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Abstract

Homotopy Type Theory (HoTT) is a formal system for constructive mathematical
reasoning. The Univalent Foundations (UF) program enhances HoTT with the Univalence
Axiom and Higher Inductive Types (HITS), proposing it as an alternative to ZFC for the
foundations of mathematics. My thesis focuses on the categorical semantics of UF.

The semantics of the elimination principle of the identity type correspond to lifting
properties, a fundamental component of model categories, which serve as an abstract
framework for homotopy theory. In 2013, it was demonstrated that Kan Complexes, or
equivalently co-groupoids, can support a model of UF. These findings suggest a profound
connection between logic and homotopy theory / higher category theory. Over the past
decade, numerous attempts have been made to expand on these results.

In my thesis, I investigate two ways in which models of HoTT relate to higher cate-
gories. The primary link is Hoe (—), which produces a homotopy co-category of a cate-
gory with weak equivalences (and perhaps additional structure). Using an incarnation of
Hog(—), one can simultaneously introduce and characterize (00, 1)-topoi in two models
for higher categories.

We showcase three main results. The first starts with a type theory obeying certain
rules and produces a locally cartesian closed co-category. The second and third state, that
every oo-topos, (respectively presentable and locally cartesian closed oco-category) can be
presented by a model category that models univalent HoTT (respectively HoTT+FunExt).

We also prove that two of these constructions are compatible in a certain sense.
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1 Introduction

The practice of forming collections of given mathematical objects of interest dates back to
antiquity and has permeated mathematics ever since. Understanding collections as sets and
their systematic study as such dates back to the 1870s in the work of Cantor.! Even in its
infantile state, set theory was already capable of demonstrating the presence of more than one
infinity and posing deep questions such as the generalized continuum hypothesis. Especially in
combination with the work of Bourbaki, set theory quickly presented itself as a strong candi-
date for robust and rigorous foundations of mathematics. Thus, Frege, viewing sets and their
"calculus" as belonging to the discipline of logic, was led to assert that all of mathematics was
reducible to logical principles. This position became known as logicism. A primary ingredient
of his philosophy was the (full) Comprehension Principle, which asserted that any property P

defines a set of objects that satisfy said property
P:={xz|Px)}.

The full comprehension principle turned out to be too expressive, expressive enough to create

paradoxes. Famously, if we let P(z) := x ¢ x and obtain Q :={ z | z ¢ x } then,
Ne) — Q¢

Paradoxes such as this created a deep crisis in the foundations of mathematics. There were
three philosophical doctrines that emerged as an answer. Logicism (renewed), Formalism, and
Intuitionism, see [Fer04].

Formalism proposed a recasting of set theory in a 1% order formal language. The precise
axiomatization of set theory is due to Zermelo and Fraenkel and notably includes the axiom
of choice and a restriction of the full comprehension principle. The main counter-proposal was
Intuitionism. Its main tenet is that we re-imagine mathematical entities and the very practice
of doing mathematics as mental constructions. Another notable proposal was Russel’s theory
of ramified types whose conceptual grandchild with Intuitionism will be a protagonist of this
thesis.

For many years formalism was the clear victor of the debate and much, arguably all, of
mathematics was based on ZFC for many decades. When an everyday working mathematician
wants to define his or her favorite object they simply posit a set and declare their desired list
of conditions.

One of the most popular fields of mathematics that emerged was Algebraic Topology which

proposed the study of space via algebraic means, notably the fundamental groups, originating

!Some authors, like the greatly respected Fereiros, also credit Dedekind, see [Fer08].

4



with [Poi95]. In the service of algebraic topology, Saunders and MacLane introduce Category
Theory, see [ME45]?

In modern geometry, differential or algebraic, it has consistently proven to be of benefit to
define/study things locally. Indeed the very definition of a manifold boils down to a smooth?
passage to a local setting. This was one of the motivating ideas that led to the definition of a
Grothendieck Topos in [GV72]. Presheaves and sheaves were studied in depth by Grothendieck
and his collaborators. It did not take too long to notice that categories of sheaves behaved
much like the category of sets. For instance, one could form versions of disjoint unions and
cartesian products and, even more crucially, characteristic functions.

Isolating the precise properties that established this similarity and axiomatizing them led to
the definition of elementary topoi. Their inherent similarity with the category of sets allowed
them to replicate many constructions that are central to mathematical logic. The study of such
phenomena was termed categorical logic. Two of its main protagonists were Lawvere [Law(0],
[Law05] and Tierney [Tie73]. It turns out that one can import enough logical structure into an
elementary topos, to allow it to serve as a setting where a substantial part of set theory, and
thus most of mathematics, can be internalized.

Back in the ’30s, the A-calculus was introduced as an attempt to make the notion of an
"effective procedure" or more simply, an "algorithm", mathematically precise. It was quickly
realized that it could be productively combined with type-theoretic ideas. This provided a link
with computational/ constructive mathematics. Building on these ideas Per Martin Lof intro-
duced an Intuitionistic Type Theory, called Martin Lof Dependent Type Theory, or MLDTT
for short, [Mar75a] thus effectively combining two of the answers to the foundational crisis.

The inherent structure present in Sets, elementary topoi, and intuitionistic (potentially
higher order) type theories made all three reasonable proposals as foundations of Mathematics.
But, this common denominator also made it possible to construct passages from one framework
of foundations to another. For example, there is a bidirectional correspondence between higher-
order type theories and elementary topoi, outlined in [LS86]. Furthermore, one can obtain

(constructive) set theory out of an elementary topos [MM94] and out of a type theory [Acz78].

2Commonly considered the foundational document of category theory. On the first page it notes: Presented
to the Society, September 8, 1942; received by the editors May 15, 1945. The second date is exactly a week after

the end of WW2 in Europe.
3pun intended



Constructive Set Theory

/ \

Intuitionistic Type Theory (Elementary) Topos Theory

Another crucial element to the discussion is homotopical mathematics. The philosophical
motivation is that quite often in mathematical practice equality proves too restrictive and thus
it is productive to adopt different, less rigid, notions of sameness.

An important example, and coincidentally the birthplace of homotopical mathematics, is the
work of Poincaré on the fundamental group of a topological space, see [P0i95]. This led to further
algebraic invariants of topological spaces, like the higher homotopy groups and (co)homology
theories. Quite interestingly their algebraic laws hold only up to coherent homotopy. In a
precise sense, sets are too discrete and thus do not offer a natural framework to capture and
work with these higher data.

Instead of working in set-theoretic foundations and having to resort to non-trivial con-

structions to define "up to homotopy" algebraic structures, one would rather have a natively
homotopical environment where everything is defined up to coherent homotopy and then simply
consider their favourite algebraic object. Categories whose structure is natively given "up to
coherent homotopy" are called weak higher categories. In this thesis, we will exclusively
focus on a special case where almost all of the "higher data" is better behaved, namely, invert-
ible. The so called (oo, 1)-categories are treated in section 2. Notably in subsubsection 2.3.3 we
showcase the elementary definitions of (o0, 1)-categories in the setting of co-categories. Even
in that special case, as we’ll discuss later there are more than one ways to "model" what an
(00, 1)-category should be. We note that we’ll use the term "(co, 1)-categories" as the model
independent one, to refer to properties or features of "(o0,1)-categories" no matter how they
are incarnated. The first model we’ll be interested in takes place in simplicial categories, so we
will call it the simplicial model. The second model, and our preferred one, consists of simplicial
sets satisfying the weak Kan condition. Simplicial sets satisfying this condition will be called
"oo-categories'. Here we must remark that some authors use the term "oo-categories" as a syn-
onym for "(c0, 1)-categories" and others to refer exclusively to these simplicial sets like Groth
[Grol5].

However, a bare co-category, although inherently interesting, can’t do much by itself. So
one wonders what kind of additional structure could one impose. Jacob Lurie, much like

Grothendieck, was motivated by the development of derived algebraic geometry. Namely,



a version where one uses these homotopy coherent algebraic structures, like simplicial rings
or Ey rings, to provide local charts for schemes. In [Lur09] Lurie generalised the notion of
Grothendieck topoi to that of an co-topos, the topic of subsection 2.4.

We will build things up mostly in a self-contained manner for the longest duration possible.
Unfortunately, as Lurie’s two [Lur09], [Lurl8] (out of three [Lurl7]) ~ 1000+ page documents
on the topic showcase, one cannot hope to provide a self-contained treatment of higher category
theory and higher topos theory in the confines of an MSc thesis. We should also note that our
motivations differ drastically from Lurie’s and therefore homotopy coherent algebra serves only
to provide historical context and motivations but will not be treated mathematically at all.

Much like (constructive) sets are central to the non-homotopical setting, here we need a
framework that is inherently homotopical, like spaces. Spaces and their homotopy theory
cannot be understood in isolation. They must be studied in comparison to other homotopy
theories. This leads us to consider abstract homotopy theories. We do that by introducing
and analyzing various ways to do that. We survey each in order of increasing structure, starting
from homotopical categories, fibration categories and model categories. In the last case, we also
look into various extra structures one might place on a model category or some useful properties
they might have. This is the topic of section 3

The last vertex is Intuitionistic Type Theory. In the beginning, people were mostly focused
on extensional MLDTT. The extensional version essentially satisfies a truncation principle
that trivialises all higher homotopical data. Slowly but surely the community discovered non-
truncated models in the context of model categories and higher categories. The archetypal
example is Voevodsky’s simplicial model [KLV12]. It has since become clear that HoTT/UF
exhibits many of the behaviours one would expect from a "homotopy coherent" intuitionistic
type theory. We treat these ideas along with a quick rundown of the historical development of

HoTT in section 5. The situation thus far can be captured in a diagram:

Abstract Homotopy Theory

/ \

Homotopy Type Theory o0 — (Elementary) Topos Theory

Homotopy Coherence

Constructive Set Theory

/ \

Intuitionistic Type Theory (Elementary) Topos Theory




We must remark that the theory of elementary co-topoi is still very much under development.
There is a proposal for a definition by Rasekh [Ras22] and some work around it. At the moment,
the definition is not yet universally accepted. Lurie’s co-topoi are much better understood and
are the topic of one of the main theorems in this thesis, see subsection 5.9. Now, we focus on
the upper part of the diagram and explain what the arrows are. We must note that arrows
here don’t (always) stand for actual functors between categories, merely conceptual passages
from one setting to another. This diagram captures the main topic of this thesis. To study the
relationship of "models of HoTT", in the guise of appropriately structured model categories,

and oo-categories.

strict models

WGS method
Structured Model Categories presentations
/ \
models Hooo ()
/

\
Homotopy Type Theory -------------------mmmmmmm » Structured oo — Categories

The first construction we showcase, originating in [Kapl4], simply asks us to start with a
type theory with ¥, id and II -types that satisfy FunExt and consider its "classical" category
of contexts CI(T). By studying T internally we get natural candidates for notions of weak
equivalences and fibrations making CI(T) into a fibration category. Then one can compute its
oo-category of frames, see [Szul4], and find that for such a T, N;(CI(T)) is a locally cartesian
closed co-category.

In parallel, we explain the ideas that led to homotopical semantics of HOTT thus motivating
an arrow HoTT/UF — mCat, model categories. We note that here, we don’t view "HoTT/UF”
as a category of some sort only as a collection and hence the arrow is not a functor. In due
time mCat will become a category. In due time, mCat will be a category

We note that models like these suffer from a coherence problem and thus require a stric-
tification theorem to obtain an actual model of HoTT. For the model categorical models of
interest, this is dealt with in appropriate generality by the local universes method of [LW15].
Then, we characterise the model categories that can support a model of HoTT+FunExt as
the right proper Cisinski model categories and those that admit a model of full HoTT/UF as
Type Theoretic Model Topoi. Lastly, through results established in section 4 we know that
every presentable locally cartesian closed co-category is presented by a right proper Cisinski
model category and that every oo-topos is presented by a model topos, which, up to Quillen

equivalence, is indistinguishable from a TTMT. Thus:



(1) Every oo-topos can be presented by a model category that can in turn be strictified to
model HoTT/ UF

(2) Every presentable and locally cartesian closed co-category can be presented by a model

category that can, in turn, be strictified to model HoTT+FunExt.

We close off with subsection 5.10 by establishing that a pair of these constructions are
"compatible with one another", in the sense that if one starts with an co-topos X, takes a
TTMT that presents it &, canonically extracts a (non enriched) fibration category out of it,
E(’; , then NV f(E(J)c ) ~ X. This showcases an important theme of homotopy theory, that the
(homotopy type of the) underlying oo-category of a homotopical category depends only on the
weak equivalences. These are left untouched by the passage from & to Eg , and we can thus
retrieve Hoy, (EJ) ~ Ny (E{) ~ X up to equivalence of oo-categories.

The nature of this thesis is mostly expository. Through it, we hoped to create an, as self-
contained as possible, introduction and exposition, to what we consider to be one of the most
intriguing and fascinating phenomena being actively researched at the moment, the relation
between homotopical models of HoTT/UF and (oo, 1)-categories. The last section contains
original work in verifying that the methods Kapulkin uses in his PhD thesis [Kapl4] can be

applied to the objects Shulman uses in [Shul9] and produce essentially the same results.



2 Higher categories

2.1 Introduction

Ever since its conception category theory has proven to be exceptionally effective as an orga-
nizational framework for much of modern mathematics. It is truly hard to overestimate the
degree to which category-theoretic methods have infiltrated some of the most important fields
of mathematics. Indeed one could even assert that category theory is the language in which
modern algebraic geometry and topology are written.

Yet, perhaps surprisingly, category-theoretic methods have limitations, particularly in study-
ing homotopical phenomena. Both in algebraic topology but also in logic, mere categories prove
insufficient, in that they offer no immediate way to record homotopies between morphisms, thus
pushing us towards non-trivial constructions. In a very fundamental way, this is the appeal of
higher category theory. It provides a natural framework and machinery where one can natively
do homotopy coherent mathematics.

To illustrate this we recall the construction of the fundamental groupoid of a topological
space, IT;(X), whose objects are points of X and the arrows stand for paths between points.
We should picture m; (X, x) sitting over any point € X, and an additional rich world of (non-
loop) paths between them. The natural candidate for a "group' operation is concatenation.
Unfortunately, the corresponding group laws hold only up to homotopy. In the past, for instance
in 1895 when Henri Poincaré introduced the fundamental group in [Poi95], this was dealt with
by quotienting out by the equivalence relation induced by "homotopy", so that homotopic paths
were literally identified. But any quotient, by its very nature, leads to loss of information which
may be undesirable. We wanted to study the homotopy type of a space and in order to do that
we’ve thrown out most of the homotopical information!

The very idea behind the fundamental group(oid) of a space is to record more information
than mere existence of a path between two points. In classical mathematics existence of an
object is recorded by a binary choice, yes or no. Instead, in proof relevant constructive mathe-
matics we form the collection of all proofs and reason about it mathematically. Proof relevance
originates with Kleene’s realizers. To treat sentences of a logic proof relevantly amounts pre-
cisely to considering the collection of their constructive proofs and considering functions, and
other operators, like quantifiers, between such collections. Now the constructive proofs of the
statement "there exists a path x ~~ y" are precisely the paths v with endpoints x,y. In other
words, at the very core of algebraic topology, the theory of homotopic paths and of fundamental
groups lies a principle originating in the constructive philosophy of mathematics. When these

ideas are applied to the statement above, after quite a bit of work, one has produced a powerful
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algebraic invariant, a fundamental tool in the study of topological spaces.

In the fundamental groupoid, we only retain the information of whether two paths are
homotopic or not. That means we were proof-relevant, but just for a single step. What if we
could be more proof-relevant? What if a pair of paths is homotopic in two, three or uncountably
many ways? What if two homotopies between a fixed pair of paths are themselves homotopic
in some appropriate sense? The loss of information resulting from the quotient we took leaves
us unable to tackle, or even pose such questions.

The proposed solution of higher category theory is to enrich the fundamental objects of a
category as follows: instead of just objects and morphisms, we add a notion of 2-morphism
between regular (1-)morphisms, to play the role of recording homotopies between them. This
idea is the first stepping stone toward higher category theory. Of course, there is no reason
to stop at level 2. Indeed in the topological example we started with one could well have
a homotopy between homotopies to be recorded by a 3-arrow etc. As far as our motivating
example was concerned we can use these higher arrows to record higher homotopies, namely
homotopies between homotopies and so on. In doing so we produce a category with higher
arrows, where all higher arrows are homotopies and therefore invertible. Thus we call the
resulting category fundamental co-groupoid of a space, I1,(X). In some of its incarnations
1, (X) captures the entire homotopy type of X, see [Cis06]. In fact, among homotopy theorists,
it is generally accepted that the converse is also true, namely that every (oo, 1)-groupoid arises
in this way.

As in the case of the fundamental group(oid), the algebraic laws of concatenation of paths,
like the existence of identities, their unitality with respect to concatenation, associativity et
cetera, hold only up to homotopy. Concretely, instead of an equality v * id, = v, in a great
illustration of the proof relevant spirit of doing mathematics, we get a 2-arrow witnessing the
identity v % const, = ~. This illustrates a fundamental theme of higher category theory, whose
nature is inherently proof relevant: equalities of ordinary categories hold only up to "higher
morphism'. In other words higher category theory, especially in the guise of co-categories, boils
down to doing category theory treating composition proof relevantly, in that higher arrows serve
as witnesses of equalities between lower arrows.

Riehl, in her article, [Rie23], considers the problem of transferring the structure of a G-space
across a homotopy equivalence X ~ Y| and faces a similar situation. The point here is that
as soon as you specify many pieces of low-dimensional data, say two composable 1-arrows, you
immediately have to specify another 1-arrow, their weak composition, and a 2-arrow witnessing
that composition. And as soon as you have more composable 1-arrows and 2-arrow-witnesses,

you have to specify a 3-arrow witnessing associativity of composition, and then a 4-arrow
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relating multiple pieces of associativity data and so on. Furthermore, none of these choices are
a priori unique. Thankfully they are unique in a weaker sense, namely unique up to homotopy
in that the space of all choices is contractible. All that information can be arranged in what is
called a homotopy coherent diagram.

This need for homotopy coherent algebra and functors motivates our wish for homotopy
coherent category theory. Indeed, that’s exactly how we think of the theory of higher categories.
Furthermore, one of the main appeals of the theory of co-categories, indeed their very definition,
axiomatically ensures the existence and coherence of all these data. Now doing category theory
up to coherent homotopy may sound great in theory, but unfortunately, the practice is a bit
more convoluted. Just look at all the pieces of data we have to specify and coherently relate to
one another by specifying even more data and so on.

These new and complex algebraic structures we call higher categories. As explained above,
some of their fundamental features are the existence of higher morphisms and a weakening of
identities. One consequence is that in this new setting to define even simple objects, such a
morphism composition, often requires an infinite amount of data. A definition that used to be
about objects and arrows now also has to ensure that all the potentially infinite higher data
are coherently interrelated and compatible. A way to battle the complexity produced by the
requirement for an infinite amount of data is to postulate that any morphisms of dimension at
least 2 that exist, will be invertible. These are called (oo, 1)-categories and will be the focus of
this thesis.

At the moment we imagine an (00, 1)-category €, as a collection of objects, and for each
pair of objects a collection of morphisms Home (X,Y). The latter collection should come
equipped with a notion of a k-arrow playing the role of "homotopy between (k — 1)-arrows".
This in particular implies that if £ > 1 all k-arrows are "homotopies" and therefore invertible.
Hence Homy (X, Y) € co-Gpd and thus can be equivalently thought of as (the homotopy type
of) a topological space. This leads to an interesting blend between a category-theoretic and
topological object.

There are many ways to productively achieve this blend and thus multiple models of (o0, 1)-
categories. One might propose to work directly with topological categories, whose mapping
spaces are "concrete" topological spaces and we can therefore work with IT,,(Map,(X,Y)). Un-
fortunately, this approach has various technical disadvantages. Thankfully, simplicial homotopy
theory ensures us that instead of topological spaces we can alternatively, and equivalently, work
with some special simplicial sets, Kan complexes. They are much more tractable, essentially
algebraic objects that reside in a very well-behaved ambient setting. There are two main ways

to achieve that. The ambiguity rests solely on whether we’ll take our collection of objects and
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add simplicial sets as mapping spaces between them or if we’ll include the collection of objects
in the simplicial set.

The first approach incarnates in simplicial categories, the first model of (o0, 1)-categories
that we’ll look into. Instead of Hom-sets between objects, we’ll ask for a Hom-simplicial set.
Now out of all simplicial sets we choose the more "topological looking" or co-groupoidal, the
Kan complexes. Thus our first model of (o0, 1)-categories are categories enriched in J¢ an.

Our other model of interest is oo-categories.*There, we take a single simplicial set and impose
axioms that precisely axiomatise the existence of coherent higher homotopical data. The axioms
also allow us to import elementary constructions of category theory in an "obvious" way. Only
after some elementary work will we be able to show that Map.(z,y) is an co-groupoid.

Between the two models, co-categories derive their greater popularity both from inherent
mathematical advantages of the theory and the great development it met in the hands of Joyal,
for example in [Joy02], [Joy08a], and even more so by Lurie in the monumental [Lur09] and
[Lurl8]. In this thesis, we will look into both models mainly with the object of comparing them.
In fact this comparative study of the two models is one of the central ingredients in Lurie’s
approach in [Lur(09]°.

One of the main points we wish to make with this thesis stems from this interaction and we
believe is at the heart of the connection between homotopical models of HoTT and oo-topoi.
There is a comparison functor 91 : sCat — sSet, which turns out to be a Quillen equivalence,
an equivalence of homotopy theories. This functor restrict to one between models of (oo, 1)-
categories namely if ¢ is J# an-enriched then 9(%) is an co-category, see proposition 43. In
the same way, for many oo-categorical objects or behaviours, one can detect ")l-inverse images",
namely sCat-properties that "map on" the co-categorical ones via 91. In particular, this can
be done for all the notions that go into the definition and characterisation of co-topoi. Thus
Rezk obtains the notion of a model topos [Rez10]. The analogy is precise enough to allow for a
simultaneous development of higher topos theory in the two settings, with each notion in the
co-setting having a precise analogue in the simplicial one. This analogy is expanded upon in
section 4.

The first subsection of this chapter deals with some intuition about how simplicial categories
can be thought of as a model of (o0, 1)-categories. In the second, we turn to the other model of
interest, oo-categories. Using this model we develop elementary co-category theory. We begin
by introducing the theory of simplicial sets. Having defined oo-categories, we look into the proof

relevant composition discussed in the introduction. Then, we turn to the theory of limits and

4Also known as quasicategories or quategories.
5For more information we refer to Tim Campion’s answer in this math overflow question
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colimits in co-categories and adjoint functors. We proceed with one of the key pieces of the
puzzle, the theory of presentable co-categories.

A presentable co-category, the object of study in subsubsection 2.3.7, is one where we have
a set of generators for objects via the formation of colimits. Thus, every object is a colimit of
these generators which moreover, are all taken to be xk-compact. One can exploit this to obtain
a variety of useful theorems, for example, the oco-version of Freyd’s adjoint functor theorem
resulting in characterisations of representable functors. As a result, presentable oo-categories
enjoy particularly nice formal properties. In addition to that, presentable co-categories provide
a robust link with the simplicial model since an oo category is presentable exactly when it is
presented by a simplicial combinatorial model category [Proposition A.3.7.6 [Lur09]].

Armed with presentability, in subsection 2.4, we turn to study Lurie’s co-topoi. They are
defined as reflective subcategories of presheaf categories. We survey their characterisation as
presentable oo-categories with universal colimits and descent and lastly look into one of the

most basic constructions of co-topoi, universes, the co-generalisation of subobject classifiers.

2.2 Simplicial categories as a model of (o0, 1)-categories

In ordinary category theory, one mainly deals with locally small categories, those with Hom(X,Y') €
Set. However, many categories found in nature have extra structure on their Hom-sets. For
example, if we consider modules over some ring, the Hom sets naturally inherit the struc-
ture of an abelian group. Enrichment is a way to account for and systematically study, this

phenomenon.

Definition 1. Let D be a symmetric monoidal category with tensor product ®. For a textbook
treatment we refer to section 11 of [Lan78]. A D-enriched-category C is given by the following
data:

(1) A class of objects obC

(2) For each pair of objects X,Y € obC, a Hom¢(X,Y') € obD, a D-object of morphisms from
X toY.

(3) A composition map Home(X,Y) ® Home (Y, Z) — Home (X, Z).
(4) For each object X € obC an element = dx Home (X, X)

(5) The data above are required to satisfy an associativity and a unitality diagram.

There are complementary definitions of functors and natural transformations of D-enriched

categories. Below we give the definition for our special case of interest.
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Frequently enrichment amounts to endowing the Hom-sets of a category C with algebraic
features such as additive (and/or) multiplicative structure. For example, the category of vector
spaces is enriched over itself. The same is true for Ab and R-Mod. Functions inherit the
operations/actions pointwise. Among potentially large categories, small categories can be seen
as those enriched in sets.

As discussed in the introduction, our aim in developing this theory is to model (o0, 1)-
categories. Thus we’d like our mapping spaces to behave like topological spaces. Relying on
the ideas of simplicial homotopy theory we might equivalently ask that the mapping spaces
behave like a II,(X). Thus we are particularly interested in enriching categories with the

algebraic structure of a simplicial set.

Definition 2. A simplicially enriched category &, or a simplicial category® is a category

enriched in the cartesian monoidal structure of simplicial sets presented in the example below.

(1) a collection obé&'.

(2) Elements of the set Homg (X, V) are called morphisms and elements of the set Hom (X, Y);

are called homotopies.

(3) For every triple of objects X,Y,Z € & we have a map of simplicial sets playing the role

of the composition law which is additionally required to be unital and associative.

CX,Y,Z : HOng()(7 Y) X HOH]g(Y, Z) - HOng(X, Z)

(4) For each X € Ob& a morphism idx € Map(X, X)o.

A functor of simplicial categories F': ¥ — & consists of the following data:
(1) A function ObZ — Obé&

(2) For any two objects X,Y € ObZ a map of simplicial sets Map,,(X,Y) — Map (F X, FY),

compatible with identities and composition in the obvious way.

The category of small simplicial categories and simplicial functors between them will be
denoted by sCat. Then, to specify a simplicial functor one has to supply ob22-many maps of
simplicial sets. Needless to say that for non-boring & that’s a lot of data that must be specified.

61n this thesis by "simplicial category" we will exclusively refer to a category enriched in simplicial sets, and

not a "simplicial object in Cat".
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Example 3. The category sSet is enriched over itself. sSet being a presheaf topos, carries lots
of extra gadgets, notably the ability to form well-behaved products and a product— exponent
adjunction. These are all valuable features that have the following consequences:

Firstly, the structure of the cartesian product, which is given canonically for all presheaf
topoi, makes sSet = A into a monoidal category. We also have a canonical exponential presheaf
given by

Fun(X,Y) := V¥ := Homg (A" x X,Y)

and an adjunction
—xXH(=)7

The assignment (X,Y) — YX is functorial in both variables. Moreover, we observe that
V5 = Homz (A% x X,Y) but A? x X =~ X and so Y;* = Hom4 (X,Y). The composition law is
taken to be composition of functors. Taking these internal homs to be our mapping spaces we
see that the axioms listed above are satisfied. In [Riel4] section 3.3 one sees that any monoidal
V with right adjoints against all product functors has a canonical ¥ enrichment. One exploits

the adjunction to obtain a unique bifunctor Homy,(—, —) : V°? x V — V of internal homs.

In the introduction above we have explained that higher categories are a generalisation
of categories where the fundamental notions are expanded to include 2-arrows between mor-
phisms, 3-arrows between 2-arrows etc. A simplicial category naturally fits into this frame-
work, since it comes equipped with a simplicial set of morphisms between any two objects
denoted Homg(X,Y). Vertices of this simplicial set play the role of morphisms of ¢. Take
f,9 € Map,(X,Y ). Take a 0 € Map,(X,Y); such that its face operators satisfy d(o) =
f,do(0) = g. This is a 2-arrow between f and g. Similarly, we can define explicitly the
3-arrows etc. As discussed above, an (00, n)-category is one where all the n-morphisms, for
n > 1, are invertible. We are exclusively interested in the case n = 1, captured by the next

definition.

Definition 4. We say & € sCat is locally Kan if all of its mapping spaces are Kan complexes

(See definition 17). Equivalently, one could say that & is enriched in Kan complexes.”

A central result in Joyal’s development of the theory of co-categories is that Kan complexes
are the same as oo-groupoids, namely higher categories with exclusively invertible (higher)
arrows. Indeed this already appears in his first published work on the topic as Corollary 1.4 in
[Joy02]

"The full subcategory of Kan complexes is closed under the formation of products and exponentials so the

internal hom restricts to J# an. In particular, £ an is monoidal.
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Then, a locally Kan simplicial category % can be used to model (o0, 1)-categories and it
does so in a way that is very close to the intuition of what (o0, 1)-categories should be. The
main advantage of developing the theory in this way is that one immediately obtains some very
interesting examples as sSet above.

The disadvantage of working in this model is twofold. First, to define a simplicial functor
requires a great amount of data and lots of coherencies between them. Secondly, all these
identities hold up to equality which is against the philosophy of homotopical mathematics we
are trying to develop. This is not just a philosophical objection. Simplicial functors are too
rigid and don’t behave as we would like (o0, 1)-functors to behave. In addition to that, in
the simplicial model, many constructions don’t immediately return the "homotopically correct"
object forcing one to keep taking (black-box) cofibrant replacements. For more information,
see here or here.

The higher arrows present in a simplicial category can be used to record homotopies between
lower arrows. For instance, we can think of a 1-simplex o € Map,(X,Y); as a witness that &
arrows dy (o) = f,dy(0) = g are homotopic.

With that intuition in mind, we can define:
Definition 5. The homotopy category of a simplicial category & has:
(1) ObHo& = Ob&

(2) Hompes(X,Y) = mo(Map(X,Y))

Recall that the action of my on simplicial sets is to identify x,y € X, that are connected by a
f 2 — y. In this case, vertices of the simplicial set stand for morphisms between objects and

paths between them stand for homotopies. Therefore we are identifying homotopic arrows.

In this way, we can see simplicial categories from a homotopic point of view. Having adopted
such a perspective we obtain a notion of sameness of simplicial categories, by comparing their
respective homotopy theories. It is important to note that the first part of the definition would
only compare a "quotiented" out part of the information, and would thus be insufficient. The

second part ensures a comparison of higher data too.
Definition 6. A simplicial functor F' is a sDK-equivalence when:

(1) it induces an equivalence of homotopy categories Ho(F') : Ho4 — Ho%Z is an equivalence

of ordinary categories

(2) for any pair of objects X, Y € Ob% the induced map of simplicial sets is a weak equivalence
in sSetkq,
Homy(X,Y) = Homg(FX, FY)
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2.3 oo-categories as a model of (o0, 1) categories

oo-categories were first discovered by Broadman and Vogt during their study of homotopy
invariant algebraic structures in [BV73] in 1973. It was Joyal who recognised that these objects
can be used to develop category theory. He developed this theory first in [Joy02], and later in
unpublished work that is still canonical reference [Joy08c| and [Joy08b].

Once again, we recall that an (oo, 1)-category is a structurally richer category whose goal
is to help us to category theory up to coherent homotopy. In particular, this implies that the
mapping spaces should have the appropriate machinery to obtain a notion of homotopy between
morphisms. Instead of working with topologically enriched categories, we rely on simplicial
homotopy theory that ensures that Kan complexes are essentially the same as topological
spaces. In the previous section, we adopted an "enriched approach" and asked for a collection
of objects, and for each pair thereof, a Kan complex’s worth of morphisms between them.

The theory of co-categories brings the objects inside the simplicial set. By imposing the
weak Kan condition on simplicial sets, we obtain co-categories. This axiom makes the vertices
Cp of the simplicial set behave like objects, and its edges C} like arrows of a category, thus
internalising the two notions.

The "imagery" associated to the very definition of co-categories provides an "obvious" way
to mimic the fundamental definitions of a "category", such as composition, associativity and
more. Indeed, as Joyal himself said in an online talk: "I must say this was not really difficult.
Because...it just worked! T mean, look, it’s kind of amazing, that it works. [...] you sit down and
you work out the proof and it just works. It’s miraculous! Category Theory can be extended
to higher category theory and it’s easy." Notably, the weak Kan condition is tautologous with
the existence of coherent higher homotopical data discussed in the introduction.

This is, of course, a proper extension and in this new setting one really develops homotopy
coherent category theory. The approach taken by Joyal is mostly to rewrite category theory
in this new setting and obtain meaningful results. And indeed, he did so with great success
in a series of notes and papers mentioned above. Omne of the most notable results of this
development is the Joyal lifting theorem whose primary consequence co-groupoids are the same
as Kan complexes. Another was the establishment of the "Joyal model structure'® on simplicial
sets whose bifibrant objects are exactly the co-categories and thus captures the homotopy theory
of higher categories.

Around the time when the second result was made public, Lurie became interested in oo-
categories. His contribution to the development of the theory of co-categories with [Lur(9]

and [Lurl8] is monumental. His approach differs from Joyal’s in an important aspect. Instead

8for more information see Section 137
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of developing the theory exclusively internally, Lurie also focuses and exploits the comparison
with a different model, that of simplicial categories, which we have just presented.

One of the main advantages of choosing the model of co-categories is the very well-behaved
ambient setting. Indeed, sSet is a presheaf topos and so in particular it is complete and cocom-
plete. Furthermore, it is symmetric monoidal and enriched over itself. One of the disadvantages
is that it becomes hard to obtain concrete examples of co-categories. A notable exception is
the nerve functor that fully faithfully embeds Cat < sSet. Unfortunately, such examples are
too well behaved and hence their behaviour is not representative of the general case. Lurie’s
philosophy and its incarnation in the homotopy coherent nerve Quillen equivalence provides an
abundance of examples that are more representative of the general case.

We proceed by developing from scratch the elementary and more advanced aspects of the
theory required for this thesis. First, we offer a brief introduction to simplicial sets. Then
we turn to the task of justifying how these "horn-filling conditions" can be used to obtain a
homotopy coherent version of the axioms of category theory. Then we turn to the theory of

(co)limits and adjoint functors, presentable co-categories and finally co-topoi.

2.3.1 Simplicial sets

This exposition” is largely based on Jacob Lurie’s online resource Kerodon on higher category

theory and homotopy theory [Lurlg].
Definition 7. We define the simplex category A by setting
e ob(A):={[n] | neN}.
o Homa([m],[n]) := {f € Homge([m], [n]) | f is order-preserving},

where [n] := {0,1,...,n} denotes the unique totally ordered set of n elements. Identities and

composition of morphisms are given by the set-theoretic functions in the obvious way.

Recall that any preorder (X, <) can be interpreted as a category with X as the collection
of objects in which no parallel arrows exist, for every pair x,y € X, there is a unique arrow
x — y if and only if x < y. Here, reflexivity implies the existence of identities and transitivity

encodes the existence of composites. Hence, for n € N, we can view [n] as a category. From

9Much of the code for this section was written in collaboration with Ioli Tente, Melle van Merle, Nathan van
den Berg and Sara Rousta for the project An introduction to simplicial sets and Higher Categories under the

supervision of Gijs Heuts in the UU course Orientation to Mathematical Research.
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this point of view, we can, for example, represent

2 2

0 1 0 1

as a triangle and tetrahedron respectively. Note that the uniqueness of arrows ensures that the
arrow 0 — 2 coincides with the composition 0 — 1 — 2. It is not difficult to see that for any

n,m € N, an order-preserving map
f{0—>1—>—>m}—>{0—>1—>—>n}

induces a functor from the category [m] to the category [n] and conversely that every functor
f :[m] — [n] must be an order-preserving function on the underlying sets. We can thus also
view A as a category whose objects are the categories of the form [n] for n € N, and whose
morphisms are functors between said categories.

An important feature of A is that it has a smaller set of special morphisms that can be used
to factor an arbitrary order-preserving map. This is a version of the epi-mono factorisation
present in all elementary topoi, or even any pretopos. For any n € N and 0 < i < n we
introduce the notation ¢’ for the i-th coface map, which is the unique arrow from [n — 1] to

[n] in A that ‘skips over’ only the value i in its image,

5 [n—1] = [n], j— ' (2.1)

Likewise, for any n € N, and 0 < i < n, let ¢ denote the i-th codegeneracy map, which

is the unique arrow [n + 1] to [n] in A that repeats only the value i,

N

A ) Js J S
o' in+1] - [n], j— (2.2)
i1, j>i.
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Unfolding the definitions we get the cosimplicial identities,

féjéi = §toi 1, i <7;
016" = §tol 1, i<

2078 =id = g7 5 (2.3)
gl§t = §tod, 1> 7+ 1
olot = glgItl, i <7,

\
which together with the cofaces and codegeneracies generate A. Now our first important

definition is that of a simplicial set.

Definition 8. A simplicial set is a presheaf on A, i.e. a functor X : A°® — Set. We denote

the image of an object [n] under X by X,,.

To give the data of a simplicial set X it is enough to evaluate the functor on the generating
maps &' : [n — 1] — [n] and ¢* : [n + 1] — [n] to obtain morphisms d; : X,, — X,,_; and
s; + X, — X,41 called the i-th face map and the i-th degeneracy map respectively. We

have by the functoriality the simplicial identities,

fdjdi = didj_1, 1< 7J;
sjd; = d;isj_1, 1< 7J;

\ sid; =1=s;d;i1; (2.4)
sjd; = di—15;, 1> 7+ 1

\Sjsz‘ = 8;Sj+1, 1< J.

The category of simplicial sets is denoted by sSet = Seta := A = Hom, (AP, Set) and
a morphism of simplicial sets f : X — Y is thus a natural transformation of such functors.
Explicitly, it is a collection of functions {f, : X, — Y, }n>0 which commute with the arrows of
A. This suffices to be checked on the faces and degeneracies. The examination of this category

gives rise to some important examples of simplicial sets.

Proposition 9. Every order-preserving map f : [n] — [m] can be factored, in an essentially

unique way, as a composition of s; followed by a composition of d; for some choice of indices.

Corollary 10. To determine that an n-indexed collection of functions f, : X,, — Y, is a
natural transformation between S and T it suffices to check the naturality squares for the face

and degeneracy maps.
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Example 11. Consider the representable functor
A" := Homa(—, [n]) : A" — Set,

operating on morphisms by precomposition. This simplicial set is called the standard n-
simplex. Note that by the Yoneda lemma, for any simplicial set X, we have a natural isomor-
phism

Homgget (A", X) = X,

between the n-simplices or n-cells X,, of X and the set of simplicial morphisms of the form
A" — X.

2.3.2 Important sub-complexes and the Kan condition

Definition 12. Given S € [n]| we define A € A" to be A™%® = {f : [m] — [n] : imf < S}

1
For instance, At} ~ « and A{0Z} — / \

0 ——— 2
Definition 13. Let n € N. We define the simplicial set 0A™ : A°? — Set, called the boundary
of A™ by setting

o) = | #)

o<i<n
Morally, we just have to rely on our topological intuition on boundaries. We take the

boundary to be the union of all the faces, meaning we just remove the interior of the simplex.

1 AN

An alternative, and of course equivalent, definition is

Pictorially:

oA — L_”JAW = {f e Homa([m], [n]) | [n] & F([m])}

so that dA™([m]) is the set of all non-surjective morphisms from [m] to [n].

Definition 14. Let n € N and 0 < k < n. We define the simplicial set A} : A°® — Set, called
the i-th horn in A", by setting

Ap =8 (-)

i#k
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We call A} an inner horn if 0 < £ < n, and an outer horn if £ = 0 or k = n.
The k' horn is the full simplex minus the interior and the face opposite the ™ vertex. We

immediately see that A} < 0A™. For example,

A2 A2

0 2 0 ——— 2

Now that we’ve defined these subcomplexes it is important to also explain the data required
to define a map 0A"™ — S or A} — S. A boundary is an n-simplex minus the interior.
Intuitively, we may understand this as a collection of n—1-faces all glued together appropriately
along their intersections, a collatable collection of n—1 faces. For example, 0A? above, an empty
triangle, can be seen as three intervals glued along their endpoints (boundaries) in a specific
way. This intuition can be generalised. Following this line of reasoning to determine a map
0A?% — X, it suffices to determine the images of the three aforementioned intervals and to make
sure that their images will too be collatable. A} and 0A™ differ only by a face, so to determine
a map A} — S on has to determine an incomplete, but still a collatable sequence of n — 1 faces.

This intuition is formalised in the following propositions.
Proposition 15. The map given by pre-composition by 9; is injective
HomsSet((?A", S) -~ (Sn_1>n

and its image consists of those sequences (o, . .., 0,) where o; € (S,_1)" satisfy the collatability

condition: d;(o;) = d;j(0;)
Proposition 16. The map given by pre-composition by d;, restriction to the l;h face, is injective
HomsSet (AZ7 S) = (Sn—l)n_l

and its image consists of those sequences (oy,...,0r_1,9,0k+1,0,) Where o; € S, satisfy a

collatability condition: d;(o;) = d;(o;) for 4, j € [n]\{k} and i < j.
Proof. [Lurl8, Tag 050F] O

Definition 17. Let X be a simplicial set. We call X a Kan complex if for any horn A}, each

map o : A} — X, can be extended to 7 : A" — X.

A ——— X

ATL
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Equivalently, we demand that pre-composition with the horn inclusion is surjective on Hom

sets:
A ——— X Homgger (A™, X) LN Homgger (AR, X)
P
|
An

Definition 18. Let X be a simplicial set. We call X an co-category if for any inner horn,

L, with 0 < k < n, any map o : A7 — X, can be extended 7: A" — X.

These two definitions can be generalised to maps of simplicial sets and indeed they constitute

some of the central objects of study of simplicial homotopy theory.

Definition 19. A map of simplicial sets f : X — Y is a Kan fibration if it admits lifts
against all horn inclusions if all commutative squares as below admit a diagonal lift s producing

two commutative triangles. Kan fibrations will be denoted with a double-headed arrow, —».

A} — X

s
J /// p
.
.
.

A" — = Y

The intuition for Kan fibrations is the following. Say we have an extension problem as given
by the top left triangle of the square. We have a ¢ : A} — X and wish to extend it to a
s: A" — X. If we have any map f : X — Y we can compose and obtain foo : A} — Y.
Commutativity of the outer squares ensures that the bottom map A™ — Y is a solution of the
extension problem for foo. f is a Kan fibration exactly when that solution can be lifted
through p and solve the original extension problem. Thus the very definition of Kan fibrations
captures the intuitive idea that to solve an extension, or horn-filling problem in X it suffices
to solve it inside the image of a Kan fibration p(X) < Y. Stated differently, Kan fibrations are
precisely the maps that allow solutions to extension problems to be transferred backwards.

Here are some important variants of this definition.

Definition 20. An inner fibration of simplicial sets f : X — Y is a map that admits lifts
against all inner horn inclusions. This is the same definition as above with 0 < k < n. We

sometimes denote an inner fibration as X —; Y.

Corollary 21. A simplicial set K is a Kan complex <= the unique map K — = is a Kan
fibration. Similarly, a simplicial set C' is an co-category <= the unique map C —»; = is an

inner fibration.
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Remark 22. With elementary means one can show that inner fibrations are stable under
pullback. Indeed, it is a special case of proposition 102. In particular, this means that fibers of
an inner fibration, namely base changes over a point, are co-categories themselves. Therefore one

can reasonably think of an inner fibration X —; Y as a Yj-parametrised family of co-categories.

Using this horn-filling condition one can internalise most of category theory inside oo-

categories. This is what the next section is devoted to.

2.3.3 Basic category theory co-categories

In this first section, we look at why and how imposing weak Kan condition on a simplicial set
makes it behave like a category. Namely, we look at how one can internalise proof-relevant
version of the axioms of category theory in this new setting. We proceed by surveying the
internalisation of more elaborate classic category theoretic constructions such as (co)limits, and
adjoint functors. We use these to introduce locally cartesian closed co-categories and eventually
discuss Grothendieck co-topoi.

oo-categories are simplicial sets satisfying the weak Kan condition. We interpret C,, as the
collection of n-morphisms. In particular, we call a 0-simplex a vertex or an object of C' and a
1-simplex and edge or a morphism. The simplicial operators dy, d; pick out the two endpoints
of an arrow f € ('} and therefore serve as the target and source maps. All this can be done in
a general simplicial set. What distinguishes co-categories is the ability to define well-behaved
homotopy coherent composition, associativity, and so on. This is the raison d’étre of

the definition of co-categories. Recall,

Definition 23. A simplicial set C' is an co-category any map o : A} — C, with 0 < k < n,
admits an extension to A"

Ay —7 C

-
-
-
-
-
-
-
-

An

For n = 2 we obtain the following picture in C"

A2 —C: A e y 2

The map A? — C corresponds to the data given by the solid arrows. An extension of it to
A? corresponds to providing an additional 1-simplex with endpoints z, z and a 2-simplex filling

the triangle. With this idea in mind, we define composition accordingly. As we explained in
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the Introduction, in the higher setting, what used to be equalities in 1-categories now hold only

up to higher morphism. We proceed by making this mathematically precise.

Definition 24. Let C' be an co-category and take f,g € C;. We call f, g right (respectively
left homotopic) <= 3 a 2-simplex o as below: Left homotopy on the left and right homotopy

on the right. For ¢ € Cy we suggestively write id. := sq(c).
Y x
T T Y g Y
f

Proposition 25. (Proposition 11.6 in [Rez22]) In an oo-category the notions of left and right

homotopy coincide and induce an equivalence relation on C;. Write f ~ g for homotopic maps

and [f] to denote the equivalence class of f € Cj.

The next two propositions are an excellent example of how the good old axioms of category

theory hold only up to homotopy in the higher setting.

Definition 26. Let C' be an oo-category. We say that h € (' is a composition of f,g € C}
exactly when there exists a 7 : A? — C with dy(7) = f,do(7) = g and d;(7) = h. In that case
we say that 7 witnesses the equality [g] o [f] = [h]

Of course, it can be shown (Lemma 11.8 in [Rez22]) that the homotopy class of [f] o [g] is

independent of the choice of representatives.

Proposition 27. (Lemma 13.9 (exercise) in [Rez22]) For arbitrary ¢ € Cy we write id, :=
so(c) € Cy for the unique degenerate arrow induced by the vertex. One can think of this as the

"canonical constant loop" over a point. Then for arbitrary f e C} we have

[f]e[ide] = [f] = [ide] o [ ]

Equipped with all these propositions we see that the following construction is well defined.
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Definition 28. Let C' be an oo-category. Then we can define an ordinary category, its homo-

topy category hC' by setting:
obhC :=Cy & Homye(z,y) = Homc(x,y)/N

Definition 29. A morphism f € C will be called an isomorphism <= 4 [ f] is an isomorphism
in hC.

In short, we used inner 2-horn fillers to record the data that some morphism h is "equal” to
the composite of some f,g. So the axiom for co-categories for n = 2 asserts that for any pair
of composable morphisms can be composed and their composition is unique up to homotopy.

What about outer fillers? We could for example consider,

Y

N
N
f N
N
N
N
N
N
X

2 .
A — C: x o x

Filling this horn would correspond to obtaining a morphism ¢ : y — x such that [g] o [f] =
[id,], i.e. a left inverse for f. Similarly, if we can fill A3 — C we can obtain right inverses for
arrows f. Then, again via elementary means, and potentially by filling a 3-horn or two, these
left and right inverses can be shown to be equal. Then, the ability to fill outer horns allows
us to obtain inverses to morphisms. For example, assume that G is a Kan complex. Take an
arbitrary morphism f. Using outer horn fillers as indicated above we can show that f is an
isomorphism. Therefore G is an co-groupoid. Therefore Kan complexes are co-groupoids. In

fact, with a bit more work, one can also show the converse of this statement and obtain:
Theorem 30. Let C' be an co-category. The following are equivalent:

(1) C'is an co-groupoid

(2) hC is a groupoid

(3) C'is a Kan complex

The only non-trivial implication is ((1) <= 4 (2)) = (3). It is a corollary of the Joyal
lifting theorem

Theorem 31. Let f: C'— D be an inner fibration between co-categories. Then,
(1) o(A%1Y) is an iso in C then (A} < A") lifts against f.
(2) T(A"=L7) s an iso in C then (A” < A") lifts against f.
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The proof rests on, among other things, the notion of an isofibration, which we record

because of its independent interest.

Definition 32. A map of simplicial sets p : C' — D is an isofibration <= 4 it is an inner
fibration and if we have an iso in D; and we can lift its starting point through p then we can
lift the whole isomorphism, meaning, for any = € Cy and any isomorphism f : p(z) — d in D,

there exists y € Cy and an isomorphism f': x — y € C} such that p(f’') = f.

A crucial ingredient for this thesis is functor co-categories. Recall that sSet being a presheaf

topos has exponential objects. In general they are given by
Fun(X,Y) := Y := Homgget (A" x X,Y)

This formula is derivable from the presheaf structure. These exponential objects play the
role of internal homs. The collection of co-categories is closed under the formation of exponential

objects [Joy08al, as the next theorem records.

Theorem 33. If K is an arbitrary simplicial set and C' is an co-category, then Fun(K, C) is an

oo-category

Note that vertices of Fun(X,Y’) are natural transformations between the underlying simpli-
cial sets X,Y. They are the oco-functors of co-categories.

Using the internal homs we can finally show in what sense do oco-categories satisfy the
intuition required from all (oo, 1)-categories regarding having a space, or co-groupoid, of mor-
phisms between any two objects. First, we define the arrow co-category of an co-category
to be Fun(A!, C'). Then, we obtain the source and target maps by restricting along i : A =
A% LAY < Al This induces Fun(Al, C') — C x C. Then, if we take the fiber of this map over
a pair of vertices (x,y), we obtain the mapping space Mapq(x,y). Now the theory of anodyne
morphisms and of enriched lifting problems ensures that the map ¢ above is anodyne and that
restriction along an anodyne morphism is a trivial Kan fibration. Those being stable under
pullback, we obtain that Map(x,y) is a contractible co-groupoid.

Thinking along the same lines we can provide an elegant characterisation of co-categories.
The discussion after the definition of co-categories motivates how we can think of maps 7 :
L? — C as picking out a composable pair of morphisms in C. Then, maps o : A? — C with
o A2 =T correspond to a composition thereof. This leads us to consider the map induced by
restriction along L? < A? and obtain Fun(A?,C) — Fun(A?,C). A fiber of this map over a
pair of composable maps (f, g) denotes the space of compositions of f,g. Reasoning similarly

as above we obtain that this fiber is a contractible co-groupoid/ space.
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Proposition 34. A simplicial set C' is an co-category if and only if the morphism as above is

a trivial fibration.

We can interpret this to mean that C' is an co-category exactly when it has compositions
that are unique up to homotopy. Observe that the appearance of internal homs implicates all
the coherent higher data.

We proceed with a discussion of equivalences of co-categories. We define natural transfor-

mations between such functors to be the elements of the set Fun(X,Y);.

Definition 35. Let C, D be co-categories. Let fy, fi be a pair of functors between them. Then

a natural transformation between f; is defined to be a morphism « : fy — f; in Fun(C, D)

Definition 36. A natural transformation « : fy — f; is a natural isomorphism exactly

when « is an isomorphism in the co-category Fun(C, D).

Proposition 37. (Theorem 5.14 in [Joy08b]) a natural transformation a : u — v € Fun(A4, X)
is a natural isomorphism if and only if for all vertices = of A, the induced a, : u(z) — v(z) is

an isomorphism in X.

Definition 38. A functor f : C' — D between oo-categories is said to be a categorical
equivalence when there exists a functor g : D — (' such that ¢f is naturally isomorphic to

ide in Fun(C, C) and fg is naturally isomorphic to idp in Fun(D, D).

By generalising appropriately the notion of fully faithful and essentially surjective we redis-

cover the well-known characterisation of equivalences of ordinary categories.

Definition 39. A map of simplicial sets is called a weak homotopy equivalence exactly

when its geometric realization |f| is a weak homotopy equivalence of topological spaces.

Remark 40. We have just seen two ways in which a pair of co-categories can be said to be
'almost the same". The first is when there is an invertible-up-to-homotopy functor between
them. This is a direct generalisation of the notion of an equivalence of categories. In the
second we care about the homotopy type of the topological space captured by the simplicial
sets. Later, we shall see that these two different ways of comparing simplicial sets give rise to
two classes of weak equivalences which in turn participate in two model structures on simplicial
sets. These two model structures capture the homotopy theory of higher categories and spaces

respectively.
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2.3.4 Examples of cwo-categories

We’ve developed part of the theory of co-categories but we haven’t yet touched on examples.
This is because getting internal examples of co-categories is one of the main disadvantages
of the theory. The examples we can readily obtain concern small 1-categories via the nerve
construction.

Let C be a small category. We define a simplicial set NC whose n-simplices are functors
[n] — C. Since [n] = {0 < 1 < -+ < n} such a functor corresponds to an n-tuple of composable
morphisms in C. For example NCy = obC and NC; = ArrC. We can additionally take the
face operators to compose two consecutive maps and thus produce an n — 1-simplex. Similarly,
degeneracy operators add an identity on some object of the string thus producing an n + 1
simplex. With these definitions NC € sSet. Moreover it is not hard to prove that for any C,
NC is an co-category [Lurl8, Tag 0031]. In fact, the nerve construction induces a fully faithful
embedding Cat < sSet, taking values in co-categories.

Because of this embedding, we think of nerves of small categories as 1-categories seen as
"trivial" oo-categories. Thus, the benefit of the nerve construction is that it serves as a reality
check for all the higher categorical constructions we are doing in the new setting. For example,
one can prove that NC is a Kan complex, i.e. an oo-groupoid <= C is a groupoid. Results of
a similar philosophy abound.

The problem is that nerves of small categories are too well behaved as co-categories and
therefore are not indicative of the general case. For example, S =~ NC <= S has unique horn
filler for all inner horns.

This brings us back to our need for examples of co-categories. The solution proposed and
exploited by Lurie amounts to functorially importing examples from the other model of (o0, 1)-
categories we've discussed, locally Kan simplicial categories. This functorial construction is the
homotopy coherent nerve.

Intuitively we understand this construction as follows. For an insightful and concise expo-
sition of this phenomenon, we refer to [Rie23]. As has been previously emphasised, the theory
of oco-categories essentially amounts to doing category theory up to coherent homotopy where
all the composition/associativity data of the category are given by making coherent choices
of higher and higher homotopies. That means we require homotopies recording compositions
hijr : fix =~ firxo fij, a 2-homotopy specifying associativity data between three composable
morphisms et cetera.

Historically, the development of such ideas was in the context of the category of topological
spaces which is enriched in itself. Later topological spaces were replaced with the more tractable

and algebraic in nature of Kan complexes, transferring these considerations in the realm of
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simplicial categories. By carefully examining the data that go into such a structure we realise
they can be organised in a functorial construction. A homotopy coherent diagram of shape
A in S € sCat is given by a diagram €A — S.

For the purposes of developing homotopy coherent category theory the shapes we are in-
terested in are essentially captured by the A", A? capturing homotopy-commutative triangles,
A3 capturing up-to-homotopy associativity data and so on. It turns out that the functor
¢ : sSet — sCat admits a right adjoint, the homotopy coherent nerve?isCat — sSet. We

survey parts of this construction below. The natural bijection of the adjunction asserts that
{CA" - S} =~ {A" - NS}

That means that the homotopy coherent diagrams of category-theoretic interest in S can be
arranged as simplices of the simplicial set NS

To turn these ideas in formal mathematics, one begins by defining a functor A — sCat.
By the free cocompletion property of sSet this extends to a functor € : sSet — sCat that
admits an adjoint. It is that adjoint we are interested in. In subsection 3.5 we will see this
adjunction from a different light, as asserting that two ways of presenting the homotopy theory
of (o0, 1)-categories are equivalent. In fact, this right adjoint, the homotopy coherent nerve lies
at the heart of a deep analogy. One of the main theorems we survey asserts that every co-topos

arises as the simplicial set of homotopy coherent diagrams of a model category that models
HoTT/UF.

Definition 41. Following Cisinski in [Cisl16], for each n

C[A™] as follows: The objects are the natural numbers 0

0 we define a simplicial category
k < n. For a pair of integers let
Hom,, (k, 1) denote the S < [n] with minS = k and maxS = [. Then, Hom,(k,[) is included in

the poset (P([n]), €) and thus it is a poset itself. Thus we can canonically view it as a category.

N\

Then, we define the hom-simplicial-sets of our simplicial category to be
Mapgpany(k, 1) := N(Homn(k, l))

Example 42. We look into the simplicial category €[A?]. It has the same objects as A%, namely
0,1,2. Now we compute the mapping spaces. Spaces of the form Mapgaz) (i,+1) = A because
there is a unique chain between consecutive edges. On the contrary if () = [2], then to compute
Mapgia2)(0,2) we notice that there are exactly two chains in [2] with the desired endpoints,
0<1l<2and 0 < 2. Of course 0 < 1 <2 20 < 2 and therefore the mapping space is
N([1]) = Al. So, €(A?) is depicted below:
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0<1 1<2
0<1<2

0 b =2
0<2

With (0 < 1)o(1 <2)=0<1<2#0 < 2. So the triangle doesn’t commute strictly,

instead, it commutes only up to homotopy.

It can be shown that sCat is cocomplete. So, by the free cocompletion property of sSet = A
the functor € that was defined on the representable A™ can be extended to all of sSet in a

colimit preserving way. Moreover, it induces an adjunction:

¢ : sSet sCat : )

We also obtain a formula for the adjoint D(%),, := Homgcai (€A™, €).

For example, since one can easily compute that for i = 0,1, P[i] = [i] and therefore
N(C); = NC; = C;. More importantly, through the computation in example 7?7 above, we get
that o € (%), determines a diagram in %

Cy
fo fi,2
f1,20f0,1
G e 0
\_/
fo,2

Conversely, any such diagram determines a unique 2 simplex in the coherent nerve. If we
substitue f; ;11 = id¢,, then we see that two arrows f, g are connected by a 2-arrow in C <=
they are homotopic in the oco-categorical sense of Definition 25.

The intuition here is the following: A homotopy-commutative triangle in the simplicial
category ¢ is given by a pair of maps, here fy; and f;2, another map fy2 and a homotopy
h: fo2 =~ fi2o fo1. In the simplicial category € we have a notion of strict composition and a
notion of a homotopy. So we obtain a homotopy commutative triangle for each map homotopic
to the strict composition fi9 0 fo1. This can be seen as a sort of 'fattening-up"'” of the strict
composite fi2 0 fo1 in an entire homotopy class of composites matching the up-to-homotopy

composition we have in the context of co-categories.

10This is the actual scholarly term.
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As discussed above, an important use of the homotopy coherent nerve is to produce examples

of co-categories out of locally Kan simplicial categories:
Theorem 43. If ¥ € sCat is locally Kan, then 91(%’) is an oo-category.

Proof. For a proof we refer the reader to Prop 1.1.5.10 in [Lur09]. O

For example, nerves of ordinary categories arise as 9%(C') homotopy coherent nerve of the
constant simplicial category on C, see [Lurl8, Tag 00KZ], whose hom-simplicial-sets is the
constant simplicial set on Homeg(X,Y).

We obtain some of the most important co-categories in this way. For example, let J# an
denote the full subcategory of sSet spanned by the Kan complexes. This is a simplicial subcat-
egory of sSet. In fact, using the theory of internal lifting problems, it can be shown that it is
closed under the formation of internal homs, namely if K is a Kan complex, then so is Fun(S, K')
for any S. This means that the subcategory ~# an is locally Kan. For another proof of this fact

using the theory of simplicial model categories, one could observe that £ an = sSet,, see 178.
Definition 44. We define the oo-category of spaces S := (% an)

Let qCat denote the full subcategory of sSet spanned by co-categories. The internal homs
make this into a simplicial category. In general, this simplicial category is not locally Kan.
To remedy that, instead of taking internal homs we take their maximal sub-co-groupoid,

Fun(X,Y)=. This is now a locally Kan simplicial category. We denote it by Qcat

Definition 45. Define Cat,, = 9(Qcat). We think of Cat, as the co-category of small co-

categories

2.3.5 Limits and colimits

To obtain a notion of limits and colimits we generalise cones on a functor, we consider the
ao-category of such cones, and ask that it has a terminal /initial object respectively. The way
to generalise cones in the setting of co-categories comes from the work of Joyal and amounts to
obtaining a join — slice adjunction. It turns out that it is easier to describe the join functor

and explain the slice via the adjunction, so that is how we proceed.

Definition 46. Let C,D be categories. We define their join to be the category resulting from

"juxtaposing" C, D and adding exactly one arrow from every object of C to every object in D.

This immediately generalises to simplicial sets.
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Definition 47. Let X,Y € sSet. Define their join to be the simplicial set whose n- simplices
are:
XY= || KixL

i+j+1=n

Examples 48. (1) It is a classical result that A" x A™ = A™+n+l,

(2) Take an oo-category C' and form the co-category C= := C = A%, Then C{ consists of
the arrows of C' and Vr € Cj a unique arrow z — = € AJ. Thus C~ formally adjoins
a terminal object to an oo-category C. Dually, we think of C7 := A" x C' as formally

adjoining an initial object to C.

In the context of the previous example it is also important to consider what do maps
p: C% — D look like. If C'™ is C'+ terminal object we might suspect, and correctly so, that to

specify such a map it suffices to provide the following data:
(1) Amap f:C — D.
(2) A vertex v e Dy.
(3) ¥ vertex x € Cy, an arrow d,, : f(x) » ve D,

(4) The maps d, above should be compatible with one another in the sense that for any map

a:x — yin (7 we should get a 2 simplex in D witnessing the commutative triangle

d, = dyo f(a).
(5) Higher coherencies should be treated similarly.

We have a canonical inclusion i : C' < C*= and we observe that p|c = poi = f. Thus we
say that such a map p extends f. Using this imagery we are indeed very close to obtaining a
notion of cocone on f. Let f : I — C be a diagram whose colimit we’d like to compute. The
point is that the data of a map f : I — C that extends f captures exactly what our intuition
of a cocone on f is. Indeed, by the discussion above, such a map is given by f, a choice of a
vertex d in C, the nadir of the cocone, and compatible maps into the nadir d.

As explained in the introduction of this subsection, the slice construction is functorial and
admits a left adjoint. Via this adjunction, it turns out that maps of the form I x A® — C
transpose to maps A” — C)y and thus we think of the latter as the oo-category of cocones on
f I — C. One can then generalise the notion of terminal and initial object in an co-category.

Lastly, we define a colimit for f : I — C to be a terminal object in the co-category of cocones

o
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Definition 49. The join construction can be arranged in a functor S * — : sSet — S / sSet

A

In the presheaf topos, A all (co)limits are computed componentwise. Moreover, the product
functor admits a canonically given right adjoint, the internal hom, and therefore commutes with
colimits. Using these two facts and the degree-wise definition of join on can show that S x —
preserves colimits. That makes us suspect it might admit a right adjoint. It turns out that
is indeed the case and we can construct it explicitly. We’ll see why we can interpret this
construction as "the slice co-categories". We will use them to capture the "oo-categories of
(co)cones on some diagram'.

Denote it by: (p: S — C) — Gy, : S/sSet — sSet. The adjunction means we have bijective

correspondences between hom-sets as seen below:

s —r .

7
-
-
-
-
-
-
-

S*K/

To determine the simplices of C},, we can equivalently look at maps A" — C),,. Using the

12
=

O

bS]

adjunction above we get
(Cp/)n = Homsset(S * Anv C) (O/p)n =~ HomSSet(An * T; C)

It turns out that if C'is an co-category then so are C,,,, C/, for any p,q : S — C, for a proof
we refer to Proposition 1.2.9.3 in [Lur09] or Proposition 29.3 [Rez22].

Now that we have at least a basic understanding of these simplicial sets we’ll look into how
to use them. We will use them in exactly two ways. Firstly, by taking p = 2 : A® - C
we’ll obtain a characterisation of the terminal (or dually initial) object on C. Moreover, when
K = A%and p: I — C we can interpret C), as the co-category of cones on p : I — C. Combined
with the previous we’ll obtain the notion of (co)limits for co-categories.

1st use: We want to obtain a notion of terminal and initial objects. For ordinary categories,
we have that an object T € obC is terminal exact when VY € obC : 3!f : Y — T. Then, one can
deduce that the ordinary slice C /7 ~ C. The intuition behind this fact is that since all objects
come with a unique map into 7" to look at maps into T is equivalent to looking at objects of C.
This is the intuition behind the oo-categorical generalisation of the notion. In an attempt to
mimic the phenomenon above we want to look into the slice co-category over a vertex x € C,
thus we let p = 2 : A — X. Ultimately we’d like to compute this oco-categories n-simplices
so we also let K = A"™. Let the last isomorphism come from 48. Then, the naturally bijective

homs above specialise to:
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(Cla)n = A" = Cjs = Homysa (A" x A%, C) = Homl, (A", C)

By the & "exponent" on the right we mean to indicate that we take those maps of simplicial
sets that extend # : A — C. Another way to put this is to say that n-simplices of this
ow-category are given by maps o : A"t — C with o|gme1y = 2.

Now as a 'reality-check" we can verify that n-simplices of C); agree with our intuition of
slices in ordinary categories. Vertices are intervals that extend 2, namely arrows f : y — .

Similarly arrows in the oco-slice correspond to 2-simplices of C' "over" the vertex x, namely

.l\w/.Q

An important consequence of this construction is that we obtain a canonical map 7 : C'/, —

diagrams of the form:

C that takes these diagrams and 'forgets" the vertex x along with the maps going into it. For
example my(y — =) = y and m; applied to the diagram above would output the map e; — e,.
Then, one shows that this map is always a right fibration of simplicial sets.

A small digression is in order here. The study of presheaves is a central aspect of cate-
gory theory and the homotopy coherent generalisation is no different. co-presheaves are defined
as Pshy (%) := Fun(¢,S) where S = N" (% an) = N"(sSetyq). A functor of oo-categories
€ — N"™( an) transposes to one of simplicial categories: €4 — #an which corresponds
to a homotopy coherent diagram. Now, diagrams such as these involve writing down an in-
finite amount of coherence data. This makes the study of oco-presheaves rather unmanage-
able. The method for overcoming this, Lurie’s co-Grothendieck construction, or straightening-
unstraightening is what some call "technical heart" of Lurie’s Higher Topos Theory, see here
and here. One can then study "coCartesian" fibrations over % instead of presheaves on €. The
former environment is substantially better behaved. As much I would have enjoyed delving
deeper into these ideas they were too much of an undertaking on top of my other goals with
this thesis. A non-published account I’ve found enjoyable is Jaco Ruit’s Msc Thesis on the topic
available here. We should also note that Lurie’s correspondence relies on the model structure

for marked simplicial sets whose treatment lies outside the scope of this thesis.

Definition 50. A vertex x € Cp will be called terminal in C' when the forgetful map = : C/, —
C'is a trivial fibration. Dually, a vertex is initial exactly when the forgetful map = : €y — C

is a trivial fibration.

Since these maps are already right or left fibrations, additionally being a trivial fibration

is equivalent to being an equivalence of co-categories and we therefore find our desired carac-
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terisation. Essential surjectivity captures that for any vertex y there exists an n-simplex going
into ¢. Fully faithfulness captures the uniqueness of such a map. Indeed one can show that the
full subcategory spanned by terminal (respectively) initial objects is either empty or equiva-
lent to the terminal co-category ~ A°, generalising the fact of ordinary category theory that if
there exists a terminal object then it is unique up to unique isomorphism, see Proposition 29.7
[Rez22].

2nd use: As previously discussed, we can think of maps p: I~ — C as coconesonp: [ — C

whose colimit we’d like to compute.

Definition 51. In the setting above, a colimit for a diagram p : I — C' is an initial object in

Cyy, the oo category of cocones on p.

This is the topic of section 31 in [Rez22]. Using the adjunction join - slice we can get equiv-
alent formulations for lifting problems. In fact, we get operations on arrows called "pushout-join"
and "pullback-slice". Moreover, many properties of maps of simplicial sets have various stability
properties with respect to these operations. Section 30 of [Rez22] is devoted to the study of
how these notions interact. Consequences of this interaction include that if C' is an co-category
then so are the C),/,C),. When it comes to our example of interest above we get an explicit
formulation of the requirement for a cocone to be colimiting. Explicitly, a colimit of p: I — C
is given by a map p : I= — C' which extends p, such that any diagram as below admits a lift.
The map p is the transpose of A — C)p that picks out the colimiting cocone. Asking for a lift

amounts to the forgetful 7 : C), — C being a trivial fibration.

]>

L

I*&A"*:C’

-
-
-
-
-
-
-
-

I x A"

Definition 52. Let C be an co-category. Consider the span e < ¢ — ¢ ~ A2 A pullback in

C is a limit for a functor A? — C.

Developing the theory in this way one retrieves many, if not all, usual category theoretic

facts about (co)limits.

2.3.6 Adjoints

In general, when we want to generalise a notion to the oco-categorical setting it is just a matter

of choosing the correct 1-categorical definition to generalise. For adjoints, there are many
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available candidates. A prime candidate would be to say f : C' < D : g is an adjunction when
we have isomorphic or better, homotopy equivalent, objects Map(f(—),—) = Map(—, g(—)) :
C x C°° — &§. As discussed in the digression of the previous section, space-valued presheaves
are hard to understand directly. We understand them indirectly via their "classifying (left or
right) fibrations'. A treatment of these ideas lies outside the scope of this thesis. It is the
topic of section 2.2.1 of [Lur09]. Instead, we’ll use a definition that doesn’t require additional
technical machinery. So we’ll use the Kerodon definition generalising the triangle equalities.

Definition 53. Let F': C' < D : G be functors between co-categories. We say F' 4 G when

n:idg —» GF € Fun(C, C),

there exist and two 2-simplices as below:
¢: FG — idp € Fun(D, D),

FGF GFdG

idF% XidF noid/ woe
F F
idgp G idg S

In any case, we are just providing a definition for completion. Effectively we will be black-

boxing this notion and any technical proofs involving it.
We can immediately give the definition of what it means to be a locally cartesian closed

oo-category.

Definition 54. An co-category is cartesian closed when it has finite products and for any

object x € C, the product functor x x — : C' — C' has a right adjoint.

Definition 55. An co-category is locally cartesian closed when for any object x € C' the

slice category C), is cartesian closed.

In the presence of presentability, the topic of the next section, locally cartesian closed oo-

categories admit a tractable characterisation.

2.3.7 Presentable co-categories

The notion of presentability in co-category theory is essentially a straightforward generalisation
of the corresponding notion for 1-categories''. Structurally, a presentable co-category is one
that has small colimits and where one has a small set S of "well behaved" objects, and that any

object in the co-category can be obtained as a colimit formed from objects of S. This statement

Hgee section 3.8.1
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correctly echoes the well-known slogan of ordinary category theory, "every presheaf is a colimit
of representables’. Then the objects of S can be thought of as "generators" for %

Now whenever one has generators with respect to some operation, one gets an induced
"induction principle'. This induction principle says that to define a "operation" preserving
function out of a set with generators for that same operation, it suffices to provide the values of
the function on the generators. Making this precise would require a treatment of accessible co-
categories which lies outside the scope of this thesis. But, we do record the universal properties
of the idempotent completion Ind, (%), a sort of formal k-filtered cocompletion of €. Then
we get the universal property of Proposition 5.3.5.10 in [Lur09] that asserts that if 2 admits
r-filtered colimits, then, one has the following equivalence of co-categories for the functor oo-

category of k-filtered-colimit-commuting functors
Fun®(Ind,(¥¢), Z) ~ Fun(¥¢, 2)

Thus armed, one can prove various good properties for presentable co-categories. Perhaps
the most important one is a characterisation proved by Simpson that characterises presentable
co-categories as exactly those that arise as reflective subcategories of co-presheaf categories.
Another is the representability criterion that asserts that a presheaf out of a presentable co-
category preserves colimits <= it is representable! This in particular implies that presentable
categories are complete and enjoy an adjoint functor theorem. For a comprehensive account
consult Section 5, in particular 5.5 of [Lur09]. A concis exposition is given in [Lur03].

We begin the section by briefly looking into x-accessible co-categories, those that have a set
of well-behaved generators with respect to colimits. Then we define presentable oco-categories
and sketch a proof of their main characterisation. We conclude by studying some of the very
strong formal properties enjoyed by presentable co-categories.

But in what sense are the generators well behaved?

In ordinary 1-category theory, a category is filtered when any pair of objects and any pair
of parallel arrows have "an upper bound". This "upper boundedness' makes colimits indexed
over filtered categories enjoy nice properties. It is exactly this idea echoed in the following

definition.

Definition 56. (Definition 5.3.1.7 [Lur09]) Let s be a regular cardinal and ¢ an co-category.
We call € k-filtered exactly when any diagram f : K — € extends to f : K= — €.

Definition 57. Let % be an co-category which admits small k-filtered colimits.

(1) A functor f: € — 2 will be called k-continuous when it preserves s-filtered colimits.
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(2) An object will be called k-compact if the functor corepresented by it is x continuous

namely if Homy (C, —) preserves s-filtered colimits.

(3) We denote by %, the full subcategory spanned by the k-compact objects.

Being k-compact can be understood in the following way. If we let C' = = we find Mapg, (*, colim;%;) ~

colim;Mapy (x, 6;), namely that to "pick a point" in a "disjoint union" is equivalent to "picking
a point" in "one of the constituents". Moreover, it is a classic slogan of topology that compact

sets behave much like points which motivates the name.

Definition 58. Let x be an uncountable cardinal. An co-category ¥ is essentially-x-small if
it is k-compact as an object of Cat. It is equivalent to asking that it is categorically equivalent

to a k-small simplicial set.

Definition 59. An co-category ¥ is essentially small when it is essentially-x-small for some

small x.

Definition 60. An oo-category % is locally small when V objects X,Y of ¥ the mapping
space Map,(X,Y') is essentially small.

Definition 61. Let % be an oo-category. ¢ will be called k-accessible when it admits small
r-filtered colimits and contains an essentially small full subcategory ¥’ < ¥ which consists of

r-compact objects and generates % under small x-filtered colimits.
This is in some sense analogous to requiring a basis % for a topological space Z .

Proposition 62. (Proposition 5.4.2.2 & remark 5.4.2.13 [Lur09]) If ¢ is r-accessible then %,

is essentially small.
Definition 63. An oo-category % is presentable if it is accessible and admits small colimits.

In summary, an co-category is presentable if it is locally small, admits small colimits and
there exists a regular cardinal x and a "small" set .S of k-compact objects of € such that every

object of € can be built as a s-filtered colimit of objects from S.

Example 64. For an locally small co-category €', Psh,, (%) is a presentable category.
Indeed, by example 5.4.2.7 [Lur09] it is x-accessible for some k. Since spaces S are cocom-

plete and colimits in Fun(%’, S) are computed componentwise co-presheaves are also cocomplete.
Moreover, we have the next important characterization.

Theorem 65. (Theorem 5.5.1.1. in [Lur09] and Theorem 1 in [BAR]) The following conditions

are equivalent for an oco-category €.
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(1) € is presentable.

(2) € is cocomplete and there exists a small set S < %, that generates € under r-filtered

colimits.

(3) There is a small co-category & and an adjunction

L

¢ ___, Fun(&,S)
(4) There exists a regular cardinal k and S ¢ %, that detects equivalences, namely a morphism

u: A — Bin % is an equivalence exactly when Map(X, u) is an equivalence for all ¥ € S.

Proof. (1) <= (2) is just the definition.

(2) <= (3) Assume ¥ is presentable. Take x such that % is k-accessible. Let % denote
the full subcategory of k-comapct objects. As discussed above there exists a small set S € %
that generates € via k-filtered colimits. If we think of Psh(%}) as the free cocompletion of &
it is reasonable to expect € to arise as a subcategory. For formal reasons it is reflective.

Part of Proposition 1.3.11 of [Lur03] or Proposition 5.4.2.2 [Lur(09] is that if € is k-accesssible
then % is essentially small. Consider Psh(%,). There is an obvious inclusion %, < % which
extends uniquely to a continuous functor Psh(%,) — %. In the spirit of Kan extensions, the
latter is left adjoint to the Yoneda embedding, which is of course fully faithful.

Now we assume % is of this form and wish to show it is presentable. By Prop 5.3.5.12 in
[Lur09], Psh(&) is accessbile. This is a refinement of the statement that every presheaf is a
colimit of representables. By Proposition 13.21 [Lur03] we obtain that so is the essential image
of L, namely %. To see that ¥ admits small colimits, just form the colimit in Psh(&) and
apply the right-adjoint L, which preserves them.

(2) = (4) Takethe S ¢ %, of (2). Takeau : A — B. Assume Map(X, u) is an equivalence
for all 3 € S. Consider the class of objects C' € € such that Map(C, u) is an equivalence. Using
the universal property of colimits we see that this class is stable under colimits. Because S was
taken to generate &, the class above contains all objects of €. Therefore Map(C, u) equivalence

for any C' € € and therefore u equivalence.
For the proof that (4) = (2) we refer to Theorem 1 ((7) = (6)) in [BAR]. O

Remark 66. Condition (4) above is particularly illustrative of the close relationship of pre-
sentable co-categories admitting presentations by S-Bousfield localisations of model categories.
Indeed, such a localisation enlarges the class of weak equivanelnces VW of a model category M
so as to ensure S-local objects become weakly equivalent. These localisations are the topic of
Section 3.6.3
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Presentable co-categories enjoy very strong formal properties that our next theorems record.

The first are internal or structural. The next are relational.

Theorem 67. (Corollary 5.5.2.4 in [Lur09] but the proof is taken from Corollary 5 in [BAR]]

A presentable co-category € admits all small limits.

Proof. Consider € as the full subcategory of local objects in Pshy,(2) from some localisation
i: %6 < Pshy(2): L and let p: I — € be a diagram. The crucial observation is that local
objects are closed under limits in Pshy, (). This implies that the limit of ¢ op is a local object.
Full faithfulness of i allows us to deduce that the limit cone of ¢ o p factors through ¢ and gives

a limit cone in €. [

Theorem 68. (Proposition 5.5.2.2 [Lur09]) Let € be a presentable co-category and F' €
Psh(%). Then F is representable if and only if F' preserves small limits.

Theorem 69. Let F': ¥ — & be a functor between presentable co-categories. Then,
(1) F has a right adjoint <= it preserves small colimits.
(2) F has a left adjoint <= it is accessible and preserves small limits.

Corollary 70. Let % be a presentable co-category. Then % is locally cartesian closed exactly

when colimits are universal, namely pullback functors preserve colimits, see Proposition 75

Proof. € is locally cartesian closed exactly when pullback functors have right adjoint. ¢ has
universal colimits when pullback functors preserve colimits. The previous theorem asserts the

two conditions are equivalent. ]

2.4 Grothendieck co-topoi

In modern times the study of geometry has found it advantageous to study surfaces or manifolds
locally. Indeed, the inquiry into manifolds or Riemann surfaces is one where things are at least
(very) well-behaved locally. Apart from the surfaces themselves we also want to study functions
out of them. This naturally leads us to want to study functions defined locally. This is the
motivating idea behind sheaves and how they were employed by Grothendieck, who has shaped
modern Algebraic Geometry.

Take X € Top and let O(X)° be its poset of open sets. Over each open set U we want
to consider the collection of functions with domain U. Of course, when the codomain of the
functions has some algebraic structure as a group or ring, then the collection of functions

naturally inherits that structure pointwise. So, if we are thinking of real-valued functions over
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each open U, we should provide a ring Ry to be thought of as the ring of functions defined
on U. Given an inclusion of open sets V' < U one may also require that there is a restriction
function Ry — Ry defined by f — f|y. This data can be concisely packaged by requiring a
functorial assignment R : O(X)°® — Ring.

Restriction of functions can be seen as a global to local operation. The outcome is certainly
at least more local. A general distinctive feature of sheaves is a sort of inverse to this operation.
In short, given a compatible family of functions we want to be able to glue them together to
a global one, which in turn can be restricted to retrieve the pieces. Of course, if there is any
hope to do this, the functions should agree wherever they overlap, otherwise, how could we
canonically decide the value of the global function on the domain of disagreement? Take an

open cover {U;}; of X, and functions f; € Ry,. If these functions agree on overlaps of the

various Uy, that is if fi|y,~u; = fj|u,~u; then we postulate the existence of an f € Rx such that
flu, = fi- The preshaves satisfying such a condition are called sheaves and are denoted Sh(X).
This is a local to global condition. In fact, it says that if you take all these pieces you can glue
them together (local — global ) in such a way that if then you restrict again (global — local)
you retrieve the original pieces.

It wasn’t long before it was understood that (pre)sheaves of sets instead of rings are much
more general and enjoy fantastic formal properties. Indeed Psh(C) is always a topos. In addition
to that Grothendieck realised that the topological spaces he wanted to study, schemes with the
Zariski topology, didn’t have enough open sets. So he generalised the setting he was working
in. In the study of sheaves, we require the notion of an open cover, i.e. special collections
{U; — X}; that are declared to be covering. Imposing some reasonable axioms on when such
collections should be thought of as covering we obtained the notion of a Grothendieck topology
J. A category C equipped with such a topology is called a site.

Through it, once again, we define what it means to be a sheaf and obtain a collection Sh(C)
on a site (£, J). Morphisms of sheaves are nothing but natural transformations between them,
this makes the embedding Sh(C) <> Psh(C) full. In addition to that, there is a functorial
process, sheafification or the a + + construction, turning a presheaf into a sheaf. For a compre-
hensive account see [MM94]. One can prove that a - 7, making Sh(C) a reflective subcategory
of Psh(C), and moreover that a preserves finite limits or is ezact. A Grothendieck 1-topos is
one that is equivalent to a category of sheaves on a site. This is the definition we generalise to

the oo-categorical setting.

Definition 71. An co-category X is an co-topos exactly when there exists another co-category
% so that

X5 Pehu (%)
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Where a — ¢ and a preserves finite limits.

2.4.1 Descent

While this definition appeals to our intuition of what a Grothendieck co-topos should be, it is
very hard to use. Indeed, if we had an co-category X and wanted to verify it is an co-topos
we’d have to construct an entire co-category ¢ and a special pair of adjoints. This definition
is extrinsic and difficult to manage. Instead, we’d like a definition internal to X.

Such a characterisation is achieved through the notion of descent and universal colimits.
We have:

Theorem 72. An co-category X is an co-topos exactly when it is presentable as an oco-category,

its colimits are universal and it satisfies descent.

As already discussed, an co-category being presentable is equivalent to it being a reflective
subcategory of some presheaf category. The two extra properties will help us prove that the
left adjoint reserves finite limits. Confusingly, since descent is rarely present without universal
colimits, many authors use the term both for the property and the pair of properties. We will
not adopt this terminology.

Descent is a generalisation of the "sheaf condition" to the co-setting. It is a pair of re-
quirements that together ensure a good interaction between pullbacks and the formation of
colimits.

Descent has many equivalent formulations. We will use different ones according to our
purposes in each section. Presently, we want to emphasize descent as a condition mediating a
good interaction between local and global treatment of our objects. To that end, we introduce
strong descent. Next, we wish to discuss object classifiers in co-topoi for which a seemingly
weaker version of descent is better suited. in the presence of universal colimits, as in an co-topos,
the two are equivalent, see proposition [2descents].

Consider a diagram X, : [ — X and X = colim; X;. We think of X, as the local pieces being

glued together to form X. We are also interested in maps into X captured by the slice category
X
/COhmZXl

Definition 73. We say that an co-category % has strong descent when the self indexing

functor s : €°°P — Cat, takes colimits to limits,

4 ~ i C
/colimiXi = lim, /XZ-

The right-hand side above is a limit of a functor taking values in Cat.,. In HTT section 3.3

I
Lurie gives some computational tools for such limits. In the result below we find Ceart / X, The
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denotation "cart" signifies that we only consider the natural transformations whose naturality

squares are all pullbacks.

Proposition 74. We have an equivalence limi(g /S X, = Ceart /S X,

We want to compute the limit of a functor taking values in Cat,, According to Corollary
3.3.3.2 of [Lur09] the limit is computed by lim; F o X =~ I';(Er.x), the co-category of cartesian
sections of Fr.x — I, where Ep.x is the pullback of F'o X : I — Cat,, against the univer-
sal fibration. We can compute Fr.x = % so that the space of cartesian sections is exactly
Cgcjart / X,

So, restricting to cartesian or equifibered natural transformation ¢! / X, was imposed by
the computation of limits in Cat,. It has the following pleasant consequences.

In an equi-fibered natural transformation all components of the natural transformation have
equivalent fixed fibers over a given point: Explicitly, &., , =~ X, ,(,), reminiscent of the "com-

patible intersections" condition of 1-Grothendieck topoi.

X, X, X;
A? = {y} Y, —— Y

We will describe the equivalence of Theorem 73 via an adjoint equivalence. We define the

pair of functors going in opposite directions. First,

. ¢!
colim : Peart /5 — %/ colim; X;
where given an equifirebed natural transformation with components a; : Y; — X;, we can take
colimits horizontally and obtain a map colima; : colim;Y; — colim;X;. In the other direction,

we define,

cst %/colimiXi - cgclart/X.

To be given by cst(Y EN colim; X;) = X; Xeoiimy, ¥ — X;. In Set, a pullback against an
inclusion is an inverse image. Here we have X =~ colim;X; so we think of X as the product
of "gluing" together the pieces X;, and then take the span X; — X <« B. So, the pullback is
computed by ¢7'(X;).

Using the universal property of pullback and other elementary means one establishes that

these functors are adjoints.

% e Cgc;r
/COIIIHZXI_) t/X.
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On the left hand side we have € / colim; X;- Since we have a formed colimit, we have glued

the pieces, it makes sense to think of this as the global object. In forming 4 e colim; X; We look
1
at arrows with a "global" codomain. On the right-hand side, we have Ceart / X, = limicg / X,

so a family of arrows Y; — X; into the local pieces X;, with the addition of the compatibilities
enforced by the definition of Y; and the formation of the limit.

Naturally, the colim functor is (local — global) and the cst is (global — local). An oo-
category has a strong descent exactly when this adjunction is an equivalence. That is equiva-
lent to both adjoints being fully faithful and both the unit and counit to comprise of natural
isomorphisms.

We then get two statements. Each corresponds exactly to one of the two properties we are

interested in. The first is universal colimits.

Y — colimX; =~ colim(cst(Y — colimXi)) = colim(X; Xcolimx, ¥ — Xi) =

Y >~ COllHl()(Z X colim X; Y)
g:Y — colimX; = colim(gi 0 X Xeolimy; ¥ — Xi)

So if we start with a map into a colimit the cst functor lets us break both the domain and
the map itself into pieces coherently with the pieces of X = colimX;. Then strong descent can
be

Y, - X, =~ cst (colim(Y, — X.)) = cst (coliin — colimXi) = { X Xcolimx, colimY; — X},

And therefore, in particular, Y¥; = X; Xcoumx, colimY;. So given a collection of compatible
pieces, namely an equifibered natural transformation Y, — X,, we can glue them together and
then take them apart again and retrieve the original pieces, up to equivalence of fibrations, a
categorical equivalence compatible with a base.

In addition to that, in doing so we keep the fibers intact. Indeed,

12

Xy Y. Xi Xeolimx; colimY; —— colimY;

R - |

A% = {y} X; ~ X; colim X

so that any fiber of any c; arises as a fiber of colimY¥; — colimX;.
Now that the (local to [global to local) to global] character of descent has been emphasized
we turn to the version of descent and universal colimits that is best suited for applications, like

our next section on object classifiers.
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Proposition 75. The functor cst is fully faithful <= for any f : T'— S the pullback functor
f* 4 /g 4 /1 preserves colimits.

Proof. The proof below is adapted from Lecture 3 of [Rez]. We begin by reformulating some
things in a more convenient way.
(UC1): The functor est is fully faithful when colimY; ~ Y over X.

XixxY=Y ——Y

J |

X; ———— colimXj;

(UC2): The pullback functor induced by f : T" — S preserves colimits when: f*(colimX; —
S) := (colimX;) xg T — T is isomorphic to colim; (XZ- xgT ) So in the situation of the diagram

below:
Xi Xx Y =: Y; Y T

| | |

X; —— colimX, =X —— §

we can deduce colim;Y; = colim; (XZ- X g T) is iso to Y = (colimX;) xg T — T. With these
reformulations we can immediately see that UC2 = UC1for X =Sand T =Y

The implication UC1 == UC?2 is essentially by the pullback pasting lemma. Let ¥ —
X = f* (g : colimX; — S), the middle vertical map in the diagram above. This map further
pulls back to Y; = toX;. By our assumption that UC1 holds, we get colimY; is isomorphic to
Y over X. But, by the pasting lemma, ¥; — X; are isomorphic over X; to f*(X; — X — 9).

Combining these two facts:
f*(colimX; - S):=Y -»T = colimY; —» T :=colim(X; xx Y) > T =, (X, = X —09)
O

Definition 76. % has descent when the core of selfindexing functor, c¢s : €°° — S with
X — (‘@”/X):’ takes colimits to limits.

Proposition 77. In the presence of universal colimits, strong descent is equivalent to descent.

Proof. Strong descent specialises in descent for § < Cat. For the converse observe that strong
descent in particular means that the functor "colim" has a fully faithful right adjoint, cst, making
colim a localisation functor in the sense of Lurie. But a localisation functor is an equivalence

exactly when it is conservative, which is exactly what is asserted by universal colimits. O
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2.4.2 Caracterising co-topoi

This subsection is devoted to sketching the proof of

Theorem 78. An co-category % is an co-topos exactly when it is presentable, and has universal

colimits and descent.

Proof. The proof presented here is a slightly adapted version of the one given by Rezk here.
To show that all co-topoi satisfy these properties one argues as follows:

The first step is to show S = J(sSetj) satisfies these properties. This appears as Proposition
6.1.3.14 in [Lur09], with a rather different, but of course equivalent, formulation.

Firstly, we’ve seen how all co-presheaf categories are presentable. We will later see in greater
detail how various properties, or structures, of simplicial model categories lift through 91. The
point is that it suffices to show corresponding model-categorical properties in sSetxg. One
then directly proves that sSetxg has universal homotopy colimits and descent for homotopy
colimits. A key ingredient for achieving that amounts to compatibly replacing morphisms of
a homotopy-(co)limit with fibrations or cofibrations in which case the diagram is an actual
(co)limit in sSet. This uses arguments that appeared in [KL18].

Having established that spaces S have descent, one can then prove that since limits and
colimits in Psh,, (%) are computed componentwise, these properties lift.

Lastly, as in Proposition 6.1.3.15 in [Lur09], we find that having universal colimits is closed
under forming left exact reflective subcategories. Rezk notes that obtaining the same for descent
is substantially more demanding but doable. Now for the opposite direction, suppose you have
a presentable oo-category 4 with universal colimits and descent. We’ve already seen how being
presentable already places € as a reflective subcategory of Pshy (€") for some k. The other
two properties go into showing that the left adjoint, call it L, is left exact.

The key case is showing it preserves pullbacks. Take a pullback in Psh(¢"). Let P :=
X xpY. We must show we get an induced iso LP ~ LX x;p LY. As discussed in the
previous section, descent and universal colimits ensure a smooth passage between treating
objects locally and globally, in the guise of a good interaction between colimits and pulling
back against inclusions. How could we apply these ideas here? Since we are working with
presheaves, there is a "canonical" step. Write the middle vertex of the span as a colimit of

representables.
Pp——Y

| |

X —— B = colim;yp,

Pullback against the inclusions yp, < colim;B; and thus obtain "local pullbacks" for each <.
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https://www.youtube.com/watch?v=8fcV7kMP0OM

They are also compatible with one another in the sense that for each morphism ¢ — j in I we
get, by the universal property of pullback for P;, a map P, — P;, same with X,Y. By the
pullback pasting lemma we get pullbacks

Pz' X i YB;
Pj Xj YB;

The same happens for Y.

In these local pullbacks the middle vertex of the span is representable. & having universal
colimits ensures that forming the colimit over ¢ of each vertex in these local pullbacks will
produce the original object, for instance, P ~ colimP;. One then shows separately that L
preserves pullbacks whose middle vertex is representable. Thus L commutes with the pullbacks
above. Moreover, L being a left adjoint means it preserves colimits so LP ~ LcolimP; ~

colimL P;, similarly for X,Y. By descent in &, we get pullbacks:

LP, —— LP

|

LX; —— LX

|

Ly, —— LB

Combining with those for LY we get:

LP, Ly,
\ \
LX; l Lysg,
LP Ly
| .
LX LB

where every face but the bottom one is a pullback.
By universal colimits in &, the colimit of pullbacks is a pullback of colimits, implying that
LP is a pullback of LX — LB «— LY, as desired.
]
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2.5 Object classifiers and universes

In good old regular ZFC set theory, it is well known that the information that specifies a subset
A € B, or equivalently an inclusion, A < B can be encoded in an arrow x4 : A — {0,1}. In
the category Set this can be rephrased by saying that any inclusion arises as the pullback of a
unique map against {1} — {0, 1}.

This definition can be very naturally generalised for arbitrary categories. First, we generalise
the notion of a subset. We want a definition of what a subobject is. We consider the collection
of monos with a fixed codomain X. Of course, if two such monos are connected by an iso in the
slice category they should represent the same subobject. So, we define, Sub(X) = {A — X} ..
We call each representative of an equivalence class a subobject of X. If the ambient category C
is locally small, this is always a set. If, in addition, C admits finite limits, then Sub(—) acts on
morphisms by pullback and is indeed a presheaf. A category is said to have a subobject classifier
exactly when this functor is representable, that is if there exists a special object = »—  such
that Sub(—) = Hom(—,2). The existence of a subobject classifier is a very powerful property.
The structure it induces lies at the heart of the study of logical aspects of elementary topoi.
There are many classical references. The canonical one is [MM94]. Another is [Goll4].

Indeed, we can use some archetypal objects that can be formed in virtually any category
of interest such as the inclusion 0 < 1 whose character we define to be — : 1 — €. In a
topos, we can also mimic intersections and unions. For a comprehensive account see Goldblat.
All these operations impose algebraic structure on Sub(X) making it a lattice with a meet
and join operation. It turns out that the complement operation given by the arrow — is
a pseudocomplement making Sub(X) a Heyting Algebra, instead of a Boolean one. Heyting
Algebras classically serve as the algebraic framework in which we interpret intuitionistic logic in
contrast to classical one. There are also internal properties of a topos that ensure that Sub(X)
is a Boolean Algebra. Such topoi are called classical or Boolean topoi. For example, if § or
t: 1 — Q have a complement in Sub(2) or if i3 : 1 — 1 + 1 is a subobject classifier, then the
topos is Boolean. The last statement is particularly illuminating in that it can be interpreted
to mean that the archetypal subobject classifier we have from Set really characterises the class
of Boolean topoi.

What form does the subobject classifier take in an co-topos? The first step is to reformulate
the above in a way that matches the machinery of co-categories we have developed thus far,
namely in terms of slice categories and terminal objects. For any mono A < B there exists a

unique pullback square whose other vertical map is t < €.
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A——t
I
B —— Q

Recall that the arrow category Arr4 = Fun(A!, %), or to follow Lurie’s notation for the
oo-setting, Oy or just O when the ambient category is clear, has objects the morphisms of &
and commutative squares for arrows. We want to describe Sub(X') so we fix the codomain and
restrict to monomorphisms. Let OM be the full subcategory spanned by monomorphisms. Let
OM) have the same objects but where arrows are only pullbacks.

There is an obvious projection O — C taking an arrow to its domain. Fibers of this map
are precisely slice categories. Similarly, fibers of OM — C pick out the full subcategory of
the slice spanned by the monos with a fixed codomain. Then, fibers of O™) — C only retain
the isomorphisms between monos, namely (C / X) M= Lastly, to obtain Sub(X) we have to
identify isomorphic objects by taking a skeleton of the category of every X. This relies on the
axiom of choice.

Let M denote the collection of monos in %. This defines a full subcategory of 0. A
subobject classifier is exactly a terminal object of @™) it is an object, T — Q such that for
any mono there exists a unique morphism, a pullback square, with codomain 7" — (2.

The above formulation suggests that we could try to find a classifying object for other
classes of morphisms 7, by asking that OY) has a terminal object. In 1-category theory we
immediately run into an issue. Let f:Y — X be a non-mono arrow. Then the corresponding
object of C // x may have non-trivial automorphisms, namely arrows o : Y — Y with foa = f.

The condition that f is mono is precisely the statement that objects of C /" x have exclusively
identity automorphisms, making O™ a discrete category. Now if f is not a mono and such a non-
trivial automorphism exists in ¢ /" x then, because of the supposed bijection with Hom(X, Q)
we should get a non-trivial automorphism of x; € Hom(X, 2). But that is impossible since the
latter is a set and therefore a discrete category. The only way to record such automorphisms is
for Hom(—, —) to have extra structure, like that of a groupoid or, even better, an co-groupoid,
precisely as is the case for co-categories.

So in 1 categories the limited structure of Hom(—, —) only allowed us to classify monomor-
phisms. Using this classifying object one is able to develop and study in depth the logical
aspects of elementary 1-topoi. In the co-setting this obstruction is removed. So, we can reason-
ably hope for an even stronger condition, an object classifier 2, classifying any arrow ¥ — X.
Take an co-category . If € has finite limits we get the self indexing functor € — Caty
that associates X — € /" x- We can also consider the core of self indexing ¢ — S given by
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X € / XE. The hope is that the functor will be representable. The situation is elucidated
by the following proposition which appears as Proposition 6.1.6.3 [Lur09].

Proposition 79. Let & be a presentable co-category in which colimits are universal. Let S be
a class of morphisms that is stable under pullbacks. Then, there exists a classifying object for

S exactly when

(1) The class S is local, meaning the right fibration O) — ¥ is classified by a colimit

preserving functor.
(2) For every object X, the full subcategory of 4 /" x spanned by S is essentially small.

As discussed in subsubsection 2.3.7 an co-category % being presentable has very strong for-
mal consequences. One of the most important ones is that it allows for a potent characterisation
of representable functors. Indeed, according to Corollary 5.5.2.2, a small-valued presheaf out
of a presentable category is representable exactly when it preserves small limits. These two
conditions are equivalent to those above.

It is also important to note that local classes are connected with descent. Indeed Theorem
6.1.3.9 asserts that for a presentable co-category with universal colimits, the condition of descent
is equivalent to the class of all morphisms being local. Since we’ve seen that oo-topoi have
descent, all that remains is to partition morX in bounded local pieces, namely pieces that are
all local and such that full subcategories of slices spanned by said pieces are always small.

It becomes clear that our hope for a unique object that classifies all morphisms simultane-
ously was too optimistic. According to the previous proposition, the existence of such an object
would force all slices € /" x to be small. There is no reason why this should be true in general.
This essentially technical difficulty can be circumvented by a cardinality-based stratification.
Instead of considering all maps into X, we just take those that are relatively-x-compact. Recall
that a simplicial set K is k-compact when its corepresentable functor commutes with x-filtered

colimits.

Definition 80. Let & be a presentable co-category. We call a morphism relatively-x-compact
if its base changes have the property that if the codomain is k-compact then so is the domain.

So in a pullback square as below, Y’ is xk-compact = X' is k-compact.
X — X

)

Y —— Y
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Theorem 81. Let % be a presentable co-category that has universal colimits and let S be a local
class of morphisms in €. For each regular cardinal & let S, := Sn{relatively-x -compact morphisms}.

If k is sufficiently large then S, has a classifying object.

Proof. One has to choose a sufficiently large cardinal x to ensure that the class of xk-compact
objects is stable under pullback. To show that S, has a classifying object we use the previous
proposition. To show that S, is local requires an equivalent characterisation not given here.
To see that the full subcategory of 4 /" x spanned by the relatively x compact morphisms is

essentially small it suffices to recall that X" is and therefore so are its slices. O
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3 Abstract homotopy theory

3.1 Introduction
When should we consider two topological spaces the same?

The classical answer was "when there is a bicontinuous bijective correspondence between
them", called a homeomorphism. It turned out that this answer was too strict and unintuitive
in the sense that it doesn’t always align with our intuitive understanding of when two spaces
"have the same shape." Instead, we might think of the specific "shape" of a topological space
as merely a "coincidental" incarnation of its intrinsic properties. The internal topology of the
space should be independent of its specific form. Thus, if two topological spaces "have the same
shape," they are essentially different manifestations of the same internal structure.

With this idea in mind, we’d much prefer to classify spaces according to their internal topol-
ogy than just compare the arbitrary incarnations they’ve assumed. Then we need a criterion for
determining when two spaces have the same intrinsic topology. The answer offered by algebraic
topology is: We consider two spaces the same when one can be continuously deformed on the
other. This happens exactly when there are continuous maps between the two spaces that are
inverses to each other up to homotopy. Such maps are called homotopy equivalences.

Through the notion of homotopy, we’ve also obtained some powerful algebraic invariants:
the fundamental group and the higher homotopy groups, which in turn paved the way for
homology. This led to another notion of "sameness' even weaker than the previous. Two
topological spaces are to be considered the same when their fundamental group is the same in
every degree. A continuous map that induces isomorphisms between fundamental groups for all
n is called a weak homotopy equivalence. Two spaces that are weak homotopy equivalent
are indistinguishable as far as the fundamental groups can see.

If two spaces are homotopy equivalent then they’re also weakly equivalent. But the converse
fails. The situation can fixed for sufficiently nice spaces. The celebrated Whitehead Theorem,
that first appeared in [Whi49], asserts that if we restrict our attention to C¥V complexes these
two classes of maps coincide. Moreover, it can also be shown that any space is weakly equivalent
to a CW-complex, thus from the point of view of the homotopy theory of topological spaces,
CW-complexes are sufficient to capture all homotopy types.

(Weak) Homotopy equivalences are not isomorphisms in Top but behave much as if they
were. For example, they satisfy 2-out-of-3. One might observe that they are the preimage of
isomorphisms via some functor(s). In the first case, the functor is the projection on homotopy
classes, and in the second the various m,. Last, but not least, these maps capture a notion of

sameness of topological spaces.
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Instead of just considering homotopy equivalent spaces as being "almost the same', the
homotopy theorist would like them to be literally the same so that he or she can work with
spaces up to homotopy. That amounts to obtaining a new category, canonically induced from
the first, where the (weak/homotopy) equivalences have been turned into literal isomorphisms.
We have successfully turned a "philosophical" problem into a mathematical one.

Given a category and a set of morphisms, one can always forcefully invert them. This
is analogous to ring-theoretic localization, where one formally inverts a multiplicative set of
elements S. Unfortunately, the result of this rather violent process, the category of fractions,
is usually badly behaved, since one loses control of the collection of maps between two objects
which may no longer even be a set. The details and origins of this construction can be found
in [GZ12].

A reasonable question then is: what structure can I impose on my starting category so that
the result of this process is better behaved? This is the question answered by Quillen in [Qui67].
This extra structure is precisely that of a model category. Indeed, to a big extent, the raison
d’étre of the axioms of a model category (that are not about W) is to control the construction
of M[W™!] and make it better behaved.

In doing so, model categories provide an axiomatic framework for abstract homotopy theory,
partly by abstracting out from the classical homotopy theory of topological spaces. Model
categories provide a rich toolkit to the homotopy theorist. For example, we can explicitly
construct the homotopy category Ho(M) which can be shown to satisfy the universal property
required of the localisation, M[W™1].

In the general spirit of category theory, to fully understand a kind of object one must
also study the "structure-preserving maps" between said objects. Another related and central
question of the theory is the study of how to lift functors F' : .# — A4 between model
categories to functors between their respective homotopy categories. We especially care about
lifting adjoint pairs and equivalences. This leads us to the study of Quillen Adjoints and in
turn Quillen Equivalences.

In the first subsection, we will take an abstract look in weak factorisation systems and model
categories. Then, we will lay out some basic constructions for model categories and explore
various interesting properties or additional structure on model categories. Much of these extra
'gadgets" will play an important role when the time comes to interpret HoTT inside model
categories. For a survey of the above ideas and more see [Rie20]. Standard references for model
categories used throughout this chapter include [DHK97], [May99], [Hov99], [DS95].

Throughout the chapter, we will look at a variety of possible answers to the question "What

is a homotopy theory?". We will survey some models and pay special attention to model

25



categories. Some models have some deficiencies which others remedy. For example:

hCat mCat smCat

Hompo(amy (X, Y)may be a class higher data is only implicit

We begin, in subsection 3.2, by introducing the notion of a homotopical category.'? Seeing
that the construction of the localization at weak equivalences is ill-behaved it is clear we need
to import more structure from the archetypal example of topological spaces. The canonical
answer is the structure of a model category. In the literature, there exists an intermediate
notion, of a fibration category which we present first, in subsection 3.3. Then, in subsubsec-
tion 3.4.2, we indeed turn our attention to model categories. We survey the basics of how to do
homotopy theory with model categories, the construction of the homotopy category, a model
of the localisation at the class of weak equivalences, and, in subsubsection 3.4.4 the theory of
under what circumstances we can lift functors, adjunctions and adjoint equivalences between
model categories to their respective homotopy categories. Then in subsection 3.6 we look at
three important ways of constructing new model categories from old. Lastly, we look at some
more internal properties of model categories and a simplicially enriched variation of the initial

definition, which will play an important role in this thesis.

3.2 Homotopical categories

The discussion above emphasized the central role of weak homotopy equivalences in the study of
the homotopy theory of topological spaces. In a sense, a homotopy theory amounts to answering
in what sense should two things be considered the same? Since when it comes to topological
spaces, two objects are connected by a (zig-zag) of (weak) homotopy equivalences exactly when
they have the same (weak) homotopy type, mathematically, to determine a homotopy theory,
it suffices to specify the class of weak equivalences.

This is what the first model of a homotopy theory is centred around. The definition requires
hardly anything, which is an advantage since examples abound. On the other hand, there’s not
much to work with and, as we’ll see, the resulting constructions one would like to perform are,

in general, ill-behaved.

Definition 82. A category C is called a homotopical category when it comes equipped with
W < mor(C) such that

12The term in common use in the literature is relative category. We follow Kapulkin [Kap14] in adopting a

more illuminating term.
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(1) We always have idx € W
(2) W is closed under composition.

A natural step for the homotopy theory of topological spaces is to be able to consider spaces
up to homotopy, i.e. identify spaces that have the same homotopy type. In our more abstract
context, this amounts to identifying weakly equivalent objects. A naive way to do that is to
try to construct a new category where the weak equivalences are made into isomorphisms.

One makes this precise by constructing the localization of C at W, denoted by C[W™!].
This procedure is well understood in many cases of interest. The similarity to ring theoretic
localization, where one forcefully inverts a multiplicative set of elements, rightfully comes to
mind. These ideas first appeared in [GZ12].

Definition 83. Let C be a category and W < mor(C). Then a localization of C at W is a
category and a functor into it
L:C—CW]

such that L maps the elements of W to isomorphisms and it is initial among functors that do
that.

(1) L(w) iso for we W
(2) If F: C — D also maps w € W to isos then it uniquely factors through C[W™!]

Proposition 84 (Proposition 2.1.2 [Rie20]). The restriction along L : C — C[W™!] in-
duces a fully faithful embedding, which in turn gives an isomorphism of functor categories
Fun(C[W™], M) =~ Funpy..~(C, M). Namely, functors out of the localization correspond bijec-

tively to functors that map WV to isomorphisms.

Fun(CW ], M) Fun(C, W)

\/

Funw,_,; (C, M)

Remark 85. It can be shown that for any pair (C,) there is always a unique localization
CIW™1]. C[W™1] is obtained by momentarily treating C as a directed graph, adjoining inverses
to the arrows w € VW and then quotienting out appropriately to enforce the desired identities,

and then "freely completing" the resulting directed graph into a category again.

The universal property satisfied by these two constructions determines C[W~!] up to unique
isomorphism. whilst introducing a very important theme. It allows us to lift functors between

relative categories to functors between the respective homotopy categories.
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Definition 86. Let C, D be homotopical categories. A functor F' : C — D is called homotopi-

cal if it preserves weak equivalences.

Definition 87. Let hCat denote the category of homotopical categories and homotopical func-

tors between them.

Remark 88. Homotopical functors induce functors between the respective homotopy cate-

gories.

Unfortunately, and perhaps unsurprisingly, the construction of C[W™] is not well-behaved
in general. First, we may run into size issues. Indeed, the localization of a locally small
category may be a large category. Moreover, between adding inverses, quotienting out by
relations and then freely completing into a category, we lose any understanding we could have
of Homepy-17(X,Y’). Thankfully, one can introduce appropriate axioms so that this construction

becomes better behaved. These are the axioms of model categories.

3.3 Fibration categories

A fibration category is an intermediate notion between homotopical categories and model cat-
egories. Since, as we will later see in greater detail, types are interpreted as fibrations, it is an
environment nicely suited for interpreting type theory without redundant axioms. In addition
to that, and for the same reasons, it makes sense to ask for various pieces of structure to exist

only with respect to fibrations, as we’ll do for local cartesian closure below.

Definition 89. A fibration category is a category M with two distinguished classes of wide

subcategories the fibrations, F and the weak equivalences W, satisfying the following axioms.

(1) W satisfies the 2-0f-6 property.
(2) All isomorphisms are both fibrations and weak equivalences, or acyclic fibrations.

(3) Pullbacks along fibrations exist. Fibrations are stable under pullback.

(/) M has a terminal object and VX e M, X —» 1€ F

The obvious example, and the most important for our purposes, is that given a model
category M, the full subcategory on fibrant objects M/ is a fibration category. In particular
qCat and % an are fibration categories. Perhaps surprisingly, not all fibration categories arise
this way, see example 5.1.4 [Kap14], where it is remarked that a category of C* algebras arising

in operator theory is a fibration category that does not fit in a model structure.
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Using these axioms we can construct products where the projections are fibrations, show
right properness, obtain path objects, define a notion of homotopy between maps and more.
Another axiomatisation with essentially the same class of examples and consequences is being

pursued by van den Berg in articles such as [Ber18].

Definition 90. Let M, A be fibration categories. A functor F' : M — N will be called exact
when it preserves the structure present in a fibration category, explicitly, if it preserves (acyclic)

fibrations, pullbacks along fibrations and the terminal object.

We saw how slice categories inherit a model structure from the base. We would like to do
the same for fibration categories. Let M be a fibration category and A € M. Then M /4 does
not have to be a fibration category since not all objects are fibrant (there existnon-fibrationn

morphisms B — A). To correct for this we define:

Definition 91. By M(A) we will denote the full subcategory of M /A spanned by the fibra-

tions. This is a fibration category.

Proposition 92. Let f : X — Y be a morphism in a fibration category M. Then the pullback
functor f*: M(Y) — M(X) is exact.

Proof. We've asked that fibrations are pullback-stable so this definition makes sense. The
terminal in the slice is the identity over the base. Pullback of an identity is an identity so
f*(—) preserves the terminal object. The functionality of pullbacks implies that pullbacks
are preserved. Stability of fibrations under pullback and right properness give preservation of

acyclic) fibrations. O
(acyclic)

Definition 93. Let fCat denote the category of fibration categories and exact functors between
them

Proposition 94. Every exact functor is homotopical. Hence there is an obvious forgetfull

functor Uy, : fCat — hCat.

Proof. The proof amounts to showing that if a functor between fibration categories sends acyclic

fibrations to weak equivalences then it preserves all weak equivalences. This is exactly Lemma
4.1 in [Bro73]. O

Using the notion of right homotopic and path objects that we’ll define for model categories
in subsection 3.4 one gets a notion of a homotopy category of a fibration category. An exact
map between fibration categories will be called an equivalence if it induces an equivalence

between induced homotopy categories.
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Definition 95. We call M a locally cartesian closed fibration category when
(1) All objects are cofibrant.

(2) For any fibration p : B — A, the pullback functor f* : M(A) - M(B) in addition to

being exact, also has a homotopical right adjoint.

Remark 96. We've asked for right adjoints to pullback functors only against fibrations, there-

fore a locally cartesian closed fibration category need not be locally cartesian closed.

Remark 97. All fibration slices M(A) are cartesian closed. Moreover, for a fibration p : B —
A, the product functor p x —: M — M is exact and has a homotopical right adjoint.

3.4 Model categories
3.4.1 Weak factorisation systems

A weak factorisation system in a category C consists of an interrelated pair of classes of
morphisms, £,R. Using these two classes one can factor any arrow of the category. They
are important because if we restrict our attention to them we can always solve certain lifting

problems. Throughout the following let C denote an ambient category.

Definition 98. A lifting problem in M is a commutative square as seen below. A solution to

the lifting problem is an arrow s : C' — D splitting the square into two commutative triangles.
A—"- B
e o7 |
Cs D

The solution s may also be denoted e 1 m. If such a solution exists, we may say that e has

the left lifting property with respect to m or, equivalently, that m has the right lifting
property with respect to e.

Definition 99. Let < morM be a class of morphisms in M. Then we define:

A—4

B
i KA =LLP(K) :={femorM| (VkeK) Is=kAf} |, .~ Jf

-
-
-

ii “ = RLP(K) := {ge morM| (VkeK) 3Jglak}

Anticipating the role maps from £ and R will play in later Sections we will start indicating

that an arrow belongs to one of the classes by decorating it —e€ £ and —€ R.
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Definition 100. Let £,R < morM be two distinguished classes of morphisms of M. We say
that £ has the left lifting property against R when

A—2

B
(VleL)(VreR) 3Is:=1[Ar, . Jf

-
-
-

If that is the case, we may write L[4 R We note that LR «— L<YR & Rc [V
Definition 101. Two classes of maps form a lifting pair when £ =YR & R =Y

So, to show that some f € £ we can instead show it lifts against an arbitrary map r € R.
Primarily using this argument and other elementary means one can prove the following closure

properties for lifting pairs.
Proposition 102. Let (£, R) be a lifting pair in a category £. Then:
(1) Both £ and R contain all isomorphisms.
(2) R is closed under composition: for composable f,ge R = go feR

(83) R is closed under pullbacks. For any a € mor€ with the same codomain as f,

feR = a*(f) € R, where a*(—) denotes pullback against a.
(4) R is closed under forming products of maps: f,ge R = f x geR.

(5) R is closed under forming retracts. f € R and g is a retract of f = g€ R. g is said

to be a retract of f when there is a diagram:
i

A c 4

ool b

B D B
~_

Proof. Straightforward proof. For the details see [Norl7] O

Remark 103. The dual properties hold for £ namely, £ is closed under pushouts, pushouts
of maps and retracts. A class of maps enjoying this set of properties is sometimes called
saturated. These, play an important role in producing examples of model categories. More

information in subsubsection 3.8.2

Examples 104. (1) In Set, (Z,S) = ({injections}, {surjections}) form a lifting pair. Point

of interest: this relies on the axiom of choice.
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(2) In Top we can take £ to be the quotient maps and R to be continuous inclusions.

Definition 105. A pair of distinguished classes of morphisms, £, R factors a category £, when
Vfemorf : (Il e L)(Ir e R) such that f =7roi

Definition 106. This factorisation is functorial when its data are given by a functor which,

put concisely, is a section to the composition functor:
¢:CARI - cAl

Unpacking this definition we ask for a functor § : A1 — CAPl such that ¢ o f = idpap;.

Unraveling even further, the functor fact comprises of two functors,
r:morf - morf : f —ryeR

[ :morf - morf : frl;el

satisfying identities that ensure that the domains and codomains of the arrows above are as
desired: dom ol = dom, i.e. the domain of [; is the same as that of f, cod ol = dom o p and

cod o p = cod. We indeed have ¢ o § = ideap) since co f(f) = c(ls,r¢) = f.

Definition 107. A Weak Factorisation System, abbreviated WFS, in a category C distin-

guishes two classes of morphisms of £,R < mor€ such that

(1) L, R factor C meaning that any map f : X — Y can be factored as a left map followed

X f Y
M

(2) L=YR & R = LP. In particular, any lifting problem as below has a solution, namely

by a right map.

amap s: C — B producing two commutative triangles.

N
s

=
H
-

Q
S

u
—
A
P
S
.
.
v

A WFS if functorial when its factorisation is.
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3.4.2 Definition and first properties

As already discussed, the naive approach in abstract homotopy theory doesn’t get us too far.
If we wish to go further, we must import more structure from Top in our abstract setting.
The only question is what structure exactly. In 1967, Quillen made a particularly successful
proposal in [Qui67].

He chose to import the structure of two intertwined weak factorisation systems and required
the presence of limits and colimits. The two factorisation systems come with a choice of 3 classes
of morphisms. Firstly, the weak equivalences VW play the role of weak homotopy equivalences.
We decorate these arrows as — € W. The crucial feature is that two spaces connected by a
(zig-zag of) weak equivalence are thought of as having the same homotopy type. This intuition
is formalised by the fact that it is precisely then when two spaces become identified in the
homotopy category. Secondly and thirdly, we ask for classes of fibrations, and cofibrations,
which must be thought of as classes of nice surjections and injections respectively. These
classes determine collections of objects where our constructions become particularly tractable
and indeed make the outcome much better behaved.

Model categories come with a significant amount of extra structure, which facilitates many
constructions. First and foremost, one can closely mimic much of the classical homotopy theory
of spaces in Top in an abstract setting. Indeed, we can talk about homotopies of maps, and
see and reinvent many known results including HEP and the (dual) Whitehead theorem. The
basics are covered in subsubsection 3.4.3. The most important application is the construction
of the homotopy Category, a model for the localisation of M at the class of weak equivalences,
W. This is also covered in subsubsection 3.4.3. We then turn, in subsubsection 3.4.4, to the
theory of lifting functors and adjunctions from the level of model categories to their respective
homotopy categories. This will lead to the notion of Quillen Equivalences, the correct notion of
equivalence of homotopy theories. The rest of the chapter is devoted to studying constructions
that produce new model categories from old, in subsection 3.6, studying additional properties
a model category may have and variants of the definition that give model categories even more

structure.
Definition 108. A category £ has a model structure when:
(1) It has all (small) limits and colimits

(2) It comes equipped with three distinguished classes of morphisms (C, W, F), called cofi-

brations, weak equivalences and fibrations respectively, such that:

(a) W satisfies the two out of three property, given a composable pair of morphisms,
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f, g, whenever two out of f, g, f o g are weak equivalences, so is the third.

(b) (CnW,F)and (C,WW n F) are both WFS on &.

Maps in C n W are called trivial or acyclic cofibrations and maps in W n F are called trivial

or acyclic fibrations.

To facilitate reasoning with diagrams it is customary in the literature to decorate arrows

when they belong to one of these classes. In what follows we will denote
— €C ——eW — F

It is instructive to illustrate explicitly what the condition of the two WFS entails. For any

f € € we have two factorisations:

X — F(f)

N
. f\;l
Y

c(f) ——

Observe that both F'(f), C(f) are connected to X by weak equivalences and therefore have
the same homotopy type.

Moreover, all lifting problems as below admit solutions,

A *: C A —: C
| [
B——D B——D

Definition 109. Recall, that a model category is bicomplete (for small (co)limits) thus in
particular it has both a terminal and an initial object. An object X € £ is called fibrant
!
exactly when the unique map X — 1 is a fibration. Dually, it is called cofibrant when the
|

unique arrow & — X is a cofibration. When an object is both fibrant and cofibrant we

sometimes call it bifibrant.

Example 110. One of the archetypal examples for model structures comes from the classical

model structure on Topological spaces. We distinguish the following classes of maps:
(1) C = "generated" ' by I, = {S™' — D"},en.

(2) F = the Serre fibrations, that are defined as the right complement to the acyclic cofibra-

tions.

13The meaning of these statements will be made precise in the section for cofibrantly generated model cate-

gories.
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(3) W = {weak homotopy equivalences}.

Acyclic cofibrations are those maps that are simultaneously a weak equivalence and a cofi-
bration. In this case they are also generated by Jr,, = {D" < D" x I},en. With these
definitions all objects are fibrant. The cofibrant (and therefore bifibrant) objects are precisely
CW-complexes. A classical result asserts that any space is weakly equivalent to a CWW-complex
so that they comprise a class of representatives of the homotopy types with particularly nice

formal properties.

Example 111. The category sSet admits the Kan-Quillen model structure by distinguishing
the following classes of morphisms. If we want to emphasize that we consider the category of

simplicial sets equipped with this model structure we write sSetkq.
(1) C = { monomorphisms }.
(2) F = { Kan Fibrations }.
(8) W = { weak homotopy equivalences }.

Furthermore, we note that the acyclic/trivial cofibrations are C n W = { Anodyne Maps }
and the trivial fibrations F n W = { Trivial Kan Fibrations }. As above, C is generated by
{0A™ — A"} and C n W by {A} — A"}. By definition, the fibrant objects of sSetkq are the
Kan Complexes. Since maps of the form @ — X are always monic = cofibrations, we get that
all simplicial sets are cofibrant.

A classical result of Joyal, corollary 1.4 in [Joy02], is that a simplicial set is a Kan complex
<= it is an oco-groupoid. Thus, this model category captures the homotopy theory of co-
groupoids. In item 3, we will see that there is an equivalence of homotopy theories, in some
appropriate sense, to the homotopy theory of topological spaces. This is but a restatement of
the idea that an oco-groupoid is the correct algebraic gadget to capture the homotopy type of a
space. This idea originates with Quillen [Qui67] and Grothendieck [Gro21].

Example 112. The category sSet can be equipped with another model structure, the Joyal

model structure, denoted sSet .y, obtained by putting
(1) C = { monomorphisms }.
(2) F = { categorical fibrations }.

(3) W = { categorical equivalences }.
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Furthermore, we note that by Proposition 39.2 in [Rez22] FnW = { Trivial Kan Fibrations }.
To determine the fibrant objects first we note that = is an co-groupoid and therefore a Kan Com-
plex and therefore an oo-category. Moreover, we note corollary 2.4.6.5 in [Lur09] given a map
whose target is an co-category, then f is categorical fibration <= it is an isofibration. More-
over, by definition, an isofibration is, in particular, an inner fibration so, we immediately get
that fibrant objects are precisely the co-categories. As above, since cofibrations are the monos,
we get that all objects are cofibrant. The (bi)fibrant objects being precisely co-categories we

can say that this model category captures the homotopy theory of co-categories.

3.4.3 Homotopy theory in model categories

When doing homotopy theory in Top, we make very frequent use of cylinder objects Cyl(X) :=
X x I and path spaces XT, where I = [0, 1]. The axioms for model categories chosen by Quillen
in [Qui67] naturally allow us to mimic these constructions. One can then use them to define a

notion of homotopical maps f, g in a model category.

Definition 113. A cylinder object for X is given by

10

% ~
X ' CylX —— X

i1
With p oip = idx. Observe that by 2-of-3 we get that i, € W. Intuitively we think of i as
X — X x {k} so it should not be surprising they are weak equivalences.

Cyl(X) is good if iy + iy : X u X — X. It is very good if p € F n W. By factoring the

folding map X 1 X — X we get a very good cylinder object for arbitrary X.

Definition 114. A left homotopy between f,g : X — Y is a map h : Cyl(X) — X with
hoig= fand hoiy =g.
Definition 115. Dually, a path object for X is given by

po
X == P(X) X
p1

All the definitions above dualise. We factor the diagonal map A : X — X x X to obtain a very
good path space for any X.

Remark 116. We should note, that the left /right homotopy is not an equivalence relation in
general. However, if we place assumptions on X and Y the situation improves. X cofibrant
implies that left homotopy gives a right homotopy. The dual holds for a fibrant Y. When both
these requirements are satisfied, and we get an equivalence relation ~ on Hop(X,Y’). This
is a characteristic instance of the benefits of restricting to a subcategory of bifibrant objects.

Another such instance is the following Proposition
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Proposition 117. (Proposition 3.3.10 in [Rie20]) A map f : A — B between bifibrant A, B is

a weak equivalence if and only if it admits a homotopy inverse.

An important ingredient is a procedure to replace objects with bifibrant ones. This can be
done functorially in two steps. We successively apply a fibrant replacement and then a cofibrant
one. The fibrant replacement of X produces a fibrant object KX weakly equivalent to X. In
fact, it is a natural transformation of endofunctors 7 : idy, = K which is pointwise a weak
equivalence. The dual/same is true for the cofibrant replacement. Therefore any object is two
weak equivalences away from a bifibrant one. Thus, for any X there exists a bifibrant object BX
with the same homotopy type. Moreover, these constructions interact nicely with homotopies.
By an elementary 2-of-3 argument, one can prove that fibrant and cofibrant replacements are
homotopical functors. Therefore so is their composition. For a comprehensive account see

section 14.3 of [May99]. For an object X, we write BX for a bifibrant replacement.

Definition 118. Given a model category M we define its homotopy category HoM as
having the same objects and let the hom-sets be the homotopy equivalence classes between

their bifibrant replacements.

Homgon (X, Y) := Homum(BX, BY)

We get a canonical functor v : M — HoM

Remarks 119. (1) Since BX, BY are bifibrant, ~ is an equivalence relation and therefore

the definition above makes sense.

(2) The Hom-sets of Ho(M) depend solely on functions between bifibrant objects and homo-

topies thereof.

The following theorem formalises the intuition that the homotopy category construction does
actually compute a model for the localisation of the model category at the weak equivalences.
For a full presentation of the proofs of these results, quite a bit of additional machinery is
required. The reader is therefore referred to section 14 of [May99] for the proofs and the

prerequired theory. Here we will only give sketches of the proofs.
Theorem 120. The category HoM is a model for MW,

Proof. We prove that HoM has the universal property of localisation. First, we must show
it sends weak equivalences to isomorphisms. Take w : A — B € W. Since the bifibrant

replacement functor is homotopical we get Bw : BA — BB. Now we have a weak equivalence
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between bifibrant objects. By Proposition 117, Bw admits a homotopy inverse, making it an
isomorphism in HoM.

Now we must verify the universal property of HoM. Take arbitrary F' : M — & that
inverts weak equivalences. We want to define F' : HoM — & giving a commutative triangle and
showing it is unique. Since 7 is bijective on objects, F, F agree on objects. By naturality of
(co)(bi) fibrant replacement, we obtain a natural transformation a : F' = F B. These natural
transformations where point-wise weak equivalences and F' inverts them, making o a natural

isomorphism. Now, take a representative of a homotopy class of some h : BX — BY. Define,
~ o a71
Fh = FX 2, pBX P% FBY Y FY

Again elementarily we show that F is functorial and that Fy = F. For uniqueness, observe
that any map h : BX — BY in HoM is isomorphic to one of the form ~(h) = B(h). But the
value of F on the latter is uniquely determined by F (h), because it is equal to it. Thus the
value F(h) is uniquely determined by F(h). O

Proposition 121. f e W <= ~(f) iso in HoM. Use B and proposition 117.

3.4.4 Quillen adjunctions and equivalences

We have determined, how to pass from model categories to 1-categories, their homotopy cate-
gories. A natural next question is to ask under what conditions can we lift functors in homotopy
categories.

Let F' be a homotopical functor between model categories. Then the composition vy o F
sends weak equivalences of M to isomorphisms. By universal property of localisation we get a
unique functor £ : HoM — HolN.

The functors found in nature are rarely homotopical, so this definition although natural
is not very useful. Instead, one can determine a weaker set of conditions that when satisfied,
allow a functor to be lifted to homotopy categories on the left or on the right. These are called
derived functors. Take F' : M — N. A left derived functor for F is LF : HoM — N and
a natural transformation p : LF oy = F that is terminal among such pairs. Namely for any
other K : Ho(M) — N that comes equipped a { : Koy — F 3lo K — LF such that po (o =7)

coincides with £.'*

v Y )
Ho(M) Tk

Mg %~ denotes whiskering of natural transformations.
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We often drop p from the notation. There is a dual notion of right derived functors.

Proposition 122. (Proposition 16.1.3-4 in [May99]) If F': M — N takes acyclic cofibrations
between cofibrant objects to isomorphisms, then there exists a left derived functor LF'. Further-
more, if X is cofibrant, ulL X — FX is an isomorphism. Dually, if F' takes acyclic fibrations

between fibrant objects to isos, then there exists a right derived RF. If X is fibrant, we get an
iso FX - RFX.

This abstract formulation is unnecessarily obtuse. The proof of the statement above makes
everything practically much more tractable and direct. We can construct a model for the (left)
right derived functor by precomposing with a (co)fibrant replacement. This is yet another
instance where the better-behaved (co)fibrant objects largely simplify a situation. We follow
Rezk’s section 4.2 in [Rez10]. Recall that by factoring an arbitrary map @ — X and YV — =
and obtaining the factorisation we get from the axioms of a model category we get (co)fibrant

replacement functors.

\/ ~

Y/ = RY

Proof. (of proposition 122. Adapted from [May99])

Let FF : M — N be a functor that takes weak equivalences between cofibrant objects to
isomorphisms. Take w : X = Y. It is easy to see that a functorial cofibrant replacement @
is homotopical, explicitly Q(w) : Q(X) = X¢ — Y = Q(Y) is again a weak equivalence. But
then the assumption on F applies. Then, F'o () sends weak equivalences of M to isomorphisms
in /. Let LF be the functor obtained by the universal property of « applied on F o (). Then,
LFovy=FoQ@. Define ux := Fq: FQX — FX. If X was already cofibrant, then ¢ is a weak
equivalence between cofibrant objects and thus F'q is an isomorphism.

]

Moreover, the second conclusion of the proposition simply becomes LF' ~ F(QX) = F(X°).
Dually, if F' takes weak equivalences between fibrant replacements to isomorphisms, it admits
a right derived functor RF : Ho(M) — N for which RF(Y) ~ F(Y/) = FRY.

We return to our original question of lifting functors between model categories to the ho-

motopy categories. The situation looks like this:



We seek HoF' : HoM — HoN. It suffices to obtain a left-derived functor for § o F'. Since §
takes weak equivalences to isomorphisms, we see that F' taking cofibrations between cofibrant
objects to weak equivalences suffices to guarantee a left derived functor for § o F. This is
precisely the motivation for the axioms of Quillen adjunctions. The desired fact is an immediate

consequence of these axioms.

Definition 123. Let M, N be model categories and ' : M = N : G be a pair of adjoints. We
call them Quillen adjoints or a Quillen pair, if one of the following equivalent conditions is

satisfied:
(1) F preserves cofibrations and acyclic cofibrations
(2) G preserves fibrations and trivial fibrations.
(3) F preserves cofibrations and G preserves fibrations
(4) F preserves acyclic cofibrations and G preserves acyclic fibrations.

To see that the conditions are indeed equivalent is a straightforward model-theoretic diagram
chase. Condition 4 above immediately implies that F,G have total derived functors. But

something stronger holds:

Proposition 124. (Proposition 16.2.2 in [May99]) A Quillen adjunction F' - G between M
and N lifts to an adjunction LF 4 RG between Ho(M) and Ho(N).

Now that we have an adjunction LF : Ho(M) = HoN : RG we can also wonder when is the
(co)unit an iso. If both the unit and the counit were isos, we’d have an adjoint equivalence. This
leads us to define: The pair L - R is said to be a Quillen equivalence exactly when either
L,R is an equivalence. A Quillen equivalence is the correct notion of sameness of Homotopy

Theories.

Definition 125. Let F' : M = N : G be a Quillen Adjunction. The following are equivalent

and when satisfied we call (F,G) a Quillen Equivalence
(1) LF is an equivalence between homotopy categories.
(2) RG is an equivalence between homotopy categories

(8) For any cofibrant object C' in M and fibrant object F' of N we have that

FiOSR(F) — f:L(C)>F
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Remark 126. It is important to note that Quillen Equivalence is not a "symmetric relation".
That’s because the pair of functors in a Quillen pair are dual to one another, and therefore
different in general. For example, one of the adjoints preserves fibrations and the other cofi-
brations. Hence, if someone asserts that F': M — N is part of a Quillen Equivalence we must
also ask if F' is the left or right adjoint.

This is precisely the condition required to make the lifted adjunction an adjoint equivalence.
Indeed,

Proposition 127. (Proposition 16.2.2 in [May99]) L - R is a Quillen Equivalence exactly

when L 4 R is an adjoint equivalence between homotopy categories.

Proof. (following the reference). Recall that LF = F'Q) and RG = GR.

To see that the lifted adjunction is an equivalence we show that both the derived unit and
derived counit comprise of isomorphisms. Unraveling the definitions we find that the derived
unit is given by

QD 22, GF(QD) 22 G(R(FQ(D)))

Where the first map is the unit of the non-derived Quillen pair on component D, and the
second is G(—) of the arrow Rpgpy : FQ(D) — RFQ(D), the trivial cofibration of a fibrant
replacement of F'Q(D). Since everything is precomposed with Q(—), we might as well suppose
we have a cofibrant X. Then the derived unit is G(Rg) o nx. By rules of the adjunctions, this
map transposes to r : FX — RF X, which is a weak equivalence by the construction of fibrant
replacement. Thus the derived unit is made up of weak equivalences which become isos in the
homotopy category. A dual argument applies to the derived counit. The two combined prove

a Quillen equivalence induces an equivalence between homotopy categories. O

Examples 128. (1) Let C € mCat. We have a trivial Quillen Equivalence id : C < C : id.
Immediate by the definition.

(2) For any model category we have incl : M/ 5 M : E is a Quillen Equivalence for any
fibrant replacement functor such that for all X, € : X = EX. The bijection of hom-sets
is given by composition with €. In that triangle, the 2-of-3 property of weak equivalences

corresponds exactly to the definition of QE 125.

(3) Write Topguie, for the classical model structure on topological spaces. Then we have a

QE:

Slng : TOpQuillen = SsetKQ : ’ - ‘
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The latter is the historic statement known as the Homotopy Hypothesis. The equivalence
mentioned above is due to Daniel Quillen and appeared in [TV05]. For more information see
[Def19]

We now record some properties of Quillen adjunctions that will prove useful later on in the

thesis. The following are taken from nLab.

Lemma 129. Let f: X — Y be an arrow in C. Then there is a commutative diagram

We will not prove this lemma. The proof can be found in factorisation lemma nLab entry.
Lemma 130. Given a Quillen adjunction L - R we get that

(1) L preserves weak equivalences between cofibrant objects

(2) R preserves weak equivalences between fibrant objects

Proof. We do the proof only for R, since this is the one we’ll need. The other proof is dual. Take
a pair of fibrant objects and a weak equivalence between them. Since R preserves fibrations
and R(x) = * because it is a right adjoint and therefore preserves limits. Therefore R(F'), R(G)

are also fibrant objects. By the factorisation lemma, we get a diagram:

F
iV iw
F.z RF . Rz
R lg % l”Rg
G RG

We want to show that Rw € W. We will use 2-of-3. In the top triangle below we know
that identities are in particular weak equivalences. Moreover, we’ve assumed that r is a trivial
fibration and in particular a weak equivalence. By 2-of-3 we obtain that j : FF — Z € W. So
if we now focus on the bottom triangle, we’ve assumed that w € W. Again by 2-of-3, we get
that g € W making ¢ a trivial fibration. By the axioms for Right Quillen functors, we get that
so is Rg. Now, if we apply R to the top triangle below, we get idgrr and Rr. Again, since R is

right Quillen, Rr is again a trivial fibration, and in particular a weak equivalence. The same
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is true for idgp. By 2-of-3 we obtain that Rj € WW. We can finally deduce that Rw € W as
desired. Note that the assumption that the objects are fibrant is essential for the construction

of the factorisation. ]

Corollary 131. It is immediate, that if (F, G) is a Quillen pair, the left Quillen functor admits

a left derived functor and the right Quillen functor a right derived one.

Another important point is that we would like to have a category of model categories
and forgetful functors towards the category of fibration categories and homotopical categories.
Moreover, we’d like them to be compatible with the forgetful functor Uy, : fCat — hCat. Recall
that morphisms in fCat are the ezact functors between fibration categories. One immediately
sees that the properties of exact functors correspond exactly to those of right Quillen func-
tors. Moreover, exact functors between fibration categories are homotopical. In general, a right
Quillen functor preserves weak equivalences only between fibrant objects. Let mCat; be the
subcategory whose objects are "full subcategories of fibrant objects in a model category”, de-
noted by M/, and whose morphisms are restricted right Quillen functors. Then mCat; < fCat.
This provides a canonical way to obtain a fibration category out of a model category. We could
also compose with the forgetful functor Uy, : fCat — hCat.

We constructed two ways to turn a model category to a homotopical one. The two do
not commute up to equality but they do commute up to hDK equivalences of homotopical
categories. Given a model category M with weak equivalences W, we can form the homo-
topical category (M,W) or obtain a canonical fibration category (Mg, Wy, Fy) and then the
homotopical (Mg, Wy). By Proposition 191 the two outcomes are "hDK-equivalent", weakly

equivalent as homotopical categories.

3.4.5 Homotopy (co)limits

Now that we’ve established a more robust notion of an abstract homotopy theory and of a
notion of morphisms between them, we can start asking ourselves how the various standard
constructions of ordinary categories interact with these definitions. We quickly run into a
problem. (Co)limits are not compatible with the homotopy theory. For example, one can have
two spans where the "vertices" are pointwise homotopy equivalent but their pullback is not.

The solution to this problem is one of the main applications of the theory of derived functors
previously defined. As discussed, derived functors are universal homotopical approximations
to given functors. Thus we reasonably hope that by taking a derived version of the (co)limit
functor we’ll solve the problem outlined above.

A derived functor does not always exist. For instance, a condition is found in Proposition
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122. Furthermore, the implicit assumption in that proposition is that the domain of the func-
tor has a model structure. In our case that proves problematic because colim : M! — M
and there is no obvious way to make M into a model category. Thankfully, under proper
assumptions on M, there are non-obvious ways. This problem will be treated in more detail in

subsubsection 3.6.2. Here we just record:

Theorem 132. (Theorem 11.6.1. in [Hir03a]) If M is a cofibrantly generated model category,
see subsubsection 3.8.2, then one can determine that same structure for M!, for any small I,

the projective model structure.
Having given M’ a model structure we immediately find,

Theorem 133. (Theorem 11.6.8 in [Hir03a] ) With the hypotheses above, we obtain a Quillen
pair colim : M! < M : cs, the constant diagram functor. Moreover, the colim functor preserves

weak equivalences between cofibrant objects.

Proof. Whenever M is cocomplete we always have the adjunction. In 3.6.2 we’ll see that weak
equivalences and fibrations of M! are defined objectwise, namely X — Y e M is a weak
equivalence exactly when for all m € M: X,, = Y,,. The same is true for fibrations. Then,
we immediately see that the constant diagram functor preserves both fibrations and trivial
fibrations making the adjunction in a Quillen pair. The second conclusion appears misleadingly
simple. One must be wary of the non-trivial definition of cofibrations in the projective model

structure. O

Since the two functors form a Quillen pair we obtain a left derived functor Lcolim =:
hocolim. By the discussion of derived functors, we also get a canonical way to compute it,
hocolimX a colimX’ where X' is a cofibrant replacement of X in the projective model structure.
Unfortunately, that cofibrant replacement is obtained via a small object argument and therefore,
for practical purposes, is like a black box.

One can obtain another model structure on M?, which rests on a stronger hypothesis. If M
is sheafifiable, see [BEK00], then M? admits the injective model structure that has pointwise
weak equivalences and cofibrations. Whenever this model structure exists, a dual argument
shows that lim : M! — M is right Quillen and thus admits a right-derived functor.

3.5 Two models for the homotopy theory of higher categories

In this section, we look into an important application of the theory of model categories and

Quillen Equivalences. In Definition 6 we saw a reasonable definition for a notion of weak
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equivalence between simplicial categories. This definition requires the homotopy categories to
be equivalent as ordinary categories and the mapping spaces to be equivalent as simplicial sets.
Thus we turned sCat into a homotopical category. It turns out we can do better. Here we
present a model structure for sCat. This was introduced by Julia Bergner in [Ber05]. A survey-
style treatment is in [Rie20]. Before we proceed with the definition of the model structure we

require the following definition.

Definition 134. In % € sCat a morphism f : X — Y in % will be called an isomorphism if

and only if it is an iso in Ho%'.

Theorem 135. The category sCat of simplicial categories and simplicial functors between

admits a model structure defined as follows:
(1) The weak equivalences are taken to be the sDK equivalences discussed above.
(2) The fibrations are taken to be simplicial fuctors F': € — 2 such that:

(a) The induced map of simplicial sets: Homg(X,Y) — Homg(FX,FY) is a Kan
fibration.

(b) Given any X € % and an isomorphism f : FX — D in & there exists an isomorphism
f and an object Y with f: X — Y and F(f) = f.

(3) Cofibrations are just taken to be the set of maps with RLP against trivial fibrations as
defined above.

It is important to record a characterization for fibrant objects in sCatgerg.
Proposition 136. The fibrant objects are precisely J# an-enriched categories.

Proof. First we note that the terminal simplicial category .7 is whose set of objects is a singleton
and has the terminal simplicial set as its mapping space. So it has a point in each dimension.
We ask ourselves when is a simplicial functor F' : K — = a fibration as above. We immediately
notice that the second condition becomes trivial. There is a unique map of the form f : FX — D
and that is the identity id, : * — =. Therefore, there always exists a lifting for this isomorphism,
namely the identity of X.

The second condition is not trivial. As we noted above, Hom & (*, *) = the terminal presheaf.
Hence, the second condition is that for any objects of ¢’ : X, Y we have Hom (X, Y) — = which
is exactly the definition of & being "locally Kan". ]
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But we know how to think of a locally Kan simplicial category as a (o0, 1)-category. Thus
the model category sCatpe, captures the homotopy theory of (o0, 1) categories.

The Joyal model structure is another model for the homotopy theory of (oo, 1)-categories in
the model of co-categories. It was introduced in [Joy08b]. It is also treated in section 2.2.5 of

[Lur09]. For a lecture notes style treatment one can consult section 47 of [Rez22].
Theorem 137. sSet admits a model structure where

(1) W = { categorical equivalences }

(2) C = { monomorphisms }

(3) F = { categorical fibrations }

Remark 138. We denote this model structure by sSet;,,. Since cofibrations are monomor-
phisms, all objects are cofibrant. That means bifibrant objects are the fibrant ones. In sSetjoy,
fibrations into an oo-category are precisely the isofibrations and therefore (bi)fibrant objects are
precisely the co-categories. Hence, sSetj,, captures the homotopy theory of (o0, 1)-categories.
The weak equivalences capture the appropriate notion of sameness of co-categories, equivalences

of co-categories.

We have just presented two distinct candidates for the homotopy theory of (oo, 1)-categories.

It turns out the two homotopy theories are equivalent, in the appropriate sense.

Theorem 139. The adjoint pair (€, ) is a Quillen equivalence between the Bergner model

structure on simplicial categories and the Joyal model structure on simplicial sets
¢ : sSet oy Sqp sCatperg : N
For a proof of this fact we refer to Theorem 2.2.5.1 in [Lur09].

So, for example, Theorem 43 can be reformulated as stating that 91 takes fibrant objects to
fibrant objects, namely locally Kan simplicial categories to co-categories, or one model of (o0, 1)-
categories to another. In the literature, one can find two more models of co-categories, Segal
categories and Complete Segal Spaces. Each of these can be exhibited as bifibrant objects of
some model structure. Thus we have four models for the homotopy theory of (o0, 1)-categories.
Nevertheless, there is no ambiguity. They are pairwise connected by Quillen equivalences.
For more information see [Ber06]. The homotopy theory of (o0, n)-categories displays a bit of

ambiguity, see [BS20].
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3.6 New model categories from old
3.6.1 Model structure in the slice category

Let M be a model category. For the rest of this section, we fix an object X € ob M.

Proposition 140. The slice category inherits a model structure from M in the obvious way.
Amap f:(A— X)— (B— X)is in one of the classes C, F, W if and only if its image under

the canonical forgetful functor is, namely, f € — < (f:A—> B)e —.

Due to this definition lots of properties from M lift straightforwardly to M / x. For

example,

Proposition 141. If M is cofibrantly generated then so is M /" x- The new generating acyclic

cofibrations are the image of (ac)cof,, under X 1 —

Dual results hold for the coslice category.

3.6.2 Model structure in diagram categories

Consider the functor category [M, N] for a pair of model categories. The question we address
in this section is how does [M, N] inherit a model structure from that of M, N'. This is also
treated in section A.2.8 of [Lur09]. In fact, for our purposes it suffices to consider the case
where N = sSet so that we restrict our attention to Simplicial Presheaves, namely functor
categories of the form sPsh(M) := [M°P sSet].

We want to obtain a model structure on sPsh(M). The naive approach would be to define
a natural transformation to be a weak equivalence (respectively a (co) fibration) <= all of
its components are. Unfortunately, this is problematic.

Take a commutative square of natural transformations whose left vertical n.t. is compo-
nentwise an acyclic cofibration and the right vertical one is a componentwise fibration. Take
components and obtain a family of squares in sSet. Then for each square, there is a lift. But
there is no a priori reason why this collection of lifts is arranged into a natural transformation.

So we have to construct the desired model structure in a more roundabout way. We will
exploit the fact that one can lift a model structure through a functor or an adjoint pair.

First, we present the theorems in full generality and then specialize to our case of interest.

Consider the following more general setting. Let M be a small category and N be a model
category. Take U : M — N. We want to lift the model structure of A through U so that M
will become a model category. As above, the naive approach would be to declare f € morM

to be in some class whenever U(f) is. If we take a square in M with vertical maps as desired,
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apply U to take into N consider the lift obtained in A, then there is no a priori reason why
the lift is in the U image. This is essentially the same reasoning as above. The solution to this
problem is to restrict one of the classes we want to define on M to where the problem is no

more.

Definition 142. For any functor U : M — N where N is a model category we define a
morphism in M to be:

(1) A U- weak equivalence (respectively U-(co)fibration) if its image under U is.
(2) A projective cofibration if it has the left lifting property against all U-acyclic fibrations.

(3) A projective acyclic cofibration if it has the left lifting property against all U-

fibrations.
(4) A injective fibration if it has the left lifting property against all U-acyclic cofibrations.
(5) A injective acyclic fibration if it has the left lifting property against all U-cofibrations.

In general it is not the case that the triples Wy, Fur, Cproj) and Wy, Finj, Cyr) are model
categories. If they exist, the first is called the projective model structure and the second is
called injective.

The following proposition records some conditions under which the model structures exist

and inherit properties from that of N.

Proposition 143. (Proposition 8.2 in [Shul9]) Let N be a model category and U : M — N
be a functor that has both adjoints F' 4 U - G such that the adjunction UF —H UG is Quillen.
Then:

(1) If N is cofibrantly generated then the projective model structure exists and is cofibrantly

generated itself.

(2) If N is combinatorial and M is locally presentable, then both the projective and injective

model structures exist and are combinatorial.
(3) Every projective cofibration is a U-cofibration and every injective fibration is a U-fibration.
(4) The projective/injective model structures are right or left proper if A is.

(5) If N, M and the adjunctions are simplicially enriched then so is the projective/injective

model structure on the category of diagrams.
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Now we seek a functor U to apply the theorem to. To that end, recall that the product of
model categories canonically becomes a model category by defining everything componentwise.

In our case we can consider | [, ,sSet. Moreover, there exists a forgetful functor

sPsh(A) := sSet™” —L sSet*PA ~ H sSet
ob.A

Then, since sSet is both complete and cocomplete, U admits both left and right Kan exten-

sions. Thus we obtain L 4 U 4 R

o L/
sSet?” — v —— sSe

(\R—/

tobA"p

One can directly construct formulas for L, R. A X € []  ,sSet is an ob.A-parametrised

family of simplicial sets. Then L(X)(A) = || Xp and dually, R(X)(A) = [] Xec.
a:A—B a:C—A

Proposition 144. The adjunction UL 4 UR is Quillen.

Proof. (Adapted from Example 7.46 in [HM22]) The fact that L 4 U 4 R gives UL 4 UR
is a classic exercise on adjoint functors. To show the latter forms a Quillen pair it suffices
to show UL preserves both cofibrations and trivial cofibrations. Since sSet is combinatorial
cofibrations are monomorphisms. UL is pointwise L and the latter’s action on morphisms is
by composition. Both the class of monos and weak equivalences (hence also their intersection)

are closed by composition, which completes the proof. O

Theorem 145. Let A be a small, simplicially enriched category. Then sSet*” admits both the
projective and injective model structure. Moreover, that model structure is left-right proper,

cofibrantly generated, combinatorial and simplicially enriched.
Proof. sSetkq satisfied the requirements of Proposition 143. O

Since both model structures have the same weak equivalences they capture the same homo-

topy theory. So we shouldn’t be surprised that we can obtain a Quillen equivalence

sSet Sap sSetih:

proj inj
Remark 146. The fibrations in sSetg‘r(;? are pointwise fibrations in sSet. Therefore the fibrant
objects of sPsh(.A4) are those diagrams taking values in Kan complexes. The dual is true for

AP

sSetz"". Since all objects of sSet are cofibrant, the same is true for sSety o

inj
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3.6.3 Bousfield localisation

Thus far we’ve inquired into homotopical categories and model categories as ways of capturing
a "homotopy theory'. An all-important construction is that of the homotopy category, the
universal category where objects with the same homotopy type, objects connected by a zig-zag
of weak equivalences, have become identified, isomorphic. Thus the homotopy category Ho(M)
is one where we are treating our objects "up to homotopy". In forming the hom-sets of Ho(M)
restrict to bifibrant objects so that "homotopy" becomes an equivalence relation and then we
quotient out by it. This is akin to the construction of the fundamental groupoid of a space.
Instead, we’d like to arrange that information in a richer algebraic object like an co-groupoid.
We will explore these ideas further in section 4. Here, we will just borrow the intuitions we
require.

Inside a model category M, there is a natural construction of a simplicial set, whose role is
to capture the homotopy type of the Hom-oo-groupoid Homp,(X,Y"). This homotopy coherent
function space is called the homotopy function complex or derived mapping space. It is a
construction functorial up to homotopy, that depends on two objects and encodes important
homotopical information. Notably, its path components encode the Hom-set between the two
objects in the homotopy category.

Having established that construction one realises that certain maps, the so-called local maps,
behave much like weak equivalences without literally being so. It becomes natural then to ask if
one can enlarge the class of weak equivalences of M to include them. Of course, we’d like to do
so without changing the model category too much. This is doable under some conditions on M.
The process is called (Left) Bousfield Localisation. The outcome is a model structure on the
same underlying category, with a larger set of weak equivalences but the same cofibrations. For
a comprehensive account, one can consult the canonical reference [Hir03b]. Another textbook
reference is [HM22]. The following exposition is also based on [Rap] and [Def19].

For X,Y € obM we obtain a simplicial set map,,(X,Y’). The precise definition of this
mapping space requires many preliminaries which do not contribute conceptually to this thesis
and are therefore omitted. For details, we refer the interested reader to [Defl19]. As discussed,

the homotopy functions complexes capture important information about the model category

M.
Theorem 147. For X,Y € obM there is an isomoprhism
momap (X, Y) = Hompea (X, Y)

Example 148. In sSetkq the internal homs Fun(X,Y’) play the role of homotopy function

complexes. Then, we obtain an isomorphism myFun(X,Y") =~ Hom,c(X,Y).
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Another important property is that they interact nicely with weak equivalences so that g
is a weak equivalence in M <= g¢*, g, post- and precomposition with g are weak equiva-
lences of simplicial sets between homotopy function complexes. This fact can be interpreted
as saying that weakly equivalent spaces should also have weakly equivalent hom-oo-groupoid
mapping space. It is also a homotopical version of the fact that the Yoneda embedding reflects
isomorphisms.

This is an important property and generalises to the next definition. An object is S-local
if it makes the maps in S behave as if they were weak equivalences, in the sense above. Or as
Dugger puts it in [Dug01b] "In other words, the S-local objects are the ones which see every
map in S as if it were a weak equivalence. The S-local equivalences are those maps which are

seen as weak equivalences by every S-local object."
Definition 149. Let C be a model category and S < morC

(1) An object W is S-local when it is fibrant and for all f: A — B € S we get an induced
weak equivalence f* : map(B, W) — map(A, W).

(2) Amap g: X — Y inC is an S -local equivalence if for all S-local objects we get a weak

equivalence ¢g* : map(Y, W) — map(X, W).

Notice that by thinking of homotopy function complexes like homotopy coherent function
spaces one would expect that a weak equivalence in C is also an S-local equivalence for any S.
Moreover, S-local equivalences between S-local objects coincide with weak equivalences.

These maps behave like weak equivalences, but they are not. The Left-Bousfiled localization
is a construction that enlarges the class of weak equivalences to include the S-local equivalences

for some S.

Definition 150. Let C be a model category and S be a class of maps. The Left Bousfield
Localisation of C with respect to S, if it exists, is a model structure on C, denoted Lg(C) with

the following properties:
(1) It has the same underlying category, C.
(2) The weak equivalences Ws are the S-local equivalences.
(3) The two model structures have the same cofibrations.

(4) The fibrations of Lg(C) are precisely the morphisms that have the right lifting property

against the acyclic S-cofibrations.
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Example 151 (Proposition 3.3.3 in [Hir03a]). Here, nLab authors offer a computation of the
various classes of fibrant/cofibrant objects of Lg(M) comparatively to those of M. The two
model categories have the same cofibrations and therefore the same trivial fibrations. Lg(M)

has more weak equivalences and therefore fewer fibrations than M.

Example 152. (Example d) page 324 in [HM22]) sSetxq = Lg(sSetyoy) for S = {A} — A"}
Therefore Ho(sSetkq) is full subcategory of Ho(sSet oy ) for which the inclusion has a left adjoint.

~

Proof. First, we determine the S-local objects. K € #an <= Vi: A}l — A" : Fun(A", K) >
Fun(A}, K). ( =) is done using the theory of enriched lifting problems, specifically one can
apply (3) of Proposition 22.2 in [Rez22]. The inverse is implied by categorical equivalences

being essentially surjective. Hence the S-local objects are exactly the Kan complexes. Then,
Wi can be equivalently defined as {f : VK € JF an : f* € Wy,,}, see section 52 in [Rez22]. O

Proposition 153. We have a Quillen Adjunction id, : C < Lg(C) : id;. It induces a reflection
on the homotopy categories, namely, the inclusion Ho(Ls(M)) < Ho(M) has a left adjoint.

Proof. Suffices to show Ho(id,) is fully faithful which is equivalent to the derived counit being
comprised of isos. That essentially amounts to showing that the counit comprises of weak equiv-
alences. The derived counit can be computed in terms of the pair of adjoints and (co)fibrant
replacements in the model category. Both adjoints are identities, so we are left with the re-
placements. Without loss of generality, we can assume we start with a fibrant object. Then,
the only non-trivial functor is a cofibrant replacement, which by definition comprises of trivial
fibrations, in particular weak equivalences. The proof in more detail can also be found here.
O

As discussed above, given a model category and a class of maps, the left Bousfield localization
doesn’t always exist. The situation is rectified for a class of model categories that are very
relevant to the material we are presenting. The following is a theorem recording some of the

properties that are stable under the formation of Left Bousfield Localisations.

Theorem 154 (Raptis 4.6 refers to Hirchorn). Let 4" be a simplicially enriched, left proper,
and combinatorial'® model category and S a set of morphisms in . Then the left Bousfield

Localization exists and is itself simplicial, combinatorial and left proper.

B5see section 3.7
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3.7 Properness

Proposition 155. (Proposition 15.4.2 in [May99] or for the second part, Proposition A.2.4.2-3
in [Lur09]) Let M be a model category. Then, weak equivalences between fibrant objects are
stable under pullback against a fibration. Dually, weak equivalences between cofibrant objects

are stable under pushout against a cofibration.

It is common for model categories to exhibit similar behaviour without all objects being
(co)fibrant. That’s what the next definition records. When its condition is satisfied we can

think that the objects of the model category are "kind of (co)fibrant’.

Definition 156. A model category is called right proper if its weak equivalences are sta-
ble under pullback against fibrations. Dually, a model category is left proper when its weak

equivalences are stable under pushout against cofibrations.
An immediate corollary of proposition is that:
Corollary 157. If M is a model category with C = Mon, then it is left proper.

Proof. The map @ — X is always a mono. Therefore every object is cofibrant and thus M is

left proper. O]
Corollary 158. Both sSetkxq and sSetj,, are left proper.

Remark 159. sSetjo, is not right proper. The inclusion A? — A? is a categorical equivalence

but it doesn’t remain one after pulling back against the fibration A{%2 — A2,

We conclude this section with an important characterization due to Charles Rezk. To
motivate it we record that from every morphism f : X — Y we can obtain an associated
Quillen pair: fi = X, o f*

Ef:M/XSM/Y:f*
The left adjoint is postcomposition. Postcomposition just changes the base of the slice leav-

ing the horizontal map untouched. Therefore it preserves cofibrations and trivial cofibrations,

making it left Quillen.

Theorem 160. (Proposition 2.5 in [Rez00]) Let f : X — Y be a weak equivalence of M.
Then, M is right proper <= 4 the induced adjoint pair f; : M/X = M/Y : ffis a

Quillen equivalence.

Proof. The proof can be found at Proposition 2.7 in this nLab article
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3.8 Combinatorial model categories

While model categories may be large and complicated, in some nice cases we can pinpoint
a small set of well-behaved generators for the objects or arrows, in particular the (acyclic)
cofibrations of the category. In each case we may distinguish a small set of objects or arrows
and any other object or (acyclic) cofibration respectively can be obtained by "glueing" these
generators. These properties make the model category particularly tractable.

The next two sections analyse these two cases. In the last subsection, we see an elegant

characterisation of combinatorial model categories.

3.8.1 Locally presentable

Morally, a category is called presentable there exists a small set of (special) objects such that
any object of the category can be given as a colimit over that set of objects. Essentially, there
is a set of generators for the objects of the category. Objects in that set are like building blocks
for all objects of our category. Indeed, "glueing" these generators can give us any other object
of the category. This is the ordinary version of the presentability for co-categories we saw at

subsubsection 2.3.7. For a comprehensive account see [AR94].
Definition 161. Let )\ be a regular cardinal.

(1) A poset is A-directed if every set of cardinality < A has an upper bound.

(2) An object is A-compact if and only if the hom functor Hom(K, —) preserves A-directed

colimits.

(3) A category C is called A-accessible if it is closed under A-directed colimits and it has a
set G of A\-compact objects such that any object in the category can be obtained as a
A-directed limit of them.

(4) A category C will be called A\-presentable if it is cocomplete and A-accessible.
Remark 162. (2) above has an illuminating interpretation. It is asserting that
Hom (K, colim; X;) ~ colim;Hom(K, X;)

The data of a map f : K — colim,;X; can be given by a map f; : K — X, for some j. Or, a

map into the colimit colim;X; factors through one of the constituents Xj;.

Example 163. In Set, the point is A\-compact for any A. Indeed, we can even think of the
point as the archetypal compact object, which follows the slogan of topology that compact sets

behave like points.
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3.8.2 Cofibrantly generated

Under the homotopy hypothesis we have Ho(sSetxq) is Quillen Equivalent to Ho(Topkg). It is
a classical fact that the CVW complexes suffice to capture all weak homotopy types of spaces.
The class of CW complexes is defined as the minimal class closed under some operations. We
start with a collection of points. The operation under which we "close" our set is "gluings of n-
disks along their boundary". To show a topological space is a CVV complex amounts to showing
how it can be obtained via such "gluings". It is well known that in category theory we model
"gluings" using pushout squares or, more generally, coproducts and colimits.

In summary, the class of CYWW complexes can be described by a simpler collection of mor-
phisms, the inclusions of boundaries of disks in disks, and the formation of "glueings" which is
made precise with closure under some colimits.

Keeping the Quillen equivalence of topological spaces and Kan complexes in mind, it is
unsurprising that we recover a similar situation in sSet. This is exactly the content of the
skeletal filtration. It provides a concrete recipe for writing a simplicial set as a series of skeleta
skx (X, ) where the next skeleton is obtained by its successor by "glueing" (i.e. forming a pushout
square) standard simplices. This is but a restatement of the construction of CVW complexes in
the context of sSet. It is with that intuition that we should interpret the next definition. We
demand that saturated classes are "stable under gluings". Perhaps more importantly, that
means that the codomains of said maps can be formed by successive gluings of a collection of
objects. In the case of CW complexes, we glue spheres and disks along their boundaries. In
that of sSets, we’ll glue horns or standard simplices.

This is the feature that we also want to obtain for model categories. We wish to consider
relatively simple classes of maps and "close" them under gluings. As explained above, this also
means that we get a particularly tractable description of the collection of their codomains, as
certain colimits. We will ask that that the closure of a class of maps, its saturation, described
the class of (trivial) cofibrations. Then by looking at their codomains we obtain a description
of cofibrant objects in M.

For the theory to work, we also need to add closure under retracts which unfortunately
eludes the above explanation but plays an important formal role.

In the other direction, we might wonder if one of the classes of our model category admits
a description as some smaller class of generators closed under gluings. It is then reasonable to

note that taking saturations leaves the right complement of a class of maps unaffected.
Definition 164. A class of monomorphisms M is called saturated when

(1) it contains all isomorphisms
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(2) it is closed under forming pushouts i.e. for a pushout square withi e M — ie M

A C
|
B D

—

—

(3) closed under retracts
(4) closed under coproducts: if VI :i: Ay > Bie M — >,i: 2, A = >, BeM

(5) closed under w— composites. Given a diagram [ :w — & with I(j > j+ 1) =4;: X7 —
X7*1 e M then i = the w— composite of {i;} € M.

X0 i X! i .. Xw

colim e, X’

Proposition 165. Let K be arbitrary. Then LLP(K) is saturated. This is essentially the dual

statement to Proposition 102.

Definition 166. Denote by Mg the intersection of all saturated classes containing M < mon.
We say that Mg is generated by M.

Then an important feature is that taking the saturation of a class doesn’t change RLP(-).
More importantly, we have the following quite general result that is central to producing

model categories.

Proposition 167 (section 16 in [Rez22]). (Small Object Argument) Fix a set of morphisms in
sSet M = {s; : A; — B;}. Then any map f : X — Y can be factored as f = pj with j € Mg
and p € RLP(M).

This allows us to take a pair of classes of morphisms I, J < morC form their saturations I, J
and hopefully to be able to consider them as the classes of cofibrations and trivial cofibrations
of a model category. When that happens, the resulting model category is called cofibrantly

generated.

Definition 168. A model category M is called cofibrantly generated when there exists a
pair of classes I, J © morM such that I = C and J =C n W.
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3.8.3 Dugger’s theorem

Definition 169. A combinatorial model category is one that is locally presentable as a

category and the model structure is cofibrantly generated.

Example 170. For example, the projective model structure on simplicial presheaves is combi-

natorial.

Definition 171. A combinatorial model category whose underlying category is a Gorthendieck

topos and the cofibrations are precisely the monomorphisms is called a Cisinksi model cat-

egory.

In Theorem 65 we saw that presentable co-categories correspond to reflective subcategories
of presheaf categories. Here we find an analogous structural characterisation for combinatorial
model categories due to Dugger. These ideas were developed in 3 articles [DugOla] [Dug01b]
[Dug01c].

Theorem 172. Let M be a combinatorial model category. Then there is a small category A

so that, a set of maps S, in sSet*” and a Quillen Equivalence

Lg (sSetAOp) s M

proj

Proof. Following Raptis [Rap] we give an outline of the proof and refer to [Dug0Ola] for more
details.

Much like in the case of presentations of Abelian groups, one finds a surjection Z"™ —» A and
determines the kernel R. Then we obtain £ / r = A. Given a small category C one can see
sSet®™” as the free model category on C.

Say we want to obtain a presentation for M. Then we seek a homotopically surjective map
F : sSet®” < M : G. So Dugger’s proof comes to defining what a homotopically surjective
map is. Given such a map one immediately obtains the desired presentation. The tricky part
of the proof is in obtaining the homotopical surjection. This is doable by carefully choosing
the correct C. Following Dugger’s notation, let ¢ M be the category of cosimplicial resolutions
of M. Let CR be its full subcategory consisting of those resolutions A, such that A™ € M,!°

tCROp

for all n. The inclusion of C'R in ¢M induces a sSe which Dugger shows is homotopically

surjective. ]

Remark 173. Dugger’s theorem gives us what Rezk, in [Rez10], calls a small presentation. For
technical reasons, it is important to replace this with a small simplicial presentation. Namely

to replace the small A above with a 7 that is enriched in Kan complexes.

16this denotes the A-compact objects of M.
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Proposition 174. A small presentation can be promoted to a small simplicial one.

Proof. First, we can canonically turn any small category into a simplicial one by taking constant
simplicial sets for all of Hom¢ (X, Y). Then, all face and degeneracy maps are identities. Using
the collatability conditions one can easily fill all horns making C locally Kan. Because of the
naturality squares for these faces/degeneracies a map C' — sSet fully determines one C — sSet

and vice versa. O

3.9 Simplicial model category

Lastly, we will see that all this extra structure on the hom sets interacts nicely with the Kan-
Quillen model structure on sSet. When the two structures coexist on a category and are

compatible then we call that category a simplicial model category.

Definition 175. A simplicial model category is one where the simplicial enrichment in-
teracts nicely with the model structure. That is, for a cofibration ¢ : A — B and a fibration
p: X — Y we require that we obtain a fibration:

i X Py

Fun(B, X) Fun(A4, X') Xpun(a,y) Fun(B,Y)

Additionally, this fibration is a weak equivalence if either i or p is.
First, we interpret what this property means.

Remark 176. Fix a pair of maps i : A — B and p : X — Y. Consider the pullback from

above:

Fun(B, X)
\

1T X Pk \
Fun(A, X) Xpun(a,y) Fun(B,Y) —— Fun(B,Y)

i*

!

Fun(A, X) P Fun(A,Y)

By the interpretation of pullback in Set we see that a vertex in the pullback consists of a
pair of maps (u,v) € Fun(A, X) x Fun(B,Y) such that p,(u) = i*(v) < pu = viie. a

commutative square as below.

e
<

SpE.
<=

u
—
A
.
.
.
.
.
v
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Moreover, an s € Fun(B, X) with i* x p,(s) = (u,v) amounts to a map S : B — X such

that st = u&ps = v i.e. a filler for the diagram!

Furthermore, if ¢ or p are as in Proposition 175 then we observe the following. First and
foremost a trivial Kan fibration is in particular surjective on vertices. With the interpretation
offered above that translates to there always being lifts in squares with vertical maps 7, p.
Moreover, observe that a fiber of this map corresponds to a choice of a specific square. Recall
that fibers of trivial Kan fibrations are contractible. We interpret this to mean that, while
solutions to lifting problems are not unique per se, they are unique up to contractible ambiguity,

or unique up to homotopy.
A most important consequence of this property is:

Proposition 177. Let & be a smCat. Let X,Y be a pair of objects. If X is cofibrant and Y
is fibrant, then Homg(X,Y) is a Kan Complex.

Proof. By definition we have a cofibration i : @ < X and a fibration p : Y — =. Applying said
property we get a fibration

Homy(X,Y) = Homg(D,Y) Xtomg (2,5 Home (X, #) ~ *

Corollary 178. Let & be a smCat. Then &° is locally Kan.

Proof. Take XY € &°. Recall that &° denotes restriction to bifibrant objects so that both
X,Y are bifibrant. Then we may apply the previous proposition.
O

Proposition 179. The statement above holds for sSet. The map we claim is a fibration is

sometimes called the Leibniz Exponential and is denoted by hp.

Proof. Suffices to show the map lifts against an arbitrary horn inclusion. Form the diagram:

A} Fun(B, X)
T (l*,p*)
A" —1 Fun(A4, X) Xpun(ay) Fun(B,Y)

The map ¢ : A" — Fun(A, X) Xpun(a,y) Fun(B,Y’) corresponds to a pair of maps ¢; into

the two function complexes. Transposing them and r we obtain a triple of maps satisfying
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various conditions. Simply by unpacking the definitions, we see that this data is precisely what

is needed to determine a diagram like below:
(A} x A) Uanxp (A" x B) —— X

R

j = s )

A”XA Y

The key to the proof lies in the fact that j is anodyne, we get a lift s that, in turn, induces the
desired lift in the original diagram. To argue that j is anodyne see Jardine corollary 4.6 page
20. O

Corollary 180. (1) If p: X — Y is a fibration then so is p, : Fun(K, X) — Fun(K,Y).
(2) If X is fibrant then the induced map ¢* : Fun(L, X)) — Fun(K, X) is a fibration.

In subsection 5.9 we will require a simplicial model category to simultaneously be simplicially
locally cartesian closed. This just amounts to all pullback f* : & Sy — & / x to admit a
simplicially enriched right adjoint.
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4 Higher homotopy categories

As discussed, homotopical, or relative categories, fibration categories, model categories and the
latter’s simplicially enriched counterpart, provide abstract frameworks to capture a homotopy
theory. The key ingredient, and indeed the only ingredient present in all, is the class of weak
equivalences. Intuitively we think of a pair of objects connected by a zig-zag of weak equivalences
as having the same homotopy type. In short, any category with weak equivalences captures
a homotopy theory. The additional structure is only auxiliary so as, for instance, to make
potentially important constructions better behaved.

One of the most important constructions in homotopy theory is that of the homotopy
category, which must be thought of as the category where we deal with objects up to homotopy.
In constructing it one of the key steps it that we restrict attention to bifibrant objects. Then, the
notion of homotopy is definable from the axioms of a model'” category, becomes an equivalence

relation on Hom-sets. Then,
HOHIHO(M)(X, Y) = HOIHM(BX, B}/)/2

This makes the homotopy category akin to the fundamental groupoid of a topological space.
In the Introduction, we emphasised how the loss of homotopical information that accompanies
taking quotients may be undesirable. We thus motivated the passage to I1,(X) € w0-GPD.

We’d like to do the same in the abstract setting above. In this section, we’ll show multiple,
but homotopically equivalent, ways to explicitly capture the homotopical data present in M.
Namely, we’ll look into constructing homotopy (o0, 1)-categories from a category with weak
equivalences and potentially additional structure.

We begin with the most general construction, the hammock localisation. Starting just with
a category with weak equivalences one constructs a simplicial category, L7 (M, W) properly
contains M[W™!]. We think of it as the simplicial version of the localisation. We remark that
every model category or fibration category has an obvious underlying homotopical category. We
repeat that the passage to the underlying homotopical category is not functorial. The cause is
that the morphisms in hCat are the homotopical functors. Nevertheless if, for example, M is
a model category we can, and should, think of L¥ (M, W) as the simplicial homotopy category
of M.

7One can replicate this construction in a fibration category using path objects. A homotopical category

doesn’t offer an analogous construction.
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4.1 Homotopy simplicial category

The first step in that direction was made in a series of articles by Dwyer & Kan [DK80a],
[DK80b], [DK80c], in the guise of the hammock localisation. Other standard references include
[BK12], [TV05] and the more modern [Hinl5]. Given a homotopical category (M, W), they
produce a simplicial one, its hammock localisation L# (M, W), which generalises the ordinary
homotopy category. The construction depends only on the weak equivalences and homotopically
equivalent inputs produce equivalent outputs. Furthermore, the mapping spaces of L7 (M, W)
have the correct homotopy type, in that they are weakly equivalent to the homotopy function
compleres we saw in subsubsection 3.6.3. That also justifies the intuition we presented there
of the homotopy function complexes capturing the homotopy type of the "Hom-oco-groupoid"
between a pair of objects. The following ideas and results are recorded in the context of
homotopical categories, where they originate, but it should not be forgotten that they are just

as applicable to model categories.

Definition 181. Let (C, W) be a homotopical category. Using it one can construct a simplicial
category, which we denote L7 (C,W), as follows. The two categories have the same set of

objects, those of C. Given X,Y € ObC the n-simplices of Map, u.(X,Y’) are given by diagrams:

Cia Ci2 e Cik
C’l; Cz; 02,;
2 A\
X o Y
N - N /
\ Cht Chyo e Chk

i

subject to the following conditions:
(1) n>=0.
(2) All vertical maps are in W.

(3) In each column, all horizontal maps have the same direction. If they point to the left,

they are in W.
(4) Maps in adjacent columns point in opposite directions.

(5) no column contains exclusively identities.
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Face operators are given omitting a row and composing the arrows the vertical arrows.

Degeneracy operators are given by duplicating a row and connecting it with identities.

Historically, in [DK80a], the hammock localization was introduced as an improvement to the
"standard simplicial localisation L". The main disadvantage of this construction was that it was
difficult to determine the homotopy type of the simplicial sets LMap.(X,Y’). The hammock
localization of a homotopical category is weakly equivalent to its standard localisation and
rectifies this problem. The next proposition records some important properties of the hammock

localization.

Proposition 182. (Proposition 2.2 in [DK80b]) Let (C,WW) be a homotopical category. The

two constructions above produce weakly equivalent outcomes, LC & ... 5 LC.

As discussed in the Introduction the hammock localisation is a simplicial category that

generalises, or "properly contains" the ordinary homotopy category.

Proposition 183. (Proposition 3.1 in [DK80a]) Taking path components extracts the local-
ization of C at W, moLAC = C[W™].

Furthermore, the hammock localisation equips the homotopical category with homotopy

function complexes, in the following sense.

Proposition 184. (Proposition 4.4 in [DK80b]) If M is a model category we can construct the
homotopy function complexes Map(X,Y). Then, Homym\(X,Y) ~ Map(X,Y) as simplicial
sets. Thus the Hom-sSets of the hammock localisation have the same homotopy type as its

derived mapping spaces.

In subsection 3.4 we defined Quillen pairs as those adjunctions between model categories
that lift to adjunctions between homotopy categories. It turns out that we can replicate this
construction modulo a small modification. A restriction is placed because we consider only ho-
motopical functors between homotopical categories. A right Quillen functor is homotopical only
between fibrant objects. Only then does it induce a functor between homotopical categories.

The situation is explained in full in [Maz15]. Here we record two relevant results.

Proposition 185. A Quillen pair F' : C < D : G induces a weak equivalence Homyuo (X, G(Y)) ~
HOII'ILHD(F(X)7 Y)

Proposition 186. A Quillen equivalence F': C < D : GG induces two weak equivalences:

(1) LH(Fe): LH(C?) — LH(D?)
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(2) LY(GT) . LH(DT) — LH(CT)

Moreover, restricting to (co)fibrant objects produces hDK-equivalent homotopical cate-
gories, see Proposition 191 and its dual. But hDK-equivalent homotopical categories are exactly
those that produce sDK-equivalent hammock localisations. Thus we can deduce that from a
Quillen equivalence as above we can deduce L¥(C) is sDK equivalent to L (D). This is a very
natural requirement from a homotopy category. Equivalent homotopy theories should produce

equivalent homotopy categories. The same is true for these simplicial homotopy categories.

Proposition 187. (Proposition 4.5 in [DK80b]) A Quillen equivalence between model cate-
gories induces a weak equivalence of simplicial homotopy theories. In particular, we obtain

weak equivalences of simplicial sets Hom(X,Y) = Hom 4 (LX, LY)

Hopefully, all these results are convincing enough towards thinking of L#(C, W) as a sim-
plicial homotopy category of a homotopical category (C,W). Now something rather interesting

happens if one applies this construction to a model category that is already simplicially enriched.

Proposition 188. (Proposition 4.8 in [DK80b]) If .# is a simplicial model category then,
forgetting the enrichment and applying L?, produces L7 (.#°, W) ~ .#°, the full simplicial
subcategory of bifibrant objects.

This means that we can think of £° ¢ & as (a model for ) the simplicial homotopy category

of a simplicially enriched model category.

4.1.1 Homotopical categories revisited

Many of the new notions of sameness we’'ve introduced and so productively used come not
from comparing two objects directly but instead from comparing their images under a functor
of interest. In the same spirit, using the construction of L, we can produce a new notion of
sameness between homotopical categories. In the end, this relaxed notion of sameness will pro-
duce yet another homotopy theory on the category of homotopical categories and homotopical
functors between them. The hammock localization helps us give some important definitions
of homotopical categories. Recall we call a functor F': (C,W) — (D,U) between homotopical

categories, homotopical functor when it preserves weak equivalences, i.e. F(W) S U.

Definition 189. A homotopical functor F': (C,W) — (D,U) will be called an hDK equiva-
lence exactly when the induced functor L (F) is an sDK equivalence. Explicitly, we require

two things,
(1) We get an equivalence of categories HoF' : HoC — HoD.
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(2) The induced map of simplicial sets: L (F)xy : Hompmc)(X,Y) = Hompup) (FX, FY)

is a weak equivalence in sSetkq.

Proposition 190. (Example 3.1.23 [Kap14]) Let F' : M — N be a right Quillen functor which
is part of a Quillen Equivalence. Then, in general, F' is not a hDK equivalence of underlying

homotopical categories but £/ : M/ — N/ is.

Proof. By definition of QE we know that F, the right derived functor of F', is an equivalence of
homotopy categories. But by definition, the right derived functor is the functor precomposed
with a fibrant replacement, i.e. the same as Ff. Therefore HoF/ is an equivalence of homo-
topy categories. The remaining weak equivalence of simplicial sets is immediately obtained by

applying Proposition 185 to F. O

Proposition 191. For any model category M the full inclusion M/ <> M is an hDK equiva-

lence.

Proof. Apply the previous proposition to the trivial Quillen Equivalence 1. Observe that id/ is
the same thing as M/ < M. O

Thus far we've seen how a homotopical category (C,W) or a simplicial category & are
possible answers to the question "What is a homotopy theory?". In this section, we introduce a
natural notion of equivalence between simplicial categories that makes sCat into a homotopical
category itself! Then, we’ll see how the hammock localization can be used to "lift" that notion
of "equivalence" to the collection of homotopical categories, hCat, making it a homotopical

category as well.

Definition 192. Let hCat denote the category of homotopical categories and homotopi-
cal functors between them. Then, hCat is itself a homotopical category where Whcat =

{ hDK equivalences }.

Definition 193. Let sCat denote the category of simplicial categories and simplicial functors
between them. Then, sCat is a homotopical category with Wicay = { sDK equivalences }. We
will later see that this is the underlying homotopical category of a model category that will

play an important role in what is to come.

With those definitions, we can finally make precise the intuition that the hammock locali-

sation gives a simplicial category L7 (C,W) with the same homotopy theory as (C,W).

Proposition 194. L : hCat — sCat is an hDK equivalence between homotopical categories.
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4.2 Homotopy (o0, 1)-categories

In the previous section, we saw how to produce a simplicial homotopy category L# (M, W) for
a homotopical category L7 (M, W). But in subsubsection 2.3.4 we saw a robust connection
between simplicial categories and oco-categories. Thus, in this section, we expand on the previous
one by exploiting that connection to obtain a homotopy co-category of (at least) a homotopical
category.

From the previous section, we define the simplicial homotopy category of a homotopical
category Hog(M, W) = LT (M, W). We'd like to apply the homotopy coherent nerve functor
to canonically obtain an oo-category. Unfortunately, L7 (M, W) is not always the homotopically

correct object, it need not be enriched in Kan complexes. Thus we are forced to define:

Definition 195. Let (M, W) € hCat. It’s co-homotopy category is How (M, W) = N(LH (M, W)*)

where * denotes a Kan replacement in sCatgeyg.

One can provide a more direct construction of the homotopy type of Ho, (M, W) via the
theory of localisations of co-categories. We present it briefly following Chapter 9 in Cisinski’s
[Cis16]. The essential point is that we take the universal property of the standard localisation

and "stick oo in front of everything" to obtain the corresponding statement for co-categories.

Definition 196. Let S — C denote an oo-subcategory of C. Let Fung(C, X) denote the full
subcategory of Fun(C, X) that send all arrows of S to isomorphisms in X.

Definition 197. A localisation of C at S is a functor yC' — S~1C that:
(1) for any fe S < C, ~(f)is an iso in S~*C.

(2) For all co-categories X precomposition by 7 induces an equivalence of co-categories:
Fun(S~!'C, X) — Fung(C, X).

Remark 198. If C' = NC' for an ordinary category C’, the homotopy category, in the sense of
definition — of h(S™1C) is canonically equivalent to C[S™!], the category of fractions of [GZ12].

Thus we can think of S~'C' as a J# an-enriched version of the latter.

This intuition can be expanded on by the following description of the same construction
offered by Kapulkin, in paragraph 3.1.45 of [Kapl4]. Consider the various f € S < C. By

Yoneda lemma, we know that f € N(C); <~ Al — N(C). Thus we obtain a map | |A! —
fes

N(C). Similarly we obtain | JA' — ¢, the walking isomorphism. Morally, to form S~'C
fes

amounts to adding an inverse to each arrow f € S or to "glue" a _# over each f Al - N(C)

Using our intuition for the pushout of ordinary categories, that amounts to forming the pushout:
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C)
Unfortunately, as above, this construction too fails to produce the homotopically correct

object, only its homotopy type. Thus we define,

Definition 199. Given a homotopical category (C, W) we define its standard localisation,
L(C, W) as a sSet jop-fibrant replacement of S—1N(C') above.

Proposition 200. (Proposition 8.7 in [HS01]) The functor L : hCat — qCat is an hDK
equivalence. Moreover, for any M € hCat there exists an equivalence, L(M) ~ N(L7(M)*).

It is also important to note what happens when we apply all these ideas to a simplicial model
category & € mCat. As recorded in Proposition 182, we find L (&, W) ~ &°, the full simplicial
subcategory on bifibrant objects. It is a particularly convenient property of simplicial model
categories that we can find the simplicial homotopy category, or rather its homotopy type, in

such a direct and clear way. Then, the definition above becomes:

Definition 201. Let & € smCat. Then we can think of &° as a homotopy simplicial category
for &. We define the homotopy co-category of & to be Hoy, (&) := J(&°).

Other phases commonly used is that the model category & presents € = Hoy (&) or that €
is the underlying co-category of &. In the next two sections, we will apply all these constructions

to two specific cases that become very relevant when it comes to interpreting HoTT.

4.3 Quasicategory of frames of a fibration category

In this subsection, we look at another direct and functorial construction for a model of Hoy, (—)
of a fibration category, the co-category of frames.

We start by building up some machinery. The construction originates in [Szul4]. Tt is the
main tool used by Kapulkin in his PhD thesis, [Kap14] and [Kap17], to settle Joyal’s conjecture.
We start with some preliminary definitions required to introduce the main object of Kapulkin’s
work, the oo-category of frames of a fibration category, Ns(—) : fCat — qCat. We proceed by

surveying the most crucial properties of this construction.

Definition 202. (1) A category J will be called inverse if it comes equipped with a degree
function deg : obJ — N such that for any non identity arrow j — j' we have deg(j’) <

deg(7). Let J be an inverse category:
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(2) Take j € J. The matching category d(j/J) is the full subcategory of the slice category
J /" j consisting of all objects except the identity. There is a canonical functor cod :
g/ ) = J.

(3) Let X : J — C and j € J. The mathcing object of X at j is the following limit:

M;(X) = lim(0(j/J) — J — X).

(4) Let M be a fibration category. A diagram is called Reedy fibrant if Vj € J there exists
a matching object M;(X) and the canonical map X (j) — M;(X) is a fibration.

Proposition 203. By induction on the minimal degree of J one can show that one can always

take the limit of a Reedy fibrant diagram.

Definition 204. We denote by [n] the linearly ordered set considered as a homotopical category

with only trivial weak equivalences.

We can then construct a new homotopical category D[n] and a homotopical functor p :
D[n] — [n]. Tt has objects pairs ([k],¢ : [k] — [n]). A map f: ([k],¢: [k] — [n]) — ([I], ¥ :
[[] — [n]) is given by an injective, order preserving f : [k] < [l] so that ¢ factors through ¢.
We put p : D[n] — [n] be given by (([k],¢) — ¢(k)) and put Wpp,) := p~ (W) so that p
becomes homotopical. This construction readily generalises to arbitrary homotopical categories
K.

Definition 205. Let M be a fibration category. We define the co-category of frames of a

fibration category C to be the following simplicial set:
N#(M),, := Fun"(D[n]°®, M)
So that n-simplices are homotopical and Reedy fibrant diagrams D[n|® — M.

We conclude this section by recording some of the basic properties of this construction.
Unfortunately, the proof of most of the following results makes use of complete Segal spaces.
Therefore, their treatment lies outside the scope of this thesis.

First and foremost, the co-category of frames is another model for the underlying co- category

of the relative/homotopical category of the fibration category M.

Theorem 206. (Theorem 9.1.2 in [Kapl4]) For any fibration category M the co-categories
L(M) and Ny(M) are equivalent.
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Theorem 207. (Theorem 3.2 in [Szul4] or Theorem 5.3.12 in [Kapl14]) The functor Ny : Fib —
sSet takes values in finitely complete co-categories and is an exact functor between fibration

categories'® Fib — qCat.

Proof. The first part of the proof is done by showing that the functor N(—) preserves pullbacks
along fibrations and the terminal object. Preservation of (trivial) fibrations is significantly more
technical. O

Proposition 208. (Proposition 3.5 in [Szul4]) Let M be a fibration category and K a simplicial

set. Then, there is a natural bijection:
K — N{(M) < DK?®->M

In some appropriate sense, the co-category of frames construction preserves slices and ad-
joints as the next two theorems record. One could say these are the main two tools one has for
working with the co-category of frames. Kapulkin introduces and makes use of the co-category
of frames with the aim of establishing some conditions on a fibration category C that, when
satisfied will make N;(C) a locally cartesian closed co-category. Recall that the latter involves
the pullback functor between slice co-categories always having a right adjoint. The next two
properties relate 1-categorical slices and adjoints between fibrations categories to co-categorical
slices and adjoints between their respective oo-categories of frames. This is, of course, analo-
gous to lifting Quillen pairs between model categories to homotopy categories. This provides
the intuition that homotopical and exact functors play the same role as Quillen pairs between

model categories.

Theorem 209. (Theorem 7.2.2 [Kapl4]) Let M be a fibration category and A : D[0]°® — M

be a 0-simplex in Nf(M). Then there is an equivalence of co-categories:

NiM) 7 4 > Ny (M(A0))
Recall that M(Ay) is the notation we have used for the full subcategory of M / Ay spanned
by the fibrations of M.

Theorem 210. (Theorem 7.3.9 in [Kapl4]) Let F : C < D : G be an adjunction between
fibration categories. If all objects are cofibrant, F' is homotopical and G is exact, then we
obtain an adjunction of co-categories, N¢(F) : N¢(C) < N¢(D) : Ny (G).

18There is a category of Fibration Categories and exact functors between them. In fact, this is a fibration
category where the weak equivalences are maps that lift to equivalences between homotopy categories and

fibrations are those functors that lift against (pseudo) factorisations and isofibrations.
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Proposition 211. (Proposition 9.2.3 in [Kapl4]) If C is a locally cartesian closed fibration
category, then for each A € C the category C(A) is cartesian closed. Additionally, for any
fibration p : B — A the product functor in the slice, p x — : C(A) — C(A) is exact and its right

adjoint is homotopical.

The two theorems above play a crucial role in showing one of Kapulkin’s stepping stones
towards the main theorem, Theorem 9.3.17, of his thesis [Kap14].

Theorem 212. (Theorem 9.2.8 in [Kap14]) If M is a locally cartesian closed fibration category
then N¢(M) is a locally cartesian closed co-category.

Proof. Much like in 1-category theory, if an co-category % has a terminal object and pullbacks
then it is locally cartesian closed exactly when the pullback functor against a morphism f admits
a right adjoint classically denoted II;. By Proposition 207 Ng(M) is finitely complete and
therefore has a terminal object and admits pullbacks. So it remains to show that all slices are
cartesian closed. Take a vertex A and form Vf (M)
to Np(M(Ap)). In Proposition 9.2.3 of [Kapl4] Kapulkin shows that the product/exponential
adjunction in M(Ap) satisfies the requirements of 210. O

/" A- By Proposition 209 that’s equivalent

4.4 Model categorical presentations of co-categories

In this section, we recall one of the main players in this thesis, the homotopy coherent nerve

and the adjunction it participates in:

¢ :sSet < sCat : M

Thus far we’ve provided two distinct interpretations for this functor. Firstly, in the previous
sections, we constructed a functor L¥ : hCat — sCat that we interpreted as producing a sim-
plicial homotopy category for a category with weak equivalences (C,W). Then, as 91 mediates
the passage from simplicial to co-categories, we used it to define the homotopy co-category of a
homotopical category. As hCat admits forgetful functors from smCat, mCat, fCat this construc-
tion extends together one of these settings. This makes precise the slogan that the homotopy
theory is fully determined by the class of weak equivalences.

Secondly, at the beginning of the thesis, we looked into categories enriched in Kan Complexes
and oo-categories as two models for the theory of (o0, 1)-categories. Moreover, in subsection 3.5
we endowed the ambient categories of each with a model structure and exhibited each as the
full subcategory of bifibrant objects. In fact, in both model structures, all objects are cofibrant,

so the previous statement reduces to subcategories of fibrant objects.
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For instance, we saw how £ an-enriched categories arise as precisely the fibrant objects of
sCatperg and oo-categories as the fibrant objects of sSet ;.. Thus both model categories capture
the homotopy theory of (o0, 1)-categories. Through the discussion of the previous section and
the paragraph above it becomes clear that we can view qCat = sSetj, = Hox(sSetjqy) as the
homotopy oo-category of sSetjo,. Then, the Quillen equivalence € — 91 establishes the intuition
that the development of (oo, 1)-categories in the two models yields homotopically equivalent
results.

In the following section, we look deeper and find that using 91 we can construct a very clear
dictionary between for notions of (oo, 1)-categories in the two models. Specifically, we find that
one can simultaneously develop (o0, 1)-topos theory in the two settings, with each co-categorical
piece of the definition having a precise smCat-egorical counterpart. These ideas have their root
in the work of Simpson, for instance, [Sim99], and Toén and Vezossi, in [TV05], but took their
present form through the work of Rezk, notably in [Rez10].

The upshot is that we can characterise the exact form of simplicial model categories .#,

such that 9(.Z°) is an co-topos. Moreover, any co-topos can be described in this way.

4.5 Model categorical presentations of co-topoi

Thus far, we have defined and studied two models of (o0,1) categories, locally Kan simplicial
categories and oo-categories. The comparison between the two is mediated by the homotopy
coherent nerve functor N : sCat — sSet. We’ve offered two distinct but interrelated conceptual
interpretations for this functor. The first is, 91 as a Quillen equivalence between two model
structures capturing the homotopy theory of (o0, 1)-categories developed in the two different
models. This formalises the intuition that these two ways of developing the theory of (o0, 1)-
categories are homotopically equivalent. The second, view is 91 as computing a homotopy
oo-category of a simplicial model category. In this section, we will see how this equivalence goes
significantly deeper.

We will see how, through 91, each oo-categorical notion that goes into the definition of
co-topoi has a clear analogue in the enriched model categorical setting, thus allowing us to
simultaneously define and characterise (00, 1)-topoi in the two settings. All these relationships
are recorded in Table 1 at the end of the section.

Grothendieck (o0)-topoi were defined as left exact reflective subcategories of presheaf cate-
gories. We will use the theory we’'ve developed so far to determine the model categorical versions
of the oo-categorical notions that go in defining and characterising co-topoi. This will be done
in 3 steps. First, we’ll see that simplicial presheaves present co-presheaves. Then, Bousfield

localisations, that, under Proposition 153 induce a reflection between homotopy categories,
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also induce a reflection between homotopy co-categories. This is made precise by the fact that
Quillen pairs lift through M. Lastly, since homotopy (co)limits also present their co-categorical
counterparts, we get that the reflector between homotopy categories is left exact with respect
to homotopy (co)limits exactly when the reflector between homotopy co-categories is left exact.

Our first task is to identify how to present the co-category Psh. (47) = Fun(</,S). The
slogan here is that simplicial presheaves present co-presheaves. This means that in the same
way that spaces S play the role of sets in the setting of co-categories, the same is true for sSetp,o;
in the simplicial setting. Presheaves valued in sSet in the simplicial model of (o0, 1)-categories

correspond to presheaves valued in spaces for the oco-categorical model.

Theorem 213. (Proposition 4.2.4.4. in [Lur09]')
Let € be a .# an enriched category. Recall that we write sPsh(%) for sSet”.

proj
Then we have an equivalence of co-categories:

MN(sPsh(%€)°) ~ Fun(N(E), N(sSetykq)) = Fun(N(€),S) = Pshy, (9(E))

Thus, simplicial presheaves present co-presheaves. The next step towards the definition of
co-topoi is to consider reflective subcategories thereof. We have already supplied an important
characterisation of such categories. Recall that a presentable co-category is one when one has a
small set of generators and all objects can be built by glueing these generators. Along the same
line, a combinatorial model category is one where the same is true for objects and cofibrations

of the model structure. It shouldn’t be surprising that they model the same (o0, 1)-categories.

Theorem 214. Let € be a presentable co-category. Then there exists a small co-category &,

a fully faithful inclusion ¢ that admits a left adjoint L.

L
¢, Fun(&,.7)

Proof. We already presented and discussed this in Theorem 65 O

Theorem 215. (Proposition A.3.7.6 [Lur09]) An co-category % is presentable exactly when
there exists a simplicial combinatorial model category ./ and an equivalence of oco-categories

C ~ N(A°)

Proof. For the proof we refer to the source. Instead, we just note how o is obtained. We know
that ¥ is equivalent to a reflective subcategory of a co-presheaf category on the small and full
co-subcategory € on k-comapct objects, see Theorem 65. Recall that by € we denote the left
Quillen adjoint of M. Let A := €((€")°P) € sCat. Then, & := sPsh(A)iy;. O

For a clearer exposition see also the nLab page
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In addition to that it is important to recall Dugger’s Theorem:

Theorem 216. Let & be a simplicial combinatorial model category. A small presentation

Dep

proj and a Quillen Equivalence

for & is a small category D, a set of maps S in sSet

& S Lg(sSetDh)

proj

As Rezk notes in paragraph 5.4 of [Rez10], a model category M admits a small presentation
if and only if it admits a small simplicial presentation. See Proposition 174. Combining all
these facts we see that the notion of a combinatorial model category mediates the following

analogy.

A presentable co-category € arises as a reflective subcategory of Psh,,(€"). Presentable
oo-categories are presented by combinatorial simplicial model categories. Up to Quillen

equivalence, the latter arise as Lg (sSetgfjj).

The last step towards the definition of co-topoi is to require the left adjoint of the fully
faithful inclusion to be left exact, namely to preserve finite limits. The notion of "left exact
reflector" has a straightforward simplicial model-categorical analogue.

We say the left Bousfield localisation with respect to S is left exact when the left derived
functor of a : M — LgM preserves finite homotopy limits. Since it always preserves the
terminal object it suffices for it to preserve homotopy pullbacks. It is important to note that
after Corollary 1.5.2 of [Hinl5] we know that homotopy (co)limits present the co-categorical
ones?’. Thus, there is a natural candidate for a model categorical presentation of an co-topos.
We define:

Definition 217. Let € be a small simplicial category and S a set of maps in sPsh(%). We
say that a model category is a model topos when it is equivalent to a left exact left Bousfield

localisation of simplicial presheaves.

A °P

1] ) for a sim-

Theorem 218. Any oo-topos is presented by a model topos & =gp Ls <sSet
plicial .#Z and left exact S-localisation. Namely, there exists an equivalence of oo-categories

X ~ NE7).

Then model topoi are the (oo, 1)-topoi of the simplicial model for (oo, 1)-categories. We
further this intuition by noting that model topoi also admit a Giraud-type characterisation in

perfect analogy with Theorem 72.

20To prove that one shows that one can lift Quillen pairs between model categories to their underlying oo-

categories. And applies that to the two Quillen adjunctions we defined in subsubsection 3.4.5
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Theorem 219. (Theorem 6.9 in [Rez10]) A model category £ is a model topos if and only if
(1) € admits a small presentation
(2) € has universal homotopy colimits and descent for homotopy colimits.

Proof. For the proof of the theorem, we refer to [Rez10]. Some remarks are in order. For
(= ) we remark that one shows directly that sSetxq has descent. Moreover, since homotopy
(co)limits are computed componentwise in simplicial presheaves, it is also the case that (2)
above lifts. Lastly, one shows that (2) is also stable under the formation of left Bousfield
localisation.

For the converse, we are satisfied with noting that the small presentation exhibits £ as
a localisation of simplicial presheaves. Note that simplicial presheaves form a combinatorial
and simplicial model category. Then, by Theorem 215, it presents a presentable co-category,
which in turn is a reflective subcategory of an oo-presheaf category. As in the case of co-topoi,
Property (2) goes into showing that the resulting reflector is left exact.

Hence we see that not only the statements of the two theorems are in perfect analogy but

so are their proofs. This speaks to the depth of the analogy mediated by 1. O]

In a very similar spirit, one can also characterise the model categories that present (pre-
sentable) locally cartesian closed oo-categories in the following way. We note that the following

theorem appears as (Theorem 4.1.25 [Kapl4]).
Theorem 220. Let € be an oo-category. The following are equivalent.
(1) € is presentable and locally cartesian closed.

(2) € admits a presentation as a right proper left Bousfield localisation of the injective model

structure on simplicial presheaves.
(3) € admits a presentation by a right proper Cisinksi model category

Encyclopedically, we note that the latter condition is also equivalent to admitting a presentation

by a combinatorial locally cartesian closed model category.

Proof. The equivalence of (1) <= (3) is given in the post and comments of Shulman’s n-
Category Cafe blog post. Shulman’s proof that (3) = (1) is instructive so we include it here.
We want to show the co-pullback functor admits a right adjoint. We will lift the corresponding
adjunction through 9. It suffices to show g* - II, form a Quillen pair. Since to obtain the

right derived Rg* we’ll "precompose” with a fibrant replacement, it suffices to consider the
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case where ¢ is a fibration, namely a fibrant object in the slice model structure. To show the

adjunction above is a Quillen pair we show it preserves cofibrations and trivial fibrations. In

a Cisinksi model category, the cofibrations are monomorphisms which are, of course, pullback

stable. Since we assumed ¢ is a fibration and the model category is right proper, pullback

against g also preserves weak equivalences, completing the proof.

O

The following table records notions that correspond to one another for the two models of

(o0, 1)-categories of interest to us. They are the notions that go into the definition of an (o0, 1)-

topos, known as an co-topos in the model of co-categories and as a model topos in the context

of simplicial model categories.

Model A: co-categories

Model B: smCat

Result

Pshy, (&) = Fun(</,S)

SPsh(2) proj

Prop. 4.2.4.4. [Lur09]

4/ is a presentable co-category
i.e. a reflective subcategory

of an oo-presheaf category
o ~ P < Pshy(8)

& € Comb-mCat so
& ~Lg (sPsh(g)pmj)

The left adjoint above is left exact

The left adjoint
a : sPsh(%) — Ls(sPsh(€))

is left exact

[Rez10], [TVO05]

X is an oo-topos

Model Topos

[Rez10], [TV05]

X is presentable,

has descent and universal co-colimits

small presentation,

descent and universal homotopy colimits

[Rez10], [TV05]

% is presentable and

locally cartesian closed co-category

right proper C' € Comb-mCat and
C = ES (SPSh(S)inj )

220

Table 1: The analogy
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5 Models of type theories and higher categories

5.1 Martin Lof Dependent Type Theory

Around the 1930s there where various proposals for a mathematically precise notion of compu-
tation. These proposals included a version of Church’s A-Calculus [Chu32], which was shown
to be equivalent to the other two main proposals, Gédel’s general recursive functions and Tur-
ing Machines. After Godel successfully translated the meta-mathematics of Peano Arithmetic
inside his theory of general recursive functions it was clear that these models of computation
had a robust link with logical systems.

Following this line of inquiry, it was observed that the rules of A-calculus were in perfect
analogy with the rule of Gentzen’s Natural Deduction. This was made mathematically precise as
the Curry-Howard correspondence in [How80], or the propositions as types paradigm. Therein,
it was proposed that terms of types of A-calculus behave exactly the same way as proofs of
propositions in natural deduction. Moreover, the correspondence was established in such a way
that each step of computation in a A-term corresponds exactly to an application of a logical
rule.

Martin Lofs’ Dependent Type Theory (MLDTT) was intended as a formal system of for
Intuitionistic/Constructive mathematical reasoning, see [Mar75b], [Mar84], [Mar98]. It turned
out to be so much more. From a logical point of view, the system deals with terms of types,
which can be interpreted as proofs of propositions. MLDDT makes the addition of dependent
types, x : A = B(x) : Type, to be thought of as a family of types indexed by z : A. If types
are propositions, a type that depends on an argument is a "dependant’ proposition, namely a
predicate.

The next step is to add quantifiers to our language. We want to maintain the constructive
character of our system and thus we pay special attention to adding constructive quantifiers. For
instance, we introduce a sum-type that plays the role of the existential quantifier. In constructive
mathematics the proof of an existential statement 3z : P(x) consists of a construction of a
specific object and a and a proof that "a indeed has property P(—)". Thus to construct a term
of ¥ : AB(z) one must supply a pair (a : A,p : B(a)). Similarly, to prove a Vz : P(z)-statement
in a constructive setting we must provide an "algorithm" or an "effective procedure" that on
input a produces p, : P(a). In terms of our set-theoretic intuition, these can be thought of as
functions whose codomain depends on the input. The standard example is n : nat — 0 € R™.

The last addition is the identity type, which really turns out to be the culprit for much of the
phenomena that interest us in this thesis. MLDTT comes naturally equipped with "definitional

equality", a syntactic equivalence relation "generated by abbreviatory definitions, changes of
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bound variables and the principle of substituting equals for equals" !

. Now this equality proves
too strict for practical use. For instance, one can’t prove add(0,n) = n. Thus, we further
extend the type theory with an internal notion of equality, a type Id(x,y) or z =4 y standing
for the proposition "z, y are equal terms of type A". A term p: x =4 y stands for a proof that
x,y are indeed equal. We call that propositional equality.

But how should we construct or define this type? Well, in full generality the only thing that
should always hold is that x can always be expected to be equal to itself. Thus, we postulate

terms
a:A
Ta:Q =40
Not having much else to work with, we postulate this bi-parametrised family of types to be
freely generated by the r,’s*>. Whenever something is freely generated via an operation applied
to a collection of generators, to define an operation-preserving function out of it, it suffices to
supply the data for the values of the generators. The same is true in this context. This is the

induction principle for identity types or path induction.

PIT =4Y, r: A d(z): B(x,z,r,)
J(d,z,y,p) : B(z,y,p)
It must be read as: "Given arbitrary x,y : A and p : © =4 vy, if you supply a family d(x) :

B(x,z,7;) depending on z : A you may obtain J(d,z,y,p) : B(z,y,p)." This phenomenon,
namely that to define a potentially complicated function it suffices to specify its values in the

most trivial of cases, makes path induction very valuable from a practical standpoint.

5.2 The groupoid interpretation

Having introduced the identity type one wonders about its internal structure. In the beginning,
it was thought that the identity type was a simple as it could be, namely that for p,q:x =4 ¥y
then it should be derivable that p =,_ ,, ¢, the so-called Uniqueness of Identity Proofs. Indeed
it was shown to be derivable in some special case type theories. Unfortunately, UIP destroys
some good properties of the system such as decidability of type checking. This motivated the
pursuit of models that invalidate it. The first such instance was provided by Hofmann and
Streicher, [HS94] and [HS02], who produced a categorical model of MLDTT that didn’t satisfy
UIP, thus finally settling the question.

21516 in [Mar75a]
22This is very common practice in MLDTT. Such inductive definitions allow us to express potentially infinite
structures with finite means. This is a common "trick" among constructivists who value their methods but are

not willing to give up on, for example, the natural numbers.
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The truly crucial part is how the question was settled. Before Hofmann and Streicher the
community thought of type theory in a rather "set-theoretic" manner. And indeed in a "discrete"
setting such as Set the reflection principle is validated. Instead, by interpreting type theory
in a setting where there is higher data present, where entities are more structured than sets,
UIP fails. In retrospect, UIP is a truncation principle, and indeed the strictest truncation. To
invalidate it, it suffices to produce a non-completely truncated example. Hofmann and Streicher
proposed a notion of an abstract model of MLDTT, categories with families, and produced this
structure in the category of groupoids.

Recall a groupoid is a category with exclusively invertible arrows. Every set can be seen
as a discrete groupoid with only identity arrows. Types, and contexts®® will be interpreted as
groupoids and terms as objects of the groupoid. Morphisms of the groupoid model propositional
equality, the identity type. Namely, let G stand for the type A. Then, p : x =4 y <~ p €
Homg(X,Y). Composition of arrows plays the role of transitivity of equality or concatenation.
Identity morphisms stand for the reflexivity proofs.

The collection of (small) groupoids and functors between them can be arranged in a category
GPD. We think of this as the universe of types. Internally in type theory a dependant family
on ',z : A+ B(x) can equivalently be thought of as a function f : A — Y. Thus, we interpret
type families as B : A — GPD.

Then, the dependent family of types © = 4 y is interpreted as a "presheaf" I, : AxA — GPD.
It’s values are the sets Homa(X,Y") seen as discrete groupoids and the action is I4(q1, g2)(s) =
g20s0q;". Observe that to provide the data of an identification, p : & =4 ¥ one must provide a
triple z,y : A and p: I4(x,y), i.e. a morphism between x,y in the groupoid A. The collection
of such triples is thus isomorphic to the arrow groupoid A™. This foreshadows the general
phenomenon of interpreting identity types as path objects.

Next, we interpret the J rule, path induction. Let C' be a family over the groupoid
A~. The goal is: only given the data of d, : C(a,a,r,) to define the entire dependant ob-
ject J(A,C,d)(z,y,s) : C(x,y,s). The trick is to use a Yoneda style argument to express
the value of an arbitrary s in terms of id,,. Observe that we always have an A~ -morphism

(idg, 8) : (a,a,id,) — (a,b, s) given by the commutative square

|
— b
).

Then, we let J(A,C,d)(z,y,s) = (ida, s) - d(a

pa.‘
QL

Hence, the value on an arbitrary s is

23dependent lists of types.
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expressed in terms of id,, the interpretation of r,, and d(a) as required.

Fix a,b and consider the fiber of A~ — A x A. In the case of simplicial sets, this is how we
defined Map(a,b). That fiber is precisely 14(a,b). To invalidate UIP we seek p # q : © =4 y.
So it suffices to observe that there exist groupoids with non-trivial A™- automorphisms of
an arrow x — y. In a set-theoretic interpretation these objects are collected in a set which,
being discrete, doesn’t have non-identity automorphisms.?* However, following Theorem 5.1 in
[HS02], if we take the groupoid Z, with a single object * and two distinct morphisms id,, p,
then UIP would produce a term of I(I(A,*, ), p,id,), which is impossible since id, # p.

One must moreover note that this groupoid model satisfies a "higher" version of UIP. Indeed,
even in a groupoid G we have a set of morphisms between two f,g € G—. Ultimately this brings
us back to the same situation just one level higher. Thus UIP is a 1-truncation principle and
groupoids are 1-truncated objects while sets are O-truncated.

Of course, groupoids are tightly linked with the homotopy theory of topological spaces, via
the fundamental groupoid of a topological space I1;(X). This was the first clear indication of

a link between MLDTT and models of a homotopical higher flavour.

5.3 Homotopical models

The next substantial advance was made by Awodey and Warren in [AW09]. The key insight here
is that the diagram corresponding to the semantics of path induction can be recast as a lifting
property like one of the weak factorisation systems and model categories. More specifically, if

we interpret MLDTT in a contextual category path induction takes the form seen below:

2y, pyd(a)
la : A] e da)] [,y : Ap:x=4y,2: P(x,y,p)]
-
I[avavrﬂ«] ’>[x7y7pv‘]d(x7y7p)] l
[z,y: A,pia =4y = [,y : A,p:a=ay]

The contextual category has contexts for objects and context morphisms between them.
Context morphisms consist of lists of terms definable in the domain context and belonging in
the types of the codomain context. Objects are contexts but we’d like to work with types.
Maps as the one on the right in the diagram above serve to pick out the types again. In this
instance the map A, P - A =[x,y : A,p: x =, y] picks out that type P out of the context

A. In general, such a context morphism or display map w4 : A — I simply projects out the

24The presence of non-trivial automorphisms is precisely the same obstruction that limited what arrows we
could classify in an elementary 1-topos. Its removal is the common cause for the invalidation of UIP and the

object classifiers we get in an co-topos.
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variables of I". So we think of the display map on the right as defining a dependent family
z: P(x,y,p) with respect to the data of the context [z,y: A,p:x =4 y].

The other vertical map picks out the reflexivity term [a,a,r,]. By commutativity of the
square, the non-trivial horizontal map specifies an element d(a) : P(a,a,r,). According to
path induction that is sufficient data to obtain a judgment of the form [z,y : A,p : © =4
y] = Ja(z,y,p) : P(x,y,p), equivalently specifying a section of the display map on the right.
Commutativity of the top-left triangle, whose last component is Jy(z, y, p)or, = d(a), is exactly
the computation rule, namely that if we evaluate J on r, we’ll retrieve d,.

So display maps are meant to distinguish types out of contexts. Since they appear on the
right of these diagrams we expect types to be related to fibrant objects/fibrations. Indeed, the
authors postulate that - A : Type corresponds to a fibrant object and = : A — B(z) to a
fibration f : B — A. We'd like to interpret terms of a type as its elements. But if the type is
captured by an entire map A — = or f : B — A, we should take elements in a slice category. The
terminal object of the slice is the identity and slice morphisms out of the identity correspond
to sections. Thus, terms of a type correspond to sections of the corresponding fibration.

Lastly, the identity type has a canonical interpretation as a path object for A. Recall, that
this is a canonical construction from the axioms of a model category, or even a WFS, with at
least binary products. Take A € obM. Form the diagonal map A : A — A x A. According to

the axioms of the WFS, this admits a factorisation:

PA
>N
A 5

We interpret the map A — A x A as a — r, and the fibration PA —» A x A, the free

Ax A

path space fibration, as Id4(a, b) over (a,b). Postcomposing with the projections we can even
obtain source and target maps (s,t) : PA =3 A. This ensures us that we can indeed think of
identifications p : x =4 y as paths between z,y. More on that in the next section.

These ideas were pushed further in a similar vein. A notable such instance is [BG11], where
the authors, Benno van den Berg and Richard Garner, axiomatise the existence of path objects
in what they call a path object category and observe that such a structure exists in topological
spaces, groupoids, chain complexes and simplicial sets. This is the first instance of truly "exotic"
models of identity types. Another important construction was given by Gambino and Garner
in [GGO8] who produced a weak factorisation system on the classifying category, or the category

of contexts of a type theory.

110



5.4 Higher structures in type theory

Through Hofman and Streicher’s groupoid interpretation, we saw that UIP, the strictest trun-
cation principle, is invalidated and thus there should be some higher data present over identity
types. This suspicion was strengthened via Awodey and Warren’s homotopical models. Now
that we’ve established the presence of higher data the next natural question is their quantity
and internal structure. The answer to the second question is more immediate.

For a moment we return to working with identity types internally in the type theory. Recall
that given two terms z,y : A in arbitrary A we can form a new type Ida(x,y) whose terms
serve as proofs of " x =4 y. We think of this bi-parametrised family of types as being freely
generated by the reflexivity proofs r, : * =4 x. This induces a rule governing how we form
functions out of an identity type, path induction, which states that to define a function out of
the identity type it suffices to provide the values of the function on the generators, the r,’s.

The remark regarding the identity type’s internal structure is that when defining the identity
type of an arbitrary A there were no assumptions placed on A. This in particular implies that
we are free to iterate this construction and obtain Idig, s (P, ¢), the type of identifications
a:p = q, IdIdIdA(z,y)(p»Q)(a7 B) of identifications between y : o =  and so on. Thus in
principle, if we wanted to capture this data in a category we’d require n-arrows for all n.

The second observation is that one can prove the properties we list below. We note that in
the following properties, the type A is arbitrary and we could therefore substitute Id(x,y) or
Idid, () (P, q) if we'd like. This means that the groupoidal laws hold for the higher data. For a

comprehensive account, we refer to [Rij22].

It can be similarly shown that inv behaves as an inversion operation with respect to concatena-
tion. Interestingly enough, concatenation is not associative on the nose. Instead one can only
construct an identification, the associator av: (p-q)-r=p-(q-7).

Thus we obtain groupoidal laws for identity types. Moreover, the presence of the associator

strongly brings to mind the II,,(X) of a topological space.

[t becomes clearer and clearer that (higher) identifications over a type behave much like

(higher) homotopies over a topological space.

It is exactly this line of reasoning followed by Benno van den Berg and Richard Garner in
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[BG10]. Notably similar ideas were investigated by Warren [War08] and Lumsdaine [Lum10] in
their respective PhD theses.

The main result of [BG10] can be informally stated as: ...if T is a dependently typed
calculus admitting [identity types|, then each type A therein gives rise to a weak w-groupoid
whose objects are elements of A, and whose higher cells are elements of the iterated identity
types on A".

Unfortunately, the authors make use of a different notion of a higher category than we’ve
been using and thus a more in-depth look at their work would extend outside the scope of
this thesis. Van den Berg and Garner argue that Batanin’s [Bat98] notion of a higher category
matches the type theory most closely because of its essentially algebraic nature. It is important
to note that as the main theorem of Cisinski’s [Cis06] asserts, one can retrieve the full homotopy

type of X e Top from its associated Batanin co-groupoid.

5.5 The simplicial model

A truly landmark moment in the development of the semantics of HoTT was Voevodsky’s model
in the model category sSetkq.

His contribution was great mainly, but not exclusively, for the following reasons. His method
of universes provided semantics for the hitherto uninterpreted internal universes of type theory.
In doing so he also provided a general solution to the coherence problem mentioned above.
Lastly, but perhaps most importantly, in constructing this model he observed an equivalence
between the identity type of the universe and "an object of internal equalities". Type theoreti-
cally this equivalence takes the form (A =, B) ~ (A ~ B). Voevodsky proposed to add this
as an axiom to MLDTT. Philosophically this produces a system that captures the mathemat-
ical practice of identifying isomorphic objects. Moreover, it has very pleasant type-theoretic
consequences. MLDTT with the addition of such an axiom is termed Univalent Foundations.

Now as has been greatly elaborated on in this thesis, sSetxq plays an integral role in the
theory of oo-categories and it presents the archetypal co topos of spaces & = 91(sSetyq). In this
section, we look a bit deeper into the constructions that go into establishing this model. Thus
we not only provide an example for the considerations of the previous subsections but also get
the chance to look into some of the constructions that Shulman generalises to obtain "a model
of HoTT in any oo-topos"'. This exposition is largely based on [KL18] and [Rie].

First and foremost we record that types are interpreted as Kan complexes, the fibrant objects
of sSetxq. Then, we interpret identity types. As discussed, the identity type is interpreted as

a path object. In sSetkq this takes a particularly clear form,
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A% = Fun(A', A)

A Ax A

da

Where s,t stand for evaluation at 0,1 and are interpreted as source and target maps. The
path object captures the entire type family so if we want to produce the identity type for two
specific terms, x =4 y we take the fiber of A2 — A x A against A° @Y A x Al By pullback
stability of Kan fibrations that fiber is too a Kan complex and is thus "allowed" to capture a
type.

To interpret path induction we exploit this correspondence of lifting problems.

A— S F s A P E
/‘(

T~ lp J T . l p

AA1—7—>B AL — AA1—7—>B

Recall that a type family depending on p : & =4 y is given by a fibration P — A% and a
term thereof by a section of this fibration.
The heart of the matter is that (Proposition 1.1.2 [Rie]) to define such a section, it suffices

to define a partial section over the subspace A — A2 of loops.

id
sSet being a presheaf topos is in particular locally cartesian closed and thus comes equipped
with for any f: A — I', a triple adjunction ¥y - f* - II.

X
L

sSet / A sSet /F

f*
e
Iy

We note that all the following constructions can be adapted to work over arbitrary contexts.
> and II types are interpreted via this triple adjunction. Let A be a type, soa: A — = A
dependent family over A, x : A - B(x), is given by p : B — A. Then, the interpretation of
YaaB(a) is given by X,(p: B - A) = B - A — =. This is a fibration over a point and thus

can indeed be thought of as the interpretation of a type.
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So, we'd like to think of X IT as operators that take fibrations to Kan complexes. Thus it
becomes crucial that they preserve fibrations. That’s exactly the content of Lemma 1.3.2. in
[Rie]. The statement for ¥ is immediate since fibrations are closed under composition. The
fact that II; preserves fibrations depend on the ambient model category being right proper.

The proof is by a general fact concerning adjoints in model categories, see proposition 2.7
of this nLab article. A left adjoint preserves trivial cofibrations exactly when the right adjoint
preserves fibrations. Here, in sSetkq cofibrations are monomorphisms and thus are always
pullback stable, and, by right properness, weak equivalences are stable under pullback against
a fibration. Thus, when f is a fibration, f* preserves trivial cofibrations.

Under these interpretations, one obtains a lovely pictorial interpretation of the constructive
quantifiers. For a type in empty context, A — =, 34 produces the total space of the fibration

and IT4 the space of sections.

5.5.1 Univalence in simplicial sets

As discussed in the introduction univalence weakly identifies two different notions of same-
ness present in HoTT. The first is about identifications in the universe, a type of all (small)
types. The second is a notion of equivalence of types one can develop internally. To explain
the latter we begin with the notion of contractible types which are defined as isContr(A) :=
Yieallac =a x. The interpretation of the internal type-theoretic contractibility matches
well the one present in sSetkqg. A type in context is given by a fibration p : A — I'. This
is a trivial fibration exactly when isContr(p) has a section (namely the corresponding type is
inhabited)(Lemma 1.3.7 in [Ric])

Exploiting this we can produce a notion of equivalence of types. Again internally to type
theory, we call a function an equivalence when we can inhabit isEquiv(f) := ]| 4. 1sContrfib #(y),
where fib(y) := >4 fr = y. Again, this notion matches well that of sSetxq, (Lemma 1.3.11)
A map between fibrations over I is a weak equivalence if and only if isEquiv(f) € sSet /T has
a section.

Now we may turn our attention to universes, the heart of Voevodsky’s construction and
univalence. The overarching outline for Voevodsky’s work we review here is as follows: Declare
a model of type theory to be a "contextual category" C, an essentially algebraic structure. We
thus sidestep much of the cumbersome syntactical bookkeeping. Observe it has a "coherence
problem", namely substitution in T is stricter than its interpretation in C. Show that if all
morphisms of interest are taken as "chosen pullbacks" of a specific morphism you can both
solve coherence and obtain internal universes for the modelled type theory. Construct such a

morphism in sSetkq.
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For reasons similar to why the object classifier of co-topoi could not classify all morphisms
at once, it is unreasonable to hope to simultaneously classify all Kan fibrations. Instead, we
introduce a cardinality-based stratification. Let o be a regular cardinal. Voevodsky constructs
a weakly universal Kan fibration, p, : U, — U,. This universe will classify a-small fibrations,
fibrations whose fibers always have cardinality < a.

Again the presence of non-trivial automorphisms poses an issue. Here they are removed.
To that effect, one uses AC to well-order all fibers. Then given two maps in the slice over X
we only consider morphisms between them that are compatible with the base, and the well
ordering. Since there exists at most one isomorphism between well-ordered sets, there exists at
most one isomorphism between two objects in the slice.

Given X € sSet they define U, (X) to be the isomorphism classes of a-small-well-ordered
fibrations Y — X. To show this functor is representable Voevodsy exhibits it as a subfunctor,
defined by a pullback, of W, (X) of all a-small-well-ordered morphisms Y — X, which is
independently shown to be representable in Lemma 2.1.5. With not much additional work,
Lemma 2.1.11, they show that U, is representable too. Let % be the representing object of
Ua(—). Then, every a-small-well-ordered fibration Y — X corresponds to a "f" : X — %,.

Recall that type theoretically, the univalence axiom asserts that "equality is equivalent to

equivalence" or

(A=y B)~ (A~ B)

To be more precise, we don’t merely assert that there exists an equivalence. Instead, we ask that
canonical map id-to-equiv, which canonically produces an equivalence out of an identification
and is in an equivalence, admits a homotopy inverse. For the contents of this section, we
suppress the regular or inaccessible cardinal o from the notation and implicitly assume, as is
common practice, that we fix a specific universe U, and work internally therein.

The goal is direct. Write the statement above in the internal language of sSetkq and show
id-to-equiv is a weak equivalence. The left-hand side is well understood. We know that path
objects are of the form Y2 = Fun(A',U) and we take a fiber over A° AP U % U to obtain
Map(A, B). If A, B were definable in context I" we’d form the pullback against ' Ay xu.

An internalisation of (A ~ B) is trickier. As before we have a pair of types in context I’

captured by a generalised element I’ 4B UxUu.

o%axu%d

[l

P22y xu ——u
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We can thus see m;(u) as capturing the data of the i-th Kan complex/type out of a pair of
types (A, B). We denote this pullback by %; to simplify the notation.

Observe that sSet being locally cartesian closed, means all slice categories admit a right
adjoint to their product functor, and thus have an exponential object. Thus we can for the
internal hom in the slice over U xU, Map,,,.,(%, %). Using the adjunction we can characterise
its simplices. Take a map A" — Mapgz(FE,, E») transposing and making use of the universal
property of the pullback we find that it corresponds to a choice of a simplex b : A — B and
a map u : b*FE; — b*Fy. A crucial ingredient is the local character of Kan complexes. Many
properties of Kan complexes-Kan fibrations can be detected locally, in fibers over simplices.

For instance,

Lemma 221. (Lemma 3.2.4 in [KLV12]) Let f : E} — E5 be a morphism over a base B. If for

all n-simplices b the induced map f;, : b*E; — b*FEy is a weak equivalence then so is f.

Exploiting this local character thus we can define a simplicial subset Eqz(E;, E2) to consist
of those simplices where in the explicit description above the map u : b*E; = b*E, is a weak
equivalence. In our case of interest we can define Eq(U) := Eqy. (%, %), and the explicit

description becomes,

Eq(U), = (by, by € Uy, w : b U > bU)
Then, we can immediately define id-to-equiv := ;3 : U — Eq(U) by u € Uy, — (u,u,id )
Definition 222. A fibration is univalent exactly when d,; is a weak equivalence.

Whenever that is the case, since 9 is additionally a monomorphism, we obtain a factorisation

of the diagonal in a trivial cofibration followed by fibration, thus exhibiting Eq(l/) as a path

object for U.
u d Uxu

o

Eq(f)

We close this section off, by adding a particularly concise explanation by Shulman, which

appears in p.84 of [Shul5]:

The univalence axiom, when interpreted in a model category, is a statement about a "universe
object" U, which is fibrant and comes equipped with a fibration 7 : U — U, that is generic, in
the sense that any fibration with "small fibers" is a pullback of 7. In homotopy theory, it

would be natural to ask for the stronger property that U is a classifying space for small
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fibrations, i.e. that homotopy classes of maps [' — U are in bijection with (rather than merely
surjecting onto) equivalence classes of small fibrations over A. The univalence axiom is a

further strengthening of this: it says that the path space of U is equivalent to the “universal

space of equivalences” between fibers of ... In particular, therefore, if two pullbacks of 7 are

equivalent, then their classifying maps are homotopic.

N

A generalised element as on the left below captures an equivalence of types A ~ B, which

Diagrammatically,

—
—>
under univalence corresponds to a morphism in UL between their classifying maps a,b. Fur-
thermore, an equivalence in sSetkq also associates the "homotopy coherent higher data" of each
Kan complex.

EqU) s a —— be U™

P
e .7
-
-
-
-

r A5 0 wu

In [KLV12] a substantial amount of work goes towards showing that the fibration u : U-—-U

is indeed univalent.

5.6 Local universes method

One of Voevodsky’s motivations in developing his universes was to obtain models for the internal
universes of the type theory, but also to solve the coherence problem, an asymmetry in the
strictness of certain type-theoretic operations in comparison to their interpretation.

Voevodsky made use of contextual categories as his notion of an abstract model of type
theory. They are defined with an axiomatisation that abstracts out from the structure present
in the category of contexts of a type theory. Substitution is interpreted by pullback.

Now, all induction principles, like path induction mentioned above, naturally come with
computation rules. These computation rules assert something well-known to anyone having
done elementary undergraduate mathematics. To define a function f : N — N by induction
it suffices to supply the data f(0) = a and f(S(n)) = g(n) for some g. Those pieces of data
produce a unique function f. It should definitely be the case that f(0) = a. Similarly, if we use
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the datum d,, : D(a, a,r,) to produce a J(z,y,p) : D(z,y,p) and then evaluate it at a we should
find d,. In type theory, we assert that this is the case up to definitional equality. Since most
interesting functions are defined via these methods it is quite common to have substitutions
into a certain function satisfying an "equation"' up to definitional equality. Similarly, many
type-theoretic operations declare strict stability under substitution.

The problem stems from the fact that in contextual categories one interprets substitution via
an appropriate pullback operation, which is pseudofunctorial, meaning its values are defined
only up to isomorphism. Yet if we want to model the type theory faithfully, we would like
pullback to be strictly functorial and to strictly preserve all the logical structure.

Voevodsky solves the coherence problem using his universes by choosing a distinguished
pullback out of each isomorphism class. So, to categorical models of a formal system for
constructive reasoning, we had to choose pullbacks, in order to make certain constructions
evil®.

As Lusmdaine and Warren mention in the introduction to their [LW15],

The present work arose from a careful reading of Voevodsky’s model in simplicial sets
[KLV12]. Universes are used there for two distinct purposes: Firstly to obtain coherence of
the model, and secondly to become type-theoretic universes within the model. It turned out
that not only may the two aspects be entirely disentangled, but moreover, the coherence

construction may be modified to work without a universe.

The following are based on the introduction to [LW15]. In their paper, the authors use
yet another notion of an abstract model of type theory, a comprehension category. The key
ingredient of the definition is a cloven Grothendieck fibration of categories P : T — C meant to
capture the idea of types being fibered over contexts. The fiber over a given context I' € C is
all the types A € T definable in context I'. A split comprehension category is one where this
fibration is split. A split fibration is, unsurprisingly, one where one has a strictly functorial
interaction of the fibration with pullbacks, see [Str23]. Split comprehension categories are
models of an essentially algebraic theory. The crux of [LW15] is to provide a canonical way to
turn a comprehension category with weak stability into a split one, capturing the strict honest
and faithful model of the type theory.

Now given a comprehension category C they manage to replace it with an equivalent but
split C;. Certain additional structure is required to lift all the logical constructors present in
C, if any, to C,. The point is that this structure is implied by local cartesian closure, which in

particular is present in all homotopical models of interest.

25 Buil refers to categorical constructions not invariant under equivalence of categories. They’re called so

because stability under equivalence of categories is a central point in the philosophy of category theory.
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The central definition is then,

Definition 223. (Definition 4.2.1 in [LW15]) A logical weak factorisation system on £ is
a WES such that:

(1) fibrations are exponentiable, namely for p : X — Y the pullback functor p* has a right

adjoint.
(2) left maps are preserved by pullback along fibrations.

(3) any left map 7 between fibrations over a common base I' remains a left map after having
pulled back against any f : [ — I'. Such a WFS is called semi-logical if the bases of

all fibrations are additionally assumed to be fibrant objects.
Their main theorem is:

Theorem 224. Let £ be finitely complete, with stable finite coproducts, equipped with a
WES. If the WFS is semi-logical, then (£f); models type theory with II, ¥, unit, Id- and finite
sum-types. If the WFS is logical so does &;.

And the central examples we are interested in are: (Examples 4.2.5 in [LW15])
(1) Any right proper Cisinski model category

(2) M is cofibrantly generated and J is arbitrary then both the projective and injective

model structures on M7 are logical.

5.7 Joyal’s conjecture

The past few sections have achieved two important goals. First, we’ve established a robust
connection between models of HoTT and higher categories/co-groupoids. In addition to that
we’ve seen how these structures don’t directly model HoT'T but must be further strictified. The
local universes method provides a robust method of doing so that covers all the examples of
interest of this thesis.

Thus we can finally begin to look deeper into exactly which oo-categories can support a
model of HoTT or, equivalently, what kind of structure must be present in an co-category
to model some type of theoretic phenomena. The first result of this kind we present, and
indeed one of the main results that contribute to "the relation between models of HoTT and
co-categories', the topic of this thesis, is Joyal’s conjecture.

Joyal’s Conjecture asserts, in a mathematically precise way, that Martin—Lo6f dependent type

theory, with > I and identity types, gives rise to locally cartesian closed oco-category. This is
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the main result established in Kapulkin’s PhD thesis. The central theorem that establishes this

result is:

Theorem 225. (Theorem 9.2.8 in [Kapl14]) If M is a locally cartesian closed fibration category
then Ny(M) is a locally cartesian closed co-category.

Thus to settle Joyal’s Conjecture it suffices to show that if T has X, [I-types that satisfy
FunExt, and identity types, then CI(T) is a locally cartesian closed fibration category. First,
we identify the fibrations and weak equivalences that provide the "fibration category" structure.
The homotopical structure of CI(T) is clearer at the level of types instead of that of general
contexts. It turns out that if we assume the n-rule’® for X-types we can show any context to

be equivalent to a context of length 1. This can be done by iterating the following equivalence:

[z:Ab:B(x)] ~[p: ZB(m)]

The 7 rule implies that the maps <,>: [z : A,y : B(z)] — [p : >4 B(z)] and that
T, [P D4 B(x)] = [z A b: B(z)] are inverses of each other. So X types can be thought
of as internalising contexts, and any context can be equivalently given as an iterated X type.
If we restrict our attention to contexts of length 1, types, then a context morphism is just a
function type. We declare such a morphism to be a weak equivalence exactly when it is a weak
equivalence in the type-theoretic sense when all of its homotopy fibers are contractible types
if the type isEquiv(f) is inhabited. One can easily show that the resulting WV defines a wide
subcategory that contains all identities.

In addition to that, we define F to be the canonical projections pr or maps isomorphic to
them in the arrow category. We note that maps of the form 7 were defined as I''A — I" or in
the case of a dependant family I'A.B — I'. If we internalise as above they become projections
maps out of the ¥ type, 7 : >, , B(x) — A. Then, internally to HoTT one can show that
fib,(a) ~ B(a).

With these definitions the verification of all the axioms that make (CI(T), W, F) in a fibra-
tion category is essentially an elementary verification. It is given both in section 9 of [Kapl4]
and section 3 of [AKL15]. One point worth noting is that the fibration structure on CI(T) is
not part of a model structure, see 9.3.12 in [Kap14]. It is important to note that all objects are
cofibrant (Lemma 3.2.14 [AKL15])

Theorem 226. If T is a type theory with 3,11, identity types that satisfies function exten-

sionality, then CI(T) is a locally cartesian closed fibration category.

26If ¢ is a term of the sum-type then the 7)-rule asserts that if we pair the two projections applied to ¢ we

retrieve ¢ up to definitional equality.
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Hence if one takes such a type theory T one can draw the diagram below which also appears

in the introduction to Stenzel’s PhD thesis [Stel9].

T » Ny (CU(T)) ~ How(CL(T))

It is important to remark on the direction of the arrows. In this construction, we start
from a type theory obeying certain rules. We obtain its category of contexts, an essentially
algebraic model for the type theory. Then, internal considerations of the type theory induce
the structure of a fibration category on CI(T). Lastly, we consider its homotopy co-category, or
more accurately we obtain a model for its homotopy type, via Kapulkin’s co-category of frames.

Kapulkin then shows that the latter is a locally cartesian closed oco-category.

In the next two sections we record two results "in the opposite direction".

5.8 Locally cartesian closed co-categories and HoTT+FunExt

In this section, we record a partial inverse result to Joyal’s conjecture. This comes as the

combination of two important results.

Theorem 227. Any presentable and locally cartesian closed oco-category admits a model cat-

egorical presentation by a right proper Cisinski model category.

Theorem 228. (Lemma 5.9 in [SHU14]) Function extensionality holds in the internal type
theory of a type-theoretic fibration category if and only if dependent products along fibrations

preserve trivial fibrations.

Intuitively, this property is important because it makes g* — II, into a Quillen pair and
thus the adjunction lifts at the level of homotopy co-categories. But g being a fibration is the
same as having precomposed with a fibrant replacement thus, in reality, this is the homotopy
limit. Therefore it presents the co-pullback. Hence, it is the co-pullback that has a right adjoint
making € a locally cartesian closed oo-category.

We saw in subsection 5.5 how that property relates to right proneness. Thus the requirement
above is satisfied in all right proper Cisinski model categories. Thus, combining the two we

reach another of the central results we aimed to present with this thesis.

Theorem 229. Every presentable and locally cartesian closed co-category interprets HoTT+FunkExt.
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Again we emphasise the "direction" of the construction. Here we start with a presentable
locally cartesian closed co-category, obtain a model categorical presentation and then assert

that model category models HoTT+ Funext.

5.9 oo-topoi, type theoretic model topoi and univalent HoTT

HoTT/UF refers to type theories with the ordinary 3, IT and id-types, and the addition of the
intriguing higher inductive types that allow one to do synthetic homotopy theory. Lastly, we
add the Univalence axiom to obtain UF. It didn’t take too long to establish interpretations for
all these types in any presentable locally cartesian closed co-category.

What remained elusive was the univalence axiom. The analogy between the co-topos object
classifiers and universes in a model category is clear. Rezk (Theorem 6.1.6.8 [Lur(09]) carac-
terised oo-topoi as precisely the presentable oo-categories X with universal colimits®” and such
that for all sufficiently large cardinals k, the class of relatively £ compact morphisms in X has
a classifying object. Given this characterisation, it was expected that model categories with
univalent universes for x-small fibrations should present co-topoi.

Slowly but surely, mainly Shulman with notable contributions from Cisinksi and Lumsdaine,
achieved univalence in some special cases of (o0, 1)-topoi. The general result was established

by Shulman in [Shul9], where he showed the second "main theorem" of this thesis

Theorem 230. (Theorem 11.1 in [Shul9]) Every Grothendieck oo-topos can be presented by
a Type Theoretic Model Topos.

This section is devoted to looking into what Type Theoretic Model Topoi are and how one

achieves to present any oco-topos with them.

Definition 231. A Type Theoretic Model Topos is a model category & satisfying the

following;:

(1) The underlying category is a Grothendieck 1-Topos.

(2) The model category is right proper and its cofibrations are precisely the monomorphisms,

making it left proper as well.

(3) It is combinatorial, meaning it is locally presentable as a category and cofibrantly gener-
ated as a model category. This means that both the objects of & and its model structure

can be obtained from a small set of generators under "gluings".

2"Recall that in the presence of presentability universal colimits are equivalent to local cartesian closure.
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(4) & is a simplicial model category. This ensures compatibility of the simplicial enrichment

and the model structure.

(5) It is also simplicially locally cartesian closed, meaning the simplicial enrichment interacts
nicely with the cartesian closure of the Grothendieck 1-topos, specifically the right adjoint

of the pullback functor is simplicially enriched.

(6) There is a locally representable and relatively acyclic notion of fibred structure F on &

such that |F| is the class of all fibrations.

We place 3 structures on the &. First, a topos structure, thus ensuring local cartesian clo-
sure, which is used to model ¥ and II types. Moreover, we ask that cofibrations are precisely the
monomorphisms which are known to enjoy particularly nice properties inside a topos. Thirdly,
we ask for a model structure. That is necessary for interpreting identity types. Fourthly, we
ask for a simplicial enrichment. This axiom is designed to get us closer to "higher structures".
In a way, having asked that the model structure is combinatorial, by Dugger’s theorem?*, we
have already implicitly asked for a simplicial enrichment.

In addition to these, there are axioms that ensure that all three structures are compatible
with one another, in the following way.

simplicial enrichment
— —~

simpl. lcc simpl. model category
— T~
topos structure ————————— right proper ———— model structure

We saw that right properness came into showing that Il preserved fibrations/fibrant objects.
This has the type-theoretic interpretation of II-types outputing types.

What remains mysterious is the 6'" axiom above, which will guarantee univalent universes.
Shulman asks for a "locally representable and relatively acyclic notion of fibred structure F on
& such that |F| is the class of all fibrations'. Many of these notions reside in a bicategorical

setting. For the appropriate background, we refer for example to [Bén67].

Definition 232. A notion of fibred structure on & is a discrete fibration ¢ : F — E in
PSH(&) with small fibers.

Above E stands for the core of self-indexing of &, with a pseudofunctorial pullback action.
Thus the fiber over any f : A — I' is a small set. Any pullback square with vertical maps f, f’

induces a map between these fibers.

28Recall Dugger’s theorem asserts that any combinatorial model category is Quillen equivalent to a left

Bousfield localization of simplicial presheaves. The latter are simplicially enriched.
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E: 6% - GPD:T— (¢ /p)*

The archetypal notion of fibred structure that we abstract out from in the axiomatisation

is the restriction on fibrations over a given object I'.

F: 7% > GPD: T (7 /)"

Of course, the type-theoretic interpretation here is clear. Fibers over a given I' capture
the collection of types over a context. For any regular cardinal x we can consider the full
subgroupoids consisting of relatively x presentable morphisms. Recall they are stable under

pullback and thus define a subfunctor E®. Then we can also define F* := F xg« E.

Definition 233. A notion of fibred structure is locally representable if the discrete fibration

is representable, namely for any Z € & and a weak bicategorical pullback

|

Homge(—,2) ——

_

M <—— T

We obtain that P is also represented by some X € &.

Crucially this generalises the local character of Kan complezes, see example 3.16 [Shul9]. For
the notion of fibred structure of fibrations in a presheaf category, local presentability is equiva-
lent to the statement that a map is a fibration exactly when its pullbacks over representables,
namely its fibers, are fibrations.

We proceed with a discussion of Shulman’s notion of universes and how it is obtained. Ide-
ally, as in simplicial sets, a universe U in & for k-small fibrations would be a representing object
for F#b". Shulman replaces it with a "weakly equivalent" one, a sort of "cofibrant replacement’,
that enjoys better properties. Since PSH (&) does not have a model structure, one lifts some def-
initions via the Yoneda embedding & — PSH(&). So, for example we call X — Y an acyclic fi-
bration if it has the right lifting property against all Homg(—, j) : Homg(—, A) — Home(—, B)
for all &-cofibrations j : A — B.

In the special case that the morphism is additionally representable, we get a version of
pullback stability for these acyclic cofibrations. Then, X — Y is an acyclic fibration in the

sense above exactly when the induced W — Z is an acyclic fibration in &.
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Homg(—, W) —— X

| |

Homg(—,Z) —— Y

Recall that with this last axiom for Type Theoretic Model Topoi, we are trying to obtain
universes in appropriately structured model categories &. Naively, we'd like a representing
object of F. Instead, we ask for a coifbrant object U and a trivial fibration Homg(—, U) SF
which we think of as a cofibrant replacement.

By the bicategorical Yoneda lemma, x-small fibrations p : £ — B are in bijective correspon-
dence with pseudonatural transformations Homg(—, B) — F". Similarly, we get such a p.n.t.
corresponding to m,. We call it 7.

We’d like to think of pullbacks against 7 as fibrations with x-small fibers and hope that
piy classifies all such fibrations. This amounts to m being surjective. Now if ¢ is classified by
7wy we think of ¢ as having k-small fibers. That means that whenever ¢ arises as the pullback
of some other fibration r then the fibers of r, or at least the fibers in the image of ¢ inside r,
are also k-small since, by the pullback lemma, they are fibers of ¢ as well.

This would make the fibers of r as small as those of ¢ and thus we expect that r is classified
by 7y as well. This is captured by the realignement property. It admits a concise statements

in term of p : Hom(—,U) — F".

Definition 234. In a model category & with all objects cofibrant, a small fibration w7y : U — U
is a universal small fibration if the pseudo-natural transformation p : Hom(—,U) — F* is
an acyclic fibration, meaning that for any cofibration (i.e. mono) i : A — B the diagram below

admits a lift.

Hom(—, A) —— Hom(—,U)

Hom(—,B) —X—— F*
By the correspondence of small fibrations and pseudo-natural transformations into F”, and

the fact that these functors act by pullback, we can see that this amounts to:

N
~

T —

1
-
-
-
-
-
-
-
21
-
.
-
-
-
-
-

SR
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https://ncatlab.org/nlab/show/Yoneda+lemma+for+bicategories

So that whenever ¢ is simultaneously a pullback of the universe and some other fibration p

then p itself must be a pullback of the universe.

Lastly, we connect the abstract notion of fibred structure with the actual class of fibrations

via the following axiom.

Definition 235. Consider the image of ¢ : F — E. This gives a full* notion of fibered structure
|F| — E. We call F relatively acyclic when it induces an acyclic fibration F S |F|, meaning

that for any cofibration i : A ~— B we get a lift

Homg(—,A) —— F

J/Z* //// l/\

Homg(—, B) —— |F|

Then, Shulman proceeds to show that if the model category & is structured enough, as it
certainly is for TTMT, one can produce a univalent universe.

He does that in multiple steps. In each step, he requires a piece of additional structure from
the model category to achieve the next one. Firstly, he introduces the notion of a stack of
cell complexes, groupoid valued pseudofunctors that interact well with certain colimits. In
Lemma 5.7 he shows that all locally representable notions of fibred structure are also a stack
for cell complexes. Then, in Theorem 5.9 with the extra assumption that & is combinatorial,
he shows that one can adapt the small object argument in this setting and obtain, for arbitrary
f : Homg(—, A) — X a factorisation as a cofibration followed by a trivial fibration in PSH (&)
as defined above.

Then, as Corollary 5.10, if & is a Grothendieck 1-topos, with a combinatorial model struc-
ture, with monomorphisms as cofibrations, then all locally representable notions of fibred struc-
ture [, have a universe. He obtains that by using the previous result to factor the trivial map
Homg(—, @) — F. Lastly, to obtain a universe for |F| we use the corollary to obtain one for F

and then simply compose the two acyclic fibrations
Homg(—,U) - F — |F|
After some additional work, which we omit, Shulman obtains,

Theorem 236. (Theroem 5.22 in [Shul9] as presented in [Rie24].) Let & be a right proper

simplicial Cisinski category, and F a locally presentable and relatively acyclic notion of fibred

293 subfunctor.
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structure with |F| = %#s. Then, there exists a regular cardinal A such that for all regular

cardinals k* there exists a relatively s-presentable fibration « : i — U such that
(1) Every k-presentabe fibration arises as a pullback of 7.
(2) U is a fibrant object.
(3)  satisfies the univalence axiom.

Of course, the archetypal example, sSetkq, is a TTMT. If all these constructions are per-
formed there, we retrieve Voevodsky’s simplicial model. All the axioms for a TTMT, except
the last one, are such that include all the properties of a model category that were previously
observed to contribute in the achieving semantics for increasing fragments of HoTT. In that
sense, TTMT enjoy a "maximal" set of good properties. For example, Shulman collects all the
properties from [AW09], [AK11], [SHUI14] and [.S19]. As the name suggests type-theoretic

model topoi are linked to Rezk’s model topoi. For instance,

Theorem 237. (Theorem 6.4 in [Shul9] )
A TTMT & has descent and universal homotopy colimits in the sense of [Rez10]. It also
admits a small simplicial presentation. Therefore every type-theoretic model topos is a model

topos.

Shulman also shows that the collection of TTMT is closed under various constructions like

taking slices over objects and products but most crucially:

(1) Let & be a TTMT and Z small and simplicially enriched. Then, &7 is a TTMT.

inj

(2) Let & be a TTMT and S a set of morphisms such that the left Bousfield localisation is
left exact. Then, Lg& is again a TTMT.

As a corollary, we get that all model categories of the form Lg (sPsh(.@)inj) are TTMT.
Recall that a model topos is a model category Quillen equivalent to one as above, with the
projective model structure. We note that the corollary does not mean we obtain that all model
topoi are TTMT. The reason is that Quillen equivalence does not preserve the property that
"cofibrations are exactly the monomorphisms". However, it does demonstrate that any model

topos is Quillen Equivalent to a type-theoretic one. Therefore,

Theorem 238. (Theorem 11.1 in [Shul9]) Every co-topos X can be presented by a type theo-

retic model topos &.

30With a certain relationship to A
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Proof. Every co-topos can be presented by a model topos. Every model topos is, by definition,
Quillen equivalent to a model category of the form Lg (sPsh(.@)inj>. We saw that the latter are
all type-theoretic model topoi. O

5.10 Nf(E?c) is an Elementary Higher Topos

The three theorems we’ve presented that outline the relationship of models of HoTT and oo-
categories came in two flavours. First, Kapulkin’s result started with a T, recasted it in an
essentially algebraic model CI(T) and produced an oco-category N;(CI(T)). On the other hand,
the other two constructions were in a different direction. They started with a structured oo-
category, an co-topos or a presentable locally cartesian closed co-category respectively. Recall
presentability is equivalent to admitting a presentation by a simplicial model category. Then
one shows that the additional structure of the co-category makes the model category presenting
it structured in an appropriate way to host a model of HoTT.

In this section, we compose the two constructions in the case of a type-theoretic model topos
&. This section also serves as an application of many of the results and ideas in the thesis.

Before we proceed we must briefly introduce the notion of an FElementary Higher Topos
due to Rasekh [Ras22]. As discussed in the introduction, topoi originate and were popularised
through the work of Grothendieck as categories of sheaves on a site. It was quickly realised that
these categories behave much like the category Set. The properties that make it so were isolated
and used to define the more general Elementary topoi. After some work, it was realised that
those same properties were in very close analogy with structures present in intuitionistic logical
systems. Indeed such logical systems are in a robust correspondence with elementary topoi, see
[LS86]. Having seen how HoTT is in such a robust link with structured oco-categories one can
reasonably hope for a notion of an elementary co-topos whose internal language is HoTT/ UF.

A reasonable place to start is to take Lurie’s (Grothendieck) co-topoi and try to isolate the
more "logical" axioms. Given the constructive nature of the internal logic of ordinary elementary
topoi one must insist on the finite nature of their defining axioms. As the nLab authors note "In
general, the problem with “elementary-izing” the notion of (o0, 1)-topos is that Grothendieck
(00, 1)-toposes have many properties that are not reflected in type theory due to the finitary
nature of type theory; the question is to find appropriate “finitary shadows” of them."

An elementary topos is a locally cartesian closed category with finite limits and a subobject
classifier. Rasekh proposes the natural generalisation, that an elementary co-topos should be a
finitely complete and locally cartesian closed co-category with an additional property. As was
discussed in length in subsection 2.5 the notion of a subobject/ object classifier in co-topoi a

more complicated than in the case of ordinary categories. What we gain is that in the co-setting

128



the richer structure of Hom(—, —) objects that are co-groupoids instead of sets, allows for every
morphism to be classified, not only the monomorphisms. What we lose is that we no longer
have a single classifying morphism but an entire collection of them. Each morphism is classified
by a universe depending on the cardinality of the morphism’s fibers. So we obtain a collection
of universes %,..

Whatever the size of the corresponding fibers is one can consider the —1-truncated ob-
jects. In the context of HoTT they are called Propositions. This can be done for each universe
separately and thus we obtain Prop,. Thus, a natural question arises: "What is the exact rela-
tionship between all the %,". In HoTT one is thus motivated to postulate Axiom 3.5.5 [Unil3]:
The natural map Prop; — Prop,,; is an equivalence. This principle is called propositional
resizing and it motivates Rasekh to ask for a unique subobject classifier alongside sufficient

universes.

Definition 239. ( 2.5 in [Ras22] ) Let € be finitely complete oo-category. Let Suby : € — Set

be the composition:

€ — Cat,, — Set

C—C n— T_1<‘5/C) e Set

A subobject classifier is a representing object for Sube.

Having sufficient universes refers to each map being classified by some universe. Then
Rasekh defines,

Definition 240. An oo-category & is an elementary co-topos if and only if it:
(1) is finitely complete
(2) is locally Cartesian closed
(3) has a subobject classifier

(4) has sufficient universes

As discussed in the introduction of this section, the goal here is to compose the two con-

structions we presented in this thesis.

TTMT &
/ presented by

fibration category EY o0 — topoi

\Nf_//



Theorem 241. Let X be an co-topos and & a TTMT that presents it. Let E]Q be the fibration
category obtained by & by forgetting the simplicial enrichment and restricting to fibrant objects.
Then, N f(E?) is an elementary higher topos. In fact, it is a Grothendieck one, equivalent to X.

The phrasing of the theorem may seem a bit weird. Shortly, we will show that N f(EJQ) ~
M(&°) ~ X. So why claim it is an elementary higher topos? The intention is to showcase how
the machinery developed for N¢(—) takes care of two out of four requirements. We defined:

We'll obtain properties 1 & 2 through the theory around Ny(—). The first comes for free
from Szumiltos construction. We already recorded that as Theorem 207. So we move on to
the second. By Theorem 212 it suffices to show that E? is a locally cartesian closed fibration

category. Indeed,
Proposition 242. Let & be a TTMT. Then EJQ is a locally cartesian closed fibration category.

Proof. We verify the definition 95 of a locally cartesian closed fibration category. Firstly, we
know that in a TTMT cofibrations are monos and therefore all objects are cofibrant.

Now, we proceed by showing that for any fibration p : B — A pullback functor p* : EJQ(A) —
EJQ(B) is an exact functor that has a homotopical right adjoint. The pullback functor is exact
by Lemma 6.1.5 in [Kapl4].

Now & being a TTMT means that it is in particular simplically locally cartesian closed. By
definition, this means the adjunction ¢g* — I, is Quillen. We must show that II, is homotopi-
cal. This is not the case in general but in Eg we've conveniently restricted our attention to
fibrant objects. By Ken Brown’s Lemma 130, II, being right Quillen means it preserves weak

equivalences between fibrant objects, thus completing the proof. O]

It remains to show that Ny(EY) has a subobject classifier and sufficient universes. This
is certainly true of all Grothendieck oo-topoi. We know that N;(—) is another model for the
homotopy simplicial category of a fibration category. In the rest of the section, we verify
that even if we start from 91(&°) ~ X the non-enriched and restricted to fibrant objects EJQ
maintains sufficient information to retrieve X up to equivalence of oco-categories. This is yet
another instance of a central slogan of homotopy theory, that the homotopy (c0-) category

depends exclusively on the weak equivalences.
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smCat sCatperg

H(_
hCat - L)

sCatperg &
sDK—f sDKJ \\
. LH(-Ty
hCat v =) sCatperg bl sSet oy

hCat

\ Ny(=1)

fCat

We note that to view smCat as a category with forgetful functors towards fCat, hCat that
is also compatible with the forgetful functor Uy, : fCat — hCat we must restrict to (simplicial)
right Quillen functors between simplicial model categories. We only care about what happens

on objects so this is not much of an obstruction.

(1) NA°) = Hoo(A) : smCat — qCat is what it means for a simplicial model category to

present an co-category.

(2) The second row is the two-step process that produces the homotopy co-category of a
homotopical category. We start with a homotopical category (M, W). Using the hammock
localization we promote it to a simplicial category. Then we get an oo-category using
the right derived coherent nerve, i.e. we apply the functor to a fibrant replacement of
L (M, W), as above.

(3) We restrict to fibrant objects and weak equivalences among them.
(4) We apply the standard localization

(5) We start with the fibration category M/ (W7, F7) and apply the oo-category of frames

construction.

We claim the diagram commutes up to appropriate weak equivalence.

Proof. First, we show that the three first rows produce equivalent co-categories or, equivalently,
that they produce weakly equivalent oo-categories in sSetjo,. As shown in proposition 139 91
is part of a Quillen Equivalence M : sCatpers S sSetjoy : € so in particular it is right Quillen.

Therefore, by proposition 130, it preserves weak equivalences among fibrant objects. Thus,
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to obtain equivalent co-categories it suffices to produce a zig-zag of weak equivalences among

fibrant objects in sCatges. We claim we have

LH(BYY —— LY(E) . &°

l

LH(ESY —— LH(E)

where all arrows are weak equivalences in sCatgerg.

First, we focus on the square:
In proposition 191 we’ve seen that for any model category M the full inclusion M7 < M is an
hDK equivalence. By 194, L# : hCat — sCatpey is itself a DK equiv of homotopical categories,
by definition, it will produce sDK equivalent simplicial Categories. Therefore L7 (E/) >
L (E). Moreover, by a simple 2-of-3 argument, we can see that weakly equivalent objects have
weakly equivalent fibrant replacements. Therefore the vertical maps are weak equivalences.

The fact that L7 (E) is weakly equivalent to &° is given in proposition 1.3.5 in [Hin15].

Moreover, recall that the fibrant objects of sCatpee are the locally Kan simplicial categories.

In proposition 177 we’ve shown that for all simplicial model categories, we have &° is locally

Kan. In Proposition 3.1.46 in [Kap17] we see that for any homotopical category C we have an

equivalence L(C) ~ N (L (C)"). Lastly, from one of Kapulkins main theorems, Theorem 9.1.2
[Kapl7] we get that for any fibration category, L(C) ~ N(C).

O

Theorem 243. Let & be a TTMT that presents an co-topos X. Then N;(E]) ~ X.

Proof. By definition, & € smCat and (&) ~ X. Let Ey be the model category obtained by &
if we forget the simplicial enrichment. Let Eg be the fibration category we canonically obtain
by Ey by restricting to fibrant objects. Then, Nf(Eg ) ~ X as co-categories. The result is

essentially the commutativity of the diagram above. We saw how:

Ny(E)) ~ L(E]) ~ LA (E])) ~ N(&°) ~ %
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