the expression progresses to is inference pro-
gressive.

• Case: MCALL: We know that e ≫ τ⋄ from the inductive hypothesis, and
that τ⋄ is inference progressive. Thus, it must be in the form C[τ⋄]. From
the well-formedness of accesses, we know that the method exists in the class.
The method return type contains class type parameters and method type pa-
rameters. We know that τ⋄ are inference sufficient. Because arguments of the
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class are inference sufficient, then the leakable type parameters of the class are
substituted with types in inference progressive form. Because arguments in
the method are inference sufficient, then the leakable type parameters of the
method are substituted with types in inference progressive form. Thus, if we
substitute both sets of type parameters, the type the expression progresses to
is in inference progressive form.

By induction, the lemma is true.

This leads us to our final result.

Theorem 11. IFJ with well-formed accesses, with all type arguments being inference suffi-
cient has the inference progression property.

Proof. From the lemma 10 we know that in such a restricted language every expres-
sion progresses, thus it has the inference progression property.

This is an important result, as it says which type variables are unnecessary for
the type inference to progress. In the next section, we will devise an algorithm which
does not require from the constraint solver to infer those type variables.
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Chapter 6

Not Too Local type inference

In this chapter, we use the inference progression theory from the previous chapter to
provide an extension of the type inference algorithm for IFJ. We show that it solves
the problem of Algebraic Data Types introduced in the first chapter.

The proposed algorithm uses the idea of not-leakable type parameters. Assum-
ing a program in IFJ, we need to fix enough type variables so all type arguments
are inference sufficient. Then, the inference algorithm can determine the type of
a method/parameter. When passing them to the constraint solver, we mark type
variables that are on not-leakable positions as not-required. It communicates to the
solver that it does not have to solve them if it can’t. We refer to the newly proposed
algorithm as Not Too Local Type inference (NTL Type inference).

6.1 The overview

We start with defining the new inference relations. We define the new program
translation relation as

Body → Body, σ

It maps one set of statements to another. It differs from the original one as now does
not guarantee all type variables being resolved. If one implements the algorithm,
it has to include validation of that afterward. It also returns a substitution, so the
type information collected in the subsequent statements can be applied to the previ-
ous statements. The substitution maps from the type variables to partially inferred
types. As in the original algorithm, it uses two components, constraint generation
and constraint solver.

The new constraint generation is, as its predecessor, defined by the inference
relation

e ⇒ τ⋄, C, σ, D

For an expression e, it infers a partially inferred type τ⋄ of the expression, with corre-
sponding set of constraints C. It also includes a substitution σ which might contain
information learned during the inference. The substitution maps from the type vari-
ables to partially inferred types. Additionally, it includes a set of not-required type
variables from the expression e.

The new constraint solver is defined as:

solve : C, Set[α], D → σ, D
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It takes as arguments a constraint set, a set of type variables to solve, and a set of
not-required type variables. It returns derived substitution and a new set of not-
required type variables. We explain why the solver returns a new set of not-required
type variables in the section 6.2.

We start with the original motivation for the research, the ADTs example pre-
sented in the introduction. We demonstrate how the modified algorithm would
work. Assume the set of declarations:

class Option[T]
class Some[T](value: T): Option[T]
class None[T](): Option[T]

class Functions {
fun some[T](x: T): Option[T] {}
fun none[T](): Option[T] {}

}

With the statements:

var x = Functions().none[α0]()

x = Functions().some[α1](5)

Let’s show an example of how the modified version of the algorithm works and that
it can infer types for this example.

Functions() ⇒ Functions,∅,∅,∅

There are no type variables for the Functions() constructor call. Thus, the set of
not-required type variables is empty.

Functions().none[α0]() ⇒ Option[α0],∅,∅, {α0}

For the none method call, it includes α0 as a not-required type variable. It does so
because for the none method, the type parameter T is not-leakable.

∅ = solve(∅, {α0}, {α0})

var x = Functions().none[α0]() → var x : Option[α0] = Functions().none[α0](),∅

As in the original algorithm, it runs the constraint solver for the single statement,
with α0 as not-required type variable. The constraint solver returns an empty sub-
stitution, and the new set of not-required type variables remains empty. The type of
var x is set to Option[α0] and is added to the typing context.
For the second statement:

Functions().some[α1](5) ⇒ Option[α1], {Int <: α1},∅,∅
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For the some method call it does not include α1 as a not-required type variable. It is
because, for the some method, the type parameter T is leakable.

σ = solve({Option[α1] <: Option[α0], Int <: α1}, {α0, α1}, {α0})

x = Functions().some[α1](5) → x = Functions().some[Int](5), {α0 → Int, α1 → Int}

For the variable assignment, it adds constraint Option[α1] <: Option[α0] to the con-
straint set, then passes it to the constraint solver. The constraint solver returns a
substitution {α0 → Int, α1 → Int}. Further, we apply the substitutions from the
subsequent statements to the previous statements. The final result is the program:

var x : Option[Int] = Functions().none[Int]()
x = Functions().some[Int](5)

The substitution produced from the second statement has been applied to the first
statement.

6.2 The constraint solver

In this section, we discuss in detail the contract that the implementation of constraint
solver has to comply with when used in NTL type inference. We keep the contract
possibly minimal and general, assuming as little as possibly about the underlying
constraint solver implementation.

As mentioned before, we extend the constraint solver interface in a way that we
can pass type variables that are not-required. The constraint solver can fix them but
the algorithm can progress further if it does not.

Why do we need the constraint solver to return a new set of not-required type
variables? Let’s first look into how the constraint solver should interpret and imple-
ment the set of required variables. If a variable is required does it mean it should
just be fixed to anything? The problematic case might arise, for example, when

foo[α1](e) ⇒ α1, C, σ, {α0}

Assume that some α0 ∈ TV(e) which in this case is not-required, thus we need it
fixed. If we execute solve(C, D), and it will return a substitution {α1 → α0}, were α0
is not-required. Which would map the example to

foo[α0](e) ⇒ α0, C, σ, {α0}

It is not in fixed-head form, and thus could not be used as a receiver. Based on the
inference progression theory from the previous chapter, we need to define carefully,
what a variable being required should exactly mean for the constraint solver.
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From the constraint solver perspective this transformation rule reads as follows

If a required type variable αr is fixed to a type τ⋄:

1. If the type τ⋄ is a not-required type variable αnr, then αnr becomes required.

2. If the type τ⋄ is type in the form C[τ⋄] then

(a) If for τ⋄i, not_leakable_c(C, i), then we do nothing

(b) If for τ⋄i, ¬not_leakable_c(C, i)

i. If τ⋄i is a type variable αnr, then αnr becomes required.
ii. If τ⋄i is the type in the form C[τ⋄], then we apply (2) recursively

Such formulation will guarantee that all type arguments on the leakable positions
will be in the inference progressive form. This is the reason why constraint solver
returns a new set of not-required type variables, some variables might be removed
from the not-required set according to the rules above.

Additionally, we assume that the new constraint solver will only further defer
the not-required variables only when those are not constrained in any way. This
assumption simplifies the implementation of the algorithm as we do not have to save
and track any existing constraints for the local variable’s types. This also simplifies
the solver definition as it does not have to additionally return a set of remaining
constraints.

6.3 Expression inference

As we have provided a new definition of the constraint solver let’s now look into
the proposed implementation of the constraint generation algorithm fig. 6.1, modi-
fications of the original algorithm are marked with the red color.
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not_required_variables_c(υ⋄, C) =
⋃

i∈1...n

(
i f not_leakable_c(C, i) then

TV(υ⋄i)

else
υ⋄i = α → {α}
υ⋄i = C′[υ′

⋄] → not_required_variables_c(υ′
⋄, C′))

FIGURE 6.2: Not-required variables for a constructor call

Γ(p) = τ⋄

Γ ⊢ eval ⇒ τ⋄, ∅,∅, TV(τ⋄),
CGENNTL-LOCALVAR

Γ ⊢ e ⇒ τ⋄, C, σ, D

σ′, D′ = solve(C, TV(σe), D) C[τ] = σ′στ⋄ prop_type(C, p) = υ

Γ ⊢ e.p ⇒ [τ/type_params(C)]υ, ∅, σ ◦ σ′, D′ CGENNTL-PROP

Γ ⊢ e ⇒ τ⋄, C, σ, D

σ′, D′ = solve(C, D) C[τ] = σ′στ⋄ method_type(C, m) = X, γ, γ
σσ′Γ ⊢ e1 ⇒ τ⋄1, C1, σ′′

1 , D1 σσ′σ′′
1 Γ ⊢ e2 ⇒ τ⋄2, C2, σ′′

2 , D2, . . .
D′′ = not_required_variables_m(υ⋄, C, m)

Γ ⊢ e.m[υ⋄](e) ⇒ [υ⋄/X][τ/type_params(C)]γ,( ⋃
i∈1...n

Ci

)
∪ {τ⋄ <: [υ⋄/X][τ/type_params(C)]γ},

◦i∈1...nσ′′
i ◦ σ′ ◦ σ,

( ⋃
i∈1...n

Di

)
∪ D′ ∪ D′′,

CGENNTL-MCALL

Γ ⊢ e1 ⇒ τ⋄1, C1, σ1, D1 σ1Γ ⊢ e2 ⇒ τ⋄2, C2, σ2, D2 . . .
D′ = not_required_variables_c(υ⋄, C)

Γ ⊢ new C[υ⋄](e) ⇒ C[υ⋄],( ⋃
i∈1...n

Ci

)
∪ {τ⋄ <: [υ⋄/type_params(C)]prop_types(C)},

◦i∈1...nσ′′ ◦ σ′,

( ⋃
i∈1...n

Di

)
∪ D′

CGENNTL-CONSTR

FIGURE 6.1: NTL type inference, expressions

For a local variable access CGENNTL-LOCALVAR, to get the set of not-required
type variables for the expression we just fetch all type variables that occur in the
variable’s type. If any of those would be required, the constraint solver would fix it.
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not_required_variables_m(υ⋄, C, m) =
⋃

i∈1...n

(
i f not_leakable_m(C, m, i) then

TV(υ⋄i)

else
υ⋄i = α → {α}
υ⋄i = C′[υ′

⋄] → not_required_variables_m(υ′
⋄, C′))

FIGURE 6.3: Not-required variables for a method call

The substitution is empty in this case.
For a property access CGENNTL-PROP, we get a not-required variables set and

substitution from the receiver. We return the new not-required variables set, re-
turned by the solver.

For a method call CGENNTL-MCALL, for the receiver resolution, it goes the
same as for the property access. Then we traverse each of the method arguments,
accumulating the inference information in substitutions. At the end, we search type
arguments of the method call, for type variables that are not-required, formally the
process is defined as specified here fig. 6.3. In the result we include the combined
not-required type variables from the receiver, arguments and from the type argu-
ments.

For a constructor call CGENNTL-CONSTR, as in a method call, Then we traverse
each of the method arguments, accumulating the inference information in substitu-
tions. At the end, we search type arguments of the constructor call, for type variables
that are not-required, formally the process is defined as specified here fig. 6.2. In the
result we include the combined not-required type variables from the arguments and
from the type arguments.

6.4 Type inference for programs

Modifications of the inference algorithm for statements are modest fig. 6.4. We de-
fine the new typing context as:

Γ : v → τ⋄

It may now contain partially inferred types. Though we assume that all types we
put into the typing context are inference sufficient, as we did in assumptions of our
main theorem in the chapter 5.

We modify the relation to also return a substitution. This is required so we can
use information learned in the subsequent statements, to update the current state-
ment. We do need to pass the not-required type variables forward as those can be
recovered from types in context. Additionally, we need to apply new substitutions
to the context, as in this formulation not all types in context are fully inferred. This
formulation does not ensure that all type variables are inferred thus an additional
check is required after the inference.
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Γ ⊢ eval ⇒ τ⋄, C, σ, D C′ = C ∪ {τ⋄ <: γ}
σ′, D′ = solve(C′, TV(σeval), D) Γ′ = Γ; x → σ′τ⋄ σ′σΓ′;⊢ St → St′, σ′′

Γ ⊢ var v : γ = eval → var v : γ = σ′′σ′σ(eval); St′, σ ◦ σ′ ◦ σ′′
NTL-ANN-DECL

Γ ⊢ eval ⇒ τ⋄, C, σ, D C′ = C ∪ {τ⋄ <: γ}
σ, D′ = solve(C′, TV(σeval), D) Γ′ = Γ; x → τ⋄ σ′σΓ′;⊢ St → St′, σ′′

Γ ⊢ var v = eval → var v : σ′′σ′(τ⋄) = σ′′σ′σ(eval); St′, σ ◦ σ′ ◦ σ′′
NTL-DECL

Γ ⊢ eval ⇒ τ⋄, C, σ, D Γ(lval) = γ⋄ C′ = C ∪ {τ⋄ <: γ⋄}
σ, D′ = solve(C′, TV(σeval), D ∪ TV(γ⋄)) σ′σΓ ⊢ St → St′, σ′′

Γ ⊢ lval = eval ; St → lval = σ′′σ′σ(eval); St′, σ ◦ σ′ ◦ σ′′
NTL-ASSIGN

Γ ⊢ eval ⇒ τ⋄, C, σ′, D,
C′ = C ∪ {τ <: return_type()} σ, D′ = solve(C′, TV(σeval), D)

Γ ⊢ return e → return σ′σ(e), σ ◦ σ′ NTL-RETURN

FIGURE 6.4: NTL type inference, statements

6.5 Advanced types

The example we presented in the section 6.1 might look like a special case. One
might feel that this technique only applies to some very specific types and improves
the type inference for a marginal set of edge cases. It turns out this technique is much
more general and it might improve how the type inference works for many common
patterns. Below we present a mutable list example. Kotlin inspired type inference
would not be able to type this example, though NTL type inference can do so. We
do not provide explicit type variables for conciseness.

class List[T] // T is not leakable
class Nil[T](): List[T] // T is not leakable
class Cons[T](value: T, tail: List[T]): List[T]

class MutableList[T] { // T is not leakable
value: List[T]

fun add(x: T) {}
fun remove(): Option[T] {}

}

var list = MutableList(Nil)
list.add(1)
var z = list.remove()

The example consists of algebraic data type List, which is very similar to the Option
example from the previous sections. For the sum type List and the empty list con-
structor Nil the type parameter T is not-leakable.
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Using it, we implement MutableList. The part that might be unexpected is the
fact that T is not-leakable for MutableList. Such an example would not be typed by
Kotlin inspired type inference, though NTL type inference can type it. This example
is interesting as it shows the usefulness of the technique beyond only very simple
types.

Intuitively, the not-leakable type parameters are type parameters whose values
do not have to be provided to the class to construct an object. The type parameters
which values are provided to the constructor will usually provide sufficient con-
straints to be inferred. In this sense, if we enable deferring of the not-leakable type
parameters, we solve many problematic cases, because the not-leakable type param-
eters are those which often cannot be inferred because of insufficient constraints.

Handling such cases would be a great improvement for the programming lan-
guage Kotlin as currently, this example would have to be transformed into a type-
safe builder or require an annotation.

It is worth noting that the proposed technique is different from the builder-style
inference as it fixes the type greedily instead of building the constraint set for the
whole lambda.

var list = MutableList(Nil)
list.add(1)
list.add("example")

The example below would not work with NTL type inference. The type parameter
of MutableList is fixed to Int by the NTL type inference algorithm. The second
statements produces a contradictory constrain {Int <: String}.
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Chapter 7

Kotlin compiler integration

In this chapter, based on the work from the previous chapters, we propose the syntax
and semantics of a Kotlin language feature imaginary type parameters. It composes the
theoretical ideas into a proposal of the feature for a real-life language. We describe
the feature and its semantics from the perspective of the programmer. Later we
discuss interactions with features like variance and overloading, which are present
in many other statically typed object-oriented languages. We also discuss the partial
implementation work we did in Kotlin’s compiler to asses if such a feature is feasible
to implement.

7.1 Imaginary type parameters

In this section, we propose the syntax and semantics of imaginary type parameters, a
new feature we propose for the programming language Kotlin. An imaginary type
parameter is equivalent to a not-leakable type parameter. If the programmer marks
a type parameter as imaginary, then the inference algorithm, extended as described
in chapter 6, treats the type parameter as not-leakable. It means the inference of the
type parameter can be deferred.

sealed class Option<imag T>
class Some<T>(x: T): Option<T> {}
class None<imag T>(): Option<T> {}

Let’s discuss the proposed syntax. The most important design decision we take
is if the programmer should mark imaginary type parameters explicitly, or if the
compiler should derive them automatically based on the type declaration if a type
parameter fulfills the not-leakable type parameter constraints.

We argue that explicit annotation is preferred as it is easier for the programmer
to annotate a type parameter and receive an error if it does not fulfill the constraints.
Otherwise, for example, adding a method using the type parameter in not imaginary
way, could by accident introduce an unwanted breaking change to the library. It is
much easier to go the other way around as the explicit annotations may be suggested
by the compiler or a linter if a certain type parameter fulfills the constraints and is not
annotated. It is important to emphasize that removing the annotation from a type
parameter is a breaking change for a library interface and might require updates in
the software that depends on it.
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One could argue that explicit annotation might be too much of a burden or too
complex for the programmer to provide. We argue that even though it is certainly a
limitation, it is not a deal-breaker:

1. Currently for examples like list initialization, the programmer has to use type-
safe builders. We argue that providing the annotation in the library is easier
than introducing unnecessary complexity to every program that uses the li-
brary.

2. Currently the problem is solved (not fully, it does not work for the mutable
variables) by marking the parameter contravariant and initializing the type
parameter as a bottom type. We argue that this trick is much harder to compre-
hend than the imaginary type parameters, even though it is commonly used.

3. The type parameters annotations for the variance already exist, providing an
additional one is not much of a complexity burden.

Another decision we take is how to refer to such type parameters in the language
documentation. Not-leakable is a good name from the perspective of the type infer-
ence algorithm, as it emphasizes the rationale for why inference of those type pa-
rameters can be deferred. From the programmer’s perspective, it is not a very good
name as the programmer does not have to understand the why, they should only
understand that if an annotation is provided then in some cases the type inference
can perform better.

We decide on the name imaginary type parameters, with a prefix imag used in
the type annotations as it captures the nature of type parameters, which do not rep-
resent any information about the data being held in the class. We do not use the
name phantom as it is already commonly used to refer to a subset of imaginary type
parameters, which are not used as method argument types.

Another important detail to discuss is the validation of the declarations. We
follow the constraints of not-leakable type parameters. The programmer can only
use imaginary type parameters in the declaration, as a type of a method argument
or as a type argument of another generic class, for type parameters that are also
imaginary.

7.1.1 Interaction with variance

Kotlin supports providing the variance on a type parameter in the type declaration.
The fact that the programmer marks the type parameter as imaginary does not imply
anything about the variance. Imaginary type parameters are by default invariant. It
is possible to mark the type covariant/contravariant on an imaginary type parame-
ter by adding respectively out/in as a prefix, before the imag prefix. In the example
below we mark the type parameter as covariant.

sealed class Option<out imag T>
class Some<out T>(x: T): Option<T> {}
class None<out imag T>(): Option<T> {}
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Interestingly to note, if we mark the type parameter as contravariant the compiler
enforces the same constraints as for the imaginary type parameter. It is still possi-
ble to mark an imaginary type parameter covariant only in the case when the type
parameter is phantom. It comes from the fact that phantom type parameters are
bivariant.

Semantics of variance are not relevant to our work, the algorithm has to generate
proper constraints and constraint solver solve then taking the variance into account.
Imaginary type parameters semantics only concern the control flow of the algorithm
and the inference progression property, which does not rely either on constraints or
the constraint solver.

7.1.2 Interaction with overloading

Kotlin supports method overloading. Overloading might introduce problems when
intersecting with imaginary type parameters. The example below works.

class Collection<imag T> {
...
fun add(x: T) {}

}
val z = Collection().add(1)

Assume that the collection is a part of the external library. If authors introduced a
new method overload as presented in the example below.

class Collection<imag T> {
...
fun add(x: T) {}
fun add(x: Int) {}

}
val z = Collection().add(1)

This might break the code that depends on the library because of the ambiguous
overload resolution. However, in this case, the dependent code would have form:

class Collection<imag T> {
...
fun add(x: T) {}
fun add(x: Int) {}

}
val z = Collection<String>().add(1)

In this case, this would not result in breaking change on the dependent code side.
Not marking the type parameter as imaginary would force the dependent code to al-
ways resolve this parameter, which could potentially help avoid a breaking change.

The best route of action to address this issue is to suggest to programmers that
they should not use imaginary type parameters in methods they expect might be
overloaded in the future. If type parameters are not imaginary then inference of
those is always forced, possibly avoiding, at least some, breaking changes. Addi-
tionally, it is another argument for the explicit imaginary type parameters annota-
tions.



Chapter 7. Kotlin compiler integration 44

7.2 Implementation

We partially implement the described feature in the Kotlin compiler. We extended
the constraint solver to comply with the semantics defined in the chapter 6, to vali-
date if such an extension is possible. For the declarations of imaginary type param-
eters we assume the following simplifications:

1. Instead of the imag prefix syntax, we assume the imaginary type parameters
have such prefix in their names.

2. We do not provide the static analysis verifying the provided constraints, in-
stead it is the role of the programmer to mark those correctly

class Option<nrT>() {}
fun test_1() {

val xz = Option()
val u: Option<Int> = xz

}

Our implementation does not fail for the given example, though it does not prop-
erly update the variable type. It also does not work with mutable variables. Still it
propagates the types to the previous statements. We focused only on the inference
algorithm on Kotlin’s intermediate representation FIR. The solution does not work
end-to-end. Below we see the inference result as an FIR program.

public final class Option<nrT> : R|kotlin/Any| {
public constructor<nrT>(): R|Option<nrT>| {

super<R|kotlin/Any|>()
}

}
public final fun test_1(): R|kotlin/Unit| {

lval xz: R|Option<TypeVariable(nrT)>| = R?C|/Option.Option|<R|kotlin/Int|>()
lval u: R|Option<kotlin/Int>| = R?C|<local>/xz|

}]

We can see that the type of the variable xz is not properly updated with type infor-
mation, however, the initializer expression is.

Those limitations could be easily addressed in the proper implementation. Our
implementation serves mostly as verification of feasibility to implement the algo-
rithm not as a working solution. An obstacle in implementing the solution to Kotlin’s
compiler is the fact that many places in the codebase rely on the assumption that
variables always have fully inferred types.
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Chapter 8

Summary

We successfully managed to propose an improvement to the Kotlin type inference
algorithm. We achieved so by identifying the property of type parameters not-
leakable. We prove the type inference progression theorem for the programs with
type variables on not-leakable positions. We use the theorem to improve the refer-
ence type inference algorithm. The new algorithm can type some common scenarios
without explicit annotations. It specifically helps in cases when the type is built in
multiple statements, like working with ADTs or building a list.

8.1 Limitations and future work

In this section, we provide a list of limitations of our solution and possibilities for
future work.

8.1.1 Production grade implementation of NTL type inference

We have not implemented the technique into the Kotlin compiler properly. An inter-
esting opportunity for future work is completing this implementation. Such imple-
mentation should consider more interactions with other features like builder-style
inference or smart casts.

8.1.2 NTL type inference correctness validation

We defined the NTL type inference as an application of the main result of our work,
the type inference progression. We do not provide any formal proof of NTL type in-
ference’s correctness. Future work could include investigating the correctness prop-
erly. The algorithm itself is destined to be used in a practical setting, thus such proof
itself might not hold that much value if we extended the type system.

Another possible approach to validate the algorithm is to build an extensive test
set for a reference implementation.

8.1.3 Downcasting

To extract the value of an algebraic data type we need to downcast it. In the subtyping-
based representation of algebraic data types, downcasting has a role akin to pattern
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matching. Kotlin supports downcasting through smart casts. This opens a possibil-
ity to leak a type variable. If Option[α], gets downcasted to Some[α], it is possible to
leak α and use it as a receiver.

The existence of this case does not make the technique useless. For the down-
casting, the full type resolution can still be enforced. In practice, types are composed
in different functions/methods than decomposed, it is not usual that the program-
mer builds the type and immediately decompose it. Our improvements help mostly
with the composition.

An idea of future work is to investigate if this could be avoided, instead of en-
forcing full resolution of a type used in smart cast.

8.1.4 More properties of imaginary type parameters

We have found that imaginary type parameters have an interesting property, non-
leakability, which we can use to improve the type inference algorithm in Kotlin.
However, we believe that those could have more properties worth studying. As an
example:

class BlackBox[T] {}

class ClassName {
fun foo[T](v: BlackBox[T]): T {}

}

We believe that the method foo could not be implemented, as for BlackBox[T], T
is also not-leakable, thus we cannot implement a function that returns this type in a
leakable way if it is only provided in a non-leakable way. An interesting opportunity
is to explore such property further, validate if that is true, and look for interesting
applications in static analysis.

8.1.5 Partial order on IFJ

We have mentioned that IFJ encapsulates the idea of type inference as a process,
there might be programs that have more and less information inferred. However,
what more and less means in this context is merely intuition. An interesting oppor-
tunity for future work is formalizing such relation of partial order on IFJ programs.
As an intuitive example of two types that could be comparable in such ordering:

Pair[α, Int] ≤ Pair[Int, Int]

It allow saying which inference result is better, which could be used for example
in inference algorithm to decide which of ambiguous inference results is better.
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