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Abstract

I present an overview of the criticism of the theory of cosmological inflation of the
past 25 years. I argue that the three main problems motivating the inflationary
explanation are the flatness problem, the uniformity problem, and the structure
formation problem. The flatness problem has been resolved. In analysing the other
two problems, an alternative explanation emerges. This explanation relies on law-like
assumptions about the initial conditions of the universe. I claim that this is a proper
explanation. This places the inflationary explanation on par with an alternative
explanation. I argue that different extra-empirical considerations lead cosmologists
to prefer one above the other. The way forward lies in the middle: an amalgam of
the two explanations promises to be the most fruitful.
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Chapter 1

Introduction

About 25 years ago, philosophers John Earman and Jesús Mosteŕın published a critical evalua-
tion of the theory of cosmological inflation (Earman and Mosterin 1999). Cosmological inflation
proposes a period of exponential expansion of the early universe, driven by a scalar field. The
central claim of Earman and Mosteŕın is that inflation developed into a dominant cosmological
theory not because the standard model of cosmology is empirically inadequate, but because the
explanations it provides are generally deemed unsatisfactory.1 Originally, the explanations of
standard cosmology were found wanting on account of three problems (Guth 1981). These were
the horizon problem, the flatness problem, and the monopole problem. It is these problems that
open the door for inflation.

To get a flavour of the criticism of Earman and Mosteŕın on inflation, consider their argu-
ments on the monopole problem. Grand unified theories (GUTs) predict that at energy scales
above 1014 GeV the electroweak force and the strong force are united. As the nascent universe
cools to such temperatures at around 10−36 after the big bang, the two forces are separated. In
this process, a theoretical GUT Higgs field, specifically introduced for this purpose, undergoes a
spontaneous symmetry breaking. Such a process is not a smooth one. Imagine a pond of water
freezing. Across many patches of water in the pond, freezing will start at the same time, forcing
the ice crystals formed in the process to pick an orientation. Different patches will be oriented
differently, and at their borders the orientations will be misaligned. Such misalignments are
called topological defects. By analogy, as the symmetry of the GUT Higgs field spontaneously
breaks, it forms point-like topological defects: magnetic monopoles. The absence of any sight-
ings of such monopoles, in spite of their large mass, is taken to be problematic by the inflationary
cosmologist. The solution, however, is easy. An accelerated expansion, taking place after the
electroweak-strong force separates, would dilute the monopoles to such a low density that the
probability of us ever finding one is effectively zero.

Of course, as is noted by Earman and Mosteŕın, the monopole problem is only a problem
insofar as one subscribes to GUTs. Although GUTs bear formal similarities to the Glashow-
Salam-Weinberg theory uniting the electromagnetic and weak interactions, only the latter enjoys
empirical confirmation, such as the detection of the Higgs boson in 2012. Experimental verifi-

1I use the term ‘standard cosmology’ to refer to the standard hot–big-bang model of the universe, with its
evolution governed by the Friedmann equations. There is no inflation in this model.
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CHAPTER 1. INTRODUCTION 2

cation of GUTs, on the other hand, is nigh impossible, because its predictions concern energy
scales many orders of magnitude above any experiments thus far realised on Earth. The non-
observation of the decay of the proton even disfavours GUTs. So, the absence of monopoles
is more properly construed as evidence against GUTs. Even if one is strongly committed to
GUTs, belief in inflation is not necessary, since the monopole problem can be addressed within
the framework of GUTs without invoking inflation (Earman and Mosterin 1999, p. 17). I agree
with these remarks by Earman and Mosteŕın, so I will continue and dismiss the monopole
problem.

I want to stress that this is a serious blow for inflation. Indeed, it would have been beautiful
if the once-so-distant fields of particle physics and cosmology were working hand-in-hand in
a theory of the early universe. Dismissing the monopole problem amounts to severing this
connection, reducing the unificatory power of inflation. Despite efforts to restore this connection,
most notably via Higgs inflation, it remains weak at best. Even the Higgs inflation model—
one of the more promising inflationary models in which the false vacuum state of the Higgs
boson provides the springboard for inflation—cannot survive without making a great deal of
assumptions about the properties of the Higgs field, interpreted as a classical field, that have
no experimental verification.

In this spirit, Earman and Mosteŕın evaluate the other problems, too. The point is that the
extend to which these problems are problematic depends on one’s attitude towards explanation.
What kind of explanations are we looking for in cosmology? Do the flatness and horizon problems
stand in need of more explaining? Can the inflationary explanation adequately solve these
problems in the first place? In probing the standard inflationary story with such questions,
Earman and Mosteŕın develop a rather negative assessment. It will be the goal of the first
two chapters to evaluate these arguments in light of developments in the field over the last two
decades.

I hold that the flatness problem has been resolved. A largely neglected body of literature ad-
vances arguments that are fatal to the problem. As for the horizon problem, I agree with Earman
and Mosteŕın that this is not a problem sensu stricto in Friedmann–Lemâıtre–Robertson–Walker
(FLRW) cosmology. There is a more general problem, however, called the uniformity problem.
I find two different types of explanation able to resolve this problem. One makes suitable as-
sumptions about the initial state of the universe (say, at the Planck time), the other introduces
a new dynamical mechanism, namely inflation. The appearance of these seemingly opposing
styles is a recurring theme of this thesis.

If this was the full story, then this thesis could have been quite short. But since the publi-
cation of the first paper on inflation by Guth, two new problems of standard cosmology have
entered the scene. These are the entropy problem and the structure-formation problem, to be
discussed in Chapter 4 and Chapter 5, respectively. Strikingly, the aforementioned rival styles
of explanation appear again here. I carefully analyse the debate on these problems in the liter-
ature, from which a clearer picture of the two sides emerges. I refer to the advocates of either
side as belonging to an explanatory camp: the initial-conditions camp and the dynamical camp.

The second objective of this thesis is to place these two explanations on equal footing. I will
argue that different extra-empirical considerations may induce a preference for one explanation
above the other. Both, however, are proper explanations, and allegiance to either camp is
tenable. Since the two explanations are on equal footing, I suggest that the more conservative
initial-conditions explanation, currently left out in the cold, deserves more attention in terms
of research effort. Nevertheless, I believe that the most interesting explanations are hybrids,
borrowing pieces from both styles of explanation. I present some examples that illustrate this.

I note that throughout this thesis I work in Planck units, where

1 = c = G = ℏ = kB. (1.1)



Chapter 2

The flatness problem

The original motivation for the inflationary paradigm resides in its ability to resolve two
classical problems of standard cosmology. Apart from the monopole problem and its connection
with GUT phase transitions, Guth’s original paper centers on straightening out the flatness and
horizon problems (Guth 1981). I have yet to encounter a textbook introduction of inflationary
cosmology that does not begin with a treatment of these problems. It is therefore only natural
that we start with an analysis of these problems to evaluate the inflationary explanation, to
begin with the flatness problem.

In the present chapter, I discuss the ideas of Marc Holman regarding the flatness problem
(Holman 2018). Despite its presentation in the literature as a particularly thorny problem in
non-inflationary cosmology, I argue that Holman’s arguments takes the sting out of it. These
arguments stand in a longer tradition of arguments against the flatness problem, for a historical
overview see Helbig (2021). For the sake of clarity, I restrict my focus to Holman’s article,
which captures all the important points. Loosely speaking, the argument goes against the claim
that flatness is somehow ‘unnatural’. In FLRW spacetimes, flatness is seen to be a generic
property. Note that the flatness problem is well defined only for FLRW spacetimes, because it is
a statement about the flatness parameter k from the Friedmann equations. In the next chapter,
I will also consider non-FLRW spacetimes.

I consider two different presentations of the flatness problem commonly found in the litera-
ture. Holman shows that each contains dubious arguments. Closer analysis of each reveals that
there may not be much of a problem after all.

1. The fine-tuning argument. The fine-tuning argument is typically presented as follows.
Start from the Friedmann equation in a singular FLRW spacetime, without cosmological
constant for the sake of simplicity:

H2(t) =
( ȧ(t)
a(t)

)2
=

8π

3
ρ(t)− k

a2(t)
. (2.1)

The singularity is characterised by the conditions that a → 0, and ρ → ∞ as t → 0. We
can write the Friedmann equation in terms of the matter density parameter.

Ω(t)− 1 =
k

ȧ2(t)
, Ω(t) :=

8π

3H2(t)
ρ(t) (2.2)

3



CHAPTER 2. THE FLATNESS PROBLEM 4

If, as suggested by observations, we take the present matter density parameter Ω(t0) to
differ from unity by a small quantity ϵ > 0, we have that k = ϵȧ2(t0). Substituting this
back in Equation 2.2 for some time t′ close to t = 0, we get

Ω(t′)− 1 = ϵ
ȧ2(t0)

ȧ2(t′)
. (2.3)

It follows from the second Friedmann equation,

ä

a
= −4π

3
(ρ+ 3P ) (2.4)

together with the strong energy condition

ρ+ P ≥ 0, ρ+ 3P ≥ 0, (2.5)

that ä < 0. If spacetime is taken to be singular, then ȧ blows up as t → 0. Therefore, by
Equation 2.3, at some t′ close to t = 0, the matter density parameter will be extremely
close to 1. For example, if t′ is taken to be a second, and we take ϵ = 1, we have that
Ω(t′) is fine-tuned to 1 to an accuracy of 1 : 1016.

Holman makes the point that any singular FLRW universe will display flatness fine-tuning.
This is seen immediately from Equation 2.2 in the limit as t→ 0. Clearly, any universe in
which the Friedmann equation applies has the feature that Ω(t) becomes arbitrarily close
to 1 near the big bang singularity.

The fine-tuning problem is: given that Ω is so close to 1 today, it is unlikely that Ω must
have been so close to 1 to an incredible precision in the past. However, even if Ω was not
close to 1 today, we would have that Ω must have been close to 1 to an incredible precision
in the past. So, we cannot say that it is unlikely that Ω was so close to 1 in the past: in
fact, any singular FLRW spacetime has this feature. Restricting ourselves to the FLRW
context, as the coherency of the flatness problem requires us to, we find the problem of
unnaturally fine-tuned flatness resolved.

2. The dynamical-instability argument. The dynamical-instability argument is typically
presented as follows. Given that Ω was so close to 1 in the early universe, it is unlikely
that it is still close to 1 a long time later (today). This can be seen from Equation 2.2 for
non-zero k. Since ä < 0 for all times, we have that ȧ is always decreasing. This means
that the difference of Ω(t) from 1 is always increasing. That is, Ω is always moving away
from 1, so it is strange that after billions of years we observe it to be so close to 1.

Holman refutes this argument as follows. Take as a starting point the empirical fact that
Ω today is close to 1. So, by evolving the Friedmann dynamics in the past direction, we
see that Ω must have been very close to 1 in the early universe. But, by the argument
in the previous item, this is not unlikely in FLRW models. So, it is not justifiable to say
that it is unlikely that after billions of years Ω is still close to 1; again, simply because the
extreme proximity to 1 of Ω in the early universe is not unlikely.

The slightly more technical version of the argument is as follows. Start again from the
Friedmann equation, this time with a cosmological constant:

H2 =
8π

3
ρ+

Λ

3
− k

a2
. (2.6)
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The equation of state and the fluid equation give

ρ = Ca−3(1+w), (2.7)

where C is a constant. We can rewrite the Friedmann equation as

8π

3H2
Ca−3(1+w)︸ ︷︷ ︸
:=Ωm

+
Λ

3H2︸ ︷︷ ︸
:=ΩΛ

= 1 +
k

ȧ2︸︷︷︸
:=Ωk

. (2.8)

where we interpret the contributions of the cosmological constant and the curvature as
energy densities. From this we see that

Ω := Ωm +ΩΛ =
8πC + Λa3(1+w)

8πC + Λa3(1+w) − 3ka1+3w
. (2.9)

Observe that Ω = 1 both at a = 0 and in the limit of a → ∞. It is therefore unclear
whether it is unlikely that the current value for Ω is close to 1.

To investigate this, Holman rewrites the Friedmann dynamics for a universe with only
dust and cosmological constant (w = 0) in terms of the density parameters:

Ω′
m = (Ωm − 2ΩΛ − 1)Ωm, Ω′

Λ = (Ωm − 2ΩΛ + 2)ΩΛ, (2.10)

where ′ denotes differentiation with respect to the time parameter η := log
(

a
a0

)
. This

system has been plotted in Figure 2.1. The black curves correspond to different universes:
the red line is a flat universe with Ωm + ΩΛ = 1, to the left of it are universes with
negative curvature, and to the right of it are universes with positive curvature. Each
curve is characterised by a constant of motion α. It is defined as

α := ±27Ω2
mΩΛ

4Ω3
k

, for k = ∓1. (2.11)

It is constant along any trajectory that is a solution to the dynamical system described
by Eq. 2.10. Curves with a higher value for α are closer to the red line, which corresponds
to the limit as α → ∞. The black curve closest to the red line has α = 500. Data from
the CMB power spectrum suggest that the FLRW model (with dust and cosmological
constant) that best describes our universe has α ≳ 3000000.1 Thus, it is not unlikely
that after billions of years Ω is close to 1; in fact, this seems to be the case for the entire
trajectory that we are on, because the high value for α implies that we are close to the
red trajectory at all times. This dynamical-systems approach to the flatness problem
comes from Lake (2005), who even shows that, for models with k = 1 and Λ > 0, it is a
state of non-flatness that requires fine-tuning. That is, only if α is close to 1 will such a
universe be one that has large values of Ωm and ΩΛ. This argument has been completed
by Helbig (2012). Classifying all FLRW models by their value for k and the sign of their
cosmological constant, he shows that in each class either flatness is generic or observations
of Ωm and ΩΛ corresponding to non-flatness are anthropically disfavoured. Indeed, the

1Holman shows that this analysis still holds for a more realistic matter composition of the universe.
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remainder of the parameter space can be divided into models that collapse, and models
that expand forever. If the universe undergoes a collapse, the values of Ωm and ΩΛ can
become infinitely large. However, their sum remains significantly greater than 1 for only a
brief and distinct period in the universe’s history. In the scenario of eternal expansion, the
weak anthropic principle provides an explanation. The value of Ω cannot be arbitrarily
small here, because we do not expect to have observers in such a universe.

The arguments presented so far convincingly defuse the flatness problem. There is no fine-
tuning problem because there is nothing unlikely about extreme flatness in the early universe.
A dynamical-systems analysis even shows that flatness is a likely state for our universe to be in.
Thus, I consider the flatness problem resolved.2

The arguments against the flatness problem can be found in an embryonic form in the article
by Earman and Mosteŕın.

Now it is not literally true that the standard big-bang model offers no explanation
of why the value of Ω in the early universe is very nearly equal to 1. [For each value
of k,] Ω → 1 as t → 0+; in this sense, the value of Ω must be nearly equal to 1
sufficiently near the big bang. The complaint the inflationary cosmologists mean to
make is that if explanations of the present state of affairs are based on conditions
at an early time, such as [the Planck time]—which is arguably the earliest time at
which quantum gravitational effects will be quiescent enough to permit a classical
spacetime description—then the explanation given by the standard big-bang model
is found wanting because it must rely on special initial conditions. (Earman and
Mosterin 1999, pp. 22–23)

Notice that they are aware of the fact that there is nothing strange about fine-tuned flatness
in the early universe. They note, as Holman did, that any singular FLRW universe is very
flat close to the big bang. Whether one thinks this is a problem depends on what they take
as adequate styles of explanation. To Earman and Mosteŕın, an explanation relying on special
initial conditions is perfectly fine. This important theme will resurface throughout this thesis.

2There is a another version of the flatness problem which is rarely mentioned. It goes: if the Universe were
not very nearly flat, then soon after the big bang, it would have either collapsed or expanded so rapidly that no
structure could have formed. This problem is addressed in Helbig (2020).
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Figure 2.1: Phase portrait for density parameters in a universe with dust and cosmological
constant. Note that trajectories start at (Ωm,Λ) = (1, 0) and end at (Ωm,Λ) = (0, 1). All the
trajectories correspond to universes that expand forever. On each of the light-blue lines, the age
of the universe is constant, corresponding, from right to left, to an age of 2

3 ,
3
4 , 0.826, 1, and

3
2

inverse Hubble parameters. The black trajectories correspond, from the outside in, to values of
α of 6, 8, 12, 20, 40, 100, and 500. (Holman 2018, p. 11)



Chapter 3

Uniformity problem

The second classical problem of inflation is the horizon problem. After briefly giving its
standard formulation, I show that it is not really a problem, much like the flatness problem.
There is, however, a more general problem outside of the FLRW context. This is the uniformity
problem. In the present chapter, I will evaluate the inflationary solution to this problem. I
will give a rigorous proof of Wald’s homogeneous no-hair theorem, and give arguments why this
makes inflation an effective isotropising agent in spite of criticism by Earman and Mosteŕın.
Nevertheless, an alternative explanation in terms of special initial conditions is also adequate.
There is an ongoing debate on whether the onset of inflation in an inhomogeneous universe itself
requires special initial conditions. I will analyse this debate, and show that it exposes underlying
considerations of ‘naturalness’ on either side. The rivaling explanations of uniformity can be
understood better in light of these considerations.

For the sake of reference and completeness, I will now introduce the textbook presentation
of the horizon problem, following the well-known GR textbook of Sean Carroll (Carroll 2019).
For the sake of simplicity, assume a flat FLRW universe without cosmological constant which is
matter dominated. Then a radially moving photon satisfies

0 = ds2 = −dt2 + a2dr2. (3.1)

Integrating gives the comoving distance that such a photon travels

∆r =

ˆ t2

t1

1

a
dt =

ˆ t2

t1

( t

t0

)−2/3

dt =
[ t0
3

( t

t0

)1/3]t2
t1

=
t0
3
(
√
a2 −

√
a1). (3.2)

Taking acmb = 1/1200, as Carroll does, we find that the comoving distance from a particle in
the CMB to an observer on Earth is

∆r ≈ 0.33t0, (3.3)

whereas the comoving horizon size of such a particle is

rhor ≈ 0.01t0. (3.4)

So, two widely separated regions in the CMB are well outside each others horizon, which implies
that they have never been in causal contact at the time of the CMB. Yet these regions have
remarkably similar temperatures. This is the horizon problem.

8



CHAPTER 3. UNIFORMITY PROBLEM 9

For FLRW universes, the horizon problem suffers the same fate as the flatness problem.
That is, the horizon problem is resolved for strict FLRW models of the universe, because these
are isotropic and homogeneous by assumption. This uniformity is present throughout the entire
evolution of the universe, so there is nothing conspiratorial about causally disconnected CMB
patches displaying uniform properties.

Outside of the FLRW context, there could be a horizon problem. This would happen if the
initial conditions of the universe were non-uniform, i.e. anisotropies or inhomogeneities exist,
and if there was no causal mechanism that could have ‘smoothed out’ these wrinkles by the time
of recombination. If this is the case, then there is need for an additional mechanism, such as
inflation. I will refer to this problem as the uniformity problem.

The uniformity problem received a lot of attention well before the invention of inflation.
Collins and Hawking (1973) already analysed the problem in a seminal paper. To elaborate
on the uniformity problem, and as a nice historical introduction, I will sketch their ideas here.
Let us start with the observation that the universe is isotropic and homogeneous to a very high
degree, based on data from the CMB. How can we then explain the existence of local non-
uniformities, such as galaxies? To answer this question, we could postulate an initial spectrum
of perturbations to the FLRW metric. However, these perturbations grow too slowly to explain
the formation of large-scale structure. Therefore, we have to postulate an initially non-uniform
universe. To avoid an ad hoc solution to this problem, we have to assume a generic initial state,
with anisotropies and inhomogeneities of all kinds.

Collins and Hawking show that there is no open set (with respect to a reasonable topology) in
the space of all initial conditions, which contains at least one homogeneous initial configuration,
and which produces a homogeneous and isotropic universe at late times. They claim the extra
condition that the open set contains one homogeneous set of initial conditions is not a strong
one, because they do not expect anisotropies or inhomogeneities to arise from homogeneity. The
cosmological constant is assumed to be zero. Their strategy is to show that there exists a ho-
mogeneous but anisotropic perturbation mode ζ0 of the metric that increases in amplitude with
time. The universe’s expansion rate compared to the escape velocity (the minimum expansion
velocity required to avoid recollapse) now gives three cases to consider:

1. The universe is expanding slower than the escape velocity. In this case, the
universe will exist for only a finite amount of time. Thus, there will not be enough time
for the anisotropic perturbation mode ζ0 to become arbitrarily small. This would not
result in an anisotropic universe at late times if the initial amplitude of this mode is zero,
but this specific situation has measure zero in the space of initial conditions.

2. The universe is expanding with exactly the escape velocity. This is a set of
measure zero in the space of initial conditions. Any small deviation from its expansion
rate will result in either recollapse or the growth of anisotropy.

3. The universe is expanding faster than the escape velocity. In this case, the
amplitude of the anisotropic mode will grow because long-range gravitational effects will
eventually dominate. Again, if its initial amplitude were zero, this would not result in
anisotropy at late times, but this initial value has measure zero in the space of initial
conditions.

Since our universe only has a finite age, it could be objected that the anisotropic mode has
not had enough time to grow. Any tiny deviation from the escape velocity or from a zero initial
amplitude of ζ0 will, however, ultimately result in a very anisotropic universe. We would reach
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the conclusion that our universe has remained isotropic for all of its lifetime up until the present,
but is ultimately destined to become anisotropic. This would be awkward, because it implies
that the value of the amplitude of ζ0 is special. The dilemma presented by Collins and Hawking
is then the following. In order to explain the existence of large-scale structure in our universe,
we have to postulate an initial spectrum of perturbations. These perturbations, however, have
to be chosen in such a way that the amplitude of ζ0 and the universe’s escape velocity are zero.
So, to explain both the formation of galaxy clusters and the isotropy of the CMB, we are forced
to make the assumption of special initial conditions. In absence of an established dynamical
mechanism to provide the desired explanation, Collins and Hawking resort to the anthropic
principle to escape a commitment to such a fine-tuned initial state. At present, the prevailing
solution to the dilemma described by Collins and Hawking is a dynamical one: inflation.

In the next section, I will first consider how non-uniformities can be smoothed out by intro-
ducing a positive cosmological constant, which is a surrogate for inflation, as we will see. I will
thoroughly analyse Wald’s no-hair theorem and evaluate its validity in the inflationary context.
I postpone the question of structure formation from such a mechanism to Chapter 5. The more
philosophically-inclined reader may wish to skip this next section.

3.1 The smoothing mechanism

The cosmic no-hair theorem is the statement that expanding universes with a positive cosmolog-
ical constant—and in which some appropriate energy conditions are satisfied—asymptotically
approach the de Sitter spacetime. In 1983, Wald proved this result for homogeneous spacetimes
(Wald 1983). Loosely speaking, this proves that the cosmological constant functions as an ef-
fective way to isotropise a universe. More precisely, the statement being proved is the following.
Let (M, g) be a manifold with a metric satisfying

Gab = −Λgab + 8πTab, (3.5)

with Λ > 0. If:

• T satisfies the dominant energy condition (DEC) and the strong energy condition (SEC),

• K > 0 at t = 0 (to be defined),

• M has a foliation of space-like, homogeneous (to be defined) hypersurfaces,

• M is not of Bianchi type-IX,

then K →
√
3Λ, σab → 0, and Tab → 0.

The energy conditions play a crucial role. I state them explicitly here. The DEC asserts
that for any two co-oriented time-like vectors ηa and ξb, the stress-energy tensor satisfies

Tabη
aξb ≥ 0. (3.6)

It is motivated by the conviction that the flux of energy-momentum is causal. Note that the
DEC implies the weak energy condition (WEC), which states that for any time-like vector ηa,
the stress-energy tensor satisfies

Tabη
aηb ≥ 0. (3.7)
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The SEC asserts that for a time-like vector ηa, the stress-energy tensor satisfies

(Tab −
1

2
gabT )η

aηb ≥ 0. (3.8)

It is motivated by the idea that gravity should be attractive for particles traversing null geodesics.

3.1.1 Preliminary I: extrinsic curvature

The following exposition is due to Wald (1984). Let (M, g) be a manifold with a metric satisfying
Einstein’s equation. Let O ⊆ M be an open set. A congruence on O is a family of geodesics
(with respect to g) such that through each point p ∈ O there passes exactly one geodesic.
Consider a smooth congruence of time-like geodesics, and denote its tangent vector field by ξa.
Parameterising the geodesics in the congruence by their proper time gives ξaξ

a = −1. Define
the spatial metric as

hab := gab + ξaξb. (3.9)

Any vector V a in the tangent space of the congruence will be projected onto the tangent subspace
of vectors orthogonal to ξa. That is,

(habV
a)ξb = V aξa + ξaξbg

abV bξb = 0. (3.10)

In addition, hab is idempotent and acts like the metric for vectors that are already orthogonal
to ξa. We can define the extrinsic curvature tensor as the change of the spatial metric as we
move along an integral curve defined by ξa. Rewriting this gives:

Kab : =
1

2
Lξhab

=
1

2
Lξgab

=
1

2
(ξc∇cgab + gcb∇aξ

c + gac∇bξ
c)

= ∇aξb, (3.11)

where in the second line we used that the Lie derivative of ξ along itself vanishes, and in the
fourth line we used that the connection ∇ is the Levi-Civita connection associated with g and
the Leibniz rule for connections. The extrinsic curvature is clearly a spatial (orthogonal to ξa)
and symmetric tensor.

How should we interpret Kab? Let γs(t) denote a smooth 1-parameter subfamily of the
congruence. Define the vector field Xa := ( ∂

∂s )
a, which represents an infinitesimal displacement

to nearby geodesics. Exploiting the fact that an s-dependent affine reparameterisation of the
geodesics changes Xa by adding a multiple of ξa, we can always reparametrise t so that Xa is
orthogonal to ξb. Then,

(Lξ(X
a))ξa = Lξ(X

aξa)− (Lξ(ξa))X
a = 0. (3.12)

This implies that the Lie bracket [ξ,X]a = 0, so we have

ξb∇bX
a = Xb∇bξ

a = XbK a
b . (3.13)
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So, Kab measures the failure of Xa to be parallelly transported along ξ. An observer on
some geodesic γ0 would see a linear deformation (stretching and rotating) of their surrounding
geodesics, described by Kab. We can decompose the extrinsic curvature as:

Kab =
1

3
Khab + (K(ab) −

1

3
Khab) +K[ab] =

1

3
Khab + σab, (3.14)

where K[ab] vanishes because the extrinsic curvature is symmetric, K = Kabh
ab is the trace of

Kab, and

σab := K(ab) −
1

3
Khab (3.15)

is the shear of the congruence. The trace K measures the expansion of the congruence around
some γ0, and σab, being the traceless part of Kab, measures its shear. Intuitively, the shear can
we thought of as the deformation of a sphere in the tangent space of M into an ellipsoid as it is
transported along the flow of ξ.

We derive the Raychaudhuri equation:

ξc∇cKab = ξc∇c(∇aξb)

= ξc∇a(∇cξb) +R d
cab ξ

cξd

= ∇a(ξ
c∇cξb)− (∇aξ

c)(∇cξb) +R d
cab ξ

cξd

= −K c
a Kcb +R d

cab ξ
cξd.

We have used that the Riemann tensor measures the failure of commutativity of the second
covariant derivative, the Leibniz rule, and the fact that ξc∇cξb = 0 because each vector ξa is
tangent to a geodesic. Contracting this equation then gives

K̇ := ξc∇cK = −1

3
K2 + σabσ

ab +Rcdξ
cξd, (3.16)

where we have used that hcbh
b
c = 3 and that σab is symmetric. Rewriting using Einstein’s

equation gives

K̇ = Λ− 1

3
K2 − σabσ

ab − 8π(Tab −
1

2
gabT )ξ

aξb, (3.17)

where we have used that the trace of Einstein’s equation gives

R = 4Λ− 8πT. (3.18)

Next, we derive the initial value constraint equation. Multiplying Einstein’s equation with
ξaξb gives us

0 = Gabξ
aξb − Λ− 8πTabξ

aξb. (3.19)

Rewriting Gab in terms of Kab and the Ricci scalar of the homogeneous hypersurface (3)R using
Gauss’s equation, we get the initial value constraint equation

K2 = 3Λ +
3

2
σabσ

ab − 3

2

(3)

R+ 24πTabξ
aξb. (3.20)

Gauss’s equation is a relation between the intrinsic and extrinsic curvature of a hypersurface,
see Carroll (2019, p. 451).
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3.1.2 Preliminary II: curvature in Bianchi models

I follow Chapter 7 of Wald (1984). Let G be a Lie group. Let ψh : G→ G denote left-translation
by h. Vector fields satisfying

(ψh)∗v
a = va (3.21)

for all h ∈ G are called left-invariant. Here (ψh)∗ is the induced push-forward map, canonically
defined as

(ψh)∗(v)(f) = v(f ◦ ψh) (3.22)

for scalar functions f on G. Since left-invariance is closed under summation and scalar multipli-
cation, the left-invariant vector fields form a vector space. The commutator of two left-invariant
vector fields is again left-invariant:

ψ∗
h[v, w] = [ψ∗

h(v), ψ
∗
h(w)] = [v, w]. (3.23)

In a coordinate basis, we have that the commutator depends linearly on va and wa so there
exists a left-invariant tensor field cabc, called the structure-constant tensor, such that

[v, w]a = cabcv
bwc. (3.24)

Anti-commutativity and the Jacobi identity for the commutator bracket imply:

cabc = −cacb, ced[ac
d
bc] = 0. (3.25)

A finite-dimensional vector space together with a (1,2)-type tensor satisfying these identities is
called a Lie algebra.

Next, let M be a spatially homogeneous spacetime with metric gab, and let G be the Lie
group of isometries of M . In general relativity, homogeneity entails that there exists a foliation
of hyperspaces Σt such that for every two points p, q ∈ Σt there exists a g ∈ G such that
q = g(p). We assume that this g is the unique isometry with this property.1 Fixing a point
p0 ∈ Σt, this ensures that there is a bijection

G→ Σt, g 7→ g(p0). (3.26)

We can define a global basis (σ1)a, (σ
2)a, (σ

3)a of dual vector fields on a hypersurface Σ0 as
follows. Define an arbitrary dual basis at p ∈ Σ0, and define a dual basis at an arbitrary point
q using the push-forward isometry g∗ : (TpΣ0)

∗ → (Tg(p)Σ0)
∗. We can write the spatial metric

hab, defined in the previous section as

hab =

3∑
i,j=1

hij(σ
i)a(σ

j)b. (3.27)

Since hab is left-invariant by the definition of isometry and global basis is left-invariant by
construction, we have that the components hij are constant across Σ0.

1Restricting consideration to a simply transitive action involves almost no loss of generality. This is because
the only exception where G does not act simply transitively or lacks a subgroup with a simply transitive action is
the group SO(3)×R acting on S2×R. Spatially homogeneous models with this isometry group can be addressed
separately. See Wald (1984, p. 171) and the references stated there.
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The global time coordinate can be defined as follows. Let ta be a vector at p orthogonal
to Σ0. Let γ be the geodesic with tangent vector ta at p. This geodesic is orthogonal to the
spatial Killing vectors spanning the homogeneous hypersurface Σ0. Once orthogonal to these
Killing vectors, it will remain orthogonal to them for every hypersurface that γ intersects, and
so the tangent to γ will be a normal of each hypersurface that it intersects. Our spacetime
M will then be foliated by a family of hypersurfaces defined by the proper time t of γ. The
vector field ta := −∇at defines a constant normal vector field for each hypersurface Σt, given
by the tangent vector to γ at p ∈ Σt. It is everywhere orthogonal to Σt. Homogeneity of the
hypersurface implies that the integral curves of this vector field are all geodesics. Constructing
a global spatial basis σi(0) for some hypersurface Σ0 as before, we can define the global basis
for subsequent hypersurfaces as

(σi)a(t) := (Φt)∗
(
σi(0)

)
a
, (3.28)

where Φt is the flow of the vector field ta. The upshot is that we can decompose our spacetime
as M = R×G, and the metric takes the form

gab = −∇at∇bt+

3∑
i,j=1

hij(t)(σ
i)a(σ

j)b. (3.29)

Let αa be any left-invariant dual vector field, and let va and wa be left-invariant vector fields.
Then, αav

a is a left-invariant scalar, so it is a constant. Then, using that ∇b(αav
a) = 0, we get

2vawb∇[aαb] = (vawb − vbwa)∇aαb

= −vaαb∇aw
b + αbw

a∇av
b

= −αb[v, w]
b

= −αbc
b
cdv

cwd. (3.30)

So, we have that left-invariant dual vector fields satisfy

2∇[aαb] = −αcc
c
ab. (3.31)

Next, note that the spatial basis on a hypersurface Σt is invariant under spatial isometries

g∗(σ
i(t))a = g∗((Φt)∗(σ

i(0))a)

= (Φt)∗g∗(σ
i(0))a

= (σi(t))a, (3.32)

using that the flow along ta and spatial isometries commute by construction, and the fact that
the spatial basis at Σ0 is constructed to be left-invariant. Finally, note that ∇[a(σ

i)b] is spatial,
in the sense that

2ta∇[a(σ
i)b] = ta∇a(σ

i)b − ta∇b(σ
i)a

= ta∇a(σ
i)b + (σi)a∇bt

a

= Lt(σ
i)b

= lim
ϵ→0

((Φϵ)∗(σ
i)b − (σi)b

= lim
ϵ→0

((σi(t+ ϵ))b − (σi(ϵ))b

= 0, (3.33)
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where we used the Leibniz rule in combination with the fact that (σi)a and tb are orthogonal.
Since ∇[a(σ

i)b] is spatial, and (σi)a is invariant under spatial isometries, we have that (σi)a is a
dual vector field satisfying Eq. 3.31. Thus, we obtain an important relation between the spatial
basis of the metric and the structure-constant tensor

2∇[a(σ
i)b] = −ccab(σi)c. (3.34)

A spatially homogeneous cosmology is then fully characterised by its 3-dimensional Lie group
G and the components of the spatial metric hij(t). Classifying the 3-dimensional Lie groups has
been achieved by Bianchi. By Lie’s third theorem, Lie algebras stand in one-to-one correspon-
dence with simply connected Lie groups. Thus, the goal is to find all 3-dimensional vector spaces
and structure-constant tensors cabc that are anti-symmetric in the lower indices and satisfy the
Jacobi identity. First, define a dual vector and a symmetric tensor as follows.

Aa := cbba (3.35)

Mab :=
1

2
ϵacd(cbcd − δbcAd) (3.36)

Here, ϵ is the Levi-Civita symbol. Contracting Equation 3.36 with ϵaef and using the anti-
symmetric property of cbcd gives

cbef =Mabϵaef + δb[eAf ]. (3.37)

Using the Jacobi identity for cbef , we get that

MabAb = 0. (3.38)

The Lie algebras are classified by pairs (Ab,M
ab) satisfying this equation. Different types are

characterised by the rank and signature (up to overall sign) of Mab, and whether or not Ab = 0.
We remark that the Bianchi IX type is characterised by Ab = 0 and Mab having rank 3 with
signature (+,+,+) or (−,−,−).

From Eq. 3.29 we can compute the corresponding Levi-Civita connection, and from there
the Riemann and Einstein tensors. The Einstein equation, together with Gauss’s equation, then
gives an expression for the curvature scalar of a homogeneous hypersurface

(3)R = −caabcc b
c +

1

2
cabcc

c b
a − 1

4
cabcc

abc, (3.39)

where we recall that we have a relation between the metric and the structure-constant tensor,
given by Eq. 3.34. Plugging in Equation 3.37 and simplifying using Equation 3.38 gives

(3)R = −3

2
AbA

b − h−1(MabM
ab − 1

2
M2) (3.40)

If (3)R > 0, then we must have that

MabM
ab <

1

2
M2, (3.41)

because Ab is a spatial vector. This inequality implies that Mab must be a positive or negative
definite matrix. To see why this is true, choose a basis in which Mab is a diagonal matrix.
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Assume for the sake of contradiction that there are two diagonal elements with opposing signs.
Plugging the values of this matrix into Eq. 3.41 gives a contradiction. So, all eigenvalues ofMab

must have the same sign.2 The signature of Mab must be either (+,+,+) or (−,−,−), and
Equation 3.38 then gives Ab = 0, because Mab is definite. Hence, we have a type IX Bianchi
universe. Contrapositively, if we have any Bianchi universe that is not type IX, then

(3)R ≤ 0. (3.42)

3.1.3 Proving the no-hair theorem

The initial value constraint equation 3.20, together with Inequality 3.42, the dominant energy
condition, and the fact that σabσ

ab ≥ 0 gives

K2 ≥ 3Λ. (3.43)

Assuming that the universe is initially expanding, a positive Λ implies that K is always positive.
This gives

K ≥
√
3Λ. (3.44)

Next, the Raychaudhuri equation 3.17, together with the strong energy condition gives

K̇ ≤ Λ− 1

3
K2. (3.45)

We can integrate this inequality to get3

K ≤
√
3Λ

tanh
(
t/
√

3
Λ

) . (3.46)

Thus, K is squeezed between two limits, and from Eq. 3.46 we find that it approaches
√
3Λ

exponentially fast on a time scale
√
3/Λ. Next, the initial value constraint equation and Eq.

3.46 imply that

σabσab ≤
2

3
(K2 − 3Λ) ≤ 2Λ

sinh2(t/
√

3
Λ )
. (3.47)

Therefore, the shear quickly approaches zero. Finally, the initial value constraint equation and
Eq. 3.46 also give

Tabξ
aξb ≤ Λ/8π

sinh2(t/
√

3
Λ )
. (3.48)

By the dominant energy condition, we know that if we choose an orthonormal basis with ξa

as the time-like vector, then Tabξ
aξb is an upper bound for the other components of Tab. This

follows from expressing the dominant energy condition (Eq. 3.6) in terms of this basis, and aptly
choosing the components of ηa and ξb in this basis.4

2Thanks to Gil Cavalcanti for pointing this out to me.
3Although differentiating inequalities can be a difficult matter, in this case a simple separation of variables

does the job. Thanks to Gil Cavalcanti for suggesting this to me.
4Thanks to Antonio Ferreiro for pointing this out.



CHAPTER 3. UNIFORMITY PROBLEM 17

The conclusion is that K →
√
3Λ, σab → 0, and Tab → 0. In other words, thinking of K in

terms of its effects on a congruence of geodesics, the decomposition of Eq. 3.14 gives, for late
times:

∂

∂t
hab(t) =

1

3

√
3Λhab(t). (3.49)

Solving this gives

hab(t) = e2(t−t0)/
√

3/Λ hab(t0). (3.50)

At late times, then, the constant value of K corresponds to exponential spatial expansion;
the vanishing of σab to an isotropic universe; and the vanishing of Tab to an empty universe.
Locally, then, the universe approaches the de Sitter spacetime. If Λ is sufficiently large, then
this conclusion will also hold for Bianchi type IX universes (Wald 1983).

3.2 Criticism on the inflationary solution to the unifor-
mity problem

Having seen the proof that a (temporary) cosmological constant acts as a smoothing mechanism,
I now turn to the question: can it be applied to the inflationary context to solve the uniformity
problem? This question is inspired by some critical remarks made by Earman and Mosteŕın on
the uniformity problem. I will first scrutinise these remarks, and then argue that they are not
very convincing.

3.2.1 Earman and Mosteŕın

I discern several arguments in the paper of Earman and Mosteŕın. I will treat each of them in
turn. First, they claim that the no-hair theorem is not applicable to the inflationary context
(Earman and Mosterin 1999, p. 30). In order to produce an effective cosmological constant, we
must impose strong conditions on the properties of the inflaton field. To see this, compare the
stress-energy tensors of a universe with cosmological constant TΛ

µν with that of a universe with

an inflaton field Tϕ
µν :

TΛ
µν = Tmatter

µν + Λgµν , Tϕ
µν = Tmatter

µν + ∂µϕ∂νϕ− 1

2
gµν∂αϕ∂

αϕ− gµνV (ϕ). (3.51)

(To get some insight into how to get these equations, see the final section of Chapter 5.) Earman
and Mosteŕın argue that the inflaton field can produce an effective cosmological constant only
when

∂µϕ∂νϕ = 0 =
1

2
gµν∂αϕ∂

αϕ, (3.52)

resulting in a constant V (ϕ). Moreover, the proof of Wald requires that any matter in the
universe should satisfy the SEC and DEC. Since the inflaton field—taken to be a form of
matter—requires negative pressure to engender accelerated expansion, it does not comply with
the hypotheses of Wald’s theorem.

To analyse the severity of this criticism, let me first introduce the slow-roll conditions. From
varying the action of the scalar field

S =

ˆ
dx4

√
g(−1

2
∂µϕ∂

µϕ− V (ϕ)), (3.53)
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we get the Klein-Gordon equation of motion

ϕ̈+ 3Hϕ̇− 1

a2
∇2ϕ+ V ′(ϕ) = 0. (3.54)

Assuming homogeneity, the gradient term—corresponding to spatial energy variations of the
scalar field—vanishes. We can then compute the energy density and pressure of the homogeneous
scalar field as:

ρϕ = T00 = ϕ̇2 +
1

2
(−ϕ̇2 + (∇ϕ)2

a2
) + V (ϕ) =

1

2
ϕ̇2 + V (ϕ), Pϕ = Tii =

1

2
ϕ̇2 − V (ϕ). (3.55)

So, the generalised (non-isotropic) Friedmann equation is given by

H2 =
1

3M2
Pl

ρϕ =
1

3M2
Pl

(
1

2
ϕ̇2 + V (ϕ)). (3.56)

The slow-roll conditions are

ϵ := − Ḣ

H2
< 1, |η| := |ϵ̇|

Hϵ
< 1. (3.57)

The smallness of ϵ is equivalent to accelerated expansion ä > 0, and the smallness of |η| guar-
antees the persistence of this state of affairs. Using the Klein-Gordon equation for the inflaton
field and the Friedmann equation, we can rewrite

ϵ =
3ϕ̇

ϕ̇+ 2V (ϕ)
. (3.58)

Requiring ϵ < 1 is equivalent to requiring that the inflaton field potential energy dominates its
kinetic energy. So, to spark off inflation, we demand V > ϕ̇, and for its persistence we require
that ϕ̈ is small. This is what is needed for a (time-dependent) cosmological constant, and for
inflation to solve the uniformity problem. One could still claim, as Earman and Mosteŕın do,
that this demand is contrived. I agree that this imposes conditions on inflation that are in some
sense ‘engineered’, which can be seen as an explanatory deficiency. Criticising the slow-roll
inflation on these grounds, however, does not give sufficient reason to renounce its ability to
smooth out anisotropies.

Next, let me address the criticism about the energy conditions more rigorously. The total
stress-energy tensor in Wald’s proof can be written as

T tot
ab = −gabΛ0 + Tab, (3.59)

for some Λ0 > 0, and where Tab satisfies the SEC and DEC. There is some freedom in defining
Tab in this decomposition which can be exploited to set

Λ(ti) =
1

3
K2, (3.60)

where ti marks the onset of inflation. See Maleknejad and Sheikh-Jabbari (2012, pp. 17–18).
Then, from the initial value constraint equation with (3)R ≤ 0, we find that

Tabξ
aξb ≤ 0, (3.61)
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at ti. Since K̇ ≤ 0 (expansion of a congruence decreases during inflation by the SEC, see Eq.
3.45), Tab violates the DEC during the entire inflationary era. So, if we assume that Tab satisfies
the SEC, then it must violate the DEC, and the hypotheses of Wald’s theorem are not met.
Note, however, that T tot

ab always satisfies the DEC.
In Maleknejad and Sheikh-Jabbari (2012) it is shown that the cosmic no-hair result still

applies to general inflationary dynamics on a homogeneous background, in particular to slow-
roll inflation. Any inflationary dynamics (Ḣ +H2 ≥ 0, where H is the Hubble parameter of the
non-isotropic Friedmann equations) satisfies the DEC but violates the SEC. Such dynamics can
always be described by a stress-energy tensor Tab that can be decomposed as

Tab = −gabΛ(t) + T+
ab, (3.62)

where T+
ab satisfies the SEC and WEC, and Λ(t) ≥ 0 for all t, see Maleknejad and Sheikh-Jabbari

(2012, pp. 16–17). Note that Λ is allowed to vary with time to justify this decomposition. This
decomposition does not suffer from the problem described above, which exposed an incompat-
ibility between the DEC and SEC. It is shown that inflation imposes an upper limit on the
Hubble-normalized shear, which signifies anisotropy, given by

|σi
j |

H(t)
≤

√
2ϵ, (3.63)

where ϵ is the slow-roll parameter. Since ϵ can grow during inflation, in principle anisotropies
can grow too, in contrast to the no-hair theorem. Nevertheless, the bound on their amplitudes
implies that they will remain small. Imposing the slow-roll conditions enforces even stricter
bounds. Thus, inflation generally evades the criticism of Earman and Mosteŕın concerning
the energy conditions. Although they make a valid point, the arguments of Maleknejad and
Sheikh-Jabbari (2012) show that the no-hair theorem can be generalised sufficiently.

I want to remark that, for this generalised no-hair theorem to hold, one still needs to assume
the DEC. Although the stress-energy tensor corresponding to the inflaton field satisfies this
condition, there could in principle be other matter violating this condition. Therefore, assuming
the DEC, or at least initial domination of matter satisfying the DEC, is still vital to any
inflationary explanation of the uniformity problem.

Second, Earman and Mosterin (1999, pp. 30–31) pose the question whether Wald’s result
can be generalised to non-homogeneous models . They criticise the generalisation of Wald’s
result by Jensen and Stein-Schabes (1987) on the basis that it assumes there to be no regions
of positive curvature on any hypersurface in the spacetime foliation. Since regions of positive
curvature could form, in spite of the imposed energy conditions, the conclusion of the generalised
proof would not hold. However, in Kleban and Senatore (2016) it is proven that the no-hair
theorem can be generalised significantly. Assuming a globally hyperbolic spacetime that is
initially expanding, the WEC, the existence of a compact Cauchy surface (implying global
hyperbolicity), and a 3-curvature scalar that cannot be everywhere positive on each hypersurface,
it can be shown that there must be an expanding region on each surface, whose expansion rate
is at least that of de Sitter spacetime in the flat foliation if Λ > 0. This suggests (but does
not logically necessitate) that the universe will always have an increasing volume, from which it
follows that vacuum energy will dominate. This implies that the potential energy of the inflaton
field, acting as vacuum energy, will come to dominate its kinetic and gradient counterparts.
So, inflation will be triggered somewhere no matter how inhomogeneous the early universe is.
In other words, we have that the combination of the WEC, a flat or open spacetime, and
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initial expansion ensures that rapid expansion persists in some region, even in the presence
of any inhomogeneities. Therefore, inflation is bound to spark off locally if Λ > 0. This
result is corroborated by numerical simulations in Clough et al. (2017). This is a considerable
generalisation of Wald’s result. But fully dismissing the original criticism that the no-hair
theorem cannot be generalised to the inhomogeneous case is a bridge too far. First, the result
seems to be at odds with more sophisticated objections to the consistency of (the onset of)
inflation in an initially inhomogeneous universe. I dive into these in the next section. Second,
I want to remark that this result depends strongly on the presence of a positive cosmological
constant which cannot be an effective cosmological constant coming from inflationary dynamics.
This would beg the question: inflation would have somehow begun already, but this is precisely
what we want to conclude. Third, despite every slice having an expanding neighbourhood,
it could be the case that this neighbourhood itself is shrinking, possibly even faster than its
expansion rate. Rather than dismissing this situation as pathological and unphysical, as is done
in Kleban and Senatore (2016), I think we should be careful to make such claims in the face
of substantial inhomogeneity. Fourth, perhaps the assumption that excludes the manifold from
having (3)R positive everywhere on each hypersurface is not as innocent as it seems. In fact, it
seems to do a lot of work in the theorem in finding the desired expanding region. Finally, note
that result still depends on an energy condition.

The third criticism of Earman and Mosteŕın on the inflationary explanation of uniformity
concerns the possible reappearance of non-uniformities, which poses a fine-tuning problem for
inflation (Earman and Mosterin 1999, pp. 26–27). Consider two distantly spaced regions on
the last scattering surface. According to the inflationary story, we observe similar conditions in
these two regions because inflation has smoothed a portion of our universe that encompasses the
last scattering surface. As times passes, however, the area of the last scattering surface increases
as more light has had time to reach observers on Earth. So, the portion of the universe that
inflation has made uniform will eventually be smaller than the last scattering surface. At this
time, one could ask: what do we observe when comparing two regions outside of the inflated
portion of the universe (which have non-overlapping past light cones)? If we observe uniform
conditions, we are in the same position as before the appeal to inflation, except that now we
cannot appeal to it again. If we observe non-uniform conditions, there must have been some
special initial conditions bringing about these conditions. Or so the argument goes.

I find myself not particularly compelled by such an argument. It would be perfectly fine to
find non-uniformities outside of the inflationary patch. As long as these non-uniformities are in
some sense generic (i.e. featureless and uncorrelated), we cannot speak of fine-tuned conditions.
In what sense would they be fine-tuned? In other words, we might at later times discover non-
uniformities in the last scattering surface, but to say these are due to special initial conditions
would be too strong. Rather, it would be the effect of initial conditions tout court.

To sum, the criticism by Earman and Mosteŕın against the applicability of the no-hair
theorem to solve the uniformity problem is not very persuasive. I grant that imposing the slow-
roll conditions makes inflation somewhat less generic. To claim that inflationary dynamics do
not conform to the setup of the no-hair theorem, however, would be unfounded. As we have
seen, very general inflationary dynamics can be shown to effectively isotropise a homogeneous
universe. Importantly, this requires the assumption that matter in the early universe satisfies
the DEC. Relaxing the assumption of homogeneity, the validity of the no-hair theorem is still
pending. Although a local version of the theorem holds fairly generally, there are still a number
of caveats. In particular, the connection between this result and the onset of inflation seems
shaky. I will take a closer look at the inhomogeneous case in the upcoming section. In conclusion,
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inflation cum appropriate energy conditions is effective at isotropising homogeneous universes.

3.3 The initial-conditions problem

From the previous section it is clear that initial inhomogeneity might pose a problem for the
efficacy of the inflationary solution to the uniformity problem. Despite serious efforts to gen-
eralise the no-hair theorem, there is still the worry that initial inhomogeneity may prevent the
onset of inflation. Here, I will give a brief overview of these problems. The debate presented
here goes to the heart of the tension between dynamical and initial-conditions explanations. For
an analysis of this debate in connection to the scientificality of inflation, see Dawid and McCoy
(2023).

First, I will briefly discuss chaotic inflation, first described by Linde in Linde (1983). Consider
a closed universe with Planck length in a state with the Planck energy density. From the moment
the universe has a lower energy density than the Planck energy density, it can be described
classically. It is assumed that the sum of the kinetic, gradient, and potential-energy densities of
the inflaton field is of the same order as the Planck density:

1

2
ϕ̇2 +

1

2
(∇ϕ)2 + V (ϕ) ∼ ρPl. (3.64)

By appealing to these densities taking on ‘natural’ values, it is argued that

1

2
ϕ̇2 ∼ 1

2
(∇ϕ)2 ∼ V (ϕ) ∼ ρPl, (3.65)

see Linde (1985). If, in a given domain, there occurs an energy fluctuation such that the potential
energy dominates the sum of the kinetic and gradient energies, then inflation is triggered. Within
a Planck time, the kinetic and gradient terms become much smaller than the potential term, so
inflation will continue. Alternatively, if there occurs an energy fluctuation such that the sum of
the kinetic and gradient energies dominates the potential energy, then the total lifetime of the
domain will be of the order of the Planck time.

To the best of my knowledge, the earliest observation of an initial-conditions problem for
inflation related to pre-inflationary inhomogeneity is found in Piran (1986). Assume that we
have a minimally coupled scalar field in a flat FLRW universe without cosmological constant.
To introduce linear perturbations, we decompose the scalar field into Fourier modes. Assume
that the mode with wavenumber k dominates all others. Recall from the discussion around Eq.
3.55 that the energy density of the scalar field is given by

ρϕ =
1

2
ϕ̇2 +

(∇ϕ)2

2a2
+ V (ϕ). (3.66)

Then, since ϕ ≈ ϕk e
ik·x, and using the fact that ϕ is real, we have that

ρ =
1

2
ϕ̇2k +

k2

2a2
ϕ2k + V (ϕk e

ik·x). (3.67)

The Friedmann equation is then

H2 =
8π

3M2
Pl

ρ =
8π

3M2
Pl

(
1

2
ϕ̇2k +

k2

2a2
ϕ2k + V (ϕk e

ik·x)). (3.68)
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The problem now is that when ϕk > MPl (required for chaotic inflation), we get

H >

√
4π

3

1

MPl
(
k

a
ϕk) > 2

k

a
. (3.69)

That is, the physical wavelength a/k corresponding to the dominant inhomogeneous perturba-
tion is more than double the physical Hubble radius. This means that homogeneity is required
at a very large scale to trigger inflation.

In the last decade, such arguments have been revisited and exacerbated. In Ijjas, Steinhardt,
and Loeb (2013) the following version of the argument is put forward in light of the data from
the 2013 Planck mission. Plateau-like models of inflation are favoured by the Planck data based
on density perturbations in the CMB. The energy scale of the plateau is constrained to be many
orders of magnitude below the Planck scale:

MPl

MI
∼ 103 · (10

16GeV

MI
), (3.70)

where MI is the energy scale associated with the plateau, and therefore also with the onset of
inflation at tI. This means that the potential energy in some patch is sure to be dominated by the
gradient and kinetic energy energies of the inflaton field. This will block the onset of inflation.
More quantitatively, to start off inflation we need a homogeneous domain at the Planck time of
radius r that grows into Hubble-sized volume by tI:( a(tI)

a(tPl)

)
r(tPl) ≥

1

H(tI)
. (3.71)

This places a lower bound on the initial homogeneous volume of

r3(tPl) ≥
( a(tPl)

a(tI)H(tI)

H(tPl)

H(tPl)

)
∼ 109 ·

(1016GeV

MI

)3

H−3(tPl). (3.72)

In other words, the onset of inflation requires at least a billion homogeneous Hubble volumes.
To make matters worse, Ijjas et al. argue that plateau-like inflation is unlikely by its own

standards. To see this, consider the basic plateau-like potential

V (ϕ) = λ(ϕ2 − ϕ20)
2. (3.73)

In Figure 3.1, I have drawn such a potential. From the shape of the potential it is clear
that inflation can occur in two ways. Either it slowly rolls down the plateau towards the local
minimum, or it slowly rolls down the power-law side of the potential (imagine a slow-roll domain
high up on the curve, outside the window of Figure 3.1). Plateau-like inflation will take place
for values of ϕ less than the local minimum, which has energy of order MPl. So

∆ϕ(plateau) : ϕ ≲MPl. (3.74)

Power-law inflation will take place for values of ϕ for which V (ϕ) is less than the Planck density
M4

Pl, for which the gradient and kinetic terms of the inflaton field dominate. Since λ must be
of order 10−15 to explain the large-scale density perturbations, this gives

∆ϕ(power-law) : ϕ ≲ 103MPl. (3.75)
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Figure 3.1: A basic plateau-like inflationary potential. The red part of the curve is the plateau-
like part of the potential, the green part of the curve matches a power-law potential V (ϕ) = λϕ4.
The minima of the potential are −ϕ0 and ϕ0.

The conclusion is that there is a much larger range of values for ϕ for which power-law inflation
will take place (which is disfavoured by the Planck data) than for which plateau-like inflation
will take place.

A vehement reply by Guth et al. follows (Guth, Kaiser, and Nomura 2014). Their response
to the initial-conditions problem is twofold. First, they argue that Ijjas et al. make incorrect
assumptions in their estimate. Guth et al. propose the following rectification. Assume a region
of negative spatial curvature. This is plausible, because zero-curvature regions are special, and
positive curvature regions will quickly recollapse unless the curvature is very close to 0. Since
the curvature term in the Friedmann equation scales as a−2, the gradient energy term scales as
a−2, and the kinetic energy term scales as a−6, the a−2 terms will quickly dominate. Solving
the Friedmann equation gives a(t) ∝ t. Again, consider an initial region of homogeneity with
radius r at the Planck time. In the worst case, inhomogeneities would travel inwards from the
boundary of the homogeneous region with the speed of light. So, by the time of the onset of
inflation tI, we would have

r(tI)

a(tI)
=
r(tPl)

a(tPl)
−
ˆ tI

tPl

1

a(t)
dt. (3.76)

Requiring the size of the homogeneous region to be one Hubble volume r(tI) = H−1(tI), as Ijjas
et al. do, and using that a(t) ∝ t, so that H(t) = a−1(t), we can rewrite this equation as

r(tPl) =
1

H(tPl)

(
1 + log

(
H(tPl)

H(tI)

))
. (3.77)
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Using the relation

H2(t) =
8π

3
M2

Pl, (3.78)

together with the Planck 2013 constraint that

H(tI) < 3.7 · 105MPl/
√
8π, (3.79)

we get that
r3(tPl) > 2.6 · 103H−1(tPl), (3.80)

which, even in this worst case scenario, is significantly less than what Ijjas et al. obtain.
Second, Guth et al. argue that the entire argument of Ijjas et al. is stated on false grounds.

The problem is that Ijjas et al. make the crucial assumption that there is a single, uninterrupted
inflationary phase stretching all the way from the Planck time until the last 60 e-folds—referred
to by Guth et al. as “observable inflation”. In other words, as the inflaton rolls down the
potential, it encounters no local minima but the final one essential to reheating. Guth et al.
claim that a potential with such complicated features is to be expected only at high energies, in
light of developments in particle physics and string theory. In their view, the high-energy sector
of inflation can have all sorts of properties that will not affect observable inflation in the sense
that it changes the predictions for the values of the parameters of the density spectrum.

The unlikeliness problem is countered in a similar fashion. Guth et al. grant that the ar-
gument is convincing, given that we start out with a single scalar field and arbitrary initial
conditions. If inflation is the result of a quantum-tunneling event, or if there are multiple fields
at play, then the situation is different. So again, the gist of the counterargument is that inflation
at non-observable high-energy scales could be more complex than is assumed by Ijjas et al.

The dust has not settled yet: the debate is alive and kicking, albeit in a more numerical
direction (Aurrekoetxea et al. 2020) (Garfinkle, Ijjas, and Steinhardt 2023) (Elley et al. 2024).
Although I am not in a position to judge who is right and who is wrong here, I do want to
make an observation based on the above arguments: notice that the core theme of the debate
is naturalness. What are natural assumptions to make about the state of the universe prior to
inflation? Chaotic initial conditions are introduced for their genericity, but are shown to lead to
the special (unnatural) requirement of a large homogeneous patch on which inflation can spark
off. How large should this patch be? Again, the estimates made by Ijjas et al. make different
assumptions of what is natural vis-à-vis those of Guth et al. First, Guth et al. assume that the
initial region has negative curvature on the grounds that zero curvature would be special, i.e.
unnatural. Second, Ijjas et al. assume the the inflationary potential is simple and featureless,
which to them is natural. To Guth et al. a complicated potential, being the result of complex
high-energy processes, is a natural one.

Is it natural that the kinetic, gradient, and potential energies of the inflaton field are of the
same order prior to inflation? This, too, is taking place in an extremely high-energy background.
Why should the distribution of energy types not be far more complicated than this, for the same
reasons why the shape of the inflaton potential must be complicated? The arguments of Ijjas
et al. show that the chaotic initial conditions and a simple inflaton potential together require
special initial conditions for the onset of inflation. Rejecting simple potentials based on our
ignorance of extremely high-energy physics, as Guth et al. do, but taking the simple chaotic
initial conditions for granted, amounts to applying a double standard. Biting the bullet and
rejecting the simple chaotic picture too, however, would spell trouble for the onset of inflation
again. In fact, the chaotic initial conditions were imposed to address the concern that inflation
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may not start off anywhere. Without assuming such conditions, the problem of initial conditions
for inflation returns.

Can we really say what conditions are natural at energy domains far beyond our experi-
mental capacities? Why are complicated potentials, chaotic conditions, or non-flatness natural?
To give any serious answers to these questions, one would need a measure. It is well known
that constructing an appropriate measure is highly problematic (Earman and Mosterin 1999,
pp. 31–34). In absence of a solution to the measure problem, it seems to me that there will be
no unequivocal winner in the initial conditions debate. Each side makes strong assumptions on
which states of affairs are natural (generic), and which are unnatural (special). As the debate
shows, these assumptions lead to wildly different conclusions. Especially given the more numer-
ical direction the debate has recently taken, I think it is vital that assumptions on naturalness
are made explicit. The empirical inaccessibility of their domain of application demands caution
in their use.

Despite any clear conclusions on the extent to which the initial-conditions problem impairs
the inflationary explanation of uniformity, I can say the following. Consider again the two
explanatory strategies for the uniformity problem. An advocate of the initial-conditions expla-
nation wants to argue that inflation itself requires special initial conditions. If so, the inflationary
explanation can be accused of hypocrisy: it rejects a special (uniform) initial state of the universe
and proposes a dynamical mechanism to smooth out non-uniformities, but this very mechanism
requires special initial conditions itself. Then, there is sufficient reason to jettison inflation and
simply assume a special initial universe from the outset. This is what is at stake in the above
debate. I have tried to show that each side of the debate is motivated by different ideas of what
is natural. Without an objective standard of naturalness, one cannot make proper judgements
about the claims made on either side. But, by extension, one then also cannot judge the special
initial-conditions explanation to be special.5

3.4 Conclusions on the uniformity problem

Concisely stated, the uniformity problem refers to the incompatibility of a non-uniform initial
universe and the absence of a causal smoothing mechanism before the time of recombination.
The initial-conditions explanation of the uniformity problem rejects the non-uniformity of initial
conditions, whereas the dynamical explanation postulates the existence of the required smooth-
ing mechanism. The success of inflation as a candidate mechanism derives largely from Wald’s
homogeneous no-hair theorem, which I have extensively discussed. Although the theorem is
originally proven not with reference to inflation but to a cosmological constant, the proof can
be adapted to comply with general inflationary dynamics. An important ingredient of the proof
is the dominant energy condition. In Chapter 6, I will return to the energy conditions.

Over the past decade, there has been considerable debate regarding the extension of the
no-hair theorem to inhomogeneous initial conditions. The lesson of this debate is that chaotic
initial conditions require that either the inflationary potential is featureless, or inflation itself
requires a large homogeneous patch to start. To date, no consensus has been reached, as the
disagreement on what background assumptions are natural or not persists. The conclusion that I

5The dynamical explanation can insist on robustness, however. I will discuss robustness and fine-tuning in
due course.
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draw from this is that either explanation is adequate, yet motivated by different intuitions about
what it means for a state of the universe to be special. A different conception of naturalness
may lead one to favour one explanation over the other.



Chapter 4

The entropy problem

The topic of the present chapter is the entropy problem. In short, given that thermodynam-
ical entropy is always future-increasing, supported by the non-observation of white holes, the
initial state of the universe must have been one of extremely low entropy. This means that the
universe started off in an incredibly special state. Note the similarities between this problem
and the initial-conditions problem of the previous chapter. One may ask: why is the burden on
inflation to make sense of this? The answer is that it is not, but since the initial-conditions ex-
planation can easily make sense of the low-entropy initial universe, the inflationary explanation
better not lag behind. Indeed, the dominant contribution to the total entropy is the gravitational
entropy; a uniform state is one of extremely low gravitational entropy. The initial-conditions
explanation is placed on firmer footing in this chapter. I will again analyse a debate, this time
on the reversibility argument against inflation. Being forced to spell out their positions, the two
rivaling explanations will admit to be more sharply defined here.

Earman and Mosteŕın discuss the entropy problem, albeit in a very rudimentary form:

[U]nder the inflationary scenario a generic non-uniform state would be carried under
the deterministic evolution of the coupled Einstein-scalar field equations into a cur-
rently uniform state. But whatever measure we use to gauge genericity of Cauchy
data, it should have the property that measure is preserved under dynamical evo-
lution. Thus, under the inflationary scenario, a generic non-uniform state is carried
to a uniform state, which must be generic. But (the argument goes), a presently
uniform state is highly non-generic. (Earman and Mosterin 1999, p. 28)

This captures the gist of the argument, but there is more to be said about this, as we will see
in a moment. In the end, however, the inflationary solution to the entropy problem stands or
falls by the conformity of inflation with measure preservation. This depends on the reversibility
of inflationary dynamics and its compliance with Liouville’s theorem—to be articulated and
proved.

4.1 Penrose’s challenge

The following argument is due to Penrose (Penrose 1989). Let’s assume that the universe is
closed, so that there will be a big crunch after a finite amount of time. This is not essential to

27
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the argument: similar consideration apply to a universe that is infinite and forever expanding.
We estimate that the amount of baryons in the observable universe is at least 1080. This is a
lower bound; if there are more baryons, then this strengthens the argument. We can compute
the entropy of the 2.7 K blackbody background radiation to be 108 per baryon. So, the total
entropy of the CMB in the observable universe is 1088.

Next, we consider the entropy of black holes. The Bekenstein-Hawking formula tells us how
to compute the entropy of a black hole:

SBH =
kc3

4Gh
A

where A is the surface area of the black hole. The surface area of a black hole is proportional
the square of its mass m:

A =
16πG2

c4
m2

So, we have that

SBH =
4πkG

hc
m2

Therefore, the more massive a black hole, the larger its entropy. Now, since we assumed the
universe to be closed, we know it will collapse. The final entropy of the universe can be estimated
to be approximately the same as that of a black hole containing all the baryons in the universe,
which is about 10123.

The entropy of a system is proportional to the logarithm of the volume of phase space that
consists of all microscopic configurations that are macroscopically indistinguishable. The total
phase space, corresponding the the final entropy of the universe, is then V = 1010

123

. The
region of phase space corresponding to the time of recombination (observed in the CMB) is

1010
88

. Since entropy increases over time, we expect the entropy of the early universe to be even
lower than this, corresponding to a smaller volume W . Then,

W

V
≤ 1010

88

/1010
123

≈ 1/1010
123

So, the early universe must have been fine-tuned to an accuracy of 1 part in 1010
123

in order for
us to have a universe with at least 1080 baryons and with the second law of thermodynamics in
place.

Importantly, entropy almost always increases (and for large systems this is overwhelmingly
probable) due to the statistical nature of thermodynamic processes. This is a well-established
principle of thermodynamics. In a closed system, there are exponentially more microstates
corresponding to equilibrium macrostates than to non-equilibrium macrostates. When particles
interact, they tend to move from less probable (low entropy) microstates to more probable (high
entropy) ones, leading to an overall increase in entropy. Yet these statistical arguments are
time-reversible. As a result, one would expect entropy to increase towards the past, too. If
entropy were to increase towards the past, however, we would observe phenomena like white
holes, the time-reversed counterparts of black holes, which expel matter and decrease entropy.
However, such objects are not observed in our universe, suggesting a fundamental asymmetry
in the direction of time. This asymmetry, the arrow of time, indicates that while individual
microscopic processes are reversible, the overall macroscopic trend is an irreversible progression
towards higher entropy.
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4.1.1 Graviational entropy?

The use of Bekenstein-Hawking entropy in the argument above is somewhat puzzling. In ordi-
nary thermal processes, we expect the increase of entropy to go hand in hand with the system
approaching homogeneity. Imagine a gas being pumped into the corner of a box. The gas will
not remain confined to a small corner, but spread out evenly throughout the box. In the case
of gravitational entropy above it seems to be the other way around. Gravitational particles,
initially spread out evenly, will eventually clump together under the influence of gravity. The
particles will then confine themselves to a compact, probably spherical volume.

To make sense of this, Penrose invites us to think about the Sun. Low entropy energy
coming from the Sun stands at the basis of many entropy-increasing processes on Earth from
which we acquire energy. The Sun itself is a hot spot in a dark and cold surrounding. This
thermodynamical unevenness in the sky is the result of the gravitational clumping of the matter
making up the Sun. Thus, most thermodynamical processes on Earth are actually powered by
the low entropy resulting from the gravitational field rather than some thermal phenomenon.
It is in this sense that Penrose suggests that we should think about entropy primarily in terms
of gravitational processes. The ultimate source of all entropy-increasing processes lies in the
extremely low entropy of the initial state of the universe. This must have been an extremely
uniform state so as to leave plenty of room for gravitational clumping to occur, i.e. entropy to
increase.

4.1.2 The special initial state

Penrose asks in what sense the incredibly small part of phase space corresponding to a low-
entropy initial state of the universe is special. First, one might ask whether ‘special’ could
mean something different now than it meant in the nascent universe. To address this, we
consider Liouville’s theorem. For the sake of preciseness, I will present a proof which the more
philosophically inclined reader may wish to skip.

Theorem 4.1.1 (Liouville’s theorem). Let (M,ω) be a symplectic manifold with dim(M) = 2n,
where ω is the symplectic form. Let XH be the Hamiltonian vector field associated with a
Hamiltonian function H : M → R. Then, the volume form Ω = ωn

n! is preserved under the flow
generated by XH . In other words, the Lie derivative of the volume form Ω with respect to XH

is zero:
LXH

Ω = 0. (4.1)

Proof. We start with the symplectic manifold (M,ω), where ω is a closed and non-degenerate
2-form. The volume form on this 2n-dimensional manifold is given by

Ω =
ωn

n!
. (4.2)

Consider the Hamiltonian vector field XH associated with a Hamiltonian function H. The
Hamiltonian vector field is defined by the relation

ιXH
ω = ω(XH , ·) = dH, (4.3)

where ι denotes the interior derivative. The Lie derivative of the volume form Ω with respect
to the vector field XH can be computed using Cartan’s magic formula:

LXH
ω = d(ιXH

ω) + ιXH
(dω) = 0, (4.4)
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using that ddH = 0 and that ω is closed. Since LXH
is a derivation, the Leibniz rule gives

LXH
Ω = nωn−1(LXH

ω) = 0. (4.5)

This proves that the volume form Ω is invariant under the flow generated by the Hamiltonian
vector field XH , which implies that phase-space volumes are preserved during the dynamical
evolution of the system.

Since the Lie derivative of the volume form Ω with respect to the Hamiltonian vector field
XH is zero, the volume form does not change along the flow generated by this vector field. This
implies that phase-space volume is preserved under the time evolution of Hamiltonian dynamics.
Therefore, Liouville’s theorem mathematically formalises the physical concept that phase-space
volumes are invariant during the dynamical evolution of a Hamiltonian system. From this,
Penrose concludes that the unlikeliness of the initial low entropy state is not some idiosyncrasy
of the early universe. At any time, the state of our universe corresponds to a special volume in
phase space.

Penrose proposes to explain the special initial state of the universe by means of the Weyl-
curvature hypothesis (WCH). One may decompose the Riemann tensor as

Rabcd = Cabcd +Qabcd, (4.6)

where the tensor Q vanishes if the Ricci tensor vanishes, while the Weyl tensor C does not.
An exactly uniform distribution of gravitational bodies has vanishing Weyl tensor, whereas the
Weyl tensor blows up when a system gets increasingly clumped. The WCH says that the initial
state of the universe has vanishing Weyl curvature. From this its extremely low (gravitational)
entropy follows, and thereby also the second law of thermodynamics. It gives the universe its
fundamental asymmetry, which explains the absence of white holes.

4.2 Inflation

A key goal of inflation is to explain the special initial conditions of standard cosmology. Similar
to the uniformity problem, the proponent of inflation wishes to show that the extremely low
entropy of the early universe is the result of whatever dynamics were playing out before that. It
seems, however, that in this case this would lead to a bizarre description of the early universe, in
the following sense. To avoid the pitfall of postulating new special initial conditions to explain
the original ones, the inflationary account must assume a generic initial state, such as the one
adopted in the chaotic inflation model. But such a generic initial state would be one of high
entropy. By the above argument related to gravitational entropy, this corresponds to a situation
of enormous gravitational clumping. It is the burden of inflation to furnish an entropy-lowering
process, which is tantamount to an initial phase that is riddled with white holes and anti-
thermodynamic behaviour. Penrose’s point is that this is nonsensical. Rather, we ought to
postulate law-like initial conditions, as the WCH does, to set up the very asymmetry needed
for a universe obeying the second law of thermodynamics. I will make the concept of law-like
initial conditions more precise in Chapter 6.

The question can be put in general terms as follows. How can something extraordinarily
special follow from something especially ordinary? In order to create a special low-entropy
universe, inflation itself must be a very special (read: unlikely) process. This argument can
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be made more precise by means of Liouville’s theorem. I will introduce a similar argument by
Hollands and Wald in the next section.

Albrecht tries to resolve these problems for inflation (Albrecht 2002). He argues that a
generic primordial universe requires only a small patch with special initial conditions to trigger
inflation. He draws the analogy with a block of ice containing an insulated box in which a
gas is confined to a small corner. Because of the insulator, the gas will have time to reach
an equilibrium in the box, after which it will slowly condensate on the boundary of the box,
defining the initial conditions for whatever happens after this. Similarly, inflation starts off in
a small, homogeneous patch of matter. The matter in this patch, much like the gas in the box,
will then approach the de Sitter equilibrium state during the slow-roll phase of inflation. As
the inflaton field rolls down the steep part of the potential, reheating sets in (analogous to the
condensation of the gas), and the newly produced particles will be distributed uniformly in the
inflated volume, thus giving rise to the desired low-entropy state. From there on, gravitational
entropic processes (resembling the ice) drive the subsequent arrow of time. The crux of the
argument is that inflation requires special conditions only in a small part of the universe. This
is much better than Penrose’s global initial low-entropy state, which concerns the entire universe.
Albrecht’s result has been been made more rigorous in Carroll and Tam (2010).

Proponents of initial-conditions explanations think differently. Wald (2006) is critical of
the type of argument that Albrecht makes. He reiterates that the onset of inflation, even in a
small patch, requires very special initial conditions. In an infinite universe, such conditions will
nevertheless be realised somewhere with certainty. On this view, it is an undeniable possibility
that our universe resulted from an inflating region. But, it is of course also a possibility that
our universe resulted from a non-inflating region. The inflationary advocate is burdened with
the task of showing that an observer in our universe is likely to see what we see, i.e. to turn
possibility into prediction. Assuming an inflationary universe, what should a typical observer
see? One can answer this question only relative to the fact that observers exist. In other words,
if inflation is to predict what a typical observer in some region should see, then it needs to
consider only regions that can have observers in the first place. Given that a region of the
universe has certain features that make observers possible, inflation may then predict how likely
it is that this region looks like the observable universe. Setting aside the issue that we have
no idea what kind of features make observers possible, it is unclear what such a prediction can
teach us. Wald concludes: “I fail to see in what sense [a calculation of the probability of having
a region of the universe with observers be similar to our observable universe] would provide an
“explanation” of why the observable universe is in the state we find it to be in.” (Wald 2006,
p. 5)

4.3 The reversibility debate

Having described the core tenets of each side of the low-entropy debate, I will now showcase
one particular debate in the literature that juxtaposes the two positions. One the one side, we
have Hollands and Wald (2002a) siding with an initial-conditions explanation, arguing against
inflation. They put forward arguments against anthropic reasoning in inflation, much like the
one by Wald that I just presented. Next to this, they unoriginally argue that inflation itself
requires special conditions, and originally argue that inflation might not be necessary to explain
structure formation, which I will elaborate on in the next chapter. The argument that goes to
the heart of the debate is the reversibility argument. This alternative formulation of Penrose’s
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challenge goes as follows.
Let’s consider a universe that ultimately contracts into a big-crunch singularity. As we

approach this big crunch, it appears highly unlikely that the matter within the universe would
spontaneously transform into scalar field kinetic energy in a way that allows the scalar field
to smoothly ascend a potential-energy hill and remain in near-perfect equilibrium at its peak
during a long period of exponential contraction. Consequently, the subspace of the measure space
corresponding to universes that did not deflate should be larger than the subspace corresponding
to universes that did deflate. But the time reverse of a contracting universe that did not
deflate is an expanding universe that did not inflate. This implies (by Liouville’s Theorem) that
the subspace of the measure space corresponding to non-inflating universes is larger than the
subspace of the measure space corresponding to inflating universes. In other words, it is highly
improbable that inflation will take place.

Kofman, Linde, and Mukhanov (2002) respond as follows. A key assumption in the argument
of Hollands and Wald is that dynamical evolution is measure-preserving. This assumption typi-
cally holds in dynamical systems without particle production but fails in inflationary cosmology,
which is an irreversible process. During inflation, the total energy and the entropy of the scalar
field and the particles created by its decay are not conserved; initially, the chaotic universe
contained negligible mass, but its total energy becomes exponentially large after an inflationary
era. Preservation of the measure would imply that the number of particles is conserved, which is
certainly not the case in inflation. The decay of the scalar field and subsequent particle produc-
tion are irreversible, meaning that it is impossible to return to the initial conditions by reversing
time. We would see more particles, and larger inhomogeneities, if we evolve backwards in time
the state of the universe after reheating. Inflation could not be a measure-preserving process,
for how could an initial Planck-size inflationary domain contain all the positions and momenta
of particles of the universe it evolves into? All the particles and inhomogeneities produced by
inflation are the result of quantum processes, which cannot be predicted from initial conditions.

Hollands and Wald reply to this as follows. They disagree with the claim that particle
production is an irreversible process. In quantum field theory, particles correspond to modes of
a field that are in excited states rather than their ground state. The irreversibility of particle
creation is similar to the breaking of a coffee mug: significant, but not fundamentally altering
the system’s degrees of freedom. This type of irreversible dynamic is consistent with measure-
preserving flows in classical statistical physics. Next, they agree with Kofman et al. that many
irreversible processes have occurred throughout the universe’s history. This is precisely the
argument they want to make: the initial state of the universe seems to be uniform, while the
final state is expected to be extremely messy, with countless black holes colliding with each
other. The question is why the initial state of the universe is not messy as well. Why are
there no white holes filling the universe? This must be explained by the the initial state of the
universe being special.

What can we learn from the stalemate in this debate? Clearly, neither side is strictly wrong:
both can provide empirically adequate accounts of the universe, and are represented by promi-
nent physicists. The question is what fundamental assumptions drive the advocates of either
side to their convictions. I distinguish two philosophical points of contention in this debate:
one concerns the occurrence of non-unitary evolution, the other is the attitude towards what
constitutes a good explanation.

Regarding the former, it is clear that the reversibility argument, or any version of Penrose’s
challenge invoking Liouville’s theorem, depends on the assumption of unitarity. The question
is whether inflation is a unitary process, and as such falls under the umbrella of Liouville’s
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theorem. In the view of Hollands and Wald, the dynamical evolution of the universe under
inflation is a unitary process. No new degrees of freedom are created, as is the case in any
ordinary thermodynamical process. A coffee mug breaking on the floor is a dynamical process,
subject to the laws of classical mechanics. Inflation is just like that. We cannot reverse it only
insofar as we cannot reverse any entropy-increasing process. But it is still a unitary process.
Inflation then merely passes the bucket of extremely low entropy to the pre-inflationary universe.
What’s more, it’s unclear whether inflation can even spark off in such a state.

This picture is changed dramatically when inflation is viewed as a non-unitary process. It is
the view of Kofman et al. that new degrees of freedom can be created in an expanding spacetime.
They take the creation of particles by reheating to be an example of a non-unitary process. There
is more quantum ‘information’ in the post-inflationary universe (the positions and momenta of
innumerable particles) than in the pre-inflationary universe, which is just a Planck-sized patch
(not able to hold the information required to specify the entire universe it will inflate into).
The fact that new information arises during inflation implies the fundamental irreversibility of
the process. The creation of new information comes from indeterministic quantum processes in
an expanding spacetime. Particle creation is a non-unitary process, like wavefunction collapse,
which is non-reversible.

To Hollands and Wald, inflation must occur in a closed system subject to dynamical laws, so
that its degrees of freedom do not change, and the whole process is a unitary one. At the root of
this view lies a notion of entropy that coincides with the standard one from statistical mechanics.
The pre-inflationary patch and the universe that it becomes are just different configurations of
the same system. On the other hand, Kofman et al. take a more quantum-mechanical perspective
on entropy, akin to the Von Neumann interpretation of entropy. They aim to show that new
quantum-mechanical information arises in inflation, which cannot occur in unitary processes.
On the basis of this lies the idea that particle creation is a non-unitary quantum process.
This, however, is contingent on one’s interpretation of quantum mechanics. The Everettian,
for example, holds that the wavefunction is objectively real, so that all quantum processes are
unitary. The point I want to make is that the differences between the inflationary and non-
inflationary sides in this debate partly stem from different attitudes toward unitarity. These
attitudes are strongly derivative on conceptions of entropy and beliefs about the foundations of
quantum mechanics. Finding appropriate definitions of entropy is still an active topic in research,
and it is well known that one’s preferred interpretation of quantum mechanics is largely a matter
of explanatory taste. On these grounds, it is fair to say that neither side in the debate on the
reversibility argument is wrong. Both positions are perfectly tenable in virtue of the plurality
of definitions of entropy and attitudes towards fundamental quantum processes.

Apart from the question of unitarity, there seems to be another philosophical point of con-
tention in the debate, having to do with views on explanation. In the account of Hollands and
Wald, the explanandum is the second law of thermodynamics, and the explanans is a theory
of initial conditions. Why do all thermal processes that we observe go from low to high en-
tropy? The answer, extrapolating these observations, is the special low-entropy initial state of
the universe. This explanation is criticised for not being an explanation at all. In the account
of Kofman et al., the explanandum is the uniform low-entropy state of the universe given that
its initial conditions must be generic rather than special, and the explanans is the second law
of thermodynamics together with the additional dynamical mechanism of inflation. Why is our
universe in a special state? The answer is that a small patch in the generic (high-entropy)
pre-inflationary universe randomly fluctuated into a special (low-entropy) state, triggering in-
flation. The inflationary mechanism (dynamical and entropy-increasing) then gives the desired
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uniform special state of the universe in the way described by Albrecht. But, in this account,
the second law of thermodynamics is left unexplained, because this is the result of the initial,
very special fluctuation that causes inflation in the first place. There is thus a new challenge
created, namely to explain the special initial conditions required for inflation. The discussion
then proceeds to revolve around the question whether this new challenge is better than Penrose’s
original challenge or not. The discussion then reduces to that of the previous chapter.

So, on the one hand, we have an explanation that is allegedly not an explanation at all. It
conjures up law-like initial conditions, which have no content over and above an extrapolation
of the second law of thermodynamics back in time. On the other hand, we have an explanation
that invokes a novel dynamical mechanism unlike anything we have ever seen. Although this
explanation can make sense of the current special state of the universe, it cannot account for the
second law of thermodynamics unless it answers the question why the conditions for inflation
could ever occur in a messy high-entropy primordial universe.

4.4 Alternative fundamental law-like initial conditions

I have already mentioned one example of law-like initial conditions that tries to do better than
just postulating an extremely low-entropy state of the early universe. The Weyl-curvature hy-
pothesis makes the assumption that the Weyl tensor initially vanishes, from which the universe’s
low-entropy follows. There are many examples of cosmological models which satisfy the Weyl-
curvature hypothesis, see Tod (2010). The question remains, of course, whether we are somehow
better off if we impose the Weyl-curvature hypothesis than if we just postulate an extremely
low-entropy initial state. It seems to me that the two are one and the same, in the sense that
they imply each other. So, what does the initial-conditions explanation win except for a new
name?

An alternative proposal is made in Lehners and Stelle (2019). This paper operates within
the framework of quadratic gravity. While general relativity needs to be quantised but is non-
renormalisable, gravity becomes renormalisable when quadratic curvature terms are included.
Evidence suggests that quadratic gravity might be asymptotically safe, meaning it remains valid
up to (and even beyond) Planck-scale energies. This makes it particularly relevant in studying
the universe at its earliest stages. Whereas in general relativity solutions with inhomogeneous
and anisotropic conditions at the singularity are allowed, in quadratic gravity such conditions
cause the action to blow up. As a result, spacetimes with these irregularities at the initial singu-
larity are ruled out, favouring a homogeneous and isotropic start. By imposing the fundamental
law-like assumption that the action must be finite, homogeneous and isotropic spacetimes (with,
accordingly, very low entropy) are selected as physical.

The exclusion of infinite-valued actions, however, also entails that the universe should un-
dergo an accelerated expansion. This sets the stage for an inflationary phase in the early
universe. This is an interesting case for this thesis: in trying to provide an initial-conditions
explanation for the universe by excluding non-uniform spacetimes, the quadratic-gravity model
also accommodates an inflationary era. Note also that modifying gravity amounts to a dynami-
cal change of strategy. Perhaps prematurely, this suggests that any full explanation of the early
universe must be a hybrid one, combining law-like initial conditions and dynamical mechanisms.
I will say more on this in Chapter 6.

One last alternative explanation invoking law-like initial conditions I wish to mention here
is the CPT-symmetric universe (Boyle, Finn, and Turok 2018). In such a universe, the big-bang
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singularity acts like a CPT mirror, in the sense that there was a CPT-reversed universe ‘before’
the big bang. The authors claim that this model can possibly explain structure formation, the
low-entropy of the universe, and dark matter, see Boyle, Finn, and Turok (2022). More research
needs to be done in this direction to make any definitive conclusions on these matters.

4.5 Conclusions on entropy

The low entropy of the early universe is something that requires explanation, so as to save all
thermodynamical phenomena. On the one hand, the initial-conditions explanation imposes this
state as a law-like initial condition. Simply postulating low entropy, or equivalently, assuming
the Weyl-curvature hypothesis to hold true, may seem like a non-explanation. I return to this
issue in chapter 5. Note, however, that more sophisticated arguments are available to support
such an explanation, like the requirement of finite action in quadratic gravity, or the demand
that the universe is CPT-symmetric. On the other hand, inflation can deliver a low-entropy
state by blowing up a small homogeneous patch. If so, the inflationary explanation once more
needs to address the issue of special initial conditions raised in the previous chapter. Just how
special these initial conditions should be is what is at stake in the reversibility debate. If inflation
is an ordinary measure-preserving process, then, by Liouville’s theorem, it cannot play a role
in explaining the low entropy of the early universe. This is precisely the point of contention. I
suggest that one’s verdict on the question whether inflation is entropy-preserving depends on
one’s commitments with respect to interpretations of entropy and the foundations of quantum
mechanics. I also claim that the sides of the reversibility debate are shaped by their stance on
what constitutes a good explanation. Mainly, the initial-conditions explanation seems to amount
to giving up, whereas the dynamical explanation must introduce new exotic physics, and cannot
explain the second law of thermodynamics unless it can make sense of the initial-conditions
problem. I recall from the previous chapter that the debate on special initial conditions for the
onset of inflation is motivated by different attitudes towards what physical states and dynamics
are natural. In Chapter 6, I will zoom in on these philosophical commitments that are gleaming
in the background.



Chapter 5

The problem of structure
formation

So far, I have mainly been concerned with the explanation of the uniformity of the CMB
spectrum. Although this spectrum is indeed uniform to a very high degree, it still contains tiny
variations. These provide loads of information about our universe: the fluctuations of the CMB
effectively give us a map of a part of the universe. They show the distribution of energy density
in the early universe, from which galaxy clusters have formed through gravitational clumping.
The density perturbations of the CMB have certain statistical properties. In this chapter, I will
focus on the (near) scale invariance of the spectrum of perturbations. The prediction of scale
invariance is often proclaimed to be a major empirical success of the theory of inflation. I remark
that are other relevant statistical properties, such as the phase coherence and Gaussianity of
the perturbation modes, which I wish to examine in future research.

In absence of accurate data of the spectrum of density perturbations, Earman and Mosteŕın
expressed themselves succinctly and conservatively: “[a] confirmation of the inflationary predic-
tions together with a disconfirmation of alternative explanations of the density perturbations
would constitute strong evidence that inflation did play an important role in the early uni-
verse [...].” (Earman and Mosterin 1999, p. 41) These inflationary predictions have indeed been
confirmed, most recently by the results of the Planck mission. The disconfirmation of alter-
native explanations will feature centrally in the present chapter. I will first present a rigorous
proof of the inflationary prediction of scale invariance. Second, I will analyse the assumptions
of this proof, from which I will conclude that inflation indeed gives an attractive explanation
for structure formation. Some suggestions have been made, however, that the adequacy of the
inflationary explanation rests on specific initial conditions, and so the leitmotif of this thesis
resurfaces. Finally, I examine some non-inflationary explanations of structure formation (i.e.
scale invariance). I argue that the proposed non-inflationary models have promising features,
but need to be developed further. Remarkably, the explanatory adequacy of one such model
depends on the presence of an additional dynamical mechanism. This suggests again a blurring
of the explanatory dichotomy introduced in this thesis.

36
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5.1 The inflationary argument for structure formation

Intuitively, inflation produces the fluctuations in the CMB spectrum by ‘blowing up’ quantum
fluctuations in the inflaton field. The early universe is dominated by the inflaton field ϕ. Locally,
ϕ(t) specifies the evolution of inflationary expansion, described by the potential of the field.
The uncertainty principle then tells us that the field has spatial fluctuations, as the inflaton
is a quantum-mechanical object. Different regions of space will inflate by different amounts,
resulting in differences in density after inflation. These density perturbations can be measured
via the temperature spectrum of the CMB.

5.1.1 What is scale invariance?

Let me first try to make clear what scale invariance means, following McCabe (2018). Consider
a Newtonian gravitational potential field Φ with small fluctuations. Its fluctuation field can be
expressed as a Fourier transform

δΦ := Φ− ⟨Φ⟩ = 1

(2π)3

ˆ
A(k) eix·k d3 k. (5.1)

Here A(k) is the amplitude of the mode with wavenumber |k|. Since ⟨δΦ⟩ = 0, we can express
the variance as

σ2
Φ = ⟨δ2Φ⟩ =

1

(2π)3

ˆ
|A(k)|2 d3 k. (5.2)

Since we assume the background field to the perturbations to be homogeneous and isotropic,
we have spherical symmetry about every point, so the expression of the variance simplifies to

⟨δ2Φ⟩ =
1

(2π)3

ˆ ∞

0

|A(k)|24πk2 d k. (5.3)

The power spectrum is defined by
PΦ(k) := |A(k)|2. (5.4)

It describes the contribution of a mode k to the variance in the fluctuation spectrum of Φ.
Inflation predicts a scale-invariant spectrum

PΦ(k) ∝ k−3. (5.5)

Why such a power spectrum is called scale-invariant can be seen by rewriting Equation 5.3
as a logarithmic integral

⟨δ2Φ⟩ =
1

2π2

ˆ ∞

−∞
PΦ(k)k

3 d log k. (5.6)

Now, define

∆(k) :=
1

2π2
PΦ(k)k

3, (5.7)

which represents the contribution to the total variance per unit logarithmic interval. If Equation
5.5 holds, then ∆(k) is independent of k. This explains the term scale invariance.

Proving that the power spectrum Pϕ of the inflaton field ϕ has the property that Pϕ ∝ k−3,
implies that the power spectrum of the spatial curvature perturbations has the same form.
This, in turn, is a substitute for the power spectrum of the perturbations of the metric, which
is approximated by the Newtonian gravitational potential. So, showing that inflation predicts
Pϕ ∝ k−3 is equivalent to showing that inflation predicts the scale-invariant power spectrum of
the CMB.
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5.1.2 The proof

This proof follows that of McCabe (2018) and Baumann (2012). I try to be as rigorous as
possible to hedge my thesis against the accusation of not giving inflation a fair hearing, but I
will omit the details of computations in linearised gravity for the sake of clarity. For details,
which are tedious and hardly contain any interesting mathematics, I refer to Baumann (2012).
We assume slow-roll inflation described by the following action

S =

ˆ
d tdx3√−g

(1
2
R− 1

2
gµν∂µϕ∂νϕ− V (ϕ)

)
. (5.8)

The proof takes place in the framework of linearised gravity. We assume an FLRW background
metric with small perturbations, both in the inflaton field and the metric

ϕ(t,x) = ϕ(t) + δϕ(t,x), gµν(t,x) = gµν(t) + δgµν(t,x). (5.9)

Importantly, this split into background and perturbations that live on top of it is not unique.
There is no preferred choice of coordinates in an inhomogeneous universe. In making a choice in
how to slice up spacetime into a foliation of hypersurfaces of constant time, one is also implicitly
defining the perturbations. This is why we consider both perturbations in the metric and in
the inflaton field, which are interchangeable via coordinate transformations. Specifically, we are
interested in perturbations that are physical, meaning that they cannot be eliminated by means
of a change of coordinates.

The most general form in which we can write the perturbed spacetime interval is

d s2 = −(1 + 2Φ) d t2 + 2aBi dx
i d t+ a2

(
(1− 2Ψ)δij + Eij

)
dxi dxj , (5.10)

where Ψ, Φ, Bi, and Eij are functions of space and time. The spacetime interval is invariant
under coordinate transformations. This gives a freedom of gauge, which we can exploit to sim-
plify calculations. Our main interest is a gauge-invariant quantity called the comoving curvature
perturbation

ζ := Ψ +
H

ϕ̇
δϕ. (5.11)

We work in the comoving gauge: a foliation of hypersurfaces in which the fluctuations of ϕ
vanish (δϕ = 0). In this gauge, any perturbation is now described as a metric perturbation

δgij = a2(1− 2ζ)δij + a2hij . (5.12)

So, non-zero perturbations in the 3-curvature of the hypersurfaces do not vanish in the comoving
gauge. Since ζ is gauge invariant, and since there also exists a spatially flat gauge in which Ψ = 0,
we have

ζ =
H

ϕ̇
δϕ. (5.13)

Next, we can solve the Einstein equations to obtain expressions for δg00 and δg0i in terms
of ζ. Substituting this into the action, expanding in terms of ζ, and dropping terms that are
above linear order we obtain

S =

ˆ
d tdx3a3

ϕ̇2

H2

(
ζ̇2 − a−2(∂iζ)

2
)
. (5.14)
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Define the Mukhanov variable as

v := zζ, with z :=
aϕ̇

H
. (5.15)

Conformal time is given by

τ = −
ˆ ∞

t

1

a(t)
dt = −

ˆ ∞

t

e−Ht dt = − 1

aH
, (5.16)

where we take inflationary expansion to be that of de Sitter space: a(t) = eHt. Rewriting the
action in terms of the Mukhanov variable and conformal time gives

S =
1

2

ˆ
d τ dx3

(
(v′)2 − (∂iv)

2 +
z′′

z
v2
)
, (5.17)

where primes indicate differentiation with respect to conformal time. Varying the action gives
the Mukhanov–Sasaki equation

v′′k + ω2
kvk = 0, ω2

k := k2 − z′′

z
, (5.18)

where vk represent the Fourier modes

v(τ,x) =
1

(2π)2/3

ˆ
vk(τ) e

ik·x d3 k. (5.19)

In de Sitter space, the Mukhanov–Sasaki equation reduces to

v′′k +
(
k2 − 2

τ2
)
vk = 0. (5.20)

We note that for modes with sub-horizon wavelengths, k2 ≫ | z
′′

z |,1 we get

v′′k + k2vk = 0, (5.21)

which has oscillating solutions vk ∝ e± i kτ . For modes with super-horizon wavelengths, k2 ≪
| z

′′

z |, we have
v′′k
vk

=
z′′

z
. (5.22)

Solving this equation gives vk ∝ z. This describes ‘frozen’ perturbations

ζk =
1

z
vk ∝ 1. (5.23)

1Indeed, in de Sitter space

k2 ≫ |
z′′

z
| ⇐⇒ k2 ≫ |

2

τ2
| ⇐⇒ |kτ | ≫ 1 ⇐⇒ |

k

aH
| ≫ 1 ⇐⇒

1

|k|
≪ |

1

aH
|,

so the condition in the main text is equivalent to the condition that the wavelength is much smaller than the
comoving Hubble horizon.
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The general solution to the Mukhanov–Sasaki equation (Eq. 5.18) is given by

vk(τ) = a−k vk(τ) + a+−kv
∗
k(τ), (5.24)

because the frequency ωk(τ) depends only on k. The solutions are normalised by the condition
that

Im(v′kv
∗
k) = 1. (5.25)

The time-independent integration constants can be written as

a−k =
v∗′k vk − v∗kv

′
k

v∗′k vk − v∗kv
′
k

, a+k = (a−k )
∗. (5.26)

Putting this into Eq. 5.19 gives

v(τ,x) =
1

(2π)2/3

ˆ (
a−k vk(τ) e

ik·x +a+k v
∗
k(τ) e

− ik·x )d3 k. (5.27)

Next, we apply canonical quantization. This entails the promotion of v and its conjugate
momentum π = v′ to quantum operators which satisfy the canonical commutation relations.
The constants of integration a−k and a+k in Eq. 5.27 then also become operators. This gives

v̂(τ,x) =
1

(2π)3

ˆ (
â−k vk(τ) + â+−kv

∗
k(τ)

)
eik·x d3 k. (5.28)

The commutation relations for v and π then imply that

[â−k , â
+
k′ ] = δ(k− k′), [â−k , â

−
k′ ] = 0 = [â+k , â

+
k′ ]. (5.29)

Then, a−k and a+k are interpreted as the annihilation and creation operators. The vacuum state
is defined as the quantum state satisfying

â−k |0⟩ = |0⟩ . (5.30)

Other states can be constructed through repeated application of the creation operator. The
non-uniqueness of the vacuum state will be the topic of next two sections. For now, we continue
the derivation and assume that the mode functions are those corresponding to the Minkowski
mode functions in the asymptotic past:

lim
τ→−∞

vk(τ) =
1√
2k

e− i kτ . (5.31)

(This is the Bunch–Davies condition—more on this in the next section.) The general solution
to the Mukhanov–Sasaki equation in de Sitter space (Eq. 5.20) is given by

vk(τ) = α
e− i kτ

√
2k

(1− i

kτ
) + β

ei kτ√
2k

(1 +
i

kτ
). (5.32)

From Eq. 5.31 we get that α = 1 and β = 0, so that there is a unique mode function given by

vk(τ) =
e− i kτ

√
2k

(1− i

kτ
). (5.33)
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We consider the super-horizon limit, where |kτ | ≪ 1. Then, since τ takes on negative values
only, we compute the limit

lim
|kτ |→0

vk(τ) =
1

i
√
2

1

k3/2τ
. (5.34)

From Eq. 5.28, the considerations from the previous section, and the assumption that the
quantised field v̂ was initially in its ground state, we can find the power spectrum of the field v̂
by computing:

⟨|v̂|2⟩ = ⟨0| v̂(τ,0)v̂(τ,0) |0⟩

=

ˆ
d3 k

(2π)3/2

ˆ
d3 k′

(2π)3/2
⟨0| (â−k vk + â+k v

∗
k)(â

−
k′vk′ + â+k′v

∗
k′) |0⟩

=

ˆ
d3 k

(2π)3/2

ˆ
d3 k′

(2π)3/2
vkv

∗
k′ ⟨0| â−k â

+
k′ |0⟩

=

ˆ
d3 k

(2π)3/2

ˆ
d3 k′

(2π)3/2
vkv

∗
k′ ⟨0| [â−k â

+
k′ ] |0⟩

=

ˆ
d3 k

(2π)3/2

ˆ
d3 k′

(2π)3/2
vkv

∗
k′δ(k− k′)

=
1

(2π)3/2

ˆ
|vk|2 d3 k. (5.35)

So, we have
Pv(k) = |vk|2. (5.36)

By Equation 5.34, we have on super-horizon scales

Pv = | 1

i
√
2

1

k3/2τ
|2 =

1

2k3τ2
= (aH)2

1

2k3
. (5.37)

Since the Mukhanov variable is defined as v := zζ, we have

Pζ =
1

z2
Pv =

H2

a2ϕ̇2
a2H2

2k3
=
H4

ϕ̇2
1

2k3
. (5.38)

Using Eq. 5.13, the power spectra of Eq. 5.38 and the scalar field are related by

Pζ = (
H

ϕ̇
)2Pϕ. (5.39)

It follows that

Pϕ =
H2

2k3
. (5.40)

Recall that we are working in the super-horizon limit. Since ζ freezes at horizon crossing, the
power spectrum for each k does so, too. For each mode, the value for H is then equal to the
Hubble constant H0 during inflation. We have proven, then, that Pϕ ∝ k−3, which is what we
set out to show.

As a final remark, I wish to define the scalar spectral index. To this end, define the dimen-
sionless power spectrum as

∆2
s(k) :=

k3

2π2
Pζ(k). (5.41)
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The scalar spectral index characterises the degree of scale invariance, where ns = 1 corresponds
to perfect scale invariance:

ns := 1 +
d log∆2

s(k)

d log k
. (5.42)

We can evaluate the index in terms of the slow-roll parameters using Eq. 5.40 and Eq. 5.41 as

ns = 1− 2ϵ− η, (5.43)

which is a restatement of scale invariance.

5.1.3 The choice of the physical vacuum

I will now show that the vacuum state is not uniquely determined in an FLRW universe. This
is a standard issue from quantum field theory in curved spacetime; I follow the exposition by
Mukhanov and Winitzki (2007). Consider again the most general solution to the Mukhanov-
Sasaki equation, given by Eq. 5.24. The mode functions vk(τ) fully specify the creation and
annihilation operators via Eq. 5.26, which in turn form the basis of all quantum states. However,
the mode functions are not uniquely determined by the Mukhanov-Sasaki equation. Explicitly,
we can generate new mode functions

uk(τ) = αkvk(τ) + βkv
∗
k(τ), (5.44)

where αk and βk are complex constants. These new mode functions are also normalised solutions
to the Mukhanov-Sasaki equation if |αk|2 − |βk|2 = 1. The functions uk(τ) specify a different

set of creation and annihilation operators b̂−k and b̂+k , which can also be used to build a basis for
the Hilbert space. Each of the annihilation operators defines a different vacuum state:

â−k |(a)0⟩ = 0, b̂−k |(b)0⟩ = 0. (5.45)

Since the basis constructed by the creation and annihilation operators is used to determine how
many particles a system contains, we are left with the question which set of annihilation and
creation operators corresponds to observable particles. We note that the vacuum state |(a)0⟩,
containing no particles in the a-basis by definition, may still contain particles in the b-basis. Is
there a preferred set of mode functions that describes the real world?

If the Hamiltonian of the system at hand depends explicitly on time, there can be no time-
independent vacuum state. However, at each instant of time τ0 there is a state |τ00⟩ that
minimises the expectation value of the Hamiltonian. For the action we have been considering,
the mode functions that select this lowest-energy state are given by

vk(τ0) =
1√
ωk(τ0)

eiωk(τ)τ0 , v′k(τ0) = i
√
ωk(τ0) e

iωk(τ0)τ0 , (5.46)

if ω2
k(τ0) > 0. If ω2

k(τ0) < 0, then the instantaneous lowest-energy vacuum does not exist. In the
context of Minkowski spacetime, we have ωk = k, so Eq. 5.46 gives a time-independent vacuum
state

vk(η) =
1√
k
ei kη . (5.47)

Despite the ambiguity in the definition of particles in the case when ωk is time-dependent, there
are no ambiguities in physical predictions. This is because there is no unique way to separate
particles and vacuum polarisation contributions in the total energy-momentum tensor, which is
the only relevant source of gravitational effects. So, given a specific quantum state of the scalar
field, we are perfectly able to predict specific observables, even in curved spacetime.
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5.1.4 The Bunch–Davies vacuum in the de Sitter spacetime

Our goal is now to find a vacuum state in de Sitter spacetime that is physical. Again following
Mukhanov and Winitzki (2007), we assume a homogeneous and isotropic universe with a positive
cosmological constant Λ. The effects of this cosmological constant correspond to a perfect fluid
with equation of state

pΛ = −ρΛ. (5.48)

Assuming flatness, the Friedmann equation has solution

a(t) = H−1
Λ eHΛt, HΛ =

√
8πG

3
ρΛ. (5.49)

where t denotes physical time and HΛ is the time-independent Hubble parameter. The metric
of the static maximally symmetric de Sitter spacetime, using conformal time and spherical
coordinates, is given by

d s2 =
1

H2
Λτ

2

(
d τ2 − d r2 − r2(d θ2 + sin2 θ dφ2)

)
, (5.50)

where −∞ < τ < 0 and 0 ≤ r < ∞. It can be shown that these coordinates cover only half of
the de Sitter spacetime. We can make the following change of coordinates:

τ =
sin τ̃

cos τ̃ + cos r̃
, r =

sin r̃

cos τ̃ + cos r̃
. (5.51)

In these new coordinates, the metric is given by

d s2 =
1

H2
Λ sin2 τ̃

(
d τ̃2 − d r̃2 − sin2 r̃(d θ2 − sin2 θ dφ2)

)
, (5.52)

where −π < τ̃ < 0 and 0 ≤ r̃ ≤ π. This metric describes a closed de Sitter universe, and the
new coordinates τ̃ and r̃ cover the entire spacetime.

Continuing in the flat coordinates, we can quantize a massive scalar field ϕ(x, τ) with po-
tential V (ϕ) = 1

2m
2ϕ2. Plugging in the scale factor a(τ) = − 1

HΛτ gives

ω2
k(τ) = k2 − m2

H2
Λτ

2
− 2/(HΛτ

3)

1/(HΛτ)
, (5.53)

so that the mode functions are subject to

v′′k +
(
k2 − (2− m2

H2
Λ

)
1

τ2

)
vk = 0. (5.54)

Take a wavenumber k, and consider the early time (large negative τ) condition k|τ | ≫ 1. Then
the physical wavelength of this mode is

a(τ)k−1 ≈
H−1

Λ

k|τ |
, (5.55)

which is much smaller than the curvature scale H−1
λ . It is not surprising that the mode is not

affected by the curvature of spacetime, and that we get the Minkowski solution. Indeed, in the
limit k|τ | ≫ 1, we have ωk ≈ k, and the solution to Eq. 5.54 is (see Eq. 5.47)

vk(τ) ≈
1√
k
ei kτ . (5.56)
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When k|τ | ≈ 1, the physical length of the modes is comparable to the curvature scale. At this
time, modes cross the event horizon: sub-horizon modes satisfy k|τ | ≫ 1 and super-horizon
modes satisfy k|τ | ≪ 1. Super-horizon modes do not oscillate and therefore it is not possible
to define particles for such modes. Also, if m2 < 2H2

Λ, there is no lowest-energy state because
ω2
k(τ) is negative. Still, there exists a preferred vacuum state called the Bunch–Davies vacuum.

Fix a wavenumber k and consider the corresponding mode. As we have seen, when k|τ | ≫ 1
this mode does not feel much curvature, so we can demand the initial condition that

lim
τ→−∞

vk(τ) =
1

√
ωk

eiωkτ . (5.57)

This means that we choose a minimal energy state in the asymptotic past. If m < 3
2HΛ, then

the mode functions with this asymptotic are given by

vk(τ) =

√
π|τ |
2

(Jn(k|τ |)− iYn(k|τ |)), n :=

√
9

4
− m2

H2
, (5.58)

where Jn and Yn are the Bessel functions. The annihilation operators determined by these
functions define the Bunch–Davies vacuum |0BD⟩.

5.1.5 Conclusion on scale invariance

Let me briefly recap what we have done so far. We considered an FLRW universe with a
slow-roll scalar field. We introduced linear perturbations (inhomogeneities) in both the scalar
field and the metric. Choosing an appropriate gauge, we were able to confine our analysis to a
perturbation in the metric. This gave us equations of motion for each perturbation mode that
do not depend on fluctuations of the scalar field. Assuming that during an inflationary era the
universe is approximately de Sitter (i.e. homogeneous, isotropic, flat, and with constant expo-
nential expansion), these equations simplified. We solved these equations for the perturbation
modes, but noted that these solutions are not uniquely determined. Next, we quantised the
field of perturbation modes, realising that the resulting annihilation and creation operators are
not unique, given an ambiguity in the definition of a vacuum state. In de Sitter spacetime, we
may asymptotically define the vacuum state: towards the past, each mode function approaches
the (unique) Minkowski mode function. Equivalently, modes with a very large wavelength are
not affected by the curvature. Having defined the vacuum as such, we got a unique solution to
the equation of motion of perturbation modes. We could then compute the power spectrum as
the variance of the (super-horizon) perturbations, using the assumption that the modes were
initially in their ground state (this will become important in the final section of this chapter).
This gave the power spectrum for the metric perturbations, from which we found the power
spectrum of the inflaton field perturbations. We finally noted that the amplitude of a mode
freezes when it crosses the horizon, and that the Hubble horizon is (approximately) constant
during inflation, so that the power spectrum was seen to be scale-invariant.

Insofar as we take the theoretical framework of quantum field theory in curved spacetime
for granted, the key assumptions made in this proof are the following: during the slow-roll
inflationary era, the universe is approximately de Sitter and only contains small quantum inho-
mogeneities on a classical background; the vacuum state is given by the Bunch–Davies vacuum;
perturbation modes are born in their ground state. The latter is not much of an assumption,
as we will see later in this chapter. Modeling the inflationary era as a de Sitter universe is war-
ranted in virtue of the no-hair theorem. This raises the stakes for the validity of this theorem,
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which I have extensively discussed in Chapter 3. The other two assumptions will be discussed
in the next section.

5.2 Quantum problems faced by inflation

This section will be concerned with problems faced by inflation stemming from its quantum-
mechanical nature, which is essential to the explanation of structure formation. One such issue is
the following. The proposal of inflation theory is that quantum fluctuations act as the precursors
to classical-field fluctuations. For this transformation to occur, a measurement-like interaction
process must be at work throughout space, converting a field of quantum expectation values into
a classical field. How does this quantum-to-classical transition occur? Do modes crossing the
Hubble horizon collapse? These questions are strongly connected to foundational issues in the
interpretation of quantum mechanics. I believe it is not the burden of the theory of inflation to
provide solutions to these issues. Indeed, any theory dependent on quantum mechanics suffers
from issues in the interpretation of its foundations. Whether there is something essentially
quantum about cosmological density perturbations is a matter that I will take up in the next
section.

Next, consider the Bunch–Davies vacuum assumption. As is pointed out in McCabe (2018),
there is something strange about defining the Bunch–Davies vacuum via a condition in the
remote past. As we have seen, the time coordinate τ only covers half of the de Sitter space-
time, and the boundary τ → −∞ does not correspond to some physical boundary. Rather,
this boundary is a coordinate artefact. Moreover, since the pre-inflationary universe was not
Minkowksi, it is unclear why we can take the vacuum at τ → ∞ to resemble the Minkowski
vacuum.

As it turns out, this problem can be readily resolved. Using the extended coordinates defined
in Eq. 5.51, we can get rid of the unphysical coordinate boundary. In fact, the Bunch–Davies
vacuum can be defined in the complete de Sitter spacetime as the unique state that satisfies the
Hadamard condition and is invariant under the symmetries of the de Sitter spacetime (given
by O(4, 1)). The Hadamard condition is a mathematical requirement for quantum states which
excludes ill-defined or unphysical states. Hence there is a physical motivation for the Bunch–
Davies vacuum that does not appeal to conditions in a remote past defined on a coordinate
boundary. In any case, the Bunch–Davies vacuum is the one that gives the empirically verified
prediction of scale invariance, and it can be motivated as such.

Finally, consider the assumption that the seeds for structure formation are quantum fluc-
tuations on a classical background. It is argued in Di Tucci et al. (2019) that the framework
of quantum field theory in curved spacetime is not equipped to describe the (very) early uni-
verse. Any comoving volume that we are interested in becomes exponentially small towards
the past. The spacetime background cannot be expected to behave classically anymore in this
regime, and as such it is subject to quantum fluctuations. Taking a semi-classical path integral
approach to gravity, in which the background spacetime is also quantised, Di Tucci et al. show
that QFT in curved spacetime breaks down for small values of the initial scale factor. The
only way to resolve this problem is to assume that the universe was initially sufficiently large
(the initial patch that inflates should be larger than the physical Hubble radius). Even worse,
the Bunch–Davies vacuum is not naturally selected during inflation anymore, but it should
be imposed by fiat. The conclusion is that inflation cannot describe a universe of arbitrarily
small initial size, and so inflation itself requires special initial conditions. These could be set up
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by a pre-inflationary phase, in which a sufficiently large homogeneous patch is created whose
perturbations are prepared in the Bunch–Davies state.

Overall, I find that the argument for structure formation is rightfully claimed to be the
cornerstone of the inflationary explanation. Despite the fact that some foundational problems
of quantum mechanics carry over, it is remarkably economical in accounting for large-scale
structure by taking its origin to lie in primordial quantum fluctuations. Nevertheless, I once
again find indications that initial conditions cannot be neglected. Although the semi-classical
approach to gravity using path integrals remains speculative, the idea that classical spacetime
breaks down at very small scales is not. So, I take seriously the suggestion that inflation fails
to give adequate descriptions at these scales and that specific initial conditions are required to
avoid pathological perturbations plaguing the early universe. This substantiates the view that
inflation cannot be an adequate explanation of the early universe (or structure formation in
this case) without appealing to initial conditions. Whether initial-conditions explanations of
structure formation are adequate without appeal to inflation is the subject of the next section.

5.3 Alternative explanations of structure formation

Is there something inherently quantum about the fluctuations in the CMB spectrum? If this were
the case, this would be a strong point in favour of inflation, because classical mechanisms would
be ruled out. To answer this question, Ashtekar, Corichi, and Kesavan (2020) analyse the notion
of classical emergence in expanding universes. How do we get classical behaviour from a system
that is essentially quantum? They identify three non-equivalent ways in which classicality can
emerge without invoking any details of quantum measurement theory, such as decoherence or
wavefunction collapse. These are: quantum non-commutativity becoming negligible; quantum
squeezing; and the ability to approximate the quantum state by a distribution function on the
classical phase space. The latter two notions of emergence of classicality are realised regardless
of inflation. Hence, inflation does not play a crucial role in realising classical behaviour of matter
fields by the time of recombination.

What about an initial-conditions explanation of structure formation? Simply evolve the
matter density spectrum at the time of recombination back in time, and postulate these as the
initial conditions of the universe. Then declare that this just happens to be the universe that we
live in. Unfortunately, things are not this easy. The following two arguments are from Blau and
Guth (1987). Assume a radiation-dominated universe. For the first argument, consider density
perturbations similar to those in the proof of scale invariance above. The behaviour of such
perturbation modes depends on the physical wavelength (associated to a comoving wavenumber
k) and the physical Hubble radius 1

H . The former grows with the scale factor as
√
t, whereas

the latter grows as 2t. Going back in time, then, the perturbations will eventually become
bigger than the Hubble radius. This implies that, at early times, the size of the perturbations
stretches beyond the Hubble radius, which in a radiation-dominated universe has the same order
of magnitude as the horizon radius. The initial conditions of the universe must then contain
perturbations that are somehow coherent beyond the limit of possible causal interaction.

Second, one can take an average galaxy today, and compute the size of its corresponding
perturbation at a time as early as t = 10−35 s, when the initial perturbation spectrum is
supposedly imprinted. One then finds that

δρ

ρ
∼ 10−49, (5.59)



CHAPTER 5. THE PROBLEM OF STRUCTURE FORMATION 47

where δρ denotes a density inhomogeneity on top of a homogeneous background density ρ. Such
perturbations are several orders of magnitude smaller than standard thermal fluctuations. Since
we can reasonably expect such thermal fluctuations to be present in a radiation-dominated early
universe, it is unclear why large-scale structure is not seeded by these fluctuations rather than
by the much smaller density perturbations postulated as initial conditions. In sum, there are
serious flaws in a naive initial-conditions explanation for structure formation. Can we do better?

5.3.1 Hollands and Wald

Hollands and Wald propose an alternative mechanism to account for structure formation without
relying on inflation (Hollands and Wald 2002a). They describe a mechanism producing density
perturbations emulating the proof above. Thus, Hollands and Wald claim that the structure
formation of the universe can possibly be explained without inflation.

Consider again de Mukhanov–Sasaki Equation in de Sitter spacetime, and the limiting be-
haviour of its solutions (Equations 5.20–5.22). In inflationary models, the relevant modes have
wavelengths smaller than the Hubble radius for early times. This means the modes evolve like
ordinary harmonic oscillators. Their amplitudes are not frozen, so the time at which they came
into existence does not affect the argument for scale invariance. Now, for non-inflationary mod-
els, the modes have wavelengths larger than the Hubble radius for early times. This means their
amplitudes are frozen. So, the analysis of the spectrum of the modes depends sensitively on the
initial conditions of the modes.

To get an intuition for why this is true, consider Figure 5.1. The comoving Hubble radius

Figure 5.1: Evolution of perturbation modes. The red line shows the size of the comoving
horizon, the blue line shows the size of the comoving wavelength. (Baumann 2012)

is decreasing during inflation, and increasing during reheating, when spacetime is FLRW. The
modes are frozen when their corresponding comoving wavelengths are larger than the Hubble
radius. The relevant temperature fluctuations measured in the CMB obviously correspond to
sub-horizon modes. Going back in time, these modes are seen to come from the super-horizon
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regime. Going back in time even further, and given that inflation lasted sufficiently long, the
Hubble radius is seen to become large enough for the modes to be in the sub-horizon regime.
Without inflation, the relevant modes would be in the super-horizon regime for most of their
history. We therefore need to address the question in what state they were frozen when they
came into existence.

Hollands and Wald make the assumption that the modes come into existence in their ground
state when their proper wavelength equals some fundamental scale l0. So, modes would be
continuously created over all time, even at times earlier than the Planck time. When their
wavelength is equal to l0, they pop into existence, and since l0 is larger than the Hubble radius,
the amplitudes of the modes are frozen immediately.

Let me try to formalise this argument. Hollands and Wald consider a massless, minimally
coupled scalar field in a spatially flat FLRW universe. The action is

S =
1

2

ˆ
dx4

√
−ggµν∂µϕ∂νϕ, (5.60)

with metric
d s2 = −d t2 + a2(t)(dx2 + d y2 + d z2). (5.61)

The Fourier decomposition of the scalar field is

ϕ(t,x) =

ˆ
dk3

(2π)3/2
ϕk(t) e

ik·x . (5.62)

Plugging this into the action, and using that
√
−g = a3 gives

S =

ˆ
d t
a3

2
(ϕ̇2k − k2

a2
ϕ2k). (5.63)

Varying with respect to ϕk gives

ϕ̈k + 3Hϕ̇k +
k2

a2
ϕk = 0. (5.64)

We define ωk := k
a . Since the conjugate momentum is given by πk = a3ϕ̇k, the Hamiltonian is

H = πkϕ̇k − L

=
π2
k

2a3
− a3

2
ω2
kϕ

2
k. (5.65)

We can define the annihilation and creation operators

a−k :=

√
a3ωk

2
(ϕk +

iπk
a3ωk

), a+k := (a−k )
∗. (5.66)

It is clear that these operators satisfy the canonical commutation relation and that

H = ωk(a
+
k a

−
k +

1

2
). (5.67)

Rewriting gives

ϕk =

√
1

2a3ωk
(a−k + a+k ). (5.68)
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Then, we may compute the expectation value of (ϕk)
2 as

⟨ϕ2k⟩ = ⟨0|ϕ2k |0⟩

=
1

2a3ωk
⟨0| ([a−k , a

+
k ] + a+k a

−
k ) |0⟩

=
1

2a3ωk
. (5.69)

In inflationary models, the modes are assumed to be born in their ground state, at a time
when their wavelength is smaller than the Hubble radius. This means that the modes satisfy
Equation 5.69. The proper wavelengths of the modes grow with a, while the Hubble radius is
constant H0 during inflation. When a = a0, the wavelengths of the modes cross the Hubble
radius:

a0
k

=
1

H0
. (5.70)

The fluctuation amplitude of the modes then freezes at

⟨ϕ2k⟩ =
1

2a30(k/a0)
=
H2

0

2k3
, (5.71)

which gives the desired scale-free spectrum.
Inflation is generally taken to be an indispensable part of this mechanism. Without inflation,

the relevant modes have wavelength larger than the Hubble radius for a significant part of their
life in the early universe. This means that their fluctuation amplitudes are frozen. Assuming
all the modes were born at the Planck time in their ground state, their fluctuation amplitudes
would go like 1/k, by Eq. 5.69. This would contradict the observation of the scale-free power
spectrum of the CMB.

Instead of this, Hollands and Wald propose that the modes appear (continuously) whenever
their length reaches some fundamental length l0. So, a mode ϕk pops into existence in the
ground state when a/k = l0. The fluctuation amplitude is then frozen at

⟨ϕ2k⟩ =
1

2(kl0)2k
=

1

k3l20
, (5.72)

as desired.
Hollands and Wald then produce a concrete fluid model of the universe that illustrates

their theory, which suggests the value of l0 to be of order 10−5lPl, where lPl is the Planck
length. Kofman et al. criticize the specific model proposed by Hollands and Wald for being
too speculative (Kofman, Linde, and Mukhanov 2002). They consider a radiation-dominated
universe, and compute the energy density at the time t∗ when fluctuations corresponding to
the present cosmological horizon froze. They find that it exceeds the Planck density by many
orders of magnitude. This would render any (semi-classical) description of spacetime invalid.
Additionally, Kofman et al. criticize the arbitrariness of the length scale l0. Since the Hubble
radius is much smaller than l0 (and in radiation-dominated models also the wavelength of the
photons) at t∗, there appears to be no reason why l0 is fundamental. The amplitude of the
fluctuations of the modes should then be determined by H(t∗)−1, and not by l0.

In response, Hollands and Wald admit that their model has unrealistic properties (Hollands
and Wald 2002b). But, they claim that it was never intended as a realistic model, but merely
as a demonstration of the existence of a non-inflationary model of the universe explaining the
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scale-free spectrum of the CMB. Next, they grant that there could be scales other than l0 that
could be of more dynamical importance in determining the early evolution of the modes. But,
since the only scale that enters the Lagrangian of these modes is their proper wavelength, they
think that their assumption that the modes come into existence when their wavelength equals
l0 is not an unnatural one.

Most significantly, Hollands and Wald agree that their theory is speculative in the sense
that it makes assumptions about pre-Planckian times. Since there is no quantum gravity theory
available yet, they have to make assumptions about the initial states of the modes. Hollands
and Wald, however, claim that inflation suffers from similar speculation. Indeed, the modes
responsible for the fluctuations in the CMB had wavelengths smaller than the Planck length at
the start of inflation. So, if physics would break down at the sub-Planck scale, then inflationary
models would be in the same amount of trouble as non-inflationary models.

Indeed, the trans-Planckian problem for inflationary physics has been noted already in Bran-
denberger and Martin (2013). To explain structure formation, the large-scale density perturba-
tions observed in our universe are required to have wavelengths smaller than the Hubble radius
at the start of inflation. Together with the requirement that inflation solves the uniformity
problem, this sets a lower bound on the duration of inflation. If inflation lasts marginally longer
than this, then a typical perturbation in our present Hubble horizon (corresponding to large-
scale structures like galaxy clusters) must have been smaller than the Planck length at the start
of inflation. As Kofman et al. rightly point out, we lack a thorough understanding of physics at
these trans-Planckian scales. Fluctuation modes emerge from this poorly understood domain,
necessitating new physics to fully comprehend the origin and early development of these fluc-
tuations. What’s more, it is plausible that Planck-scale physics could alter the spectrum of
cosmological perturbations. Imagine that all perturbation modes start on a fixed initial surface
at the beginning of inflation. Short-wavelength modes will be affected by the new physics dif-
ferently from long-wavelength modes. Their spectrum would be boosted compared to that of
long-wavelength modes, resulting in a tilt in the fluctuation spectrum, and therefore a deviation
from scale invariance. Although solutions to the trans-Planckian problem have been proposed,
these remain controversial, or they introduce more fine-tuning to the theory of inflation. A brief
overview can be found in Wolf and Thébault (2023).

In sum, I think the drawbacks of the model pointed out by Kofman et al. are serious.
Although the first problem described at the beginning of this section (the coherency of pertur-
bation modes across causal horizons) is adequately addressed, the main problem is essentially
an exacerbation of the second problem (scale comparison of perturbations with thermal fluc-
tuations) described there. For the model of Hollands and Wald the situation is aggravated,
because it needs to make assumptions about processes occurring in the trans-Planckian domain,
in which spacetime itself is expected to break down. Nevertheless, the inflationary explanation
of structure formation suffers the same deficiency. I am not in a position to judge whether the in-
flationary trans-Planckian problem is somehow worse or better than that of the non-inflationary
one. In any case, since we have no experimental access to these energy scales, I think it is safe
not to ascribe too much weight to trans-Planckian problems in either explanation.

I think Hollands and Wald rightly claim that their model cannot be expected to be realistic
in every respect. Inflation has been extensively studied since the 1980s, and therefore much more
research effort has been spent on tying up its loose ends. In fact, the first models of inflation
suffered from a ‘graceful exit’ problem, referring to the fatally wrong prediction that accelerated
expansion will continue forever. The model of Hollands and Wald should accordingly be treated
as an immature idea in need of development, also in light of its restricted application to the case
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of massless scalar fields. Some steps in this direction have already been taken, as I will show in
the next section.

5.3.2 Zero–active-mass fluid

In the present section I wish to discuss a non-inflationary explanation of structure formation by
Melia (2021), which expands on the ideas of Hollands and Wald. Crucial to Melia’s model of
the early universe is a ‘numen field’, which is cosmic fluid with equation of state

p

ρ
= −1

3
. (5.73)

Melia references the rich experimental history of analysing the CMB to argue for a cut-
off value for k in the power spectrum; that is, there exists a smallest wavenumber k at which
perturbations to the scalar field occur. His argument goes as follows. Three independent satellite
missions have confirmed a lack of large-angle correlations in the CMB anisotropies. There is
compelling observational evidence that this feature of the CMB is real, in spite of the common
claim that it is the result of a systematic measurement error. Indeed, a study of the Planck
data shows that the most likely explanation of this lack of correlation is a minimum value for
k, predicted to have a value of

kmin =
4.34± 0.5

rcmb
, (5.74)

where rcmb is the comoving distance to the surface of last scattering. A value of kmin = 0 is
ruled out at a confidence level of more than eight standard deviations.

Melia contends that this means trouble for inflation. A non-zero minimum value of k implies
the existence of a definite starting moment for inflation. In a simplified model, the mode
corresponding to kmin satisfies an equation like Eq. 5.70 at the start of inflation. This gives
inflation an initial condition in terms of a definite value for ȧ. Melia shows that various slow-
roll models for inflation are disfavoured by this condition. To be clear, this does not eliminate
inflation altogether, but questions the ‘ordinary’ slow-roll shape of the inflaton field’s potential,
much like we have seen in Chapter 3. Melia proposes an alternative theory of the early universe.
He contends that there is serious observational evidence for a cosmic fluid with equation of
state given by Eq. 5.73. Moreover, he claims this is the only expanding FLRW model which is
consistent with the strong equivalence principle, stating that at every point in spacetime, there
is a local, inertial frame that allows one to measure the spacetime curvature from the observer’s
perspective. Although I am somewhat sceptical of these claims, it is not my business to evaluate
them. Rather, I want to point out that the ideas presented here could be the starting point of
a new approach to the structure-formation problem, and as such deserve scrutiny.

Let ϕ be a scalar ‘numen’ field with an equation of state as in Eq. 5.73. In what follows, I
will go through Melia’s derivation of the scale-free spectrum it produces. The early universe is
modeled by the action

S =

ˆ
d4 x

√
−g(1

2
R− 1

2
gab∇aϕ∇bϕ− V (ϕ)). (5.75)
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Then,

Tab = − 2
√
g

δ(
´
d4 x

√
−g(− 1

2g
ab∇aϕ∇bϕ− V (ϕ)))

δgab

= − 2√
−g

(
1

4

√
−ggab∇cϕ∇cϕ− 1

2

√
−g∇aϕ∇bϕ+

1

2

√
−ggabV (ϕ))

= −1

2
gab∇cϕ∇cϕ+∇aϕ∇bϕ− gabV (ϕ).

So,

ρ = T00 =
1

2
(−(∂tϕ)

2 +
1

a2
(∇ϕ)2) + (∂tϕ)

2 + V (ϕ) =
1

2
ϕ̇2 + V (ϕ) +

(∇ϕ)2

2a2
, (5.76)

and, similarly,

p = Tii =
1

2
ϕ̇2 − V (ϕ)− (∇ϕ)2

6a2
. (5.77)

The last terms, containing ∇ϕ, vanish, because the numen field is homogeneous. The equation
of state implies that

V (ϕ) = ϕ̇2. (5.78)

From the Friedmann equations, we have that

a ∝ t2/(3+3w). (5.79)

Using w = −1/3 and a(t0) = 1, we have that

a(t) =
t

t0
= eτ/t0 , (5.80)

where τ denotes conformal time. Recall the Mukhanov-Sasaki equation (Eq. 5.18). We compute,
using the Friedmann equation:

z :=
aϕ̇

H
=

1√
4πG

ȧ

a

a2

ȧ
=

1√
4πG

eτ/t0 . (5.81)

Then,

ω2
k = k2 − z′′

z
= k2 − 1

t20
=

1

t0

√(1/H
a/k

)2

− 1, (5.82)

using that the Hubble radius 1/H equals t. Note that both the Hubble radius and the proper
wavelength depend linearly on t. Therefore, the fluctuations are time-independent. Since the
ratio of the wavelength to the Hubble radius is fixed, the modes do not cross the horizon. The
solution to the Mukhanov-Sasaski equation is

vk(τ) =

{
A(k) e± iωkτ 1/H > a/k

A(k) e±|ωk|τ 1/H < a/k.
(5.83)

This shows that the sub-horizon modes oscillate, whereas the super-horizon modes do not.
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Consider the mode that satisfies a/k = 1/H. This is the mode with the longest wavelength
relevant for structure formation. It has wavenumber kmin = 1/t0. Why should this mode
correspond to the cut-off value measured in the CMB? In the spirit of Hollands and Wald, Melia
makes the assumption that modes are born at a specific length scale, which in his case is the
Planck scale. Thus, the modes emerge from the Planck regime into the semi-classical universe
when a/k = lPl. In units where c = 1, the Planck length equals the Planck time, so we have

tPl =
tk
t0

1

k
, (5.84)

where tk refers to the time of birth of the mode with wavenumber k. Define tmin to be the time
of birth of mode kmin. Suppose that the cut-off value of k consistent with observation from Eq.
5.74 corresponds to kmin. Plugging in the value for rcmb for the universe under consideration,
we find that

tmin = t0tPlkmin =
4.34tPl

log(1 + zcmb)
, (5.85)

from which we conclude that tmin ∼ tPl. In a nutshell, if we assume that modes are born
when their proper wavelength is at the Planck scale, then the value of kmin (determined by
observation) corresponds to that of a mode born at the Planck time.

Since the frequency ωk is time-independent, the Mukhanov-Sasaki equation reduces to that
of Minkowski space. Here, the instantaneous vacuum of Eq. 5.46 unambiguously determines the
vacuum for all times. Comparing to Eq. 5.83, we find that

A(k) =
1

√
ωk
. (5.86)

The metric perturbations for sub-horizon modes are given by

|ζk|2 =
|vk|2

|z|2
=

4πG

ωka(t)2
, (5.87)

using the fact that ωk > 0 for sub-horizon modes. The dimensionless power spectrum (see Eq.
5.41) is then

Pζ(k) =
k3

2π2
|ζk|2

=
G

2π

1

a(t)2
k2

1√
1− 1

k2t20

=
1

8π2

(a(tk)
a(t)

)2 1√
1− k2

min

k2

, (5.88)

using that the Planck time is tPl =
√
4πG. Melia proposes that at some length scale L0,

the fluctuations transform into the particles of ordinary matter. The fluctuations would then
freeze when their proper wavelengths equal this length scale, i.e. when a(t)/k = L0. The power
spectrum is then

Pζ(k) =
1

8π2

(λpl
L0

) 1√
1− (kmin

k )2
. (5.89)
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The scalar spectral index is

ns = 1 + k
d logPζ(k)

dk
= 1− 1

( k
kmin

)2 − 1
. (5.90)

This gives a spectral index slightly less than 1, in agreement with observations.

5.3.3 Viability of non-inflationary explanations of structure formation

In the present section, I have looked at the viability of non-inflationary explanations of structure
formation. Despite the fact that density perturbations can also emerge classically, it is naive to
trace the observed density spectrum backwards in time, and take those as the initial conditions
of our universe. At sufficiently early times, these perturbations would be incoherent and smaller
than standard thermal fluctuations. Fortunately, more sophisticated non-inflationary models of
structure formation are available.

In the model by Hollands and Wald, modes are assumed to pop into existence in their ground
state when their physical wavelength is equal to some fundamental scale. As it turns out, this
law-like initial condition for modes also gives the desired scale-invariant spectrum of density
perturbations as observed from the CMB. The proposal by Melia refines this idea. In his model,
the modes are born at the Planck scale, which is empirically supported by the observation of
a cut-off value in the CMB. This removes the ad hoc and unrealistic fundamental scale l0 from
the model of Hollands and Wald. Nevertheless, to account for scale invariance, Melia needs to
invoke a scalar field dominating the early universe so that a(t) ∝ t. He claims that observational
evidence for such a field abounds, although this is disputable.

As always in cosmology, a new model of the universe is expected to give a unifying account
of many interconnected phenomena (the universe’s expansion history, the statistical properties
of the CMB, etc.). In many ways, such a model can then fail, either by predicting something
that is unphysical or at odds with observed values. As is shown in the debate between Kofman
et al. and Hollands and Wald, the non-inflationary models of structure formation harbour weird
features which are allegedly unrealistic. I share this opinion. But, I want to place the side note
that non-inflationary models are still in their infancy. Therefore, given the successes of such
models described in earlier chapters, I believe it is fair to allow some room for their development,
rather than to discard them altogether for containing a bug.

Indeed, some of the purported flaws of the model of Hollands and Wald are actually com-
mon to inflationary models. Specifically, I am referring to the trans-Planckian problem here.
Both inflationary and non-inflationary models of structure formation are required to make as-
sumptions about super-Planckian energy scales for their explanatory adequacy. As these energy
scales are—and probably forever will be—empirically out of reach, I think we should not judge
explanations too harshly for making such assumptions.

In the previous section, we have seen some indications from semi-classical gravity that the
inflationary explanation of structure formation critically relies on its initial conditions. The
goal of the present section was to deliberate the converse: can we have an initial-conditions
explanation of structure formation without inflation? Interestingly, the model by Melia strongly
suggests the need for an additional dynamical mechanism: a homogeneous scalar field satisfying
a specific equation of state. I am gradually building up to my claim that the dichotomy between
initial conditions and dynamical explanations fades. Either explanation tends to rely on core
elements of the other. In the next chapter this idea will be developed.



Chapter 6

Discussion

6.1 A second critical look

It has been the primary goal of this thesis to present an updated survey of the issues faced
by standard cosmology, and to explore the adequacy of the inflationary solution. Taking as
a starting point the criticism by Earman and Mosteŕın, presented in the introduction to this
thesis, I will advance here an updated criticism in light of the developments of the debate over
the past 25 years. I do not claim that this effort is exhaustive, but I hope to have picked out
the most notable, controversial, and philosophically interesting issues.

For the sake of completeness, let me briefly reiterate the verdict of Earman and Mosteŕın
on the monopole problem. The lack of experimental verification of GUTs and the absence of
the monopole problem within the GUT framework suggest that there is no monopole problem.
As much as the inflationary cosmologist would be happy to see a connection between particle
physics and cosmology, such a link is not instantiated here. Whether newer inflationary models,
such as the Higgs model, can revive this connection remains doubtful at best.

The flatness problem suffers the same fate. There exists a largely neglected literature on
the resolution of this problem (Helbig 2021). Particularly explicit is the dynamical-systems
resolution of the problem. It shows that flatness is in reality a generic property of singular
FLRW universes. In other words, it would be special to observe the relevant density parameters
to be such that they indicate a non-flat universe. Notice again that the flatness problem can
only be formulated for FLRW universes: it is chiefly a problem resulting from the dynamics of
the Friedmann equations. From these equations it is also immediately apparent, however, that
flatness is not special: today’s observed flatness can be traced back into the past, where the
universe is constrained to be incredibly flat.

Similar considerations defuse the classical horizon problem. Stated in an FLRW context,
there is strictly no problem because homogeneity and isotropy are ingrained in the FLRWmodel.
Stepping outside of this context, however, there could be a more general problem lurking. If
1) we assume that the initial conditions of the universe were non-uniform, and if 2) there is
no causal mechanism smoothing out these non-uniformities, then there is a problem. This
syllogism also indicates the way forward: one must reject one of its two premises. Rejection of
the first corresponds to the initial-conditions explanation, rejection of the latter corresponds to
a dynamical explanation. The two explanations will be discussed more elaborately in the next
section.

55
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Earman and Mosteŕın make several critical remarks pertaining to the inflationary solution
to the uniformity problem. These mostly concern the applicability of the no-hair theorem to
inflationary dynamics. I have given substantial evidence that these issues have mostly been
resolved over the last 25 years. One last hurdle for the inflationary explanation of uniformity,
however, is its generalisation to non-homogeneous universes. The past decade, a rich literature
on this topic has developed, culminating in the remarkably adversarial debate between Ijjas et al.
and Guth et al. I have shown that either side of the debate is swayed by different perspectives
on which states of affairs are natural. More specifically, the naturalness of the chaotic pre-
inflationary conditions and the complexity of the shape of the inflaton potential are under
consideration here. The extent to which non-homogeneous pre-inflationary conditions obstruct
inflation cannot be judged objectively without a measure giving a standard of naturalness. In
light of the problems associated with constructing such a measure, one should suspend their
judgement about who is right in this debate. Any claims regarding the unnaturalness of an
initially uniform universe are similarly unwarranted.

Although the entropy problem is only briefly mentioned by Earman and Mosteŕın, they do
touch on the heart of the issue: is inflation a measure-preserving process or not? To account
for the extremely low entropy of the nascent universe, the inflationary advocate holds that only
a small homogeneous initial patch is required, which then greatly expands, setting the stage for
a uniform reheating process, corresponding to a very low entropy. This is not without contro-
versy: if inflation is a measure-preserving process, then it cannot take a fairly generic state and
transform it into a highly special state. In other words, if inflation is reversible, then it only
kicks the can down the road, shifting the entropy problem to the pre-inflationary era. I propose
that one’s conclusion regarding entropy-preservation during inflation hinges on one’s interpre-
tation of entropy and one’s views on the foundations of quantum mechanics. Additionally, I
have argued that positions in the debate on reversibility are influenced by perspectives on what
constitutes a satisfactory explanation. I will turn to the role of explanation in the next section.

Lastly, there is the problem of structure formation. I believe that the mechanism for structure
formation is the cornerstone of the inflationary explanation. Attributing the origin of large-scale
density perturbations to primordial quantum fluctuations gives a beautiful account of structure
formation. Any critical remark on the proof of scale invariance in an inflationary universe is
minor. A lack of empirical verification of the statistical properties of the CMB perturbations led
Earman and Mosteŕın to express themselves conservatively on this topic. In light of the data
of major observational satellite missions from the last decade, however, one cannot conclude
otherwise than that the prediction of scale invariance is a stellar achievement of the theory of
inflation. The disconfirmation of alternative explanations would then substantiate the role of
inflation in the early universe. Let me not postpone the discussion of alternative explanations
any longer.

6.2 Two explanatory camps

Throughout my analysis of the explanations that inflation provides, there has been a recurring
theme: the possibility of an alternative, empirically adequate explanation grounded in law-like
initial conditions. In the present section I juxtapose the two explanations. I try to give the best
reading of each explanation in light of the results from previous chapters.

Let me reiterate for each of the surviving problems (uniformity, entropy, structure formation)
how the two explanations contrast with each other. I will first consider a naive initial-conditions
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explanation. The clearest characterisation of the two explanations comes from the solution to
the uniformity problem. Rejecting a uniform initial state of the universe implies that one has to
introduce an additional causal smoothing mechanism. Alternatively, one can assume a uniform
initial state and be done with it.1 Postulating a uniform initial state immediately also solves
the entropy problem, because we know from the considerations about gravitational entropy by
Penrose that such a state has the required low entropy. The inflationary explanation can deal
with the entropy problem if inflation is irreversible and if there exists a sufficiently large initial
homogeneous patch. Lastly, there is the structure-formation problem. I have shown the beautiful
explanation that inflation gives for the scale invariance of the perturbations. Alternatively, the
naive initial-conditions explanation can simply take the initial fluctuations of the universe to be
those observed in the CMB evolved backwards in time, and claim that this just happens to be
the universe we live in. More economically, it could also assume only the required statistical
properties, such as scale invariance and Gaussianity. We have seen, however, that a naive
extrapolation of the density-perturbation spectrum back in time leads to strange conclusions
(notably the coherence of modes at non-causal scales). To remain viable, the initial-conditions
explanation will need to do better than this naive model.

Fortunately, more sophisticated models of the initial-conditions explanation have been devel-
oped. Most urgently, an update was needed to give a viable explanation of structure formation.
The model of Hollands and Wald—which crucially imposes the condition that perturbation
modes are born in their ground state when their characteristic wavelength equals some funda-
mental scale—addresses this issue. The elaboration of the model by Melia arguably makes it
more realistic. Further sophistications of the initial conditions model exist in relation to the uni-
formity and entropy problem. First, the Weyl-curvature hypothesis covers the entropy problem,
and thereby also the uniformity problem, although it is not clear how it is really different from
the assumption of low initial entropy. Second, uniform universes will be picked out by requiring
a finite-valued action in the modification of gravity which includes quadratic curvature terms.
Third, imposing CPT symmetry on the universe is claimed to explain low entropy, uniformity,
and structure formation. Of course, these sophistications also come with additional assumptions
that may or may not be warranted.

Thus I have come to distinguish two explanatory camps. For reasons of clarity, I will sketch
a typical ‘story of the early universe’ for an advocate from either camp. The dynamical account
goes as follows.

In the beginning, there was a generic hodgepodge of energy. After some small region
spontaneously fluctuates into a homogeneous state, inflation sparks off. By the cos-
mic no-hair theorem, this region isotropises by means of the accelerated expansion
it undergoes. This creates a large, uniform volume of extremely low entropy. The
inflaton field driving this process should be treated as a quantum entity. Its inher-
ent quantum fluctuations seed the formation of structure in the post-recombination
universe. The accelerated expansion comes to an end, and the inflaton field decays
into the ordinary matter that we know.

On the contrary, the non-naive initial-conditions story goes like this:

1Of course, one could also assume both a uniform initial state and an inflation-like mechanism. This could
be the position of someone who thinks that the initial-conditions problem cannot be resolved within the context
of inflation, but that we do require inflation to explain structure formation. Although I have yet to encounter
this position in the literature, it could actually be a reasonable one, as I will show later in this chapter.
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In the beginning, there was a uniform (and therefore low-entropy) universe. Some
law-like initial condition (past hypothesis, Weyl-curvature hypothesis, CPT symme-
try, finite action in quadratic gravity) dictates this. Another law-like initial condition
accounts for the birth of perturbations on this uniform background. This condition
is such that the density-perturbation spectrum emerging from these possesses the
required statistical properties, such as scale invariance.

This portrays the two explanatory camps encountered in this thesis. Let me now address the
question of what it means to explain.

6.3 Explanation

An objection that one could make against the initial-conditions explanation is that it is not even
an explanation. If the explanation is simply a restatement of the data, then what is really being
explained? Such an objection stems from a dissatisfaction with a claim like ‘we just happen to
live in a universe with property X’. The goal of science, after all, is to provide explanations of
such properties, and postulating them as brute facts would be tantamount to giving up.

Note that this objection primarily pertains to the naive initial-conditions explanation. It
merits the predicate ‘naive’ precisely for this reason: it takes the CMB data as a brute fact, and
postulates the initial state of the universe to be such that it evolves into the appropriate state
by the time of recombination. Allegedly, this does not do any explanatory work. In spite of
the best efforts of the non-naive initial-conditions explanation to go beyond a mere tautology of
observations, there are similar arguments lurking that could undermine its explanatory creden-
tials. Indeed, as I have pointed out before, the Weyl-curvature hypothesis is simply a relabeling
of the assumption of an extremely-low entropy initial state. As such, the non-naive explanation
is susceptible to the allegation of being a non-explanation, too.

To get a grip on this criticism, I will first contemplate what it means to be an explanation.
An influential account of explanation is the deductive-nomological (DN) model, due to Hempel
(1965). The DN model posits that (scientific) explanations can be articulated as logical de-
ductions, where the phenomenon to be explained, or explanandum (E), is derived from a set
of general laws (Li) and particular conditions (Ci), collectively known as the explanans. The
presence of a law in such a deduction is essential. I will elaborate on the definition of a law later
in this chapter.

Let’s see how the initial-conditions explanation conforms to the DN model. First, consider
the uniformity problem. A DN explanation would look as follows.

(L1) The initial state of the universe is uniform.

(L2) The Einstein field equations dictate the evolution of the universe.

(C1) -

(E) The universe is uniform at the time of recombination in spite of the
non-existence of a smoothing mechanism.

This seems to confirm the suspicion that there is something tautological about initial-conditions
explanations. Note that I cannot put the initial uniformity as a particular condition (C1) because
the explanatory work must be done by laws in the DN model.
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The schematisation of the initial-conditions explanation for low entropy is identical in form.
But, as I noted in Chapter 4, if the explanandum under consideration is the second law of
thermodynamics, the situation changes. The observation that entropy increases in any thermo-
dynamic process can be explained as follows.

(L1) The initial state of the universe has extremely low entropy.

(L2) Entropy always increases in thermodynamic processes, both to-
wards the past and towards the future (by statistical arguments
about microstates).

(C1) X is a thermodynamic process.

(E) The entropy in X increases.

This is not a tautological explanation. Substituting L1 for the law that the initial state of the
universe is uniform (to a very high degree) makes the situation even better for initial-conditions
explanations. Just this one law is crucial to both explaining uniformity and the second law of
thermodynamics.

Let me finally try to schematise the argument for scale invariance. Naively, the initial-
conditions explanation of scale invariance is the following.

(L1) The universe has an initial perturbation spectrum that is the time-
reversed evolution of the CMB perturbation spectrum.

(L2) The Einstein field equations dictate the evolution of the universe.

(C1) -

(E) The perturbation spectrum of the CMB is scale-invariant.

Apart from the physical problems associated with L1, it may be objected that this is a non-
explanation. Strictly, it does confirm to the DN model, but due to its trivial nature it can
hardly be defended as a proper explanation, for it does not furnish any understanding. Yet
understanding is arguably the main motivation for the DN model (Hempel 1965). Therefore,
the naive initial-conditions explanation is problematic. Nevertheless, the updated (non-naive)
initial-conditions explanation circumvents these problems.

(L1) Perturbation modes are born in their ground state when their cor-
responding wavelength is equal to some fundamental length, quite
possibly the Planck length.

(L2) The Einstein field equations dictate the evolution of the universe.

(C1) -

(E) The perturbation spectrum of the CMB is scale-invariant.

As is clear from the efforts of Hollands, Wald, and Melia, this explanation is not a tautology. It
conforms to the DN model, and should therefore be appreciated as a proper explanation. Note
that the particular condition slot is empty. The presence of such a condition, however, is not
essential to DN explanations.
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Thus, at least per one prominent account of explanation, the initial-conditions camp is
safe. Of course, one could criticise the DN model for not being an adequate characterisation
of explanation. Such criticisms have indeed been made (Woodward and Ross 2021). Most
prominently, it has been argued that the DN model does not give sufficient conditions for
explanation when it overlooks relevant causal mechanisms. A famous example of this is the DN
explanation of the height of a flag pole by the length of its shadow and the angle of the sun
above the horizon. Such considerations are not applicable to the deductions above. Therefore,
I take the DN model to be a satisfactory account of explanation for the case at hand.

There is another objection, due to Ellis (2007), which states that there is no clear distinction
between initial conditions and laws in cosmology. Since we cannot alter the initial conditions,
they appear necessary rather than contingent. That is to say, if the present state of the universe
is determined by its initial conditions and the laws of physics, then these initial conditions
could not have been different. Thus, the fundamental distinction between initial conditions
and laws is absent, as the former are characterised by their contingency and the latter by their
necessity. This is a problem for the DN explanations considered so far, because they require
this distinction. Indeed, the explanatory work must be done by laws in these deductions, and
not by initial conditions.

To save this distinction, Antoniou (2024) argues for a theory-relative interpretation of phys-
ical modality. All physical theories have a constitutive structure, which specifies the minimum
necessary background structure to describe physical systems of the theory and its laws, and a
nomic structure, which specifies the constraints on the possible configurations of a physical sys-
tem, stated as laws. These laws can be dynamical laws, describing how states change over time;
scaling laws, dictating what instantaneous configurations of parameters are allowed; or law-like
fundamental assumptions, which is any other statement constraining the possible configura-
tions of physical systems, such as the principle of locality or the Weyl-curvature hypothesis. In
this framework, physical possibility refers to the range of initial configurations and subsequent
dynamic evolutions of physical systems permitted by the theory’s nomic structure. Physical
necessity, on the other hand, refers to the required constraints on these initial configurations
and their ensuing changes to maintain consistency between the laws of the theory. To illustrate
these concepts, consider the theory of Newtonion mechanics. In this theory, it is possible to have
particles travelling faster than the speed of light, and it is necessary that an accelerated particle
will eventually attain an infinite speed. A more relevant example is the theory of standard
cosmology. In this theory, the initial conditions of the universe correspond to different possible
configurations that leave the Friedmann equations invariant, reflecting their contingency. These
configurations represent counterfactual possibilities that do not describe our universe but main-
tain the theory’s self-consistency. Whether these counterfactual models could actually occur in
nature is irrelevant.

Using this theory-dependent conception of physical modality, the distinction between initial
conditions and laws can be upheld. This is required for the cogency of the DN model. The
deductions above should now be understood as taking place in the context of a relevant theory,
in this case general relativity conjoined with thermodynamics. Each of the laws Li considered so
far can indeed be construed as part of the nomic structure of a theory, as they provide constraints
on the possible configurations of physical systems. On this view, the DN explanations presented
in this section make sense in spite of the criticism due to Ellis. I now turn to another definition
of lawhood that accommodates initial-conditions explanations.
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6.3.1 Can laws be puzzling?

One may have the intuition that laws themselves cannot be puzzling. If a law cries out for
explanation, then it cannot, ultimately, be a law. An example is the law that the universe is
governed by the Einstein field equations plus a cosmological constant. To some, this cannot be
the final picture, because there needs to be something physical (dark energy) corresponding to
this cosmological constant, like vacuum energy. See Bianchi and Rovelli (2010) for a critique
of the belief that the cosmological constant is puzzling. Another example is the law-like initial
condition that the universe has extremely low entropy. In the present subsection, I point out a
defense for the initial-conditions camp against the accusation that such conditions are unlikely
and therefore cry out for explanation. These ideas are due to Callender (2004).

Consider again Penrose’s entropy problem, which I discussed in Chapter 4. Crucial to our
understanding of thermodynamics is the idea that, under the standard microcanonical measure
of statistical mechanics, microstates are more likely to evolve towards a state of equilibrium.
Such an argument, however, is invariant under time reversal. Therefore, we should expect
entropy to increase both towards the future and towards the past. Since we only every ob-
serve entropy-increasing processes, we need an explanation for this symmetry breaking. Thus
we invoke the past hypothesis, which postulates that the universe occupied an initial macro-
scopic state of extremely low entropy. By the standard measure of statistical mechanics, this is
extremely unlikely.

The question at hand is whether this past state stands in need of explanation. Price has
argued that it does (Price 2002). To Price, not explaining the past state is tantamount to giving
up. He recognises two possible positions that could be held by someone who believes that the
past state does not stand in need of explanation. Either, one could hold that for any time the
macroscopic state of the universe does not need explaining. This position amounts to global
explanatory nihilism, answering every why question with that’s just the way it is. Alternatively,
one could hold that the past state is the only state that does not stand in need of explanation.
On this view, one maintains a bias with respect to temporal direction. If we consider the time-
reversed evolution of our universe, we would see all sorts of mysterious contra-thermodynamic
phenomena as we approach the big-bang singularity. This would surely cry out for explanation.
In essence, however, it is nothing other than the past state viewed from an different temporal
direction. Assuming the laws of our universe are time-reversal invariant, it is unjustified to
absolve only the past hypothesis of a demand for explanation. This prevents the defender of the
non-explainability of the past hypothesis from making the argument that the past hypothesis is
special because it cannot be causally explained.

Callender’s reply is as follows. First, he questions what it is about the past state that makes
it stand in need of explanation. Could it not be a brute fact? This raises the more general
question what it is about facts in general that makes them brute or not. To Price, it is the
unlikeliness of the state that lies at the heart of the problem. But Callender raises the objection
that the demand for explanation of the past state does not follow from its unlikeliness. In fact,
innumerable low-probability events occur every day that definitely do not require explanation.
What incredibly narrow set of initial conditions of the universe would lead me to write the
number 61 at this precise moment? And yet, here we are.

Callender submits a different view. There is nothing about facts that makes them brute
or in need of explanation. In particular, the likeliness of a fact does not determine whether or
not it is to be explained. Instead, Callender suggests to treat theoretical systems holistically,
and see how they perform empirically. Barring antirealism, one could then compare empirically
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adequate systems on the basis of theoretical virtues, such as explanatory power and simplicity.
On this account, the past hypothesis fares excellently. It is simple, and it provides a coherent
explanation of all thermodynamical processes.

In Callender’s view, this is what science is after: explaining as much as possible with as little
as possible. We aim to find theoretical systems that capture myriads of empirical regularities
with simple generalisations. The past hypothesis, complemented with the laws of statistical
mechanics, gives an example of a system that strikes the right balance between simplicity and
strength. If there would be no past state then all ordinary thermal processes would become
unlikely, so the system would lose strength. If the laws of thermodynamics could somehow be
adjusted to rid it of the past hypothesis, the system would lose simplicity. In the next section,
I will apply this ‘best-systems’ framework to the two explanatory camps under discussion.

The best-systems definition of laws of nature—developed by Mill, Ramsey, and Lewis—offers
a definition of what it means for a statement to be a law of nature (Carroll 2020). According to
this definition, laws of nature are those statements that appear in the best systematization of
our empirical observations. This best systematization of phenomena is achieved by striking an
optimal balance between simplicity and strength. The best-systems approach is grounded in the
concept of Humean supervenience, which holds that all facts about the world, including laws
of nature, supervene on the spatiotemporal distribution of particular, local matters of fact. In
other words, the best-systems definition assumes that the laws of nature do not ‘govern the world
from above’ but rather emerge from the regularities present in the mosaic of particular events.
Hence, the laws are those descriptive summaries that provide the most efficient and informative
account of this mosaic, reflecting the underlying regularities without invoking metaphysically
heavyweight notions like necessity, universality, or causality.

To sum, the best-systems account of physical theories places the initial-conditions explana-
tion on firmer footing in two ways. First, it helps to make sense of the concept of law in the
DN-type explanations presented earlier. The initial state of the universe can be postulated as
an axiom of the theory of cosmology (whether this is the best system is debatable of course),
and as such enjoy the status of law. It is on this view that the term ‘law-like initial condition’
is justified. Second, the best-systems account helps to make sense of the criticism that laws
should not be puzzling by corresponding to an unlikely state of affairs. Any law can be taken as
a brute fact, not requiring any additional explanation, in virtue of their axiomatic position in a
best system. I have noted that the best-systems approach stems from a Humean conception of
empirical regularity.

6.3.2 Non-Humean definitions of lawhood

According to the Humean best-systems definition of lawhood, laws are metaphysically deter-
mined by the theoretical virtues of simplicity and strength once some part of the mosaic is
charted. Laws are essentially summaries of facts within the world and they do not exist in-
dependently of this mosaic. In contrast, in non-Humean definitions of lawhood, laws are also
fundamental. They do not supervene on the collection of all local matters of fact.

Chen and Goldstein (2022) argue that the past hypothesis can be construed as a law in a
non-Humean framework, too. They defend a primitivist form of non-Humeanism. That is to say,
fundamental laws are primitive facts about the world, that are not to be analysed in terms of
other fundamental entities like universals or essences. They take this view because the concept
of law is more intuitive than these other concepts. Chen and Goldstein develop an unrestricted
definition of lawhood called minimal primitivism, in which any laws may have any form. They
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are not required to be dynamical, but may also take the form of boundary conditions. Laws
govern our world by making metaphysical statements about what configurations of physical
states are allowed, and why this is so. Given a state of the universe at some time, the laws
explain why its history is constrained to some specific subset of all possible histories. Note that
this idea of lawhood features implicitly in the theory-dependent conception of physical modality
presented in the previous section. On the view of minimal primitivism, theoretical virtues like
simplicity are not fundamental to lawhood, but merely serve as epistemic guides. Simplicity
guides us towards the past hypothesis, which provides a restriction on the physically possible
evolution of the state of the universe, making a reversal of the arrow of time with immensely
improbable.

So, Humean or not, there is substantial support for the use of law-like initial conditions in
physical theories. Many law-like initial conditions have been showcased in this thesis: the past
hypothesis, the Weyl-curvature hypothesis, the finite-action demand in quadratic gravity, CPT
symmetry, and the birth of perturbation modes at a fundamental length scale. Each of these
conforms to the definitions of lawhood presented in this section. I conclude that the explanations
of the initial-conditions camp are proper ones, that do not amount to some sort of disguised
defeatism.

I wish to highlight two more arguments in favour of the law-like status of the past hypothesis.
For a more detailed exposition of these arguments, see Chen (2023). First, if the past hypothesis
is assumed to be a law, then many arrows of time, other than the thermodynamic one, are
explained as well. One example is the records arrow of time. Why do we find so many records
of the past (craters, fossils, photographs), but none of the future? Other examples of arrows of
time are the epistemic arrow (knowledge about the past is more thorough and accessible than
knowledge about the future) and the intervention arrow (we have the ability to shape future
events, yet we lack the ability to change events that have already occurred). Each of these arrows
derives from the past hypothesis qua law. Second, the law-like status of the past hypothesis
may address the issue of complexity of the universal wave function, and consequently shine light
on the nature of the quantum state. For details, see Chen (2023).

6.4 Explanatory preference

What compels one to favour one explanation over the other? What are reasons to join the
dynamical camp rather than the initial-conditions camp, and vice versa? I will first collect the
results towards answering this question from earlier chapters. Next, I investigate if there are
certain explanatory virtues that drive physicists to one camp or the other. I conclude that
there are many such extra-empirical considerations at play. Preference for one camp above
the other can be reasonably motivated by these considerations, which implies the legitimacy of
both explanations. Notwithstanding the interesting sociological analysis offered in Earman and
Mosterin (1999, pp. 4–10), I mostly refrain from discussing the sociological dimension of this
matter.

The debates on initial conditions for inflation, its reversibility, and on alternative mechanisms
for scale invariance have proven to be interesting case studies of extra-empirical virtues in action.
The initial conditions debate, discussed in Chapter 3, exposed the considerations of naturalness
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that play a crucial role in determining one’s explanatory preference.2 Taking both chaotic
initial conditions and a featureless inflaton potential to be natural leads to the conclusion that
inflation itself requires very special initial conditions. Since a major goal of inflation is to
explain the special initial conditions (uniformity) of the post-recombination universe, it renders
itself obsolete in this respect. Hedging inflation against this conclusion, Guth et al. argue that a
featureless potential is actually unnatural. I have already argued that it is unfeasible to construct
an objective standard of naturality based on empirical evidence. To add to that, there are not
even—in view of the measure problem—rigorous arguments to show that initial uniformity of
the universe is unnatural. Thus, the initial conditions debate shows that explanatory preferences
are significantly influenced by the extra-empirical virtue of naturalness, although no objective
standards are available evaluate this.

The reversibility debate, discussed in Chapter 4, revolves around extra-empirical virtues,
too. As I have shown, whether one thinks of inflation as a reversible process depends on one’s
attitude towards what entropy is, and on one’s preferred interpretation of quantum mechanics.
Particularly the latter is strongly associated with extra-empirical virtues. Each major inter-
pretation of quantum mechanics claims to be empirically adequate, and as a result there is
underdetermination of theory by data. Still, one may strongly prefer one interpretation above
another because of one’s stance on locality, unitarity, scientific realism, etc. The reversibility
debate inherits these considerations: if you prefer some interpretation of quantum mechanics
because of this or that extra-empirical virtue, then this same virtue compels you to pick a side
in the reversibility debate on account of this interpretation’s perspective on unitarity.

The debate on alternative (non-inflationary) mechanisms to explain scale invariance, which
I discussed in the previous chapter, again involves extra-empirical considerations. In this case,
I use the term extra-empirical in a practical sense. Indeed, the trans-Planckian issues featuring
in the debate of Hollands and Wald versus Kofman et al. are connected to assumptions about
energy scales that are far beyond current experimental and observational reach, although they
are testable in principle. I consider the main extra-empirical motivations of this debate to be
assumptions about how and when perturbation modes come into existence and what initial en-
ergy state (with respect to some vacuum state) is natural for them to occupy. Note that some
trans-Planckian assumptions can be rejected for physical reasons: coherency of perturbations
outside of causal limits is at odds with relativity; suppressing thermal fluctuations to prevent
these from dominating smaller-scale perturbations is at odds with thermodynamics. In princi-
ple, one could weasel out of such incompatibilities by introducing even more trans-Planckian
assumptions, but modifying well-established theories is a high price to pay.

In another attempt to clarify the explanatory preference for one of the camps, I apply the
best-systems approach, developed in the previous section. Recall that the ‘better’ system is the
one that can explain more (or constrain more) while assuming less. I have shown that both
the initial conditions and dynamical explanations are comparable in strength, as either can
adequately solve the problems of uniformity, entropy, and structure formation. So the question
becomes which of the two explanations is simpler. Needless to say, this is a vague notion.
How could one reliably determine which explanation makes fewer assumptions? How does

2The two sides of this debate do not neatly conform to the two explanatory camps that I have introduced. The
authors arguing against inflation (Ijjas, Steinhardt, and Loeb) seem to favour a cyclic-universe model, which does
not conform to the demands of the initial-conditions camp. The debate itself revolves around initial conditions,
however, and as such it is an applicable case study for the explanatory dichotomy under consideration.
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one ‘weigh’ assumptions? In other words, is postulating extremely uniform initial conditions
together with an assumption on mode generation somehow simpler than assuming a scalar field
with a particular potential whose decay gives rise to ordinary matter particles? In absence of
an unambiguous method of quantifying simplicity, I think one cannot make claims about which
explanation corresponds to a better system.

What is it that each of the two explanations assumes? For the initial-conditions camp, it
is, of course, the initial state of the universe. But need this explanation assume the precise
configuration of the CMB evolved backwards in time to some initial spacelike slice? This would
amount to a lot of assumptions, namely, the initial positions and velocities of all particles. But
this reasoning overlooks the fact that the explanandum under consideration is not the precise
configuration of the CMB, but merely its statistical properties, in particular its approximate
uniformity and the scale-free spectrum. In order to explain these, one would merely have to
assume an initial state that is also sufficiently uniform, and which leads to a scale-free spectrum
by the time of recombination. Now, considering all the ways in which the initial state could be
configured, such an assumption would still be special or unlikely. Callender argued that this
does not demand explanation, but that we should evaluate the system as a whole based on the
ratio of how much it explains to how much it assumes. But is the assumption of near-uniformity
not a very big assumption, in the sense that it excludes innumerable initial configurations?
Unlikeliness returns to the stage, not as a feature that requires explanation, but as a counterpart
to simplicity.

As for the dynamical-explanation camp, the assumptions are: an inflationary mechanism,
a corresponding potential-energy curve, a reheating mechanism, and chaotic initial conditions.
In light of the debate on special initial conditions for inflation, the shape of the potential must
be complicated, or the initial homogeneous patch from which inflation starts must be large.
In addition, an entity causing inflation must be postulated. There is currently no confirmed
particle-physics mechanism with the properties required to drive inflation. Even the Higgs
model makes assumptions about the properties of the particle that have not been observed in
experiments. But this means that the inflationary advocate has to postulate a new entity with
properties unlike anything we have ever seen before. In the vocabulary of the literature on Ock-
ham’s razor, this means giving up qualitative parsimony (Baker 2022). That is to say, compared
to a non-inflationary explanation, the inflationary story is less ontologically parsimonious. It
assumes a new type of entity. Of course, there is no ceteris paribus comparison to be made with
the initial-conditions explanation. For one, the initial-conditions explanation could be accused
of being less ontologically parsimonious in a quantitative sense. In assuming a large number
of patches each with the same uniform conditions, it has to give up quantitative parsimony.
I conclude that the best-systems approach—and related concerns about simplicity—does not
provide any meaningful suggestions for which explanatory camp is to be preferred. Neverthe-
less, different conceptions of simplicity may motivate an explanatory preference. On the hand,
it can be taken to signify quantitative parsimony, being a counterpart to unlikeliness. On the
other hand, it can be taken to signify qualitative parsimony, expressing a conservative attitude
towards introducing new kinds of entities.

Finally, I discuss explanatory preference based on considerations about fine-tuning. Let me
first make this notion precise. In line with Wolf and Thébault (2023) I define fine-tuning to
mean sensitivity to counterfactual perturbations. That is to say, a fine-tuned explanation would
break down if the fine-tuned property had been slightly different. For the initial-conditions
explanation, the main fine-tuning issue is that gravity will cause non-uniformities to grow over
time, as per the result of Collin and Hawking discussed in Chapter 3. The law-like initial
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condition of a uniform state is not robust to small perturbations, as these would grow and
result in a non-uniform CMB spectrum. Note, however, that some more sophisticated initial-
conditions explanations can deal with this sensitivity. For example, in quadratic gravity any
non-uniform models of the universe are excluded because they are unphysical (the action blows
up).

The dynamical explanation, in turn, also suffers from fine-tuning. Indeed, this is what the
debate on special initial conditions for inflation largely revolves around. If inflation requires
a very large homogeneous patch to spark off, then any small perturbation on this patch may
block inflation, resulting in a fine-tuned explanation. The debate is ongoing, however, and we
have seen that the conclusion can possibly be avoided if the shape of the inflaton potential is
a complicated one. But this could introduce new fine-tuned features into the potential. More
significantly, Wolf and Thébault have argued that solving the trans-Planckian problem comes
at the expense of additional fine-tuning (Wolf and Thébault 2023). Once again, I conclude that
an extra-empirical virtue is at play here. Fine-tuning does not strongly favour one explanation
over the other, but it may be a strong intuition lingering in the background. Like the other
extra-empirical virtues under consideration here, it operates quietly behind the scenes. Careful
scrutiny of one’s dispositions may show an explanatory preference for either camp. Both can be
justified.

I conclude that accepting or rejecting the inflationary explanation is strongly dependent on
implicit extra-empirical considerations. I have shown that there are many such considerations at
play: conceptions of what physical states are natural or likely; interpretations of the foundations
of quantum mechanics, in particular regarding unitary evolution; attitudes towards inaccessible
energy scales; opinions on what basic assumptions of a theory are simple; judgements on fine-
tuning in explanations. Importantly, one may justify one’s allegiance to either explanatory camp
by appealing to these virtues. This places the two explanations on par.

6.5 A fading dichotomy

The parity of the two explanations with respect to extra-empirical virtues suggests something
more. Perhaps the fact that both explanations possibly suffer from fine-tuning, trans-Planckian
problems, or convoluted assumptions is an indication that a stalemate has been reached. The
fact that no extra-empirical virtue picks out one explanation or the other suggests that we should
try a new angle. I believe that this new angle looks at hybrid explanations. Throughout this
thesis, I have already hinted at the idea that the dynamical explanation may rely on law-like
initial conditions, and that the initial-conditions explanation may rely on additional dynamics.
In this section, I develop this idea. I draw inspiration from Martens and Lehmkuhl (2020).

Let me revisit the instances when the dynamical explanation capitalised on non-dynamical
law-like statements or special initial conditions. First, the inflationary explanation depends
significantly on the dominant energy condition. I have presented the no-hair theorem and some
generalisations in great detail. It is clear from the proof that the DEC is a crucial assumption.
Without it, it is not at all clear whether inflationary universes (homogeneous or not) will converge
to isotropy. Thus, there must be a law-like condition in place which restricts all matter to be of a
particular kind. Second, inflation may need special initial conditions to start off in some region.
Exactly how special depends on one’s stance in the initial conditions debate and the reversibility
debate. Third, I have pointed out in Chapter 5 that in the framework of semi-classical gravity
it can be shown that inflation requires special initial conditions to give a non-pathological
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description of the universe when the scale factor is small. In short, there are suggestions that
the dynamical explanation must rely on non-dynamical conditions and special initial conditions
for its cogency.

The converse is also true. The first example of this is the quadratic-gravity resolution of
the entropy problem discussed in Chapter 4. By excluding finite values of the gravitational
action, it gives a more elaborate initial-conditions explanation of the low initial entropy of the
universe. But in doing so, it makes additional assumptions about (gravitational) dynamics by
including quadratic terms in the action. These modified dynamics also lead to an accelerated
increase of the scale factor in the early universe, providing a basis for an inflationary phase.
Second, in Chapter 5 I have presented Melia’s model of structure formation. In making the
model by Hollands and Wald more realistic, an additional scalar field with a specific equation of
state had to be introduced. So, this model has to bring in an additional dynamical mechanism.
Thus, there are clear indications that the initial-conditions explanation requires modifications
or additions of dynamical mechanisms.

This goes to show that the best explanation is maybe not a pure initial-conditions explanation
or an explanation purely in terms of dynamical mechanisms. The above examples suggest that
it could be better to look for a hybrid explanation. The existence of these hybrids implies the
fading of the dichotomy of the two camps. The two explanations borrow from one another, so
conceivably it is the ground between the two camps that proves most fertile. See Figure 6.1 for
a visual overview of the main ideas presented in this thesis.

6.6 Outlook

The principal objective of this thesis is to provide an update of the criticism against inflationary
cosmology published by Earman and Mosteŕın 25 years ago. Along the way, I picked up an alter-
native explanation of the problems of standard cosmology in terms of law-like initial conditions.
I have tried to vindicate this explanation of the allegation that it is a non-explanation. In so
doing, I hope to have justified a tenable alternative to inflation. Although this alternative can
account for the problems of uniformity, entropy, and structure formation, this does not imply
that it is to be preferred above inflation. In fact, explanatory preference is entirely a matter of
non-empirical considerations.

Despite my best efforts, I should note that my overview is not complete. For example,
a statistical feature of the perturbation spectrum of the CMB that has only recently come
to my attention is that of phase coherence. This is another prediction of inflation on structure
formation that has been empirically confirmed. Future research should reveal whether an initial-
conditions explanation can account for this feature. Does the model by Hollands and Wald
predict phase coherence? Another example is the recent revival of the special initial conditions
debate in the field of numerical GR. I suspect that new research will show that extra-empirical
virtues are still at play here.

I believe the future lies in the middle. On the one hand, inflationary cosmologists may learn
from the initial-conditions explanation that a conservative approach can still be a fruitful one.
Some scepticism could be good for the zoo of inflationary models, and by pointing out problems
for inflation it could even reveal the way forward. On the other hand, those favouring the initial-
conditions explanation should not neglect novel ideas that are speculative. This explanation
stands in need of development, and so it can benefit from additional scalar fields, semi-classical
treatments of gravity, or modifications of the gravitational action. I do wish to remark that the
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inflationary explanation has received substantially more attention in the literature over the past
decades. As such, the under-developed initial-conditions camp may merit some more research
effort.

The intention of my considerations, however, is not to tell the working physicist what’s right
and wrong. Indeed, I should be careful not to forego an important message of Earman and
Mosteŕın.

It is creative physicists, not philosophers of science, who must place the bets that
count on which avenues of research will prove to be fruitful. (Earman and Mosterin
1999, p. 46)

Figure 6.1: An infographic summarising the main ideas of this thesis.
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