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Abstract

This thesis investigates the two seemingly unrelated topics of analogue black holes and
entanglement entropy. After a review of the basic mechanisms behind earlier water-based
analogues and analogue black holes in Bose-Einstein condensates, we retrace the ideas behind
a recently proposed analogue black hole in a Bose-Einstein condensate of light, in which the
authors demonstrate that the acoustic horizon emits phononic radiation. It is suggested that
the creation of entangled phonon pairs at the horizon might be behind this phenomenon,
which could potentially be confirmed by calculating the entanglement entropy of the acoustic
radiation. As the phonons are governed by the equation of motion for free, massless scalar
fields, we consider a treatment of entanglement entropy based on the discretization of
scalar fields in the direction normal to the entangling surface. The regularized theory is
mapped to a finite one-dimensional chain of harmonic oscillators, for which the reduced
density matrix is known exactly. This result is used to numerically predict the entanglement
entropy of oscillator-chains representing scalar fields in d ∈ {1, 2, 3} spatial dimensions on
flat backgrounds, in preparation of the method’s future extension to curved spacetimes. We
confirm that the analytical results for a (1+1)-dimensional scalar field are approximated
by this numerical method, and proceed to verify the area-law for scalar fields in d = 3
spatial dimensions. The approach is extended to a method which requires only the position
and momentum correlators restricted to subsystems of the full lattice, which allows us to
obtain improved results for the studied cases. It is shown that this method can be efficiently
used to study the entanglement entropy of scalar fields mapped to square lattices, which we
demonstrate explicitly for a discrete circle as a function of its perimeter, and compare its
predictions to those of the one-dimensional chain representation of scalar fields.





Table of contents

1 Introduction 1

2 Entanglement Entropy 5
2.1 A simple quantum mechanical perspective . . . . . . . . . . . . . . . . . . . . 5
2.2 Entanglement entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Analogue black holes 9
3.1 Sonic black holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 BEC-based analogues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Analogue black hole in a BEC of light . . . . . . . . . . . . . . . . . . . . . . 18

3.3.1 Radial-vortex based analogue . . . . . . . . . . . . . . . . . . . . . . . 18
3.3.2 Intermezzo: Bogoliubov transformations . . . . . . . . . . . . . . . . . 21
3.3.3 Analogue Hawking spectrum . . . . . . . . . . . . . . . . . . . . . . . 23
3.3.4 Greybody factor, emitted particles, and correlators . . . . . . . . . . . 25

4 Curved spacetime QFT in the Schrödinger representation 29
4.1 Minkowski spacetime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2 Generalization to curved backgrounds . . . . . . . . . . . . . . . . . . . . . . 32
4.3 Two illustrative examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.4 Acoustic black hole ground state . . . . . . . . . . . . . . . . . . . . . . . . . 41

5 Full-lattice dependent entanglement entropy 45
5.1 Entanglement entropy and harmonic oscillators . . . . . . . . . . . . . . . . . 45

5.1.1 Properties of the harmonic oscillator . . . . . . . . . . . . . . . . . . . 46
5.2 A simple system: two coupled harmonic oscillators . . . . . . . . . . . . . . . 46
5.3 Extension to larger lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.3.1 Ground state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.4 Free scalar fields on a lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.4.1 D = 1 ⊕ 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.4.2 D = 3 ⊕ 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.4.3 D = 2 ⊕ 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64



x Table of contents

6 Sublattice-dependent entanglement entropy 71
6.1 Entropy and correlators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.2 Free scalar fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.2.1 D = 1 ⊕ 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.2.2 D = 2 ⊕ 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.2.3 D = 3 ⊕ 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7 Conclusion and Outlook 91

References 95

Appendix A The Jacobi-Anger identity 101

Appendix B Bessel functions: properties and asymptotic expansion 103
B.1 Bessel functions and Rindler . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
B.2 Kontorovich-Ledebev transform . . . . . . . . . . . . . . . . . . . . . . . . . . 103
B.3 General properties and identities . . . . . . . . . . . . . . . . . . . . . . . . . 104

B.3.1 Bessel differential equation . . . . . . . . . . . . . . . . . . . . . . . . 104
B.3.2 Hänkel functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
B.3.3 Changing signs in modified Bessel functions . . . . . . . . . . . . . . . 104
B.3.4 Complex conjugation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
B.3.5 Completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

B.4 Asymptotic expansions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
B.5 Nicholson’s integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
B.6 Cross-term integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Appendix C Entropy in classical information theory 107



Chapter 1

Introduction

Generations of physicists have marvelled over the two seemingly unrelated topics of black
holes and Bose-Einstein condensates. The former a pinnacle of high-energy physics, while the
latter is a favourite among the condensed matter community. It is only on rare occasions that
high-energy and condensed matter merge, yet when they do, the results are often interesting
and unexpected. One such subdomain crafted from both pillars of physics, are analogue
black holes. Though the debate on whether or not these analogues properly capture the
inner workings of astrophysical black holes is still ongoing [3, 73], occasionally making the
subject slightly controversial, they are nevertheless interesting quantum objects in their own
right, which are both theoretically and experimentally realizable and comprehensible. In fact,
in recent years multiple experimental realizations have emerged [12], including magnonic
analogues in superfluid helium [20] and analogue black-hole lasers [71], with some publications
claiming to have measured the acoustic equivalent of Hawking radiation [55].

Before we embark upon developing an understanding of the novel analogue black hole
suggested in [48], which lies at the heart of the first part of this thesis, we allow ourselves
the freedom to first explore some of the easier analogues, which we do by roughly following
the historical developments in this domain. Chapter 3 will commence with a description of
the mathematics behind the classical, hydrodynamic models inspired by Unruh’s seminal
work [75], which is one of the earliest publications on the topic (but inarguably the most
significant). However, it will not be long before we tread into the modern world of analogue
black hole physics, by fusing these ideas and concepts with Bose-Einstein condensates in
the hydrodynamic regime, which have been realized in various experiments, cf. [71, 23]. We
explore the general framework and physics behind analogues in Bose-Einstein condensates,
and demonstrate the coupling of phonons to an effective metric mimicking curved backgrounds
and the existence of an acoustic event horizon. After this brief excursion, we shall return to
[48], from which we reproduce its reasoning and mathematics, and demonstrate the presence
of acoustic Hawking radiation.
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In recent years, there has been considerable attention for measuring acoustic Hawking
radiation experimentally [71]. In part because constructing an analogue capable of this
phenomenon is a great experimental achievement, but also to elucidate and capture the
mechanism underlying the production of thermalized radiation emitted by the acoustic
horizon. Some sources for quantum-based analogues, such as the experiment proposed in [48],
suggest that the acoustic Hawking radiation is caused by entangled phonon pairs created at
or near the acoustic horizon. An advantage of these systems, however, is the fact that the
inner region is not ‘off-limits’ or demanding to describe. The experimentalist can easily peek
behind the acoustic event horizon to see what precisely is going on, while perhaps performing
a few measurements on the go. It would therefore be interesting to ask ourselves whether one
could potentially mathematically demonstrate that the supersonic region (‘inner region’) and
the emitted acoustic radiation are entangled. Sadly, after posing this interesting question, we
depart from analogue black holes for the remainder of our story, as we must first construct
and test several formalisms to predict the entanglement entropy.

The second part of the thesis is devoted to determining the entanglement entropy of free,
massless scalar fields. There are multiple routes to achieve this goal, yet in our case we are
particularly interested in a numerical approach known as the ‘real time formalism’ [58]. The
earlier works on this Hamiltonian approach, most notably [69], discretise the field theory
to a lattice of shells, which are then reduced to a chain of coupled harmonic oscillators,
where the coupling constants are a remnant of the geometry of the original theory. As the
Hamiltonian of the (discrete) system is known, the corresponding joint-state wave function,
and hence its reduced density matrix, can be found analytically. In Chapter 5 we present the
derivation behind this statement and describe an algorithm which extracts the entanglement
entropy of the chain by means of the reduced density matrix. Following this derivation, we
will test our algorithm on various free, massless scalar fields, in particular those for which
some results are known, and demonstrate that the entanglement entropy is seen to scale
with the boundary of the subregion when d > 1 [26]. In Chapter 6 we turn to yet another
route of deriving the entanglement entropy from the Hamiltonian formulation, but this time
one where the explicit calculation of a series of auxiliary matrices is unnecessary [15]. We
subject the resulting algorithm to the same tests as employed in Chapter 5, and compare
their predictions. The additional freedom of the approach from Chapter 6 will then be used
to determine the entanglement entropy of subregions of square lattices, on which we position
a discrete circle, which is compared to predictions for the actual circle obtained by means of
radial discretisation.

The theory necessary to understand the aforementioned chapters will be discussed in Chapter
2, which briefly (yet thoroughly) introduces the concept of entanglement and von Neumann
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Fig. 1.1 This figure provides a simple overview of the interconnections between the chapters.

entropy from an information theoretic perspective. This chapter is meant to be a gentle
introduction, with as a key takehome message the requirements needed to find the von
Neumann entropy. Lastly, we address the aim of Chapter 4, which discusses the Schrödinger
representation for scalar fields on curved spacetimes. Since the calculation of the entangle-
ment entropy in Chapter 5 and Chapter 6 proceed through a Hamiltonian route, where the
ground state wave function of the joint-system can be explicitly computed, it is interesting
to wonder whether finding the continuum-spacetime kernel and subsequent discretization
gives a correction to the approach described so far (discretization followed by finding the
kernel). This, in a nutshell, is the aim of Chapter 4. It describes a formalism which allows
us to write down a wide variety of continuum-spacetime kernels for scalar fields, of which
the radially discretized forms are exploited in Chapter 6. We also use this formalism to
examine a possible expression for the ground state wave functional of the analogue black hole
from [48]. This expression will not return in Chapter 5 and Chapter 6, yet upon verification
could also be subjected to radial discretization and considered in the context of our algorithms.

After skim-reading the table of contents, the chapters may seem rather disjoint at first.
In a way, this is indeed the case. Despite our review of analogue black holes and the de-
scription of the analogue suggested in [48], our construction of the entanglement entropy
algorithms more or less stands on its own, where it serves to ultimately unite the two topics,
but does not manage to do so in this dissertation. Yet this does not mean that a connection
between the two is absent. In fig.(1.1) we give a rough outline of how the chapters are
connected, where Chapter 2 covers the prerequisites of Chapter 5 and Chapter 6, while the
results from Chapter 3 are used to study the analogue’s possible ground state wave functional
in Chapter 4. The latter also covers some of the kernels for our fields on flat backgrounds,
and as such directly provides some of the results needed in Chapter 5 and Chapter 6. As a
small last aide on the reader’s behalf, we note that the reader on a tight schedule benefits
most from studying Chapter 5 and Chapter 6, as these last two chapters reflect best the work
we conducted on this interesting and perhaps even under-represented technique in calculating
entanglement entropy. The other two chapters are recommended for readers with slightly
more time, as it connects the calculation of the entanglement entropy for general scalar fields
to how we ultimately hope to determine the entropy of the analogue from [48].





Chapter 2

Entanglement Entropy

“...no one really knows what entropy really is, so in a debate
you will always have the advantage.”
Claude Shannon on JvN

2.1 A simple quantum mechanical perspective

Before we turn to measures for the entanglement entropy, we will briefly consider a simple
quantum mechanical interpretation of entanglement. There are many excellent reviews
available on this topic, and in our case we base our discussion on [58]. Before providing some
physical intuition, we aim for a slightly more mathematical treatment. Consider a pure state
|Ψ⟩ ∈ H, where we write the total Hilbert space H = HA ⊗ HB in terms of subsystems A
and B. The Hilbert space HA is spanned by the states {|ψ⟩a | a ∈ N}, while the orthonormal
set {|ϕ⟩b | b ∈ N} spans HB. We may therefore write the pure state in H as

|Ψ⟩ =
∑
a,b

cab |ψ⟩a ⊗ |ϕ⟩b . (2.1)

There are two distinct situation that one must consider. It may be possible that the matrix
elements cab = cacb are separable, in which case the state can be rewritten as a product of
two pure states in the separate Hilbert spaces, i.e. one would find |Ψ⟩ = |ψ⟩ ⊗ |ϕ⟩, where
|ψ⟩ ∈ HA and |ϕ⟩ ∈ HB. Note that in this situation performing a measurement on subsystem
A would tell us nothing about subsystem B. Such states are known as ‘separable’ or ‘product
states’. Our analysis becomes more interesting when we take cab ≠ cacb, such that the
pure state of the composite system can no longer be separated into pure states in HA and
HB. These states are known as ‘entangled’. Let us now develop some physical intuition by
studying the popular example of the Bell state. Following [58], we denote this pure state as
|Ψ⟩ ∈ HA ⊗ HB, where the Hilbert spaces of the subsystems are given by HA = {|0⟩ , |1⟩}
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Fig. 2.1 This figure is an adaptation from [41]. On the left it shows a composite system
where A and B are not entangled, and as such has pure reduced density matrices, and is
described by a separable state. On the right we show the opposite situation, where A and B
are entangled, and the reduced density matrices of the subsystems are mixed. These two
cases have a vanishing and non-vanishing entanglement entropy, respectively.

and HB = {|0⟩ , |1⟩}, yet for this particular example we restrict our gaze to the state

|Ψ⟩ = 1√
2

(|01⟩ − |10⟩), (2.2)

where we use the shorthand |ij⟩ = |i⟩A ⊗|j⟩B . This state is inseparable, and hence an example
of an entangled state. But what can we say about the ‘amount’ of entanglement between the
subsystems? Let us assume we perform a measurement on subsystem A, which returns the
eigenvalue 1. This immediately fixes the eigenvalue of the cubit of system B to 0. Hence,
observing subsystem A reduces our uncertainty of subsystem B. The influence a measurement
on one subsystem has on the ‘uncertainty’ of the other subsystem is reminiscent of the context
in which Shannon entropy is typically defined (the interested reader is referred to appendix C).
Yet despite this interesting observation, we are still not capable of quantitatively describing
the ‘amount’ of entropy between the subsystems. The required machinery for this task is
developed in the next section, where the parallel with Shannon entropy is solidified.

2.2 Entanglement entropy

Now that we have developed a basic understanding of entanglement, we return to our previous
question of the entanglement measure. It turns out that this question is most easily answered
by representing quantum states in terms of density matrices. In fact, one can show [57] that
each ensemble of states {pi, |ψi⟩}, with pi the probability of measuring |ψi⟩, has a density
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matrix
ρ =

∑
i

pi |ψi⟩ ⟨ψi| , (2.3)

for which the relation Tr(ρ) = 1 is ensured through normalization of the probability dis-
tribution function. One can easily demonstrate that if the ground state is pure, i.e. if
one can write |Ψ⟩ = |ψ⟩ ⊗ |ϕ⟩, the density matrix should obey Tr(ρ2) = 1. However, if
the state is non-separable, we are able to show that Tr(ρ2) < 1. This leads us to define a
quantum-equivalent of the Shannon entropy, which is known as the von Neumann entropy,
and given by

S(ρ) = −Tr(ρ log ρ) = −
∑

i

λi log λi, (2.4)

where λi are the eigenvalues of the density matrix ρ. This expression is zero for pure states,
where the density matrix has eigenvalues one, yet becomes positive for mixed states. Despite
the strides that we have just made, one may wonder if this expression carries any predictive
power for e.g. the Bell state we studied earlier, where we were particularly interested in
studying the entanglement of one subregion with respect to its complement. This extension
can be achieved by defining the reduced density matrix

ρA = TrB(ρ), (2.5)

where the partial trace TrB is defined such that it traces over all degrees of freedom of
subsystem B (it acts only on the Hilbert space HB). Similarly, one may define the reduced
density matrix for region B as ρB = TrA(ρ). Replacing the density matrices in Eq.(2.4) by
the reduced density matrix for region A leads to the entanglement entropy of this particular
subsystem:

SA ≡ S(ρA) = −Tr(ρA log ρA)
= −

∑
i

λA
i log λA

i ,
(2.6)

where λA
i are the eigenvalues of the reduced density matrix ρA. Similarly, one could write

down the entanglement entropy for subsystem B, which follows from

SB ≡ S(ρB) = −Tr(ρB log ρB)
= −

∑
i

λB
i log λB

i ,
(2.7)

where λB
i are the eigenvalues of the reduced density matrix ρB. An interesting situation

to consider is when the state |Ψ⟩ is pure, as is the case for the ground states we will later
encounter in Ch.5 and Ch.6. By means of a Schmidt decomposition, one can show that the
entanglement entropy for the subsystems of a bipartite composite system in a pure state are
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identical [57, 58]; we may therefore add the useful relation SA = SB to our armoury, which
we will use extensively in Ch.5. In fig.(2.1) we illustrate the relation between the reduced
density matrix and separable or entangled states. In fact, one could easily demonstrate that
Tr(ρ2

A) = 1 (i.e. the reduced density matrix is pure) when the composite system is separable,
whereas Tr(ρ2

A) < 1 for entangled states. As a simple example, let us consider the Bell state
Eq.(2.2) again, but this time determine the reduced density matrix for cubit A, as in [58]. It
can easily be shown that ρA = 1

21, which implies that the condition Tr(ρ2
A) < 1 is satisfied,

and hence leads us to classify the state as mixed. Inserting the eigenvalues of ρA into the
entanglement entropy Eq.(2.6) yields a non-zero result; the subsystems are entangled, as we
set about to proof.

In Ch.6 we will occasionally refer to the Rényi entropy, which can be related to the definition
of the von Neumann entropy. It would be outside the scope of this thesis to discuss this
measure in detail, and as such we simply provide the required expression. The Rényi entropy
is given by [54]

Sα(ρ) = 1
1 − α

log(Tr[Cρα]), (2.8)

where the order α ∈ (0, 1) ∪ (1,∞) and C is a normalization constant of the density matrix.
In Ch.6 we will demonstrate explicitly that the α → 1 limit of the Rényi entropy is equivalent
to the von Neumann entropy, as described by e.g. [68].

As a final comment, we want to share that a discussion as brief as ours hardly does the
extensive subject of quantum information theory justice. This section was roughly based
on [57, 37, 25, 80, 58], and the interested reader is encouraged to explore the discussions in
these sources further, as they provide a wealth of extra information on this topic and its
connection with classical information theory,



Chapter 3

Analogue black holes

“They all confirm that a black hole ought to emit particles
and radiation as if it were a hot body...”
Stephen Hawking

3.1 Sonic black holes

Before discussing the analogue black hole proposed in [48], which lies at the heart of this
dissertation, we will revisit some of the early work on analogue black holes. In particular,
we aim to retrace the mathematics and ideas behind Unruh’s seminal 1981 work [75], which
catalyzed the research into black hole analogues, and provided a simple set of principles still
used for nearly every analogue experiment today. The general idea behind this early type
of analogue black hole is perfectly captured by Unruh’s description of the event horizon to
an audience of black-hole layman in the early ’70s [3]. He presented his audience with the
simple case of a stream of water, a small brook if you wish, which eventually terminates in a
drop and becomes a waterfall. The fluid velocity of the stream increases as it approaches the
drop, and for convenience we assume that it adheres to a linearly increasing velocity profile
over the full domain, as depicted in fig.(3.1b). The sound velocity in the stream is constant,
which we denote by cs. Now suppose we find ourselves on the bank of this stream and release
a ‘fish’ (or any other transmitter) into the water, which is programmed to send us sound
signals, as shown in fig.(3.1a). The fish does not swim itself but simply ‘rests’; it is dragged
along by the stream at velocity v, while transmitting acoustic signals to us from its current
position. As long as the transmitter is in the subsonic region, where v < cs, the signal will
reach us as expected, albeit being ‘red-shifted’. Yet once the fish enters the waterfall, the
stream velocity becomes v > cs, i.e. it enters the supersonic region, such that its signals will
no longer reach us, or for that matter even reach the top of the waterfall. Unruh described
this ‘point of no return’ at v = cs as being equivalent to an event horizon. Effectively, from
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(a) (b)

Fig. 3.1 Figure (a) shows a transmitter in a stream of water with increasing fluid velocity. The
velocity profile of the fluid and its division into a subsonic and supersonic region compared
to the sound velocity cs is shown in (b).

the perspective of the acoustic waves the increasing gradient in the stream velocity mimics
the geometric properties of the curved spacetime it represents.

This example is of course a grave oversimplification of how modern analogues are con-
structed, yet formalizing the discussion above through some basic hydrodynamics provides a
stepping stone to modern, BEC-based analogues. There is an abundance of literature avail-
able on this topic, some involving highly complicated hydrodynamic derivations, yet we will
confine ourselves to the earlier, slightly simpler papers on its foundations (as this dissertation
is not aimed at providing a detailed description of state-of-the-art water-based sonic black
holes). We will not outline the full proof, but rather provide a review of [75, 74, 76, 78, 79],
since the general outline is very similar to the BEC-analogue derivation we aim to explore
next. The crux of the derivation lies in the assumption that the fluid is inviscid, vorticity
free (and hence locally irrotational), barotropic and the flow is steady [78, 79]. Using the
notation from [46], we commence by finding the continuity equation

∂ρ

∂t
+ ∇ · (ρv) = 0, (3.1)

while the Euler equation can be written as

∂v
∂t

= −∇(1
2v

2 + ϕ+ Φ + h(p)), (3.2)

with v2 = v · v the inner product of the fluid velocity. The Euler equation contains a
Newtonian gravitational potential ϕ and a driving force potential Φ. Furthermore, it contains
a quantity h(p), which in [75, 78, 79] is defined as

h(p) =
∫ p

0

dp′

ρ(p′) , (3.3)
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and relates to the assumption that the density is only dependent on the pressure. The
assumption that the fluid is free of vortices allows us to write v = −∇ψ, with ψ the velocity
potential. As such, the Euler equation is seen to reduce to the expression

∂ψ

∂t
= −(1

2(∇ψ)2 + ϕ+ Φ + h(p)). (3.4)

These equations are all one needs to solve for and obtain the hydrodynamic variables (ρ, p, ψ),
which characterize the full system. So far, we have not encountered anything too surprising.
But things get slightly more interesting once we linearize these variables around a background
fluid (ρ0, p0, ψ0), as in [75], such that the hydrodynamic variables become ρ = ρ0 + δρ,
p = p0 + δp and ψ = ψ0 + δψ, where δρ ≪ ρ0, δp ≪ p0 and δψ ≪ ψ0. The fluctuations
characterized by (δρ, δp, δψ) describe acoustic waves propagating in the background fluid [46],
whose hydrodynamic equations will lead to interesting new physics. Thus, without further
ado, let us substitute the linearized hydrodynamic variables into the continuity equation
Eq.(3.1) and the Euler equation Eq.(3.4), the former of which splits into the two equations

∂ρ0
∂t

− ∇(ρ0∇ψ0) = 0, (3.5)

which describes the background contribution and

∂δρ

∂t
− ∇(δρ∇ψ0 + ρ0∇δψ) = 0, (3.6)

which captures the continuity equation for the fluctuations up to first-order. The reader is
encouraged to show this themselves, yet [78, 79] greatly aids the reader in a haste. Similarly,
the Euler equation Eq.(3.4) splits into the two expressions

∂ψ0
∂t

= −(1
2(∇ψ0)2 + ϕ+ Φ + h(p0)) (3.7)

for the background contribution and

∂δψ

∂t
= v0 · ∇δψ − δp

ρ0
(3.8)

for the acoustic waves. Note that these equations fix both (ρ0, p0, ψ0) and (δρ, δp, δψ), and
solving for ψ0 and δψ allows us to obtain all other hydrodynamic variables. Next, following
[78, 79], we invert Eq.(3.8) for δp/ρ0, insert it into Eq.(3.6), and use Eq.(3.3), which gives
the wave equation for the acoustic fluctuations

∂

∂t
(∂ρ
∂p
ρ0(∂δψ

∂t
+ v0 · ∇δψ)) − ∇ · (ρ0∇δψ − ∂ρ

∂p
ρ0v0(∂δψ

∂t
+ v0 · ∇δψ)) = 0. (3.9)
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This slightly daunting looking equation is all that we require, as we will show without
further delay. We simplify the notation by adopting the definition of the sound velocity [46]
c2

s = ∂p/∂ρ, and define a metric

gµν = ρ0
cs

(
−(c2

s − v2
0) −vT

0
−v0 1

)
. (3.10)

The wave equation Eq.(3.9) can then be cast into the suggestive form

□̂δψ = 1√
|g|
∂µ(
√

|g|gµν∂νδψ) = 0, (3.11)

which is the equation of motion for a scalar field on a general curved spacetime [14]. Hence,
we conclude that the background fluid couples to the Minkowski metric, while the acoustic
waves couple to a non-trivial metric and effectively ‘mimics’ a free scalar field on a curved
background. Let us examine the metric Eq.(3.10) a bit closer, as to gauge the type of
propagation the acoustic waves are subjected to. The infinitesimal line-element can be
written as

ds2 = ρ0
cs

[−c2
sdt

2 + (dx − v0dt)2]. (3.12)

For our convenience, we cast this expression into a more familiar form through using the
coordinate-transformation specified in [76, 78, 79], which is given by

dτ = dt+ v0 · dx
c2

s − v2
0
. (3.13)

Substitution into the line-element and subsequently rewriting it in terms of spherical coordi-
nates gives

ds2 = ρ0
cs

[−(c2
s − v2

0)dτ2 + (1 − v2
0
c2

s

)−1dr2 + r2dΩ2], (3.14)

which is of a Schwarzschild-like form. Despite the fact that it does not exactly capture a
Schwarzschild-geometry, which is spoiled by the element g00 from our metric, it does capture
the basic characteristics. We note that the metric becomes singular for v0 = cs, and that
the time-like Killing vector changes sign when the acoustic wave leaves the subsonic region
and enters the supersonic region. In between these regions the Killing vector becomes null,
marking an acoustic horizon. It also seems to capture the correct signature of a scalar field.
A more detailed digression into the similarities between actual scalar fields on Schwarzschild-
geometries and our acoustic waves can be found in [78, 79], and we will now proceed to
study a system underlying the paper we hope to describe soon. The key takeaway from this
section is that, under the correct assumptions, the hydrodynamic equations of simple acoustic
fluctuations are capable of ‘mimicking’ the basic properties of free scalar fields on non-trivial
backgrounds.
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3.2 BEC-based analogues

The previous section demonstrated how a classical (hydrodynamic) system, when assumed to
be non-viscid, barotropic and irrotational, is able to mimic the behaviour of a scalar field on
a curved background. Yet the more subtle effects associated with an acoustic horizon, such
as the phononic Hawking radiation, suffer from experimental constraints when considering
typical fluids. For example, most fluids which are experimentally accessible are in fact not
perfectly non-viscous, and therefore break the gravitational analogy [43]. Another severe
difficulty resides in the background noise and impurities that most (classical) fluids suffer
from, such that measuring the acoustic Hawking radiation is potentially obscured, and might
in fact become fully indistinguishable from the noise [43]. A promising alternative is offered
by superfluids, which are known to experience a frictionless flow [66], hence being effectively
non-viscous, and are typically very pure [43]. Since Bose-Einstein condensates (BECs) are
conceptually well-understood and can be accurately controlled experimentally [32], this
section aims at demonstrating that a BEC in the hydrodynamic regime can be shown to
support a modified version of the acoustic metric Eq.(3.10). We will start our discussion by
(very) briefly recalling some of the basic ideas behind Bose-Einstein condensation. Subse-
quently, we derive the Gross-Pitaevskii equation, which acts as the starting point for our proof.

Some might consider it a blatant crime to reduce the topic of Bose-Einstein condensa-
tion to a few sentences, but as our discussion of analogue gravity is only in its infancy, we
make haste and mention only a few important facts to get us started. Heuristically, a bosonic
many-body system undergoes Bose-Einstein condensation when a macroscopic amount of the
bosons occupy the ground state governed by some external trapping potential [72, 43]. The
order-parameter of this phase transition is given by ⟨N0⟩ / ⟨N⟩, where ⟨N0⟩ is the average
number of particles in the condensate. It can be shown that, below the critical temperature
Tc, the order-parameter is non-vanishing in the thermodynamic limit, and hence ⟨N0⟩ is of
the same order as ⟨N⟩ [18]. Similarly, one could state that the density ⟨N0⟩ /V does not
vanish in the thermodynamic limit [72]. This fixes our definition of a ‘macroscopic amount’
of bosons occupying the lowest-energy state. In general, one can argue (cf. [72]) that the
non-commutativity of fields is irrelevant due to the large particle number, and as such the
order parameter of the transition can equally well be taken to be ϕ0(x, t) = ⟨Ψ̂(x, t)⟩, which
is known as the macroscopic wavefunction of the condensate, with a normalization factor
⟨N0⟩ =

∫
dx|ϕ0(x, t)|2. At this point we temporarily depart from the theory of BECs and con-

sider arbitrary bosonic fields, yet one could always substitute the macroscopic wavefunction
into the following expressions to obtain a zeroth-order approximation, which describes the
classical condensate. In a while, however, we introduce fluctuations around the macroscopic
wave function, which will emerge as our gateway to the hydrodynamic equations.
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A convenient starting point to derive the quantum-equivalents of the hydrodynamic equations
is the many-body Hamiltonian

H =
∫

dxΨ̂†(t,x)[− ℏ2

2m∇ + Vext(x)]Ψ̂(t,x)

+ 1
2

∫
dxdx′Ψ̂†(t,x)Ψ̂†(t,x′)V (x − x′)Ψ̂(t,x′)Ψ̂(t,x), (3.15)

where Ψ̂ are bosonic fields obeying the standard commutation relations and V (x − x′) is a
generic interatomic potential. The two terms of first integrand stem from the single-particle
Hamiltonian. The evolution of the fields is governed by the Heisenberg equation

iℏ
∂

∂t
Ψ̂(t, r) = [Ψ̂(t, r), H], (3.16)

which will eventually lead us to the Gross-Pitaevskii equation. For clarity, we consider the
terms from the single-particle Hamiltonian and the interaction terms separately, with the
former giving

iℏ
∂

∂t
Ψ̂(t, r) = − ℏ

2m

∫
dr′[Ψ̂(t, r), Ψ̂†(t, r′)(∇2 + Vext(r′))Ψ̂(t, r′)]

= − ℏ
2m

∫
dr′δ(r − r′)(∇2 + Vext(r′))Ψ̂(t, r′) = − ℏ

2m(∇2 + Vext(r))Ψ̂(t, r),

(3.17)

where from the first to second line we have used the Leibniz-rule equivalent for commutators,
and for the last equality we have simply used the commutation relations of the fields repeatedly.
The interaction term is slightly more labour-intensive, but after sharing a little taster through
the single-particle term, we leave the remainder for the interested reader. We find

iℏ
∂

∂t
Ψ̂†(t, r) = 1

2

∫
dr′dr′′V (r′ − r′′)[Ψ̂(t, r), Ψ̂†(t, r′)Ψ̂†(t, r′′)Ψ̂(t, r′)Ψ̂(t, r′′)]

=
∫

dr[Ψ̂†(t, r′)V (r′ − r)Ψ̂(t, r′)]Ψ̂(t, r),
(3.18)

which merely requires repeatedly using the commutation relations and relabeling indices of
the fields. Combining Eq.(3.17) and Eq.(3.18) then leads to the Heisenberg equation for the
fields:

iℏ
∂

∂t
Ψ̂(t, r) =

[
− ℏ

2m∇2 + Vext(r) +
∫

dr′Ψ̂†(t, r′)V (r′ − r)Ψ̂(t, r′)
]

Ψ̂(t, r). (3.19)

We replace the interatomic potential by a point-interaction term V (r − r′) = 4πℏ2a
m δ(r − r′) ≡

λδ(r − r′), which according to [72] is allowed when the interatomic interaction is fully
characterized by the s-wave scattering length a. Since binary collisions characterized by
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s-wave scattering are the most important interactions in cold dilute gases [43], we remark that
said replacement is justified. Note that introducing this pseudopotential simplifies Eq.(3.19)
considerably, which leads to the expression

iℏ
∂

∂t
Ψ̂(t, r) =

[
− ℏ

2m∇2 + Vext(r) + λ|Ψ̂(t, r)|2
]

Ψ̂(t, r). (3.20)

Enter stage the macroscopic wavefunction ϕ0(x, t). By considering a Bogoliubov shift,
where we expand the fields in terms of the macroscopic wavefunction of the condensate and
fluctuations δϕ(x, t) [72], we write

Ψ̂(x, t) = ϕ0(x, t) + δϕ(x, t), (3.21)

where we recall that ϕ0(x, t) = ⟨Ψ̂(x, t)⟩. The fluctuations describe phonons (quantized
acoustic waves) in the condensate. We will in time get to treat those more carefully, but let
us for now focus on the former, which leads to

iℏ
∂

∂t
ϕ0(t,x) =

[
− ℏ2

2m∇2 + Vext(x) + λn0
]
ϕ0(t,x), (3.22)

where n0 = |ϕ0(x, t)|2 is the condensate density, and is implicitly dependent on the position
and time. This result is known as the time-dependent Gross-Pitaevskii equation and governs
the evolution of the classical condensate [62, 63]. A similar expression can be found for the
fluctuations, which up to first-order is given by

iℏ
∂

∂t
δϕ(t, r) =

[
− ℏ2

2m∇2 + Vext(r) + 2λn0
]
δϕ(t, r) + ϕ0(t, r)2δϕ†(t, r). (3.23)

As mentioned in [5], the Gross-Pitaevskii equation for the classical condensate can equally
well be obtained from the time-dependent Landau-Ginzburg action

S =
∫

dtdr
[
ϕ†

0(r, t){iℏ∂t + ℏ2

2m∇2 − Vext(r)}ϕ0(r, t) − 1
2λ|ϕ0(r, t)|4

]
. (3.24)

But let us not wander off too much, and return to the Gross-Pitaevskii equation. First, we
separate the phase and real amplitude of the condensate wave function by means of the
Madelung representation [5, 63], given by

ϕ0(t,x) = √
n0e

−iθ(x,t)/ℏ, (3.25)

with n0 as defined before. The phase is given by the expression

θ(r, t) = (1
2mv

2 + µ)t−mv · x, (3.26)
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as discussed in [63, 82]. Next, we aim to derive the hydrodynamic equations for this system
by means of the Gross-Pitaevskii equation, for which we closely follow the discussion by
[5, 6]. Our first step is to insert the Madelung representation in the Gross-Pitaevskii equation
Eq.(3.22), which governs the classical condensate. Separating the imaginary and real parts of
the resulting expression leads to the quantum equivalent of the continuity equation

∂

∂t
n0 = − ℏ

m
∇ · (n0∇θ) ≡ −∇ · (n0vs), (3.27)

where we identify the superfluid velocity vs = ℏ
m∇θ. We furthermore obtain an equivalent of

the Hamilton-Jacobi equation

∂

∂t
θ = − 1

2m(∇θ)2 − λn0 − Vext + ℏ2

2m
∇2√

n0√
n0

. (3.28)

The latter trivially leads to the quantum equivalent of the Euler equation by taking the
gradient, such that

m
∂

∂t
vs = −∇(1

2mv
2
s + Vext + λn0 − ℏ2

2m
∇2√

n0√
n0

), (3.29)

where v2
s = ||vs||2. These are equivalent in shape to the hydrodynamic equations for the

classical fluid we studied earlier, apart from the quantum potential in the Euler equation.
Subsequently, we hope to find similar equations for the fluctuations, in line with the approach
taken for the classical case. There are two distinct ways to arrive at the hydrodynamic
equations for the fluctuations, where the most straightforward follows from taking n0 → n0+δn
and θ → θ + δθ, as discussed in [72]. However, the analogue black hole literature seems to
favour a different route, which considers an explicit expression for the fluctuations known as
the quantum acoustic representation [5], given by

δϕ = ( 1
2√

n0
δn− i

√
n0
ℏ

δθ)e−iθ/ℏ. (3.30)

Note that both approaches will ultimately yield the same result, and it therefore only depends
on the reader’s personal taste. Upon inserting this representation into Eq.(3.23), followed by
a considerable amount of bookkeeping, one ends up with the results from [5, 6], where the
continuity equation for the fluctuations is found to be

∂

∂t
δn = − 1

m
∇ · (δn∇θ + n0∇δθ), (3.31)

while the Hamilton-Jacobi equation becomes

∂

∂t
δθ = ℏ2

2mD̂δn− 1
m

∇θ · ∇δθ − λδn. (3.32)
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In line with [5] we have defined the differential operator

D̂δn = − δn

2n3/2
0

∇2√
n0 + 1

2√
n0

∇2( δn
√
n0

). (3.33)

As stated in [72], it is useful to consider the Thomas-Fermi limit, where the kinetic energy is
small with respect to the interaction energy, such that Eq.(3.32) reduces to the more tractable
expression

∂

∂t
δθ ≈ − 1

m
∇θ · ∇δθ − λδn. (3.34)

The attentive reader will probably note a striking similarity with our derivation of the effective
acoustic metric from the (classical) hydrodynamic equations. In fact, if we invert Eq.(3.34)
for δn and then substitute this relation in the continuity equation Eq.(3.31), we end up with
the wave equation

∂

∂t
( ∂
∂t
δθ + 1

m
∇θ · ∇δθ) − λ

m
∇ · (n0∇δθ − ∇θ( 1

λ

∂

∂t
δθ + 1

m
∇θ · ∇δθ)) = 0, (3.35)

which governs the fluctuations of the classical condensate. After some trial-and-error, the
metric

gµν = n0
mcs

(
−(c2

s − v2
s) −vT

s

−vs 1

)
(3.36)

is identified as the one to cast Eq.(3.35) into the form

1√
|g|
∂µ(
√

|g|gµν∂νδθ) = 0, (3.37)

where we have introduced the sound velocity c2
s = λn0/m. Hence, we conclude that, as for

the classical hydrodynamic case, the fluctuations effectively mimic the propagation of a scalar
field on a non-trivial background. Phrased differently, the classical condensate couples to
the Minkowski metric, whereas the fluctuations couple to the non-trivial metric Eq.(3.36),
while both are governed by the Gross-Pitaevskii equation. The coordinate-transformation
Eq.(3.13) from the previous section casts the metric into the form

ds2 = n0
mcs

[−c2
s(1 − v2

s

c2
s

)dτ2 + (1 − v2
s

c2
s

)−1dr2 + r2dΩ2], (3.38)

which has the same Schwarzschild-like shape as before, except for the conformal factor. The
metric is seen to have the correct signature, and the time-like Killing vector becomes null at
vs = cs, which marks the presence of an acoustic horizon. Transforming the theory into an
experiment would require creating a velocity profile such that there exists a unique rh for
which vs(rh) = cs. Furthermore, we should enforce the existence of a supersonic region r < rh,
where vs(r) > cs, and the existence of a subsonic region r > rh, where vs(r) < cs. In the next
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section we will describe a BEC-based experiment involving a radially-inward directed velocity
profile. It can be shown that, in this experimental setup, an effective geometry exists in
which the ‘mismatch’ between the actual Schwarzschild geometry and our Schwarzschild-like
geometry largely disappears, and in which the existence of a supersonic and subsonic region
emerge as a straightforward consequence of the velocity profile.

3.3 Analogue black hole in a BEC of light

In the previous section we have seen how a Bose-Einstein condensate in the hydrodynamic
regime allows for the creation of an analogue black hole by means of a velocity profile
supporting a subsonic and supersonic region with respect to the phonon velocity. This idea
has been exploited in many experiments over the last decade or so, and it is far outside
the scope of this thesis to provide an overview of these experimental developments and
their underlying mechanisms. Instead, we will use the developed theory up to this point to
describe a novel type of analogue suggested in [48], which lies at the heart of this thesis. The
authors suggest creating an analogue black hole in a Bose-Einstein condensate of light, in
which they aim to fabricate a non-rotating draining-bathtub model [7] with a radially-inward
directed velocity flow [48], given by vs = −ξ csc0

r r̂, where ξ = ℏ/mcs is the healing length
(the distance needed to smoothen out sharp inhomogeneities of the density [43]). We consider
c0 an arbitrary positive constant. This velocity profile is a solution of the hydrodynamic
equations emerging from the Gross-Pitaevskii equation, yet is not physically allowed due to
the singularity at r = 0. The authors proceed by suggesting a ‘sink’ (or drain) at the origin,
which removes the part of the velocity profile which renders the solutions unphysical. However,
in order to avoid breaking the conservation of particle number, photons will be pumped into
the medium, such that the continuity equations hold. The authors demonstrate that this
particular analogue is capable of emitting a phononic equivalent of Hawking radiation, and
simulates the presence of a greybody factor. In this section we aim to retrace these derivations
and motivate why it might prove interesting to determine the entanglement entropy of the
subsonic region with respect to the supersonic region of this particular type of analogue black
hole.

3.3.1 Radial-vortex based analogue

As a starting point to this analysis we consider the effective acoustic metric Eq.(3.36). The
authors from [48] take a different, yet equivalent approach by deriving the equation of motion
for the phase fluctuations directly from the Gross-Pitaevskii equation. Note that both routes
eventually end up at the same equation of motion, yet we will stay as close as we possibly can
to the more geometrically-oriented line of approach we have taken so far. Considering the
velocity profile denoted before, we find v2

s = ξ2c2
0/r

2, such that the infinitesimal line element
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can be written as

ds2 = ξ2[−c2
s(1 − c2

0
r2 )dτ2 + (1 − c2

0
r2 )−1dr2 + r2dϕ2]. (3.39)

By introducing the dimensionless variables r → ξr and t → ξt/cs, we obtain the metric

ds2 = −f(r)dτ2 + f(r)−1dr2 + r2dϕ2. (3.40)

where the warping factor is given by f(r) = 1 − c2
0/r

2. As promised in the previous section,
we obtain a metric which is a (2+1)-dimensional equivalent of the Schwarzschild-metric,
with an acoustic horizon located at r = c0. The quantization of the phase fluctuations
proceeds by allowing a decomposition of the field into its radial and angular variables, and
assuming a complete basis of eigenfunctions

{
ψm(r;ω)e−iωτ+imϕ

}
exists. Furthermore, we

define annihilation (creation) operators for both right-moving and left-moving scattering
states, denoted by a(†)

mR(ω) and a(†)
mL(ω), respectively. The operators are assumed to obey the

commutation relation

[
amR(L)(ω), a†

m′R(L)(ω
′)
]

= δ(ω − ω′)δmm′ . (3.41)

The phase fluctuations can then be expanded as in [48] and give

δθ(r, ϕ, τ) =
∫ ∞

0
dω

∞∑
m=−∞

{
ψm(r;ω)e−ωτ+imϕamR(ω)

+ ψ∗
m(r;ω)e−iωτ+imϕamL(ω) + h.c.

}
. (3.42)

Subsequently, we consider the metric Eq.(3.40) and use the definition of the d’Alembertian
to write the equation of motion. Acting with the time-derivative and angular-derivative on
the expansion gives

∂2
rψm(r;ω) + f(r)−1(f(r)

r
+ ∂rf(r))∂rψm(r;ω)

+ f(r)−2ω2ψm(r;ω) − f(r)−1m
2

r2 ψm(r;ω) = 0. (3.43)

This differential equation only has analytical solutions for m = 0, in which case we find radial
modes of the form

ψ0(r;ω) = N
[
c1Iic0ω(iω

√
r2 − c2

0) + c2e
πc0ωKic0ω(iω

√
r2 − c2

0)
]
, (3.44)

where Iν(z) and Kν(z) are modified Bessel functions of the first and second kind, respectively.
The constants c1 and c2 are implicitly frequency-dependent. We consider Dirichlet boundary
conditions on the acoustic horizon r = c0 by choosing c1 ̸= 0 and c2 = 0. Furthermore,
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the second-order differential equation solved by the modified Bessel functions (appendix B)
admits solutions with ν → −ν as well, when ν ∈ C. Hence, the full solution for the radial
modes are given by

ψ0(r;ω) = N
[
c1I−ic0ω(iω

√
r2 − c2

0) + c2Iic0ω(iω
√
r2 − c2

0)
]
. (3.45)

However, we have been a bit careless so far with the restrictions on r, since the above solution
is in principle only valid for the outer region r > c0. The inner region r < c0 needs slightly
more care and demands using the relation

I−iν(−z) = e−πνI−iν(z), (3.46)

which we proof in appendix (B.14). The radial modes in the region r < c0 are therefore given
by

ψ0(r;ω) = N e−πc0ω[c1I−ic0ω(ω
√
c2

0 − r2) + c2e
2πc0ωIic0ω(ω

√
c2

0 − r2)
]
. (3.47)

It is trivial to show that, with the expressions given above, the commutators of the phase
fluctuations vanish:

[δθ(r, ϕ), δθ(r′, ϕ′)] = 0 and [δπ(r, ϕ), δπ(r′, ϕ′)] = 0, (3.48)

where δπ(r, ϕ) = ∂τδθ(r, ϕ) is the conjugate momentum. Lastly, we may determine the
commutator of the phase fluctuations and their conjugate momentum, leading to

[δθ(r, ω), δπ(r′, ω′)] = i

∫ ∞

0

∫ ∞

0
dωdω′ω′

{
ψ0(r;ω)ψ∗

0(r′;ω′)[a0R(ω), a†
0R(ω′)]

+ ψ∗
0(r;ω)ψ0(r′;ω′)[a0L(ω), a†

0L(ω′)] − h.c.
}
. (3.49)

Using the commutator and integrating over ω′, one then obtains the relation

[δθ(r, ω), δπ(r′, ω′)] = 2i
∫ ∞

0
dωω

{
ψ0(r;ω)ψ∗

0(r′;ω) + c.c.
} != iδ(r − r′). (3.50)

According to [48], the last equality, which enforces the standard commutation relations, only
holds if the normalization constant is taken to be N = 1/

√
4πn0(e2πc0ω − 1). The choice

of coefficients c1 and c2 is particularly intricate and subjects the analogue black hole to
specific boundary conditions. Using appendix (B.4), we note that the radial modes have the
asymptotic form

ψ0(r;ω) ∼ N
√

1
2πωr

[
(c1 + c2)eiωr + (c1 + c2e

−2πc0ω)eiπ/2eπc0ωe−iωr
]
. (3.51)
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In comparison with appendix (B.4), there appears to be an extra factor eiπ/2 in our expressions,
which must be noted to stem from the 1/i in the square root from the argument. Furthermore,
we use the fact that

√
r2 − c2

0 ≈ r in the limit r → ∞. We define two particular bases for
the vacuum; an out-vacuum, where the flux at r → ∞ is purely outgoing (i.e. right-moving)
and an in-basis, which contains only outgoing flux at the horizon (r → c0). The former can
be achieved by the choice c1 = −1 and c2 = e2πc0ω, such that Eq.(3.51) becomes

ψout
0 (r;ω) = N

[
e2πc0ωIic0ω(iω

√
r2 − c2

0) − I−ic0ω(iω
√
r2 − c2

0)
]

r→∞∼ N
√

1
2πωr (e2πc0ω − 1)eiωr ∼

√
1

2πωre
iωr.

(3.52)

Clearly, there are only outgoing waves asymptotically far from the horizon. Similarly, we
may choose c1 = 0 and c2 = eπc0ω

√
e2πc0ω − 1 for the in-basis, such that the radial modes for

the outer region become

ψin
0 (r;ω) = N eπc0ω

√
e2πc0ω − 1Iic0ω(iω

√
r2 − c2

0)

r→∞∼
√

1
2πωr

eπc0ω

√
e2πc0ω − 1

(
eiωr + ie−πc0ωe−iωr

)
.

(3.53)

Contrary to before, the asymptotic region in this basis provides little information about
whether there indeed is only outgoing flux at the horizon. As we will argue later, this flux
composition in fact contains contributions from incident radiation, reflected radiation and
transmitted radiation from the horizon. In the limit r → c+

0 , one obtains (see appendix (B.4))
the expression

ψin
0 (r;ω)

r→c+
0∼ eπc0ω

√
e2πc0ω − 1

(
√
r2 − c2

0)ic0ω ∼ e
1
2 ic0ω log(r2−c2

0), (3.54)

which we have denoted modulus a gamma factor Γ(ic0ω + 1). This captures both the
purely outgoing character of the in-basis, and the phase singularity of the horizon; the
phase fluctuations start oscillating infinitely fast once approaching the acoustic horizon. The
asymptotic flux of the two solutions is shown in fig.(3.2). Before examining the flux profile in
more detail, we will consider the phononic equivalent of Hawking radiation, for which the
next section develops the required techniques.

3.3.2 Intermezzo: Bogoliubov transformations

In this brief intermezzo we aim to introduce the basics of the Bogoliubov transformation and
its relation to the Hawking effect, which are based on the discussion in [10] and [52]. For
convenience, we consider a massless, (1+1)-dimensional scalar field, for which the expansion
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is given by
ψ̂(r;ω) =

∫ ∞

0

dω√
4πω

[
uωaω + u∗

ωa
†
ω

]
, (3.55)

where uω are orthonormal solutions to the wave equation. The operators aω annihilate
the vacuum |0⟩a, and the construction of a Fock space proceeds as usual. However, we are
not necessarily confined to this particular choice of vacuum. We consider a second set of
orthonormal modes vω, and subsequently expand the scalar field as

ψ̂(r;ω) =
∫ ∞

0

dω√
4πω

[
vωbω + v∗

ωb
†
ω

]
. (3.56)

This decomposition defines a vacuum state |0⟩b unequal to |0⟩a, which is annihilated by
the operators bω, and therefore has a different Fock space. It is interesting to investigate
how these two vacua relate to each other. We note that, since both sets of solutions are
orthonormal and complete, we may expand the modes {uω} and {vω} in terms of each other,
such that

uω = αωvω + βωv
†
ω, (3.57)

with αω and βω the so-called Bogoliubov coefficients. This relation can easily be inverted
[10] to obtain

vω = α∗
ωuω − βωu

†
ω. (3.58)

We must ensure that the expansion Eq.(3.57) is normalized, which is ensured by demanding
[10, 52] the condition

|αω|2 − |βω|2 = 1. (3.59)

However, this discussion has still not answered the question of how the two vacua |0⟩a and
|0⟩b are related. We proceed by following [52], where the two expressions for the field operator
Eq.(3.55) and Eq.(3.56) are equated, and we subsequently insert the expression Eq.(3.57).
After some simple bookkeeping, one obtains the Bogoliubov transformations

aω = α∗
ωbω + βωb

†
ω and a†

ω = αωb
†
ω + β∗

ωbω, (3.60)

and similarly for the b-vacuum operators

bω = αωaω − βωa
†
ω and b†

ω = α∗
ωa

†
ω − β∗

ωaω. (3.61)

The connection between the two vacua can be made explicit by considering the expectation
value of the a-particle number operator N̂a = a†

ωaω in the b-vacuum, which can be shown to
yield

⟨N̂a⟩b = |βω|2δ(0). (3.62)
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The above calculation is precisely the way to go when one wants to obtain the Hawking
radiation, which shows that a black hole emits heat radiation [36]. We will not provide a
detailed derivation, but simply describe the mechanism from [52], in which they mention
that a possible way to arrive at the Hawking radiation is by considering a field expansion
in terms of lightcone tortoise-coordinates, with a vacuum bΩ |0⟩B = 0, which contains no
particles according to an asymptotic observer. Similarly, we expand the fields in terms of the
Kruskal-Szekeres coordinates, in which the observer does measure particles, with a vacuum
state aω |0⟩K = 0. The latter is considered to be the physical vacuum. If one uses the
Bogoliubov discussion from before, one eventually ends up with the expectation value

⟨N̂Ω⟩K = 1
eΩ/TH − 1

δ(0), (3.63)

with TH the Hawking temperature. This rather sketchy discussion on Hawking radiation
provides us with a simple roadmap to show that, for our analogue black hole, a similar
mechanism seems to exist.

3.3.3 Analogue Hawking spectrum

Now that we have developed the required machinery to relate different choices of the vacuum,
it is a natural extension to consider how the in-basis vacuum, which we considered to
be the ‘general’ vacuum, and out-basis vacuum compare. This may be achieved rather
straightforwardly by expanding the out-basis modes in terms of the in-basis modes. Note
that both the in-basis and out-basis vacuum are defined with respect to the same frequency
and time-coordinate, such that we may write

ψ̃out
0 (r;ω) = u0ψ̃

in
0 (r;ω) − v∗

0ψ̃
in *
0 (r;ω)), (3.64)

where u0 and v0 are the Bogoliubov coefficients. These can be determined by inserting the
expressions for the in-basis and out-basis solutions into the transformation, leading to the
expression

e2πc0ωIic0ω(iω
√
r2 − c2

0) − I−ic0ω(iω
√
r2 − c2

0)

= eπc0ω
√
e2πc0ω − 1

[
u0Iic0ω(iω

√
r2 − c2

0) − v∗
0(Iic0ω(iω

√
r2 − c2

0))∗
]
. (3.65)

All we have to do at this point is subtracting the right-hand side from both sides and choosing
the coefficients such that corresponding modified Bessel functions cancel. The coefficient u0

is found most easily, following directly from

eπc0ωIic0ω(iω
√
r2 − c2

0) = u0
√
e2πc0ω − 1Iic0ω(iω

√
r2 − c2

0), (3.66)
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such that we may write

u0 = eπc0ω

√
e2πc0ω − 1

⇒ |u0|2 = 1
1 − e−2πc0ω

. (3.67)

Similarly, we must choose the coefficient v0 in such a way that the following expression holds:

I−ic0ω(iω
√
r2 − c2

0) = v∗
0e

πc0ω
√
e2πc0ω − 1I−ic0ω(−iω

√
r2 − c2

0). (3.68)

In appendix (B.14), we demonstrate the following identity for modified Bessel functions:

I−ic0ω(−iωx) = e−πc0ωI−ic0ω(iωx), (3.69)

for any x ∈ R, ω ∈ R. Using this identity, we may rewrite Eq.(3.68) into an expression with
modified Bessel functions of the same order and argument, such that

I−ic0ω(iω
√
r2 − c2

0) = v∗
0
√
e2πc0ω − 1I−ic0ω(iω

√
r2 − c2

0). (3.70)

From this expression the last Bogoliubov coefficient can be trivially deduced, and is seen to
give

v∗
0 = 1√

e2πc0ω − 1
⇒ |v0|2 = 1

e2πc0ω − 1 . (3.71)

Using these expressions, one is able to show that the condition |u0|2 − |v0|2 = 1 indeed holds.
The connection with Hawking radiation follows quite naturally from the remainder of the
intermezzo, by using the expansion for the creation (and annihilation) operators

âout
0R(L)(ω) = u0â

in
0R(L)(ω) + v0â

in†
0R(L)(ω). (3.72)

We also introduce the vacuum states âout
0R(L) |0⟩out = 0 and âin

0R(L) |0⟩ = 0, where for the
in-basis vacuum we dropped the subscript, as this vacuum is considered to be the general
vacuum. The out-particle number operator is given by N̂out = aout†

0R(L)a
out
0R(L), where we have

suppressed the frequency dependence of all operators for brevity. The expectation value of
this operator with respect to the in-basis can then be written as

⟨N̂out⟩ = ⟨0|âout†
0R(L)(ω)âout

0R(L)(ω)|0⟩ . (3.73)

Inserting the Bogoliubov transformation Eq.(3.72), acting on the vacuum with the annihilation
operator and using the commutation relations then allows us to write

⟨N̂out⟩ = ⟨0|(u∗
0â

in†
0R(L) + v∗

0 â
in
0R(L))(u0â

in
0R(L) + v0â

in†
0R(L))|0⟩

= |v0|2 ⟨0|âin
0R(L)â

in†
0R(L)|0⟩ = |v0|2δ(0).

(3.74)
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The out-particle number density in the in-vacuum is therefore seen to yield

⟨n̂out⟩ = 1
e2πc0ω − 1 . (3.75)

Similarly, the average number of out-particles is given by

⟨N̂out⟩ = 1
eω/TH − 1

δ(0), (3.76)

with TH = 1/(2πc0) the Hawking temperature. An observer in the in-vacuum must therefore
see a flux of particles with a thermal spectrum as described by Eq.(3.76). This result captures
the acoustic equivalent of the Hawking effect.

3.3.4 Greybody factor, emitted particles, and correlators

In the previous section we managed to derive a spectrum for the particles emitted from the
acoustic horizon. The seemingly trivial generalisation of this expression to the total number of
emitted particles is a rather deceptive problem, as one ought to take into account the presence
of an effective potential in front of the horizon, before we are in any way capable of measuring
the emitted phonons in the asymptotic region (i.e. the boundary of our experiment). In line
with [7, 8], we rewrite the equation of motion Eq.(3.43) as

∂2
rR(r) + P (r)∂rR(r) +Q(r)R(r) = 0, (3.77)

where in our case
P (r) = c2

0 + r2

r(r2 − c2
0) (3.78)

Q(r) = −m2r2 − r4ω2

r2(r2 − c2
0) . (3.79)

Note that we have not taken m = 0 in this particular instance. Our next step is to map
the subsonic region of the analogue black hole (c0,∞) to (−∞,∞) through an appropriately
chosen coordinate transformation. Hence, in these new coordinates, an observer approaches
the horizon r → c0 when r∗ → −∞. This particular coordinate is known as the tortoise
coordinate, which for our system takes the form

r∗ = r − c0
2 log

∣∣∣r + c0
r − c0

∣∣∣. (3.80)

One can easily show that its derivative with respect to the original radial coordinate gives
dr∗/dr = f(r)−1 ≡ ∆. Next, we separate the function R(r) = Z(r)H(r) into two non-equal
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radial parts, which allows us to write the equation of motion as

∂

∂r2
∗
H(r) + 1

∆2Z

[
∆(2 ∂

∂r∗
Z + PZ) + ∂∆

∂r∗
Z
] ∂
∂r∗

H(r)

+ 1
∆2Z

( ∂
2

∂r2
∗
Z + P

∂

∂r
Z +QZ)H(r) = 0. (3.81)

Note that all we have done so far is following the discussion from [7, 8], and accordingly we
will now demand the coefficient of the first derivative of H(r) to be zero:

∂

∂r
Z(r) + 1

2
[
P (r) + ∂

∂r
log (∆)

]
Z(r) = 0. (3.82)

This equation is solved by the simple expression

Z(r) = A√
r
, (3.83)

with A an arbitrary real number, which we will take to be A = 1. Inserting this into Eq.(3.81)
leads to the effective Schrödinger equation

∂2

∂r2
∗
H(r) +

[
ω2 − V (r)

]
H(r) = 0, (3.84)

which contains the effective potential

V (r) = f(r)2

r2
[
m2 + 5c2

0
4r2 − 1

4
]
. (3.85)

Note that we implicitly assume r = r(r∗), which is obtained by inverting Eq.(3.80) for fixed c0.
An important observation is that, for r → ∞, the warping factor f(r) → 1, which causes the
potential to vanish. Furthermore, note that in this limit r = r∗. In line with the analytical
approach to our analogue, we consider the m = 0 modes only, knowing that the remainder
of the analysis can be done numerically if one wishes. A left-travelling incident wave of
amplitude 1, which is reflected by the potential, is then seen to take the asymptotic form

H(r) ∼ Rωe
iωr∗ + e−ωr∗ . (3.86)

Here, Rω is the reflection coefficient for the incident wave scattered by the effective potential.
Similarly, in the event where there is only outgoing radiation at the boundary of the system,
we may consider only right-moving radiation (from the horizon) while setting the transmission
coefficient Tω = 1 and the reflection coefficient Rω ̸= 0, which matches with the interpretation
of Eq.(3.52). If we demand only outgoing radiation at the horizon, we could allow for both
right-moving and left-moving waves, while taking Tω = 1 and Rω = 0, such that all incident
radiation is reflected, but all emitted radiation is transmitted. This also sheds light on the
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Fig. 3.2 This figure shows the effective potential V (r) and the flux profiles for both the
in-basis and out-basis solutions. The dotted line represents the acoustic horizon at c0 = 2.

appearance of the in-basis asymptotic form Eq.(3.53). Fig.(3.2) depicts the in-basis and
out-basis boundary conditions, including the effective potential. For convenience we have
plotted the potential as a function of r, yet one should note that a correct depiction of the
potential would ‘smear’ the potential out over the region (−∞,∞). It is in principle possible
to determine the greybody (or: the fraction of emitted radiation reflected by the potential)
from these coefficients. One could, for example, also consider the limit r∗ → −∞, which
leads to a hypergeometric function [35], and then match this with the expression for r → ∞.
The explicit form of Rω and Tω are then all one needs to determine the greybody factor γ(ω).
However, there exists a slightly easier route in our case, as the asymptotic solutions of the
exact wave functions for m = 0 can be used to compute the ratio of the outgoing flux and
ingoing flux at the horizon, after which one obtains [48]

γ0(ω) = Fout
Fin

= 1 − e−ω/TH . (3.87)

The total amount of emitted particles is then found by integrating the acoustic Hawking
spectrum over ω, while correcting for the fraction which is reflected by the potential, leading
to [48]

N =
∑
m

∫ ∞

0

dω ω
2π

γm(ω)
eω/TH − 1

. (3.88)

In [48] the greybody factor is determined numerically for m ∈ {1, 2, 3}, from which they
conclude that, in the low-frequency regime ω ≪ 1, the m = 0 mode is dominant. Hence, we
may approximately write ∑

m γm(ω)
eω/TH − 1

≈ 1 − e−ω/TH

eω/TH − 1
≈ e−ω/TH , (3.89)

where in the last step we considered a Taylor expansion around ω ≈ 0. Therefore, the total
number of emitted particles is altered by the effective potential emerging from the acoustic
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geometry, and can be written in terms of a classical Maxwell-Boltzmann spectrum

N ≈
∫ ∞

0
dω ω

2πe
−ω/TH . (3.90)

However, despite the fact that this scattering problem is interesting entirely for its own sake,
we still have not shown why acoustic Hawking radiation should be studies from the lens of
entanglement entropy. This connection becomes clear when computing the current-current
correlation function, given by

Πµν(r, r′; τ − τ ′) = ⟨0|Ĵµ(r, τ)Ĵν(r′, τ ′)|0⟩ , (3.91)

where (as before) we use the shorthand |0⟩ = |0⟩in. From the equation of motion, it is clear
that a convenient choice for the conserved current is Ĵµ(r, τ) = ∇µδθ(r, τ). Substituting
Eq.(3.42) and the Bogoliubov transform for a(†)

mR/L(ω), the authors show that the correlator
is given by [48]

Πµν(r, r′; τ − τ ′) =
∫ ∞

0
dω
∑
m

χc(ω)( 1
eω/TH − 1

+ 1
2)

× ∇µ{ψout
m (r;ω)A(m, τ)}∇ν{ψout∗

m A∗(m, τ ′)}, (3.92)

where A(m, τ) = eimϕ−iωτ and χc(ω) is a cutoff function. The authors determined the
density-density correlators Πtt and velocity-velocity correlators Πrr numerically, which lays
bare the connection we are after. They found that both correlators for the out-basis solutions,
measured in the in-basis, result in dominant correlation lines both for the case where r
and r′ are in the subsonic region, as well as when the phonon at r is supersonic while the
phonon at r′ is subsonic. The latter suggests that it might be plausible that entangled
phonon pairs are created at or slightly before the acoustic horizon, after which one of the
phonons transverses through the supersonic region, whereas the other enters the subsonic
region. However, confirmation of this hypothesis requires one to explicitly determine the
entanglement entropy of the supersonic region with respect to the subsonic region, or vice
versa. We have now arrived at the goal of this thesis: developing a formalism to (numerically)
determine the entanglement entropy of the supersonic (or subsonic) region. Ideally, one
would obtain a vacuum wave functional in the Schrödinger representation for the out-basis
solutions, after which one can determine the density matrix of the system and proceed to find
the reduced density matrix of either of the aforementioned regions. The former, finding the
vacuum wave functional for the analogue black hole, will be attempted in the next chapter.
Developing a formalism to find the numerical entanglement entropy of scalar fields takes
center stage in the last two chapters of this dissertation.



Chapter 4

Curved spacetime QFT in the
Schrödinger representation

“I... a universe of atoms, an atom in the universe.”
Richard Feynman

In the previous chapter we explored a proposal for an analogue black hole in a Bose-Einstein
condensate of light by [48], which culminated in the authors concluding that entangled
phonon pairs may be created at or near the acoustic horizon, and as such one could benefit
from explicitly determining the entanglement entropy of the supersonic region (or vice versa
the subsonic region). As we mentioned in Ch.2, one could go about this task in various ways,
yet we will adhere to a numerical scheme which requires either knowledge of the Hamiltonian
of the theory in question, or an explicit expression for its vacuum wave functional. Obtaining
the former is a trivial task, yet the latter is more cumbersome, since studying scalar theories
on curved backgrounds in the Schrödinger representation is not done too often. Luckily for
us, there has been quite some activity in this particular subdomain in the ’80s, ’90s and
early ’00s, with [50, 51, 31] providing important resources. We will first very briefly derive
the vacuum wave functional for a (2+1)-dimensional scalar field on a flat background. Next,
we turn to the work by [50, 51], which is inarguably the backbone of the remainder of this
chapter, and we will follow their derivations as closely as the length of this chapter can
muster. We conclude the chapter by testing the developed formalism on two well-known
examples, and ultimately on our analogue black hole, despite the fact that there are some
important questions left to answer.
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4.1 Minkowski spacetime

Since many of these arguments will seem familiar to the reader, with most them appearing
once or twice in an introductory course on quantum field theory, we will keep this discussion
brief. There are several ways to arrive at the vacuum wave functional of a free, massless scalar
field in (2+1)-dimensions, and as such we list three of them, yet the reader is encouraged
to explore more ways of arriving at the same conclusion. Perhaps the easiest (but least
satisfactory) way of doing so is to heuristically argue that the ground state should adopt a
form similar to

Ψ0 ∝ exp {−1
2

∫ dk
(2π)2 ω(k)ϕ(k)ϕ(−k)}, (4.1)

where the dispersion ω(k) = ±|k| is obtained from the equation of motion. Upon Fourier-
transforming the fields ϕ(k) =

∫
dx e−ik·xϕ(x), we obtain the intuitively obvious expression

Ψ0 ∝ exp {−1
2

∫
dx
∫

dx′
∫ dk

(2π)2 ω(k)e−ik·(x−x′)ϕ(x)ϕ(x′)}. (4.2)

However easy this may seem, we cannot claim to have adhered to much rigour. Let us revisit
the derivation, but this time around start from the expansion of the field operator, which we
define in line with [70], and is given by

ϕ̂(x) =
∫ dk

(2π)22ω
[
a(k)eikx + a†(k)e−ikx

]
. (4.3)

As discussed in [70], the field operator can be inverted for the annihilation operator, which
gives

a(k) =
∫

dx e−ikx
[
iπ̂(x) + ωϕ̂(x)

]
, (4.4)

where π̂(x) is defined as the conjugate momentum of the field operator. This simple exercise
is typically done in a first course on QFT, and as such we will simply stick to the statements
above. Note that, as a shorthand, we have suppressed the k-dependence of the dispersion.
We recall that, in the Schrödinger picture, one represents the quantum states as the time-
dependent wave functionals Ψ[ϕ(x), t], and operators acting on these states are represented by
O(π̂(x), ϕ̂(x)) ∼ O(−iδ/δϕ(x), ϕ(x)), a brief review for which in given in [50]. We consider
the Ansatz for the ground state wave functional suggested in [50, 51], which is given by

Ψ0[ϕ(x), t] = N0 exp {−1
2

∫
dx
∫

dx′ϕ(x)G(x,x′)ϕ(x′)} ≡ N0ψ0(ϕ), (4.5)

where N0 = exp {−iE0t}. Replacing the operators in Eq.(4.4) by the corresponding functional
derivatives or fields and acting on the Ansatz, while demanding that aψ0 = 0 is respected,
allows us to write

G(x,x′) =
∫ dk

(2π)2 ωe
−ik·(x−x′), (4.6)
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with ω = ±|k| from before. Inserting this kernel into the Ansatz returns the wave functional
we found through our heuristic route. Similarly, as discussed in [50], one could also write down
the time-dependent Schrödinger equation, which after the correct replacement of operators
by functional derivatives and field eigenvalues returns the kernel equation [50]∫

dx′G(x,x′)G(x′,x′′) = −∇2δ(x − x′′). (4.7)

A simple Fourier transform of the kernel demonstrates that the equation is solved by Eq.(4.6),
and hence yields the vacuum wave functional

Ψ0 ∝ exp {−1
2

∫
dx
∫

dx′
∫ dk

(2π)2 ωe
−ik·(x−x′)ϕ(x)ϕ(x′)}. (4.8)

However, for later purposes it will prove useful to write the expression in polar coordinates, as
this will allow us to ultimately discretize the radial coordinate of the kernel. This is achieved
by means of the Jacobi-Anger identity, which we discuss in appendix (A.2). In this appendix
we also demonstrate that

e−ik·(x−x′) =
∑
m

∑
m′

(−i)mim
′
Jm(kr)Jm′(kr′)eiθk(m−m′)e−imθreim′θr′ . (4.9)

We are now at liberty to evaluate the k-dependent part of our kernel, which is seen to become
∫

dkωe−ik·(x−x′) =
∑

m,m′

∫
dk
∫

dθk ω
2(−i)mim

′
Jm(kr)Jm′(kr′)

× eiθk(m−m′)e−imθreimθr′ , (4.10)

where ω2 contains the contribution |k| from the measure. Integrating over the angular
variable θk and eliminating the resulting delta-function by summing over m′ yields∫

dkωe−ik·(x−x′) = 2π
∑
m

∫
dk ω2Jm(kr)Jm(kr′)eim(θr′ −θr). (4.11)

We insert this expression back into the ground state wave functional and decompose the
fields into a radial and angular part, i.e. we take ϕ(x) = ∑

m ϕm(r)Ym(θr)/
√
r, such that we

may write

Ψ0 ∝ exp {−1
2

∑
m,m′,m′′

∫
drdr′ √

rr′
∫

dθrdθr′ Ym′(θr)Ym′′(θr′)

×
∫

dk ω2Jm(kr)Jm(kr′)eim(θr′ −θr)ϕm′(r)ϕm′′(r′)}. (4.12)
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We assume that there exist circular harmonics Ym(θr) such that
∫

dθrYm′(θr)e−imθr = δm,m′ ,
for example by choosing Ym(θ) = e±imθ. If the previous harmonics are allowed, then the
wave functional can be shown to reduce to

Ψ0 ∝ exp {−1
2
∑
m

∫
drdr′ √

rr′
∫

dk ω2Jm(kr)Jm(kr′)ϕm(r)ϕm(r′)}, (4.13)

of which the kernel can easily be discretized in the radial coordinate. In the next section
we aim to generalize this discussion to curved backgrounds. We will demonstrate that the
formalism from [50, 51] will in fact simplify the derivation above considerably, which will
ultimately aid us in studying the ground state wave functional of the analogue black hole.

4.2 Generalization to curved backgrounds

The discussion for Minkowski spacetime can, with some effort, be generalized to globally
hyperbolic spacetimes with a (global) timelike vector field. The key in this whole procedure
is choosing an appropriate foliation of the manifold and connecting this with the derivation
from before. However, this description would be a notoriously labour-intensive pursuit, while
containing many elements which are wholly irrelevant to the remainder of the thesis, and
as such we will simply state a result from [50] which acts as a convenient starting point,
while keeping the geometric prerequisites to a bare minimum. Since this source gives an
excellent review of the subject, we will follow the relevant derivations very closely, reproducing
some of their key results, and elaborate on them where possible (filling in the mathematical
blanks, so to speak). The Schrödinger equation for a scalar field on a general curved (globally
hyperbolic) spacetime is given by the expression

i
∂

∂s
Ψ[ϕ(ζ), s] =

∫
Σ

dζ
{1

2N
√

−h( 1
h

δ2

δϕ2 − hij∂iϕ∂jϕ+ (m2 + ξR)ϕ2)

− iN i∂iϕ
δ

δϕ

}
Ψ[ϕ(ζ), s]. (4.14)

Before diving into a small explanation of the expression above, we note that we are at liberty
to set m = 0 and ξ = 0, as we are primarily interested in a massless, minimally-coupled scalar
field. In the notation of [50], ζi are the coordinates of a family of spacelike hypersurfaces Σ,
while considering their evolution along curves ∂/∂s. Furthermore, N and N i denote shift
and lapse functions, yet the only relevant feature for us, is that in terms of these functions
the infinitesimal interval becomes [50]

ds′2 = (N2 +N iNi)ds2 + 2Nidsdζ
i + hijdζ

idζj , (4.15)
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where hij is the induced metric on the spacelike hypersurface Σ. Note that we assume that
all fields ϕ(ζ) have been canonically quantized on the hypersurface Σ. The equations can be
brought into a more familiar form upon choosing the coordinates (s, ζ) = (t,x), such that
Σ = Rd. For convenience we demand the metric gµν to be diagonal, such that we may set
N = √

g00 and N i = 0. One can similarly show that this choice leads to hij = gij . We are
now able to rewrite the Schrödinger equation into a more familiar form, by noting that the
determinant |g| = |g00|hij , such that Eq.(4.14) becomes

i
∂

∂t
Ψ[ϕ] = 1

2

∫
dx
√

|g|
{g00
g

∂2

∂ϕ2 − gij∂iϕ∂jϕ+m2}Ψ[ϕ]. (4.16)

As before, we observe that a simple Gaussian Ansatz will be sufficient:

Ψ0[ϕ, t] = N0 exp
{
−1

2

∫
dx
√

|hx|
∫

dx′
√

|hx′ |ϕ(x)G(x,x′; t)ϕ(x′)
}
, (4.17)

where hx = h(x) is a shorthand for the determinant of the induced metric in terms of the
coordinate x. The only difference with the Minkowski spacetime, are the measures ensuring
that the spatial integrals are invariant d-dimensional volume elements. We insert the Ansatz
into the Schrödinger equation, for now only studying the left-hand side, which is trivially
seen to give

i
∂

∂t
Ψ0 = i

∂

∂t
log (N0)Ψ0 − i

2

∫
dx
√

|hx|
∫

dx′
√

|hx′ |ϕ(x)( ∂
∂t
G(x,x′; t))ϕ(x′)Ψ0. (4.18)

Next, we act with the right-hand side of the Schrödinger equation on the vacuum wave
functional Eq.(4.17) and collect like terms, such that the time-derivative of N0 yields

i
∂

∂t
log (N0) = 1

2

∫
dx
√
hx

√
|gx

00|G(x,x). (4.19)

Similarly, we equate the other terms with the second part of Eq.(4.18), such that we obtain a
kernel equation

− i

2

∫
dx
√

|hx|
∫

dx′
√

|hx′ |ϕ(x)( ∂
∂t
G(x,x′; t))ϕ(x′) =

1
2

∫
dz
√

|gz|
∫

dx
√

|hx|
∫

dx′
√

|hx′ |ϕ(x)G(x, z; t)G(z,x′; t)ϕ(x′)

+ 1
2

∫
dx
√

|hx|(−gij∂iϕ∂jϕ+m2ϕ2). (4.20)

This rather lengthy expression can be simplified considerably by stripping off the integrals
over x and x′. The first term on the right-hand side is already in an appropriate form, yet
the other two terms still need some work. We assume vanishing boundary conditions for
the fields, such that partial integration over the second term introduces a Laplacian, and
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subsequently introduce a delta function:

1
2

∫
dx
√

|hx|(−gij∂iϕ(x)∂jϕ(x)) = 1
2

∫
dx
√

|hx|
√

|gx
00|ϕ(x)□̂xϕ(x′)δ(x − x′), (4.21)

where
√

|gx|□̂x = ∂i(
√

|gx|gij
x ∂j). Note that the extra factor

√
|gx

00| stems from using the
diagonality of the metric to write

√
|g| =

√
|g00|

√
hij , which yields the full metric instead of

the induced metric to support the conventional definition of our Laplacian. We also introduce
a delta-function in the mass term, after which we are able to strip away the aforementioned
integrals, such that we eventually obtain the kernel equation

i
∂

∂t
(
√
hxhx′G(x,x′; t)) =

∫
dz
√
hz

√
hxhx′

√
|gz

00|G(x, z; t)G(z,x′; t)

−
√
hxhx′

√
|gx

00|(□̂x +m2)δ(x − x′), (4.22)

as described in [50]. Since we are ultimately interested in a Schwarzschild-like manifold,
which is static, we may take the kernel to be time-independent and set the left-hand side to
zero. Hence, the kernel equation reduces to the simpler expression∫

dz
√

|gz|G(x, z; t)G(z,x′; t) =
√

|gx
00|(□̂x +m2)δ(x − x′). (4.23)

Note that we have recombined the determinants, by writing |gz| = |gz
00|hz, which is allowed

for a diagonal metric. Before solving the kernel equation, we observe that the diagonality of
the metric allows us to rewrite the d’Alembertian as

□̂ = □̂0 + □̂i = g00∂2
0 + □̂i, (4.24)

where the second term denotes the Laplacian we introduced earlier. After a Fourier decom-
position of the field ψ(x, t) into modes e−iωtψ̃(x;ω), the wave equation can be conveniently
rewritten as

(□̂i +m2)ψ̃(x;ω) = g00ω2ψ̃(x;ω). (4.25)

It therefore becomes clear that the kernel equation Eq.(4.23) can be solved by means of the
eigenfunctions of the wave equation, provided they are orthogonal and complete. These two
requirements, however intuitive these concepts may be in flat spacetime, require slightly more
care when considering non-trivial geometries. Hence, we introduce the orthonormality and
completeness on curved spaces in line with [30], where the author demonstrates that the
completeness becomes

∫ dµ(ω)
(2π)d

ψ̃∗(x;ω)ψ̃(x′;ω) =
√

|gx
00|
hx

δ(x − x′) (4.26)
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and the orthonormality takes the form∫ dx
(2π)d

√
|gx|g00

x ψ̃
∗(x;ω)ψ̃(x;ω′) = δ(ω, ω′). (4.27)

The measure dµ(ω) and the delta function density δ(ω, ω′) are defined such that∫
dµ δ(ω, ω′)f(ω) = f(ω′), (4.28)

for an arbitrary function f(ω). Considering the Minkowski metric (or variants thereof in
different coordinate systems) brings the definitions back in line with our flat-space intuition.
An example would be a delta function density of the form δ(ω− ω′)/ω, which combined with
the measure dµ = ω dω is seen to satisfy the definition of the Dirac delta function. Assuming
that we have obtained eigenfunctions which obey the orthornormality and completeness
requirements for general curved backgrounds, we may write the solution to the kernel equation
as

G(x,x′) =
√
g00

x g
00
x′

∫ dµ
(2π)d

ωψ̃(x;ω)ψ̃∗(x′;ω). (4.29)

This can rather easily be verified by inserting the above into the kernel equation, which we
will leave as an exercise to the reader.1 Note that we have slightly departed from the notation
of [50], where they make explicit that the measure, dispersion and both eigenfunctions share
the same quantum numbers (i.e. the wave number). In our case this will be left implicit,
as none of the examples we consider cause ambiguity on this front. Using this result and
N0 = exp (−iE0t), we find the vacuum ground state by simply inserting the kernel into
Eq.(4.17):

Ψ0[ϕ] = N0 exp
{

−1
2

∫ dµ
(2π)d

ω

∫
dx
√

|hx|
√

|g00
x ψ̃(x;ω)ϕ(x)

×
∫

dx′
√

|hx′ |
√

|g00
x′ |ϕ(x′)ψ̃∗(x′;ω)ϕ(x′)

}
. (4.30)

This is the main result of this section, which allows us to write down the vacuum wave
functional for a scalar field on a general curved spacetime. As a natural extension, we will
use this result to explore the ground state wave function of the analogue black hole. There
are a few other relations we develop, as they will proof useful later down the line. We begin
with the trivial observation that the inverse of the kernel is given by

∆(x,x′) =
∫ dµ

(2π)d

1
ω
ψ̃(x;ω)ψ̃∗(x′;ω). (4.31)

This result is crucial in finding the expectation value of the energy-component of the stress-
energy tensor, which we will only state for brevity, and more details on its derivation can be

1I have waited many years to finally use this famous sentence myself.
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found in [51]:
⟨0|T00(x,x′|0⟩ = −1

4g00
{
G(x,x′) + gij∂i∂j∆(x,x′)

}
, (4.32)

where we assumed the scalar field is massless. This expression only holds if the kernel is real.
If the kernel is imaginary, the expectation value contains an extra term, which can be found
in [51] (but is unnecessary in our case).

4.3 Two illustrative examples

In this section we shall demonstrate the construction of ground states in the Schrödinger
picture by means of two examples: a scalar field on (2+1)-dimensional Minkowski spacetime
in polar coordinates, and a scalar field on a (1+1)-dimensional Rindler spacetime. The former
also acts as a simple test of our discussion so far, since we can compare the result with the
ground state wave functional we obtained earlier through the Jacobi-Anger expansion. The
metric of flat spacetime in polar coordinates is given by

ds2 = −dt2 + dr2 + r2dθ2. (4.33)

We consider a Fourier decomposition of the field into

ψ(t, r, θ) =
∞∑

m=−∞
e−iωteimθψ̃m(r;ω). (4.34)

The wave equation governing the radial Fourier modes is then trivially show to yield

(∂2
r + 1

r
∂r + ω2 − m2

r2 )ψ̃m(r;ω) = 0, (4.35)

which can be rewritten into a Bessel differential equation, as discussed in appendix B, for
which the solutions are given by

ψ̃m(r;ω) = c1Jm(ωr) + c2Ym(ωr), (4.36)

where Yν(z) denotes a Bessel function of the second type. However, since the latter causes
the field to diverge near the origin, we take c2 = 0. The eigenfunctions can be shown to obey
the requirement of orthogonality by means of appendix (B.3.5), leading to

∫ ∞

0
dr rJm(ωr)Jm(ω′r) = δ(ω − ω′)

ω
(4.37)

Note that this delta function obeys the definition of δ(ω, ω′):
∫ ∞

0
dµ(ω)δ(ω − ω′)

ω
f(ω) = f(ω′), (4.38)
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when the measure is chosen as dµ(ω) = ω dω. By means of Eq.(4.29), the kernel can then be
written as

G(r, r′; θ, θ′) =
∑
m

∫
R+

dω
(2π)2 ω

2Jm(ωr)Jm(ωr′)e−im(θ−θ′). (4.39)

The vacuum wave functional for the scalar field is then seen to become

Ψ0[ϕ] ∝ exp
{

−1
2

∫ 2π

0
dθ
∫ 2π

0
dθ′

∫
R+

dr r
∫

R+
dr′ r′G(r, r; θ, θ′)ϕ(r, θ)ϕ(r′, θ′)

}
. (4.40)

We then assume the fields ϕ(r, θ) to allow for a decomposition into a radial part and circular
harmonics Ym(θ), such that ϕ = ∑

m ϕm(r)Ym(θ)/
√
r. If we assume that Ym(θ) = e±imθ are

valid harmonics, we are able to perform a dimensional reduction of the kernel in the angular
variable:

Ψ0[ϕ] ∝ exp
{

−1
2

∑
m,m′,m′′

∫ 2π

0
dθ
∫ 2π

0
dθ′

∫
R+

dr
√
r

∫
R+

dr′ √
r′
∫

R+

dω
(2π)2ω

2Jm(ωr)Jm(ωr′)

× e−iθ(m−m′)eiθ′(m−m′′)ϕm′(r)ϕm′′(r′)
}
. (4.41)

We perform the integration over θ(′) and sum over m′ and m′′, after which one obtains the
dimensionally reduced ground state

Ψ0[ϕ] ∝ exp
{

−1
2
∑
m

∫
R+

dr
∫

R+
dr′ √

rr′
∫

R+
dω ω2Jm(ωr)Jm(ωr′)ϕm(r)ϕm(r′)

}
. (4.42)

This is the same result we obtained in section 4.1, yet with considerably less effort. Upon
using the asymptotic expansion of the Bessel functions (appendix B.4), the ground state
wave functional is seen to take the asymptotic form

Ψ0[ϕ] ∼ exp
{

−1
2
∑
m

∫
R+

dr
∫

R+
dr′

∫
R+

dω ω(cos (ω(r − r′))

+ cos (ω(r + r′) − π(m− 1
2)))ϕm(r)ϕm(r′)

}
, (4.43)

where we have used the cosine multiplication identity. Despite the phase shift, we observe
that the ground state, in the asymptotic region, resembles plane-wave behaviour.

Before we continue with the second (and slightly more challenging) example, we attempt
to connect the current mode expansion to the left-moving and right-moving behaviour
we observed for a free scalar field on the acoustic geometry of our analogue black hole.
This potential connection becomes evident when combining (B.8) and (B.9), leading to the
expression

Jm(ωr) = 1
2
[
H(1)

m (ωr) +H(2)
m (ωr)

]
. (4.44)
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Note that this could also have been observed by comparing the asymptotic expansion of the
Bessel function and the Hänkel functions from appendix (B). Since the asymptotic expansion
of the Hänkel functions describe right-moving (first type) and left-moving (second type)
waves, it might be tempting to consider a mode expansion of the form

ψ̃m(r;ω) ∝ c1H
(1)
m (ωr) + c2H

(2)
m (ωr). (4.45)

In other words: instead of expanding the field in terms of superpositions of Hänkel functions
(the Bessel function of the first type), we explicitly expand in individual Hänkel functions,
such that the field is ’decomposed’ in (asymptotic) left-moving and right-moving sectors. Note
that we preemptively demand c1 ̸= c2, since it would otherwise reduce to the intial Bessel
function. However, it can be shown that, with respect to the polar-coordinate Klein-Gordon
inner product, the Hänkel functions do not form an orthogonal basis. One possible way to
show this, is by writing the inner product as a Sturm-Liouville problem, after which no lower
bound appears to exist for the Hänkel functions. One can also follow a more straightforward,
yet slightly more tedious, route and provide a counter-proof by means of the Nicholson
integral, which we will set forth to show here. For convenience we take n = m and ω = ω′,
such that the Klein-Gordon inner product between ψ̃n(ωr) and ψ̃m(ω′r) must give unity. The
inner product can then be written as

⟨ψ̃n, ψ̃n⟩ =
∫ ∞

0
drr(c1H

(1)
n (ωr) + c2H

(2)
n (ωr))(c1H

(1)
n (ωr) + c2H

(2)
n (ωr)). (4.46)

Let us consider one of the ‘cross-terms’ between a type 1 and type 2 Hänkel function. Using
(B.8) and (B.9) and expanding out the brackets yields

c1c2

∫ ∞

0
drrH(1)

n (ωr)H(2)
n (ωr) = c1c2

∫ ∞

0
drr(J2

n(ωr) + Y 2
n (ωr)). (4.47)

We can then use Nicholson’s formula (B.25), such that the integral becomes

c1c2

∫ ∞

0
dr r(J2

n(ωr) + Y 2
n (ωr)) = 8c1c2

π2

∫
drr

∫ ∞

0
dαK0(2ωrsinh(α))cosh(2nα). (4.48)

After changing the order of integration, this integral can be evaluated using analytical
integration software, which gives

c1c2

∫ ∞

0
dr rH(1)

n (ωr)H(2)
n (ωr) = 2c1c2

π2ω2

∫ ∞

0
dα cosh(2nα)csch2(α), (4.49)

where csch(x) denotes the hyperbolic cosecant. The integrand is strongly divergent around
r = 0 and does not convergence on the domain of integration α ∈ [0,∞). We must therefore
either set c1 = 0 or c2 = 0. Let us, without loss of generality, choose the latter. In this
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particular case Eq.(4.46) reduces to

⟨ψ̃n, ψ̃n⟩ = c2
1

∫ ∞

0
drr(J2

n(ωr) − Y 2
n (ωr) + 2iJn(ωr)Yn(ωr)). (4.50)

Since the inner product should be real, we must show that the integral over the product
of Bessel functions of the first and second kind vanishes. Integrals of this particular type
have known solutions for cylindrical functions, which in our case reduces to a non-zero, real
solution for n ∈ Z and ωr ∈ R (see appendix (B.26) for the evaluation). Hence, for equal order
and frequency, the Klein-Gordon inner product of Eq.(4.45) shows that the orthogonality is
not respected for the case when n = m and ω = ω′, and as such Eq.(4.45) does not constitute
as a suitable basis. Note that this counter-proof has no discernible consequences for the
remainder of the thesis. It was merely an interesting excursion to explore the possibility of a
left/right decomposition of our Klein-Gordon scalar field.

This second example aims at finding a Schrödinger picture description of the ground state for
a scalar field in Rindler spacetime. Despite the interesting physics hidden in this deceptively
simple spacetime, we stay rather close to the derivation in [51], and leave a more in-depth
treatment of the physics to the reader. All we need at this point, is that the metric of a
(1+1)-dimensional Rindler spacetime, which describes a coordinate system for accelerating
observers, is given by

ds2 = −z2dt2 + dz2, (4.51)

where z ∈ (0,∞) and t ∈ (−∞,∞). It takes little effort to demonstrate that the equation of
motion of the Fourier decomposed field is given by

(∂2
z + 1

z
∂z + ω2

z2 −m2)ψ̃(z;ω) = 0. (4.52)

This equation is nothing but the Bessel differential equation in disguise, for which we obtain
the eigenfunctions

ψ̃(z;ω) = c1Jiω(−imz) + c2Yiω(−imz), (4.53)

where c1, c2 ∈ C. Despite the fact that this expression is perfectly valid, we will follow (and
elaborate on) the discussion in [51], where they obtain a more compact expression for the
eigenfunctions. In appendix (B.1) we proof the following relation between Bessel functions of
the first and second type, and modified Bessel functions of the second type:

Jν(z) − iYν(z) = 2i
π
eνπi/2Kν(iz). (4.54)
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Hence, the modes can be written in the form

ψ̃(z;ω) = c1(Jiω(−imz) − iYiω(−imz)) = c1
2i
π
e−ωπ/2Kiω(mz), (4.55)

where we have chosen c2 = −ic1, such that the identity Eq.(4.54) can be applied. According
to [51], the completeness and orthogonality of these eigenfunctions, and hence the appropriate
choice of c1, are a result of the Kontorovich-Lebedev transform, which is discussed in appendix
(B.2). Using these reciprocal relations allows us to demand

f(ω) = 2
π2

∫ ∞

0
dω
∫ ∞

0
dzω
z

sinh(πω)f(ω)Kiω(mz)Kiω(mz), (4.56)

for an arbitrary function f(ω). We note that this relation is only satisfied if the completeness
and orthogonality are respected, i.e. we must have

2
π2

∫ ∞

0

dz
z

sinh(πω)Kiω(mz)Kiω′(mz) = δ(ω − ω′), (4.57)

and similarly
2
π2

∫ ∞

0
dω ωsinh(πω)Kiω(mz)Kiω(mz′) = zδ(z − z′) (4.58)

This is only ensured upon choosing c1 such that the modes can be written as

ψ̃(z;ω) = 2

√
ω sinh(πω)

π
Kiω(mz). (4.59)

We must therefore take the coefficients to be

c1 = −iπeωπ/2

√
ω sinh(πω)

π
and c2 = πeωπ/2

√
ω sinh(πω)

π
. (4.60)

These Fourier modes then allow us to write down the explicit kernel and ground state wave
functional of a scalar field in Rindler spacetime, where the former takes the shape

G(z, z′) = 2
zz′

∫ ∞

0

dω
π2 ω

2sinh(πω)Kiω(mz)Kiω(mz′), (4.61)

and the ground state wave functional takes the (by now) familiar form

Ψ0[ϕ] ∝ exp
{

−1
2

∫
R+

dz
∫

R+
dz′ϕ(z)G(z, z′)ϕ(z′)

}
. (4.62)

This relation and its massless equivalent can be used to demonstrate that the Unruh effect,
where a uniformly accelerated observer in the Minkowski vacuum observes a thermal spectrum
[44], can also be obtained from the Schrödinger representation of Rindler spacetime. However,
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since an elaborate discussion of this effect will not aid the goal of this thesis in any way, we
refer the interested reader to [29] and [38].

4.4 Acoustic black hole ground state

In this last section we aim to apply the formalism we have discussed, motivated and illustrated
to the field expansion used in [48]. In other words, we consider the m = 0 modes which we
expressed in the in-basis and out-basis (Eq.(3.52) and Eq.(3.53)), and attempt to derive an
analogue black hole ground state wave functional containing these expressions. In general,
the vacuum state for the in-basis and out-basis fields will be given by

Ψ0[ϕ(r)] = N0exp{−1
2

∫
R+

dζ(r)
√

|g00
r |
∫

R+
dζ(r′)

√
|g00

r′ |

×
∫

R+
dµ(ω)ωψ̃in/out

0 (ω; r)ψ̃in/out
0 (ω; r′)∗ϕ(r)ϕ(r′)}, (4.63)

where we have made the assumption that the angular dependence of ϕ(r, θ) also vanishes
upon choosing m = 0. We have subsequently performed the integration over the angular
variables, such that the factor (2π)2 in the measure dµ(ω) is canceled. Note that the integral
Eq.(3.50), which appeared in determining the commutation relation between the phase
fluctuation operators and density operators, leads us to choose the metric dµ(ω) = ω dω
(modulus a factor of 2π, canceled by the angular integration). Furthermore, the spatial
measure dζ(x) =

√
|hx|Θ(x)dx contains the determinant of the induced metric. The step

function Θ(x) is defined as [r < c0] for the supersonic region and [r > c0] for the subsonic
region, where [x] denotes the Iverson bracket. For the remainder of this discussion we restrict
our focus to the subsonic region, and the step function will therefore be omitted for brevity,
but must be assumed present in any wave functional containing the measure dζ(x). The
Fourier modes ψ̃in/out

0 (ω; r) are eigenfunctions of the d’Alembertian operator, satisfying

□̂ψ̃in/out
0 (ω; r) = ω2g00ψ̃

in/out
0 (ω; r), (4.64)

which correspond to the in-basis and out-basis solutions presented in the previous chapter.
Adopting the Schwarzschild-like geometry for the analogue black hole, one finds the deter-
minant of the induced metric for constant timelike hypersurfaces to be hx = x2f(x)−1. We
assume that the radial modes found in [48] and discussed in the previous chapter form an
orthonormal and complete basis. 2 Hence, the vacuum wave functional for the in-basis can

2Sadly, we have not succeeded in showing this explicitly due to time constraints. It should be clear that a
verification of the orthogonality and completeness must be performed before the resulting wave functional can
be used in determining the entanglement entropy of the acoustic black hole.
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be written as

Ψin
0 [ϕ(r)] ∝ exp

{
−1

2N 2
∫ ∞

0
dω
∫ ∞

0
dr r

√
hr

00g
00
r︸ ︷︷ ︸

=f(r)−1

∫ ∞

0
dr′ r′ω2

√
hr′

00g
00
r′︸ ︷︷ ︸

=f(r′)−1

e2πc0ω(e2πc0ω − 1)

× Iic0ω(iω
√
r2 − c2

0)I−ic0ω(−iω
√
r′2 − c2

0)ϕ(r)ϕ(r′)
}
, (4.65)

which simplifies to

Ψin
0 [ϕ(r)] ∝ exp

{
−1

2N 2
∫ ∞

0
dω ω2eπc0ω(e2πc0ω − 1)

∫ ∞

0
dr rf(r)−1Iic0ω(iω

√
r2 − c2

0)

×
∫ ∞

0
dr′ r′f(r′)−1I−ic0ω(iω

√
r′2 − c2

0)ϕ(r)ϕ(r′)
}
, (4.66)

where we have used identity (B.14) to change the sign in the argument of the second Bessel
function. Similarly, the out-basis wave functional is given by the expression

Ψout[ϕ(r)] ∝ exp
{
−1

2N 2
∫ ∞

0
dω ωeπc0ω

∫ ∞

0
dr rf(r)−1[e2πc0ωIic0ω(iω

√
r2 − c2

0) − I−ic0ω(iω
√
r2 − c2

0)]

×
∫ ∞

0
dr′ r′f(r′)−1[e2πc0ωI−ic0ω(iω

√
r′2 − c2

0) − Iic0ω(iω
√
r′2 − c2

0)]ϕ(r)ϕ(r′)
}
,

(4.67)

where for the last equality we have rewritten the modified Bessel functions in terms of positive
argument and subsequently collected like powers. Next, we will consider the behaviour of the
wave functional in the asymptotic region specified by r → ∞. Note that in this limit we need
not consider the warping factor f(r) in the wave functional, as f(r) → 1 in the limit of large
r. We recall that the Poincaré expansion for large argument of the out-basis Fourier modes
was given by

ψ̃out
0 (ω; r) ∼

r→∞
N (ω)

√
1
ωr

{e2πc0ω(eiωr + ie−πc0ωe−iωr) − (eiωr + ie−πc0ωe−iωr)}

= N (ω)
√

1
ωr

(e2πc0ω − 1)eiωr,

(4.68)

such that the kernel contains an asymptotic term

ψ̃out
0 (ω; r)ψ̃out

0 (ω; r′)∗ ∼
r→∞

N (ω)2 1
ω

√
rr′

(e2πc0ω − 1)2eiω(r−r′)

∝ 1
ω

√
rr′

eiω(r−r′).
(4.69)

Substituting this relation into the wave functional and using the one-dimensional inverse
Fourier transform ϕ(ω) =

∫
R+

dr
2πϕ(r)eiωr, together with the shift ϕ(r) → Φ(r) =

√
rϕ(r), one
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observes that asymptotically

Ψout[Φ] ∝ exp
{
−1

2

∫ ∞

0
dω ω|Φ(ω)|2

}
, (4.70)

where Φ(−ω) = Φ(ω)∗ to preserve reality of the field. Note that the wave functional is
Minkowski-like, with frequency ω. Similarly, we considered the asymptotic expansion of the
in-basis Fourier modes, which were given by

ψ̃in
0 (ω; r) ∼

r→∞
N (ω)

√
1
ωr
eπc0ω

√
e2πc0ω − 1(eiωr + ie−πc0ωe−iωr). (4.71)

We recall that the quantum description of the phase fluctuations is only valid in the hydrody-
namic regime, and therefore c0ω ≪ 1 [48]. Hence, we may safely assume that the moduli
adhere to |eπc0ωN | > |N |, which allows us to approximately neglect the second term in the
in-basis asymptotic expansion. This argument is strengthened even further if the frequency
is allowed to be large, which is seen instantly. As a result, the product of the Fourier modes
in the kernel may be written as

ψ̃in
0 (ω; r)ψ̃in

0 (ω; r′)∗ ∼
r→∞

N (ω)2 1
ω

√
rr′

e2πc0ω(e2πc0ω − 1)eiω(r−r′)

∝ 1
ω

√
rr′

(1 − e−2πc0ω)−1eiω(r−r′),
(4.72)

where we recognize the Bogoliubov coefficient |u0|2 = 1/(1 − e−2πc0ω). Substituting these
into the wave functional and using the same arguments as above, one finds

Ψin(Φ) ∝ exp
{
−1

2

∫ ∞

0
dω ω(1 − e−2πc0ω)−1|Φ(ω)|2

}
. (4.73)

As for the out-basis functional, we observe a Minkowksi-like behaviour in the asymptotic
region with frequency ω|u0|2.

We have managed to show that, asymptotically, the ground state wave functional of the acous-
tic black hole shows Minkowski-like behaviour, as required for a scalar field on a Schwarzschild
spacetime. However, an important last test would be to demonstrate the existence of acoustic
Hawking radiation using the expressions Eq.(4.66) and Eq.(4.67). We recall from Eq.(4.32)
that the expectation value of the (0, 0)-component of the energy-momentum tensor is given
by

⟨0|T00(x,y; t)|0⟩ = −g00

4 {G(x,y; t) + gij ∂2

∂xi∂yj
∆(x,y; t)}, (4.74)

For the Schwarzschild-like geometry, this simplifies to

⟨0|T00(x,y; t)|0⟩ = 1
4f(r)−1{G(r, r′) + f(r) ∂2

∂r∂r′ ∆(r, r′)}. (4.75)
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Since f(r) → 1 when r → ∞, the expectation value may be determined rather easily by
substituting our kernels and the inverse kernels into the expression. We recall from the
‘Minkowski test’ that

(In-vacuum)


G(r, r′) ∼

r→∞

∫∞
0

dω
2π ω|u0|2eiω(r−r′)

∆(r, r′) ∼
r→∞

∫∞
0

dω
2π

1
ω |u0|2eiω(r−r′)

for the in-basis vacuum, whereas for the out-basis vacuum we obtained

(Out-vacuum)


G(r, r′) ∼

r→∞

∫∞
0

dω
2π ωe

iω(r−r′)

∆(r, r′) ∼
r→∞

∫∞
0

dω
2π

1
ωe

iω(r−r′).

Since the energy-density is defined as [50, 51]

⟨0|T00(r)|0⟩ = lim
r→r′

⟨0|T00(r, r′)|0⟩ , (4.76)

we are at last able to write the difference between the energy-density of the two vacua as

⟨0|T00(r)|0⟩in − ⟨0|T00(r)|0⟩out = 1
2

∫ ∞

0

dω
2π ω(|u0|2 − 1)

= 1
2

∫ ∞

0

dω
2π ω|v0|2 = 1

2

∫ ∞

0

dω
2π

ω

(e2πc0ω − 1) .
(4.77)

Thus, an in-mode phonon observers the out-mode phonons to be thermalized in accordance
with the Hawking spectrum. This expression is line with our expectation from Ch.3. However,
we have not yet reduced this expression to Eq.(3.88), which describes the total number of
emitted particles from the acoustic horizon. This might serve as an interesting additional
verification of the obtained ground state wave functional. After the orthogonality and
completeness of the in-basis and out-basis Fourier modes have been properly studied and
confirmed, one can discretize the kernel from Eq.(4.66) in line with the formalism sketched in
the next two chapters to obtain a numerical estimate for the entanglement entropy of the
acoustic black hole.



Chapter 5

Full-lattice dependent entanglement
entropy

“If people do not believe that mathematics is simple, it is only
because they do not realize how complicated life is.”
John von Neumann

5.1 Entanglement entropy and harmonic oscillators

The previous chapter presented the theory necessary for writing down vacuum wave functionals
for scalar fields on curved backgrounds. Yet the question remains how the associated kernels
can ultimately be used to (numerically) determine the entanglement entropy of subregions of
these spacetimes. The aim of this chapter is to introduce the ideas, formalism and algorithm
proposed in [69], which together with [11] count as some of the earliest attempts to calculate
the entanglement entropy. Collectively, this approach is known as the real-time formalism
of entanglement entropy, and provides the basis for our approach. The general idea behind
this formalism, which we will elaborate on later in this chapter, hides in breaking down, or
discretizing, the degrees of freedom of a massless scalar field theory on a finite (or countably
infinite) lattice of spherical shells [45] (or 1-spheres for a (2+1)-dimensional theory). In
practice, this entails representing the scalar field by a finite/countably infinite one-dimensional
lattice of harmonic oscillators, where the coupling constants are chosen such that, in the
continuum limit, the system retrieves the original field theory. After a general description of
the formalism and its distillation to an algorithm (in the most abstract terms), we will subject
it to various flat-spacetime examples, and discuss its connection with the aforementioned
kernels.
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5.1.1 Properties of the harmonic oscillator

As the remainder of this chapter will lean heavily on the ’deconstruction’ of scalar fields into
lattices of harmonic oscillators, we will commence our discussion with a concise review of
the main properties of a single harmonic oscillator. Since the reader is expected to have
encountered these concepts a plethora of times, we will confine ourselves to a set of brief
statements, and further information can be found in any respectable book on introductory
quantum mechanics, see e.g. [65, 47, 34]. In the remainder of this section we take ℏ = 1 and
consider ω to be (angular) frequency of the oscillator, unless explicitly stated otherwise. The
Hamiltonian for the (single) harmonic oscillator is given by

H = p̂2

2m + 1
2mω

2x̂2, (5.1)

where m denotes the mass of the oscillator. Solving the time-independent Schrödinger
equation H |ψn⟩ = En |ψn⟩ via the reader’s favourite method, allows one to obtain the
eigenstates and the eigenenergies of the single harmonic oscillator. The wave function of the
linear oscillator is obtained by writing the eigenstates in the positional basis, leading to the
well-known expression [47, 34]

ψn(x) = (mω
π

)1/4 1√
2nn!

e− mω
2 x2

Hn(
√
mωx), (5.2)

with Hn(x) ≡ Hermn(x) denoting the physicist’s Hermite polynomials [4]

Hn(x) = (−1)nex2 dn

dxn
e−x2

. (5.3)

For the ground state, i.e. n = 0, the Hermite polynomial reduces to unity, such that the
ground state wave function is given by the simple Gaussian distribution

ψ0(x) = (mω
π

)1/4e− mω
2 x2

. (5.4)

Note that the prefactor has been chosen such that wave function is properly normalized.
Similarly, the Hermite polynomials with n ≥ 1 enter when expressing the wave function for
excited states, the first of which will reappear later in this chapter. In a sense, Eq.(5.2) and
Eq.(5.4) capture all the prerequisites one needs to grasp the derivations presented in [69],
and we will refer to Eq.(5.2) on a frequent basis.

5.2 A simple system: two coupled harmonic oscillators

The next section’s final aim is to determine the reduced density matrix of a chain of arbitrarily
many harmonic oscillators, and its eigenvalues. Finding the reduced density matrix for a
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mere two coupled oscillators is, as we shall later observe, more than just an easy ‘toy model’.
It turns out, as we shall proof soon, that the reduced density matrix of N oscillators is
nothing but the tensor product of the reduced density matrices for pairs of oscillators, thereby
reducing the entire problem to the results discussed below. There are many excellent reviews
on this topic, and we have been greatly inspired by [58, 24].

Consider a system of two harmonic oscillators centered at xA and xB, respectively, both
experiencing an identical self-coupling k0 and quadratically coupled with coupling constant
k1. The Hamiltonian in position space is given by

H = 1
2[p2

A + p2
B + k0(x2

A + x2
B) + k1(xA − xB)2]. (5.5)

Note that in order to determine the ground state wave function of the system, it is convenient
to first decouple the oscillators, find the wave function in these new coordinates, and then
transform back to the initial coordinates. Specifically, we define

x± = 1√
2

(xA ± xB), (5.6)

such that the Hamiltonian describing the uncoupled oscillators, centered at x+ and x−, is
given by

H = 1
2[p2

+ + p2
− + k0x

2
+ + (k0 + 2k1)x2

−]. (5.7)

From the Hamiltonian we infer that the joint wave function of the uncoupled oscillators is
separable, i.e. ψ(x+, x−) = ψ(x+)ψ(x−), such that determining the aforementioned boils
down to solving the two Schrödinger equations

1
2(p2

+ + ω2
+x

2
+)ψ(x+) = E+ψ(x+)

1
2(p2

− + ω2
−x

2
−)ψ(x−) = E−ψ(x−)

(5.8)

where we have defined the frequencies ω+ = k0
1/2 and ω− = (k0 + 2k1)1/2, and E = E+ +E−.

In light of Eq.(5.2), we find that the joint ground state for the uncoupled oscillators is

ψ(x+, x−) = (ω+ω−)1/4
√
π

e− 1
2 (ω+x2

++ω−x2
−). (5.9)

As explained before, for the sake of further analysis we rewrite the joint ground state in
terms of the initial variables Eq.(5.6), such that

ψ(xA, xB) = (ω+ω−)1/4
√
π

e− 1
4 ((ω++ω−)(x2

A+x2
B)+2(ω+−ω−)xAxB). (5.10)
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Next, recall from Ch.2 that the reduced density matrix for the second oscillator (or: region
B) is given by

ρB(xB, x
′
B) = ⟨x′

B| TrA(ρ) |xB⟩ , (5.11)

where in the position basis the density matrix in terms of the ground state wave functions is

ρ(xA, x
′
A, xB, x

′
B) = ψ0(xA, xB)ψ∗

0(x′
A, x

′
B). (5.12)

Hence, the reduced density matrix of region B can be shown to reduce to

ρB(xB, x
′
B) =

∫ ∞

−∞
dxAψ0(xA, xB)ψ0(x′

B, xA)

=
√
ω+ω−

π

∫ ∞

−∞
dxAe

− 1
4 ((ω++ω−)(2x2

A+x2
B+x′2

B)+2(ω+−ω−)(xB+x′
B)xA).

(5.13)

Completing the square of the exponential of Eq.(5.13) allows us to write

ρB(xB, x
′
B) =

√
ω+ω−

π
e

− ω++ω−
4 (x2

B+x′2
B)+ (ω+−ω−)2

8(ω++ω−) (xB+x′
B)2

×
∫ ∞

−∞
dxAe

− (ω++ω−)
2 (xA+ ω+−ω−

2(ω++ω−) xB)2
,

(5.14)

after which we observe that the integrand is simply a shifted Gaussian distribution, and can
therefore be performed after defining

xA → x̃A = xA − ω+ − ω−
2(ω+ + ω−) . (5.15)

Since the transformation carries a unity Jacobian, the integral amounts to a standard Gaussian
integral, which evaluates to

ρB(xB, x
′
B) =

√
2ω+ω−

π(ω+ − ω−)e
− ω++ω−

4 (x2
B+x′2

B)+ (ω+−ω−)2

8(ω++ω−) (xB+x′
B)2

. (5.16)

Since we have integrated out the xA-dependence and there is only a single oscillator left, we
will from now on denote xB = x for convenience. The expression simplifies considerably by
introducing the constants β = (ω+−ω−)2

4(ω++ω−)

γ + β = ω++ω−
2 ,

(5.17)

where the latter is equivalent to writing γ = ω+ω−/4(ω+ + ω−). Hence, we at last obtain a
simple, intuitive form for the reduced density matrix of the outer oscillator:

ρB(x, x′) =
√
γ − β

π
exp (−1

2γ(x2 + x′2) + βxx′). (5.18)
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In order to determine the entanglement entropy by means of Eq.(2.6), we must obtain
the spectrum of the matrix ρB. First, we aim to derive the eigenvalue equation stated
in [69]. Then, contrary to Srednicki’s approach, we will determine the eigenvalues and
eigenfunctions explicitly, instead of merely using an Ansatz. Consider the eigenvalue equation
ρ̂B |fn⟩ = pn |fn⟩. This can rather easily be rewritten into the form of [69] by simply
contracting with ⟨x| and inserting unity:

⟨x| ρ̂B |fn⟩ = ⟨x| ρ̂B (
∫ ∞

−∞
dx′ |x′⟩ ⟨x′|)︸ ︷︷ ︸

=1

|fn⟩ = ⟨x| pn |fn⟩

ρ̂B |fn⟩ = pn |fn⟩ ⇒
∫ ∞

−∞
dx′ρB(x, x′)fn(x′) = pnfn(x)

(5.19)

where the last equality follows directly by noting that pn is a scalar. In [69] the authors consider
an Ansatz for the eigenfunctions and eigenvalues, the latter claimed to be pn = (1 − ζ)ζn,
with ζ a particular constant, without explicit proof of this relation. We accept this invitation
and will explicitly derive a form of ρB which allows us to evaluate Eq.(5.19). Our derivation
begins by noting that the exponential in the reduced density matrix can be expanded in terms
of a product of Hermite poynomials, as we will demonstrate shortly, by means of Mehler’s
formula [65, 27]:

∞∑
n=0

ζn

2nn!Hn(x)Hn(x′)e− 1
2 (x2+x′2) = 1√

1 − ζ2 exp {−(1 + ζ2)(x2 + x′2) − 4ζxx′

2(1 − ζ2) }. (5.20)

Upon comparing Eq.(5.20) with the reduced density matrix Eq.(5.18), we observe that the
expansion requires enforcing the relations

(1 + ζ2)
(1 − ζ2)(x̃2 + x̃

′2) != γ(x2 + x
′2) and 2ζ

(1 − ζ2) x̃x̃
′ != βxx′, (5.21)

which are only satisfied when x̃ = α1/2x and x̃′ = α1/2x′
2. Furthermore, we are led to identify

ζ = β

γ + α
and α =

√
γ2 − β2. (5.22)

Substituting these constants into Mehler’s formula allows the reduced density matrix to be
written as

ρB(x, x′) = (1 − ζ)
∞∑

n=0

α1/2ζn

π2nn! Hn(α1/2x)Hn(α1/2x′)e− α
2 (x2+x′2). (5.23)
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Using the expression Eq.(5.2), the reduced density matrix for the outer oscillator can be
rewritten as

ρB(x, x′) =
√
α

π
(1 − ζ)

∞∑
n=0

ζnψn(α1/2x)ψn(α1/2x′), (5.24)

with α = ω+ω− as the effective eigenfrequency of the oscillators. The eigenvalue equation
can be efficiently solved by exploiting the orthogonality relation for Hermite polynomials [4]∫ ∞

−∞
dxe−x2

Hn(x)Hm(x) =
√
π2nn!δn,m. (5.25)

Inserting Eq.(5.23) in Eq.(5.19), allows the eigenvalue problem to be written as
√
α

π
(1 − ζ)

∞∑
r=0

ζr

2rr!e
− α

2 x2
∫ ∞

∞
dx′e−αx′2

Hr(α1/2x)Hr(α1/2x′)fn(x′) = pnfn(x), (5.26)

where r, n ∈ Z+. We consider an Ansatz for fn which allows us to exploit the orthogonality,
which in this particular case is chosen in line with [69]:

fn(x) = Hn(α1/2x)e− α
2 x2

. (5.27)

Substitution of this equation in Eq.(5.26) yields the relation

√
α

π
(1 − ζ)

∞∑
r=0

ζr

2rr!e
− α

2 x2
Hr(α1/2x)

∫ ∞

−∞
dx′e−αx′2

Hr(α1/2x′)Hn(α1/2x′)

= (1 − ζ)
∞∑

r=0
ζre− α

2 x2
Hr(α1/2x)δr,n = (1 − ζ)ζnfn(x), (5.28)

where from the first to the second line we have used the orthogonality relation Eq.(5.25) and
for the last equality we have simply summed over all r. The eigenvalues can therefore be
identified as

pn = (1 − ζ)ζn, (5.29)

with ζ defined as in Eq.(5.22). From the normalization of ρB , Eq.(5.19) infers that 0 < pn < 1
and equivalently 0 < ζ < 1. The von Neumann entropy for this system can now be determined
by means of Eq.(2.6), which can be rewritten in terms of the eigenvalues of the reduced
density matrix, i.e. we recall that SA = SB and hence

SA = −Tr(ρB log ρB) = −
∞∑

n=0
pn log pn. (5.30)

The entanglement entropy in its current form cannot be efficiently computed due to the
infinite sum over n. However, the expression can be shown to simplify considerably upon
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inserting the eigenvalues Eq.(5.29), giving

SA = −(1 − ζ)
∞∑

n=0
ζn log((1 − ζ)ζn)

= −(1 − ζ) log(1 − ζ)
∞∑

n=0
ζn − (1 − ζ) log(ζ)

∞∑
n=0

nζn.

(5.31)

We recall that the geometric series and the simplest form of the arithmetico-geometric
sequence are given by [4] 

∑
n≥0 r

n = 1
1−r if |r| < 1∑

n≥1 nr
n = r

(1−r)2 if |r| < 1
, (5.32)

where for the latter we note that one may extend the index to zero. Applying these relations
to Eq.(5.31) allows the von Neumann entropy for region A to be rewritten in the more
convenient shape

SA = − log(1 − ζ) − 1
1 − ζ

log ζ. (5.33)

Hence, all one needs to determine the entanglement entropy of the individual oscillators, are
the values of ζ, or indirectly the values of α, β and γ, which are obtained from the reduced
density matrix. Since Eq.(5.18) can be determined exactly and only depends on the choice of
k0 and k1, one could in principle perform this computation without any difficulties. In the
next section we will expand our system to contain N coupled harmonic oscillators. The aim
is to reproduce the derivation performed above, albeit in a slightly more abstract manner,
and to arrive at an expression for the von Neumann entropy for a finite region of a chain of
arbitrary length similar to Eq.(5.33).

5.3 Extension to larger lattices

We extend our simple system of two coupled harmonic oscillators to a lattice of size N ∈
N ∩ (2,∞), where each site contains an harmonic oscillator. As shown in fig.(5.1), we divide
the chain of oscillators into two finite regions: region A of nb lattice sites, and region B of
N −nb sites. We will interchangeably refer to these regions as ‘inner’ and ‘outer’, respectively.
The addition of a constant ϵ ∈ (0, 1) to the boundary point will be explained in a later section,
yet is shown nonetheless to illustrate that the entangling boundary of the subsystems can be
shifted to non-integer values. The lattice spacing a acts as a UV-regulator, whereas the finite
lattice size IR-regulates the system (we effectively place it in a ‘box’ of length N + 1). Our
discussion is similar to the previous case, since we aim to derive a reduced density matrix for
the outer region, then find its eigenvalues, and finally compute the entanglement entropy of
the inner region.
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Fig. 5.1 A chain of N harmonic oscillators divided into two subsystems A and B. The
boundary point of subsystem A is denoted by nb.

5.3.1 Ground state

We start our derivation by defining the vector x = (xA,xB)T , where xA is an nb-dimensional
vector containing the lattice sites of the inner region, and xB an (N − nb)-dimensional vector
describing the coordinates of the B-region oscillators. The joint ground state of these N
oscillators can be specified by assuming that we have performed some transformation to
uncouple the oscillators, and then transform them back to their original coordinates:

Ψ0(x,x′) = (det(Ω)
πN

)1/4 exp {−1
2xT Ωx}. (5.34)

Note that the matrix Ω contains entries which are remnants from undoing the decoupling
transformation, as well as the original coupling terms. The kernel can be partitioned into 4
submatrices, such that

Ω =
(
A B

BT C

)
(5.35)

where submatrix A is of size nb ×nb, B is a nb × (N−nb) matrix and C is (N−nb)× (N−nb).
Multiplying out the vectors and Ω gives an expression we recognize from the previous
discussion:

Ψ0(x,x′) = (det(Ω)
πN

)1/4 exp {−1
2(xT

AAxA + xT
ABxB + xT

BB
T xA + xT

BCxB)} (5.36)

The reduced density matrix is found in a similar fashion as before, where we use Eq.(5.36) to
construct the density matrix and integrate out the coordinates in the inner region:

ρB(xB,x′
B) =

∫ ∞

−∞
dxAΨ∗

0(xA,xB)Ψ0(xA,x′
B), (5.37)
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where dxA = ∏nb
i=1 dxi is a measure over the internal oscillators. Inserting Eq.(5.36) is then

trivially seen to give

ρB(xB,x′
B) = (det(Ω)

πN
)1/2 exp {−1

2(xT
BCxB + x′T

B Cx′
B}

×
∫ ∞

−∞
dxA exp {−1

2(2xT
AAxA + 2xT

AB(xB + x′
B))}

(5.38)

We can evaluate this integral by completing the square. First, we define a matrix

Q = A−1B(xB + x′
B), (5.39)

such that the second exponential contains

xT
AAxA + xT

AAQ = (xT
A + 1

2Q
T )A(xA + 1

2Q) − 1
4Q

TAQ. (5.40)

The reduced density matrix is therefore seen to become

ρB(xB,x′
B) = (det(Ω)

πN
)1/2 exp {−1

2(xT
BCxB + x′T

B Cx′
B} exp {1

4Q
TAQ}

×
∫ ∞

−∞
dxA exp {−(xT

A + 1
2Q

T )A(xA + 1
2Q)}

(5.41)

As before, we shift the coordinates to a uniform multivariate Gaussian distribution:

xA → x̃A = xA − 1
2Q, (5.42)

after which the integral is seen to give

exp {1
4Q

TAQ}
∫ ∞

−∞
dxA exp {−x̃T

AAx̃A} = ( πnb

det(A))1/2 exp {1
4Q

TAQ}. (5.43)

The reduced density matrix then takes a form similar to Eq.(5.16), leading to

ρB(xB,x′
B) = π(n−N)/2(det(Ω)

det(A))1/2 exp {−1
2(xT

BCxB + x′T
B Cx′

B) + 1
4Q

TAQ}. (5.44)

Before, we defined the constants β and γ. This time around, we opt for matrices instead,
and define β = 1

2B
TA−1B

γ = C − β
. (5.45)

We will later see that, as with the constants in the dual oscillator system, finding these
matrices will play a crucial role in evaluating the von Neumann entropy. For completeness,
note that both β and γ are (N − nb) × (N − nb) matrices. As before, we drop the subscript
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of xB , since it is apparent that these belong to the outer region. The reduced density matrix
then becomes

ρB(x,x′) = π(n−N)/2(det(Ω)
det(A))1/2 exp {−1

2(xTγx + x′Tγx′) + xTβx′}. (5.46)

Note that we are not yet in a position to (easily) find the eigenvalues of the reduced density
matrix, since it is non-diagonal. We remedy this by first diagonalizing γ = V TγDV , and
through defining a vector y such that x = V Tγ

−1/2
D y. Eq.(5.46) then takes the simplified

form

ρB(y,y′) = π(n−N)/2
(det(Ω)

det(A)

)1/2
exp {−1

2(yTγ
−1/2
D V V T︸ ︷︷ ︸

=1

γD V V T︸ ︷︷ ︸
=1

γ
−1/2
D y + y′T y′)

+ yTγ
−1/2
D V βV Tγ

−1/2
D y′}. (5.47)

We have only written out the matrix structure of the first term to give an impression of what
the cancellations look like. It can instantly be seen that the same holds for the second term.
We require a few more auxiliary matrices before the reduced density matrix is diagonal. We
define the matrix

β′ = γ
−1/2
D V βV Tγ

−1/2
D , (5.48)

which is of the shape (N − nb) × (N − nb). Subsequently, we diagonalize β′ = W Tβ′
DW , and

use the orthogonal matrix W to define a new variable z, such that y = Wz. At last, we are
able to write

ρB(z, z′) = π(n−N)/2(det(Ω)
det(A))1/2 exp {−1

2(zT z + z′T z′) + zTβ′
Dz′}. (5.49)

Since all involved matrices are now diagonal, we note that this is equivalent to replacing
these by their eigenvalues, and instead write

ρB(z, z′) = π(n−N)/2(det(Ω)
det(A))1/2

N∏
i=nb+1

exp {−1
2(z2

i + z′2
i ) + β

′
iziz

′
i}, (5.50)

with β′
i the eigenvalues of β′. The tensor product above shows that, as previously mentioned,

the reduced density matrix for a chain of harmonic oscillators with N > 2 reduced to a
product of reduced density matrices for pairs of oscillators in the region (N − nb), in the
spirit of Eq.(5.46). The only discernible difference hides in the identification γ → 1 and
β → β

′
i. The eigenvalue equation we solved in the previous chapter can, given Eq.(5.50), be

seen to reduce to the by now trivial problem∫ ∞

−∞
dxiρB(xi, x

′
i)fn(x′

i) = pnfn(xi), (5.51)
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for each i ∈ {nb + 1, ..., N}. The solution to this equation is the same as before (Eq.(5.29)),
provided we take into account the aforementioned new identifications for γ and β, leading to

pn = (1 − β
′
i

1 − (1 − β′2
i )1/2 )( β

′
i

1 − (1 − β′2
i )1/2︸ ︷︷ ︸

=ζi

)n. (5.52)

Inserting these eigenvalues in Eq.(5.31) leads to the von Neumann entropy for the inner
region:

SA =
N∑

i=nb+1
Si, (5.53)

where Si is given by the expression from before per i ∈ {nb + 1, ..., N}, namely

Si = − log(1 − ζi) − 1
1 − ζi

log ζi. (5.54)

As before, we observe that the expression above only requires the values for ζi, or indirectly
βi

′ through Eq.(5.52). This, in turn, is fully fixed by the matrix Ω and the submatrices
depending on the ‘boundary lattice point’ nb. The covariance matrix Ω can in principle be
obtained in various different ways, yet we will highlight the two most convenient ones. A
vast majority of the literature uses a ‘discrete Hamiltonian’ to obtain the joint wave function,
which can easily be illustrated in the following way. Consider a Hamiltonian of the general
form

H = 1
2

N∑
i,j=1

[pipjδij + xiKijxj ], (5.55)

where we choose the elements of K such that the Hamiltonian reproduces a specific scalar
field theory in the limit of zero lattice spacing (examples will follow soon). Upon diagonalizing
the matrix K = OTKDO and taking y = Ox, one can show that the joint ground state is
given by

Ψ0(y) ∝ exp {−1
2yTK

1/2
D y}. (5.56)

We define the covariance matrix as Ω = OTK
1/2
D O, after which we obtain

Ψ0(x) ∝ exp {−1
2xT Ωx}. (5.57)

At this point it only remains to normalize the wave function, after which we return to our
original expression Eq.(5.34). Clearly, since ‘all’ we need to determine the von Neumann
entropy is the matrix Ω = K1/2, the problem reduces to choosing a proper discretization
scheme and finding K. The idea behind the second approach, which is centered around the
kernel of a continuum-spacetime vacuum wave functional, should be apparent at this point.
Note that one could obtain Eq.(5.34) by discretizing the Hamiltonian, finding K and then
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constructing the joint wave function of coupled oscillators (the previous approach), but one
could equally well find the kernel of a scalar field theory in line with Ch.4, and then perform
a series of discretization steps on the kernel directly, which bypasses the need to envision our
system as a lattice of interacting oscillators. There exists, as we will show later, a strong
connection between this method and a more recent approach taken in the literature (the
topic of discussion of the next chapter), and hence we will postpone its explicit evaluation
till then.

The pseudocode provided below gives an overview of the required auxiliary matrices for
a (3+1)-dimensional example and their order, their dependence on l, and the structure of
the algorithm. The multiplicity (2l + 1) will be explained in a later section. Note that
the pseudocode can easily be adapted to a (2+1)-dimensional example by replacing the
multiplicity (2l + 1) by 2 for each m ̸= 0, and by 1 for m = 0, as will become clear later. For
a (1+1)-dimensional theory it simplifies even further, since in this case one can remove all
loops.

Algorithm 1 GS Von Neumann entropy: d = 3 ⊕ 1
1: for i ∈ inner region do
2: Initialize S
3: for l ∈ {0, lmax} do ▷ Loop depends on d; see below
4: Determine K
5: Calculate Ω = UK

1/2
D UT

6: Decompose Ω into A,B and C
7: Construct β = 1

2B
TA−1B and γ = β − C

8: Diagonalize γD = V γV T

9: Construct β′ = γ
−1/2
D V βV Tγ

−1/2
D and find eigenvalues β′

i

10: Determine Si

11: Calculate (2l + 1)Si ▷ Choose multiplicity based on d
12: end for
13: Update S
14: end for

5.4 Free scalar fields on a lattice

Srednicki’s seminal paper [69] did not only discuss the construction of the algorithms we
derived so far, but also used these to numerically demonstrate the existence of an area
law for a (3+1)-dimensional massless, free scalar field in Minkowski spacetime. It is only
natural that this famous result constitutes one of the main tests we subject our algorithm
to. However, our first example will be a simple (1+1)-dimensional massless, free scalar in
Minkowski spacetime, and ultimately the (2+1)-dimensional case, which is our main point of
focus, since it is associated with the extension to our analogue black hole geometry. Lastly,
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we remark that connecting the numerical results to the literature is largely postponed to the
next chapter, where we study the same examples with a slightly more sophisticated method.

5.4.1 D = 1 ⊕ 1

As stated in the previous section, we will (for now) only concern ourselves with the discrete-
Hamiltonian approach. The natural starting point for the (1+1)-dimensional example is
therefore the Hamiltonian

H = 1
2

∫
dx[π2(x) + |∇ϕ(x)|2], (5.58)

with ϕ(x) is a real scalar field. This theory can be discretized rather easily by simply
transforming to the discrete variables

r → ja (5.59)
∂rϕ(r) → (ϕj+1 − ϕj)/a (5.60)∫

dx → a
N+1∑
j=0

, (5.61)

where j ∈ N and we used a finite-difference approach for the derivative. The discrete
Hamiltonian can then be written as

H = 1
2a

N∑
j=1

[π2
j + (ϕj+1 − ϕj)], (5.62)

where we considered Dirichlet boundary conditions for j = 0 and j = N + 1, i.e. we enforced
ϕ0 = 0 and ϕN+1 = 0. Note that we have effectively reduced our scalar field to the lattice of
fig.(5.1). This allows us to write the Hamiltonian as

H = 1
2a

N∑
i,j=1

[πiπjδij + ϕiKi,jϕj ], (5.63)

with the coupling matrix given by

K =



2 −1 0 . . . 0

−1 2 −1
...

0 −1 2 . . . 0
... . . . . . . −1
0 . . . 0 −1 2


(5.64)
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Note that, using the techniques discussed before, this matrix immediately allows us to
compute the entanglement entropy of a small subregion of a finite chain, where nb is gradually
extended to nb = N , i.e. the complement of region A becomes zero. This simulation has
been performed for a small lattice of size N = 50, with nb ∈ {1, ..., 50}, and lattice parameter
a = 1, as shown in fig.(5.3). The von Neumann entropy is maximal for nb = N/2 and minimal
when nb comprises one of the boundary points, as expected. However, the situation we
are particularly interested in, is the one where N → ∞. Since this is not computationally
achievable, we consider a small subregion A and choose the lattice large enough to minize
the boundary effects from lattice point N + 1. Fig.(5.2a) shows a convergence analysis for
the von Neumann entropy as a function of the lattice size for five distinct values of nb. It
is shown that, for a subregion with a boundary nb = 25, approximate convergence in N is
achieved for a lattice of 300 sites, and hence can be used for the entropy of a subregion A of
the semi-line l ∈ [0,∞). We performed a similar analysis for a sublattice with nb = 100, and
found that a lattice size of N = 500 is suitable for convergence of the entropy. Using these
parameters to determine the entanglement entropy of the semi-line, we find the result shown
in fig.(5.2b).

It is known [13] that the von Neumann entropy for a finite interval [0, l) of a semi-line
[0,∞), which is subjected to boundary conditions at l, is given by

SA = c

6 log( β
πa

sinh(2πl
β

)) + d, (5.65)

where in our case l = nb. When l ≪ β, which we assume for our system, the authors argue
that the entropy of the subregion can be written as

SA = c

6 log(2l
a

) + d (5.66)

where c is the conformal parameter, which for a scalar field is c = 1. The constant d is
dependent on the particular theory. We performed a numerical fit to the curve in fig.(5.2b)
and obtained a function

SA = c̃

6 log(2lb
a

) + d̃, (5.67)

where lb = nba. The coefficients are given by c̃ = 0.917 and d̃ = 0.024. We note that
this relation is approximately equivalent to Eq.(5.66), which is further supported by our
retrieval of the conformal weight c̃ ≈ 1, suggesting that the numerical simulation correctly
approximates the entanglement entropy of the (1+1)-dimensional scalar field.
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Fig. 5.2 The figure in the upper left corner shows the entanglement entropy for various nb as
a function of the lattice size N ∈ [30, 300]. The remaining figures display the entanglement
entropy for each nb versus the lattice size. It is shown that S converges for large N for these
particular boundary points.

Fig. 5.3 Figure (a) shows the von Neumann entropy for the subregion of a finite chain, with
N = 50. Figure (b) displays the entanglement entropy of a subregion with nb ∈ {1, ..., 100}
on a lattice with N = 500 sites. A fitted function is shown by means of a red line.
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5.4.2 D = 3 ⊕ 1

Before we consider the case of a two-dimensional spacetime, we study the case of a free,
massless scalar field on a (3+1)-dimensional spacetime. In this section we reproduce the
derivation from [69], but with some slight differences. We primarily choose this rather
unnatural order as to verify our algorithm for more complicated systems, where a comparison
with Srednicki’s coefficient for the area law is decisive. Consider the Hamiltonian for the
Klein-Gordon field:

H = 1
2

∫
d3x[π2(x) + |∇ϕ(x)|2], (5.68)

where, with a slight abuse of notation, we write |πlm|2 = πlmπl′m′ . We assume that the fields
admit a mode-decomposition using spherical harmonics, leading toϕ(x) = ∑∞

l=0
∑l

m=−l
ϕlm(r)

r Ylm(θ, α)

π(x) = ∑∞
l=0
∑l

m=−l
πlm(r)

r Ylm(θ, α)
(5.69)

Furthermore, we recall that the derivatives of the fields in these coordinates are given by

|∇ϕ|2 = (∂ϕ
∂r

)2 + 1
r2 (∂ϕ

∂θ
)2 + 1

r2 sin2(θ)(∂ϕ
∂α

)2. (5.70)

As remarked in [69], we use real spherical harmonics, as to ensure the reality of the field. We
adopt Srednicki’s notation and write Zlm such that


m = 0 : Zl0 = Yl0

m > 0 : Zlm =
√

2Re(Ylm)

m < 0 : Zlm =
√

2Im(Ylm)

(5.71)

which can be shown to obey the typical orthonormality relation for spherical harmonics
[69]. Let us, for clarity, consider the Laplace operator and conjugate momentum separately.
Starting with the easiest term (the conjugate momentum), we have:

∑
l,m

∑
l′,m′

∫
dr
∫

dΩZlm(θ, φ)Zl′m′(θ, φ)πlm(r)πl′m′(r) =
∑
lm

∫
dr π2

lm(r). (5.72)

The measure is given by dΩ = sin2(θ)dθ dφ, where the sine is a remnant from the volume,
after which we used the relation [4]

∫ π

0

∫ 2π

0
dΩZlm(θ, φ)Zl′m′(θ, φ) = δll′δmm′ , (5.73)
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and summed over the indices l′,m′. The derivative term can be written as

|∇ϕ(x)|2 =
∑
l,m

∑
l′,m′

[
( ∂
∂r

ϕlm(r)
r

)2|Ylm(θ, α)|2 + |ϕlm(r)|2|∇Zlm(θ, φ)|2
]
, (5.74)

where ∇ denotes the gradient. Substituting this result into the Hamiltonian and integrating
out all angular dependence (apart from the ∇ term) leads to the simple relation

H = 1
2
∑
lm

∑
l′m′

∫
dr
[
π2

lm(r)δll′δmm′ + r2( ∂
∂r

ϕlm(r)
r

)2δll′δmm′

+ |ϕlm(r)|2
∫

dΩ |∇Zlm(θ, φ)|2
]
, (5.75)

with dΩ the measure from before. The last term simplifies considerably by taking the partial
derivative and discarding all boundary terms, such that the last contribution becomes
∫

dΩ |∇Zlm(θ, φ)|2 = −
∫

dΩZlm(θ, φ)△Zl′m′(θ, φ)

= l′(l′ + 1)
r2

∫
dΩZlm(θ, φ)Zl′m′(θ, φ), (5.76)

where △ is the Beltrami-Laplace operator, for which we know that [4] △Ylm = −l(l+1)Ylm/r
2.

Inserting this result back into Eq.(5.75), taking the last integral over the measure dΩ and
summing over l′,m′ leads to the Hamiltonian of a one-dimensional chain, given by

H = 1
2
∑
lm

∫
dr [π2

lm(r) + r2( ∂
∂r

ϕlm(r)
r

)2 + l(l + 1)(ϕlm(r))2

r2︸ ︷︷ ︸
=2Hlm

] (5.77)

This particular expression can be discretized rather easily, where, as before, we consider
r → (j + ϵ)a, with a the lattice spacing and j ∈ N/{0}. The only difference is the addition of
the term ϵ ∈ [0, 1], which reflects the possibility to shift the boundary away from its original
lattice site. In [69] this simple trick is used to mimic the geometry of a static black hole, in
the sense that in integrating over the inner region one should take care with the horizon,
which is singular. By taking ϵ = 1/2 and a = 1, the authors chose the lattice such that the
event horizon is in between two lattice points nb and nb + 1, and then integrated out the
region [1, ..., nb], therefore capturing the entire inner region without running into singular
behaviour. However, this event horizon was ‘fictional’; they chose to restrict a subregion
of Minkowski spacetime to a sphere, but did not use the actual geometry appropriate for a
Schwarzschild black hole. This will not be of great concern to us in this chapter, but it is
important to realize the restrictions to their result. In our case we will take ϵ = 0, yet for
completeness the finite-difference term is shown for arbitrary ϵ, and the reader is free to shift
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the boundary in all further terms. The finite-difference becomes

∂

∂r

ϕlm(r)
r

→ 1
a2
( ϕlm,j+1
j + 1 + ϵ

− ϕlm,j

j + ϵ

)
. (5.78)

Taking all these terms into account, we obtain the Hamiltonian for a chain of harmonic
oscillators of the form

H = 1
2a
∑
l,m

N∑
j=1

(π2
lm,j + (j + 1/2)2(ϕlm,j+1

j + 1 − ϕlm,j

j
)2 + l(l + 1)

j2 ϕ2
lmj), (5.79)

which corresponds to the Hamiltonian found in [49]. We have furthermore written ϕlm(ja) →
ϕlmj and πlm(ja) → πlmj . This result shows the essence of fig.(5.4); since each lattice point
captures the contribution of a ‘shell’ of oscillators (i.e. for the j-th lattice point all oscillators
on the 2-sphere with radius r = j+ ϵ), we have discretized the system to a lattice of spherical
shells. Taking the limit a → 0, undoing the finite difference term, writing the Riemann sum
as an integral and re-inserting the spherical harmonics retrieves the continuum theory. Let
us now return to the discrete Hamiltonian and start our search for the coupling matrix K.
For each pair (l,m) the expression reduces to

Hlm = 1
2a

N∑
i,j=0

(
πlm,iπlm,jδij + ϕlm,iKijϕlm,j

)
, (5.80)

where the coupling matrix K can be found by comparing this expression with the Hamiltonian
Eq.(5.79). As before, we consider boundary conditions ϕlm,0 = ϕlm,N+1 = 0. The coupling
matrix can then be shown to correspond to the one described in [49], where the real, symmetric,
semipostive, tridiagonal matrix contains elements


K11 = 9

4 + l(l + 1)

Kjj = 2 + 1
j2 (1

2 + l(l + 1)) for j ∈ [2, ..., N ]

Kj,j+1 = Kj+1,j = − (j+ 1
2 )2

j(j+1) for j ∈ [1, ..., N − 1]

(5.81)

We note that the coupling matrix is not explicitly dependent on m. Since m ∈ [−l, l] for each
l, we may write the entanglement entropy (including correct multiplicity) as

SA =
∞∑

l=0

N∑
i=nb+1

(2l + 1)Si, (5.82)

where Si is given by Eq.(5.54). Before performing the entropy simulations, we select a
maximal lmax which ensures convergence in the angular parameter, as we will discuss shortly.
The (numerical) convergence of the entanglement entropy as a function of N is demonstrated
in fig.(5.5). We have first selected an arbitrarily large l and manually showed that ∆S(l) ≪ 1
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Fig. 5.4 Impression of a scalar field with a discretized radial coordinate, which reduces to a
chain of N oscillators after the angular degrees of freedom are integrated out. The dotted
circles either represent spherical shells or circular shells, depending on the spatial dimension
of the field.

for a sample of the values nb ∈ [0, 100], including the maximum surface position nb = 100.
Note, however, that this approach leads to exceedingly large CPU times and greatly improves
when eventually taking the two convergence results together. It is shown that a lattice
size of N = 300, with large enough l, leads to approximate convergence to the maximum
entanglement entropy for all considered nb. Subsequently, we have considered the same
procedure for S as a function of l, where we have first considered an arbitrarily large N to
ensure (approximate) convergence in this parameter, i.e. ∆S(N) ≪ 1 for each nb, and then
determined the contribution of each angular momentum mode to the entanglement entropy.
It can be seen in fig.(5.6) that, for entangling surfaces up to nb = 100, the entropy receives
ample contribution from the angular momentum modes from l ≈ 700 onwards for the larger
values of nb, whereas the lower values are hardly affected by greater l at all. In the following
simulations we shall therefore enforce convergence by taking N = 300 and l = 800 for all
surface positions nb ∈ [0, 100].

We determine the entanglement entropy of a subregion with an entangling surface up
to A/4π = 1600, where A = 4πR2

b and Rb = nba, which correspond to a maximal boundary
point nb = 40. The optimal parameters N = 300 and l = 800 were used for each simulation.
Fig.(5.7) shows the resulting von Neumann entropy, including a numerical fit, which is given
by the expression

SA = s(Rb

a
)2 + c log(Rb

a
)2 + d, (5.83)

where the numerical coefficients were found to be s = 0.29805, c = 1.65674 and d = −0.67725.
In [69] the authors found a coefficient s = 0.30, serving as numerical confirmation of the
area law. However, they were not yet able to determine logarithmic corrections. More recent
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Fig. 5.5 The entanglement entropy of various nb is shown as a function of the lattice size
N . The first plot considers 5 particular values of nb, which are shown individually in the
remaining subfigures.

numerical work [49] has found coefficients s = 0.295431, c = −0.005545 and d = −0.03537.
The coefficient s is seen to correspond to our result, yet the coefficients of the corrections are
not compatible. In particular the difference between the values of c are striking, as this is
known to be c = −1/90 analytically [15], which is indeed found by [49] when absorbing the
square of the logarithmic term into the coefficient. This difference lies in the fact the authors
of [49] used a significantly larger lattice and larger entangling surface, and fitted the curve
only to the predicted entanglement entropy for the last 20 lattice sites [nb − 20, nb]. Hence,
they minimized the influence of the boundary at j = 0, which causes a slightly curved offset
in our plot, and therefore overestimates the magnitude of our estimate of the logarithmic
coefficient c. Reproducing the approach by Lohmayer et al. yielded coefficients close to those
found in [49], yet as we did not manage to achieve numerical convergence in l, we will depart
the topic for now and proceed to study the (2+1)-dimensional case.

5.4.3 D = 2 ⊕ 1

Despite the greater importance of the (2+1)-dimensional scalar field in light of our analogue
black hole, we decided to present the (3+1)-dimensional case first, as it not only provides a
road map for the discretization of the current system, but in fact simplifies it considerably.
We start from the 2-dimensional equivalent of the Hamiltonian Eq.(5.68) and write the scalar
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Fig. 5.6 The contribution of each angular momentum mode l to the entanglement entropy
of a specific surface nb is displayed. The first figure considers 5 particular values of nb.
Consecutive figures consider each of the nb individually to show more properly the behaviour
of the tail.

Fig. 5.7 The figure shows the numerical predictions for the entanglement entropy of the scalar
field. The red-line corresponds to the function fitted to the curve. The small ‘kink’ near the
origin is an artifact of the boundary conditions.
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field and its conjugate momentum as a mode-decompositionϕ(r, θ) = ∑
m

ϕm(r)√
r
Zm(θ)

π(r, θ) = ∑
m

πm(r)√
r
Zm(θ)

(5.84)

where we denote Zm = Re{Ym} for m > 0, Zm = Im{Ym} for m < 0, and Z0 = 1, where
Ym(θ) are the circular harmonics [28], which are chosen such that they form an orthonormal
basis: ∫ 2π

0
dθ Ym(θ)Ym′(θ) = δmm′ . (5.85)

Upon writing the Hamiltonian in polar coordinates and inserting the aforementioned mode-
expansion, we obtain the expression

H = 1
2
∑

m,m′

∫
drdθ

[
|πm(r)|2|Ym(θ)|2 + r( ∂

∂r

ϕm(r)√
r

)2|Ym|2 + |ϕm|2

r2 (∂Ym

∂θ
)2], (5.86)

where we use the same shorthand as before. We consider a partial integration of the last
term and identify the Laplace-Beltrami operator with fixed radius such that∫

dθ (∂Ym

∂θ
)2 = −

∫
dθ Ym△∗Ym′ , (5.87)

which in this case is merely the second-order derivative with respect to θ. We note from
[28] that △∗Ym(θ) = −m2Ym(θ) for all circular harmonics Ym. Inserting this result into the
Hamiltonian and using Eq.(5.85) yields

H = 1
2
∑
m

∫
dr
[
(πm(r))2 + r( ∂

∂r

ϕm√
r

)2 + m2

r2 ϕm(r)2], (5.88)

where we have integrated over θ and subsequently summed over m′. Choosing the discretiza-
tion scheme from before, i.e. ϕm(ja) → ϕmj and πm(ja) → πmj , we obtain the dimensionally
reduced Hamiltonian

H = 1
2a
∑
m

N∑
j=1

[
π2

m,j + (j + 1/2)(ϕm,j+1√
j + 1 − ϕm,j√

j
) + m2

j2 ϕ
2
m,j

]
(5.89)

This expression resembles the result from the (3+1)-dimensional scalar field. The Hamiltonian
describes a chain of oscillators where the i-th site contains the contributions from the 1-sphere
of harmonic oscillators of radius r = ia+ ϵ, corresponding to fig.(5.4). Performing the sum
over j in Eq.(5.89) and collecting like-terms gives the m-mode Hamiltonian

Hm = 1
2a

N∑
i,j=1

[
πmiπmjδij + ϕmiKijϕmj

]
. (5.90)



5.4 Free scalar fields on a lattice 67

The coupling matrix is identical to the one found in [39, 40], where the author studies scalar
fields and Maxwell fields confined to cylinders and disks, and are found to be

K11 = 3
2 +m2

Kjj = 2 + m2

j2 for j ∈ [2, N ]

Kj,j+1 = Kj+1,j = − j+1/2√
j(j+1)

for j ∈ [1, N − 1]
(5.91)

Since the elements of the coupling matrix only contain even powers of m, we observe that
each Si,m carries a multiplicity of (1 + [m ̸= 0]), where [x] is the Iverson bracket (i.e. 0 if
m = 0 and 1 if m ̸= 0). We can therefore write the entanglement entropy of the subregion A
as

SA =
N∑

i=nb+1

∞∑
m=0

(1 + [m ̸= 0])Si, (5.92)

where Si is given by Eq.(5.54). Determining the entanglement entropy proceeds along the
same lines as before, and as such we start with the convergence analysis for the entropy
in m and N , shown in fig.(5.8). Subplot fig.(5.8a) shows the von Neumann entropy as a
function of N , where we have taken the entangling surface nb ∈ [1, 60], of which a subset
is explicitly shown. The azimuthal mode m was chosen large and manually varied until
∆S(m) ≪ 1. After selecting an appropriate mmax, the interval N ∈ [65, 150] was considered,
which shows approximate convergence in N for lattice sizes of N ≥ 120. Fig.(5.8b) shows a
similar analysis for m, where the contribution of each m to the total entanglement entropy is
shown. We first selected an arbitrarily large N , such that ∆S(m) ≪ 1, after which we used
this parameter to determine S(m) for m ∈ [0, 150]. It shown that the von Neumann entropy
approximately convergences in m for m > 140.

Subsequently, we consider a lattice of size N = 150 and an entangling surface nb ∈ [1, 60].
The maximal azimuthal mode mmax = 150 is chosen in line with the convergence analysis.
The result of this simulation is shown in fig.(5.9). We fitted a function 1

SA = s(Lb

a
) + c log(Lb

a
) + d, (5.93)

where Lb = nba, to our data and determined the coefficients s, c and d. The reader should
note that the terminology ‘area law’ for the entangling surface is slightly misleading, since in
the (2+1)-dimensional case it is expected to scale with the perimeter, not the area. Hence,

1It was pointed out to us shortly before finishing this dissertation that a (2+1)-dimensional scalar field
with a smooth boundary should not contain a subleading logarithmic term. Time-constraints have prevented
us from researching this statement further and, if needed, performing new fits. Anyone who feels tempted to
continue this inquiry should therefore take the fits for d = 2 with a grain of salt, yet pay close attention to the
predictive power for the polynomial coefficients. However, our successors can take comfort in the fact that the
results for the d = 1 and d = 3 scalar fields are in line with relevant literature.
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Fig. 5.8 The first subfigure shows the entanglement entropy for various entangling boundary
points nb as a function of the lattice size N . The second figure shows the contribution of
each azimuthal mode m to the entanglement entropy of a specific surface nb.

we adopt the somewhat confusion notation A = 2πLb ≡ 2πnba. The coefficients are found to
be s = 0.432, c = 0.267 and d = −0.033, confirming the that the entanglement entropy of the
scalar field scales with its perimeter.
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Fig. 5.9 The entanglement entropy of a free, massless (2+1)-dimensional scalar field as a
function of the boundary points nb ∈ [1, 60]. The fitted curve is seen to be almost linear.





Chapter 6

Sublattice-dependent entanglement
entropy

“Joy in looking and comprehending is Nature’s
most beautiful gift.”
Albert Einstein

In the previous chapter we ‘decomposed’ free scalar fields into chains of N -coupled harmonic
oscillators by integrating out the angular degrees of freedom contained by the Hamiltonian,
followed by subsequent discretization of its radial coordinate. The resulting ground state
wave functions were then used to determine the reduced density matrix of the complement
of some predefined sublattice A ⊂ M, after which the introduction of several auxiliary
structures resulted in an algorithm for the estimation of its entanglement entropy. Although
the efficiency of the approach is apparent, the requirement of the coupling matrix to be
calculated for the full lattice M may lead to significant computational times and, when one
is not careful, inconspicuous convergence issues. This chapter attempts to arrive at a similar
algorithm, yet approached from a different angle. Contrary to ab initio considering a chain
of harmonic oscillators and computing their joint wave function, we will follow the approach
of [15], where they exploit the fact that the reduced density matrix of a subregion A can
be constructed solely from the knowledge of the correlators in A. We will then proceed by
expressing both the von Neumann and Rényi entropy in terms of the position and conjugate
momentum correlators. Lastly, we will discuss an explicit connection between the correlators
and the coupling matrix of the discrete-system Hamiltonian, which allows us to create an
algorithm which only requires knowledge of the correlators (and no auxiliary structures)
constrained to region A.
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6.1 Entropy and correlators

We base our discussion on the original work by Cassini et al. [15] and their excellent review
[17]. Since the accompanying discussion of their derivation in these publications is on the
frugal side, and stands quite far from the aim of this dissertation, we shall state the most
important results while briefly motivating their origin, after which we join in on the derivation
at a point suitable for our purposes; finding a more efficient algorithm to compute the
entanglement entropy. As before, we consider the bosonic fields ϕi and its conjugation
momentum πi, for which the standard commutation relations are assumed. For the sake of
brevity, we will furthermore introduce the notation for the correlators

Xij = ⟨ϕiϕj⟩ and Pij = ⟨πiπj⟩. (6.1)

Using the commutation relations, one can also demonstrate that [15]

⟨ϕiπj⟩ = ⟨πjϕi⟩ = i

2δij . (6.2)

The authors assume that subsystem A can be described by the modular Hamiltonian HA =∑
κ ϵκa

†
κaκ ≡

∑
κ ϵκnκ, as in [58], which is defined as the logarithm of the normalized reduced

density matrix of region A [64, 22]. In this terminology, the reduced density matrix for a
chain of oscillators is given by [61, 60, 19]

ρA = Ce−
∑

κ
ϵκa†

κaκ ≡ Ce−HA , (6.3)

where C is the normalization constant C = ∏
l(1 − e−ϵl), which can be obtained by enforcing

the condition Tr(ρ) = 1. The authors proceed to show that, by means of this reduced density
matrix for subregion A, one can obtain the correlator matrices

X = α(2n+ 1)αT , (6.4)
P = β(2n+ 1)βT , (6.5)

with α and β real matrices, and n a diagonal matrix containing the expectation values of the
occupation numbers, which according to [15] are given by ⟨nk⟩ = (e−ϵk − 1)−1. Furthermore,
one can demonstrate that α = −(βT )−1/2. More details on the derivation of the correlator
matrices can be found in [24]. The relation between matrices α and β can be exploited to
dissect the correlator matrix products XP and PX, which are non-commutative, but can be
shown to have the same spectrum. The former can be demonstrated to give

XP = α(2n+ 1)αTβ︸︷︷︸
=− 1

2

(2n+ 1)βT = 1
4α(2n+ 1)2α−1. (6.6)
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In the same manner, one can show that

PX = β(2n+ 1)βTα︸︷︷︸
=− 1

2

(2n+ 1)αT = 1
4β(2n+ 1)2β−1, (6.7)

where we have rewritten β in terms of α. Since n is a diagonal matrix, both products are
seen to have eigenvalues (n+ 1/2)2. As they are not orthogonally diagonalizable, the matrix
products are not identical, yet they are similar. The spectrum of the correlator products is
therefore given by

ν2
κ ≡ (nκ + 1

2)2 = ( 1
eϵκ − 1 + 1

2)2. (6.8)

Using some basic trigonometry, the eigenvalues can be shown to reduce to the simple
expression νκ = 1

2coth(ϵκ/2), which describe the eigenvalues of the matrix C =
√
XP , where,

as shown before, the order of the correlators is irrelevant. Since νκ ≥ 1
2 , we find the additional

constraint C ≥ 1
21, or XP ≥ 1

41. By using analytical evaluation software, we then inverted
the eigenvalues to obtain

ϵκ = log (
νκ + 1

2
νκ − 1

2
). (6.9)

At this point it is possible to take two distinct routes. One could either decide to follow
[15] and derive the entanglement entropy in terms of νκ directly from the reduced density
matrix, or one could take the r → 1 limit of the Rényi entropy Eq.(2.8) as a starting point,
as discussed in [67, 24]. We will follow the latter and stay rather close to their derivation.
Before considering the full Rényi entropy, we shall demonstrate that Eq.(6.9) causes the
trace-term to simplify considerably, therefore rendering the Rényi entropy (and consequently
the von Neumann entropy) relatively easy to compute. We note that

Tr[ρq] = Tr[Kq
N∏

κ=1
e−qϵκnκ ] = Kq

N∏
κ=1

∑
nκ

(
νκ − 1

2
νκ + 1

2
)qnκ . (6.10)

Since the fraction in the summation is always smaller than one, we may use the geometric
series, such that the trace becomes

Tr[ρq] =
N∏

κ=1
(1 −

νκ − 1
2

νκ + 1
2

)q[1 − (
νκ − 1

2
νκ + 1

2
)q]−1, (6.11)

where in the last line we have inserted the definition of the normalization constant K. This
expression can be rewritten to

Tr[ρq] =
N∏

κ=1
[(νκ + 1

2)q − (νκ − 1
2)q]−1 (6.12)
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which we then substitute into the definition of the Rényi entropy Eq.(2.8) with q → 1:

S = lim
q→1

1
1 − q

log (
∏
κ

[(νκ + 1
2)q − (νκ − 1

2)q]−1)

= lim
q→1

∑
κ

−1
1 − q

log [(νκ + 1
2)q − (νκ − 1

2)q].
(6.13)

Note that this expression, without the limit, is in fact sufficient to evaluate the Rényi entropy
for any order q ∈ Z+\{1}. The limit can be evaluated by using l’Hôpital’s rule, after which
one finds

S = lim
q→1

∑
κ

(νκ + 1
2)q log (νκ + 1

2) − (νκ − 1
2)q log (νκ − 1

2)
(νκ + 1

2)q − (νκ − 1
2)q

=
∑

κ

[(νκ + 1
2) log (νκ + 1

2) − (νκ − 1
2) log (νκ − 1

2)].
(6.14)

This last expression provides the von Neumann entropy for our scalar field, which in terms of
the matrix C becomes

S = Tr[(C + 1
2) log (C + 1

2) − (C − 1
2) log (C − 1

2)]. (6.15)

We note that this expression is valid provided νκ ≥ 1/2, for each κ ∈ A. Recalling that the
eigenvalues of the product XP > 1/4, we conclude that the eigenvalues of C =

√
XP must

necessarily obey the lower bound C > 1/2, hence fulfilling the requirement posed on νκ.

Up to this point, the calculation of X and P itself has received little attention. In [15] it is
only stated that the matrices are given by the simple relation

Pij = 1
2(K1/2)ij and Xij = 1

2(K−1/2)ij (6.16)

where we note the explicit connection between P and the kernel as defined in the previous
chapter: Ω = K1/2. We proceed to demonstrate these relations explicitly by writing the
reduced density matrix in the Schrödinger representation. This derivation is inspired by [67],
and we retrace their work in slightly more detail. We note that, as in Ch.5, we may write

ρ(Φ,Φ′) = π−N/2
√

det(Ω)e− 1
2 Φ′T ΩΦ′

e− 1
2 ΦT ΩΦ, (6.17)

where Φ = (ϕ1, ..., ϕN )T . Using the definition of the position correlator, we can now write

⟨ϕiϕj⟩ = Tr[ρϕiϕj ] = π−N/2
√

det(Ω)
∫ ( N∏

n=1
dϕn

)
ϕiϕje

−ΦT ΩΦ, (6.18)
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where one must take care to use the density matrix, and not the reduced density matrix
corresponding to A with B integrated out. This is integral is nothing but a simple multivariate
Gaussian, for which solutions are known to be [67]

∫
dxf(x)e− 1

2 xT Ax =
√

(2π)N

det(A) exp (−1
2

N∑
n,m=1

(A−1)nm
∂

∂n

∂

∂m
)f(x)|x=0. (6.19)

Given f(x) = xixj , we observe that in Taylor expanding the exponential, all terms but the
first-order contribution vanish. Hence, the correlator ⟨ϕiϕj⟩ evaluates to

Xij = ⟨ϕiϕj⟩ = 1
4π

−N/2
√

det(Ω)
√

(2π)N

det(2Ω)
∑
n,m

δn,iδm,j(Ω−1)nm

= 1
2(Ω−1)ij = 1

2(K−1/2)ij .

(6.20)

Despite the fact that we could have expressed the result in terms of K from the start, we
have explicitly chosen to elucidate its connection with the kernels from Ch.4. Similarly, the
other correlator can be written as

⟨πiπj⟩ = Tr[ρπiπj ] = −π−N/2
√

det(Ω)
∫ ( N∏

n=1
dϕn

)
e− 1

2 ΦT K1/2Φ ∂

∂ϕi

∂

∂ϕj
e− 1

2 ΦT K1/2Φ. (6.21)

We can easily evaluate the integral by taking the derivatives and applying the general solution
Eq.(6.19), which gives

⟨πiπj⟩ = π−N/2
√

det(Ω)
∫ ( N∏

n=1
dϕn

)
(K1/2

ij −
∑
r,m

∑
k,l

δkjδriKklKrmϕlϕm)e−ΦT K1/2Φ

= π−N/2
√

det(Ω)
∫ ( N∏

n=1
dϕn

)
(K1/2

ij −KjlKimϕlϕm)e−ΦT K1/2Φ,

(6.22)

where the first part of the integral is immediately seen to cancel the prefactor of Eq.(6.22)
upon evaluation. The second part requires more care, as only the first-order expansion of
Eq.(6.19) is non-vanishing. After acting with the derivatives ∂a∂a′ on the fields and summing
over the resulting delta-functions, we obtain

Pij = ⟨πiπj⟩ = K
1/2
ij − 1

2K
1/2
ia K

−1/2
aa′ K

1/2
a′j = 1

2K
1/2
ij , (6.23)

which confirms the vacuum correlators postulated in [15], in line with the derivation from
[67].

As can rather easily be deduced from our discussion up to this point, the crux of our
numerical scheme hides in determining the matrix C =

√
XP , for which no auxiliary matrices
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had to be defined. The most straightforward and perhaps also most obvious route one
can take, is marked by identifying the coupling matrix K from the previous chapter for a
particular theory and using the relations specified in Eq.(6.20) and Eq.(6.23) to construct
the matrix C. While this is a perfectly acceptable approach which leads to a small correction
compared to Srednicki’s scheme, as the algorithm is significantly shorter and more efficient,
there are several less obvious routes which one may explore. We will list the three options
explored in this chapter below, yet the reader is of course free to identify more paths leading
to the matrix C.

1. This first route has a strong resemblance to Srednicki’s paper, where one positions the
scalar field on a finite lattice and then traces over the lattice sites of the pre-specified
subregion A. After identification of K on the full lattice M = A ∪ B, one is able to
compute C and determine Eq.(6.15). The advantage is its relative computational ease
(the algorithm is much shorter than the previous one), yet, as before, one requires
information of the full lattice M, whereas the aim is to construct C from knowledge of
A alone. A schematic approach to the calculation and algorithm is shown below.

K
∣∣
M X

∣∣
M X

∣∣
A

P
∣∣
M P

∣∣
A

C
∣∣
A

2. A second approach aims at finding a ‘bypass’ around K in the sense of the second
approach discussed in Ch.5. Writing down the ground state wave functional for a simple,
free scalar field theory (most of which have been extensively described in the literature),
one is able to discretize (and if necessary decompose) the kernel Ω = K1/2 ∼ P directly,
therefore avoiding explicitly constructing K from the Hamiltonian. However, this
approach tends to be more intensive from a computational perspective, which can easily
be inferred from the schematic depiction below. Furthermore, as with route 1, we
require the scalar to be placed on a finite lattice, where the calculation of C depends
on M instead of solely on A, as argued below.

P
∣∣
M P

∣∣
A

C
∣∣
A

X
∣∣
M X

∣∣
A

3. The third, and potentially most interesting, route to Eq.(6.15) follows from finding the
correlators X

∣∣
A

and P
∣∣
A

explicitly, such that C
∣∣
A

can be constructed solely based on
knowledge of the region A. It is trivial to note that, in this case, one may consider
N → ∞, i.e. the full lattice can be taken to be infinitely large and no boundary
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conditions for ϕN+1, N ∈ Z+, are required. The only disadvantage to this approach
is the requirement that X and P must be evaluated, either numerically or (partially)
analytically, without resorting explicitly to K. This may, as we will encounter later,
lead to significant computational restraints.

P
∣∣
A

C
∣∣
A

X
∣∣
A

It should be noted that, in route 2, proceeding from P
∣∣
A

∼ K1/2∣∣
A

to X
∣∣
A

∼ K−1/2∣∣
A

directly,
strictly requires computing K1/2 on the full lattice M. This can be understood rather easily
by considering the decomposition of K in submatrices A,B and C, and partitioning K−1

into submatrices M,N and O, with the same dimensions as A,B and C, respectively. Since
all submatrices are invertible, the submatrix M = K−1∣∣

A
is given by the Schur complement,

i.e. finding X
∣∣
A

from P
∣∣
A

(or vice versa) requires us to find M = (A−BC−1BT ). We must
therefore perform a partition of the full matrix P , instead of just considering its restriction to
A. As such, despite the fact that one can use the kernel from a vacuum wave functional, we
are still restricted to finite lattices. The advantage of the third route resides in the fact that
this particular problem does not occur, provided both X and P can be evaluated explicitly.

6.2 Free scalar fields

The entanglement entropy of a scalar field theory, as demonstrated in the previous section,
can be determined numerically through the knowledge of the correlators X and P , given by
Eq.(6.20) and Eq.(6.23), respectively. Contrary to before, we will not provide an explicit
pseudo-code, since the algorithm is a few lines at most. We will consider the numerical
predictions for the three cases from Ch.5, specifically elucidating the third route when possible.
In lieu of this approach, we shall consider the remaining routes.

6.2.1 D = 1 ⊕ 1

Instead of deriving the matrix K again, we simply recall that we previously found

H = 1
2a

N∑
i,j=1

[πiπjδij + ϕiKijϕj ], (6.24)

where the interaction matrix was found to be

Kij = 2δij − δi,j+1 − δi+1,j . (6.25)
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As before, we impose the Dirichlet boundary conditions ϕ0 = 0 and ϕN+1 = 0. We are now
able to consider the three different scenarios we explained earlier. Let us start with route 3,
where the correlators are determined exactly. This particular example has been studied in
[16], and we review it here. From the continuum theory, one is able to show that

∂2

∂r2ψk(r) = −k2ψk(r), (6.26)

which has the trivial solutions ψk(r) = c1 sin (kr) + c2 cos (kr). In order to respect the
boundary conditions, we must take c2 = 0. Next, we discretize the radial coordinate and
set a = 1, after which one can Fourier transform Kij and derive the normalization constant
c1 = 1/

√
2π. Note that k ∈ [−π, π] is restricted to the first Brioullin zone. According to [16],

the correlators can therefore be written as

Xij = 1
4
√

2π

∫ π

−π
dk sin (ki) sin (kj)

| sin(k/2)| (6.27)

and similarly
Pij = 1

4
√

2π

∫ π

−π
dk| sin (k/2)| sin (ki) sin (kj). (6.28)

Both of these integrals can be evaluated using analytical evaluation software, which for the
momentum correlator gives

Pij = − 4ij
π(2(i4 + j4) − (i2 + j2) − 4i2j2 + 1

8)
. (6.29)

For the position correlator, we introduce the digamma function ψ(x), which is defined as
ψ(x) = d log Γ(x)/dx, with Γ(x) the gamma function. Its solution can be shown to be

Xij = 1
4π (ψ[12 − i− j] + ψ[12 + i+ j] − ψ[12 + i− j] − ψ[12 − i+ j]). (6.30)

We use these relations to construct the matrix C =
√
XP , after which Eq.(6.15) can be

evaluated. Since the (discrete) correlators can be determined exactly for the region A, we
take N → ∞ and hence forsake the introduction of an IR-regulator. The von Neumann
entropy is shown in fig.(6.2c). Note that the countably infinite lattice renders a convergence
analysis moot, as the latter is assured. We note that this approach is similar to the formalism
we discussed earlier, since P = 1

2K
1/2 ≡ 1

2Ω. Naively using the general kernels defined in [50]
directly and employing the symmetry of the integral gives the incorrect result

Ω ∼
∫ π

−π
dk| sin (k/2)| cos(ik(n− n′)), (6.31)

as it does not take into account the appropriate boundary conditions. We recall from Ch.4
that the ground state wave functional for a (1+1)-dimensional free scalar theory has a kernel
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given by
Ω =

∫ π

−π

dk
2πω(k)ψ̃(k; r)ψ̃∗(k; r′), (6.32)

where ω is the solution to the eigenvalue equation □̂ψ̃(k; r) = −ω2ψ̃(k; r). The Fourier
decomposed wave function ψ̃ has already been determined in Eq.(6.26). We express the
d’Alembertian operator, which in this particular spacetime simply reduced to a 1-dimensional
Laplacian, as a finite-difference scheme, such that one obtains

□̂ψ̃n = 1
a2 [ψ̃n+1 + ψ̃n−1 − 2ψ̃n]

= 1
2ia2

√
2
π

[eik(eikn − e−ikn) + e−ik(eikn − e−ikn) − 2(eikn − e−ikn)]

= 1
a2 [eik + e−ik − 2]ψ̃n = − 4

a2 sin2 (k2 )ψ̃n,

(6.33)

where in the second line we have re-ordered the discrete derivative such that the sine-terms can
be isolated, and the last line follows after application of some basic trigonometric identities.
For the remainder of our discussion, we shall take a = 1, in line with before. Hence, the
eigenvalues are found to be ω(k) = 2| sin (k/2)|, such that the kernel becomes

Ωn,n′ = 1√
2π

∫ π

−π
dk| sin (k2 )| sin(kn) sin(kn′). (6.34)

Hence, the method discussed in Ch.4 is equivalent to the exact route discussed in [16], and
can equally well be used. From this point onwards one can either use the kernel as P

∣∣
A

, invert
this relation to obtain X

∣∣
A

and replicate the approach from the exact correlators, or one may
decide to follow route 2 by using P to compute K on a finite lattice, compute its inverse and
proceed with the steps outlined in route 1. Since we have not examined route 2 explicitly as of
yet, we briefly compare its prediction with the exact kernel. The lattice was kept particularly
small (N = 60), as the calculation is CPU intensive and the numerical integration is prone
to convergence issues. Furthermore, we compare route 1 with the result from the previous
chapter, which is shown in fig.(6.2a), together with the von Neumann entropy of the exact
route. A convergence analysis is shown in fig.(5.5). We find that the entropy of Srednicki’s al-
gorithm and route 3 coincides on a lattice with N = 500 and a boundary value of nb ∈ [1, 100].

Similar to the previous chapter, we fit a function

SA = c

6 log(2lb
a

) + d, (6.35)

where lb = nba, to the predictions of all three routes. The results for the fits are summarized
in table 6.1. It can be seen that route 1 and route 3 produce relatively similar results, with
the exact route indeed approximating c = 1 best.
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Fig. 6.1 A convergence analysis for the values nb ∈ {1, 20, 50, 75, 100} with a variable lattice
size N ∈ [110, 500].

Route 1 (N = 500) Route 2 (N = 60) Route 3
c 0.937 0.849 0.953
d 0.048 0.015 0.006

Table 6.1 The obtained logarithmic coefficients and constants for the three described routes.
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Fig. 6.2 Entanglement entropy of a (1+1)-dimensional scalar field via route 1 and 3 of Cassini’s
formalism, and Srednicki’s formalism. The values of route 1 and Srednicki’s approach are
coincident for all values of nb.
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6.2.2 D = 2 ⊕ 1

In previous we chapter we demonstrated that

Kij = (3
2 +m2)δ1,1 + (2 + m2

i2
)δi,j − i+ 1/2√

i(i+ 1)
δi,j+1 − i+ 1/2√

i(i+ 1)
δi+1,j . (6.36)

We will rather quickly discuss the results from route 1, and then continue with the more
direct kernel-based methods. Fig.(6.3a) demonstrates that convergence in N is reached rather
quickly for a surface up to nb = 60, where N ≥ 120 already leads to approximate convergence
of S(N). In fig.(6.3b) we consider the contribution of each m to the von Neumann entropy to
fixed, large N . It is apparent that mmax = 200 causes convergence for the smaller values of
nb, whereas the contribution for nb > 30 because negligibly small. The entanglement entropy
for a region with nb ∈ [1, 30] with N = 120 and mmax = 200 is shown in fig.(6.4a), which
is shown to scale with its perimeter, as confirmed by the previous chapter’s method. We
demonstrate the existence of a decreasing logarithmic term in fig.(6.4b).1 Fitting a function
of the form

SA = s
Lb

a
+ c log(Lb

a
) + d, (6.37)

where Lb = nba, to the curve yields coefficients s = 0.468, c = −0.137 and d = 0.056. We
note that the term proportional to the perimeter is consistent with the value s = 0.432 from
the previous chapter, yet the other coefficients are not identical. In order to confirm the
possibility of the logarithmic term being negative, we attempted to compute the entanglement
entropy through Eq.(4.42), while discretizing the radial coordinate of the Bessel function
by Jm(kr) → Jm(kja), j ∈ N. The entanglement entropy diverged for large m, despite the
continuum kernel being apparently well defined. We considered various experiments with
products of Bessel function of the first type and modified Bessel function of the first type, for
which the issue kept repeating itself, despite the choice of dispersion (even when it was chosen
to suppress the fast-growing contribution from the product). A specific cause for this problem
has currently not been identified. However, it is possible that our straightforward method of
discretizing the Bessel function accidentally contains zeros due to the oscillatory nature of
the product, or does not accurately capture the features and properties of a Bessel function.
In fact, discrete Bessel functions are typically obtained in a more involved manner, through
defining Jm(x) → Bm(xi), with Bm(xi) a non-trivial function reproducing all properties of
the Bessel function [9, 77]. Hence, we turn our attention to a more tractable problem, where
we position our scalar on a square lattice.

1However, in light the fact that subleading logarithmic terms may not exist for (2+1)-dimensional scalar
fields, as mentioned in Ch.5, we could in fact be dealing with an artifact from the boundary. Luckily, these
subleading terms are expected for square lattices, which will play an important part in this chapter.
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Fig. 6.3 Figure (a) shows the entanglement entropy for various nb as a function of N ∈ [80, 150].
In subfigure (b) the contribution of each m to the total entropy for various nb is shown.

Fig. 6.4 In figure (a) we show the entanglement entropy for a subregion n ∈ [1, 30] for a
(2+1)-dimensional scalar field. Figure (b) displays the subleading term of the fit.
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(a) Square subregion (b) Near-circular subregion

Fig. 6.5 The first figure is divided into a square sublattice A of size 4 × 4 and its complement
B. In figure (b) sublattice A, consisting of the red lattice sites, is chosen such that it
approximately describes the circle shown by the red shaded region.

Square lattice

We have seen that the proposed route via the discrete kernel, as well as route three from
Cassini’s formalism, fails when subjected to the algorithm. A possible solution to this problem
is to ‘coarse grain’ our lattice, i.e. instead of integrating out the angular degrees of freedom,
we eliminate their influence by considering a scalar on a square lattice. In this section our
aim is to construct the kernel and correlators for such a lattice and experiment with various
geometries for the region A. Their von Neumann entropy is calculated and (if applicable)
compared to the approach through dimensional reduction. Fig(6.5) shows such a lattice,
where the shaded area represents subregion A. We consider the Hamiltonian for a free,
massless scalar field in d = 2, and r = (x, y). After Fourier transforming the coupling matrix,
it can easily be shown that [15, 2]

K = 1
(2π)2

∫ π

−π
dk
∫ π

−π
dk′
√

2(1 − cos(k)) + 2(1 − cos(k′))eik·r

= 1
2π2

∫ π

−π
dk
∫ π

−π
dk′
√

sin2(k/2) + sin2(k′/2) cos(ki) cos(k′j),
(6.38)

where in the last line we have used Euler’s identity and the symmetry of the integral on the
first Brioullin zone. For convenience we have taken x = ia with a = 1. The dispersion is a
well-known relation for a square lattice, yet we will also derive it later, in a different context.
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The propagators can therefore be written as

P(0,0),(i,j) = 1
4π2

∫ π

−π

∫ π

−π
dkdk′

√
sin2(ki) + sin2(k′j) cos(ki) cos(k′j), (6.39)

X(0,0),(i,j) = 1
16π2

∫ π

−π

∫ π

−π
dkdk′ cos(ki) cos(k′j)√

sin2(k/2) + sin2(k′/2)
. (6.40)

The integrand of Eq.(6.40) is divergent around k, k′ = 0. By a Taylor expansion of the
integrand around the origin, we identify the divergent part to be of the form 1/

√
k2 + k′2.

This term can be evaluated analytically, i.e. one can show that

1
16π2

∫ π

−π

∫ π

−π
dkdk′ 1√

k2 + k′2
= 1

8π cosh−1(17). (6.41)

We subtract the non-evaluated part from the integrand of Eq.(6.40) and add the analytical
result of Eq.(6.41). The correlator then becomes

X(0,0),(i,j) = ( 1
8π2

∫ π

−π

∫ π

−π
dkdk′ cos(ki) cos(k′j) −

√
4 sin2(k/2) + 4 sin2(k′j)/

√
k2 + k′2√

4 sin2(k/2) + 4 sin2(k′j)
)

+ 1
4π cosh−1(17). (6.42)

The part in between brackets can be determined numerically, since it is no longer troubled
by singularities. However, since the integration is highly time-intensive (even for small
lattices), it may benefit to evaluate one of the integrals analytically, which we performed
using analytical evaluation software. This results in expressions for the correlators involving
regularized hypergeometric functions:

P(0,0),(i,j) = 1
2
√

2π

∫ π

−π
dk
√

3 − cos(k) cos(ki)
Γ(1 − j)Γ(1 + j) 3F2[{−1

2 ,
1
2 , 1}, {1 − j, 1 + j}, 2

3 − cos(k) ],

(6.43)

X(0,0),(i,j) = 1
8π2

∫ π

−π
dk{ cos(ki)√

3 − cos(k)Γ(1 − j)Γ(1 + j)3F2[{−1
2 ,

1
2 , 1}, {1−j, 1+j}, 2

3 − cos(k) ]

+ log(1 + 2π
k2 (π −

√
π2 + k2))} + 1

2cosh−1(17), (6.44)

where Γ(x) is the Euler gamma function. For smaller lattices the expressions above only
yield a small difference in terms of computation time, yet for large lattices they bring about
a large improvement. The discrete-kernel method can be shown to reduce to Eq.(6.43) and
Eq.(6.44) as well by considering Eq.(4.8) and taking the Fourier transform of the fields after
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Fig. 6.6 Subplot (a) shows the entanglement entropy of a square lattice with sides n ∈ [1, 60].
In (b) we demonstrate the logarithmic correction to each of these squares.

discretizing r according to fig.(6.5). Hence, we find

Ω =
∫ π

−π

dk
(2π)2ω(k)eik·(r−r′) →

∑
n,n′

1
a2

∫ π

−π

dk
(2π)2ω(k) cos(kx(nx − n′

x)) cos(ky(ny − n′
y)).

(6.45)
where we have taken ψ̃(k; r) = eik·r. Note that, contrary to before, we need not concern
ourselves with imposing boundary conditions. We denote the difference between the lattice
points as n = nx − n′

x and n′ = ny − n′
y, such that the equation reduces to Eq.(6.39), yet

currently without a concrete relation for the dispersion. As in the one-dimensional case, we
set forth to solve the eigenvalue problem □̂ψ̃ = −ω2ψ̃, which for the coordinates describing
the square lattice takes the form

□̂ψ̃(k; r) =
∑

j∈{1,2}

∂2

∂r2
j

ψ̃(k; r) → 1
a2

∑
j∈{1,2}

(ψ̃nj+1 + ψ̃nj−1 − 2ψ̃nj )

= 4
a2

∑
j∈{1,2}

[(eikj + e−ikj − 2)eikjnj ] = 1
a2

∑
j∈{1,2}

sin2(kj

2 )ψ̃nj .

(6.46)

In the first line we have used the stencil for the Laplacian from the one-dimensional case, after
which the discussion is identical. Hence, the eigenvalues become ω(k) = 2∑j∈{1,2} | sin(kj

2 )|,
such that the discrete kernel is seen to reduce to the correlator P given by Eq.(6.39). Now
that we are able to build the X and P matrices for the shaded region of fig.(6.5), or for
that matter of any subregion A of the lattice, we will examine its entanglement entropy as
a function of the size of A. Or more accurately put: as a function of its perimeter. First,
we shall consider the von Neumann entropy of a square. After obtaining the leading terms
for the square lattice we aim to approximate circular lattices through the discrete circle
shown in fig.(6.5b). The latter will subsequently be compared to the 2-dimensional lattice
predictions using dimensional reduction, as to gauge whether the discrete circles could be
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used to accurately predict the entanglement entropy of a circular subregion. We keep the
analysis of the square lattice rather brief, as the results have been at length discussed in [17].
A numerical simulation determining the entanglement entropy as a function of the length n

of the square’s sides and its logarithmic contribution is shown in fig.(6.6). Upon denoting
the sides of the square as L = na, we may fit a function

SA = s
L

a
+ c log(L

a
) + d (6.47)

to the curve, which yields the coefficients s = 0.310, c = −0.046 and d = −0.091. Hence, we
are allowed to write the von Neumann entropy of the square as

SA = 0.077P (n)
a

− 0.046 log(n
a

) − 0.091, (6.48)

where P (n) = 4na denotes the perimeter of the square. This indeed demonstrates that the
entanglement entropy scales with the perimeter of the geometry when considering a scalar
field on a square lattice. Note that the constant a/4 = 0.077 does not match the result from
[17], where the authors seem to have missed a factor 10−1 and wrote a = 0.75, yet show
figures where the correct constant has been used.

The discrete circle drawn in fig.(6.5b) is not necessarily more difficult to build, as we
simply restrict the tuples (i, j) of the correlators to a region |i − j| ≤ n, where n denotes
the radius of the discrete circle. The discrete radius is defined as n = ⌊r⌋, where r is the
actual radius of the circle. We determined the entanglement entropy for a discrete circle
with radius n ∈ [1, 30], as shown in fig.(6.7a). We subtracted the linear terms and constant
from the entropy to elucidate its logarithmic contribution, which is shown in fig.(6.7b). We
fitted the function Eq.(6.37) to the curve, after which we found the coefficients s = 0.528,
c = −0.033 and d = −0.081. Fig.(6.7) also contains our earlier results for the entropy of a
circle obtained by dimensional reduction. We observe that the linear contribution to the
entropy as a function of the radius is overestimated by the discrete circle (s = 0.538 vs
s = 0.468). The logarithmic coefficient is of the right sign, but smaller (c = −0.033 vs
c = −0.137), such that it is underestimated. The constant is of the same order and sign
(d = 0.081 vs d = 0.056). However, since the entanglement entropy is expected to scale with
the perimeter of the geometry, selecting the discrete radius n for comparing a discrete circle
and actual circle could possibly lead to a distorted picture, as their perimeter is different.
In fig.(6.8) we compare the von Neumann entropy of the discrete circle and actual circle
as a function of their perimeter. The perimeter of the discrete circle is found by means of
the Manhattan geometry and calculated for each n. A fit of Eq.(6.37) to the curve of the
discrete circle, while substituting the perimeter for the radius in the linear term, gives the
coefficient s = 0.06725. The associated coefficient for the actual circle is easily obtained



88 Sublattice-dependent entanglement entropy

Fig. 6.7 The circle versus the discrete circle as a function of the length n ∈ [1, 30]. The
area-law is shown in subplot (a), while the logarithmic correction is shown in (b).

Fig. 6.8 The circle versus the discrete circle in terms of the perimeter. The predicted
entanglement entropies approximately coincide for small values of the perimeter. Subplot (b)
show the rescaled logarithmic correction.

through s̃ = s/2π ≈ 0.0744. It is shown that the entropies approximately coincide for small
perimeters (P (n) < 75), corresponding to r ≈ 11.9 for an actual circle. The logarithmic
contributions are still both decreasing and of the same sign, yet is underestimated by the
discrete circle. Since this contribution is small with respect to the total S(n) for P (n) < 25,
corresponding to r ≈ 4, the discrete circle can potentially be used to approximate circular
regions of (2+1)-dimensional scalars on non-square lattices, especially when one is only
interested in the contributions scaling with the perimeter. The systematic under-fitting for
larger, equal perimeters by the discrete circle can be understood by the density of oscillators
in equal-perimeter systems. We recall that the dimensionally reduced circular region of radius
rb contains rb 1-spheres S1 of the scalar field condensed into single harmonic oscillators. In a
sense, we can think of these as circular shells of ‘smeared out’ harmonic oscillators. A circle
with an area equal to the discrete circle will therefore have a larger density of oscillators, and
hence consistently results in a larger entanglement entropy
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Fig. 6.9 The entanglement entropy for a (3+1)-dimensional scalar field as a function of
nb ∈ [1, 40]. The increasing logarithmic correction is shown in subplot (b).

6.2.3 D = 3 ⊕ 1

We will keep this last section brief, since the discussion is very similar to the one from Ch.5.
The entanglement entropy can be shown to convergence for N = 200 and m = 500, using a
convergence analysis of the type we performed before. Fig.(6.9a) shows the entanglement
entropy of the (3+1)-dimensional scalar, to which a function of the type Eq.(5.83) has been
fitted. The resulting coefficients are s = 0.293, c = 1.207 and d = 1.616. Both the s-coefficient
and the logarithmic coefficient are of the same order of magnitude as the ones from Ch.5,
where the logarithmic correction is increasing with nb, as shown in fig.(6.9b), for which the
presence can be explained by means of the same argument we used in Ch.5.





Chapter 7

Conclusion and Outlook

This thesis set about to investigate the entanglement entropy of the analogue black hole
proposed in [48]. Despite not being able to achieve this particular goal, we managed to
describe and build the necessary ingredients for a successor to approach the aforementioned
target through a more well-rounded approach. We have conducted a review of analogue black
holes, which we extended to describing (in detail) the analogue proposed in [48], followed
by an extensive description of various numerical methods to determine the entanglement
entropy of free, massless scalar fields in the ground state. We build the associated algorithms
and tested them for multiple scalar fields on flat backgrounds, after which we suggested
improvements for greater accuracy.

In Chapter 3, we commenced by studying a classical, water-based analogue black hole,
first suggested by [75]. Through using the hydrodynamic equations we demonstrated that,
while the background fluid couples to the Minkowski metric, the acoustic perturbations are in
fact described by the equation of motion of a free, massless scalar field coupled to a non-trivial
acoustic metric. Under an appropriately chosen coordinate transformation this metric was
seen to reduce to a Schwarzschild-like form, including the presence of an acoustic horizon.
Subsequently, we extended our discussion to Bose-Einstein condensates in the hydrodynamic
regime. We found the same trend as for the classical case, where the superfluid coupled
to the Minkowski metric, while the phonons are governed by the equation of motion for
a free, massless scalar field coupled to a Schwarzschild-like metric. We elaborated on the
latter through a review of [48], which explores an analogue black hole in a Bose-Einstein
condensate of light. It was demonstrated that the horizon of this analogue is able to emit
acoustic radiation, while an effective potential arose by the propagation of the phonons on
a non-trivial background. A possible correlation between phonons in the supersonic and
subsonic region was mentioned, and we stipulated the need to compute the entanglement
entropy of the acoustic radiation.
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The beginning of Chapter 4 temporarily removed our focus from the analogue black hole, as
we attempted to derive the ground state wave functional of a (2+1)-dimensional scalar field
on a flat background. We extended this analysis by reviewing [50, 51], where the authors
derived the expressions to obtain the Schrödinger wave functional for scalar fields on curved
spacetimes, in such a way that only the Fourier modes of the field and the metric of the
spacetime are required. We considered two examples; one related to our previous derivation
of the (2+1)-dimensional vacuum wave functional, and one suggested in [51], which both
confirmed the reviewed formalism. We reconciled with our analogue black hole by attempting
to write down a vacuum wave functional by means of the Schwarzschild-like metric and the
radial modes from [48]. However, before we may adopt this expression as the ground state
wave functional of our system, and potentially subject it to the algorithms built in Chapter 5
and Chapter 6, we must perform further verification by deriving the expectation value of
the total number of emitted particles, and confirm that the radial modes indeed meet the
requirements set in [50, 51].

Our discussion of the entanglement entropy followed two numerical schemes, first described
in [69] and [15]. Chapter 5 aimed at the former, where we performed a radial discretization
of free, massless scalar fields and ‘mapped’ these regularized fields onto finite one-dimensional
chains of harmonic oscillators. The ground state wave function of the chain and the reduced
density matrix of an arbitrary subregion could be determined exactly, after which we were
able to numerically compute the entanglement entropy by means of the coupling matrix.
This matrix was solely dependent on (ratios of) the dispersions and coupling constants of
the oscillators, and hence could simply be read off from the Hamiltonian of the discrete
system. We reproduced the area-law found in [69] for a (3+1)-dimensional scalar field, yet
encountered a discrepancy for the logarithmic coefficient from [49]. However, it seems likely
that the ‘overfitting’ of the logarithmic term is a remnant from the influence of the boundary
of the chain at the origin. In fact, in [49] the authors did not fit the expected relation for
the entanglement entropy to all possible entangling surfaces contained by the subregion in
question, as we did, but instead only fitted the function to those entangling surfaces contained
by the subset which were sufficiently far removed from the origin, such that the influence of
the boundary on the fit was minimized. Adopting this approach in our methodology will
likely result in the correct logarithmic coefficient c = −1/90. Subjecting our approach to a
(1+1)-dimensional free, massless scalar yielded the correct behaviour of the entanglement
entropy when compared to the CFT results from [13]. The fitted function was shown to
capture the correct logarithmic behaviour of the entanglement entropy, while reproducing a
coefficient c/6 ≈ 1/6, as predicted in [13]. For the (2+1)-dimensional scalar, the entanglement
entropy appeared to scale with the perimeter of the subregion, yet care is required with
respect to the subleading terms we included in our fit. There exists the distinct possibility
that they arose from the boundary at the origin, and should not be present at all. Contrary
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to the (1+1)-dimensional and (3+1)-dimensional scalars, the present case requires more care
before being extrapolated to our analogue black hole.

The last chapter was based on [15], which extends the method of Chapter 5 to one where only
the position and momentum correlators restricted to a subregion of the chain are required to
compute the entanglement entropy. Apart from optimizing the algorithm suggested in Chap-
ter 5, the route taken in Chapter 6 offers the option of analytically determining the correlators
on the subregion, after which one may take the chain length N → ∞. The latter proved
possible for a (1+1)-dimensional free, massless scalar field, which resulted in an improvement
of the obtained coefficient compared with the methods requiring knowledge of the full (finite)
chain. Furthermore, we demonstrated that discretizing the continuum-spacetime kernel from
Chapter 4 could be reduced to the method described above, and hence could potentially be
used for more complicated spacetimes. However, when the method was extended to (2+1)-
dimensional scalar fields, we found that both the exact-corrrelator route and the discretized
continuum-kernel approach were unable to capture the entanglement entropy. This could
potentially be resolved by means of a more accurate discretization scheme for Bessel functions,
as suggested in [9, 77]. Subsequently, we attempted to simplify the simulations by removing
the angular dependence of the system altogether, and as such considered scalar fields on
square lattices. We determined the entanglement entropy of both square sublattices and
discrete-circular sublattices. The entanglement entropy of the former was shown to scale with
its perimeter, including a negative logarithmic coefficient. The latter was shown to obey a sim-
ilar relation, and can be used to approximate the entropy of circular subregions of small radius.

The extension of [69] to the outer region of Schwarzschild black holes has already been
achieved in [53], where the authors discretize the proper length from the horizon and compute
the entanglement entropy of shells enclosing the horizon. However, extending the method
from [69] to both the supersonic and subsonic region of the analogue black hole is slightly
more problematic, since in the supersonic region the warping factor, which is included in the
Hamiltonian and the continuum-kernel, becomes negative. As such, the coupling matrix is
no longer semi-positive, and implementation of the algorithm fails. The method described in
Chapter 6 might therefore prove more useful, as one could envision computing the correlators
on the subsonic region, and using the algorithm from [15] to predict its entanglement entropy
with respect to the supersonic region. Yet at the moment this is mere wishful thinking, as the
technical obstacles are still great. On this note, hoping to have provided all that is needed to
solve the original aim of this thesis, we pass the baton to our successors, and hope they learn
as much about the wonders of analogue black holes and entanglement entropy as we have.
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Appendix A

The Jacobi-Anger identity

According to [4], the Jacobi-Anger identity is given by

eiz cos θ =
∑
m

imJm(z)eimθ, (A.1)

where Jm(z) is a Bessel function of the first type and m ∈ Z. In the context of Ch.4, one can
therefore write

eik·x = eikx cos(θr−θk) =
∑
m

imJm(kr)eimθre−imθk , (A.2)

where we have used the notation k = |k| and x = |x|.





Appendix B

Bessel functions: properties and
asymptotic expansion

B.1 Bessel functions and Rindler

A relationship between the Bessel functions of the first and second type, and the modified
Bessel function of the second type, can be found in [1], given by

Yν(z) = e±(ν+1)πi/2Iν(ze∓πi/2) − 2
π
e∓νπi/2Kν(ze∓πi/2). (B.1)

Choosing the lower sign and using the identity

Iν(z) = eνπi/2Jν(ze−πi/2), (B.2)

we find that the relation can be re-expressed as

Yν(z) = −iJν(z) − 2
π
eνπi/2Kν(iz). (B.3)

This expression can be rather easily rewritten to

Jν(z) − iYν(z) = 2i
π
eνπi/2Kν(iz), (B.4)

which is in the form sought in the Rindler example.

B.2 Kontorovich-Ledebev transform

According to [27, 51], for a function f(x) and y > 0, one may write the Kontorovich-Lebedev
tranform

f(x) = 2
π2

∫ ∞

0
dxx sinh(πx)f(x)

∫ ∞

0
dy 1

y
Kix(y)Kix(y), (B.5)
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where Kix(y) is the modified Bessel function of the second type.

B.3 General properties and identities

B.3.1 Bessel differential equation

The differential equation solved by the Bessel function of the first type Jν(x) and second
type Yν(x) is given by

x2∂2
xf(x) + x∂xf(x) + (x2 − ν2)f(x) = 0. (B.6)

A similar differential equation to the one above is solved by the modified Bessel function of
the first kind Iν(x) and second kind Kν(x):

x2∂2
xf(x) + x∂xf(x) − (x2 + ν2)f(x) = 0. (B.7)

B.3.2 Hänkel functions

The two Hänkel functions are defined as

H(1)
n (x) = Jn(x) + iYn(x) (B.8)

H(2)
n (x) = Jn(x) − iYn(x) (B.9)

B.3.3 Changing signs in modified Bessel functions

Let z ∈ C and ν ∈ C. For any modified Bessel function of the first kind it must hold [59] that

Iν(z) = e∓iνπ/2Jν(ze±πi/2). (B.10)

Consider ν = −ic0ω and z = iωx. We can then rewrite the expression above as

I−ic0ω(iωx) = e∓c0ωπ/2J−ic0ω(iωxe±iπ/2). (B.11)

Choosing the lower sign simplifies the expression to

I−ic0ω(iωx) = ec0ωπ/2J−ic0ω(ωx). (B.12)

Next, we consider z = −ic0ω, but instead choose the upper sign, leading to

I−ic0ω(−iωx) = e−c0ωπ/2J−ic0ω(ωx). (B.13)
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Isolating the Bessel function Jν(x) and equating both expressions gives

I−ic0ω(−iωx) = e−c0ωπI−ic0ω(iωx). (B.14)

B.3.4 Complex conjugation

Let z ∈ C and ν ∈ C, then

(Jν(z))∗ = Jν̄(z̄) ; (Yν(z))∗ = Yν̄(z̄) (B.15)

(Iν(z))∗ = Iν̄(z̄) ; (Kν(z))∗ = Kν̄(z̄) (B.16)

B.3.5 Completeness

For a Bessel function of the first type with real argument and order, it holds that [42]:
∫ ∞

0
dxxJm(αx)Jm(βx) = δ(α− β)

α
. (B.17)

B.4 Asymptotic expansions

The asymptotic expansion for large argument z → ∞ and fixed order, up to leading order, is
shown for all considered Bessel functions. The notation from [33, 59] has been adopted.

• Bessel functions:

Jν(z) ∼
√

2
πz

cos(z − νπ

2 − π

4 ) (B.18)

Yν(z) ∼
√

2
πz

sin(z − νπ

2 − π

4 ) (B.19)

• Hänkel functions:

H(1)
ν (z) ∼

√
2
πz
ez− νπ

2 − π
4 (B.20)

H(2)
ν (z) ∼

√
2
πz
e−(z− νπ

2 − π
4 ) (B.21)

• Modified Bessel functions:

Iν(z) ∼ 1√
2πz

[
ez + e±iπ/2e±νπie−z] (B.22)

Kν(z) ∼ −
√
π

2z e
−z (B.23)

For z → 0, we have the following asymptotic expansion:

Iν(z) ∼ (z/2)ν

Γ(ν + 1) . (B.24)
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B.5 Nicholson’s integral

In line with the classic text [81], we denote Nicholson’s integral (also known as Nicholson’s
formula) as

J2
ν (z) + Y 2

µ (z) = 8
π2

∫ ∞

0
dαK0(2zsinh(α))cosh(2να), (B.25)

where the real part of the argument R(z) > 0.

B.6 Cross-term integral

According to [59], the integral over Cµ(z) = Jn(x) and Dµ(z) = Yn(x) can be shown to give

∫
dz zJµ(αz)Yµ(αz) = z2

4
{
2Jµ(αz)Yµ(αz) − Jµ−1(αz)Yµ+1(αz) − Jµ+1(αz)Yµ−1(αz)

}
.

(B.26)
This result is non-zero and real for α ∈ R, r ∈ R and ν ∈ Z.



Appendix C

Entropy in classical information
theory

As with many ideas in physics, the motivation behind entanglement entropy was inspired by
developments in an entirely different field of research. Our hope was to rigorously connect the
entropy measures from classical information theory to entanglement entropy as an interesting
side-note, yet eventually this proved too great a distraction from what this dissertation set
out to demonstrate in the first place. As such, we share a brief introduction to information
measures in classical information theory in this humble appendix, since it would be a shame
to let a good summary go to waste.

As in [21], we consider X to be some discrete random variable with an alphabet/state
space X . Furthermore, we take its probability mass function (henceforth: pmf) to be given
by p(x), with elements x ∈ X . A natural question to ask in this context, is how much
information about the system we gain upon observing the value of X. In [57] it is argued that
such a measure should necessarily contain the probabilities of each element x ∈ X , instead of
their specific information content. This vision of ‘gaining information’ is captured by the
Shannon entropy [57, 21], which is given by

S(X) = E[log(1/p(X))] = −
∑
x∈X

px log px, (C.1)

where we denote S(X) ≡ S(p1, ..., pN ). As a simple example to understand the usefulness of
this measure of information, we consider the case of an ‘unfair’ coin toss, where the elements
of X = {0, 1} do not have an equal probability of occurring, i.e. p(0) = θ and p(1) = 1 − θ.
Hence, the coin-toss follows a Bernoulli distribution X ∼ Ber(x|θ) [56]. In this case the
Shannon entropy contains a 2-base logarithm and can be written as the binary cross-entropy

S(p) = −θ log θ − (1 − θ) log(1 − θ). (C.2)
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Maximizing this entropy shows that the greatest gain of information of the system comes
from the case when θ = 1/2. This is a natural example which is in line with our intuition; the
ab initio outcome is maximally uncertain when both sides of the coin have equal probabilities.
The Shannon entropy can in fact be interpreted as both of these statements; it measures the
gain of information, but also acts as a measure of the uncertainty of X before observation.
However, it is slightly optimistic to assume all of our systems of interest contain such a trivial
alphabet. Instead, we also define the joint entropy of a pair (X,Y ) ∼ p(x, y), where both
X and Y are discrete random variables. This measure, in the light of the Shannon entropy,
determines in what extend the content of X is related to Y . This form of entropy is given by

S(X,Y ) = −E[log p(X,Y )] = −
∑

x∈X ,y∈Y
p(x, y) log p(x, y). (C.3)

Note that, if the random variables are unconditionally independent, the joint entropy separates
into the sum of the Shannon entropy of both variables. Determining the joint-entropy provides
information on the uncertainty of the pair (X,Y ). However, what if we observed Y and want
to infer the uncertainty of X? A measure for the conditional entropy can be found in [57, 21],
and is based on the conditional probability p(x, y) = p(x|y)p(y), where p(y) is obtained by
marginalizing over x. Hence, the conditional entropy is given by

S(Y |X) = −E[log p(Y |X)] = −
∑
x∈X

∑
y∈Y

p(x)p(y|x) log p(y|x)

= −
∑
x∈X

∑
y∈Y

p(x, y) log p(y|x).
(C.4)

Using the properties of conditional probabilities, we can then rewrite this entropy to

S(Y |X) = −
∑
x∈X

∑
y∈Y

p(x, y) log p(y|x) = S(X,Y ) − S(X), (C.5)

where in the last line we use the symmetry S(X,Y ) = S(Y,X). This measure answers the
question how much uncertainty about (X,Y ) remains after observing of the discrete variables.
Using these measures of entropy, we may now define a measure of the similarity between X

and Y , i.e. how much the state spaces have in common, through the mutual information

I(X : Y ) = S(X) + S(Y ) − S(X,Y ) = S(X) − S(X|Y ). (C.6)

This measure is quite easy to understand on a heuristic level; we take the uncertainty of the
individual discrete states X and Y , and subtract their joint uncertainty. A slightly more
insightful definition of the mutual information is obtained by defining the Kullback-Leibler
divergence [57, 21, 56], which measures the inefficiency of assuming that the distribution is
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q(x), while the true distribution is p(x):

D(p||q) = E[log p(X)/q(X)] =
∑
x∈X

p(x) log p(x)
q(x)

= −S(X) −
∑
x∈X

p(x) log q(x).
(C.7)

Clearly, this measure is zero if p(x) = q(x), and grows when the equality does not hold. The
mutual information can be defined in terms of this measure [21], leading to

I(X : Y ) = D(p(x, y)||p(x)p(y)) = Ex,y∼p(x,y)[log p(X,Y )/p(X)p(Y )]. (C.8)

There is an observation in order here which elucidates the function of the mutual information.
If the random variables X and Y are unconditionally independent, i.e. their pmf factorizes
as p(x, y) = p(x)p(y), then the mutual information is seen to be zero. This makes sense: if
the probability distributions do not overlap, the state spaces will not share any information
content, and inferring values from X based on observations of Y becomes impossible. Once
the pmf’s share a greater degree of overlap, the mutual information increases accordingly.
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