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Abstract 
 
The emergence of wearable technology has led to the emergence of the integrated data 
collection platform RADAR-base. The objective of this study was to assess the added value 
of three newly integrated Polar devices – the Polar Verity Sense, the Polar Vantage V3, and 
the Polar H10 - to the RADAR-base platform. 
These wearables were evaluated in terms of their ease of use, robustness, and the quality 
of their data collected. To this end, heart rate measurements of 13 participants were taken 
during different activity phases, using the newly integrated devices and a Fitbit Charge 2 for 
comparison. Measurements were compared to the Polar H10, as this chest strap uses 
ECG, which is reported to be a standard in measuring heart rate (1).  
The Polar Verity Sense was excluded due to connectivity issues. The Bland-Altman plots 
revealed a mean bias of 1,21 bpm for the Polar Vantage V3, of which 95% of values fell 
within –8.57 and 10.98 bpm. For the Fitbit Charge 2, a mean bias of 5,64 bpm was found, 
with 95% of values within -14,42 and 25,69 bpm. High agreement was found as the Lin’s 
concordance correlation coefficients (rc) were 0,98 (substantial) and 0,91 (moderate) for 
the Polar Vantage V3 and Fitbit Charge 2, respectively (2).  
Based on these findings, we conclude that while each of the analyzed devices is suitable 
for use in research, the Vantage V3 appears to be the most suitable in terms of 
consistency, ease of use and accuracy. Nevertheless, it is crucial for researchers to 
consider the differences in usage and data processing methodologies of these devices 
when designing their patient monitoring studies, and that they limit HR data collection 
throughout larger studies to a single device as much as possible. 
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Layman’s summary 
 
Wearables, which are devices like fitness trackers and smartwatches, are becoming more 
popular. These devices can measure various biomarkers, such as skin temperature, step 
count, sleep performance and heart rate. Heart rate is an important biomarker in research, 
as many conditions can cause changes within a person’s heart rate, which means we can 
potentially use heart rate to detect such diseases. Traditionally, long term studies gather 
heart rate data by using specialized devices or during doctor visits. Nowadays, heart rate 
can be gathered using wearables, which is not only more convenient for patients but also 
gives researchers and clinicians a much larger body of data, as heart rate is continuously 
monitored. To store these measurements, platforms such as RADAR-base were 
developed, which support simultaneous data collection of different biomarkers from 
various sources. Recently, Polar wearables were integrated into the RADAR-base platform,  
To evaluate the performance of these wearables and the quality of their heart rate 
measurements, an experiment was set up. For this, 13 participants were asked to wear the 
Polar devices and a Fitbit Charge 2 simultaneously during a 15-minute experiment in which 
their heart rate was measured.  These participants were first asked to stay seated for 5 
minutes, so that their heart rate could be measured during rest. Next, participants were 
asked to cycle on a home trainer, to measure their heart rate during exercise. And finally, 
participants were asked to remain seated again, to measure their heart rate during 
recovery. The heart rate measurements of the different devices were compared to the 
measurements of the Polar H10 device. The Polar H10 uses ECG, which is considered to 
be very accurate for measuring HR. One of the devices, the Polar Verity Sense had 
connectivity issues and was therefore excluded from our study. Different statistical tests 
showed that the heart rate measurements of the remaining devices, the Fitbit Charge 2 and 
Polar Vantage V3, were highly similar.  
Therefore, we believe that each of the tested devices can be used in research. 
Nevertheless, in our opinion, the Polar Vantage V3 would be most suitable for patient 
monitoring studies, as this device is very easy to use and its heart rate measurements were 
found to be close to the standard.  
That being said, as all these devices are used differently and measure heart rate using 
different methods, researchers should think critically about which device would best suit 
their research needs and select a single device. 
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Introduction 
 
In recent years, the use of wearable technology has revolutionized the way fitness and 
health information is monitored. Due to the development of new wearable sensors, an 
opportunity for the continuous monitoring of patients is emerging in healthcare. Leveraging 
such data enables a deeper understanding of disease ethology, improved diagnosis and 
prognosis, and potentially even detecting disease relapse at early stages, suitable for 
intervention (3). The ease of use of these novel devices also significantly reduces the 
burden of clinical research on patients, particularly if they reduce the number of necessary 
doctor visits (4).  
 
Alongside the development of wearables, platforms for (integrated) data collection using 
wearables have been developed such as Vivalink (5) and ICON (6). Other platforms, such 
as the Empatica Health Monitoring Platform, are designed for data collection through a 
specific device or brand (7). Another platform that has been developed to leverage 
wearables is RADAR-base (Remote Assessment of Disease And Relapses): an open source 
platform that is used to collect data from wearables and mobile applications (8). RADAR-
base enables researchers to collect a wide range of data streams in real-time without fear 
of data-loss and converges all of them into a single location. This significantly facilitates 
subsequent data analysis, as managing data from different sources can impose a 
significant challenge. RADAR-base can be used for passive monitoring of participants via 
their phone and wearable sensors such as the Empatica E4 (9), Pebble 2 (10), Fitbit Charge 
2 (11), Biovotion (12) and Faros (13), to record a variety of biomarkers. For instance, 
RADAR-base was recently used in combination with the Fitbit Charge 2 to evaluate heart 
rate control in a randomized trial where patients were treated with either digoxin or beta-
blockers (14). 
 
Many studies using wearables focus on monitoring patient heart rate. This illustrates the 
particular interest of monitoring patient heart rate. Worldwide, cardiovascular diseases are 
the leading cause of death, taking an estimated 18,6 million lives per year (15). 
Consequently, heart rate measurements are highly sought after as a biomarker in 
research. Variations in heart rate over time can reveal important clinical insights into the 
health of the physiological system that produces these changes. For instance, elevated 
resting heart rate can be associated with the development of cardiovascular disease and 
increased mortality with conditions such as COPD, hypertension, diabetes and 
cardiovascular disease (16–18). Heart rate measurements are commonly obtained through 
either PPG or ECG sensors. In an electrocardiogram (ECG), the heart’s electrical activity is 
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recorded through repeated cardiac cycles. Each heartbeat is associated with 
corresponding signal phase and characteristics, which can be seen in the ECG-plot. When 
determining heart rate, the so-called QRS complex, as shown in Figure 1 marks the 
ventricular depolarization. The heart rate is determined by the RR-interval, which is the 
time between two R waves. Each R wave is produced by depolarization of the main mass of 
the ventricles (19).  In PPG, Optical Heart Rate (OHR) sensors use photoplethysmography 
(PPG) to measure changes in blood volume under the skin. PPG makes use of LEDs which 
emit light into your skin, and a photodiode that detects the intensity of the light reflecting 
from the skin. As changes in the volume of blood flow in the wrist affect the amount of light 
reflected, the blood flow through the capillaries in the skin can be measured and heart rate 
can be determined. This PPG technology has been widely used in commercially available 
medical devices, as it can simultaneously measure blood pressure, oxygen saturation, 
cardiac output, and respiration (20). Such PPG-based devices are more commonly used 
due to their smaller size, lower cost, greater comfort, and ease of use compared to ECG 
devices (21). However, as ECG is still considered to be the gold standard for measuring HR, 
it has recently been adopted into commercial wearables (22). 

 
Figure 1: The RR and RR’ intervals of PPG and ECG signals are used to calculate HR 
Instantaneous heart rate (bpm) can be calculated by dividing 60 s by either the RR’ or RR 
value (5). Wearables make use of algorithms that all look for these heartbeat signatures. To 
eliminate noise in these HR signals, these algorithms, such as the Pan-Tompkins algorithm 
employ sophisticated filtering steps (23). This figure is reprinted from Vandenberk et al. 
(24). 
 
The rising number of devices also poses a challenge for data collection platforms: 
Deciding what devices to integrate and maintain. While integration of many devices into a 
platform is obviously beneficial, the costs involved in such efforts can be significant.  
One newer brand is Polar Electro Oy, which is commonly known as Polar. Polar markets 
itself as a global leader in the health and fitness industry due to their expertise in 
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development and production of heart rate monitors. As such, we received several requests 
from researchers to include Polar devices (such as The Polar Vantage V3; a wrist-worn 
device designed for continuous physiological monitoring using a PPG sensor. And the Polar 
Verity Sense; another device using PPG, which can be worn around your arm or temple). 
into the RADAR-base platform. 
We integrated these devices into the platform to solve our research question: How do 
these Polar devices perform in terms of consistency, robustness and quality of their data 
collected within the RADAR-base environment, compared to other, previously integrated 
PPG devices. As a test case we selected the Polar devices and a Fitbit Charge 2, a device 
that was easily accessible and has already been widely used in combination with the 
RADAR-base platform (14). 
 
To this end, we conducted an experiment where participants wore the newly integrated 
devices simultaneously during various phases of activity, along with the previously 
integrated Fitbit Charge 2 (Figure 2). We then assessed the alignment of the HR 
measurements obtained from the Polar Vantage V3, Polar Verity Sense, and Fitbit Charge 2 
with those of the Polar H10, to characterize the quality of the obtained data.  
 

 
 

Figure 2: HR will be measured using different devices during a 15-min testing session 
HR measurements will be collected during a resting phase (highlighted in blue), exercise 
phase (highlighted in pink) and recovery phase (highlighted in yellow) of one participant. 
The Polar H10 (green line), Fitbit Charge 2 (orange line) and Polar Vantage V3 (blue line) 
were worn simultaneously to compare the different HR measurements.  
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Materials and methods 
 

Materials 
Sensors and recorded signals 
Within this study, heart rate measurements from the Polar Vantage V3 (SN: 
C4095P0622722), Polar Verity Sense (SN: M4094J1178250), Polar H10 (SN: 
M4041W0558072) and Fitbit Charge 2 (SN: 2af235a15a16) were compared (Table 1).  The 
Polar Vantage V3, Polar Verity Sense and Polar H10 each provide the HR measurements 
with a frequency of 1.0 Hz, while the Fitbit Charge 2 has a frequency of 0.1 Hz. 
 
During the experiment, participants were asked to exercise on a home trainer (VirtuFit 
FB1.0i, (25)). A home trainer was selected to minimize the impact of movement on the PPG 
sensors, which are sensitive to motion.  
 
 

Fitbit Charge 2 Polar Vantage V3 Polar Verity Sense Polar H10 
Heart Rate in bpm 
(PPG) 

Heart Rate in bpm 
(PPG) 

Heart Rate in bpm 
(PPG) 

Heart Rate in bpm 
(ECG) 

Heart Rate 
Variability 

PP-interval in ms PP-interval in ms RR-interval in ms 

Breathing Rate 
(during sleep) 

Accelerometer data Accelerometer data Accelerometer data 

Calories Wrist ECG * Photoplethysmography 
(PPG) values 

Electrocardiography 
(ECG) in V 

SpO2 SpO2 *   
Skin Temperature Skin Temperature *   
Sleep stage Sleep stage *   
Step Counts Step Counts *   

 
 
Table 1: Overview of the physiological parameters measured by the different devices 
In blue, the parameters that are included in the comparison are shown. The starred Polar 
Vantage V3 features are not supported by Polar’s SDK and therefore cannot be integrated 
into the RADAR-base platform using the pRMT app at this time. 
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RADAR-base 
The RADAR-base platform can integrate monitoring data of various data sources. In 
Management Portal, a project was registered to which each participant was added and 
assigned with the correct sources. Next the experiment was conducted, and the collected 
heart rate data was either sent via Bluetooth to the pRMT application or, in the case of 
Fitbit Charge 2, was gathered using a third-party RESTful API connection to the S3 storage 
of the RADAR-base instance (Figure 7). 
 

 
Figure 7: The RADAR-base platform is used for passive data collection 
The RADAR-base platform enables the collection of passive monitoring data via various 
data sources. These include either phone sensor data or data from wearables that are 
connected via Bluetooth to the pRMT app, manually uploaded data or data that is gathered 
via a third-party RESTful API connection. The collected data can be directly visualized or 
the raw materials can be downloaded. Adapted from Ranjan Y et al (26). 
 
 

Methods 
 

Software development process 
For this study, updates were made to the RADAR-base platform to enable data collection 
using Polar devices to the RADAR-base platform. For this, the RADAR-commons-android 
library was used to create a new plugin for the RADAR-base pRMT app (28,29). For the 
development of this plugin, the publicly available SDK of Polar was utilized (30). This SDK 
was used to establish the connection of the Polar devices to the pRMT app via Bluetooth. 
Subsequently, HR data measured by the devices, was sent to the storage center of the 
RADAR-base instance, using a AVRO file format (27,31). 
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Study population 
13 participants (10 male and 5 female, age 23-52), that did not have any known 
cardiovascular condition, were recruited on a voluntary basis, and gave informed consent 
to participate in the experiment. A privacy scan was conducted to assess whether the 
study adhered to the key principles of the GDPR, for which proper and fitting technical and 
organizational measures were implemented.  
 

Experimental study design 
The experimental study was set up as follows: 
Each participant wore the devices simultaneously during a single setting. The Polar H10 was 
worn around the chest, while the Polar Vantage V3 and Fitbit Charge 2 were worn randomly 
on either wrist and the Polar Verity Sense was worn on a randomly chosen upper arm. All 
Polar devices were connected to the pRMT app via Bluetooth. The Fitbit Charge 2 was 
connected to the Fitbit application.  
Participants were instructed to keep their arms stable on the handlebars during all activity 
phases to minimize movement interference with the PPG sensors. After a 1-minute 
normalization period to ensure stable heart rate signals, participants were instructed to 
follow this protocol (Figure 2): 
 

1. Remain seated for 5 minutes (resting phase), to get a baseline recording of the heart 
rate.  

2. Cycle on a home trainer for 5 minutes (exercise phase). Participants were asked to 
give a moderate to heavy effort.  

3. Remain seated again for 5 minutes (recovery phase), to measure their heart rate while 
it recovers again after the exercise.  

 

Analysis 
 

Excluded data 
For 3 participants, we observed in the Bland-Altman plots that the collected HR data for 
one or both PPG devices fell outside of the 95% CI (Sup. Figure 2). We excluded these 
patients from subsequent analyses. 
Furthermore, the Polar Verity Sense showed connectivity issues throughout the entire 
study, resulting in an extremely low (N = 247) number of recorded data points that could be 
aligned to the Polar H10, making this data unsuitable for meaningful statistical 
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interpretation without introducing strong biases. Consequently, due to this small number 
of measurements compared to the other devices, we opted to exclude the Polar Verity 
Sense from all statistical analyses (Sup. Table 5). 
To match the lower frequency of 0.1 Hz of the Fitbit Charge 2, the measurements of all the 
other devices, which have a frequency of 1.0 Hz, were adjusted to this frequency. To 
achieve this, the mean of every 10 HR measurements was calculated. Subsequently, only 
every tenth HR measurement was set to this mean and included in the analysis. 
The datapoints of each device were matched to corresponding Polar H10 datapoints for all 
statistical testing. If no matching datapoint was recorded, the datapoint was excluded. 

 

Statistical analysis 
To assess the distribution of HR measurements from the tested devices, Shapiro-Wilk 
tests were performed on each dataset. As the results indicated non-normal distributions 
for each dataset, further analysis consisted of non-parametric tests. As discussed by 
Sartor et al., performing a Student t test in device validation studies is not appropriate, as a 
t test assesses difference, meaning when the null hypothesis that the two means are equal 
is rejected, that does not yet prove that these two means are equal (32). Therefore, the 
Lin’s concordance coefficient (rc), which is the concordance between a new test or 
measurement and a gold standard test or measurement, was reported instead (33).  
In this study, the Lin's concordance correlation coefficient (rc) was used to assess the 
concordance between the HR measurements of each device and the Polar H10. These rc  
values were interpreted according to Mahon et al, who reported values below 0,90 to be 
poor, from 0,90 to 0,95 to be moderate, 0,95 to 0,99 to be substantial and values higher 
than 0,99 to be almost perfect (2).The root mean square error (RMSE) and normalized root 
mean square error (NRMSE) were performed to evaluate the range of error between the HR 
measurements of the Polar H10 and the other devices. Lastly, Bland-Altman plots were 
generated to visualize the differences between the two measurements against their 
averages (34). 
 
Data analyses were carried out using Python 3.10.9 (35) (with libraries: Pandas 1.5.3 (36), 
NumPy 1.23.5 (37), SciPy 1.10.0 (38), Matplotlib 3.7.0 (39) and Sklearn 1.2.1 (40)). 
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Results 
 
In total, 13 participants were part of this study. Of each participant, the HR measurements 
(in bpm) acquired by the Polar Vantage V3, Polar Verity Sense and Fitbit Charge 2 were 
each compared to the acquired measurements of the Polar H10, to assess their accuracy 
during different phases of activity. In total 26505 datapoints were recorded: 11398 from the 
Polar H10, 11327 from the Vantage V3, 2098 from the Polar Verity Sense and 1682 from the 
Fitbit Charge 2. These time points were aligned, resulting in 1218 time points and 3654 
measurements, ranging from 52 to 166 bpm. 
 

High quality of measurements in 3 out of 4 devices 
During each experiment, the Polar H10, Polar Vantage V3 and Fitbit Charge 2 performed 
without meaningful issues or failures. However, for 12 out of the 13 participants, the Polar 
Verity Sense sensor lost connection during the exercise phase. Due to this, the Polar Verity 
Senses’ data was not considered of high enough quality for meaningful comparison and 
was therefore not included in further analysis (Sup. Table 5, Sup. Figure 1).  
 
Moreover, for all 13 participants Bland-Altman plots were generated. These showed that 
there were 3 participants of which most of their HR measurements fell outside the 95% CI, 
which is why these participants were excluded from further analysis (Sup. Figure 2). After 
inspecting their individual plots, we saw that these outliers either occurred due to 
deviating HR measurements of the Fitbit Charge 2 (for subject-5) or both PPG devices (for 
subject-3 and subject-6) (Sup. Figure 3).  
 

High similarity between Polar devices 
The distribution of HR measurements of each device was similar across all analyzed 
devices (Figure 3). Notably, the two Polar devices (Polar H10 and Polar Vantage V3) show a 
particularly high similarity in their density curves. This indicates that HR measurements 
recorded by the two Polar devices are closely aligned, reflecting the consistency within the 
Polar brand. 
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Figure 3: High similarity between distribution of HR measurements for Polar devices 
Violin plot showing the density of all recorded HR measurements per device for the Polar 
H10 (green), Polar Vantage V3 (blue) and the Fitbit Charge 2 (orange). High similarity in 
distribution of HR measurements can particularly been seen for the Polar devices, 
reflecting the consistency within the Polar brand. 
 
 
Moreover, the RMSE values of 5.03 and 11.62, along with NRMSE values of 4% and 10% for 
the Polar Vantage V3 and Fitbit Charge 2, respectively, suggest a high degree of 
consistency and similarity in HR measurements from these devices (Sup. Table 6). 
 
Furthermore, the Lin’s concordance correlation coefficients (rc) showed there was a 
substantial agreement between the Polar H10 and Polar Vantage V3 HR measurements (rc 
= 0.98), and a moderate agreement to the Fitbit Charge 2 HR measurements (rc = 0.91) 
(Figure 4) (2). 
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Figure 4: Polar Vantage V3 has the highest correlation with Polar H10 
HR measurements of Polar Vantage V3 (blue) correlate more closely to the Polar H10, 
compared to HR measurements of Fitbit Charge 2 (orange). Moreover, the HR 
measurements of the Fitbit Charge 2 are more widely scattered, indicating greater 
discrepancies in HR measurements when compared to the Polar H10. 
 
 
Moreover, Bland-Altman plots were created to visualize the agreement between each 
device-pair (Figure 5). These also show that the similarity between the Polar devices was 
the highest. The mean bias between Polar H10 and Polar Vantage V3 was 1.21, while the 
mean bias between Polar H10 and Fitbit Charge 2 was 5.64 bpm.  
For both the Fitbit Charge 2 and the Polar Vantage V3 (although to a lesser extent), some 
measurements fell outside the lower limit of agreement (LLA) and the upper limit of 
agreement (ULA). Most measurements that lay outside these limits were HR 
measurements recorded during the exercise phase.  
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Figure 5: Polar Vantage V3 shows highest agreement with Polar H10 
Bland-Altman plots show more agreement between Polar H10 and Polar Vantage V3 (panel 
A) than Polar H10 and Fitbit Charge 2 (panel B). This is evidenced by the more centered 
mean bias and narrowed spread of differences, as well as the higher correlation coefficient 
(rc = 0.98). Especially for the Fitbit Charge 2, most outliers occurred during the exercise 
phase. 
 

Similarity per subject between devices  
We found that even after exclusion of the three participants of which most HR 
measurements fell outside the 95% CI of the BA plots, there were still subjects for which 
the rc was considered poor (< 0,90) if we determined the rc for each subject individually.  
While for the Polar Vantage V3, most rc values that were calculated based on the HR 
measurements of each subject individually were high, between 0.92 and 0.99, for two 
subjects it was much lower (rc = 0.74 and rc = 0.87 for subject-10 and 2, respectively). 
However, for the Fitbit Charge 2, more dispersion between the different subjects was 
found, as the rc ranged between 0.71 – 0.96 for all subjects, apart from two subjects (rc = 
0.41 and rc = 0.33 for subject-7 and 2, respectively). 
When observing the HR measurements of these subjects, dispersions could indeed be 
seen. While HR measurements of the Polar H10 showed consisted patterns and expected 
behavior based on the type of activity, the other devices either measured a too low HR, or 
had a time syncing error at the start of the transition from the rest to exercise phase (Sup. 
Figure 4). These observations seemingly indicate that the performance of the device is 
linked to individual subject characteristics. 
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Time is needed for equilibration after large changes in heart rate 

Another key observation we made was that each device reacts differently to rapid, large 
changes in heart rate, as the reported HRs diverge and subsequently converge after they 
reach a plateau during the exercise phase of the experiment. From the HR measurements 
plots, we saw that the Fitbit Charge 2 especially showed a lag when transitioning from the 
rest to exercise phase when compared to the Polar devices (Figure 6). This effect was also 
observed in the Bland-Altman plots: Datapoints with large deviations predominantly 
occurred during the exercise phase. Consequently, we analyzed the effect of the 
experiment phase on the correlations. 
For the Polar Vantage V3 there was no clear difference in correlation across the different 
phases, as for all phases the rc was found to be between 0.96-0.99.   
In contrast, the Fitbit Charge 2 had the lowest correlation during the exercise phase (rc = 
0.82), while the rest and recovery phase were in line with the Polar Vantage V3 (rc = 0.91 
and rc = 0.94 respectively). We attribute this lower correlation to the lag observed after 
transitioning to the exercise phase, which might be a result of the lower recording 
frequency of the Fitbit Charge 2, or due to differences in the HR detection- and smoothing-
algorithms of these devices. 

 
Figure 6: Fitbit Charge 2 lags after transitioning from rest to exercise phase  
The Fitbit Charge 2 (orange) shows a bigger delay when transitioning from rest to exercise. 
The Polar H10 (green) and Polar Vantage V3 (blue) HR measurements are very similar, 
which might be explained by the potentially similar proprietary algorithms of Polar for 
measuring HR.  
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Discussion & Conclusion 
 
In this study, we evaluated the integration of three different Polar devices and compared 
them to the previously integrated Fitbit Charge 2 into the RADAR-base platform. These 
devices, apart from the Polar Verity Sense which suffered from too many connectivity 
issues to be properly evaluated, all showed high correlation with the ECG-based 
measurements of Polar H10, our selected standard. Based on these results we believe 
each of these devices would be suitable for use in research.  
 
Although we were able to successfully assess the quality of HR measurements of the Polar 
Vantage V3, Polar H10 and Fitbit Charge 2, this evaluation was not based on all the 
recorded data. As mentioned, 3 participants for which most of their HR measurements fell 
outside the 95% CI, were excluded from the analysis. While this exclusion of 23% of the 
participants is high, we believe this exclusion was necessary as we suspect that it may 
have been related to improper wearing of the devices.  
This relates to another limitation, which is the experimental length. Since we recorded the 
HR of our subjects in a single setting of 15 minutes, one could argue that there was not 
enough time for subjects to really get acquainted with these devices. An improvement 
would therefore be to increase our experiment length, with the hope that such outlying HR 
measurements do not largely affect our results.  
Another way to ensure that there are no outlying measurements that may be the result of 
user error, is to test these devices without the need of human subjects. Instead, ECG 
electrical signals and PPG signals could be simulated using a simulator such as the 
AECG100 (41), a device that can simulate ECG electrical signals and PPG signals 
simultaneously. By using simulated signals, environmental noise is eliminated, allowing 
for precise and accurate testing of wearable devices with less potentially confounding 
factors. 
 
Another point of discussion is the use of the Polar H10 as our standard. Currently an ECG 
Holter instrument is reported to be the gold standard for recording HR in research, as it 
was found to be more accurate in calculating HR than PPG based measurements (1). 
Nevertheless, Gilgen-Ammann et al. demonstrated that the Polar H10 was just as accurate 
as the ECG Holter instrument during resting and low-intensity activities. Moreover, the 
Polar H10 provided a higher quality RR interval signal during more intense activities, 
leading to its recommendation as a gold standard for HR measurements (42). In this study, 
we therefore used the Polar H10 to record a baseline to compare the PPG-based Polar 
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devices to, and indeed found that the data it produced was the most consistent of all 
tested devices. 
 
In addition to the Polar H10, the PPG-based devices included in the analysis were also 
found to produce sufficient quality data to make meaningful conclusions. However, 
special care must be taken when making direct comparisons between devices, as the 
devices each have a different lag time, as shown in Figure 6. We believe this is the result of 
the devices each using a different algorithm to calculate HR. HR algorithms typically 
identify a specific 'signature' of a heartbeat, such as the R-peak of the QRS complex or the 
P-peaks in PPG signals. To eliminate noise in these HR signals, sophisticated filtering steps 
are employed, such as those in the Pan-Tompkins algorithm (20). As both Fitbit's and 
Polar's HR algorithms are proprietary, we can only speculate that differences between 
them are the cause of the observed differences, illustrating the need for open science. 
One known factor that could have contributed is the recording frequency. The Fitbit Charge 
2 has a recording frequency 10 times lower than the evaluated Polar devices. Thus, the 
device likely needs more time to collect the number of measurements required to 
confidently smooth the signal, leading to longer lag times. 
 
As mentioned, the Lin’s concordance correlation coefficients indicated a higher 
correlation between the Polar H10 and Polar Vantage V3 HR measurements (rc = 0.98) 
compared to the Fitbit Charge 2 HR measurements (rc = 0.91). Moreover, the correlation 
between Polar Vantage V3 and Fitbit Charge 2, both of which measure HR using a PPG 
sensor, was found to be 0.82 (Sup. Figure 5). This indicates that despite the Polar devices 
using different sensors to determine HR (ECG vs. PPG), the comparability between the two 
Polar devices is high. 
It is possible that the proprietary algorithms of Polar use a similar approach in filtering HR 
data, which could explain the high similarity between their readings.  
Despite this observation, it is important to realize that the correlation between all three 
devices is quite high. This demonstrates that all devices are individually good at measuring 
HR and could be suitable for use in a patient monitoring study. However, to minimize 
confounding factors arising from inherent differences between devices, we recommend 
comparing heart rate (HR) data collected using the same device. 
 
When comparing our HR measurements obtained by the different wearable devices with 
previous research, many similarities can be found. For instance, Helmer et al. compared 
multiple consumer wearables, including the Fitbit Sense, equipped with PPG sensors, and 
reported high correlations (r > 0.95) between these devices and the clinical gold standard 
ECG (1). They concluded that these devices are promising for patient-monitoring of HR. 
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Nevertheless, other studies have indicated that wearable devices, such as the Fitbit 
Charge HR and the Apple Watch, tend to underestimate HR measurements (46,47).  
Furthermore, our observation that the wearable devices tend to disagree more during the 
exercise phase is something that has also been previously reported (44,45). 
 
However, as the data quality of wearables grows, we are likely to reap the rewards of 
continuous remote monitoring in the form of digital biomarkers. Integrative analysis of 
multiple data streams will therefore play an increasingly important role, making platforms 
like RADAR-base invaluable parts of the research ecosystem. As observed by Sartor et al. 
we will need to carefully assess the quality of these devices in a structural manner to guide 
researchers in making the right choice for their study and avoid spending valuable 
resources integrating devices which do not add (enough) value (32). As differences 
between devices exist, such as their ease of use or the way in which the data is pre-
processed, researchers should really consider which device will best suit their study 
design and needs. For instance, for large-scale population research, the accuracy of a 
device might be less critical compared to factors like cost and ease of use, especially if the 
objective is to collect as much data as possible. However, for studies focused on specific 
health conditions, the quality of the device, and consequently its price, becomes more 
significant. 
 
To conclude, our results showed that both the Polar Vantage V3 and Fitbit Charge 2 highly 
correlated with our standard, the Polar H10, which showed very consistent patterns. 
Therefore, we consider all these devices to be suitable for research purposes. 
Nevertheless, we believe the Polar Vantage V3 to have an edge over the Fitbit Charge 2. 
Firstly, the Polar devices send data directly to the RADAR-base pRMT app, whereas the 
Fitbit Charge 2 stores data in the Fitbit Cloud, which can be a privacy concern. Moreover, 
the Polar Vantage V3 also showed the highest correlation with ECG measurements from 
the Polar H10 and can measure HR at a higher frequency than the Fitbit Charge 2. 
Subjectively, we also found the Polar Vantage V3 to be more comfortable for the 
participants and easy to use for the researchers, which is why we see its benefit over the 
Fitbit Charge 2. 
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Supplementary materials 
 
 
 
 

 
Figure S1: Connectivity issues of Polar Verity Sense led to large gap in HR 
measurements during exercise phase 
Due to the connectivity issues of the Polar Verity Sense in 12 of the 13 participants, only 
from subject-1 data was recorded during the exercise phase. In total, only 238 
measurements were recorded during the exercise phase, and 1176 and 708 during the 
rest- and recovery phase respectively. The BA-plot in panel A reveals this sparse number of 
datapoints during the exercise phase. From the BA-plot in panel B it became clear that all 
these measurements during exercise came from one subject (subject-1) only. We 
considered these measurements during rest and recovery to potentially be unreliable and 
therefore opted to exclude all measurements from further analysis. 



 26 

Figure S2: Bland-Altman plots showing the three excluded participants  
The HR measurements of subject-3 (in green) and subject-6 (in brown) were outliers for 
Polar Vantage V3 (panel A), and participant subject-5 (in purple) for Fitbit Charge 2 (panel 
C) as most of their HR measurements fell outside the 95% CI. After exclusion of these 
participants, the mean bias and SD were more centered (panel B and D).  
 

Figure S3: HR measurements of three excluded participants  
Three participants were excluded based on the Bland Altman plots (Sup. Figure 2). The 
participants had either deviant HR measurements of the Fitbit Charge 2 (for subject-5 in 
panel B) or deviant HR measurements of both PPG devices (for subject-3 in panel A and 
subject-6 in panel C). 
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Figure S4: The HR measurements of all participants  
For subject-7 (panel A) and subject-2 (panel B), the Fitbit Charge 2 was not properly 
measuring during the exercise phase. For subject-10 (panel C), both the Fitbit Charge 2 and 
Polar Vantage V3 had a lag when transitioning to exercise phase, in comparison to the 
Polar H10. For all other subjects (panels D to J), no large dispersions were observed in the 
individual HR plots. 
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Figure S5: Correlations of Polar Vantage V3 and Polar H10 to Fitbit Charge 2 
HR measurements of Polar H10 (green) correlate more to the Fitbit Charge 2 
compared to HR measurements of Polar Vantage V3 (blue), even though the latter two 
both use a PPG sensor for their HR measurements. 
 

Device Number of measurements  Freq. 
(Hz) 

Measurement 
fidelity (%) 

Total % 
excluded 

  Total Rest Exercise Recovery    
Polar 
Verity 

Sense 

Before 2122 1176 238 708 1.0 0.18  
 

After 
 

- 
 

- 
 

- 
 

- 
 

- 
 
 

 
100 

Polar 
Vantage 

V3 

Before 11339 3880 3870 3589 1.0   
 

After 
 

1218 
 

415 
 

410 
 

393 
 

0.1 
 

0.97 
 

89.26 
 

Polar 
H10 

Before 11398 3900 3896 3602 1.0   
 

After 
 

1218 
 

415 
 

410 
 

393 
 

0.1 
 

0.97 
 

89.28 
      

Fitbit 
Charge 2 

Before 1648 553 564 567 0.1   
 

After 
 

1218 
 

415 
 

410 
 

393 
 

0.1 
 

1.0 
 

26.07 
 
Table S1: Overview of total number of HR measurements 
Polar Verity Sense recorded relatively fewer measurements compared to the other devices 
and was therefore excluded. Additionally, the data of three subjects were excluded since 
most of their measurements fell outside the 95% CI (Figure S2).  
Moreover, the frequency of measurements was adjusted to match the frequency of the 
Fitbit Charge 2 device. 



 29 

 
Device Activity Lin’s concordance 

correlation coefficient (rc)  
RMSE 
(bpm) 

NRMSE 

Polar Vantage V3 Full 0.98 5.13 0.05 
 Rest 0.96 3.78 0.08 
 Exercise 0.96 7.26 0.07 
 Recovery 0.99 3.38 0.03 

Fitbit Charge 2 Full 0.91 11.68 0.10 
 Rest 0.91 5.35 0.11 
 Exercise 0.81 17.33 0.16 
 Recovery 0.94 8.90 0.08 

 
 
Table S2: Polar Vantage V3 correlates more to Polar H10 than the Fitbit Charge 2 
The Lin’s concordance correlation coefficient of the Polar Vantage V3 are for each activity 
phase higher than the ones of the Fitbit Charge 2. Furthermore, the RMSE and NRMSE were 
lower for Polar Vantage V3 HR measurements. Most disagreements in HR measurements 
were found during the exercise period. 
 
 
 


