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1 Plain language summary

We used to view organisms as individuals when studying their health, but now we understand
that their health is significantly influenced by the microbes that live inside or on them. These
microbes can affect how an organism, like a plant or human, grows, develops, and stays healthy.
Through DNA sequencing, we can detect the presence of these microbes. By studying which
microbes are present, how many of them are present, and what genes they carry, we gain insight
into how they influence their host. Because unravelling the influence of microbes on a host is
so complicated, we make use of machine learning.

In machine learning, we teach computers to recognize patterns and make decisions based on
information. This can be done by giving examples with correct answers, providing feedback on
predictions, and having computers make decisions by answering a series of questions. Classic
machine learning tends to use clear, specific instructions which are easily interpretable by
humans. Deep learning is a type of machine learning where a computer “learns” by observing
a lot of information and “practising” predictions and getting feedback on it. It’s difficult to
figure out what a computer exactly learns in deep learning. But when there is enough data, it
easily and significantly outperforms the classic approaches.

Because of the success of deep learning in related fields, we investigated if it can be used to
predict the health of plants based on the microbes that live on and around them. Deep learn-
ing use with microbial data is relatively new and has been in use for human health predictions
for a longer time. Hence, we explored the methods used in human predictions and if those
methods can be used for health predictions in plants. Plants, however, are more diverse than
humans and host a greater variety of microbes, influenced by soil and crop types. Applying
human prediction methods to plants isn’t technically difficult as the structure of the data is the
same, but the diversity requires much more data for effective deep learning. Additionally, deep
learning’s complexity limits our understanding, posing challenges for plant health predictions.
The current use of deep learning is mostly focused on reducing microbial data to key informa-
tion or representing data in different ways by focusing on aspects such as their evolutionary
relationships. Its performance currently isn’t much better than traditional machine learning,
and we don’t have enough big plant datasets to really take advantage of it. In the future, deep
learning work should aim to be more understandable, and combine types of data from different
fields.

2 Abstract

There has been a fundamental shift from viewing organisms as isolated entities to considering
them as a holobiont. This change highlights the critical role of microbiomes in influencing host
phenotypes in plants and humans. The microbiome of a host organism has a direct relationship
to its phenotype, and it has an impact on various physiological traits playing roles in immune
response, nutrient acquisition, and protection against pathogens. To explore the potential of
deep learning (DL) models for the classification of host phenotypes in plants, we reviewed stud-
ies that use classic machine learning (ML) and DL for the prediction of microbiome related host
disease phenotypes (Inflammatory Bowel Disease, colorectal cancer, type II diabetes, obesity,
arthritis, liver cirrhosis) in humans using microbiome data. As these methods have been more
extensively applied for such use cases.

In classic ML applications, the data is processed in bioinformatic pipelines to produce abun-
dance tables and find gene pathways. Features are often selected through an expert-driven
process, and Support vector machines and Random Forests are the most successful classifiers.
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Studies either transform standard metagenomic outputs such as abundance tables into differ-
ent forms such as phylogenetic trees or “synthetic images” or perform dimensionality reduction
through DL. Features from these methods are then fed to both DL and classic ML classifiers. DL
classifiers such as Convolutional Neural Networks (CNNs), and Multilayer perceptrons (MLPs)
occasionally outperform traditional ML techniques by small margins. However, current ap-
plications fail to leverage significant advantages such as end-to-end prediction and automatic
feature selection. Moreover, there is a severe lack of explainability when using DL classifiers,
while classic approaches such as Random Forest are very explainable. Which is critical to
understand the underlying processes that cause disease phenotypes in the host.

As human and plant microbiome sequencing data shares the same structure, there is no technical
blockade for applying the methods reviewed in this study to plant microbiomes. However, plant
microbiomes are much more diverse, exhibiting compositional differences among different types
of plants. This necessitates larger datasets to appropriately generalize DL models. As is, DL
classifiers already face limitations due to feature-sample size imbalance in metagenomics, on
top of limited dataset availability. This issue will only be exacerbated in plant applications.
Although DL holds promise for future large-scale microbiome analysis, its current performance
and the need for explainable models and extensive datasets remain significant hurdles. Future
DL classification in this field should focus on interpretability, end-to-end prediction, and multi-
omics integration.

3 Introduction

3.1 The microbiome of an organism is highly correlated with its
phenotype

There has been a change in our view of biological systems from seeing organisms as separate en-
tities without considering how they interact with their microbiome to the idea of the holobiont.
The concept underlines the relationship between a host organism, such as a human or plant,
and their microbiome and its influence on the host phenotype [1]. The microbiome consists
of microorganisms, such as bacteria, archaea, viruses, and eukaryotes, residing in a specific
environment, like the human body or the rhizosphere of a plant, along with their properties
and interactions. [2, 3]. The microbiome of a host organism has a direct relationship to its
phenotype, and it has an impact on numerous physiological traits [4, 5, 6]. The immune system
and disease processes of a host are linked to the microbiome, which is a critical component of
both human and plant health. Plant and human microbiomes are similar in their relationship
to their host and its impact on them, despite the differences in composition and diversity [1].
In both instances, the microbiome is associated with the acquisition of nutrients, the function-
ing of the immune system, and protection against pathogens [1, 7]. For example, genes found
in the microbiota of the human gut can help the digestive system by providing enzymes and
biochemical pathways that the host themselves does not possess [8]. The human microbiome
is also important for the function, and training, of the immune system [9]. An example of this
is its ability to provide protection by excluding other microorganisms that could potentially be
harmful [8]. Similar to humans, plants also depend on their microbiome for particular traits
and functions. Such traits can be nutrient acquisition through the roots and resiliency to stress
factors [1]. An example of this is in the rhizosphere, which is comparable to the human gut
microbiome. It is the section of soil surrounding the plant roots, here microorganisms such
as nitrogen-fixing bacteria help the plant to take up nutrients and other necessary chemical
compounds [1]. The effect of the microbiome on the host phenotype and the concept of the
holobiont highlight the need to not only study hosts individually. It is essential that the micro-
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biome of an organism is also considered when studying them. Not just in the case of illness or
dysfunction, but also for potential health enhancements through the use of probiotics. We can
study the microbiome of an organism and gain insight into its composition, abundance, and
diversity through sequencing.

3.2 High-throughput sequencing increased the amount of micro-
biome data, which opened the way for ML and DL

Through the advent of next-generation sequencing, we are capable of analysing DNA and RNA
at the genetic, transcriptomic, and epigenetic layers, which has allowed us to gain insight
into the biological functions of organisms. The study of the microbiome is largely done through
Illumina next-generation sequencing, which has allowed for significant developments in the field,
with many large datasets being generated [10]. Amplicon sequencing and shotgun metagenomics
sequencing are the two most common methods used to study microbiomes.

In amplicon sequencing, the 16s rRNA region is targeted for sequencing due to its high con-
servation among all bacteria and archaea. The strong conservation of this gene makes it an
ideal target for amplification through the use of primers [11]. Conveniently, the gene also in-
cludes nine hypervariable regions, which can be used to classify bacteria at the genus level [11].
Furthermore, the 16s rRNA gene is absent in eukaryotes, which makes it useful for studying
prokaryotic diversity in environments such as the human gut or plant rhizosphere as no host
contamination can occur. This method is selected as an alternative to shotgun metagenomic
sequencing, often to save costs. It offers limited taxonomic resolution and does not provide
insights into the aspects of a microbial community beyond its composition [12].

In shotgun metagenomics, DNA is extracted directly from an environment and no specific genes
are targeted, and therefore the produced samples contain a mixture of genomes including the
host. The DNA is then fragmented into small pieces (hence “shotgun”) and sequenced ran-
domly. Unlike amplicon sequencing, metagenomic shotgun sequencing allows for taxonomic
identification at higher resolutions and functional pathway analysis [13]. Processed reads are
either checked against a database or assembled into contigs from which genes are then annotated
or predicted, allowing functional pathways to be determined [13] (Figure 1). A disadvantage
of shotgun metagenomics is host contamination, this refers to the presence of host DNA in
the microbiome samples. This occurs because all DNA in the sample is sequenced and not a
specific region that is only present in bacteria and archaea, like in amplicon sequencing. Host
contamination is a serious problem that can lead to miss identification of microbial DNA and
false genetic variability that will be elaborated on in section 4.2 [14, 15]. These sequencing
approaches have made it cost-efficient and accessible to sequence large amounts of microbiome
data. However, microbiome data is complex and predicting host phenotypes from it is a chal-
lenging task. Normalization of the data is required, and classic machine learning and deep
learning methods are applied to make predictions. Machine learning techniques have been
applied to human microbiomes since the 2010s, and deep learning applications gained more
traction in the 2020s with the aim to predict disease phenotypes of the host.

3.3 Machine learning and deep learning for the microbiome

Machine learning has been increasingly applied in microbiome studies to predict the host phe-
notypes of humans and plants through the analysis of their microbiome [16, 7, 17]. Machine
learning methods can be divided into supervised- and unsupervised-learning. In supervised
learning, a model gets trained on a labelled dataset. This means that each data point has a
label that describes what outcome it belongs to. In the context of microbiome data, this can
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look like two sets of human gut samples, one from a cohort with colorectal cancer and one
healthy group, each being labelled as such [17]. The purpose of this approach is for the clas-
sifier to learn patterns from the two groups that lead to different outcomes. Then the model
can use the patterns to discriminate between healthy and disease microbiome samples in other
datasets. This application is referred to as classification and can be done for discrete labels
and regression [17]. Some examples of classic supervised learning algorithms are Linear Regres-
sion (LM), Support Vector Machines (SVM), and Random Forest (RF). Supervised machine
learning models are often applied for such phenotype classifications in metagenomics [16, 17].
Unsupervised learning is performed on unlabelled datasets and is applied when labelled data
is not available or for the purpose of dimensionality reduction. A frequently used application
is clustering, where data points are grouped together based on similarity. In dimensionality
reduction, the variables under consideration are reduced to the most important variables that
contain the most information. Unsupervised methods are not applicable for phenotype classifi-
cation, but are instead often used in data preprocessing and feature selection steps that involve
microbiome data [17]. Some examples are the clustering of amplicon sequencing data to form
Operational Taxonomic Units (OTUs) and the binning of contigs after assembly in shotgun
metagenomics.

Deep learning is a category of machine learning that utilizes artificial neural networks to learn
complex patterns in large datasets. Recent advancements in deep learning, the most important
being the “self attention” mechanism, have resulted in a resurgence in the utilization of neural
networks [18]. Deep learning can be done both supervised and unsupervised. Some techniques
used for supervised learning are MLPs, Recurrent Neural Networks (RNNs), and CNNs. These
architectures can be used to classify microbiome samples when making discrete prediction or
to predict gene expression levels when doing regression tasks. [17, 19]. Autoencoders (AE)
and Variational Autoencoders (VAEs) can be used for unsupervised approaches, mainly for the
purpose of clustering or dimensionality reduction in metagenomic datasets[19]. Typically, deep
learning model performance increases with the amount of available data [19]. Deep learning also
takes care of feature engineering, models can automatically learn and extract features from raw
data while classic machine learning usually requires expert-driven feature selection, especially
in biological applications such as metagenomics [20, 19]. In this context, features could be the
presence or absence of specific strains of bacteria or genes that are involved in certain metabolic
pathways. Another advantage is that deep learning has the capability for end-to-end learning,
this means that data can be transformed directly from input to output without the need for
intermediate processing steps. For example, a sequencing read from a microbiome dataset can
be directly input into a model and classified as belonging to a healthy or disease sample [21]
or be classified as belonging to a particular species of bacteria [22, 19]. Lastly, there is also
the concept of transfer learning, models pre-trained on certain datasets can be adjusted for
specific tasks, for example, a model that predicts phenotype in humans through microbiome
interactions could be transfer learned to apply in plant microbiomes.

Machine learning is being used in many parts of various bioinformatics pipelines for the analysis
of microbiome data. SVMs are used in the Illumina basecalling algorithms, Oxford Nanopore
sequencing employs deep neural networks for base calling and methylation detection. Clustering
is used to create OTUs in amplicon sequencing, and Hidden Markov Models (HMM) and neural
networks are used in gene predictions.

3.4 Goal and search strategy

In this review, we will focus on the use of machine learning on human microbiome gut data
for the classification of microbiome related host disease phenotypes. As, the application of
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deep learning for phenotype prediction in plant microbiomes has not been researched as much.
We aim to review scientific articles on the use of machine learning and deep learning in hu-
mans to offer a perspective on the possibilities to adapt such methods for application in plant
microbiomes.

To achieve this, we formulated the following research questions:

• What are the latest machine learning and deep learning techniques used for predicting
human disease phenotypes based on microbiome data?

• How do these techniques perform in metagenomics applications, particularly classic ma-
chine learning vs deep learning approaches?

• Can these techniques, be adapted to predict host phenotypes in plant microbiome com-
munities effectively?

The search strategy employed for finding relevant literature included keyword searches using
terms such as “machine learning in microbiome research”, “deep learning for phenotype pre-
diction”, “phenotype prediction using microbiome data”, “host phenotype machine learning”,
“microbiome and disease prediction”, “metagenomics machine learning”. The main databases
used were PubMed, and Google Scholar. The initial literature selection was based on titles and
abstracts that seemed relevant. An effort was made to select publications that were published
within the past five years. Exceptions were made for relevant papers that exclusively employed
traditional machine learning methods for classification. After the initial selection, a snowballing
method was employed to incorporate additional studies that were referenced in benchmarks of
the initial papers.

4 Key Findings

4.1 The need for normalization of microbiome data

Microbiome data is intrinsically compositional, which means that it represents parts of a whole
instead of absolute quantities [2]. In metagenomics, each sample only reflects the relative
abundance of microbial taxa in the sampled environment [2]. This means that we do not have
true absolute abundance counts of the sequenced taxa. This problem occurs because the total
reads in a sample are influenced by factors such as sequencing depth, coverage, sampling bias,
and DNA extraction efficiency [23]. Because the total number of reads in a sample is fixed, an
increase in the relative abundance of one taxon results in a decrease in the abundance of others.
This can selectively inflate negative correlations between taxa [24, 25]. Without normalization,
compositional data is subject to such biases. This is why data must be normalized, especially
when comparisons are made across different samples. Another issue that must be corrected for
is sparseness [26]. Sparseness results in zero counts in the abundance tables after processing.
This happens by chance when certain microbes are missed when sampling. Lastly, microbiome
data, especially in plants, can be heterogeneous [2]. For example, soil samples from around a
plant may contain microhabitats with different microbial communities.

Compositional data can be normalized by performing log-ratio transformations [25], by con-
verting raw read counts to proportions or percentages, or by adjusting the data so that the
total read counts across the samples are comparable. However, log-transformations cannot
be performed on spurious data because zeros cannot be log-transformed. This is why zeros
must be handled in some way. This is done through different approaches, such as adding arbi-
trary pseudo-counts, replacement techniques or imputations [2]. However, the consequences of
normalization techniques such as adding arbitrary pseudo-counts are not clear [2].

7



A review by Busato et al. [2] showed that many plant microbiome papers do not address these
problems, which is a cause for concern. When the mentioned factors are unaccounted for, the re-
sulting technical correlations can lead to biased and incorrect results, which ultimately leads to
incorrect interpretations and conclusions [26]. Additionally, training machine learning models
on non-normalized data will result in worse outcomes, as noise and sparsity conceal biological
signals. Some applications might even be inappropriate, as many statistical and machine learn-
ing techniques require the input data to adhere to criteria such as normality. Normalization is
a key step in microbiome research that leads to more accurate, and interpretable results.

4.2 Bioinformatic workflows for microbiome data and their use with
classic machine learning classifiers

Data obtained through amplicon sequencing are either clustered into OTUs or Amplicon se-
quence variants (ASVs). With OTUs, sequences are clustered based on similarity, where 97%
similarity is the most commonly used threshold [27]. This threshold was widely adapted from
a 2005 study by Konstantinidis and Tiedje [28]. The study looked at seventy closely related
bacterial genomes and found that bacterial genomes with 16s rRNA gene sequence identity of
97% or higher often belonged to the same species. Creating OTUs has computational benefits,
and avoids the problem of differentiating biological from technical sequence variations [27]. A
16s amplicon run has millions of reads, by clustering them the data is reduced to a few thousand
OTUs, represented by a single sequence. This single sequence then receives a 16s classification,
which is then applied to the entire cluster, which reduces the downstream computational costs.
Since technical variations such as sequencing errors with Illumina-reads are low, they are not
likely to be less than 97% dissimilar and therefore still get assigned to the correct cluster under
the assumption that 97% is an appropriate threshold. The use of percentage-based sequence
similarity is not without criticisms. The first being that the commonly used 97% threshold is
only a rough approximation that was derived by analysing only seventy genomes, as mentioned
earlier. It has been shown that species can have multiple copies of 16s rRNA sequences that
differentiate by as much as 5% [29] and that differences between copies of varying species can
be as little as 99% [30]. Which is why amplicon sequencing is not precise enough to deter-
mine species or strains in a sample, and is instead limited to the genus level. Additionally,
the percent similarity does not consider evolutionary processes, such as varying substitution
rates and biases [27]. These criticisms imply that it is likely that sequences that do not belong
to the same taxa get clustered together and then get incorrectly annotated, which then leads
to incorrect conclusions regarding the microbial community composition and diversity. ASVs
do not get clustered, instead they get “denoised”, which is a process where technical variants
get removed. Technical variants, as opposed to true biological variation, are errors introduced
during sequencing or sample preparation. Technical variants beside sequencing errors can be
PCR artefacts such as chimeras and duplicates. After denoising, each unique sequence in the
dataset is considered an ASV. ASVs provide higher taxonomic resolution, which allows for
comparison at the nucleotide level [31]. As ASVs represent exact biological sequences, they are
comparable across different datasets, whereas OTUs are dependent on the used datasets and
therefore less reusable [31]. After creating OTUs or ASVs they are quantified, and taxonomic
tables are generated [2]. These tables then represent the abundance and composition of the
sequenced samples.

Moving on to shotgun metagenomics, the first preprocessing step and perhaps one of the most
important procedures is the removal of host contamination. Not removing host contamina-
tion has several consequences. For example, host DNA can overwhelm the desired microbial
DNA in a sample during sequencing, which makes it more difficult to detect low-abundance mi-
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crobes [15]. This issue also has an impact on cost efficiency, as sequencing host DNA consumes
resources without providing relevant information. Contamination can also lead to misidentifi-
cation of microbial species because host sequences can be miss identified when annotating reads
through databases or predicting genes on assembled contigs [32]. This can impact the accuracy
of the results, leading to an incorrect conclusion being drawn because of false genetic variabil-
ity [14]. Because of the severity of these consequences, host contamination must be removed
[14]. There are two approaches to removing host contamination. The first approach is to make
use of sequencing kits that deplete the host DNA or enrich the desired microbial DNA before
sequencing. The second approach is to make use of bioinformatics tools such as Kraken that
taxonomically classify reads and then remove reads identified as host DNA. Another similar
approach is to align the samples against the genome of the host and then only consider reads
that did not align to the genome. Once samples are cleaned, reads are either directly compared
to curated databases or assembled into contigs. The databases contain annotated reads which
are used to do taxonomic and functional profiling. The assembly-based approach bins contigs
after which genes are predicted. Through these methods, abundance, taxonomic composition
and functional pathways can be determined from a microbiome sample.

The above described processes fall under the classic bioinformatics pipelines for microbiome
analyses. An overview of the processes can be seen in Figure 1. To make predictions of disease
phenotypes with classifiers from these outputs, features from the taxonomic and functional ta-
bles are selected through either expert-driven or data-driven processes. Expert-driven feature
selection is the process of selecting features from available data based on medical expertise
and established literature that indicate the relevance of certain factors for a disease or condi-
tion. Such features can be patient age, gender or medical history. More specific microbiome
features could be the presence of certain species of bacteria, combinations of the presence of
multiple bacteria, genes that these bacteria carry, and their involvement in certain metabolic
pathways. Data-driven processes involve ranking features based on importance scores, which
are determined during the training of a classifier. An example for determining such scores in RF
classifiers is the use of the gini importance. In data-driven selection, classifiers are first trained
on all available features, then the importance of the features are ranked, and the classifiers
are retrained on different selections of the top features. Then the number or combination of
features that result in the best performance are selected for the final version of the classifier.
This is done because certain features or combinations of features might actually lead to worse
prediction capabilities. Features selected through these processes are used as input for classic
machine learning methods, which are then used to make predictions.

In microbiome studies, SVM and RF have been the most successful implementations, reporting
the highest machine learning scores [16]. The study by Pasolli et al. [16] performed analysis
on eight public shotgun metagenomics datasets (Table 1) that in total contained 2424 samples
of the human gut. Using RF, SVM, Elastic Net Regularization (ENR), and Least absolute
shrinkage and selection operator (Lasso) they predicted the host phenotype for liver cirrhosis,
colorectal cancer, Inflammatory bowel disease (IBD), obesity and type II diabetes. They then
implemented their work into a software framework called MetaAML [16]. The framework they
presented produced excellent results, with RF boasting the overall highest performance as
measured by the AUC-ROC scores in the liver cirrhosis (0.95), colorectal cancer (0.87), IBD
(0.89), obesity (0.66), and two type II diabetes (0.74 and 0.75) datasets (Table 1). The study
took advantage of both species abundance and strain markers as features for their machine
learning models. The feature selection process was primarily data-driven, employing RF to
determine the most relevant features based on importance scores for the final RF and SVM
classifiers. The MetAML RF implementation, RF in general, and the eight datasets used by
Pasolli et al. are often used in reviews and by other studies presenting new deep learning
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Figure 1: Workflow for amplicon sequencing and shotgun metagenomic sequencing. Figure adapted from Liu
et al. [13]. The workflow shows the preprocessing steps from classic machine learning methods and several data
flow approaches for deep learning that have been done in reviewed studies.
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applications on microbiome data as a benchmark for new phenotype prediction methods [33,
34, 35, 36].

4.3 Datasets used in reviewed research

The key ML and DL microbiome studies (Table 1) predict various disease phenotypes such
as liver cirrhosis, colorectal cancer, IBD, obesity, type II diabetes, and arthritis. Most of
the reviewed studies use the same public datasets for these predictions, which were originally
selected by Pasolli et al. For this reason, we give a short overview of the disease phenotypes
and the studies that published the corresponding datasets along with their findings.

The first dataset is for liver cirrhosis, in this disease, the function of the liver is impaired due to
the formation of scar tissue as a result of liver damage. As the liver gets more damaged, more
scar tissue forms and takes over functioning tissue, further impairing the function of the liver.
The disease can be caused by things such as alcohol abuse, various forms of hepatitis, obesity
and other types of drug use. The dataset used to study this disease was published by Qin et al.
(2014) [6] and consists of 123 samples from healthy patients and 114 samples from patients with
liver cirrhosis obtained through shotgun metagenomic sequencing. The study focused on the
genes present in the gut microbiota and clustered microbial genes based on abundance profiles
across different samples. The authors found that the composition of microbial communities
contributed to gene richness, and that gene richness in the disease samples was much lower
than in the healthy samples [6]. They concluded that 15 microbial genes can discriminate
patients with liver cirrhosis from healthy individuals in this dataset.

The colorectal cancer dataset was published by Zeller et al. [37]. Colorectal cancer is a form
of cancer that develops in parts of the large intestine and, like other types of cancer, it occurs
when abnormal cells grow uncontrollably, forming tumours. Diagnosis usually occurs through
stool blood tests and colonoscopy. The dataset contains 48 case samples and 73 control samples,
and explored the potential of gut microbiota for detection of colorectal cancer with shotgun
metagenomics. The study suggests that taxonomic markers can be used to distinguish patients
from controls using an ENR with accuracy similar to currently used diagnostic tools [37].
Two subspecies of Fusobacterium nucleatum (vincelli and animalis) were found to be major
contributors to the model’s predictive power in this study.

There are three datasets for the IBD phenotype by Qin et al. (2010) [38], Gevers et al. [39], and
Sokol et al. [40]. IBD refers to a group of conditions that affect the colon and small intestines,
and is made up of two main types, which are Crohn’s disease and ulcerative colitis. The disease
causes symptoms such as fatigue, fever, diarrhoea and abdominal pain. Diagnosis can be done
through blood tests, stool tests, colonoscopy, and image studies such as CT scans and MRI. The
study by Qin et al. (2010) contained 25 samples from both Crohn’s disease and ulcerative colitis
patients and 85 controls. They found that the gut microbiota in IBD patients had an average of
25% less genes than healthy patients, and were able to clearly separate Crohn’s disease patients
from healthy patient based on a PCA that used 155 species from the samples [38]. The study
by Gevers et al. focused on Crohn’s disease and analysed 447 disease samples and 221 control
samples using 16s rRNA sequencing [39]. They found positive correlations between the disease
and the presence of multiple bacteria such as Pasteurellaceae and Veillonellaceae. The study
by Sokol et al. consists of 235 case samples and 38 control samples using 16s rRNA sequencing
and ITS2 sequencing to assess both bacterial and fungal presence.

The obesity dataset was published by Le Chatelier et al., and contained 123 control samples and
169 disease samples. In obesity, body fat has accumulated to a degree that it has a negative
impact on one’s health. Overconsumption, lack of physical activity, and the use of certain
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medications can cause this condition. Obesity is associated with numerous persistent health
conditions and health complications, affecting both the quality of life and the life expectancy.
In their study, Le Chatelier et al. found two groups across all their samples, one with a high
microbial gene count and one with a low microbial gene count [41]. They found that obese
patients with low microbial gene counts gained much more weight than obese patients with
high microbial gene counts over a period of nine years [41]. The classification scores for obesity
tend to be lower than the other disease types across all reviewed studies, as it has proven to be
a challenging phenotype to predict from only microbiome data.

There were two datasets for the type II diabetes phenotype by Qin et al. (2012) and Karlsson
et al. In type II diabetes, the body becomes resistant to insulin. As the condition progresses,
the pancreas fails to produce sufficient amounts of insulin, which leads to high blood sugar
levels. If untreated, this imbalance can lead to various metabolic complications. The study
by Qin et al. (2012) collected 150 samples, of which 71 did not have the disease. The study
identified an imbalance in the gut microbiota of patients with type II diabetes and an increase
in opportunistic pathogens. The study by Karlsson et al. had 135 samples with three groups,
53 with type II diabetes, 39 with impaired glucose tolerance and 43 healthy samples. The
study determined that there are significant changes in gut microbiota between type II diabetes
and healthy individuals, with an increased abundance of Lactobacillus species and a decrease
in Clostridium species in the disease samples.
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Table 2: Overview of deep learning phenotype classifiers

Name Reference Data Main objective Input

PopPhy-CNN [36] Shotgun Phenotype classification Abundance table + taxon annotation into phylogenetic tree
Met2Img-CNN [34] Shotgun Phenotype classification Abundance table into “synthetic images”
Mdeep [44] Amplicon Phenotype classification Abundance table + taxon annotation
MicroPheno-MLP [46] Amplicon Phenotype classification K-mer distribution
Ph-CNN [47] Amplicon Phenotype classification Abundance table + taxon annotation into phylogenetic tree
Read2Pheno [21] Amplicon Phenotype classification Raw reads (amplicon)
TopoPhy-CNN [48] Shotgun Phenotype classification Abundance table + taxon annotation into phylogenetic tree
DeepMicro-MLP [35] Shotgun Phenotype classification Abundance table and Gene annotations

4.4 Deep learning approaches for the microbiome

Implementing deep learning in metagenomics is challenging because of the nature of the data
[34]. Microbiome data has numerous features (taxa, genes) and the total number of features per
sample is much larger than the total sample size. Due to the curse of dimensionality, the feature
space will become sparse. As a result, classifiers will require more data to find meaningful
patterns among the features. A lack of data in these cases will lead to poor generalization and
thus overfitting. Deep learning typically outperforms classic machine learning techniques in
datasets where the number of samples is larger than the number of features, but struggles in
low-sample size settings like in metagenomics.

Deep learning is currently being applied in metagenomics in multiple ways. One of which is deep
learning as a classifier for the prediction of the host phenotype. Multiple approaches are possible
regarding the classifier input (Figure 1). For example, amplicon or shotgun sequencing reads
can be directly fed to a neural network to perform end-to-end prediction. Some studies apply
classic bioinformatic pipelines to obtain taxonomic tables, abundance counts and functional
pathways and then use these as input for the deep learning classifier [44, 46]. There are also
several studies that take the taxonomic tables and create phylogenetic trees from them, and
then use a representation of the tree as input to a CNN (Table 2) [36, 48, 47]. Some studies use
deep learning as a substitute for expert-driven feature selection, in this use case, features are
selected, transformed, or dimensionally reduced [49]. Afterwards, the features are either still
used with deep learning classifiers [35] or with classic machine learning classifiers such as RF
[43]. Then there are a multitude of recent studies that use deep learning on microbiome data
for the purpose of unsupervised binning [50, 51], viral classification [52], sequence identification
[53], taxonomic classification [22], metagenomic profiling [54], predicting genes and ORFs. Such
use cases could be used to optimize data preprocessing before classification, but they are out
of the scope of this review and will not be discussed further.

4.4.1 Representing microbiome data as phylogenetic trees or synthetic images for
use with CNNS

PH-CNN, PopPhy-CNN, and TopoPhy-CNN are tools that make use of deep learning to pre-
dict disease phenotypes from human gut microbiome samples. They are distinguished from
other approaches by the fact that they represent microbial data as phylogenetic trees. They
process metagenomics data using classic bioinformatics pipelines to create these phylogenetic
trees, which are then used as input to a CNN classifier. CNNs have been the most successful
deep learning method for image classification. They work by using multiple filters to combine
different parts of an image. A digital image’s matrix structure is the basis for the operations of
CNNs. To use the same design for non-image data, you must have a way to measure how close
features are. PH-CNN, PopPhy-CNN, and TopoPhy-CNN take advantage of CNNs by embed-
ding the phylogenetic trees in 2D matrixes. This approach is possible because metagenomic
data has hierarchical structures when defined as a phylogenetic tree. TopoPhy-CNN provides
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additional information to its CNN, such as node distances and the number of child nodes. PH-
CNN was used to predict IBD types, and in their study they tested both a CNN classifier and
an RF classifier as a benchmark. The CNN outperformed the RF, with an average AUC score
of 0.751 vs 0.67 over several IBD subtypes (Table 1). PopPhy-CNN was used to predict liver
cirrhosis, type II diabetes, obesity, and IBD. The CNN classifier was outperformed by the RF
in three of the four datasets (Table 1). TopoPhy-CNN was used to predict the phenotypes for
obesity, liver cirrhosis and type II diabetes. They benchmarked their implementation against
PopPhy-CNN and outperformed their scores slightly in AUC in the Cirrhosis, type II diabetes
and obesity datasets (Table 1). Mdeep by Wang et al. [44] also uses a phylogenetic tree ap-
proach, however instead of directly embedding a phylogenetic tree into a 2D matrix, they group
OTUs in vectors based on the distance of the OTUs in the tree. Using this approach, they
created a CNN classifier and an RF classifier. The RF slightly outperformed the CNN in the
F1-score, with 0.82 vs 0.81 (Table 1).

Nguyen et al. [34] chose a different approach of feeding information into CNNs and developed
Met2Img. Instead of capturing human gut microbiome data in a tree, Met2Img represented
the microbiome abundance in the form of “synthetic images”. The authors create these images
through the use of t-SNE embeddings or Fill-up. The Fill-up method preserved the evolution-
ary relationship between taxa in the samples, as they are arranged in phylogenetic order during
processing. Met2Img was trained and tested for the classification of liver cirrhosis, colorectal
cancer, IBD, and obesity. In their data preprocessing, they tested several binning techniques,
colour scales and gradients for the images. One of the problems they encountered was overlap-
ping data points in the t-SNE representations, which was, for this reason, often outperformed
by the Fill-up images. The authors also used features from the synthetic images to test an RF
implementation and compared both their RF and CNN classifiers with MetAML-RF. Nguyen
et al. only present scores in the form of accuracy and the Met2Img RF classifier outperformed
the MetAML-RF classifier in all six datasets that were used (Liver cirrhosis, Colorectal cancer,
IBD, Obesity, and two type II diabetes datasets). The Met2Img CNN classifier outperformed
their own RF implementation in the liver, IBD, and one of the two diabetes datasets with
minimal differences (Table 1).

4.4.2 K-mer distributions from amplicon data

Asgari et al. developed MicroPheno and in their paper investigated the use of k-mer distribu-
tions from 16s rRNA sequencing for host phenotype prediction in humans [46]. They tested
MicroPheno on predicting the origin of human body site microbes and used human gut sam-
ples for the prediction of Crohn’s disease. Their primary objective was to compare the use
of k-mer distributions versus the use of OTUs in classification tasks. The main problem with
their method is that short k-mers make it exceedingly difficult to trace taxa to the phenotypes
of interest [46]. The authors employed a bootstrapping framework to select the optimal k-mer
sizes and then tested the data with RF, SVM, and Deep Neural Network (DNN) classifiers.
The SVM had the worst performance, and the MicroPheno DNN classifier lost from the RF
classifier for both the Crohn’s disease and body-site prediction datasets. With an F1-score
difference of 0.7 vs 0.76 for the Crohn’s disease predictions (Table 1).

4.4.3 Dimension reduction focused classification frameworks

In their paper, Oh and Zhang [35] present DeepMicro which is a framework that uses deep
learning to reduce dimensionality of metagenomics data. They argue that there is a lack of
tools for the representation of microbiome profiles, and that deep learning implementations
can reduce dimensionality and accurately represent profiles. The framework makes use of
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MetaPhlAn2 to create marker and abundance profiles and then uses a multitude of autoencoders
(SAE, DAE, VAE, CAE) to transform data into low-dimensional representation. The authors
then trained RF, SVM, and MLP classification models based on the representations from the
framework for predicting human host disease phenotypes such as obesity, colorectal cancer, liver
cirosis and type II diabetes. They benchmarked their work against MetAML for predicting
sample phenotypes from obesity, liver cirrhosis, colorectal cancer and two datasets for type II
diabetes. While the DeepMicro “framework” as a whole outperformed MetAML in five out
of six datasets, it was often the RF or SVM classifiers that actually outperformed MetAML.
The actual deep learning MLP classifier only produced better results in one of the two type II
diabetes datasets. The score difference was minimal, with an AUC of 0.76 for DeepMicro-MLP
and an AUC of 0.74 for MetAML-RF (Table 1).

Then there is the paper by Rahman and Rangwala [43] who created RegMIL for clincal phe-
notype prediction from human microbiome data. RegMil does not make use of a deep learning
classifier, but rather uses a two-layer neural network in combination with an RF to classify
sample disease states. The authors make use of a k-mer bagging approach. After bagging, the
bags get positivity scores assigned to them by a neural network. Then the scored bags are
used as input to an RF to perform final classification. In their benchmarks, RegMIL did not
outperform MetAML for the same datasets (Table 1).

4.4.4 End-to-end prediction from amplicons

Read2Pheno by Zhao et al. [21] is the only reviewed paper that makes use of the end-to-end
prediction capabilities of deep learning. The model was developed as a microbial DNA classifier
with the aim to classify environments from reads and samples. Interestingly, they do this with
16s rRNA sequencing instead of shotgun sequencing. The authors trained a 16s rRNA read
level classifier using an attention based neural network. The classifier predicts the phenotype
of individual reads, and could therefore not classify entire samples directly. To still be able to
classify samples as a whole, the authors tested various approaches that made use of the single
read classifications. The method that produced the best results extracted read embeddings from
the neural network and clustered them to form what they call “pseudo OTUs”. Unfortunately,
they did not benchmark their tool as a whole. Instead, the study focused on how to classify
samples as from single read predictions and benchmarked against more traditional methods
such as the use of OTU- and ASV-tables within their framework. They did not compare their
results to external classifiers.

5 Discussion

5.1 Current deep learning applications do not significantly outper-
form classic machine learning in metagenomics

Deep learning has revolutionized several fields, becoming the de facto model for applications
such as image recognition, natural language processing, and speech recognition. In medical
applications, it is capable of classifying ovarian tumours from ultrasound images [55] and de-
tecting brain tumours from CT scans and MRIs [56], significantly outperforming models using
classic approaches and even rivalling assessment by experts [55]. There have also been successful
application in proteomics, such as DeepDigest [57] for protein proteolytic digestion prediction
and AlphaPeptDeep [58] for predicting peptide properties. In metagenomics, however, there
has been no significant improvement in phenotype predictions. While in some cases, the deep
learning classifiers outperformed more classic approaches, score differences were often minimal.
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Unfortunately, due to different data processing and validation steps such as subsampling, cross-
validation, and score metrics used, we were unable to compare model performances cross study.
All score comparisons that were done or mentioned were performed by authors themselves in
the benchmark sections of their papers.

A disadvantage of classic machine learning over deep learning is the need for an elaborate pre-
processing pipeline to obtain the taxa and functional pathways present in a microbiome sample.
However, most of the studies in this review still use these classic bioinformatics pipelines. Deep
learning approaches that take direct advantage of amplicons and shotgun metagenomic reads
have the potential to predict host phenotype end-to-end. But most studies in this review do
not take advantage of this capability, except for Read2Pheno by Zhao et al. [21] which did not
benchmark against external classifiers.

One significant advantage of deep learning is that it can eliminate the requirement for expert-
driven feature selection. Both in end-to-end and classic bioinformatic approaches. But most of
the studies that are implementing deep learning as classifiers often have elaborate preprocessing
and dimension reduction steps that implement deep learning, then they test deep learning
and classic machine learning classifiers on the features produced. This somewhat negates this
advantage, and increases the compute time.

Currently, the potential of deep learning approaches is not being fully taken advantage of. The
studies in this review use relatively small sample sizes from about ten datasets, which might
contribute to the lacklustre performance. Additionally, it is still important to perform data
normalization and standard filtering and quality checks when using deep learning approaches.
Barcodes and primers should still be removed, abundance tables should still be normalized
(when they are used), and host contamination should be handled in shotgun metagenomics
before passing on amplicons or reads to deep learning approaches that take direct advantage
of them. This is to reduce variables and ensure that the deep learning methods actually learn
patterns from the bacterial samples rather than host DNA in the case of shotgun metagenomics.
Some mentioned studies do not explicitly state whether they performed this preprocessing and
normalization, which could be affecting performance.

To make deep learning classifiers robust and perform optimally, the training data must meet
certain requirements, such as low error rates. Additionally, the training- and test- set must
be diverse to capture the wide range of biological variability to improve the generalization of
the classifiers. However, there is a lack of diverse and large amounts of sequencing data with
ground truths available. Public databases such as the NCBI and ENA have large amounts of
data available, however finding samples that match exact requirements is incredibly laborious
because the databases do not uphold strict FAIR principles [59]. Then there is the additional
problem of mislabelled microbiome data on these databases, which can severely impact perfor-
mance [59]. Some solution might be subsampling, perturbation or synthetic data generation.
However, this comes with additional dangers. Reiman et al. [36] generated various multiclass
synthetic datasets with SparseDOSSA. They then evaluated the performance of PopPhy-CNN
on three real multiclass datasets for obesity (three subclasses), IBD (seven subclasses), and a
multi-disease set (ten subclasses) and the synthetic datasets. The four synthetic datasets were
multiclass with three, five, seven, and nine classes each. The performance on the real datasets
was much worse than the performance on the synthetic dataset for both PopPhy-CNN and
the RF classifier. For example, obesity scored 0.159 (MCC) compared to the synthetic Syn3
dataset’s 0.884 MCC score.
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5.2 Lack of multi-omics approaches for phenotype classification

While many of these papers perform dimensionality reduction and data transformation through
deep learning applications such as autoencoders, they do not attempt to integrate any multi-
omics approaches through use of co-expression networks or use of KEGG pathway mapping.
Which is one of the major benefits of deep learning. Approaching diseases through a single
-omics field would only be the start of finding treatments. After having determined that the
presence of certain bacteria or combinations of them contribute to a disease, it must be further
investigated why they contribute. Only metagenomics does not further reveal why a given bac-
terium causes or contributes to a disease. Multi-omics provides a more comprehensive view of
the biological processes in the underlying phenotypes. Transcriptomic data obtained through
RNA-sequencing methods could provide insight into the expression of the genes carried by the
microbiota in a sample. It can help in determining why a certain bacterium is important for
predicting the disease phenotype if a certain gene in the bacteria has very high expression. Pro-
teomic data obtained through mass spectrometry can provide information about the function
of proteins present in the microbiome and host, useful for understanding protein-mediated in-
teractions, where the protein interactions could be contributing to inflammation. metabolomic
molecule profiles obtained through mass spectrometry or nuclear magnetic resonance spec-
troscopy would provide a snapshot of the metabolic products and pathways that are active in
the microbiome and host. The snapshots could provide insight into the increase or decrease in
specific metabolites that are expected to be present or absent. Through such a multifaceted
approach, we would gain much more understanding of why a certain bacterium is relevant for
a disease. Instead of just knowing that its presence contributes to the disease, we can gain
understanding of the specific genes that are active, which interactions caused by the proteins
produced cause the symptoms and what metabolites are present as a result of that. Such a
multifaceted approach would make it much easier to create treatment plans, as the underlying
factors of the disease are much better understood.

5.3 Interpretability of deep learning methods

Interpretability of deep learning classifiers is a problem. In classic machine learning approaches,
data points that contribute the most to accurate classifications can be traced back. This
means that these data points can be traced to the presence of certain microbes, their genes
and associated pathways which can then be studied further, leading to an enrichment of our
knowledge. Deep learning approaches are often difficult to explain or even unexplainable. We
cannot track the data points that are the most important for the classifier to make accurate
predictions. Being able to determine these data points are critical to gaining understanding of
the biological processes and influences of the microbiome on host phenotype. Classic machine
learning approaches such as RF and SVM, on the other hand, are very explainable. RF provides
measures of feature importance, indicating how important a feature is to the models’ accuracy.
This helps in understanding which variables are most influential. SVMs explicitly identify
support vectors, which are the most important data points of the training set that influence
where the decision boundary gets placed.

There was an attempt by Reiman et al. [36] (PopPhy-CNN) to make their CNN classifier
more interpretable by focusing on the first layer of their neural network classifier. This layer
created the feature maps, which captured the spatial relationships of the 2D matrix from the
phylogenetic tree. They used these maps to find areas with the most activity in the neural
network layer. Following this, they traced these positions to their locations in the 2D matrix.
Using this technique, they could assess the importance of each OTU. The algorithm used
to trace back the features can be found in their paper [36]. While this is a good attempt
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and an important first step at improving the interpretability, it is limited to only the first
convolutional layer, which does not accurately represent the full prediction process of their
classifier. Additionally, they had to reduce the total number of layers in the network to make
it work, which led to overall less performance.

5.4 Adaption to plant microbiomes

Human and plant microbiome sequencing data share the same structure. The preprocess-
ing approaches and the workflows for creating the taxonomic- and- functional tables are the
same. There is no technical blockade for applying phylogenetic tree, k-mer, strain-profile and
abundance-profile approaches. Optimally, you would want to make use of tools that offer deep
learning neural network architectures and then let users prepare their data to train the model.
Pre-trained human-specific models that are aimed at predicting exact disease types would be
difficult to apply in plants due to biological differences such as genetic structures, disease mech-
anisms, and pathogen variation. Bacteria present in the human gut that could be important
classification features for the human disease phenotype are likely to be irrelevant for a plant
disease phenotype.

Roadblocks for applying deep learning in plants are more likely to be related to the availability
of large plant microbiome datasets. As, plant microbiomes are more diverse and the composition
is very different from human microbiomes. Larger amounts of sequencing data will be required
to properly generalize the classifiers. Especially when considering differences between plant
species and their environments. The rhizosphere of plants in sandy soil vs clay soil or different
types of crops will be significantly different. Another example is that legume crops often have
relationships with nitrogen-fixing bacteria which are vital for their growth and development,
whereas grass crops do not. It could also be possible that different models will have to be
trained in such cases.

Synthetic plant microbiomes might help alleviate some data problems. As these microbiomes
are put together based on known interactions and phenotypes, researchers could use them to test
the accuracy and robustness of models under different conditions. The synthetic communities
could also be used to fine-tune models for underrepresented conditions or rare events.

6 Conclusion

In this review, we gave an overview of the latest machine- and deep-learning methods used
for phenotype prediction from microbiome data in humans. The goal was to see whether these
methods could be easily adopted for similar use in plant metagenomics. Overall, this is possible
and the future of large scale microbiome analysis lies in deep learning, especially regarding plant
microbiomes. But currently, deep learning methods do not significantly outperform classic
machine learning methods and the lack of explainability and unavailability of larger datasets is
a considerable roadblock for widespread adaptation. Through this review, we hope to contribute
to the future development and improvement of deep learning classification in metagenomics.
It seems that most studies are overly focused on already existing approaches that are used in
classic machine learning classification. Future deep learning classification in this field should
focus on interpretability, end-to-end prediction, and multi-omics integration.
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