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Abstract

The aim of this thesis is to extend predicational theories of metaphysical grounding. In the

existing predicational theories of ground (Korbmacher [1], [2]), the coding function is restricted

such that the terms corresponding to sentences that contain the ground or the truth predicate

cannot be arguments of the truth or ground predicates. In this thesis, I relax these restrictions.
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This makes the theories more expressive, but it also make possible to derive paradoxes of self-

referentiality for the ground predicate (Korbmacher [3], [2]), analogous to the Liar Paradox

for the truth predicate, and predicational versions of Puzzles of Ground (Fine [4], Krämer

[5]). In this thesis, I develop type-free theories of ground that avoid these paradoxes and

puzzles. In section 1, I introduce the topic of metaphysical grounding, the operational and

predicational approaches, the existing predicational theories, iterated ground and the paradoxes

and puzzle previously mentioned. In section 2, I define the technical framework and notation

I will use. In section 3, first, I develop a non-classical (K3) model for the ground and truth

predicate in the style of Kripke fixed point semantics (Kripke, [6]) that avoids the paradoxes

of self-referentiality. Second, I develop an axiomatic theory for this model inspired by the

Kripke-Feferman theory of truth. In section 4, first, I highlight the fact that, if some plausible

principles about the interaction between the ground and truth predicate are added to the theories

previously developed, they become inconsistent due to a version of Fine’s Puzzles of Ground

(Fine, [4]). Second, I develop a semantic model that avoids this inconsistency. In section 5, I

draw some philosophical conclusions about the formal results of the previous two sections. I

explain why a non-classical approach to the paradox of self-referentiality for the ground predicate

is philosophically justified and interesting. I compare my solution to Fine’s puzzle with the

solutions proposed by Fine ([4, pp. 103-115]).

1 Metaphysical Grounding

In this section, I introduce metaphysical grounding and the most relevant philosophical and con-

ceptual issues related to it which will be relevant for this paper. First, in section 1.1, I explain

what metaphysical grounding is, I make some conceptual distinctions between different notions of

grounding and I explain which ones I will consider in this paper and why. Then, in section 1.2, I will

introduce two different kinds of formal theories of grounding, operational and predicational ones. I

will list the pros and cons of adopting one approach with respect to the other. In section 1.3, I will

delve into predicational theories of grounding, which is the topic of this paper. I will introduce the

existing theories in the literature and their most relevant results. I will state in full detail the base

predicational theory of partial ground PG, which will be relevant for the next sections. In section

1.4, I will introduce the notion and main theories of iterated ground. One of the objectives of this

paper is to develop a theory of iterated ground in a predicational setting. In section 1.5, I will intro-
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duce two inconsistency results that threaten theories of grounding: the paradox of self-referentiality

for ground and Fine’s puzzle. I will show that, under certain assumptions, the predicational setting

is expressive enough to derive both these puzzles. In the rest of the paper, I will formulate theories

which aim to avoid them.

1.1 The Notion of Grounding

Metaphysical grounding is a kind of metaphysical explanation, in which the explanans and the

explanandum are connected through some constitutive form of determination (Fine [7, p. 37]).

Intuitively, a metaphysically grounds b when b holds in virtue of a, b is the case because of a, or b

is made true by a. Typical examples of such phenomenon are:

(1) The fact that the ball is red and round obtains in virtue of the fact that it is red and

the fact that it is round;

(2) Universals exist in virtue of their having exemplifiers;

(3) The fact that the particle is accelerating obtains in virtue of the fact that it is being

acted upon by some net positive force;

(4) Mental facts obtain in virtue of neurophysiological facts;

(5) Normative facts are grounded in natural facts;

(6) Semantic properties are exemplified in virtue of certain non-semantic properties being

exemplified;

(7) The existence of a non-empty set is grounded in the existence of its members;

(8) The existence of a whole is grounded in the existence of its parts. (Correia [8, pp.

251-252], Fine [7, p. 38])

As the examples above suggest, metaphysical grounding is a philosophically very relevant and

interesting notion because it is widespread across many topics in philosophy and science. Many

philosophical and scientific claims and theories are spelled out in terms of grounding. In fact,

examples (1) and (2) above suggest that logically complex formulas are grounded in simpler ones,

example (3) suggests that scientific claims can be expressed using the notion of grounding, examples

(4)-(8) suggest that claims in various subfields of philosophy (respectively, philosophy of mind, ethics,

semantics, philosophy of mathematics and ontology) are spelled out in terms of grounding relations.
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There are different ways of conceiving the notion of metaphysical grounding. The following five

distinctions are important for the rest of the paper1. The first distinction is between factive and

non-factive conceptions of ground. On the factive conception, both what explains (the ground) and

what is explained (the grounded) in a grounding explanation must be factive, i.e. a fact or a true

term, proposition or sentence. Instead, on the non-factive conception, the grounds and the grounded

can also be something non-factive, such as hypothetical facts or false sentences. In this paper, I will

only focus on factive ground. The reasons why I restrict my analysis to factive ground are more

practical than theoretical. The question about which between factive and non-factive ground is the

more primitive notion is open2. However, the predicational theories of ground that this paper aims

to further develop are all about factive ground. While developing a theory to non-factive ground is

for sure a interesting open topic, in this paper I aim stick more closely to the existing predicational

theories of ground and extend them in a few directions. Moreover, predicational theories that

formalise factive ground create a natural environment to study the relationship between metaphysical

grounding and truth. Studying their relation is an interesting philosophical question which will be

one of the main focuses of this paper.

The second distinction is between full and partial conceptions of ground. a fully grounds b iff a,

on its own, is the ground of the grounded b. a partially grounds b iff a, on its own or with some other

c, is the ground of the grounded b. There is general consensus in the literature that it is possible

to define partial ground in terms of full ground, but not the other way around (e.g. Fine [7, p.

50])3. Thus, in this sense, full ground is a more fundamental notion than partial ground. Despite

this, in this paper, I will focus on partial ground. The reason for this choice is that, as I explain in

section 1.3, developing a theory of full ground in a predicational setting raises some technical issues

that make its formalisation more complex. In fact, the only fully developed predicational theories

of grounding are theories of partial ground [1, 2]. However, for the objectives of this paper, it is

sufficient to work with theories of partial ground. Therefore, I will stick to the simpler framework

of theories of partial ground.

The third distinction is between mediate and immediate conceptions of ground. a immediately

grounds b iff a grounds b and the explanatory relation between them is direct, in the sense that

1 See Fine [7, pp. 48-54] for a complete overview.
2 For example, Fine [7, pp. 49-50] claims that factive ground is more fundamental than non-factive ground, while

Litland [9] argues for the opposite position.
3 An exception to this consensus is Trogdon and Witmer [10], who propose a definition of full ground in terms of

partial ground.
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it does not depend on some c such that a grounds c and c grounds b. a mediately grounds b iff a

immediately grounds b or the fact that a grounds b can be obtained by chaining relationships of

immediate ground. Thus, mediate ground, but not immediate ground, is transitive. In this paper,

I will only focus on mediate ground. This seems a natural choice because the intuitive notion of

grounding that the examples above exemplify is one of mediate ground. In fact, most of the literature

has focused on mediate ground. Moreover, mediate ground is the more primitive notion because

immediate ground can be defined in terms on mediate ground, but not the other way around (Fine,

[7, pp. 50-51]).

The fourth distinction is between weak and strict conceptions of ground. On the weak notion,

things should ground themselves. Thus, weak ground is reflexive, a grounds a. Instead, we can

think of the strict notion as relating the grounded only with grounds which are at a lower level in

the explanatory hierarchy. Thus, strict ground is irreflexive, a does not ground a. In this paper, I

work with strict ground. It is possible to both define weak ground in terms of strict ground and the

latter in terms of the former one (Fine, [7, p. 52]). However, strict ground is a more intuitive notion

than weak ground, it is the one which has been more extensively analysed in the literature and it is

generally considered more fundamental than weak ground4. Fine [7, pp. 53-54] shows that full and

partial and weak and strict ground can be combined in various ways to form three different notions

of strict/partial ground (partial strict ground, strict partial ground and part strict ground). These

distinctions do not matter for the theories I am going to develop in this paper.

The fifth distinction is between conceptualist and worldly conceptions of ground. Given a state-

ment, we can distinguish between its worldly and its conceptual content. The worldly content is

just a matter of the way it represents the world, while the conceptual content is also a matter of

how it represents that content (Fine [11, pp. 685-686]). The worldly conception of ground does not

distinguish between facts that represent the world in the same way, or, in other words, it is only

sensitive to differences in worldly or factual content. Instead, the conceptualist conception of ground

also distinguishes facts based on the concepts they use to describe the world. In other words, it is

sensitive to the conceptual content of facts, which we may also call propositions (Correia, [8, pp.

256-259]). There is room for disagreement about whether two facts or propositions are the same.

However, it is widely held that propositions are more fine-grained than worldly facts, in the sense

that there can be different propositions describing the same fact, but not the other way around.

4 Fine [7, pp. 52-53] defends the opposite view that weak ground is the more fundamental than strict ground.
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Typical examples of different propositions expressing the same worldly fact are:

1) ’a is a water molecule’ and ’a is an H2O molecule’ ([8, p.256]),

2) ’France is east of Argentina’ and ’Argentina is west of France ([8, p.256]),

3) ’The ball is red’ and ’it is not the case that it is not the case that the ball is red’,

4) ’The ball is red’ and ’The ball is red and it is red’,

5) ’The ball is red’ and ’The ball is red or it is red’.

In examples (1) and (2), it is commonly held that the two propositions describe or are about

the same worldly fact (the fact that the molecule a has certain characteristics and the fact that

two places are in a certain spatial relation with respect to each other), even if they employ different

concepts to do so (being a water molecule and being an H2O molecule, being east of and being west

of ).

Examples (3)-(5) are about logically equivalent sentences which present the same factual content

in two different ways. In this sense, we can say that each of the pairs of sentences in examples

(3)-(5) describes the same fact but expresses a different conceptual content. Recently, there has

been a growing interest in hyperintensionality5. A context is hyperintensional iff it does not respect

(classical) logical equivalence (Cresswell [14, p. 25]). Thus, according to an hyperintensional account

of propositions, equivalence between propositions is more fine-grained than classical logical equiva-

lence, in the sense that there are classically equivalent sentences expressing different propositions.

The literature on grounding naturally fits within the one on hyperintensionality because theories of

grounding claim the existence of grounding relations between classically equivalent sentences. Thus,

theories of grounding argue for a distinction between some classically equivalent sentences on the

base of the grounding relations they satisfy.

Thus, given that propositions are more fine-grained than worldly facts, conceptualist ground is

also more fine-grained than worldly ground. The latter, but not the former, can distinguish between

two grounding statements that differ only because the grounds and/or the grounded that constitute

them describe the same worldly facts with different propositions. Thus, for example, in a worldly

conception of ground, one cannot distinguish between:

’The ball is red grounds it is not the case that it is not the case that the ball is red’ and

5 See Nolan [12] and Berto and Nolan [13] for an introduction.
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’It is not the case that it is not the case that the ball is red grounds the ball is red’.

Instead, in conceptualist conception, the former but not the latter is an intuitively true ground

statement. Analogous arguments hold for the sentences in examples (4) and (5).

In this paper, I will work conceptualist theories of ground. The reasons for this choice are both

practical and theoretical. Practically, the existing predicational theories of ground are theories of

conceptualist ground (Korbmacher [1], [2]), and the purposes of this paper is to extend the existing

predication theories. Theoretically, it is easier to develop a theory of worldly ground starting from

a theory of conceptualist ground than the other way around. Given that conceptualist theories

are more fine-grained, the results of a worldly theory should naturally follow from the principles

conceptualist ground after we added to them the preferred view about which propositions are about

the same facts.

1.2 Formal Theories of Ground

This paper is about formal theories of ground. It aims to build satisfactory logical theories and

semantics for the notion exemplified in the previous sub-section. An important sub-topic of formal

theories of ground is the logic of ground. The logic of ground is concerned with the logical consequence

relation between ground statements, or, in other words, which ground statements follows by logic

from other (possibly none) statements. The logic of ground can be divided into two parts: the pure

or structural logic of ground and the impure or applied one (Fine [7, pp. 54-71]). The pure logic

of ground is concerned with what follows from statements of ground without regard to the internal

structure of the ground or the grounded. A typical example of such logical relations is that grounding

is transitive, i.e. if a grounds b and b grounds c, then a grounds c. Instead, the impure logic of

ground is concerned with the logical relations which holds in virtue of the internal structure of the

ground and the grounded. For example, impure logic of ground typically state that a grounds a∨ b.

The theories I develop in this paper contains both a pure and an impure logic of ground.

Ground can be formalised in two different ways on depending on the grammatical form used to

express statements of ground. Two different kinds of theories follow from these two approaches:

the operational and the predicational ones. Operational theories formalise grounding as an operator

between sentences. Thus, in this case, ground is an operator from sentences to a sentence. The

operational approach is common for other formal theories in logic and philosophy, such as logical

theories of modality, where the operator □ takes a sentence (e.g. p) to from a new one (e.g. □p), or

7



theories of the conditional, where the binary connective→ takes two sentences (e.g. p and q) to from

a new one (e.g. p → q). Predicational theories formalise grounding as a predicate between some

entities, usually understood as facts, sentences, propositions or truths. Thus, the ground predicate

takes terms denoting some entities to form a sentence. This is the usual approach used in theories of

truth, where truth is formalised as a unary predicate that is applied to terms that denote sentences.

For example, given a sentence p, Tr(⌜p⌝) (where ⌜p⌝ is the name of the sentence p) is a formalisation

of the sentences that says that the sentence p is true.

This difference in grammatical form has relevant theoretical and philosophical implications. At

first hand, it is not clear which approach is the superior one. There are various pros and cons

in adopting an approach with respect to adopting the other. On the one hand, the predicational

approach is more ontologically demanding. The predicate approach needs terms denoting the relata

of ground and so, by Quine’s criterion of ontological commitment, it commits us to the existence of

the relata of ground. Thus, since we are committed to the existence of the relata of ground, we also

need a background theory for them. The predicational approach presupposes the existence of an

ontology of entities, such as facts, propositions or truths (Fine [7, p. 47], Correia and Schneider [15,

p. 11], Correia [8, p. 254]). This is particularly worrying if the entities under consideration are facts,

because it should in principle be possible to make claims of grounding without being committed to

an ontology of facts (Correia [8, p. 254], Korbmacher [1, p. 166]). Instead, on the operator approach,

all this is not necessary.

On the other hand, predicational theories are more expressive than operational ones. This is

because, on the predicational approach, it is natural to quantify over the entities under consideration

and express quantified claims about the ground and the grounded of a ground statement. For

example, on the predicational approach, the principle that a sentence is true iff its truth is either

fundamental or grounded in some other truth can be straightforwardly formalized as:

∀x(Tr(x)↔ (Fund(x) ∨ ∃y(y ◁ x))),

where Tr and Fund are, respectively, unary predicates for true and fundamental sentences.

Formally, it is possible to achieve similar results in terms of expressivity on the operator approach

by using quantification into sentence position or propositional quantification. However, quantifica-

tion over sentences is not usually considered as legitimate (Correia and Schneider [15, pp. 11-12]).

Moreover, even if one is willing to accept it, propositional quantification implies a significant devi-

ation from classical logic. Instead, in the predicational approach, the same results can be achieved
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without deviating from classical logic. Thus, the predicational approach is advantageous for express-

ing this kind of principles. This also allows to define ground-theoretic concepts directly in the object

language (Korbmacher [1, p. 164]). Moreover, as I will extensively discuss in this paper, adopting a

predicational approach creates a natural setting to study the connections between ground and truth.

In fact, theories of truth are usually formalised in a predicational setting. Thus, it is possible to use

the same formal framework to develop theories of both ground and truth. Moreover, the expres-

sivity of predicational theories allows to naturally express principles about the relation of ground

and truth. Analogously to Korbmacher [1, 2], a substantial part of this paper will be focused on

developing a theory of truth and ground in a predicational setting.

Another interesting result about predicational theories of grounding is that they are expressive

enough to formulate paradoxes of self-referentiality for ground (Korbmacher [3]), analogous to the

Liar Paradox for the truth predicate, which cannot be expressed in an operational framework.

Moreover, they can formulate a predicational version of the puzzles of ground presented by Fine

[4] and Krämer [5], which I will name Fine’s puzzle6. Thus, the predicational setting implies more

stringent criteria to establish the consistency of principles of grounding.

In conclusion, the question about which is the correct or most fruitful grammatical form to express

ground statements remains open. Most of the recent literature focused on operational theories7, while

predicational theories have not been developed in the same detail yet. In this paper, I aim to expand

the existing theories of predicational ground to replicate some results of the operational theories and

derive results which cannot be achieved in an operational setting. In this paper, I do not aim to

provide a conclusive answer to the question about which of the two approaches is superior. However,

this paper is clearly sympathetic to the predicational approach. It provides evidence for the thesis

that some interesting results about grounding can only be derived by predicational theories.

1.3 Predicational Theories of Ground

The only papers where a predicational theory of ground is fully developed are Korbmacher [1, 2].

In these two papers, Korbmacher develops axiomatic theories of partial, factive, mediate, strict

conceptual ground. These theories are formulated using the same formal framework as so-called

axiomatic theories of truth (Halbach [19]). The idea is, roughly, that we can use the language of

6 See section 1.5 for a detailed presentation of the paradoxes of self-referentiality and Fine’s puzzle.
7 For example, see Fine [16], Correia [17] and deRosset and Fine [18].

9



arithmetic, i.e. the language of natural numbers, to talk about syntax via the method of Gödel

numbering, which allows us to use numerals as names for individual sentences. This means that

we can add a relational predicate for grounding to the language of arithmetic, analogously to the

addition of a truth predicate in axiomatic theories of truth8. Thus, we obtain a unique framework

for the investigation of theories of grounding, truth, and their relation.

Predicational theories of truth show that there are strong links between metaphysical grounding

and truth. In particular, factive theories of grounding can be thought of as theories of how some

truths ground others. Grounding relations between truths can be understood as principles that,

given some truths, allow us to derive further ones. Thus, given that ground and truth are formalised

in the same formal setting, it is natural to expect that results about the relation about theories

can be proven. In fact, some of the main results of Korbmacher [1] and [2] are about the newly

developed theories of ground and existing theories of truth.

More precisely, in [1], Korbmacher develops the base predicational theory of partial ground PG,

which I now state in full detail.

Definition 1 (PG). The axioms of PG are the axioms of PATG9 plus:

Basic Ground Axioms:

G1 ∀x¬(x◁ x)

G2 ∀x∀y∀z((x◁ y ∧ y ◁ z)→ x◁ z)

G3 ∀x∀y(x◁ y → Tr(x) ∧ Tr(y))

Basic Truth Axioms:

T1 ∀s∀t(Tr(s=. t)↔ s◦ = t◦)

T2 ∀s∀t(Tr(s̸=. t)↔ s◦ ̸= t◦)

T3 ∀x(Tr(x)→ Sent(x))

Upward Directed Axioms:

U1 ∀x(Tr(x)→ x◁ ¬.¬. x)

U2 ∀x∀y((Tr(x)→ x◁ x∨. y) ∧ (Tr(y)→ y ◁ x∨. y))

U3 ∀x∀y(Tr(x) ∧ Tr(y)→ (x◁ x∧. y) ∧ (y ◁ x∧. y))

U4 ∀x∀y((Tr(¬. x)→ ¬. x◁ ¬. (x∧. y)) ∧ (Tr(¬. y)→ ¬. y ◁ ¬. (x∧. y)))
8 See section 2 for a detailed introduction of the technical framework.
9 See section 2 for an introduction PATG and for clarifications about the notation.
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U5 ∀x∀y(Tr(¬. x) ∧ Tr(¬. y)→ (¬. x◁ ¬. (x∨. y)) ∧ (¬. y ◁ ¬. (x∨. y)))

U6 ∀x∀t∀v(Tr(x(t/v))→ x(t/v)◁ ∃.vx)

U7 ∀x∀v(∀tT r(¬. x(t/v))→ ∀t(¬. x(t/v)◁ ¬. ∃.vx))

U8 ∀x∀v(∀t(Tr(x(t/v))→ ∀t(x(t/v)◁ ∀.vx)))

U9 ∀x∀t∀v(Tr(¬. x(t/v))→ ¬. x(t/v)◁ ¬. ∀.vx)

Downward Directed Axioms:

D1 ∀x(Tr(¬.¬. x)→ x◁ ¬.¬. x)

D2 ∀x∀y(Tr(x∨. y)→ (Tr(x)→ x◁ x∨. y) ∧ (Tr(y)→ y ◁ x∨. y))

D3 ∀x∀y(Tr(x∧. y)→ (x◁ x∧. y) ∧ (y ◁ x∧. y))

D4 ∀x∀y(Tr(¬. (x∧. y))→ (Tr(¬. x)→ ¬. x◁ ¬. (x∧. y)) ∧ (Tr(¬. y)→ ¬. y ◁ ¬. (x∧. y)))

D5 ∀x∀y(Tr(¬. (x∨. y))→ (¬. x◁ ¬. (x∨. y)) ∧ (¬. y ◁ ¬. (x∨. y)))

D6 ∀x(Tr(∃.vx(v))→ ∃t(x(t/v)◁ ∃.vx))

D7 ∀x∀v(Tr(¬. ∃.vx)→ ∀t(¬. x(t/v)◁ ¬. ∃.vx))

D8 ∀x∀v(Tr(∀.vx)→ ∀t(x(t/v)◁ ∀.vx))

D9 ∀x∀v(Tr(¬. ∀.vx)→ ∃t(¬. x(t/v)◁ ¬. ∀.vx))

Korbmacher [1] proves some important results about PG. First, PG is adequate with respect

the operational theory developed by Schneider in [20], in the sense that all the sentences proved by

the latter theory are also proved by the former one. Second, PG is a proof-theoretically conservative

extension of the theory of positive truth PT and, so, it is proven to be a theory of ground and

truth. Third, PG is consistent and so, by the completeness theorem for first-order logic, there is a

first-order model of PG. Then, Korbmacher constructs the model of PG using grounding-trees and

proves its correctness.

In [2], Korbmacher extends the base theory PG to PGAα, the typed theory of partial ground

with Aristotelian principles. The Aristotelian principles state that:

1) If ϕ is a true sentence, then Tr(⌜ϕ⌝)10 holds either wholly or partially in virtue of ϕ.

2) If ¬ϕ is a true sentence, then ¬Tr(⌜ϕ⌝) holds either wholly or partially in virtue of ¬ϕ.

If the Aristotelian principles are formalised and added to PG, the resulting theory gives rise to

a version of the puzzles presented by Fine [4] and Krämer [5] (Fine’s puzzle11). To overcome the

inconsistency, Korbmacher develops a theory of ground and typed truth. In a nutshell, he substitutes

10 See section 2 for clarifications about the notation.
11 See section 1.5 for a detailed presentation of the puzzle.
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the truth predicate in PG with a Tarskian hierarchy of truth predicates. He develops a hierarchy of

theories PGAα for any ordinal 0 ≤ α < ϵ0 in which, at every level α, PGAα contains a new truth

predicate in the Tarskian hierarchy. First, he proves that the theory PGAα is a proof-theoretically

conservative extension of the theory of positive ramified truth, PRTα. Second, he proves that PGAα

is consistent. Third, he extends the model for the base theory PG to the new typed theory and

proves its correctness. Finally, he relaxes the restriction that the ground predicate cannot be iterated

(in the sense that terms denoting sentences containing the ground predicate cannot be arguments

for the ground or truth predicate) and adds plausible principles about the relation between the

ground and truth predicate. He shows that, if we are not careful when relaxing this restriction,

we run into another paradox, the paradox of self-referentiality for ground12. This paradox can be

understood as the analogous for ground of other paradoxes of self-reference, such as Tarski’s paradox

for predicational theories of truth (Liar Paradox ) and Montague’s paradox for predicational theories

of modality.

These theories of predicational ground have some limitations. First, they are only theories of

partial ground and not of full ground. As, I mentioned in section 2.1, this is a relevant limitation

because there full ground is more primitive than partial ground. The reason for this is that, in a

predicational setting, partial ground is a one-to-one relation, while full ground is a many-to-one

relation. Thus, partial ground can be naturally expressed as a binary relation. Instead, expressing

full ground would require either grouping the grounds together into a single entity and, so, applying

ground predicate to sets of sentences, or introducing multigrade predicates, i.e. predicates that can

take an arbitrary number of terms (even infinite) as arguments. However, both strategies bear some

complications. The former one leads to cardinality issues for the coding function. The latter one

implies a departure from standard first-order logic and the use of plural logic. Thus, extending the

existing predicational theories of partial ground to full ground is a non-trivial matter (Korbmacher

[1, pp. 189-190]). However, I think the results of this paper could be generalised without particular

issues to predicational theories of full ground. Thus, I stick to easier and already well-developed

framework of theories of partial ground in this paper. I leave the formulation of a predicational

theory of full ground for future research.

Another limitation is that the existing predicational theories of ground is that they are expressed

in a restricted language. The language in which the base theory of partial ground PG is formulated

12 See section 1.5 for a detailed presentation of the paradox.
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in Korbmacher [1] does not allow terms that denote sentences that contain either the truth of the

ground predicate to be arguments of the truth of ground predicate. The theory in Korbmacher [2]

relaxes this constraint for the truth predicate by typing the language and hints how to extend this

solution to the ground predicate. The motivation for these restrictions is that, as I will show in

section 1.5, relaxing them makes the theory inconsistent with very plausible principles about ground

and truth due to paradoxes of self-refentiality and Fine’s puzzle. The main objective of this paper is

to overcome these issues and to formulate theories of ground in an unrestricted untyped language.

1.4 Theories of Iterated Ground

One of the objectives of this paper is to formulate a theory of iterated ground in a predicational

setting. By theory of iterated ground, I mean a theory that derives results about which ground

relations ground statements are part of. This is a natural question to ask because, given that a

theory of ground aims to establish ground relations between facts or truths, ’a grounds b’ can itself

be a fact or truth and, so, be part of further ground relations as the ground or grounded. The

formal framework in which the existing predicational theories of grounding are formulated excludes

the possibility of deriving statements of iterated ground because the domain coding function is L

(Korbmacher [1]) or LTr (Korbmacher [2]). Thus, there are not terms denoting statements of ground

that can be arguments of the ground predicate.

There are a couple conceptual worries linked to the idea of iterated ground. First, suppose

that statements of ground are not grounded by anything. A widespread view is that, if a fact is

not grounded by anything, then it is fundamental. Also, another common view is that, if a fact

is fundamental, so are its components. Thus, under these assumptions, all statements of ground

are fundamental, and so are the grounds and grounded that compose them (Trogdon [21, pp. 115-

116]). Thus, if the previous assumptions hold, it follows that all the facts that are part of relations

of grounding are fundamental. This contrasts with the idea that grounding relations describe a

hierarchical structure of reality where some fundamental facts ground derivative ones, which is

popular among philosophers interested in metaphysical grounding. Thus, this argument suggests

that advocates of metaphysical grounding should look for a theory of iterated ground. Second,

Rabin and Rabern [22] investigate whether the idea that statements of ground are grounded is

compatible with the thesis that the structure of ground is ’well-founded’, in the sense that there exists

a fundamental level of basic facts on which all derivative facts are grounded. The wellfoundedness
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of ground is common to many accounts of grounding. Thus, if it was incompatible with iterated

ground, then a theory of iterated ground would need to reject one of the most popular principles

of grounding. However, Rabin and Rabern [22] develop three distinct notions of wellfoundedness of

a ground structure and show that neither of them is inconsistent with the fact that statements of

ground are grounded.

From a formal point of view, the idea that statements of ground are part of ground relations

naturally fits with both the operational and the predicational approach. On the operational perspec-

tive, statements of ground are expressed by sentences which are the results of applying the ground

operator to other sentences. Formally, there is no reason why the ground operator should not apply

to all the sentences of the language, including the ones that contain the ground operator. On the

predicational perspective, we could more easily avoid iterated ground by restricting the domain of

application of the ground predicate to a set of entities that do not contain facts, truths, propositions

or sentences that correspond to statements of ground. However, in lack of an argument to exclude

them, the natural choice is to take the most liberal position and allow iterated ground among the

arguments of the ground predicate.

Litland [9, 23] develops an operational pure logic of iterated full ground that contains plausible

principles of iterated ground. In summary, Litland’s results are the following. Non-factive ground

statements are zero-grounded in the sense of Fine [7, p. 48], while factive ground statements are

grounded in the corresponding non-factive statements and on their grounds being the case. Thus,

the basic notion of ground is non-factive and factive ground statements are derivative from non-

factive ones. Also, non-factive ground statements hold because they are linked with a certain kind

of explanatory arguments from their grounds to their grounded. In this paper, I am not interested in

the non-factive ground. Thus, I aim to incorporate in a predicational framework only the factive part

of Litland’s logic of iterated ground, i.e. the fact that a ground statement is (partially) grounded in

its grounds being the case. I call this principle GG principle13:

If ϕ holds in virtue of ψ, then ⌜ϕ⌝ ◁ ⌜ψ⌝14 holds in virtue of ϕ.

Intuitively, it means that the ground grounds that the ground grounds the grounded. Formally,

given two sentences ϕ and ψ, this principle claims that, if ⌜ϕ⌝ ◁ ⌜ψ⌝, then ⌜ϕ⌝ ◁ ⌜ϕ◁. ψ⌝. This

principle is also defended by other accounts of iterated ground, such as deRosset [24] and Bennett

[25], and it is also named the superinternality account.

13 The name GG reminds the fact that the Ground Grounds the whole ground statement it is part of.
14 See section 2 for clarifications about the notation.
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1.5 Paradoxes of Ground

Three potential sources of inconsistency will be relevant for the theories I am going to develop in

sections 3 and 4. First, there is the the well-known Tarski theorem about self-referentiality of the

truth predicate, or the liar paradox. Second, the paradox of self-referentiality for the ground predicate,

which, roughly, is the analogous of the liar paradox for ground predicate. Third, a predicational

version of the so called Fine’s puzzle, which is an inconsistency that derives from some intuitively

plausible principles of ground. In this section, I formally state and prove three theorems that show

under which assumptions these paradoxes and puzzles are derived.

I state the three syntax conditions needed to derive the two paradoxes of self-reference (for the

liar paradox the first two are sufficient). First, we need a theory T that is a sufficiently strong to talk

about its sentences. More precisely, T proves that we have a unique name ⌜ϕ⌝ for every sentence ϕ,

in the sense that, for all sentences ϕ and ψ, T ⊢ ⌜ϕ⌝ = ⌜ψ⌝ only if ϕ = ψ15. Second, we need that

T proves the diagonal lemma.

Lemma 1 (Diagonal Lemma). A theory T proves the Diagonal Lemma iff, for all formulas ϕ(x)

with exactly one free variable, there exists a sentence δ such that T ⊢ δ ↔ ϕ(⌜δ⌝).

Third, we need a theory T that proves that we have a function symbol ¬. that represents the

syntactic operation ¬ of negation, in the sense that, for all sentences ϕ, T ⊢ ¬. ⌜ϕ⌝ = ⌜¬ϕ⌝.

The reason why the paradoxes of self-referentiality are theoretically interesting is that these

syntax conditions are rather weak. In fact, any standard background theory of syntax, such as

Robinson arithmetic Q, satisfies all three of them. As we will see in section 2, The standard theory

of arithmetic PA in which theories of truth and theories of grounding are developed satisfies these

three syntax conditions because it is stronger that Q. Moreover, these conditions are not only results

of some formal theories, but they reflect characteristics of natural languages. In fact, they are also

able to talk about their own sentences and paradoxical sentences in formal languages have intuitive

equivalents in natural ones.

We can now state the liar paradox :

Theorem 1 (Liar Paradox). Take any theory T in the language L that satisfies the first two syntax

conditions above and a unary predicate Tr ∈ L such that, for every sentence ϕ of the language L,

the T-scheme T ⊢ ϕ↔ Tr(⌜ϕ⌝) holds, then T is inconsistent.

15 See section 2 for clarifications about the notation.
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Proof. Take the formula ϕ(x) = ¬Tr(x). By the diagonal lemma, there is λ such that T ⊢ λ ↔

¬Tr(⌜λ⌝).

1) T ⊢ λ→ ¬Tr(⌜λ⌝) by diagonal lemma

2) T ⊢ λ→ Tr(⌜λ⌝) by assumption

3) T ⊢ λ→ ⊥ by 1) and 2)

4) T ⊢ ¬λ by 3)

5) T ⊢ ¬λ→ Tr(⌜λ⌝) by diagonal lemma

6) T ⊢ ¬λ→ ¬Tr(⌜λ⌝) by assumption

7) T ⊢ ¬λ→ ⊥ by 5) and 6)

8) T ⊢ ⊥ by 4) and 7)

The sentence λ is not only a formal construction, but a natural language sentence with an

analogous meaning can be easily stated. For example, consider:

1) ’The sentence (1) at p. 16 of this thesis is false’.

Assuming that the truth predicate in natural language is interpreted according to the T-scheme,

it can be easily checked that it is impossible to consistently assign a truth-value to (1). If (1) is true,

then what (1) asserts is the case, so (1) is false. If (1) is false, then what (1) asserts is not the case,

so (1) is true.

To derive the analogous paradox of self-referentiality for the ground predicate, we need to assume

the following two principles of ground, which are also axioms of PG (see section 1.3).

U1 : ∀x(Tr(x)→ x◁ ¬.¬. x)

G3 : ∀x∀y(x◁ y → Tr(x) ∧ Tr(y))

Both U1 and G3 are very plausible principles of a theory of factive ground. U1 states that, if a

sentence is true, it grounds its double negation, G3 states that ◁ is a predicate of factive ground,

i.e. both grounds and the grounded of a grounding relation are true.

Then, we also assume two principles about the interaction between the ground and truth predi-

cates:

G+ : ∀s∀t(Tr(s◁. t)↔ s◦ ◁ t◦),

G− : ∀s∀t(Tr(¬. (s◁. t))↔ ¬(s◦ ◁ t◦)).
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These axioms states that the ground predicate behaves as one expects with respect to the truth

predicate. In fact, they are just the instances for the ground predicate of the general scheme of

axioms that one normally adds to a theory containing the truth predicate when a new relation

symbol R is added:

R+ : ∀t1, ..., tn(Tr(R. (t1, ..., tn))↔ R(t◦1, ..., t
◦
n)),

R− : ∀t1, ..., tn(Tr(¬.R. (t1, ..., tn))↔ ¬R(t◦1, ..., t◦n)).

We can now state the paradox of self-referentiality for the ground predicate16:

Theorem 2 (Paradox of self-referentiality for ground). Any theory T that satisfies the three

syntax conditions above, U1, G3, G
+ and G− is inconsistent.

Proof. Take the formula ϕ(x) = ¬(x◁ ¬.¬. x). By the diagonal lemma, there is σ such that T ⊢ σ ↔

¬(⌜σ⌝ ◁ ⌜¬¬σ⌝).

1) T ⊢ ¬σ → ⌜σ⌝ ◁ ⌜¬¬σ⌝ by diagonal lemma

2) T ⊢ ⌜σ⌝ ◁ ⌜¬¬σ⌝→ Tr(⌜σ⌝) by G3

3) T ⊢ Tr(⌜σ⌝)→ σ by G−17

4) T ⊢ ¬σ → σ by (1), (2) and (3)

5) T ⊢ σ by (4)

6) T ⊢ σ → Tr(⌜σ⌝) by G−

7) T ⊢ Tr(⌜σ⌝)→ ⌜σ⌝ ◁ ⌜¬¬σ⌝ by U1

8) T ⊢ σ → ⌜σ⌝ ◁ ⌜¬¬σ⌝ by (7) and (8)

9) T ⊢ σ → ¬(⌜σ⌝ ◁ ⌜¬¬σ⌝) by diagonal lemma

10) T ⊢ σ → ⊥ by (8) and (9)

11) T ⊢ ⊥ by (4) and (10)

It is important to note that using U1 is not necessary to derive the contradiction. It is possible

to prove the result in the exact same way using grounding principles for other connectives, such as

⌜ϕ⌝ ◁ ⌜ϕ ∨ ϕ⌝ or ⌜ϕ⌝ ◁ ⌜ϕ ∧ ϕ⌝.

As for the liar sentence, we can find a natural language sentence that corresponds to the para-

doxical sentence σ. For example, consider:

2) ’The sentence (2) at p. 17 of this thesis does not ground its own double negation’.

16 See Korbmacher [3, pp. 4-5], [2, pp. 219-221] for analogous results.
17 Note that I apply G− and not G+ because σ = ¬(⌜σ⌝ ◁ ⌜¬¬σ⌝).

17



If we try to determine whether what (2) asserts is the case and we reason assuming that the

assumptions of Theorem 2 hold, we run into a paradox. In fact, if (2) grounds its own double

negation, then what (2) asserts is not the case. But if (2) grounds its own double negation, then (2)

is true because only true claims can ground something else, then what (2) asserts is the case and (2)

does not ground its own double negation. If (2) does not ground its own double negation, then what

(2) asserts is the case, then (2) is true, then (2) grounds its own double negation because all true

claims ground their double negation. Then, what (2) asserts is the case and (2) does not ground its

double negation.

The third inconsistency I will deal with is Fine’s puzzle. Differently from the previous two,

this inconsistency does not depend on self-referentiality, but on the fact that some intuitively valid

principles of ground are inconsistent between each other. Fine [4] and Krämer [5] present various

versions of the inconsistency. Here, I present a version of the puzzle in a predicational setting

analogous to the one in Korbmacher [2, pp. 198-199]. The principles of ground needed to derive

the contradiction are the following. First, one of the two so-called Aristotelian principles APT and

APF :

APT : ∀x(Tr(x)→ x◁ Tr. (x))

APF : ∀x(Tr(¬. x)→ ¬. x◁ ¬. Tr. (x)).

Intuitively, APT states that, if a sentence ϕ is true, then ϕ is true in virtue of what it says being

the case, and APF states that, if ϕ is false, then ϕ is not true in virtue of what it says not being the

case. The motivation for these principles traces back to Aristotle’s Metaphysics, where he claims

that:

It is not because we think truly that you are pale, that you are pale; but because you are

pale we who say this have the truth. (Metaphysics 1051b6–9)

Then, we need to assume G3 and other three plausible principles of grounding, which are also

axioms of PG (see section 1.3). First, that an existential is grounded in one of its true instances,

given that the instance under consideration is true. Let x be a formula, v a variable and t a term,

then:

U6 : ∀x∀t∀v(Tr(x(t/v))→ x(t/v)◁ ∃.vx).

Second, that grounding is transitive:

G2 : ∀x∀y∀z((x◁ y ∧ y ◁ z)→ x◁ z).
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Third, that grounding is irreflexive:

G1 : ∀x¬(x◁ x).

Theorem 3 (Fine’s puzzle). A theory T that contains G3, APT , U6, G2 and G1 and proves the

truth of an arbitrary sentence ϕ is inconsistent.

Proof. 18

ϕ is an arbitrary sentence.

1) T ⊢ Tr(⌜ϕ⌝) by assumption

2) T ⊢ ⌜ϕ⌝ ◁ ⌜Tr(⌜ϕ⌝)⌝ by APT

3) T ⊢ Tr(⌜Tr(⌜ϕ⌝)⌝) by G3

4) T ⊢ ⌜Tr(⌜ϕ⌝)⌝ ◁ ⌜∃xTr(x)⌝ by U6

5) T ⊢ Tr(⌜∃xTr(x)⌝) by G3

6) T ⊢ ⌜∃xTr(x)⌝ ◁ ⌜Tr(⌜∃xTr(x)⌝)⌝ by APT

7) T ⊢ Tr(⌜Tr(⌜∃xTr(x)⌝)⌝) by G3

8) T ⊢ ⌜Tr(⌜∃xTr(x)⌝)⌝ ◁ ⌜∃xTr(x)⌝ by U6

9) T ⊢ ⌜∃xTr(x)⌝ ◁ ⌜∃xTr(x)⌝ by (6), (8) and G2

10) T ⊢ ¬(⌜∃xTr(x)⌝ ◁ ⌜∃xTr(x)⌝) by G1

11) T ⊢ ⊥ by (9) and (10)

It is important to note that is it possible to derive the contradiction in the exact same way by

using the other Aristotelian principle APF instead of APT .

Intuitively, the contradiction derives because the theory T proves two plausible claims in about

ground, which, intuitively, mean:

1) ’The fact there exists something true grounds that it is true that there exists something true’,

2) ’It is true that there exists something true grounds the fact that there exists something true’.

(1) and (2) are clearly contradictory if grounding is transitive and irreflexive.

2 Technical Background and Notation

In this section, I will describe the technical tools and introduce the notation needed to develop

the theories in the following sections19. First, in section 2.1, I introduce the technical framework

18 This proof is analogous to Korbmacher [2, pp. 198-199].
19 A similar introduction to this technical background can be found in Halbach [19, pp. 29-38] and Korbmacher [1,

pp. 167-169]
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in which the base theory of partial ground PG is formulated in [1] (which is the same as the one

used by Halbach [19] to develop axiomatic theories of truth). PG will be the base to develop the

semantics in sections 3.2 and 4.3 and I will develop the axiomatic theory of section 3.3 within the

same framework of PG. More precisely, in this section, I define the languages I will work with, I

briefly describe the technique of Gödel-numbering, I define the base theory PA of arithmetic and its

useful extensions, I define useful recursive functions and sets, I briefly mentions a few useful remarks

about the valuation function and the models I will work with and I will define PG∗, which is a

slightly modified version of PG.

Second, in section 2.2, I will introduce the Strong Kleene (K3) logic and its evaluation schemata

that I will use to develop the semantics in sections 3.2 and 4.3 and I will provide an alternative

definition of the formulas of a language based on an induction over literals instead of atomic sentences,

which will be useful to prove some results in the rest of the paper.

2.1 Technical Framework of Axiomatic Theories of Ground

PG and the axiomatic theory of section 3.3 are developed within the background theory of arithmetic

PA. The language of PA, which I name L, is composed of the standard arithmetic vocabulary: the

individual constant 0, the unary function symbol s, the binary function symbols + and ×, the binary

relation = and the logical symbols of first-order logic. For every natural number n, the numeral n is

the n-fold application of s to the constant 0. Thus, the numeral n is a term of L which denotes the

number n. The language of truth is LTr = L ∪ {Tr}, where Tr denotes the unary truth predicate.

The language of predicational ground is L◁ = L ∪ {◁}, where ◁ denotes the binary grounding

relation. The language of ground and truth L◁
Tr is L ∪ {Tr} ∪ {◁}. In section 3.3, I will also

the unary falsity predicate F and the not grounding predicate ̸ ◁ and I will extend the language

accordingly when needed.

It is well known that, through the technique of Gödel-numbering, the theory of arithmetic is also

a theory of syntax, in the sense that PA can talk about the sentences of its own languages. In fact,

the technique of Gödel-numbering is used to obtain names for every expression of the language. In

particular, # is an injective function from a string of symbols σ of the language to a natural number

#σ. ⌜σ⌝ is the numeral that denote the Gödel-numbering #σ of a string of symbols σ. Thus, ⌜σ⌝

is a term that correspond to the name of a string of symbols σ. In Korbmacher [1, 2], axiomatic

theories of ground are formulated in L◁
Tr, but with restrictions on the coding function to subsets
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of L◁
Tr (either L, L◁, or LTr). In the following sections, I will relax this constraint and allow the

coding function over L◁
Tr.

The theory PA of arithmetic consists of the standard axioms for zero, the successor function,

addition, and multiplication, plus all the instances of the induction scheme:

ϕ(0) ∧ ∀x(ϕ(x)→ ϕ(s(x)))→ ∀xϕ(x)

over formulas ϕ(x) in the language L. The theory PAT extends PA with the missing instances of

the induction scheme over LTr. The theory PAG extends PA with all the missing instances of the

induction scheme over L◁. The theory PATG extends PA with all the missing instances of the

induction scheme over L◁
Tr.

Derivability in a theory T is expressed by T ⊢ or ⊢T . It is well-known that PA can represent

any recursive function, in the sense that, if f is a recursive function, then there is a formula ϕ(x, y)

such that, for all natural numbers n,m:

f(n) = m iff ⊢PA ∀x(ϕ(n, x)↔ x = m).

Many syntactic functions on the codes of expressions are recursive and thus representable. In

particular, the functions that correspond to the logical operations and relations between Gödel

numbers are recursive. For example, the function that maps the code #ϕ of a formula ϕ to the

code #¬ϕ of its negation is recursive, as it is the function that maps the codes #ϕ and #ψ of the

formulas ϕ and ψ to the code #(ϕ∧ψ) of their conjunction, and so on for the other logical operators.

Moreover, the function that maps the code #t of a term t to the code #Tr(t) of the atomic formula

Tr(t) is recursive, as it is the function that maps the codes #s and #t of two terms to the code

#(s ◁ t) of the atomic formula s ◁ t, and analogously for =. For convenience, I define function

symbols for these functions. If f is a recursive functions, I use f. as a symbol for it. Thus:

⊢PA ¬. ⌜ϕ⌝ = ⌜¬ϕ⌝ ⊢PA ⌜ϕ⌝∧. ⌜ψ⌝ = ⌜ϕ ∧ ψ⌝ ⊢PA ⌜ϕ⌝∨. ⌜ψ⌝ = ⌜ϕ ∨ ψ⌝

⊢PA ∃. (⌜v⌝, ⌜ϕ⌝) = ⌜∃vϕ⌝ ⊢PA ∀. (⌜v⌝, ⌜ϕ⌝) = ⌜∀vϕ⌝ ⊢PA ⌜s⌝=. ⌜s⌝ = ⌜s = t⌝

⊢PA Tr. (⌜t⌝) = ⌜Tr(t)⌝ ⊢PA ⌜s⌝◁. (⌜t⌝) = ⌜s◁ t⌝.

PA can also (strongly) represent every recursive set, in the sense that, if S is a recursive set,

then there is a formula ϕ(x) such that for all natural numbers n:

n ∈ S iff ⊢PA ϕ(n) n ̸∈ S iff ⊢PA ¬ϕ(n).

Sent abbreviates the formula that represents the recursive set of codes sentences in L, Sent◁Tr

abbreviates the formula that represents the codes of sentences in L◁
Tr and analogously for all the

other languages defined above. Similarly, V ar and ClTerm are abbreviations for the formulas that
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represent the sets of (codes of) variables and closed terms. As an abbreviation for ∀x(V ar(x) →

ϕ(x)), we write ∀vϕ(v) and, as an abbreviation for ∀x(ClTerm(x)→ ϕ(x)), we write ∀tϕ(t).

I will use the symbol ◦ for the evaluation function, i.e. the function from closed terms of the

language to their value. Note that, if there are function symbols for certain primitive recursive

functions in the language, there cannot be a symbol representing this function (Halbach [19, p. 16]).

Nevertheless, I will use x◦ = y to express that the value of x is y and s◦ = t◦ to express that s and

t coincide in their values.

In the following sections, I will work with a modified version of PG, under two respects. First,

in its original formulation in Korbmacher [1], PG is expressed in the language L◁
Tr with the coding

function restricted to L. Instead, I extend the coding function to L◁
Tr. This modification allows

us to generate more terms that can be arguments of the truth or ground predicate. In particular,

we add terms that denote sentences that contain the ground and truth predicates. Second, I need

to weaken axiom T3. The reason for this is that the main aim of the theories that I am going to

develop is to extend PG to derive sentences with iterations of the truth and/or ground predicates.

In PG, by T3, it follows that:

PG ⊢ ∀x(¬Sent(x)→ ¬Tr(x))

and by G3 and T3:

PG ⊢ ∀x(¬Sent(x) ∨ ¬Sent(x)→ ¬(x◁ y)).

Thus, PG proves that, if a sentence is not in L, then it cannot be the argument of the truth or

ground predicates. This means that all iterations of the truth and/or ground predicates are false.

Thus, I substitute the axiom T3 with:

T ∗
3 : ∀x(Tr(x)→ Sent◁Tr(x))

and I call the resulting theory PG∗. In section 3.2, I will prove that stronger than PG∗ theories are

consistent. Therefore, it follows that PG∗ is also consistent.

2.2 Strong Kleene Logic

In sections 3.2 and 4.3, I develop semantic models for truth and ground based on the Strong Kleene

logic K3. K3 is a three-valued logic with the extra truth-value i other than the classical ones 0

and 1. i is interpreted as an intermediate truth-value between truth and falsity. Intuitively, i

means undetermined or neither true nor false. The three truth-value give rise to an ordering, where

0 ≤ i ≤ 1. The consequence relation ⊨K3 is defined as the preservation of the designated value 1:
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Γ ⊨K3 ϕ iff, for any valuation v such that v(ψ) = 1 for all ψ ∈ Γ, v(ϕ) = 1.

The most relevant difference between K3 and classical logic is that the law of excluded middle

is not valid in K3, i.e. ̸⊨K3
ϕ ∨ ¬ϕ. Thus, K3 admits truth-value gaps, sentences which are neither

true nor false. Instead, K3 is not a paraconsistent logic, the principle of explosion is valid in K3

i.e. for all ϕ, ψ, ϕ ∧ ¬ϕ ⊨K3
ψ because the premise ϕ ∧ ¬ϕ is always ̸= 1. Thus, K3 does not admit

truth-values gluts, sentences that that are both true and false.

A first order K3-model M over a language L is a structure (D, I, v), where the domain D is

a non-empty set, the universe of discourse over which the variables of the language range, I is an

interpretation function that assigns meanings to the symbols of the language and v is K3-valuation

function that assign truth-values to the formulas of the language according to the K3-truth tables

for the connectives and quantifiers. More precisely:

- I assigns the element I(c) of the domain D to each constant symbol c in L,

- I assign the n-ary function fM : Dn → D to each n-ary function symbol f in L,

- I assign the extension P+ ⊆ Dn and the anti-extension P− ⊆ Dn, with P+ ∩ P− = ∅, to each

n-ary predicate symbol P in L.

The valuation function v assign truth-values to the atomic sentences of L as:

v(P (c1, ..., cn)) =


1 if ⟨v(c1), ..., v(cn)⟩ ∈ P+

0 if ⟨v(c1), ..., v(cn)⟩ ∈ P−

i otherwise

and to complex formulas as:

v(¬ϕ) =


1 if v(ϕ) = 0

i if v(ϕ) = i

0 if v(ϕ) = 1

- v(ϕ ∧ ψ) = min{v(ϕ); v(ψ)}

- v(ϕ ∨ ψ) = max{v(ϕ); v(ψ)}

- v(∃xϕ(x)) = max{v(ϕ(n)) : n ∈ D}

- v(∀xϕ(x)) = min{v(ϕ(n)) : n ∈ D}

The connective → can be defined in terms of ¬ and ∨ as:

ϕ→ ψ iff ¬ϕ ∨ ψ.
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Differently with respect to classical logic, the interpretation of a predicate symbol P is not its

extension only, because its anti-extension cannot be implicitly defined as the complement of the

extension. Instead, the anti-extension is explicitly defined as a subset of the domain P− disjoint

from the extension P+. In fact, there can be objects of the domain that are neither in the extension

nor in the anti-extension of a predicate P . This is the semantic counterpart of the fact the law of

excluded middle is not valid in K3 logic. In the limit case in which P+ ∪ P− = D for all predicate

symbols, then the K3 model is a classical one. In fact, in this case, all atomic formulas have truth-

value 0 or 1 and it is easy to check by induction that, if this is the case, then all the formulas have

truth-value 0 or 1.

In the next sections, I will work with a K3-model M in the language L◁
Tr with the natural

numbers N as domain and the interpretation function I which assigns:

- the natural number 0M to the only constant symbol 0,

- the function sM : N→ N, where sM (n) = n+ 1, to the unary function s,

- the functions +M : N2 → N and ×M : N2 → N, interpreted as the usual addition and multiplica-

tion, to the binary functions + and ×,

- the relation =M⊆ N2, interpreted as the usual identity relation, to the predicate symbol =,

- the extension R ⊆ N2 and anti-extension R ⊆ N2, with R ∩R = ∅, to the ground predicate ◁,

- the extension S ⊆ N and anti-extension S ⊆ N, with S ∩ S = ∅, to the truth predicate Tr.

It is important to highlight two remarks. First, the interpretation of the arithmetical symbols of

L is classical. In particular, the anti-extension of the identity = is the complement of its extension

of its extension =M . Therefore, there no formulas in L with truth-value i and the logical truths of

classical logic holds for the sub-language L. Thus, in the K3 models I will develop, the properties

of K3 models only holds for the portion of the language that extends the language of arithmetic.

Instead, the structure that interprets the language of arithmetic maintains its classical properties.

For this reason, the syntactic properties of the classical theory of arithmetic PA still holds in my K3

model. Second, I will exclusively work in the context of the standard model of PA. This model of

L has the set N of the natural numbers as its domain and I defined above as interpretation function

on L. I do not allow for nonstandard interpretations of the arithmetic vocabulary.

In the next sections, I will use the following Strong Kleene evaluation schema. The semantic

clauses for literals are:

M ⊨K3
t = s iff N ⊨ t = s,
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M ⊨K3 ¬(t = s) iff N ⊨ ¬(t = s),

M ⊨K3
Tr(⌜ϕ⌝) iff #ϕ ∈ S,

M ⊨K3
¬Tr(⌜ϕ⌝) iff #ϕ ∈ S,

M ⊨K3 ⌜ϕ⌝ ◁ ⌜ψ⌝ iff ⟨#ϕ; #ψ⟩ ∈ R,

M ⊨K3
¬(⌜ϕ⌝ ◁ ⌜ψ⌝) iff ⟨#ϕ; #ψ⟩ ∈ R.

The semantic clauses for complex sentences are:

M ⊨K3 ¬¬ϕ iff M ⊨K3 ϕ,

M ⊨K3
ϕ ∧ ψ iff M ⊨K3

ϕ and M ⊨K3
ψ,

M ⊨K3 ¬(ϕ ∧ ψ) iff M ⊨K3 ¬ϕ or M ⊨K3 ¬ψ,

M ⊨K3
ϕ ∨ ψ iff M ⊨K3

ϕ or M ⊨K3
ψ,

M ⊨K3
¬(ϕ ∨ ψ) iff M ⊨K3

¬ϕ and M ⊨K3
¬ψ,

M ⊨K3 ∀xϕ(x) iff for all n ∈ N, M ⊨K3 ϕ(⌜n⌝),

M ⊨K3
¬∀xϕ(x) iff there is n ∈ N, M ⊨K3

¬ϕ(⌜n⌝),

M ⊨K3
∃xϕ(x) iff there is n ∈ N, M ⊨K3

ϕ(⌜n⌝),

M ⊨K3 ¬∃xϕ(x) iff for all n ∈ N, M ⊨K3 ¬ϕ(⌜n⌝).

The formulas of a language are usually defined by the induction over atomic formulas. In this

paper, I use a slightly different definition based on induction over literals instead of atomic formulas,

where a literal is either an atomic formulas or its negation.

Definition 2 (Formulas of language L). Given a language L, the set of formulas FormL of L

is defined by induction:

- if ϕ is a literal then ϕ ∈ FormL,

- if ϕ = ¬¬ψ and ψ ∈ FormL, then ϕ ∈ FormL,

- if ϕ = ψ ∧ δ, ψ ∈ FormL and δ ∈ FormL, then ϕ ∈ FormL,

- if ϕ = ψ ∨ δ, ψ ∈ FormL and δ ∈ FormL, then ϕ ∈ FormL,

- if ϕ = ¬(ψ ∧ δ), ψ ∈ FormL and δ ∈ FormL, then ϕ ∈ FormL,

- if ϕ = ¬(ψ ∨ δ), ψ ∈ FormL and δ ∈ FormL, then ϕ ∈ FormL,

- if ϕ = ∃vψ and ψ ∈ FormL, then ϕ ∈ FormL,

- if ϕ = ∀vψ and ψ ∈ FormL, then ϕ ∈ FormL,

- if ϕ = ¬∃vψ and ψ ∈ FormL, then ϕ ∈ FormL,

- if ϕ = ¬∀vψ and ψ ∈ FormL, then ϕ ∈ FormL,
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- nothing else is a formula of L.

In the next sections, when I show that a result holds for all sentences of a language, I will first

prove that it holds for all literals of the language and then that it is preserved trough the inductive

steps of Definition 2.

3 Untyped Theory of Partial Ground and Truth

In this section, starting from the base theory PG, I develop theories that derive plausible instances

of iteration of the ground and the truth predicates in a type-free language. First, in section 3.1,

I motivate the theoretical and philosophical relevance of the theories I am going to develop and

explain the technical approach I will use. In particular, I explain in which sense these theories

extend PG by deriving claims that contain iteration of the ground and the truth predicates, I

explain the advantages of adopting of an type-free setting and I provide more details about the

technical framework I will apply in sections 3.2 and 3.3.

Second, in section 3.2, I develop aK3-semantic model that satisfies plausible instances of iteration

of the ground and the truth while avoiding the paradoxes of self-referentiality of Theorems 1 and 2.

More precisely, I define a sequence of models in the style of Kripke’s fixed point semantics (Kripke

[6]) and show that it has fixed points. I take the extensions and anti-extensions at the fixed points

as the extensions and anti-extensions of the truth and ground predicates. Then, I prove that the

fixed points are not inconsistent because of the paradoxes of self-referentiality.

Third, in section 3.3, I develop the axiomatic theory of untyped partial ground and truth PUGT .

To do so, I first construct a classical model based on one of the fixed points of the construction of

section 3.2. To replicate the results of the K3-model in a classical setting, I add to the language a

falsity predicate and a predicate of non-grounding. Then, I prove that PUGT is sound with respect

this model, that it proves the Kripke-Feferman theory of truth KF and that PUGT proves the

same theorems of KF in the language LTr with the coding function over LTr.

It is important to underline that the theories developed in this section do not incorporate the

Aristotelian principles:

If ϕ is a true sentence, then Tr(⌜ϕ⌝) holds either wholly or partially in virtue of ϕ,

If ¬ϕ is a true sentence, then ¬Tr(⌜ϕ⌝) holds either wholly or partially in virtue of ¬ϕ.

nor the GG principle:
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If ϕ holds in virtue of ψ, then ⌜ϕ⌝ ◁ ⌜ψ⌝ holds in virtue of ϕ.

The reason for this is that, as I will show in more detail in section 4.1, naively adding the

Aristotelian principles to the theories developed in sections 3.2 and 3.3 gives rise an inconsistency

due to Fine’s puzzle (Th. 3). Also, in section 4.2, I will show that adding the GG principle results in

a similar inconsistency involving the ground predicate instead of the truth predicate. In section 4.3,

I will provide a solution to add the Aristotelian and GG principles to a theory of ground inspired

by the one in section 3.2.

3.1 Approach and Motivation

In sections 3.2 and 3.3, I develop a semantic model and an axiomatic theory that extend the base

predicational theory of partial ground PG. More precisely, I develop a theory that formalises

iterations of the ground predicate, iterations of the truth predicate, and combinations of both. By

iteration of the ground predicate, I mean sentences in which a ground statement is among the

arguments of another ground relation, as in:

(⌜⌜0 = 0⌝ ◁ ⌜¬¬0 = 0⌝⌝)◁ (⌜¬¬(⌜0 = 0⌝ ◁ ⌜¬¬0 = 0⌝)⌝) or

(⌜0 = 0⌝ ◁ ⌜¬¬0 = 0⌝)◁ (⌜⌜0 = 0⌝ ◁ ⌜¬¬0 = 0⌝⌝ ∧ 1 = 1).

By iteration of the truth predicate, I mean sentences in which a statement containing the truth

predicate is the argument of the truth predicate, as in:

Tr(⌜Tr(⌜0 = 0⌝)⌝) or

Tr(⌜¬Tr(⌜0 = 1⌝) ∧ 0 = 0⌝).

By combinations of the of both, I mean sentences in which both the previous two cases realise,

as in:

⌜Tr(⌜0 = 0⌝)⌝ ◁ ⌜¬¬Tr(⌜0 = 0⌝)⌝ or

Tr(⌜⌜0 = 0⌝ ◁ ⌜¬¬0 = 0⌝⌝).

The main difference between my approach and the existing literature on this topic (in particular,

Korbmacher [2]) is that I develop my theory in a type-free setting, i.e. one in which the language

contains only one truth and one ground predicate. The alternative approach would be to use a typed

setting, i.e. one in which there is a Tarskian hierarchy of languages L0, L1, L2, ... , Lα, ... for every

ordinal 0 ≤ α < ϵ0, each of whom contains new truth and ground predicates of ’higher level’. Thus,

such hierarchy is:
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L0 = L,

L1 = L ∪ {Tr1} ∪ {◁1},
L2 = L1 ∪ {Tr2} ∪ {◁2},

...

Lα = Lα−1 ∪ {Trα} ∪ {◁α},
...

The idea is that, at each level α, Lα takes the previous language Lα−1 in the hierarchy as its

object-language. Given a level α, only terms of the language Lα−1 can be arguments of Trα and

◁α. Thus, Trα and ◁α can only be applied to terms that contain truth and ground predicates up

to Trα−1 and ◁α−1 in the hierarchy. On the one hand, the main advantage of the typed approach

is that it immediately provides a solution to the paradoxes and puzzles of section 1.5. In particular,

the typed solution to the Liar paradox (Th. 1) is the well-known Tarski’s solution to the paradox. A

typed solution to the paradox of self-referentiality for ground (Th. 2) can be developed analogously.

Korbmacher [2] provides a typed solution to Fine’s puzzle (Th. 3).

On the other hand, the type-free approach has several advantages over the typed one. First, in

the type-free approach, it is possible to express intuitively legitimate claims that cannot be expressed

in a typed language. In fact, the typed approach takes the drastic solution to exclude the truth

and ground predicates from the object-language. In other worlds, these predicates can never apply

to themselves, but only to predicates of ’lower level’. However, there are relevant portions of both

natural and formal languages where the application of these predicates to themselves does not seem

problematic. Examples in formal languages are the ones at the beginning of this section. Examples

in natural languages are:

1) ’It is true that it is true that snow is white’,

2) ’If God grounds everything, then God grounds the fact that God grounds everything’,

Intuitively, examples (1) and (2) and the examples above about the iteration of truth and/or

ground are unproblematic because their truth-value ultimately depends on facts independent of the

truth and ground predicate (respectively, the colour of snow, the properties of God, arithmetical

facts)20. Unlike the typed approach, the type-free approach does not exclude from the outset the

expressibility of these intuitively legitimate claims.

Second, as claimed by Kripke [6, pp. 694-699], the typed approach is suspicious as an analysis of

our intuitions, especially about natural languages. It does not seem that natural languages contain

20 See Kripke [6] and Leitgeb [26] for accounts of why sentences like these ones are not paradoxical.
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any hierarchy of predicates, neither of truth, nor of ground. Advocates of the typed approach claim

that such predicates are systematically ambiguous, in the sense that there is an implicit reference to

a certain level of the hierarchy every time we use one of them. However, this claim is not convincing.

Kripke shows that there are sentences containing the truth predicate to which, intuitively, we can

unambiguously assign truth-values, but whose truth predicates cannot be assigned any level. For

example, consider two sentences: the first, uttered by Dean, asserts:

(1) ’All of Nixon’s utterances about Watergate are false’.

The second, uttered by Nixon, asserts:

(2) ’Everything Dean says about Watergate is false’[6, pp. 695-696].

Clearly, if we try to assign level to the truth predicates of these sentences, the level of the truth

predicate in (1) would depend on the levels of truth predicates the Nixon’s utterances. In particular,

it would need to be higher than the level of truth predicates in any the Nixon’s utterances. However,

among Nixon’s utterances, there is also (1), which makes choice of a level for the truth predicate

impossible. An analogous reasoning follows it we start by trying to assign a level to the truth

predicate in (2).

In section 3.2, I construct a K3-model (see section 2 for an introduction) for ground and truth

that avoids the Liar paradox (Th. 1) and the paradox of self-referentiality for ground (Th. 2).

These paradoxes are avoided because using K3 logic admits truth-value gaps when the extension

and anti-extension of the predicates Tr and ◁ are defined. Thus, the paradoxical sentences will lack

truth-value and, so, the paradoxes will be blocked.

K3 is not the only logic that can block the paradoxes. For example, I could have use a logic

that admits truth-value gluts, such as LP 21 or FDE22, and avoid the paradoxes by assigning both

truth values to paradoxical sentences. The main reason why I choose the logic K3 will become

clearer in sections 4.3 and 5.1. In fact, in section 4, I will show that, when the Aristotelian or GG

principles are added to the model of section 3.2, the latter becomes inconsistent because of a version

of Fine’s puzzle. One of the solution Fine proposes to his puzzle, the impredicativist compromise

solution (Fine, [4, pp. 109-115]), includes the use a K3-model. In section 4.3, I will build K3 model

than is consistent with the Aristotelian or GG principles and compare it with Fine’s compromise

solution. In section 5, I will argue that K3 provides an intuitively very plausible logical framework

21 Logic of Paradoxes
22 First-Degree Entailment
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to formalise theories of ground. Another convenient feature of K3 is that is closer to classical logic

than other logics that can be used to block the paradoxes. In fact, it only admits truth-value

gaps and not truth-value gluts. Moreover, as I will show in section 3.2, K3 gives rise to intuitively

persuasive recursive clauses in the construction of the extension and anti-extension of truth and

ground predicates. In any case, a semantics that meets the objectives of the K3-semantics of section

3.2 can also be developed based on different logics by using a similar strategy as the one developed

for K3.

The extension and anti-extension of Tr and ◁ are defined through the recursive construction of

a sequence of models for any ordinal α, in the style of Kripke’s fixed point semantics for the truth

predicate (Kripke [6]). At level 0, the extensions and anti-extensions are empty. Then, at any level

α, they are defined based on the model at the previous level α− 1. I will show that the extensions

and anti-extensions are increasing in α and that, at some level, they reach a fixed point23. At the

fixed point, they are the same as the ones at the next level. Thus, we can take the extensions

and anti-extensions at the fixed point as the interpretation of the predicates ◁ and Tr. Note that,

at all the stages of the construction, even at the fixed points, the extensions and anti-extension

are not exhaustive of the domain of the model. There are truth-value gaps. In particular, the

recursive clause of the extensions and anti-extension are such that they never include the numbers

of paradoxical sentences into them.

Intuitively, the recursive clauses for the extensions and anti-extensions are defined as follows.

The ones for the truth predicate are defined analogously to Kripke [6]. Thus, at each level α, the

extension of the truth predicate Sα contains the numbers of the sentences which were true at the

previous level, while the anti-extension Sα contains the numbers of the sentences which were false

at the previous level. Intuitively, the extension of the ground predicate is defined by applying, at

every level α, the axioms of PG∗ over the truths of the model at the previous level α − 1. The

pairs of numbers that correspond to the ground and the grounded of the ground statements that are

proven by such theory form the extension of the ground predicate at level α. Thus, for example, if

Mα−1 ⊨K3 ⌜0 = 0⌝◁⌜¬¬0 = 0⌝, then ⟨#(⌜0 = 0⌝◁⌜¬¬0 = 0⌝);#(¬¬(⌜0 = 0⌝◁⌜¬¬0 = 0⌝))⟩ ∈ Rα

by U1. The anti-extension of the ground predicate is defined analogously by applying, at every level

α, the axioms of PG∗ over the falsities of the model at the previous level α − 1. Then, the pairs

23 Note that there exist multiple fixed points, but, for simplicity, here I implicitly only refer to the least one. Its
properties generalise also to all other fixed points.
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of numbers that correspond to the negative ground statements that are proven by such theory form

the anti-extension of the ground predicate. For example, if Mα−1 ⊨K3
¬ϕ for some ϕ ∈ L◁

Tr, then,

for any n ∈ N, ⟨#ϕ;n⟩ ∈ Rα and ⟨n; #ϕ⟩ ∈ Rα. Towards the end of section 3.2, I will add to the

inductive construction of the extension and anti-extension of the ground predicate some base ground

statements. However, this does not substantially change the inductive construction described above.

In section 3.3, I develop the axiomatic theory of untyped partial ground and truth PUGT . To

do so, I first construct a classical model based on one of the fixed points of the semantics developed

in section 3.2. To replicate the results of the K3-model in a classical setting, I add two predicates

to the language: a falsity predicate F and a predicate of not grounding ̸ ◁. More precisely, the

extension of the classical ground predicate ◁ will correspond to the extension R of ground predicate

at the fixed point K3-model, the extension of the classical not ground predicate ̸ ◁ will correspond to

the anti-extension R of ground predicate at the fixed point K3-model, the extension of the classical

truth predicate Tr will correspond to the extension S of truth predicate at the fixed point K3-model

and the extension of the classical falsity predicate F will correspond to the anti-extension S of truth

predicate at the fixed point K3-model. Then, I will simplify the language by defining the falsity

predicate in terms of the truth predicate and negation as:

∀x(F (x)↔ Tr(¬. x)).

Then, I develop axioms for this model in the style of the the Kripke-Feferman theory of truth

KF (Halbach [19, pp. 181-188]), which is an axiomatic theory for Kripke fixed-point semantics.

The basic ideas are: 1) to add axioms that correspond to the properties of the extension and anti-

extension of the truth and ground predicates at the fixed points of the construction of section 3.2, 2)

to add consistency axioms that correspond to the fact that the extension and anti-extension of the

truth and ground predicates are disjoint and 3) to add the not ground predicate to the axioms of PG

in order to distinguish between the statements in which the not ground predicate holds and the ones

in which the ground predicate does not hold. I show that PUGT does not derive the inconsistencies

resulting from the paradoxes of self-referentiality in Theorems 1 and 2. Then, I prove that PUGT

is sound with respect to the model previously described.

Given that the semantics developed in section 3.2 contains Kripke fixed-point semantics, it is

natural to expect that PUGT also contains the Kripke-Feferman theory of truth KF . I will prove

two results about the relation between PUGT and KF . First, that PUGT proves KF . This means

that all the theorems of KF are also theorems of PUGT . From this, it follows that PUGT proves
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the full T -scheme for T-positive formulas, which are formulas in which the truth predicate Tr does

not occur in the scope of an odd number of negation symbols. Then, I prove that PUGT proves

the same theorems of KF in the language LTr with coding function over LTr. This means that the

further theorems that PUGT proves with respect to KF are ground statements or sentences that

express the truth of a ground statement.

3.2 Semantics

A model for untyped partial ground in the language L◁
Tr is a tuple M = ⟨N;R;R;S;S⟩, where

R,R ⊆ N2 and S, S ⊆ N. R is the set of ordered pairs such that, according to the model, the first

number is the Gödel code of the ground of ground relation and the second number is its grounded.

R is the set of of ordered pairs such that, according to the model, the first number is the Gödel

code of a sentence that does not ground the sentence whose Gödel code is the second number. S

is the set of codes of true sentences according to the model. S is the set of codes of false sentences

according to the model.

I construct the extensions and anti-extensions (R;R;S;S) of the model M by applying the

Knaster-Tarski theorem.

Theorem 4 (Knaster–Tarski Theorem). Let (L,≤) be a complete lattice and let f : L → L be

an order-preserving (monotonic) function w.r.t. ≤. Then, the set of fixed points of f in L forms a

complete lattice under ≤.

Since the set of fixed points is a complete lattice, it follows that there must exist at least a fixed

point and, in particular, a least fixed point and greatest fixed point.

I now define some concepts and notation that will be useful for the development of the model. The

theory of a model Mα is the set of sentences satisfied by Mα, i.e. Th(Mα) = {ϕ ∈ L◁
Tr :Mα ⊨K3 ϕ}.

To apply the Knaster–Tarski theorem, I define a operator Φ : Th(M) → Th(M), which I will later

prove to be monotone. Note that Φ(Th(Mα)) = Th(Mα+1). I will use Φ(Mα) to refer to the model

whose theory is Φ(Th(Mα)). Note that Φ(Mα) = Mα+1. In the formulation of the model, I will

use the following notation: the positive truth set of Mα is the set of sentences that express that all

the sentences in Th(Mα) are true, i.e. Tr+(Mα) = {Tr(⌜ϕ⌝) :Mα ⊨K3 ϕ}, the negative truth set of

Mα is the set of sentences that express that all the sentences whose negation is in Th(Mα) are not

true, i.e. Tr−(Mα) = {¬Tr(⌜ϕ⌝) : Mα ⊨K3
¬ϕ}. For simplicity, for every level α, I will name the
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Tr+(Mα) ∪ Tr−(Mα) ∪ PG∗ as PG∗
α.

Finally, MPG is a model of the theory PG (Korbmacher [1, pp. 180-187]). I will define as

BG(MPG) the set of base ground truths of a model MPG of PG. By base ground truths, I mean

the ground predicate true literals of a model MPG such that both the ground and the grounded are

sentences in the language of arithmetic L. Thus, they are basic truths in the sense that they do not

contain any iteration of the truth and/or ground predicate. I name the set of positive base ground

truths BG+(MPG) and the set of negative ones BG−(MPG). Thus, formally:

BG(MPG) = BG+(MPG) ∪BG−(MPG) = {⌜ϕ⌝ ◁ ⌜ψ⌝ :MPG ⊨ ⌜ϕ⌝ ◁ ⌜ψ⌝} ∪ {¬(⌜ϕ⌝ ◁ ⌜ψ⌝) :

ϕ, ψ ∈ L,MPG ⊨ ¬(⌜ϕ⌝ ◁ ⌜ψ⌝)}24.

The next paragraphs are divided in two stages. I formulate two different versions of the operator

Φ, where the second one is stronger because it also proves claims about the base ground truths of

a model MPG. For each stage, I prove two key results. First, I show that the operators satisfy the

assumptions of the Knaster–Tarski theorem (Th. 4), so there exist fixed points for them. Second, I

show that the fixed points are consistent, so that they are K3 models and they are not trivialized

by explosion in K3, i.e. for all ϕ and ψ, ϕ ∧ ¬ϕ ⊨K3 ψ. The first stage one is a bit simpler than

second one, so presenting the former first is instrumental also for presenting the latter. Moreover,

both models are of theoretical interest, so it is worth to develop them both.

Definition 3 (Construction 1st stage). The construction at the first stage is:

M0 = (N;R0;R0;S0;S0) = (N; ∅; ∅; ∅; {n : PA ⊢ ¬Sent◁Tr(n)})

Mα+1 = (N;Rα+1;Rα+1;Sα+1;Sα+1)

Rα+1 = {⟨#ϕ; #ψ⟩ : PG∗
α ⊢ ⌜ϕ⌝ ◁ ⌜ψ⌝}

Rα+1 = {⟨#ϕ; #ψ⟩ : PG∗
α ⊢ ¬(⌜ϕ⌝ ◁ ⌜ψ⌝)}

Sα+1 = {#ϕ :Mα ⊨K3
ϕ}

Sα+1 = {#ϕ :Mα ⊨K3 ¬ϕ}

Mα = (N;Rα;Rα;Sα;Sα), α limit ordinal

Rα =
⋃

β<αRβ

Rα =
⋃

β<αRβ

Sα =
⋃

β<α Sβ

Sα =
⋃

β<α Sβ

24 The condition that ϕ, ψ ∈ L is superfluous for BG+(MPG) because it follows from PG.
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At the level 0, the model satisfies the truths the standard model of arithmetic N. The only

addition to it is that the anti-extension of the truth predicate contains all the numbers that are

codes of strings of symbols that are not sentences of L◁
Tr. Thus, if a string of symbols is not

sentences of L◁
Tr, it is not true at level 0. At level α, Sα+1 contains the Gödel-numbers of the

sentences ϕ such that Mα ⊨K3
ϕ, Sα+1 contains the Gödel-numbers of the sentences ϕ such that

Mα ⊨K3
¬ϕ. These are the same definitions as in Kripke’s semantics [6]. The extension and

anti-extension of the ground predicate are determined by the ground literals that are proven by

the theory Tr+(Mα) ∪ Tr−(Mα) ∪ PG∗. Intuitively, we apply the axioms of PG∗ over the set of

truths and falsities of the model at the previous level α. The truths of the model at level 1 are

determined by applying the axioms of PG∗ over the truths of arithmetic. Thus, it aims to derive

the ground relations between truths of arithmetic, analogously to a model MPG of PG, except for

two differences. First, M1 is a K3 model, while models of PG are classical models. Second, in the

models of PG, if the grounds or the grounded are not sentences of L, then the ground statement is

false by axiom T3. This restriction is relaxed for all the models Mα in the construction.

I now prove a useful result about the sequence of models Mα, i.e. that the Th(Mα) is increasing

in α. In the other words, at every level, the model satisfies at least as many sentences as the previous

levels.

Lemma 2. Th(Mα) is increasing in α. For α and for all ϕ ∈ L◁
Tr, if ϕ ∈ Th(Mα), then ϕ ∈

Th(Mα+1).

Proof. By induction on α. Given α, I show that, if ϕ ∈ Th(Mα), then ϕ ∈ Th(Mα+1).

I consider literals first.

- Suppose ϕ = Tr(⌜ψ⌝). If Mα ⊨K3
Tr(⌜ψ⌝), then #ψ ∈ Sα, so Mα−1 ⊨K3

ψ. By induction

hypothesis, Mα ⊨K3 ψ, which implies ψ ∈ Sα+1, which implies Mα+1 ⊨K3 Tr(⌜ψ⌝).

- Suppose ϕ = ¬Tr(⌜ψ⌝). If Mα ⊨K3
¬Tr(⌜ψ⌝), then #ψ ∈ Sα, so Mα−1 ⊨K3 ¬ψ. By induction

hypothesis, Mα ⊨K3
¬ψ, which implies ψ ∈ Sα+1, which implies Mα+1 ⊨K3

¬Tr(⌜ψ⌝).

- Suppose ϕ = ⌜ψ⌝◁⌜δ⌝. IfMα ⊨K3 ⌜ψ⌝◁⌜δ⌝, then Tr+(Mα−1)∪Tr−(Mα−1)∪PG∗ ⊢ ⌜ψ⌝◁⌜δ⌝.

If Tr(⌜γ⌝) ∈ Tr+(Mα−1), thenMα−1 ⊨ γ, thenMα ⊨ γ by induction hypothesis, then Tr(⌜γ⌝) ∈

Tr+(Mα). Thus, Tr+(Mα−1) ⊆ Tr+(Mα). If ¬Tr(⌜γ⌝) ∈ Tr−(Mα−1), then Mα−1 ⊨ ¬γ, then

Mα ⊨ ¬γ by induction hypothesis and ¬Tr(⌜γ⌝) ∈ Tr−(Mα). Thus, Tr−(Mα−1) ⊆ Tr−(Mα).

Thus, if Tr+(Mα−1)∪Tr−(Mα−1)∪PG∗ ⊢ ⌜ψ⌝◁⌜δ⌝, then Tr+(Mα)∪Tr−(Mα)∪PG∗ ⊢ ⌜ψ⌝◁⌜δ⌝
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and Mα+1 ⊨K3 ⌜ψ⌝ ◁ ⌜δ⌝.

- Suppose ϕ = ¬(⌜ψ⌝ ◁ ⌜δ⌝). If Mα ⊨K3
¬(⌜ψ⌝ ◁ ⌜δ⌝), then Tr+(Mα−1) ∪ Tr−(Mα−1) ∪ PG∗ ⊢

¬(⌜ψ⌝◁⌜δ⌝). By an analogous argument as before, Tr+(Mα)∪Tr−(Mα)∪PG∗ ⊢ ¬(⌜ψ⌝◁⌜δ⌝)

and Mα+1 ⊨K3 ¬(⌜ψ⌝ ◁ ⌜δ⌝).

- Suppose ϕ is atomic and ϕ ∈ L. Then, there are four cases.

◦ Mα and Mα+1 are both consistent. If Mα is consistent, then Mα ⊨K3
ϕ iff N ⊨ ϕ. (⇐) If

N ⊨ ϕ, then M0 ⊨K3 ϕ, then Mα ⊨K3 ϕ by induction hypothesis. (⇒) Suppose Mα ⊨K3 ϕ

and N ̸⊨ ϕ. Then, N ⊨ ¬ϕ and, by induction hypothesis, Mα ⊨K3
¬ϕ, which contradicts the

assumption that Mα is consistent. Then, if Mα+1 is also consistent then Mα+1 ⊨K3
ϕ iff

N ⊨ ϕ iff Mα ⊨K3 ϕ. If Mα+1 is also consistent, then Mα+1 ⊨K3 ψ for all ψ ∈ L◁
Tr and the

claim is trivially proven.

◦ Mα is consistent and Mα+1 is inconsistent, then the claim trivially follows because Mα+1

proves all sentences.

◦ If Mα is inconsistent then also Mα+1 is inconsistent because, for example, if Mα ⊨K3
ϕ

and Mα ⊨K3 ¬ϕ, then Mα+1 ⊨K3 Tr(⌜ϕ⌝) and Mα+1 ⊨K3 ¬Tr(⌜ϕ⌝). Thus, Th(Mα) =

Th(Mα+1).

For complex formulas, the claim follows from the fact that the true literals of Mα are a subset of

the true literals of Mα+1 and that the same semantic clauses are applied to both models.

I now show that every model Mα of the construction is consistent. This fact is necessary for

Mα to be a K3-model because K3 is not a paraconsistent logic and it does not admit truth values

gluts. The fact that Mα is consistent plus the use of the Strong Kleene evaluation scheme defined

in section 2 imply that Mα is a K3-model. From the fact the every Mα is consistent, it also follows

that, if there exist fixed points of Φ, then they are consistent.

Theorem 5. For all α, Mα is consistent. In other words, for all ϕ ∈ L◁
Tr, it is not the case that

Mα ⊨K3
ϕ and Mα ⊨K3

¬ϕ.

Proof. By induction on α. For α = 0, M0 is clearly consistent because, for all ϕ ∈ L◁
Tr, M0 ⊨K3 ϕ iff

N ⊨ ϕ. Then, we need to show that, if Mα is consistent, then Mα+1 is consistent. First, we consider

atomic sentences.

- ϕ = Tr(⌜ψ⌝) and Mα is consistent. Suppose Mα+1 ⊨K3 Tr(⌜ψ⌝) and Mα+1 ⊨K3 ¬Tr(⌜ψ⌝), then

#ϕ ∈ Sα+1 and #ϕ ∈ Sα+1, then Mα ⊨K3
ψ and Mα ⊨K3

¬ψ, which contradicts the hypothesis
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that Mα is consistent.

- ϕ = ⌜ψ⌝◁⌜δ⌝. By assumption, ⌜ψ⌝◁⌜δ⌝ ̸∈ Th(Mα) or ¬(⌜ψ⌝◁⌜δ⌝) ̸∈ Th(Mα), or, equivalently,

PG∗
α−1 ̸⊢ ⌜ψ⌝◁ ⌜δ⌝ or PG∗

α−1 ̸⊢ ¬(⌜ψ⌝◁ ⌜δ⌝). We want to show that the same holds for Mα+1,

i.e. PG∗
α ̸⊢ ⌜ψ⌝ ◁ ⌜δ⌝ or PG∗

α ̸⊢ ¬(⌜ψ⌝ ◁ ⌜δ⌝). This step of the proof is not trivial because,

from the fact that PG∗
α−1 ̸⊢ ⌜ψ⌝◁ ⌜δ⌝, it does not follow that PG∗

α ̸⊢ ⌜ψ⌝◁ ⌜δ⌝ because PG∗
α is

a stronger theory than PG∗
α−1 because Tr+(Mα−1) ⊆ Tr+(Mα) and Tr−(Mα−1) ⊆ Tr−(Mα).

Thus, from the fact that PG∗
α−1 ̸⊢ ⌜ψ⌝ ◁ ⌜δ⌝ or PG∗

α−1 ̸⊢ ¬(⌜ψ⌝ ◁ ⌜δ⌝), it does not follow that

PG∗
α ̸⊢ ⌜ψ⌝◁⌜δ⌝ or PG∗

α ̸⊢ ¬(⌜ψ⌝◁⌜δ⌝). We prove this by constructing a classical model MCL
α

for PG∗
α and, so, show that it is consistent. I prove this with following lemmas. Before doing

this, we briefly check the remaining cases of the proof.

- If ϕ is atomic and ϕ ∈ L, then, if Mα is consistent, Mα ⊨K3
ϕ iff N ⊨ ϕ. Mα+1 does not prove

any new literal in the language of arithmetic unless it is inconsistent and it proves any sentence.

Thus, if Mα+1 is inconsistent, the inconsistency must be due to some ψ ̸∈ L.

If ϕ is a complex formula and the set of literals ofMα+1 is consistent, then applying the K3 semantic

clauses does not generate any contradiction. Thus, assuming that the step involving involving atomic

ground sentences is valid, the theorem is proved.

I now develop in detail the proof of the claim above for atomic ground statements by proving

that PG∗
α is consistent. First, I define a complexity function for all ϕ ∈ L◁

Tr.

Definition 4 (Complexity). For all ϕ ∈ L◁
Tr, I define the complexity function c(ϕ) as:

if ϕ is a literal, then c(ϕ) = 0,

if ϕ = ¬¬ψ, then c(ϕ) = c(ψ) + 1,

if ϕ = ψ ◦ δ, with ◦ = ∧,∨, then c(ϕ) = max{c(ψ); c(δ)}+ 1,

if ϕ = ¬(ψ ◦ δ), with ◦ = ∧,∨, then c(ϕ) = max{c(¬ψ); c(¬δ)}+ 1,

if ϕ = Qvψ with Q = ∀,∃, then c(ϕ) = max{c(ψ(d))}+ 1,

if ϕ = ¬Qvψ with Q = ∀,∃, then c(ϕ) = max{c(¬ψ(d))}+ 1.

I now construct the classical modelMCL
α = (N;SCL

α ;RCL
α ), where SCL

α = {#ϕ :MCL
α ⊨ Tr(⌜ϕ⌝)}

is the (classical) extension of the truth predicate and RCL
α = {⟨#ϕ; #ψ⟩ :MCL

α ⊨ ⌜ϕ⌝ ◁ ⌜ψ⌝} is the

(classical) extension of the ground predicate. Then, I prove MCL
α is a model for PG∗

α.

Definition 5 (MCL
α ). MCL

α = (N;SCL
α ;RCL

α ) is defined as:
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SCL = {#ϕ : ϕ ∈ Th(Mα)} = Sα+1;

RCL = {⟨#ϕ; #ψ⟩ : ϕ ∈ Th(Mα), ψ ∈ Th(Mα), c(ϕ) < c(ψ)}.

Lemma 3. MCL
α is a model for PG∗

α.

Proof. We need to check that, if PG∗
α ⊢ ϕ, then MCL

α ⊨ ϕ. Thus, we need to check that MCL
α

satisfies Tr+(Mα), Tr
−(Mα) and all the axioms of PG∗.

- MCL
α satisfies Tr+(Mα). If Tr(⌜ϕ⌝) ∈ Tr+(Mα), then ϕ ∈ Th(Mα), #ϕ ∈ SCL

α and MCL
α ⊨

Tr(⌜ϕ⌝).

- MCL
α satisfies Tr−(Mα). If ¬Tr(⌜ϕ⌝) ∈ Tr−(Mα), then ¬ϕ ∈ Th(Mα). Given that Mα is

consistent, ϕ ̸∈ Th(Mα), #ϕ ̸∈ SCL
α and MCL

α ̸⊨ Tr(⌜ϕ⌝), or MCL
α ⊨ ¬Tr(⌜ϕ⌝).

- G1 : ∀x¬(x ◁ x). This means that, for all n ∈ N such that n = #ϕ, MCL
α ⊨ ¬(n ◁ n). Clearly,

c(ϕ) ̸< c(ϕ). Thus, ⟨n;n⟩ ̸∈ RCL
α and MCL

α ⊨ ¬(n◁ n).

- G2 : ∀x∀y∀z(x ◁ z ∧ z ◁ y → x ◁ y). This means that, for all n,m, k ∈ N such that n = #ϕ,

m = #ψ and k = #δ, MCL
α ⊨ n ◁ k ∧ k ◁m → n ◁m. If MCL

α ⊨ n ◁ k, then ϕ ∈ Th(Mα),

δ ∈ Th(Mα) and c(ϕ) < c(δ). If MCL
α ⊨ k ◁m, then δ ∈ Th(Mα), ψ ∈ Th(Mα) and c(δ) < c(ψ).

Thus, ϕ ∈ Th(Mα), ψ ∈ Th(Mα) and c(ϕ) < c(ψ), so ⟨n;m⟩ ∈ RCL
α and MCL

α ⊨ n◁m.

- G3, T1, T2 and T ∗
3 are trivial.

I now prove the claim for some exemplifying cases of the downward and upward axioms. The

remaining ones can be proved with analogous arguments.

- U1 : ∀x(Tr(x) → x ◁ ¬.¬. x). This means that, for all n ∈ N such that n = #ϕ, MCL
α ⊨

Tr(n) → n ◁ ¬.¬. n. If MCL
α ⊨ Tr(n), then ϕ ∈ Th(Mα) and ¬¬ϕ ∈ Th(Mα) by K3 logic. Also,

c(ϕ) < c(ϕ) + 1 = c(¬¬ϕ). Thus, MCL
α ⊨ n◁ ¬.¬. n.

- D3 : ∀x∀y(Tr(x∧. y)→ (x◁x∧. y)∧(y◁x∧. y)). This means that, for all n,m ∈ N such that n = #ϕ,

m = #ψ,MCL
α ⊨ Tr(n∧.m)→ (n◁n∧.m)∧(m◁n∧.m). IfMCL

α ⊨ Tr(n∧.m), then ϕ∧ψ ∈ Th(Mα),

then ϕ ∈ Th(Mα) and ψ ∈ Th(Mα) by K3 logic. c(ϕ) < max{c(ϕ); c(ψ)} + 1 = c(ϕ ∧ ψ) and

c(ψ) < max{c(ϕ); c(ψ)} + 1 = c(ϕ ∧ ψ). Thus, MCL
α ⊨ n ◁ n∧.m, MCL

α ⊨ m ◁ n∧.m and

MCL
α ⊨ (n◁ n∧.m) ∧ (m◁ n∧.m).

- U6 : ∀x∀t∀v(Tr(x(t/v)) → x(t/v) ◁ ∃.vx). This means that, for all n,m ∈ N such that n = #ϕ,

MCL
α ⊨ Tr(n(m/v))→ n(m/v)◁∃.vn. IfMCL

α ⊨ Tr(n(m/v)), then ϕ(m/v) ∈ Th(Mα) and ∃vϕ ∈

Th(Mα) by K3 logic. c(ϕ(m/v)) < max{c(ϕ(d))}+ 1 = c(∃vϕ). Thus, MCL
α ⊨ n(m/v)◁ ∃.vn.

37



- D8 : ∀x∀v(Tr(∀.vx) → ∀t(x(t/v) ◁ ∀.vx)). This means that, for all n ∈ N such that n = #ϕ,

MCL
α ⊨ Tr(∀.vn) → ∀t(n(t/v) ◁ ∀.vn). If MCL

α ⊨ Tr(∀.vn), then ∀vϕ ∈ Th(Mα) and, for all

t, ϕ(t/v) ∈ Th(Mα) by K3 logic. For all t, c(ϕ(n(t/v)) < max{c(ϕ(d))} + 1 = c(∀vϕ). Thus,

MCL
α ⊨ ∀t(n(t/v)◁ ∀.vn).

I now show that there exist fixed points for Φ by applying the Knaster–Tarski theorem (Th. 4).

Before proving this, I need to show the operator Φ is monotone with respect to inclusion, i.e. if

A ⊆ B, then Φ(A) ⊆ Φ(B).

Lemma 4. If, for some α and β, Th(Mα) ⊆ Th(Mβ), then Φ(Th(Mα)) ⊆ Φ(Th(Mβ)).

Proof. Suppose Th(Mα) ⊆ Th(Mβ) and Φ(Th(Mα)) ̸⊆ Φ(Th(Mβ)). Thus, there is ϕ ∈ L◁
Tr such

that ϕ ∈ Φ(Th(Mα)) and ϕ ̸∈ Φ(Th(Mβ)). First, suppose ϕ is a literal.

- Suppose ϕ = Tr(⌜ψ⌝). If Tr(⌜ψ⌝) ∈ Φ(Th(Mα)), then ψ ∈ Th(Mα), then ψ ∈ Th(Mβ) by

assumption. Thus, Tr(⌜ψ⌝) ∈ Φ(Th(Mβ)). An analogous argument holds for ϕ = ¬Tr(⌜ψ⌝).

- Suppose ϕ = ⌜ψ⌝ ◁ ⌜δ⌝. If ⌜ψ⌝ ◁ ⌜δ⌝ ̸∈ Φ(Th(Mβ)), then PG∗
β ̸⊢ ⌜ψ⌝ ◁ ⌜δ⌝. If Th(Mα) ⊆

Th(Mβ), then Tr+(Mα) ⊆ Tr+(Mβ) and Tr−(Mα) ⊆ Tr−(Mβ). Thus, if PG∗
β ̸⊢ ⌜ψ⌝ ◁ ⌜δ⌝,

then PG∗
α ̸⊢ ⌜ψ⌝ ◁ ⌜δ⌝. Thus, ⌜ψ⌝ ◁ ⌜δ⌝ ̸∈ Φ(Th(Mα)). An analogous argument holds for

ϕ = ¬(⌜ψ⌝ ◁ ⌜δ⌝).

- Suppose ϕ is atomic and ϕ ∈ L. If Mα is inconsistent, then Φ(Mα) is also inconsistent because, if

Mα ⊨K3
ϕ and Mα ⊨K3

¬ϕ, then Φ(Mα) ⊨K3
ϕ and Φ(Mα) ⊨K3

¬ϕ by Lemma 1. If Mα is incon-

sistent, then Mβ and Φ(Mβ) are also inconsistent. Thus, Φ(Th(Mα)) = Φ(Th(Mβ)). Suppose

Mα is consistent andMβ is inconsistent. Then, by Theorem 5, Φ(Mα) is consistent and the claim

trivially follows because Φ(Mβ) is inconsistent. Suppose both Mα and Mβ are consistent. Then,

Φ(Th(Mα)) and Φ(Th(Mβ)) are consistent by Theorem 5. Then, ϕ ∈ Φ(Th(Mα)) iff N ⊨ ϕ iff

ϕ ∈ Φ(Th(Mβ)), so Φ(Th(Mα)) = Φ(Th(Mβ)).

Suppose ϕ is a complex formula. I previously showed that, if Th(Mα) ⊆ Th(Mβ), then the literals

of Φ(Th(Mα)) are a subset of the literals of Φ(Th(Mβ)). Given that the semantic clauses of Φ(Mα)

and Φ(Mβ) are the same, it follows that Φ(Th(Mα)) ⊆ Φ(Th(Mβ)).

I can now prove the main claim that there exist fixed points for Φ.
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Theorem 6. The Knaster–Tarski theorem (Th. 4) applies to the construction above. From this, it

follows that there exists a least fixed point, i.e. a model MI such that Th(MI) = Φ(Th(MI)).

Proof. I check that the assumption of the Knaster–Tarski theorem are satisfied for the lattice

(P(A);⊆), where A = {ϕ : PA ⊢ Sent◁Tr(⌜ϕ⌝)} is the set of all sentences of L◁
Tr and the oper-

ator Φ.

First, I show (P(A);⊆) is a complete lattice. (P(A);⊆) is a partially ordered set because

⊆ trivially satisfies reflexivity, transitivity and antisymmetry. Moreover, for all a, b ∈ (P(A)),

sup{a, b} = a ∪ b ∈ (P(A)) and inf{a, b} = a ∩ b ∈ (P(A)). Thus, (P(A);⊆) is a lattice. For all

S ⊆ (P(A)), sup(S) =
⋃
{x : x ∈ S} ∈ (P(A)) and inf(S) =

⋂
{x : x ∈ S} ∈ (P(A)). Thus,

(P(A);⊆) is a complete lattice.

Note that Th(Mα) ⊆ P(A). Thus, Φ : P(A)→ P(A). The last condition to show before applying

the theorem is that Φ order-preserving with respect to ⊆. This follows from Lemma 2.

Thus, there exists a complete lattice of fixed points of Φ in P(A) and, in particular, a least fixed

point, which I name MI .

I now proceed to the second stage.

Definition 6 (Construction 2nd stage). The new construction at the second stage is:

M0 = (N;R0;R0;S0;S0) = (N; ∅; ∅; ∅; {n : PA ⊢ ¬Sent◁Tr(n)})

Mα+1 = (N;Rα+1;Rα+1;Sα+1;Sα+1)

Rα+1 = {⟨#ϕ; #ψ⟩ : BG(MPG) ∪ PG∗
α ⊢ ⌜ϕ⌝ ◁ ⌜ψ⌝}

Rα+1 = {⟨#ϕ; #ψ⟩ : BG(MPG) ∪ PG∗
α ⊢ ¬(⌜ϕ⌝ ◁ ⌜ψ⌝)}

Sα+1 = {#ϕ :Mα ⊨K3
ϕ}

Sα+1 = {#ϕ :Mα ⊨K3 ¬ϕ}

Mα = (N;Rα;Rα;Sα;Sα), α limit ordinal

Rα =
⋃

β<αRβ

Rα =
⋃

β<αRβ

Sα =
⋃

β<α Sβ

Sα =
⋃

β<α Sβ

The only difference from the previous stage is that I added BG(MPG) to the clauses for Rα and

Rα. BG(MPG) contains the base ground truths of a modelMPG or PG. The reason why I add them
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is that I want to remain agnostic about which base ground sentences (among the ones consistent

with PG) are true. There are many ground atomic sentences, with the ground and grounded in

L, such that PG does not prove them, nor their negation, e.g. PG ̸⊢ ⌜0 = 0⌝ ◁ ⌜1 = 1⌝ and

PG ̸⊢ ¬(⌜0 = 0⌝ ◁ ⌜1 = 1⌝). I want the model to be compatible with different choices about which

base ground sentences are true, as long as this choice is consistent with the axioms of PG. Thus,

I formalise a family of constructions, such that each of them satisfies the base ground truths of a

different model MPG at the first level.

I now adapt Theorem 5 and Theorem 6 to the new construction. Note that the same exact proofs

of Lemma 2 and Lemma 4 of the first stage also holds for the second one.

Theorem 7 (2nd stage analogous of Th. 5). For all α, Mα is consistent. In other words, for all

ϕ ∈ L◁
Tr, it is not the case that Mα ⊨K3

ϕ and Mα ⊨K3
¬ϕ.

The only step that needs to be changed involves atomic grounds sentences. We need to change

the definition of the model MCL
α because it can happen that the the base ground truth do not

respect the complexity condition. It can happen that the grounded in a base ground truth is not

more complex than its ground. Thus, we define MCL
α as MCL

α = (N;SCL
α ;RCL

α ), where:

SCL
α = {#ϕ : ϕ ∈ Th(Mα)} = Sα+1

RCL
α = {⟨#ϕ; #ψ⟩ : ⌜ϕ⌝ ◁ ⌜ψ⌝ ∈ BG+(MPG)} ∪ {⟨#ϕ; #ψ⟩ : ϕ ∈ Th(Mα) \ Th(N), ψ ∈

Th(Mα) \ Th(N), c(ϕ) < c(ψ)} ∪ {⟨#ϕ; #ψ⟩ : ϕ ∈ Th(N), ψ ∈ Th(Mα) \ Th(N)}

Lemma 5 (2nd stage analogous of Lemma 3). MCL
α is a model of BG(MPG) ∪ PG∗

α.

Proof. We need to check that, if BG(MPG) ∪ PG∗
α ⊢ ϕ, then MCL

α ⊨ ϕ. Thus, we check that MCL
α

satisfies BG(MPG), Tr
+(Mα), Tr

−(Mα) and all the axioms of PG∗.

- MCL
α satisfies BG(MPG).

◦ If ⌜ϕ⌝ ◁ ⌜ψ⌝ ∈ BG(MPG), then ⌜ϕ⌝ ◁ ⌜ψ⌝ ∈ BG+(MPG) and ⟨#ϕ; #ψ⟩ ∈ RCL
α .

◦ If ¬(⌜ϕ⌝◁⌜ψ⌝) ∈ BG(MPG), we need to check that ⟨#ϕ; #ψ⟩ ̸∈ RCL
α and, so, that ⌜ϕ⌝◁⌜ψ⌝

does not follow from any of the three conditions in the definition of RCL. From ¬(⌜ϕ⌝ ◁

⌜ψ⌝) ∈ BG(MPG), it follows that ¬(⌜ϕ⌝ ◁ ⌜ψ⌝) ∈ BG−(MPG) and, so, ϕ ∈ L,ψ ∈ L and

MPG ⊨ ¬(⌜ϕ⌝◁⌜ψ⌝). Thus, 1)MPG ̸⊨ ⌜ϕ⌝◁⌜ψ⌝ becauseMPG is a classical model. Suppose

ϕ ∈ Th(Mα)\Th(N), ψ ∈ Th(Mα)\Th(N), c(ϕ) < c(ψ). ϕ ∈ L, so ϕ ∈ Th(Mα) iff ϕ ∈ Th(N).

Thus, 2) ϕ ̸∈ Th(Mα)\Th(N). Analogously for ψ. Suppose ϕ ∈ Th(N), ψ ∈ Th(Mα)\Th(N).
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For the same reasoning, 3) ψ ̸∈ Th(Mα) \ Th(N). Thus, none of the three conditions in the

definition of RCL
α can be satisfied and ⟨#ϕ; #ψ⟩ ̸∈ RCL

α .

- For Tr+(Mα) and Tr
−(Mα) the proof is the same as in Lemma 3.

- G1 : ∀x¬(x ◁ x). This means that, for all n ∈ N such that n = #ϕ, MCL
α ⊨ ¬(n ◁ n).

MPG ̸⊨ (n◁ n) because MPG satisfies G1, so n◁ n ̸∈ BG+(MPG). If ϕ ∈ Th(Mα) \ Th(N), then

c(ϕ) ̸< c(ϕ). Thus, ⟨n;n⟩ ̸∈ RCL
α and MCL

α ⊨ ¬(n◁ n).

- G2 : ∀x∀y∀z(x ◁ z ∧ z ◁ y → x ◁ y). This means that, for all n,m, k ∈ N such that n = #ϕ,

m = #ψ, and k = #δ, MCL
α ⊨ n◁ k ∧ k ◁m→ n◁m.

◦ If n ◁ k ∈ BG+(MPG), k ◁ m ∈ BG+(MPG), then MPG ⊨ n ◁ k and MPG ⊨ k ◁ m,

then MPG ⊨ n ◁ m because MPG satisfies G2, n ◁ m ∈ BG+(MPG) and ⟨n;m⟩ ∈ RCL
α ,

MCL
α ⊨ n◁m.

◦ If ϕ ∈ Th(Mα) \Th(N), δ ∈ Th(Mα) \Th(N), ψ ∈ Th(Mα) \Th(N), c(ϕ) < c(δ), c(δ) < c(ψ),

then c(ϕ) < c(ψ) and ⟨n;m⟩ ∈ RCL
α , MCL

α ⊨ n◁m.

◦ Suppose MPG ⊨ n ◁ k and δ ∈ Th(N), ψ ∈ Th(Mα) \ Th(N). Then, ϕ ∈ Th(N), so MCL
α ⊨

n◁m.

◦ If ϕ ∈ Th(N), δ ∈ Th(Mα) \ Th(N), ψ ∈ Th(Mα) \ Th(N), c(δ) < c(ψ), then ⟨n;m⟩ ∈ RCL
α ,

MCL
α ⊨ n◁m.

◦ If MPG ⊨ n◁ k, then ϕ ∈ Th(N), δ ∈ Th(N). Thus, it cannot be that δ ∈ Th(Mα) \ Th(N)

◦ It cannot be that ϕ ∈ Th(Mα)\Th(N), δ ∈ Th(Mα)\Th(N), δ ∈ Th(N), ψ ∈ Th(Mα)\Th(N).

◦ It cannot be that ϕ ∈ Th(N), δ ∈ Th(Mα) \ Th(N), δ ∈ Th(N), ψ ∈ Th(Mα) \ Th(N).

- G3, T1, T2 and T ∗
3 are trivial.

I now prove the claim for some exemplifying cases of the downward and upward axioms. The

remaining ones can be proved with analogous arguments.

- U1 : ∀x(Tr(x)→ x◁ ¬.¬. x). This means that, for all n ∈ N such that n = #ϕ, MCL
α ⊨ Tr(n)→

n ◁ ¬.¬. n. If MCL
α ⊨ Tr(n), then ϕ ∈ Th(Mα) and ¬¬ϕ ∈ Th(Mα). If ϕ ∈ Th(N), then

¬¬ϕ ∈ Th(N) and MPG ⊨ ϕ◁ ¬.¬. ϕ. If ϕ ∈ Th(Mα) \ Th(N), then ¬¬ϕ ∈ Th(Mα) \ Th(N) and

c(ϕ) < c(¬¬ϕ). Thus, MCL
α ⊨ n◁ ¬.¬. n.

- D3 : ∀x∀y(Tr(x∧. y) → (x ◁ x∧. y) ∧ (y ◁ x∧. y)). This means that, for all n,m ∈ N such that

n = #ϕ, m = #ψ, MCL
α ⊨ Tr(n∧.m) → (n ◁ n∧.m) ∧ (m ◁ n∧.m). If MCL

α ⊨ Tr(n∧.m),

then ϕ ∧ ψ ∈ Th(Mα), then ϕ ∈ Th(Mα) and ψ ∈ Th(Mα) by K3 logic. If ϕ ∧ ψ ∈ Th(N), then
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ϕ ∈ Th(N), then n◁n∧.m ∈ BG(MPG) because PG satisfiesD3. Suppose ϕ∧ψ ∈ Th(Mα)\Th(N)

and ϕ ∈ Th(Mα) \ Th(N). c(ϕ) < max{c(ϕ); c(ψ)} + 1 = c(ϕ ∧ ψ). Thus, MCL
α ⊨ n ◁ n∧.m.

Suppose ϕ ∧ ψ ∈ Th(Mα) \ Th(N) and ϕ ∈ Th(N), then MCL
α ⊨ n ◁ n∧.m. Analogously for

m◁ n∧.m. Thus, MCL
α ⊨ (n◁ n∧.m) ∧ (m◁ n∧.m).

- U6 : ∀x∀t∀v(Tr(x(t/v)) → x(t/v) ◁ ∃.vx). This means that, for all n,m ∈ N such that n = #ϕ,

MCL
α ⊨ Tr(n(m/v)) → n(m/v) ◁ ∃.vn. If MCL

α ⊨ Tr(n(m/v)), then ϕ(m/v) ∈ Th(Mα) and

∃vϕ ∈ Th(Mα) by K3 logic. If ϕ(m/v) ∈ Th(N) and ∃vϕ ∈ Th(N), then n(m/v) ◁ ∃.vn ∈

BG(MPG) because PG satisfies U6. ϕ(m/v) ∈ Th(Mα) \ Th(N) iff ∃vϕ ∈ Th(Mα) \ Th(N).

Given that Mα ⊨K3
ϕ(m/v), c(ϕ(m/v)) < max{c(ϕ(d)) : Mα ⊨K3

ϕ(d)} + 1 = c(∃vϕ). Thus,

MCL
α ⊨ n(m/v)◁ ∃.vn.

- D8 : ∀x∀v(Tr(∀.vx) → ∀t(x(t/v) ◁ ∀.vx)). This means that, for all n ∈ N such that n = #ϕ,

MCL
α ⊨ Tr(∀.vn) → ∀t(n(t/v) ◁ ∀.vn). If MCL

α ⊨ Tr(∀.vn), then ∀vϕ ∈ Th(Mα) and, for all t,

ϕ(t/v) ∈ Th(Mα) by K3 logic. If ϕ(m/v) ∈ Th(N) and ∀vϕ ∈ Th(N), then n(m/v) ◁ ∀.vn ∈

BG(MPG) because PG satisfies U6. ϕ(m/v) ∈ Th(Mα) \ Th(N) iff ∀vϕ ∈ Th(Mα) \ Th(N).

Given that Mα ⊨K3 ϕ(t/v) for all t, c(ϕ(n(t/v)) < max{c(ϕ(d)) : Mα ⊨K3 ϕ(d)} + 1 = c(∀vϕ).

Thus, MCL
α ⊨ ∀t(n(t/v)◁ ∀.vn).

Given that BG(MPG) ∪ PG∗
α is consistent, then the rest of proof of Theorem 7 is analogous to

the one of Theorem 5 at the first stage.

Theorem 8 (2nd stage analogous of Th. 6). The Knaster–Tarski theorem (Th. 4) applies to the

construction above. From this, it follows that there exists a least fixed point, i.e. a model MI such

that Th(MI) = Φ(Th(MI)).

Proof. Given that Lemma 4 and Theorem 7 holds, the proof follows exactly as in the first stage.

Observation 1. Given any fixed pointMFP , it holds that Φ(MFP ) =MFP and Φ(RFP ;RFP ;SFP ;SFP ) =

(RFP ;RFP ;SFP ;SFP ). Thus, it follows that:

- Φ(RFP ) = {⟨#ϕ; #ψ⟩ : BG(MPG) ∪ PG∗
FP ⊢ ⌜ϕ⌝ ◁ ⌜ψ⌝} = RFP

- Φ(RFP ) = {⟨#ϕ; #ψ⟩ : BG(MPG) ∪ PG∗
FP ⊢ ¬(⌜ϕ⌝ ◁ ⌜ψ⌝)} = RFP

- Φ(SFP ) = {#ϕ :MFP ⊨K3 ϕ} = SFP

- Φ(SFP ) = {#ϕ :MFP ⊨K3
¬ϕ} = SFP .
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I now show how a fixed point of the previous construction deals with the two paradoxes of self-

reference: the liar paradox (Theorem 1) and the paradox of self-referentiality for ground (Theorem

2). I prove these results for the least fixed point MI , but they can be generalized with analogous

arguments to any fixed point MFP . Before this, I prove the useful lemma that MI satisfies factivity,

i.e. that, if MI satisfies a ground statement, then MI also satisfies that its ground and its grounded

are true.

Lemma 6. For all α and for all ϕ, ψ ∈ L◁
Tr, if Mα ⊨K3

⌜ϕ⌝ ◁ ⌜ψ⌝, then Mα ⊨K3
Tr(⌜ϕ⌝) and

Mα ⊨K3
Tr(⌜ψ⌝).

Proof. This follows from Lemma 5. Given that MCL
α−1 is a model of BG(MPG) ∪ PG∗

α−1, it follows

that, if BG(MPG) ∪ PG∗
α−1 ⊢ ⌜ϕ⌝ ◁ ⌜ψ⌝, then ϕ ∈ Th(Mα−1) and ψ ∈ Th(Mα−1). BG(MPG) ∪

PG∗
α−1 ⊢ ⌜ϕ⌝ ◁ ⌜ψ⌝ iff Mα ⊨K3

⌜ϕ⌝ ◁ ⌜ψ⌝. Thus, if Mα ⊨K3
⌜ϕ⌝ ◁ ⌜ψ⌝, then ϕ ∈ Th(Mα−1) and

ψ ∈ Th(Mα−1). If ϕ ∈ Th(Mα−1) and ψ ∈ Th(Mα−1), thenMα ⊨K3 Tr(⌜ϕ⌝) andMα ⊨K3 Tr(⌜ψ⌝).

Thus, the claim is proved.

Proposition 1. λ is the liar sentence of Theorem 1. Then, (i)MI ̸⊨K3 λ and (ii)MI ̸⊨K3 ¬λ.

Proof. From Observation 1, it follows that SI = {#ϕ : MI ⊨K3
ϕ}. Thus, for all ϕ ∈ L◁

Tr,

MI ⊨K3
Tr(⌜ϕ⌝) iff MI ⊨K3

ϕ. From the Diagonal Lemma (Lemma 1), PA ⊢ λ↔ ¬Tr(⌜λ⌝). Thus,

N ⊨ λ↔ ¬Tr(⌜λ⌝) and MI ⊨K3 λ↔ ¬Tr(⌜λ⌝). From Theorem 7, we know that MI is a K3-model

and, so, it cannot be that #λ ∈ SI and #λ ∈ SI . Thus, three cases are possible:

- #λ ∈ SI and #λ ̸∈ SI . Then, MI ⊨K3
Tr(⌜λ⌝), MI ⊨K3

λ because MI is a fixed point and

MI ⊨K3 ¬λ by Diagonal Lemma. This contradicts the fact MI is a K3-model (Th. 7). Thus, (i)

follows.

- #λ ̸∈ SI and #λ ∈ SI . Then, MI ⊨K3
¬Tr(⌜λ⌝), MI ⊨K3

¬λ because MI is a fixed point and

MI ⊨K3 λ by Diagonal Lemma. This contradicts the fact MI is a K3-model (Th. 7). Thus, (ii)

follows.

- #λ ̸∈ SI and #λ ̸∈ SI . From this, it follows thatMI ̸⊨K3
Tr(⌜λ⌝) andMI ̸⊨K3

¬Tr(⌜λ⌝). Then,

MI ̸⊨K3 λ and MI ̸⊨K3 ¬λ because MI is a fixed point. Thus, MI ⊨K3 λ↔ ¬Tr(⌜λ⌝) holds.

Proposition 2. σ is the paradoxical sentence of Theorem 2. Then, (i)MI ̸⊨K3
σ and (ii)MI ̸⊨K3

¬σ.
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Proof. From Observation 1, it follows that RI = {⟨#ϕ; #ψ⟩ : BG(MPG)∪PG∗
I ⊢ ⌜ϕ⌝◁⌜ψ⌝}. Thus,

for all ϕ ∈ L◁
Tr, MI ⊨K3

ϕ iff Tr(⌜ϕ⌝) ∈ Tr+(MI) iff PG
∗
I ⊢ ⌜ϕ⌝ ◁ ⌜¬¬ϕ⌝ iff MI ⊨K3

⌜ϕ⌝ ◁ ⌜¬¬ϕ⌝.

From the Diagonal Lemma (Lemma 1), PA ⊢ σ ↔ ¬(⌜σ⌝◁⌜¬¬σ⌝). Thus, N ⊨ σ ↔ ¬(⌜σ⌝◁⌜¬¬σ⌝)

and MI ⊨K3 σ ↔ ¬(⌜σ⌝ ◁ ⌜¬¬σ⌝). From Theorem 7, we know that MI is a K3-model and, so, it

cannot be that #σ ∈ RI and #σ ∈ RI . Thus, three cases are possible:

- #σ ∈ RI and #σ ̸∈ RI . Then, MI ⊨K3
⌜σ⌝ ◁ ⌜σ⌝, MI ⊨K3

¬σ by Diagonal Lemma, MI ⊨K3

Tr(⌜σ⌝) by Lemma 6 and MI ⊨K3 σ because MI is a fixed point. This contradicts the fact MI

is a K3-model (Th. 7). Thus, (i) follows.

- #σ ̸∈ RI and #σ ∈ RI . Then, MI ⊨K3
¬(⌜σ⌝ ◁ ⌜σ⌝), MI ⊨K3

σ by Diagonal Lemma, then

MI ⊨K3 ⌜σ⌝◁ ⌜¬¬σ⌝ and MI ⊨K3 ¬σ because MI is a fixed point. This contradicts the fact MI

is a K3-model (Th. 7). Thus, (ii) follows.

- #σ ̸∈ RI and #σ ̸∈ RI . From this, it follows that MI ̸⊨K3
⌜σ⌝◁ ⌜σ⌝ and MI ̸⊨K3

¬(⌜σ⌝◁ ⌜σ⌝).

Then, MI ̸⊨K3 σ and MI ̸⊨K3 ¬σ because MI is a fixed point. Thus, MI ⊨K3 σ ↔ ¬(⌜σ⌝ ◁ ⌜σ⌝)

holds.

It is important to highlight a few remarks. First, the results for the liar sentence are the same

as in Kripke’s fixed-point semantics (Kripke [6]). Second, there is a strong symmetry between the

results for the paradoxical sentence σ and the ones for the liar sentence. Third, the model avoids

the paradoxes of self-referentiality of both Theorems 1 and 2 by weakening classical logic. Again,

the same strategy is used in Kripke’s fixed-point semantics for the liar only.

3.3 Axioms

In this section, I aim to develop a classical axiomatic theory for the semantics of section 3.2. More

precisely, I will focus the semantics defined in first stage of section 3.2. This is because the base

ground statements added at the second stage are derived from a model. Instead, in this section, I

am interested in the theorems that can be proven by strengthening PG∗ with axioms that derive

instances of iteration of ground and truth. The basic idea is, first, to reproduce the results of a fixed

point K3-models MFP = (N;RFP ;RFP ;SFP ;SFP ) in a classical setting. In order to do so, I define

four predicates.
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- The binary predicate ◁, such that, given two terms s and t, s ◁ t means that s grounds t.

Intuitively, we want to extension of this predicate to be equivalent to the extension of RFP .

- The binary predicate ̸ ◁, such that, given two terms s and t, s◁ t means that s does not ground

t. Intuitively, we want to extension of this predicate to be equivalent to the extension of RFP .

- The truth predicate Tr, such that, given a term s, Tr(s) means s is true. Intuitively, we want to

extension of this predicate to be equivalent to the extension of SFP .

- The falsity predicate F , such that, given a term s, F (s) means s is false. Intuitively, we want to

extension of this predicate to be equivalent to the extension of SFP .

Note that, if we want to reproduce in a classical setting the distinction betweenMFP ⊨K3
¬Tr(s)

and MFP ̸⊨K3
Tr(s) and between MFP ⊨K3

¬(s◁ t) and MFP ̸⊨K3
s◁ t, we need to add two new

predicates. More precisely, we add the predicate ̸ ◁ such that, given an axiomatic theory T , T ⊢ s ̸ ◁t

is the proof-theoretic counterpart of MFP ⊨K3
¬(s◁ t). Instead, the proof-theoretic counterpart of

MFP ̸⊨K3
s◁t will be T ⊢ ¬(s◁t). Analogously, the proof-theoretic counterpart ofMFP ̸⊨K3

¬(s◁t)

will be T ⊢ ¬(s ̸ ◁t). Intuitively, we can think of the difference between the previous statement as:

T ⊢ s ̸ ◁t can be interpreted as s does not ground t, T ⊢ ¬(s◁ t) as it is not the case that s grounds

t25 and T ⊢ ¬(s ̸ ◁t) as it is not the case that s does not ground t.

A similar reasoning holds for the truth and falsity predicates. We add the falsity predicate F

such that T ⊢ F (s) is the proof-theoretic counterpart of MFP ⊨K3
¬Tr(s), T ⊢ ¬Tr(s) is the

proof-theoretic counterpart of MFP ̸⊨K3 Tr(s) and T ⊢ ¬F (s) is the proof-theoretic counterpart of

MFP ̸⊨K3
¬Tr(s). Intuitively, we can think of the difference between the previous statement as:

T ⊢ F (s) can be interpreted as s is false, T ⊢ ¬Tr(s) as s is not true and T ⊢ ¬F (s) as s is not

false.

Thus, formally, I define a classical model M = (N;R;R;S;S) over the language L◁,̸◁
Tr,F = L◁

Tr ∪{̸

◁} ∪ {F}. The semantic clauses for the predicates ◁, ̸ ◁, Tr and F are:

- M ⊨ ⌜ϕ⌝ ◁ ⌜ψ⌝ iff ⟨#ϕ; #ψ⟩ ∈ R

- M ⊨ ¬(⌜ϕ⌝ ◁ ⌜ψ⌝) iff ⟨#ϕ; #ψ⟩ ∈ R

- M ⊨ Tr(⌜ϕ⌝) iff #ϕ ∈ S

- M ⊨ F (⌜ϕ⌝) iff #ϕ ∈ S

The extension of the predicates is defined on the K3-model MFP as:

- ⟨#ϕ; #ψ⟩ ∈ R iff ⟨#ϕ; #ψ⟩ ∈ RFP

25 I justify the legitimacy of this distinction in section 5.1.
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- ⟨#ϕ; #ψ⟩ ∈ R iff ⟨#ϕ; #ψ⟩ ∈ RFP

- #ϕ ∈ S iff #ϕ ∈ SFP

- #ϕ ∈ S iff #ϕ ∈ SFP .

Note that, for all ϕ ∈ L◁
Tr and all Mα of the semantics in section 3.2, #ϕ ∈ Sα iff #¬ϕ ∈ Sα.

Thus, #ϕ ∈ SFP iff #¬ϕ ∈ SFP and MFP ⊨K3
¬Tr(⌜ϕ⌝) iff MFP ⊨K3

Tr(⌜¬ϕ⌝). Thus, in the

classical model, the extension of the falsity predicate S is implicitly defined by the extension of the

truth predicate S. I particular, the number of a sentence is in S iff the number its negation is in S.

Therefore, we can work with a simplified version of the model M = (N;R;R;S), over the language

L◁,̸◁
Tr = L◁

Tr ∪ {̸ ◁}. The language can be simplified by defining the falsity predicate in terms of the

truth predicate as:

∀x(F (x)↔ Tr(¬. x)).

Now that I have translated the results of section 3.2 in a classical framework, I can state in full

detail the theory of untyped ground and truth PUGT .

Definition 7 (PUGT). The axioms of the predicational theory untyped partial ground and truth

(PUGT ) are: PATG plus all the missing instances of the induction scheme over L◁,̸◁
Tr plus the

axioms of PG∗, with the only differences that G1 becomes:

G∗
1 ∀x(x ̸ ◁x)

and that T ∗
3 becomes:

T ∗∗
3 ∀x(Tr(x)→ Sent◁, ̸◁

Tr (x))

plus the following extra Ground Axiom:

G−
3 ∀x∀y(Tr(¬. x) ∨ Tr(¬. y)→ x ̸ ◁y)

plus the following extra Truth Axioms:

T4 ∀s(Tr(Tr. (s))↔ Tr(s◦))

T5 ∀s(Tr(¬. Tr. (s))↔ Tr(¬. s◦))

T6 ∀s∀t(Tr(s◁. t)↔ s◦ ◁ t◦)

T7 ∀s∀t(Tr(¬. (s◁. t))↔ s◦ ̸ ◁t◦)

and Consistency Axioms:

ConsTr ∀x(¬(Tr(x) ∧ Tr(¬. x)))

Cons◁ ∀x∀y(¬(x◁ y ∧ x ̸ ◁y)).
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The intuitive motivation why I modified the axiom G1 to G
∗
1 is that I want to distinguish between

the ground statements which the principles of ground prove they do not hold and the ones that the

principles of ground do not prove to hold. On the semantic side, the former ones correspond to the

ones in the extension of RFP , while the latter ones correspond to the ones which are not in the

extension of RFP . Note that Cons◁ implies that ∀x∀y(x ̸ ◁y → ¬(x ◁ y)). Thus, G∗
1 and Cons◁

imply G1.

The intuitive motivation why I added the axiom T ∗∗
3 instead of T ∗

3 is analogous to why I added

T ∗
3 instead of T3 in PG∗ in section 2.1. PUGT will prove theorems with the not ground predicate

such as, for example, PUGT ⊢ ⌜0 = 0⌝ ̸ ◁⌜0 = 0⌝. We also want that PUGT to prove that these

theorems are true, so, for example, PUGT ⊢ Tr(⌜⌜0 = 0⌝ ̸ ◁⌜0 = 0⌝⌝). Thus, in order to do so, we

need to relax the condition that only terms that denote sentences in L◁
Tr can be arguments of the

truth predicate and allow also terms that denote sentences with the not ground predicate to do so.

Axioms ConsTr and Cons◁ guarantee that the theory is consistent, i.e. no term is both true

and false and there are not two terms such that one grounds and does not ground the other. These

axioms are the proof-theoretic equivalent of the semantic fact that MFP is a K3-model which does

not admit overlap between SFP and SFP and between RFP and RFP .

Axioms T4 and T5 are the axioms which need to be added to the theory of positive truth PT in

order to get the Kripke-Fefereman KF theory of truth (together with relaxing the restriction on the

truth predicate analogously to what I did from T3 to T ∗
3
26). These axioms are the proof-theoretic

counterpart of the results in Observation 1 for SFP and SFP . As mentioned in section 1.5, when a

new relation symbol is added to a theory, we expect it to relate to the truth predicate according to

the general schemes:

R+ : ∀t1, ..., tn(Tr(R. (t1, ..., tn))↔ R(t◦1, ..., t
◦
n)),

R− : ∀t1, ..., tn(Tr(¬.R. (t1, ..., tn))↔ ¬R(t◦1, ..., t◦n)),

which, if instantiated with the truth predicate itself, would result in:

T+ : ∀s(Tr(Tr. (s))↔ Tr(s◦)),

T− : ∀s(Tr(¬. Tr. (s))↔ ¬Tr(s◦)).

Note that T+ is axiom T4, while, T
− is different from axiom T5. Intuitively, adding T5 instead

of T− makes a distinction between being false and being not true and, by ConsTr, being false

26 See Halbach [19, pp. 181-188] for a detailed presentation of KF .
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implies being not true, but not the converse. Adding T− instead of axiom T5 would make the theory

inconsistent because it would prove the Liar Paradox (Th. 1)27.

I now prove how PUGT deals with the Liar Paradox. In particular, I prove that PUGT proves

the liar sentence λ28.

Proposition 3. λ is the liar sentence, i.e. PA ⊢ ⌜λ⌝ = ⌜¬Tr(⌜λ⌝)⌝. Then: (i)PUGT ∪

{Tr(⌜λ⌝)} ⊢ ⊥, (ii)PUGT ∪ {Tr(⌜¬λ⌝)} ⊢ ⊥ and (iii)PUGT ⊢ λ.

Proof. Note that, from axiom ConsTr, it follows by logic that ∀x(Tr(¬. x)→ ¬Tr(x)).

- PUGT ⊢ Tr(⌜λ⌝) ↔ Tr(⌜¬Tr(⌜λ⌝)⌝) ↔ Tr(⌜¬λ⌝) → ¬Tr(⌜λ⌝). Thus, PUGT ∪ {Tr(⌜λ⌝)} ⊢

¬Tr(⌜λ⌝), so (i) follows.

- PUGT ⊢ Tr(⌜¬λ⌝) ↔ Tr(⌜¬¬Tr(⌜λ⌝)⌝) ↔ Tr(⌜Tr(⌜λ⌝)⌝) ↔ Tr(⌜λ⌝). PUGT ⊢ Tr(⌜¬λ⌝) →

¬Tr(⌜λ⌝). Thus, PUGT ∪ {Tr(⌜¬λ⌝)} ⊢ Tr(⌜λ⌝) ∧ ¬Tr(⌜λ⌝), so (ii) follows.

- From (i), it follows that PUGT ⊢ λ. This does not lead to a contradiction because PUGT ⊢

¬Tr(⌜λ⌝)↔ ¬Tr(⌜¬Tr(⌜λ⌝)⌝)↔ ¬Tr(⌜¬λ⌝), which means that the liar is not true iff it is not

false. Since we distinguished ¬Tr(s) and Tr(¬s), this is not contradictory.

Note that a theory T with the same axioms of PUGT except for T− instead of T5 would be

inconsistent. PUGT ⊢ λ↔ ¬Tr(⌜λ⌝)↔ ¬Tr(⌜¬Tr(⌜λ⌝)⌝)↔ ¬¬Tr(⌜λ⌝)↔ Tr(⌜λ⌝)↔ ¬λ.

Axioms T6 and T7 are the analogous for the ground predicate of axioms T4 and T5 for truth.

Instantiating the general schemes R+ and R− with the ground predicate would result in:

G+ : ∀s∀t(Tr(s◁. t)↔ s◦ ◁ t◦),

G− : ∀s∀t(Tr(¬. (s◁. t))↔ ¬(s◦ ◁ t◦)).

Analogously to above for the truth predicate, G+ is the same as axiom T6, while G
− and axiom T7

are different. T6 and T7 distinguish between it is not the case that x grounds y, which is formalised as

¬(x◁ y), from x does not ground y, which is formalised as x ̸ ◁y. Cons◁, ∀x∀y(x ̸ ◁y → ¬(x◁ y)),

but not the converse. Note that, by axiom T6, ∀x∀y(¬Tr(x◁y. ) ↔ ¬(x ◁ y)) and, by axiom T7,

∀x∀y(Tr(¬. (x◁. y)) ↔ x ̸ ◁y). Thus, it follows that ∀x∀y(¬Tr(x◁y. ) → Tr(¬. (x◁. y))), which is

consistent with the previous definitions of the truth and falsity predicates. Adding G− instead of

axiom G5 would make the theory inconsistent because of the paradox of self-referentiality for ground

(Th. 2).

27 See also Halbach [19, p. 183].
28 The same results also holds for KF plus the consistency axiom ConsTr. See Halbach [19, p. 201].
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The last axiom I need to motivate is G−
3 . The reason I add it is that, under the new interpretation

of the predicates Tr and ◁, the contrapositive of G3 state that, for some terms s and t, if the theory

proves that either s or t is not true, then it does not prove that s grounds t or it does not prove that

t grounds s. However, G−
3 states the more precise claim that, if either s or t is false, then s does

not ground t and t does not ground s.

I now prove how PUGT deals with the paradox of self-referentiality for ground. Similarly to the

result of Proposition 3, I prove that PUGT proves the paradoxical sentence σ.

Proposition 4. σ is the paradoxical sentence of Theorem 2. By Diagonal Lemma (Lemma 1), PA ⊢

⌜σ⌝ = ⌜¬(⌜σ⌝◁⌜¬¬σ⌝)⌝. Then: (i)PUGT ∪{⌜σ⌝◁⌜¬¬σ⌝} ⊢ ⊥, (ii)PUGT ∪{⌜σ⌝ ̸ ◁⌜¬¬σ⌝} ⊢ ⊥

and (iii)PUGT ⊢ ¬(⌜σ⌝ ◁ ⌜¬¬σ⌝).

Proof. Note that, from axiom Cons◁, it follows by logic that ∀x∀y(x ̸ ◁y → ¬(x◁ y)).

- PUGT ⊢ ⌜σ⌝ ◁ ⌜¬¬σ⌝ ↔ Tr(⌜⌜σ⌝ ◁ ⌜¬¬σ⌝⌝) ↔ Tr(⌜¬σ⌝) → ¬Tr(⌜σ⌝)). PUGT ⊢ ⌜σ⌝ ◁

⌜¬¬σ⌝→ Tr(⌜σ⌝). Thus, PUGT ∪ {⌜σ⌝ ◁ ⌜¬¬σ⌝} ⊢ Tr(⌜σ⌝) ∧ ¬Tr(⌜σ⌝), so (i) follows.

- PUGT ⊢ ⌜σ⌝ ̸ ◁⌜¬¬σ⌝ ↔ Tr(⌜¬(⌜σ⌝ ◁ ⌜¬¬σ⌝)⌝) ↔ Tr(⌜σ⌝) ↔ ⌜σ⌝ ◁ ⌜¬¬σ⌝. PUGT ⊢ ⌜σ⌝ ̸

◁⌜¬¬σ⌝→ ¬(⌜σ⌝◁⌜¬¬σ⌝). Thus, PUGT ∪{⌜σ⌝ ̸ ◁⌜¬¬σ⌝} ⊢ ⌜σ⌝◁⌜¬¬σ⌝∧¬(⌜σ⌝◁⌜¬¬σ⌝),

so (ii) follows.

- From (i), it follows that PUGT ⊢ ¬(⌜σ⌝◁⌜¬¬σ⌝), which is equivalent to PUGT ⊢ σ. From (ii),

it follows that PUGT ⊢ ¬(⌜σ⌝ ̸ ◁⌜¬¬σ⌝). Thus, it is not the case that σ grounds ¬¬σ, nor it is

the case that σ does not ground ¬¬σ.

Note that a theory T with the same axioms of PUGT except for G− instead of T6 would be

inconsistent. PUGT ⊢ σ ↔ ¬(⌜σ⌝ ◁ ⌜¬¬σ⌝) ↔ Tr(⌜¬(⌜σ⌝ ◁ ⌜¬¬σ⌝)⌝) ↔ Tr(⌜σ⌝) ↔ ⌜σ⌝ ◁

⌜¬¬σ⌝.

I now prove that the axiomatic theory PUTG is sound with respect to the modelM = (N;R;R;S)

described above. In other words, I show that all the theorems of PUGT are true in the model M

constructed on an arbitrary fixed point MFP of the semantics of section 3.2.

Theorem 9. Given a fixed point MFP = (N;RFP ;RFP ;SFP ;SFP ) of section 3.2 and a classical

model M = (N;R;R;S) such that RFP = R, SFP = R and SFP = S, then M ⊨ PUGT .

Proof. We need to check that M satisfies all the axioms of PUGT .
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- G∗
1 : ∀x(x ̸ ◁x). This means that, for all n ∈ N such that n = #ϕ, M ⊨ n ̸ ◁n. M ⊨ n ̸ ◁n

iff ⟨n;n⟩ ∈ R iff ⟨n;n⟩ ∈ RFP iff PG∗
FP−1 ⊢ ¬(n ◁ n), which holds because G1 is an axiom of

PG∗
FP−1.

- G2 : ∀x∀y∀z(x ◁ z ∧ z ◁ y → x ◁ y). This means that, for all n,m, k ∈ N such that n = #ϕ,

m = #ψ and k = #δ, M ⊨ n◁ k ∧ k ◁m→ n◁m. M ⊨ n◁ k iff ⟨n; k⟩ ∈ R iff ⟨n; k⟩ ∈ RFP iff

PG∗
FP−1 ⊢ n◁ k. An analogous derivation holds for PG∗

FP−1 ⊢ k ◁m. Thus, PG∗
FP−1 ⊢ n◁m

because G2 is an axiom of PG∗
FP−1, ⟨n;m⟩ ∈ RFP , ⟨n;m⟩ ∈ R and M ⊨ n◁m.

- G3 : ∀x∀y(x ◁ y → Tr(x) ∧ Tr(y)). This means that, for all n,m ∈ N such that n = #ϕ and

m = #ψ, M ⊨ (n ◁ m → Tr(n) ∧ Tr(m)). M ⊨ n ◁ m iff ⟨n;m⟩ ∈ R iff ⟨n;m⟩ ∈ RFP iff

MFP ⊨K3 n ◁m. Then, by Lemma 6, MFP ⊨K3 Tr(n) and MFP ⊨K3 Tr(m). MFP ⊨K3 Tr(n)

iff #n ∈ SFP iff #n ∈ S iff M ⊨ Tr(n). An analogous derivation holds for M ⊨ Tr(m).

- G−
3 : ∀x∀y(Tr(¬. x) ∨ Tr(¬. y) → x ̸ ◁y). This means that, for all n,m ∈ N such that n = #ϕ

and m = #ψ, M ⊨ Tr(¬. n) ∨ Tr(¬.m) → n ̸ ◁m. Suppose M ⊨ Tr(¬. n), then n ∈ S, n ∈ SFP ,

MFP ⊨K3
¬Tr(n). Note that, for all α, ifMα ⊨K3

¬Tr(n), then ¬Tr(n) ∈ Tr−(Mα−1). Thus, by

axiom G3, PG
∗
α−1 ⊢ ¬(n◁m) and Mα ⊨K3 ¬(n◁m). Thus, MFP ⊨K3 ¬(n◁m), ⟨n;m⟩ ∈ RFP ,

⟨n;m⟩ ∈ R and MCL
α ⊨ n ̸ ◁m. An analogous argument holds if M ⊨ Tr(¬.m).

- T1, T2 and T ∗∗
3 are trivial.

- T4 : ∀s(Tr(Tr. (s)) ↔ Tr(s◦)). This means that, for all n ∈ N such that n = #ϕ, M ⊨

Tr(Tr. (n)) ↔ Tr(n)). M ⊨ Tr(n) iff #n ∈ S iff #n ∈ SFP iff MFP ⊨K3
Tr(n) iff #Tr(n) ∈

Φ(SFP ) iff #Tr(n) ∈ SFP by Observation 1 iff #Tr(n) ∈ S iff M ⊨ (Tr(Tr. (n)).

- T5 : ∀s(Tr(¬. Tr. (s)) ↔ Tr(¬. s◦)). This means that, for all n ∈ N such that n = #ϕ, M ⊨

Tr(¬. Tr. (n)) ↔ Tr(¬. n)). M ⊨ Tr(¬. n) iff #¬ϕ ∈ S iff #¬ϕ ∈ SFP iff n ∈ SFP iff MFP ⊨K3

¬Tr(n) iff #¬Tr(n) ∈ Φ(SFP ) iff #¬Tr(n) ∈ SFP by Observation 1 iff #¬Tr(n) ∈ S iff

M ⊨ (Tr(¬. Tr. (n)).

- T6 : ∀s∀t(Tr(s◁. t) ↔ s◦ ◁ t◦). This means that, for all n,m ∈ N such that n = #ϕ, m = #ψ,

M ⊨ Tr(n◁.m) ↔ n ◁m. M ⊨ n ◁m iff ⟨n;m⟩ ∈ R iff ⟨n;m⟩ ∈ RFP iff MFP ⊨K3 n ◁m iff

#n◁m ∈ Φ(SFP ) iff #n◁m ∈ SFP by Observation 1 iff #n◁m ∈ S iff M ⊨ Tr(n◁.m).

- T7 : ∀s∀t(Tr(¬. (s◁. t))↔ s◦ ̸ ◁t◦). This means that, for all n,m ∈ N such that n = #ϕ, m = #ψ,

M ⊨ Tr(¬. (n◁.m))↔ n ̸ ◁m. M ⊨ n ̸ ◁m iff ⟨n;m⟩ ∈ R iff ⟨n;m⟩ ∈ RFP iff MFP ⊨K3 ¬(n◁m)

iff #(¬(n ◁ m)) ∈ Φ(SFP ) iff #(¬(n ◁ m)) ∈ SFP by Observation 1 iff #(¬(n ◁ m)) ∈ S iff

M ⊨ Tr(¬. (n◁.m)).
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- ConsTr : ∀x(¬(Tr(x) ∧ Tr(¬. x))). This means that, for all n ∈ N such that n = #ϕ, M ⊨

Tr(n)→ ¬Tr(¬. n). M ⊨ Tr(n) iff n ∈ S iff n ∈ SFP . If n ∈ SFP , then n ̸∈ SFP by Theorem 7.

n ̸∈ SFP iff #¬ϕ ̸∈ SFP iff #¬ϕ ̸∈ S iff M ̸⊨ Tr(¬. n) iff M ⊨ ¬Tr(¬. n).

- Cons◁ : ∀x∀y(¬(x◁ y ∧ x ̸ ◁y)). This means that, for all n,m ∈ N such that n = #ϕ, m = #ψ,

M ⊨ n ◁m → ¬(n ̸ ◁m). M ⊨ n ◁m iff ⟨n;m⟩ ∈ R iff ⟨n;m⟩ ∈ RFP . If ⟨n;m⟩ ∈ RFP , then

⟨n;m⟩ ̸∈ RFP by Theorem 7. ⟨n;m⟩ ̸∈ RFP iff ⟨n;m⟩ ̸∈ R iff M ̸⊨ n ̸ ◁m iff M ⊨ ¬(n ̸ ◁m).

- U1 : ∀x(Tr(x) → x ◁ ¬.¬. x). This means that, for all n ∈ N such that n = #ϕ, M ⊨ Tr(n) →

n ◁ ¬.¬. n. M ⊨ Tr(n) iff n ∈ S iff n ∈ SFP iff MFP ⊨K3
Tr(n) iff MFP−1 ⊨K3

ϕ. Thus,

PG∗
FP−1 ⊢ n◁ ¬.¬. n by axiom U1, ⟨n; #¬¬ϕ⟩ ∈ RFP , ⟨n; #¬¬ϕ⟩ ∈ R and M ⊨ n◁ ¬.¬. n.

- D2 : ∀x∀y(Tr(x∨. y)→ (Tr(x)→ x◁x∨. y)∧(Tr(y)→ y◁x∨. y)). This means that, for all n,m ∈ N

such that n = #ϕ, m = #ψ, M ⊨ (Tr(n∨.m) → (Tr(n) → n ◁ n∨.m) ∧ (Tr(m) → m ◁ n∨.m)).

M ⊨ Tr(n∨.m) iff #(ϕ∨ψ) ∈ S iff #(ϕ∨ψ) ∈ SFP iffMFP ⊨K3 Tr(n∨.m) iffMFP−1 ⊨K3 ϕ∨ψ. An

analogous derivation holds for MFP−1 ⊨K3
ϕ. Thus, PG∗

FP−1 ⊢ n◁ n∨.m, ⟨n; #(ϕ ∨ ψ)⟩ ∈ RFP ,

⟨n; #(ϕ ∨ ψ)⟩ ∈ R and M ⊨ n◁ n∨.m. An analogous derivation holds for M ⊨ m◁ n∨.m.

- The proof for the other upward and downward axioms is analogous.

I now prove some results about the truth-theoretic commitments and the proof-theoretic strength

of the theory PUGT . First, I prove that PUGT proves the Kripke-Fefereman theory of truth KF .

Second, from the previous theorem, it follows that PUGT proves the full T -scheme for T -positive

formulas, which are formulas in which the truth predicate Tr does not occur in the scope of an odd

number of negation symbols. Third, I prove that PUGT proves the same theorems as KF in the

language LTr with coding function over LTr. This means that the further theorems that PUGT

proves with respect to KF are ground statements or sentences that express the truth of a ground

statement.

Definition 8 (Kripke-Fefereman KF ). The consistent theory Kripke-Fefereman KF on the lan-

guage LTr consists of the axioms of PAT and the three base truth axioms T1, T2 plus the following

axioms [19, pp. 181-203]:

T1 ∀s∀t(Tr(s=. t)↔ s◦ = t◦)

T2 ∀s∀t(Tr(s̸=. t)↔ s◦ ̸= t◦)
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TTr
3 ∀x(Tr(x)→ SentTr(x))

29

KF1 ∀x(Tr(x)↔ Tr(¬.¬. x))

KF2 ∀x∀y(Tr(x∨. y)↔ Tr(x) ∨ Tr(y))

KF3 ∀x∀y(Tr(x∧. y)↔ Tr(x) ∧ Tr(y))

KF4 ∀x∀y(Tr(¬. (x∧. y))↔ Tr(¬. x) ∨ Tr(¬. y))

KF5 ∀x∀y(Tr(¬. (x∨. y))↔ Tr(¬. x) ∧ Tr(¬. y))

KF6 ∀x∀v(Tr(∃.vx)↔ ∃tT r(x(t/v)))

KF7 ∀x∀v(Tr(¬. ∃.vx)↔ ∀tT r(¬. x(t/v)))

KF8 ∀x∀v(Tr(∀.vx)↔ ∀tT r(x(t/v)))

KF9 ∀x∀v(Tr(¬. ∀.vx)↔ ∃tT r(¬. x(t/v)))

T4 ∀s(Tr(Tr. (s))↔ Tr(s◦))

T5 ∀s(Tr(¬. Tr. (s))↔ Tr(¬. s◦))

ConsTr ∀x(¬(Tr(x) ∧ Tr(¬. x)))

Theorem 10. PUGT ⊢ KF .

Proof. We derive all the axioms of KF from the axioms of PUGT .

- T1, T2, T4, T5 and ConsTr are also axioms of PUGT .

- KF1-KF9 follow from the G3 and the upward axioms U1-U9 and downward axioms D1-D9 of

PUGT as in Proposition 2 in Korbmacher [1, p. 176] that states that PG ⊢ PT , where PT is

the theory of positive truth. In fact, KF1-KF9 as also axioms of PT . I use the derivation of KF3

as an illustrative example:

1) PUGT ⊢ ∀x∀y(Tr(x) ∧ Tr(y)→ (x◁ x∧. y) by U3

2) PUGT ⊢ ∀x∀y(x◁ x∧. y → Tr(x∧. y)) by G3

3) PUGT ⊢ ∀x∀y(Tr(x) ∧ Tr(y)→ Tr(x∧. y)) by 1) and 2)

4) PUGT ⊢ ∀x∀y(Tr(x∧. y)→ (x◁ x∧. y) ∧ (y ◁ x∧. y)) by D3

5) PUGT ⊢ ∀x∀y(x◁ x ∧ y → Tr(x)) by G3

6) PUGT ⊢ ∀x∀y(y ◁ x ∧ y → Tr(y)) by G3

7) PUGT ⊢ ∀x∀y(Tr(x∧. y)→ Tr(x) ∧ Tr(y)) by 4), 5) and 6)

8) PUGT ⊢ ∀x∀y(Tr(x∧. y)↔ Tr(x) ∧ Tr(y)) by 7)

29 TTr
3 is the equivalent of axiom T3 of PG extended to allow the names of sentences of LTr to be the argument of

the truth predicate, analogously to what we did before with T ∗
3 and L◁

Tr.
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- If the language is LTr, then PA ⊢ ∀x(Sent◁,̸◁
Tr (x)↔ SentTr) since there no sentences containing

◁ or ̸ ◁. Thus, T ∗∗
3 implies TTr

3 .

Proposition 5. For all formulas ϕ(v1, ..., vn) ∈ L◁,̸◁
Tr in which the truth predicate Tr does not occur

in the scope of an odd number of negation symbols, also called T-positive formulas:

PUGT ⊢ ∀t1, ...,∀tn(Tr(⌜ϕ(t1, ..., tn)⌝↔ ϕ(t1, ..., tn))

Proof. By induction on the length of ϕ. First, I consider atomic sentences:

- If ϕ(v1, ..., vn) is of the form v1 = v2, then the claim follows by T1.

- If ϕ(v1, ..., vn) is of the form Tr(v), then the claim follows by T4.

- If ϕ(v1, ..., vn) is of the form v1 ◁ v2, then the claim follows by T6.

I now consider complex statements.

- If ϕ(v1, ..., vn) is of the form ¬¬ψ(v1, ..., vn), then, by induction hypothesis, PUGT ⊢

∀t1, ...,∀tn(Tr(⌜ψ(t1, ..., tn)⌝)↔ ψ(t1, ..., tn)). Then, by Theorem 10 andKF1, PUGT ⊢ ∀t1, ...,∀tn

(Tr(⌜ψ(t1, ..., tn)⌝) ↔ Tr(⌜¬¬ψ(t1, ..., tn)⌝)). By logic, PUGT ⊢ ∀t1, ...,∀tn(ψ(t1, ..., tn) ↔

¬¬ψ(t1, ..., tn)). Thus, PUGT ⊢ ∀t1, ...,∀tn(Tr(⌜¬¬ψ(t1, ..., tn)⌝)↔ ¬¬ψ(t1, ..., tn)).

- If ϕ(v1, ..., vn) is of the form (ψ∨δ)(v1, ..., vn), then, by induction hypothesis, PUGT ⊢ ∀t1, ...,∀tn

(Tr(⌜ψ(t1, ..., tn)⌝) ↔ ψ(t1, ..., tn)) and PUGT ⊢ ∀t1, ...,∀tn(Tr(⌜δ(t1, ..., tn)⌝) ↔ δ(t1, ..., tn)).

Thus, it follows that PUGT ⊢ ∀t1, ...,∀tn(Tr(⌜ψ(t1, ..., tn)⌝)∨Tr(⌜δ(t1, ..., tn)⌝)↔ (ψ∨δ)(t1, ..., tn)).

By Theorem 10 andKF2, PUGT ⊢ ∀t1, ...,∀tn(Tr(⌜ψ(t1, ..., tn)⌝)∨Tr(⌜δ(t1, ..., tn)⌝)↔ Tr(⌜(ψ∨

δ)(t1, ..., tn)⌝)). Thus, PUGT ⊢ ∀t1, ...,∀tn((ψ ∨ δ)(t1, ..., tn)↔ Tr(⌜(ψ ∨ δ)(t1, ..., tn)⌝)).

- The proof for the other connectives and quantifiers is analogous.

Note that, if ϕ(v1, ..., vn) is not a T-positive formula, then the claim does not hold. For example, if

ϕ(v1, ..., vn) is of the form ¬Tr(v), then, by T5, it follows that PUGT ⊢ ∀t(Tr(⌜¬Tr(t)⌝)↔ Tr(¬t)).

By ConsTr, PUGT ⊢ ∀t(Tr(¬t) → ¬Tr(t)). Thus, PUGT ⊢ ∀t(Tr(⌜¬Tr(t)⌝) → ¬Tr(t)), but not

the converse. An analogous reasoning holds if ϕ(v1, ..., vn) is of the form v1 ◁ v2.

Theorem 11. PUGT proves the same theorems as KF in the language LTr with coding function

over LTr.
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Proof. We define the translation function π : L◁, ̸◁
Tr → LTr recursively by saying that:

π(ϕ) = ϕ if ϕ ∈ L is atomic

π(Tr(⌜ϕ⌝)) = Tr(⌜π(ϕ)⌝)

π(⌜ϕ⌝ ◁ ⌜ψ⌝) =

Tr(⌜π(ϕ)⌝) ∧ Tr(⌜π(ψ)⌝) if c(ϕ) < c(ψ)

⊥ otherwise

π(⌜ϕ⌝ ̸ ◁⌜ψ⌝) =

Tr(⌜¬π(ϕ)⌝) ∨ Tr(⌜¬π(ψ)⌝) if c(ϕ) < c(ψ)

⊤ otherwise

π(¬ϕ) = ¬π(ϕ)

π(ϕ ◦ ψ) = π(ϕ) ◦ π(ψ), ◦ = ∧,∨

π(Qxϕ) = Qx(π(ϕ)), Q = ∀,∃

We want to show that, if PUGT ⊢ ϕ, then KF ⊢ π(ϕ). If ϕ ∈ LTr with the coding function

restricted to LTr, then π(ϕ) = ϕ. We need to show that the translation of the ground-theoretic

axioms of PUGT can be derived from KF .

- G∗
1 : We want to show that KF ⊢ π(∀x(x ̸ ◁x)), or KF ⊢ ∀xπ(x ̸ ◁x). For all n ∈ N such that

n = #ϕ, KF ⊢ π(⌜ϕ⌝ ̸ ◁⌜ϕ⌝). c(ϕ) = c(ϕ), so the latter is equivalent to KF ⊢ ⊤, which holds

by logic.

- G2 : We want to show that KF ⊢ π(∀x∀y∀z(x ◁ z ∧ z ◁ y → x ◁ y)), or KF ⊢ ∀x∀y∀z(π(x ◁

z) ∧ π(z ◁ y) → π(x ◁ y)). For all n,m, k ∈ N such that n = #ϕ, m = #ψ and k = #δ, KF ⊢

π(⌜ϕ⌝ ◁ ⌜δ⌝) ∧ π(⌜δ⌝ ◁ ⌜ψ⌝)→ π(⌜ϕ⌝ ◁ ⌜ψ⌝). If c(ϕ) < c(δ) and c(δ) < c(ψ), then c(ϕ) < c(ψ)

and KF ⊢ Tr(⌜π(ϕ)⌝) ∧ Tr(⌜π(δ)⌝) ∧ Tr(⌜π(δ)⌝) ∧ Tr(⌜π(ψ)⌝) → Tr(⌜π(ϕ)⌝) ∧ Tr(⌜π(ψ)⌝),

which holds by logic. If c(ϕ) ̸< c(δ) or c(δ) ̸< c(ψ), then KF ⊢ ⊥ → π(⌜π(ϕ)⌝ ◁ ⌜π(ψ)⌝), which

holds by logic.

- G3 : We want to show that KF ⊢ π(∀x∀y(x◁ y → Tr(x) ∧ Tr(y))), or KF ⊢ ∀x∀y(π(x◁ y)→

π(Tr(x))∧ π(Tr(y))). For all n,m ∈ N such that n = #ϕ and m = #ψ, KF ⊢ (π(⌜ϕ⌝ ◁ ⌜ψ⌝)→

Tr(⌜π(ϕ)⌝)∧Tr(⌜π(ψ)⌝)). If c(ϕ) < c(ψ), then KF ⊢ Tr(⌜π(ϕ)⌝)∧Tr(⌜π(ψ)⌝))→ Tr(⌜π(ϕ)⌝)∧

Tr(⌜π(ψ)⌝)), which holds by logic. If c(ϕ) ̸< c(ψ), then KF ⊢ ⊥ → Tr(⌜π(ϕ)⌝) ∧ Tr(⌜π(ψ)⌝)),

which also holds by logic.

- G−
3 : We want to show thatKF ⊢ π(∀x∀y(Tr(¬. x)∨Tr(¬. y)→ x ̸ ◁y)), orKF ⊢ ∀x∀y(π(Tr(¬. x))

∨π(Tr(¬. y))→ π(x ̸ ◁y)). For all n,m ∈ N such that n = #ϕ andm = #ψ, KF ⊢ Tr(⌜¬π(ϕ)⌝)∨

Tr(⌜¬π(ψ)⌝) → π(⌜ϕ⌝ ̸ ◁⌜ψ⌝). If c(ϕ) < c(ψ), then KF ⊢ Tr(⌜¬π(ϕ)⌝) ∨ Tr(⌜¬π(ψ)⌝) →
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Tr(⌜¬π(ϕ)⌝) ∨ Tr(⌜¬π(ψ)⌝), which holds by logic. If c(ϕ) ̸< c(ψ), then KF ⊢ Tr(⌜¬π(ϕ)⌝) ∨

Tr(⌜¬π(ψ)⌝)→ ⊤, which also holds by logic.

- T1, T2, T
∗∗
3 , T4, T5 and ConsTr are trivial.

- T6 : We want to show that KF ⊢ π(∀s∀t(Tr(s◁. t) ↔ s◦ ◁ t◦)), or KF ⊢ ∀s∀t(π(Tr(s◁. t)) ↔

π(s◦ ◁ t◦)). For all n,m ∈ N such that n = #ϕ, m = #ψ, KF ⊢ π(Tr(⌜⌜ϕ⌝ ◁ ⌜ψ⌝⌝)) ↔

π(⌜ϕ⌝ ◁ ⌜ψ⌝), KF ⊢ Tr(⌜π(⌜ϕ⌝ ◁ ⌜ψ⌝)⌝) ↔ π(⌜ϕ⌝ ◁ ⌜ψ⌝). If c(ϕ) < c(ψ), the latter becomes

KF ⊢ Tr(⌜Tr(⌜π(ϕ)⌝) ∧ Tr(⌜π(ψ)⌝)⌝) ↔ Tr(⌜π(ϕ)⌝) ∧ Tr(⌜π(ψ)⌝), which is equivalent to

KF ⊢ Tr(⌜Tr(⌜π(ϕ) ∧ π(ψ)⌝)⌝)↔ Tr(⌜π(ϕ) ∧ π(ψ)⌝) by KF3 and holds by T4. If c(ϕ) ̸< c(ψ),

then KF ⊢ Tr(⌜⊥⌝)↔ ⊥. The latter holds because the scheme:

KF ⊢ ∀t1, ...,∀tn(Tr(⌜ϕ(t1, ..., tn)⌝↔ ϕ(t1, ..., tn))

for all formulas ϕ(x1, ..., xn) in which the truth predicate Tr does not occur in the scope of an

odd number of negation symbols, also called T-positive formulas. (see Lemma 15.4 in Halbach

[19, p. 187] or Cantini [27]).

- T7 : We want to show thatKF ⊢ π(∀s∀t(Tr(¬. (s◁. t))↔ s◦ ̸ ◁t◦)), orKF ⊢ ∀s∀t(π(Tr(¬. (s◁. t)))↔

π(s◦ ̸ ◁t◦)). For all n,m ∈ N such that n = #ϕ, m = #ψ, KF ⊢ π(Tr(⌜¬(⌜ϕ⌝ ◁ ⌜ψ⌝)⌝) ↔

⌜ϕ⌝ ̸ ◁⌜ψ⌝), KF ⊢ Tr(⌜¬(π(⌜ϕ⌝ ◁ ⌜ψ⌝))) ↔ π(⌜ϕ⌝ ̸ ◁⌜ψ⌝). If c(ϕ) < c(ψ), the latter becomes

KF ⊢ Tr(⌜¬(Tr(⌜π(ϕ)⌝) ∧ Tr(⌜π(ψ)⌝))⌝)↔ Tr(⌜¬π(ϕ)⌝ ∨ Tr(⌜¬π(ψ)⌝), which is equivalent to

KF ⊢ Tr(⌜¬Tr(⌜π(ϕ) ∧ π(ψ)⌝)⌝) ↔ Tr(⌜¬(π(ϕ) ∧ π(ψ))⌝) by KF3 and KF4 holds by T5. If

c(ϕ) ̸< c(ψ), then KF ⊢ Tr(⌜¬⊥⌝)↔ ⊤, which is equivalent to KF ⊢ Tr(⌜⊤⌝)↔ ⊤. The latter

holds because of the scheme introduced above in the proof of T6 for T-positive formulas.

- Cons◁ : We want to show that KF ⊢ π(∀x∀y(¬(x ◁ y ∧ x ̸ ◁y))), or KF ⊢ ∀x∀y(¬(π(x ◁ y) ∧

π(x ̸ ◁y))). For all n,m ∈ N such that n = #ϕ, m = #ψ, KF ⊢ ¬(π(⌜ϕ⌝ ◁ ⌜ψ⌝) ∧ π(⌜ϕ⌝ ̸

◁⌜ψ⌝)). If c(ϕ) < c(ψ), the latter becomes KF ⊢ ¬(Tr(⌜π(ϕ)⌝) ∧ Tr(⌜π(ψ)⌝) ∧ (Tr(⌜¬π(ϕ)⌝) ∨

Tr(⌜¬π(ψ)⌝))), which is equivalent to KF ⊢ ¬(Tr(⌜π(ϕ) ∧ π(ψ)⌝) ∧ Tr(⌜¬(π(ϕ) ∧ π(ψ))⌝)) by

KF3 and KF4 holds by ConsTr. If c(ϕ) ̸< c(ψ), then KF ⊢ ¬(⊥ ∧⊤), which holds by logic.

- U1 : We want to show thatKF ⊢ π(∀x(Tr(x)→ x◁¬.¬. x)), orKF ⊢ ∀x(π(Tr(x))→ π(x◁¬.¬. x)).

For all n ∈ N such that n = #ϕ, KF ⊢ π(Tr(⌜ϕ⌝)) → π(⌜ϕ⌝ ◁ ⌜¬¬ϕ⌝), KF ⊢ Tr(⌜π(ϕ)⌝) →

π(⌜ϕ⌝ ◁ ⌜¬¬ϕ⌝)). c(ϕ) < c(¬¬ϕ), so KF ⊢ Tr(⌜π(ϕ)⌝) → Tr(⌜π(ϕ)⌝) ∧ Tr(⌜π(¬¬ϕ)⌝). KF ⊢

Tr(⌜π(ϕ)⌝)→ Tr(⌜π(ϕ)⌝) by logic and KF ⊢ Tr(⌜π(ϕ)⌝)→ Tr(⌜π(¬¬ϕ)⌝) by KF1.

- D2 : We want to show that KF ⊢ π(∀x∀y(Tr(x∨. y)→ (Tr(x)→ x◁x∨. y)∧ (Tr(y)→ y◁x∨. y))),

or KF ⊢ ∀x∀y(π(Tr(x∨. y)) → (π(Tr(x)) → π(x ◁ x∨. y) ∧ (π(Tr(y)) → π(y ◁ x∨. y)))). For all
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n,m ∈ N such that n = #ϕ, m = #ψ, KF ⊢ π(Tr(⌜ϕ ∨ ψ⌝)) → (π(Tr(⌜ϕ⌝)) → π(⌜ϕ⌝ ◁

⌜ϕ ∨ ψ⌝) ∧ (π(Tr(⌜ψ⌝)) → π(⌜ψ⌝ ◁ ⌜ϕ ∨ ψ⌝))), or KF ⊢ Tr(⌜π(ϕ ∨ ψ)⌝) → (Tr(⌜π(ϕ)⌝) →

π(⌜ϕ⌝◁⌜ϕ∨ψ⌝))∧(Tr(⌜π(ψ)⌝)→ (π(⌜ψ⌝◁⌜ϕ∨ψ⌝))). c(ϕ) < c(ϕ∨ψ), soKF ⊢ Tr(⌜π(ϕ∨ψ)⌝)→

(Tr(⌜π(ϕ)⌝) → Tr(⌜π(ϕ)⌝) ∧ Tr(⌜π(ϕ ∨ ψ)⌝)) ∧ (Tr(⌜π(ψ)⌝) → Tr(⌜π(ψ)⌝) ∧ Tr(⌜π(ϕ ∨ ψ)⌝)),

which holds by logic.

- The proof for the other upward and downward axioms is analogous.

4 Aristotelian and GG Principles

As mentioned in section 3, it not possible to naively add the Aristotelian principles to the semantics

of section 3.2 because of the inconsistency of Fine’s puzzle (Th. 3). Also, adding the GG principle

results in an analogous inconsistency involving the ground predicate instead of the truth predicate.

In section 4.1, I explain with more detail why adding the Aristotelian principles to the semantics

of section 3.2 leads to the Fine’s puzzle. I try various strategies to incorporate the Aristotelian

principles into the semantics of section 3.2 without restricting its truths. I formally show that this

cannot be done because it leads to contradictory results. Therefore, I conclude some restrictions to

the principles of the previous theories are needed to consistently add the Aristotelian principles to

them.

In section 4.2, I show that an analogous reasoning holds if we try to add the GG principle to the

semantics of section 3.2. I state and prove an analogous theorem to Fine’s puzzle (Th. 3) using the

ground predicate instead of the truth predicate. Then, I show analogous issues as before arise if we

try to add the GG principle to the semantics of section 3.2. Thus, I conclude that some restrictions

are needed also to add the GG principle to the theories of the previous sections. Moreover, I argue

that the inconsistency that follows from GG originates because of the same theoretical reasons

that give rise to Fine’s puzzle. Thus, it is possible and desirable to develop a common solution to

consistently incorporate both of them into a theory of ground.

In section 4.3, I develop a semantic model in the style of the ones of section 3.2 that incorporates

the Aristotelian and GG principles. I develop the model in two stages. First, I only consider

the propositional part of PG∗, which, as I hint at the end of section 4.2, is consistent with the

Aristotelian and GG principles. Then, I close it with the axioms of PG∗ about the quantifiers and
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derive ground relations whose ground or grounded is a term denoting a quantified claim. I show that

the model so constructed is consistent and, so, it avoids all the versions of Fine’s puzzle. In section

5.2, I will compare this two-stage model with the solutions proposed by Fine to his puzzle and add

philosophical motivation in support of this approach.

4.1 Aristotelian Principles

The aim of this section is to try to add the Aristotelian principles to the semantic model of section

3.230 The Aristotelian principles state that:

If ϕ is a true sentence, then Tr(⌜ϕ⌝) holds either wholly or partially in virtue of ϕ,

If ¬ϕ is a true sentence, then ¬Tr(⌜ϕ⌝) holds either wholly or partially in virtue of ¬ϕ.

Thus, I aim to change the recursive clause for the extension of ground predicate:

Rα+1 = {⟨#ϕ; #ψ⟩ : PG∗
α ⊢ ⌜ϕ⌝ ◁ ⌜ψ⌝},

to add all the ordered pairs of the kind ⟨#ϕ; #Tr(⌜ϕ⌝)⟩ for all ϕ such that Mα+1 ⊨K3
Tr(⌜ϕ⌝)

and of the kind ⟨#¬ϕ; #¬Tr(⌜ϕ⌝)⟩ for all ϕ such that Mα+1 ⊨K3 Tr(⌜¬ϕ⌝).

In general, two strategies are possible. First, we can add two axioms to PG∗ that derive sentences

of the kind ⌜ϕ⌝ ◁ ⌜Tr(⌜ϕ⌝)⌝ and ⌜¬ϕ⌝ ◁ ⌜¬Tr(⌜ϕ⌝)⌝. Second, we can add some semantic clauses

to the definition of Rα+1 that derive these additional pairs.

I examine the former strategy first. The natural candidates to be added to PG∗ as formalisation

of the Aristotelian principles are:

APT : ∀x(Tr(x)→ x◁ Tr. (x)),

APF : ∀x(Tr(¬. x)→ ¬. x◁ ¬. Tr. (x)).

However, it is easy to check that this strategy fails because of Fine’s puzzle (Th. 3). In fact,

Theorem 3 derives an inconsistency from axioms G1, G2, G3, U6 (which are all axioms of PG∗)

and either APT or APF . Thus, also the model constructed the following recursive clause on the

extension of the ground predicate:

Rα+1 = {⟨#ϕ; #ψ⟩ : PG∗
α +APT /APF ⊢ ⌜ϕ⌝ ◁ ⌜ψ⌝}

is inconsistent.

Instead, the second strategy seems more promising. Natural candidates for the semantic clauses

that need to be added to the recursive definition of Rα+1 are:
30 I take the semantics of the first stage of section 3.2 for simplicity. The exact same reasoning applies to the one at

the second stage.
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{⟨#ϕ; #Tr(⌜ϕ⌝)⟩ :Mα ⊨K3 ϕ},
{⟨#¬ϕ; #¬Tr(⌜ϕ⌝)⟩ :Mα ⊨K3

¬ϕ}.

Also, we want the recursive clause on the extension of the ground predicate to satisfy transitivity

in the sense that, if ⟨n; k⟩ ∈ Rα+1 and ⟨k;m⟩ ∈ Rα+1, then ⟨n;m⟩ ∈ Rα+1. Thus, we need to add

the Transitive Closure TC of the clauses in the recursive definition of Rα+1.

Thus, the resulting recursive definition of Rα+1 is:

RA
α+1 = {⟨#ϕ; #ψ⟩ : PG∗

α ⊢ ⌜ϕ⌝ ◁ ⌜ψ⌝} ∪ {⟨#ϕ; #Tr(⌜ϕ⌝)⟩ :Mα ⊨K3
ϕ} ∪ {⟨#¬ϕ; #¬Tr(⌜ϕ⌝)⟩ :

Mα ⊨K3 ¬ϕ}TC .

However, the model constructed in this way is inconsistent.

Lemma 7. There is some α such that the model MA
α that results from the construction of the first

stage in section 3.2 with RA
α+1 instead of Rα+1 is inconsistent. This means that there is some ϕ

such that MA
α ⊨K3

ϕ ∧ ¬ϕ.

Proof. For example, consider the following derivation31:

1) MA
0 ⊨K3

0 = 0

2) #(0 = 0) ∈ S1

3) MA
1 ⊨K3 Tr(⌜0 = 0⌝)

4) MA
1 ⊨K3

∃xTr(x) by K3 logic

5) #(∃xTr(x)) ∈ S2

6) MA
2 ⊨K3 Tr(⌜∃xTr(x)⌝)

7) Tr(⌜Tr(⌜∃xTr(x)⌝)⌝) ∈ Tr+(M2)

8) MA
3 ⊨K3

⌜Tr(⌜∃xTr(x)⌝)⌝ ◁ ⌜∃xTr(x)⌝ by axiom U6 and (7)

9) MA
2 ⊨K3 ∃xTr(x) by Lemma 232

10) MA
3 ⊨K3

⌜∃xTr(x)⌝ ◁ ⌜Tr(⌜∃xTr(x)⌝)⌝ by the new semantic causes in RA
α+1 and (9)

11) MA
3 ⊨K3

⌜∃xTr(x)⌝ ◁ ⌜∃xTr(x)⌝ by Transitivity Closure

12) MA
3 ⊨K3 ¬(⌜∃xTr(x)⌝ ◁ ⌜∃xTr(x)⌝) by G1

13) MA
3 ⊨K3

⌜∃xTr(x)⌝ ◁ ⌜∃xTr(x)⌝ ∧ ¬(⌜∃xTr(x)⌝ ◁ ⌜∃xTr(x)⌝) from (11) and (12)

In conclusion, there is not a trivial way to add the Aristotelian principles to the semantics of

section 3.2. In section 4.3, I will restrict some of its principles and construct a new K3 semantics

that incorporates the Aristotelian principles.

31 Where not specified, the steps follow from the previous ones how the construction in Definition 3 is defined.
32 We know that MA

2 ⊨K3 ∃xTr(x) because we know by Lemma 2 that M2 ⊨K3 ∃xTr(x) and MA
2 extends M2.

Alternatively, we can also prove the analogous of Lemma 2 for the new sequence of models MA by induction on α.
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4.2 GG Principle

Another principle that I aim to incorporate into the semantics of section 3.2 is the principle that

the ground grounds that the ground grounds the grounded, or GG principle, which was introduced in

section 1.4. As mentioned above, this is a common principle of theories of iterated ground, such as

Bennett [25], deRosset [24] and Litland [9], [23], which has not yet been formalised in a predicational

setting. In particular, this is a special case of iterated ground where a ground statements is the

grounded of its ground. An exemplifying instance of this principle is:

⌜0 = 0⌝ ◁ (⌜⌜0 = 0⌝ ◁ ⌜¬¬0 = 0⌝⌝).

In this section, I show that adding the GG principle to the theory of sections 3.2 and 3.3 give

rise to similar inconsistencies to the ones derived above when the Aristotelian principles are added

(Th. 3 and Lemma 7). First, I show that any axiomatic theory of ground that satisfy some rather

weak principles of ground and truth is inconsistent with the GG principle. The principle GG can

be formalised axiomatically as:

GG : ∀x∀y(x◁ y → x◁ (x◁. y)).

To derive the inconsistency, we also need the left to right direction of the T-scheme for T-positive

formulas (see Lemma 5). Thus, we assume the axiom T++ as:

T++ : ∀t1, ...,∀tn(Tr(⌜ϕ(t1, ..., tn)⌝← ϕ(t1, ..., tn)),

for all ϕ(x1, ..., xn) T-positive formulas.

Theorem 12 (Fine’s Puzzle for Ground Predicate). A theory T that contains U1, U6, T
++

and GG and proves the truth of an arbitrary sentence ϕ is inconsistent.

Proof. ϕ is an arbitrary true sentence.

1) T ⊢ Tr(⌜ϕ⌝) by assumption

2) T ⊢ ⌜ϕ⌝ ◁ ⌜¬¬ϕ⌝ from (1) by U1

3) T ⊢ ∃x(x◁ ¬.¬. x) from (2) by logic

4) T ⊢ Tr(⌜∃x(x◁ ¬.¬. x)⌝) from (3) by T++

5) T ⊢ ⌜∃x(x◁ ¬.¬. x)⌝ ◁ ⌜¬¬∃x(x◁ ¬.¬. x)⌝ from (4) by U1

6) T ⊢ Tr(⌜⌜∃x(x◁ ¬.¬. x)⌝ ◁ ⌜¬¬∃x(x◁ ¬.¬. x)⌝⌝) from (5) by T++

7) T ⊢ ⌜(⌜∃x(x◁ ¬.¬. x)⌝ ◁ ⌜¬¬∃x(x◁ ¬.¬. x)⌝)⌝ ◁ ⌜∃x(x◁ ¬.¬. x)⌝ from (6) by U6

8) T ⊢ ⌜∃x(x◁ ¬.¬. x)⌝ ◁ ⌜(⌜∃x(x◁ ¬.¬. x)⌝ ◁ ⌜¬¬∃x(x◁ ¬.¬. x)⌝)⌝ from (5) by GG
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9) T ⊢ ⌜∃x(x◁ ¬.¬. x)⌝ ◁ ⌜∃x(x◁ ¬.¬. x)⌝ by (7), (8) and G2

10) T ⊢ ¬(⌜∃x(x◁ ¬.¬. x)⌝ ◁ ⌜∃x(x◁ ¬.¬. x)⌝) by G1

11) T ⊢ ⊥ by (9) and (10)

Intuitively, as for the Fine’s puzzle in Theorem 3, the contradiction derives from the fact that

the theory T proves two plausible claims about ground. Translated in natural language, they state

that:

1) ’The fact that something grounds its own double negation grounds that the fact that something

grounds its own double negation grounds its own double negation.’

by the GG principle, and:

2) ’The fact that something grounds its own double negation grounds it own double negation

grounds the fact that something grounds its own double negation.’

by axiom U6. By combining these (1) and (2) with the transitivity and irreflexivity of ground

relations, a contradiction clearly follows.

Note that we could have derived the inconsistency also with other axioms of ground instead of

U1. For example, consider the sentence:

∃x(x◁ x∨. ⌜0 = 0⌝)

instead of:

∃x(x◁ ¬.¬. x)

and axiom U2 instead of U1. Analogously as in the proof above, we can derive:

⌜∃x(x◁ x∨. ⌜0 = 0⌝)⌝ ◁ ⌜∃x(x◁ x∨. ⌜0 = 0⌝)∨. ⌜0 = 0⌝⌝

by GG and:

⌜∃x(x◁ x∨. ⌜0 = 0⌝)∨. ⌜0 = 0⌝⌝ ◁ ⌜∃x(x◁ x∨. ⌜0 = 0⌝)⌝

by U2. From, these two, a contradiction originates as in Theorem 12.

I now prove an analogous result for the semantics in section 3.2. More precisely, I show that, if

GG is added to the recursive clause of Rα+1, an inconsistency is derived. As for the Aristotelian

principles in section 4.1, we can either add GG as an axiom of PG∗ or as an added semantic clause

on Rα+1. In the former case, Rα+1 becomes:

RG
α+1 = {⟨#ϕ; #ψ⟩ : PG∗

α +GG ⊢ ⌜ϕ⌝ ◁ ⌜ψ⌝}.
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In the latter one, Rα+1 becomes:

RGG
α+1 = {{⟨#ϕ; #ψ⟩ : PG∗

α ⊢ ⌜ϕ⌝ ◁ ⌜ψ⌝} ∪ {#ϕ; #(⌜ϕ⌝ ◁ ⌜ψ⌝) :Mα+1 ⊨K3
⌜ϕ⌝ ◁ ⌜ψ⌝}}TC .

Lemma 8. There is some α such that the models MG
α and MGG

α that results from the construction

of the first stage in section 3.2 with RG
α+1 and RGG

α+1 instead of Rα+1 are inconsistent.

Proof. I start by proving the inconsistency of MG
α :

1) MG
0 ⊨K3

0 = 0

2) Tr(⌜0 = 0⌝) ∈ Tr+(MG
0 ) from (1)

3) MG
1 ⊨K3

⌜0 = 0⌝ ◁ ⌜¬¬0 = 0⌝ from (2) by U1

4) MG
1 ⊨K3

∃x(x◁ ¬.¬. x) from (3) by K3 logic

5) Tr(⌜∃x(x◁ ¬.¬. x)⌝) ∈ Tr+(MG
1 ) from (4)

6) MG
2 ⊨K3

⌜∃x(x◁ ¬.¬. x)⌝ ◁ ⌜¬¬∃x(x◁ ¬.¬. x)⌝ from (5) by U1

7) MG
3 ⊨K3

⌜∃x(x◁ ¬.¬. x)⌝ ◁ ⌜¬¬∃x(x◁ ¬.¬. x)⌝ from (6) by Lemma 233

8) MG
3 ⊨K3 ⌜∃x(x◁ ¬.¬. x)⌝ ◁ ⌜⌜∃x(x◁ ¬.¬. x)⌝ ◁ ⌜¬¬∃x(x◁ ¬.¬. x)⌝⌝ from (7) by GG

9) Tr(⌜∃x(x◁ ¬.¬. x)⌝ ◁ ⌜¬¬∃x(x◁ ¬.¬. x)⌝) ∈ Tr+(MG
2 ) from (6)

10) MG
3 ⊨K3

⌜⌜∃x(x◁ ¬.¬. x)⌝ ◁ ⌜¬¬∃x(x◁ ¬.¬. x)⌝⌝ ◁ ⌜∃x(x◁ ¬.¬. x)⌝ from (9) by U6

11) MG
3 ⊨K3 ⌜∃x(x◁ ¬.¬. x)⌝ ◁ ⌜∃x(x◁ ¬.¬. x)⌝ from (8) and (10) by G2

12) MG
3 ⊨K3

¬(⌜∃x(x◁ ¬.¬. x)⌝ ◁ ⌜∃x(x◁ ¬.¬. x)⌝) by G1

13) MG
3 ⊨K3

⌜∃x(x◁ ¬.¬. x)⌝ ◁ ⌜∃x(x◁ ¬.¬. x)⌝ ∧ ¬(⌜∃x(x◁ ¬.¬. x)⌝ ◁ ⌜∃x(x◁ ¬.¬. x)⌝) from (11)

and (12)

Instead, if we consider MGG
α , then the derivation is the exactly the same except for the fact that

we use the new semantic clause instead of GG and the transitive closure TC instead of G2.

Thus, as for the case of the Aristotelian principles, it is not possible to trivially add the GG

principle to the semantics of section 3.2. Intuitively, the reason why, in both cases, adding these

principles leads to a contradiction is the following. The axioms of PG state that every quantified

claim Qvx, with Q = ∃,∀, is grounded in every of its true instances x(t/v). Given that we are

working in a type-free language without any restrictions on the coding function, t can be Qvx itself.

However, when x(t/v) has a certain form, the general scheme of the Aristotelian and GG principles

state that, for every term t (including Qvx), t grounds x(t/v). Therefore, allowing quantified claims

33 It is easy to check that Lemma 2 holds for MG and MGG with an analogous proof by induction on α.
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to be grounded in every of their true instances is a strong principle. The bottom line is that we need

to be careful when we add principles that derive that ground relations in which quantified claims

are the grounds, because it is likely we will derive that a quantified claim ground one of its true

instances, as I showed in Theorems 3 and 12 for the Aristotelian and GG principles. The semantics I

develop in section 4.3 restricts some of the principles of the one in section 3.2 in order to incorporate

both the Aristotelian and GG principles.

Note that the, in all the Theorems and Lemmas above, I derived the inconsistency using the

existential quantifier. However, analogous results can be proved for the universal quantifier. For

example, we assume the same assumptions of Theorem 3 except for U8 and U2 instead of U6, plus

the classical logical truth:

∀x(Tr(x) ∨ ¬Tr(x)).

Then, applying an analogous reasoning as Theorem 3, we can derive:

1) T ⊢ ⌜Tr(⌜ϕ⌝) ∨ ¬Tr(⌜ϕ⌝)⌝ ◁ ⌜ϕ⌝, where ϕ = ∀x(Tr(x) ∨ ¬Tr(x))

by applying U8 at the final step of the derivation of (1) and:

2) T ⊢ ⌜ϕ⌝ ◁ ⌜Tr(⌜ϕ⌝)⌝,
3) T ⊢ ⌜Tr(⌜ϕ⌝)⌝ ◁ ⌜Tr(⌜ϕ⌝) ∨ ¬Tr(⌜ϕ⌝)⌝, where ϕ = ∀x(Tr(x) ∨ ¬Tr(x))

by applying, respectively, the Aristotelian principle APT and U2 at the final step of the derivation

of (2) and (3). Then, it is easy to show that 1), 2) and 3) are inconsistent with transitivity and

irriflexivity of ground as in Theorem 3.

4.3 Semantics

I will develop the model in two stages. First, I develop a model using only the propositional portion

of PG∗. I construct a K3 model in the style of the ones developed in section 3.2 which is based on the

propositional axioms of PG∗ and the Aristotelian and GG principles. By proving that this model is

consistent, I provide evidence for the hint suggested at the and of the previous section that Fine’s

puzzle originates because the grounding principles on the quantifiers in PG are not compatible with

the Aristotelian or GG principles. Instead, the propositional part of PG does not give rise to the

same problems when the Aristotelian or GG principles are added to it.

To develop the first stage, first, I define the axiomatic theory that I will use in the models in the

next paragraphs. I define the propositional base theory of partial ground PG∗
P . Then, I define the

theory PGAPG by adding to PG∗
P the axioms that formalise the Aristotelian and GG principles.
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Definition 9 (PG∗
P ). The propositional base theory of partial ground PG∗

P is formed with all the

axioms of PG∗ except for the ones about the quantifiers: U6 − U9 and D6 −D9.

Definition 10 (PGAPG
α ). The theory PGAPG is formed with the axioms of PG∗

P plus two axioms

that formalise that Aristotelian principles:

APT : ∀x(Tr(x) ∧ Tr(Tr. (x))→ x◁ Tr. (x)),

APF : ∀x(Tr(¬. x) ∧ Tr(¬. Tr. (x))→ ¬. x◁ ¬. Tr. (x)).

and one that formalises the GG principle:

GG : ∀x∀y(Tr(x) ∧ Tr(x◁. y)→ x◁ (x◁. y)).

PGAPG
α is defined as Tr+l (Mα) ∪ Tr−(Mα) ∪ PGAPG, where Tr+l (Mα) is defined as {Tr(⌜ϕ⌝) :

Mα ⊨K3
ϕ and ϕ is a literal}34.

I defined the Aristotelian and GG principles as both upward and downward axioms, in the sense

that the antecedent states that both the ground and the grounded must be true. The reason for this

is that I want to stick to the formal framework of an increasing sequences of models of section 3.2.

At every stage, I define the ground relations based on a larger set of truths and the ground and the

grounded are in this set of truths. Instead, if I take the upward version of the axioms, such as:

APU
T : ∀x(Tr(x)→ x◁ Tr. (x)),

and the set of truths Tr(Mα) at level α, the fact that, for some term t, the ground Tr(t) ∈ Tr(Mα)

does not imply by K3 logic that the grounded Tr(Tr. (t)) ∈ Tr(Mα), as happens with the other

upward and downward axioms of PG∗. Moreover, from Tr(t), we can derive Tr(Tr. (t)) by AP
U
T and

G3 and this derivation can be iterated to Tr(Tr. (Tr. (t))), and so on. An analogous reasoning holds

for the upward versions APU
F and GGU of APF and GG. Thus, the idea of generating the ground

relations based on a given set of truths at every level is incompatible with use the upward version

of the axioms because they derive truths outside the initial set.

I now define the inductive definition of a sequence of models in the style of the ones developed

in Definitions 3 and 6 in section 3.2. Then, I prove that every model in the sequence is consistent.

Definition 11 (Propositional Construction Aristotelian and GG Principles). I define a

monotone operator Λ :M →M :

M0 = (N;R0;R0;S0;S0) = (N; ∅; ∅; ∅; {n : PA ⊢ ¬Sent◁Tr(n)})
34 Tr−(Mα) = {¬Tr(⌜ϕ⌝) :Mα ⊨K3

¬ϕ} as in section 3.2.
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Mα+1 = (N;Rα+1;Rα+1;Sα+1;Sα+1)

Rα+1 = {⟨#ϕ; #ψ⟩ : PGAPG
α ⊢ ⌜ϕ⌝ ◁ ⌜ψ⌝}

Rα+1 = {⟨#ϕ; #ψ⟩ : PGAPG
α ⊢ ¬(⌜ϕ⌝ ◁ ⌜ψ⌝)}

Sα+1 = {#ϕ : PGAPG
α ⊢ Tr(⌜ϕ⌝)}

Sα+1 = {#ϕ : PGAPG
α ⊢ Tr(⌜¬ϕ⌝)}

Mα = (N;Rα;Rα;Sα;Sα), α limit ordinal

Rα =
⋃

β<αRβ

Rα =
⋃

β<αRβ

Sα =
⋃

β<α Sβ

Sα =
⋃

β<α Sβ

Intuitively, at every level α, we take the literals proven by PGAPG
α as the true literals of the

model Mα, except for the condition on Sα, in which, for every ϕ ∈ L◁
Tr, if PG

APG
α−1 ⊢ Tr(⌜¬ϕ⌝),

then Mα ⊨K3 ¬Tr(⌜ϕ⌝). The reason for this is that, for example, PGAPG ⊢ Tr(⌜¬(0 = 1)⌝), but

PGAPG ̸⊢ ¬Tr(⌜0 = 1⌝). For example, we want to derive M2 ⊨K3
⌜¬(0 = 1)⌝ ◁ ⌜¬Tr(⌜0 = 1⌝)⌝,

and this can be done only with Tr(⌜¬Tr(⌜0 = 1⌝)⌝) as assumption. It is easy to see that the latter

can be derived by PGAPG
1 with the modified clause on Sα+1.

Lemma 9. Th(Mα) is increasing in α. For α and for all ϕ ∈ L◁
Tr, if ϕ ∈ Th(Mα), then ϕ ∈

Th(Mα+1).

Proof. By induction on α. Given some α, I show that, if ϕ ∈ Th(Mα), then ϕ ∈ Th(Mα+1).

If PGAPG
α−1 ⊢ ϕ, then Tr+l (Mα−1) ∪ Tr−(Mα−1) ∪ PGAPG ⊢ ϕ. By induction hypothesis,

Th(Mα−1) ⊆ Th(Mα), so Tr
+
l (Mα−1) ⊆ Tr+l (Mα) and Tr

−(Mα−1) ⊆ Tr−(Mα). Thus, Tr
+
l (Mα)∪

Tr−(Mα) ∪ PGAPGϕ and PGAPG
α ⊢ ϕ.

Given the previous fact, it is easy to check that, if ϕ is a literal, then, if ϕ ∈ Th(Mα), then

ϕ ∈ Th(Mα+1). Then, the claim generalizes to all sentence as in Lemma 2.

Definition 12 (ω-complexity). For all α, I define an ω-complexity function cMα
relative to a

model Mα as a partial function from formulas to ordinals such that, for all ϕ ∈ Th(Mα):

if ϕ is a literal and ϕ ∈ L, then cMα
(ϕ) = 0,

if ϕ = ¬(⌜ψ⌝ ◁ ⌜δ⌝), then cMα
(ϕ) = 0,

if ϕ = Tr(⌜ψ⌝), then cMα(ϕ) = ω + cMα(ψ),
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if ϕ = ¬Tr(⌜ψ⌝), then cMα(ϕ) = ω + cMα(¬ψ),

if ϕ = ⌜ψ⌝ ◁ ⌜δ⌝, then cMα
(ϕ) = ω +max{cMα

(ψ) :Mα ⊨K3
ψ; cMα

(δ) :Mα ⊨K3
δ},

if ϕ = ¬¬ψ, then cMα
(ϕ) = cMα

(ψ) + 1,

if ϕ = ψ ∨ δ, then cMα(ϕ) = max{cMα(ψ) :Mα ⊨K3 ψ; cMα(δ) :Mα ⊨K3 δ}+ 1,

if ϕ = ψ ∧ δ, then cMα
(ϕ) = max{cMα

(ψ); cMα
(δ)}+ 1,

if ϕ = ¬(ψ ∧ δ), then cMα
(ϕ) = max{cMα

(¬ψ) :Mα ⊨K3
¬ψ; cMα

(¬δ) :Mα ⊨K3
¬δ}+ 1,

if ϕ = ¬(ψ ∨ δ), then cMα(ϕ) = max{cMα(¬ψ); cMα(¬δ)}+ 1.

Theorem 13. For all α, Mα is consistent. In other words, for all ϕ ∈ L◁
Tr, it is not the case that

Mα ⊨K3
ϕ and Mα ⊨K3

¬ϕ.

Proof. The structure of the proof is similar to the one of Theorem 5. By induction on α, M0

is clearly consistent, then, assuming that Mα is consistent, we need to show that Mα+1 is also

consistent. We prove that the claim holds for all atomic sentences with the truth and ground

predicate with the next Lemmas, in the sense that, for all terms s and t, if Mα ̸⊨K3 Tr(s)∧¬Tr(s),

then Mα+1 ̸⊨K3
Tr(s) ∧ ¬Tr(s) and, if Mα ̸⊨K3

s ◁ t ∧ ¬(s ◁ t), then Mα+1 ̸⊨K3
s ◁ t ∧ ¬(s ◁ t).

Then, the claim generalises to all sentences as in Theorem 5.

To check that the claim holds for all atomic sentences, I first show that the classical theory

PGAPG
α is consistent. To show this, I construct a model for it. I construct a classical model MCL

α

as MCL
α = (N;RCL

α ;SCL
α ) in the style of Lemma 3. I define the extension of the ground predicate

RCL
α and the extension of the truth predicate SCL

α as:

RCL
α = {⟨#ϕ; #ψ⟩ : #ϕ ∈ SCL

α ,#ψ ∈ SCL
α , cMα(ϕ) < cMα(ψ), cMα(ϕ) and cMα(ψ) are defined}

SCL
α = {#ϕ : Tr(⌜ϕ⌝) ∈ Tr+(Mα)

35}

From the consistency of PGAPG
α , it follows that the claim holds for atomic sentences with the

ground predicate. Then, to prove it also holds for the atomic sentences with the truth predicate, I

prove that, for all ϕ ∈ L◁
Tr, it is not that case that PGAPG

α ⊢ Tr(⌜ϕ⌝) and PGAPG
α ⊢ Tr(⌜¬ϕ⌝).

Then, the claim follows by the clause on Sα+1.

Lemma 10. MCL
α is a model for PGAPG

α .

Proof. We need to check that MCL
α is a model for PGAPG

α , i.e., for all ϕ ∈ L◁
Tr, if PG

APG
α ⊢ ϕ, then

MCL
α ⊨ ϕ. Thus, we need to check that MCL

α satisfies Tr+l (Mα), Tr
−(Mα) and all the axioms of

PGAPG.
35 Tr+(Mα) = {Tr(⌜ϕ⌝) :Mα ⊨K3

ϕ} as in section 3.2.
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- First, we check that, if PGAPG
α ⊢ Tr(⌜ϕ⌝) because Tr(⌜ϕ⌝) ∈ Tr+l (Mα), then M

CL
α ⊨ Tr(⌜ϕ⌝).

Tr+l (Mα) ⊆ Tr+(Mα) and, by definition of SCL
α , if Tr(⌜ϕ⌝) ∈ Tr+(Mα), then #ϕ ∈ SCL

α and

MCL
α ⊨ Tr(⌜ϕ⌝).

- Second, we check that, if PGAPG
α ⊢ ¬Tr(⌜ϕ⌝) because ¬Tr(⌜ϕ⌝) ∈ Tr−(Mα), then MCL

α ⊨

¬Tr(⌜ϕ⌝). If ¬Tr(⌜ϕ⌝) ∈ Tr−(Mα), then Mα ⊨K3
¬ϕ, then Mα ̸⊨K3

ϕ because Mα is consistent,

Tr(⌜ϕ⌝) ̸∈ Tr+(Mα) and #ϕ ̸∈ Sα, M
CL
α ̸⊨ Tr(⌜ϕ⌝) and MCL

α ⊨ ¬Tr(⌜ϕ⌝).

- G1 : ∀x¬(x◁ x), easy, by the complexity condition in RCL
α .

- G2 : ∀x∀y∀z(x◁ z ∧ z◁ y → x◁ y), easy, by the complexity condition in RCL
α and the condition

that the numbers of the ground and the grounded in a true ground relation are in SCL
α .

- G3 : ∀x∀y(x◁y → Tr(x)∧Tr(y)), easy, by the condition in RCL
α that the numbers of the ground

and the grounded in a true ground relation are in SCL
α .

- T1, T2 and T ∗
3 are trivial.

- APT : ∀x(Tr(x) ∧ Tr(Tr. (x)) → x ◁ Tr. (x)). This means that, for all n ∈ N such that n = #ϕ,

MCL
α ⊨ Tr(⌜ϕ⌝) ∧ Tr(⌜Tr(⌜ϕ⌝)⌝) → ⌜ϕ⌝ ◁ ⌜Tr(⌜ϕ⌝)⌝. If MCL

α ⊨ Tr(⌜Tr(⌜ϕ⌝)⌝) and MCL
α ⊨

Tr(⌜ϕ⌝), then #Tr(⌜ϕ⌝) ∈ SCL
α and #ϕ ∈ SCL

α . cMα+1(ϕ) < ω + cMα(ϕ) = cMα(Tr(⌜ϕ⌝)). Note

that cMα
(ϕ) and cMα

(Tr(⌜ϕ⌝)) are defined because Tr(⌜ϕ⌝) ∈ Tr+(Mα) and Tr(⌜Tr(⌜ϕ⌝)⌝) ∈

Tr+(Mα), so Mα ⊨K3
ϕ and Mα ⊨K3

Tr(⌜ϕ⌝). Thus, MCL
α ⊨ ⌜ϕ⌝ ◁ ⌜Tr(⌜ϕ⌝)⌝. Analogously for

APF .

- GG : ∀x∀y(Tr(x) ∧ Tr(x◁. y) → x ◁ (x◁. y)). This means that, for all n,m ∈ N such that

n = #ϕ, m = #ψ MCL
α ⊨ Tr(⌜ϕ⌝) ∧ Tr(⌜⌜ϕ⌝ ◁ ⌜ψ⌝⌝) → ⌜ϕ⌝ ◁ (⌜⌜ϕ⌝ ◁ ⌜ψ⌝⌝). If MCL

α ⊨

Tr(⌜⌜ϕ⌝ ◁ ⌜ψ⌝⌝) and MCL
α ⊨ Tr(⌜ϕ⌝), then #(⌜ϕ⌝ ◁ ⌜ψ⌝) ∈ SCL

α and #ϕ ∈ SCL
α . cMα(ϕ) <

ω+max{cMα
(ϕ); cMα

(ψ)} = cMα
(⌜ϕ⌝◁⌜ψ⌝). Note that cMα

(ϕ) and cMα
(⌜ϕ⌝◁⌜ψ⌝) are defined

because Tr(⌜ϕ⌝) ∈ Tr+(Mα) and Tr(⌜ϕ⌝ ◁ ⌜ψ⌝) ∈ Tr+(Mα), so Mα ⊨K3
ϕ and Mα ⊨K3

⌜ϕ⌝ ◁ ⌜ψ⌝. Thus, MCL
α ⊨ ⌜ϕ⌝ ◁ (⌜ϕ⌝ ◁ ⌜ψ⌝).

I now prove the claim for some exemplifying cases of the downward and upward axioms. The

remaining ones can be proved with analogous arguments.

- U1 : ∀x(Tr(x)→ x◁¬.¬. x). This means that, for all n ∈ N such that n = #ϕ, MCL
α ⊨ Tr(⌜ϕ⌝)→

⌜ϕ⌝ ◁ ⌜¬¬ϕ⌝. If MCL
α ⊨ Tr(⌜ϕ⌝), then #ϕ ∈ SCL

α , Tr(⌜ϕ⌝) ∈ Tr+(Mα), Mα ⊨K3
ϕ and, by K3

logic, Mα ⊨K3
¬¬ϕ, then Tr(¬¬ϕ) ∈ Tr(Mα) and #¬¬ϕ ∈ SCL

α . Also, cMα
(ϕ) < cMα

(ϕ) + 1 =

cMα(¬¬ϕ). Thus, MCL
α ⊨ ⌜ϕ⌝ ◁ ⌜¬¬ϕ⌝.

- D3 : ∀x∀y(Tr(x∧. y)→ (x◁x∧. y)∧(y◁x∧. y)). This means that, for all n,m ∈ N such that n = #ϕ,

66



m = #ψ, MCL
α ⊨ Tr(⌜ϕ ∧ ψ⌝) → (⌜ϕ⌝ ◁ ⌜ϕ ∧ ψ⌝) ∧ (⌜ψ⌝ ◁ ⌜ϕ ∧ ψ⌝). If MCL

α ⊨ Tr(⌜ϕ ∧ ψ⌝),

then #(ϕ ∧ ψ) ∈ SCL
α , Tr(⌜ϕ ∧ ψ⌝) ∈ Tr(Mα), Mα ⊨K3

ϕ ∧ ψ and, by K3 logic, Mα ⊨K3
ϕ and

Mα ⊨K3
ψ, Tr(⌜ϕ⌝) ∈ Tr(Mα) and Tr(⌜ψ⌝) ∈ Tr(Mα) and #ϕ ∈ SCL

α and #ψ ∈ SCL
α . cMα

(ϕ) <

max{cMα(ϕ); cMα(ψ)}+1 = cMα(ϕ∧ψ) and cMα(ψ) < max{cMα(ϕ); cMα(ψ)}+1 = cMα(ϕ∧ψ).

Thus,MCL
α ⊨ ⌜ϕ⌝◁⌜ϕ∧ψ⌝ andMCL

α ⊨ ⌜ψ⌝◁⌜ϕ∧ψ⌝ andMCL
α ⊨ (⌜ϕ⌝◁⌜ϕ∧ψ⌝)∧(⌜ψ⌝◁⌜ϕ∧ψ⌝).

Lemma 11. For all ϕ ∈ L◁
Tr, it is not that case that PGAPG

α ⊢ Tr(⌜ϕ⌝) and PGAPG
α ⊢ Tr(⌜¬ϕ⌝).

Proof. Suppose PGAPG
α ⊢ Tr(⌜ϕ⌝) and PGAPG

α ⊢ Tr(⌜¬ϕ⌝). By the previous Lemma 10, we know

that, if PGAPG
α ⊢ Tr(⌜ϕ⌝), then Tr(⌜ϕ⌝) ∈ Tr+(Mα) and Mα ⊨K3 ϕ. Analogously, if PGAPG

α ⊢

Tr(⌜¬ϕ⌝), then Tr(⌜¬ϕ⌝) ∈ Tr+(Mα) and Mα ⊨K3
¬ϕ. By inductive hypothesis, we know that Mα

is consistent. Thus, it cannot be that PGAPG
α ⊢ Tr(⌜ϕ⌝) and PGAPG

α ⊢ Tr(⌜¬ϕ⌝).

Note that, at every level α, there are true quantified sentences. For example, at level 0, all the

quantified truths of the standard model of arithmetic are true and, for every α ≥ 1,Mα ⊨K3 ∃xTr(x)

follows from the fact that there is at least one truth is satisfied, e.g. Tr(⌜0 = 0⌝). However, it is

important to highlight that, in all models of the construction, there are not true ground statements

with the numeral of a quantified claim as an arguments. Intuitively, this follows from the fact that

PGAPG
α contains the truth set of the true literals at the previous level, not of all sentences as in

section 3.2. Thus, it does not prove the truth of quantified sentences and it does not prove ground

relations based on them.

Observation 2. For all α and ϕ ∈ L◁
Tr, cMα

(Qvϕ) and cMα
(¬Qvϕ), with Q = ∀,∃, are not defined.

Thus, for all ψ ∈ L◁
Tr, M

CL
α ̸⊨ ⌜ψ⌝ ◁ ⌜Qvϕ⌝, MCL

α ̸⊨ ⌜Qvϕ⌝ ◁ ⌜ψ⌝, MCL
α ̸⊨ ⌜ψ⌝ ◁ ⌜¬Qvϕ⌝,

MCL
α ̸⊨ ⌜¬Qvϕ⌝ ◁ ⌜ψ⌝. By Lemma 10, for all α, if Mα+1 ⊨K3

ϕ, then MCL
α ⊨ ϕ. Thus, for all

α and ϕ, ψ ∈ L◁
Tr, Mα+1 ̸⊨K3

⌜ψ⌝ ◁ ⌜Qvϕ⌝, Mα+1 ̸⊨K3
⌜Qvϕ⌝ ◁ ⌜ψ⌝, Mα+1 ̸⊨K3

⌜ψ⌝ ◁ ⌜¬Qvϕ⌝,

Mα+1 ̸⊨K3 ⌜¬Qvϕ⌝ ◁ ⌜ψ⌝.

The existence of fixed points for this construction can be proved analogously to the constructions

in section 3.2. I now take a fixed point of the construction36 and close its theory with the axioms of

PG∗ about the quantifiers in order to derive ground relations between quantified sentences. Formally,

the idea to define the quantified base theory of partial ground PG∗
Q by taking only the upward and

36 I will take the least fixed point MI for simplicity, but the reasoning can be generalised analogously to all fixed
points.
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downward axioms that are about the quantifiers. Then, I build a new sequence of models by the

inductively applying the axioms of PG∗
Q starting from the theory of the fixed point MI .

Definition 13 (PG∗
Q). The quantified base theory of partial ground PG∗

Q is formed with all the

axioms of PG∗ except for the ones about the propositional connectives: U1 − U5 and D1 −D5.

Definition 14 (Closure under the quantifiers). Given the fixed point MI of Definition 11, its

closure under the quantifiers is defined with the following operator ΛQ :M →M :

MQ
0 = (N;RQ

0 ;R
Q
0 ;S

Q
0 ;SQ

0 ) = (N; {⟨#ϕ; #ψ⟩ :MI ⊨K3 ⌜ϕ⌝◁⌜ψ⌝}; {⟨#ϕ; #ψ⟩ :MI ⊨K3 ¬(⌜ϕ⌝◁

⌜ψ⌝)}; {#ϕ :MI ⊨K3
Tr(⌜ϕ⌝)}; {#ϕ :MI ⊨K3

¬Tr(⌜ϕ⌝)})

MQ
α+1 = (N;RQ

α+1;R
Q
α+1;S

Q
α+1;S

Q
α+1)

RQ
α+1 = {⟨#ϕ; #ψ⟩ : PGQ

α
37 ⊢ ⌜ϕ⌝ ◁ ⌜ψ⌝}

RQ
α+1 = {⟨#ϕ; #ψ⟩ : PGQ

α ⊢ ¬(⌜ϕ⌝ ◁ ⌜ψ⌝)}

SQ
α+1 = {#ϕ : PGQ

α ⊢ Tr(⌜ϕ⌝)}

SQ
α+1 = {#ϕ : PGQ

α ⊢ Tr(⌜¬ϕ⌝)}

MQ
α = (N;RQ

α ;R
Q
α ;SQ

α ;SQ
α ), α limit ordinal

RQ
α =

⋃
β<αR

Q
β

RQ
α =

⋃
β<αR

Q
β

SQ
α =

⋃
β<α S

Q
β

SQ
α =

⋃
β<α S

Q
β

Theorem 14. For allα, MQ
α is consistent.

Proof. The proof is similar to the one of Theorem 13. By induction on α. MQ
0 is consistent because

MI is consistent. For an arbitrary α, if MQ
α is consistent, we want to show that MQ

α+1 is consistent.

The interesting step is to check that the claim holds for atomic sentences. To prove this for atomic

ground sentences, we prove that PGQ
α is consistent. From this fact, we use an analogous proof of

Lemma 11 to prove the claim also for atomic truths. To prove the consistency of the theory PGQ
α , we

we build a classical model for it. ϕ ∈ LP means that ϕ is in the propositional part of the language

L◁
Tr, in the sense that it does not contain symbols of quantifiers ∃ or ∀. ϕ ̸∈ LP means that ϕ

contains either ∃ or ∀. I define the model MCL
α = (N;RCL

α ;SCL
α ) for PGQ

α as:

37 PGQ
α is defined as in section 3.2 as Tr+(MQ

α ) ∪ Tr−(MQ
α ) ∪ PG∗

Q = {Tr(⌜ϕ⌝) : MQ
α ⊨K3

ϕ} ∪ {¬Tr(⌜ϕ⌝) :

MQ
α ⊨K3 ¬ϕ} ∪ PG∗

Q.
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RCL
α = {⟨#ϕ; #ψ⟩ : MI ⊨K3 ⌜ϕ⌝ ◁ ⌜ψ⌝, ϕ ∈ LP , ψ ∈ LP 38} ∪ {⟨#ϕ; #ψ⟩ : ϕ ∈ Th(MQ

α ), ψ ∈

Th(MQ
α ), ϕ ∈ LP , ψ ̸∈ LP }{⟨#ϕ; #ψ⟩ : ϕ ∈ Th(MQ

α ), ψ ∈ Th(MQ
α ), c(ϕ) < c(ψ), ϕ ̸∈ LP , ψ ̸∈ LP },

SCL
α = {#ϕ : ϕ ∈ Th(MQ

α )}.

I now check that MCL
Q is a model for Tr+(MQ

α ) ∪ Tr−(MQ
α ) ∪ PG∗

Q.

- Tr+(MQ
α ) and Tr−(MQ

α ) can be check analogously to Lemma 10.

- G1 : ∀x¬(x◁ x). This means that, for all n ∈ N such that n = #ϕ, MCL
α ⊨ ¬(⌜ϕ⌝◁ ⌜ϕ⌝). Then,

we need to check the three clauses of RCL
α . Respectively, MI ̸⊨K3

⌜ϕ⌝ ◁ ⌜ϕ⌝ because G1 is an

axiom of PGAPG; it cannot be that ϕ ∈ LP and ϕ ̸∈ LP ; c(ϕ) ̸< c(ϕ). Thus, ⟨#ϕ; #ϕ⟩ ̸∈ RCL
α ,

MCL
α ̸⊨ ⌜ϕ⌝ ◁ ⌜ϕ⌝ and MCL

α ⊨ ¬(⌜ϕ⌝ ◁ ⌜ϕ⌝).

- G2 : ∀x∀y∀z(x ◁ z ∧ z ◁ y → x ◁ y). This means that, for all n,m, k ∈ N such that n = #ϕ,

m = #ψ and k = #δ, MCL
α ⊨ ⌜ϕ⌝ ◁ ⌜δ⌝ ∧ ⌜δ⌝ ◁ ⌜ψ⌝ → ⌜ϕ⌝ ◁ ⌜ψ⌝. Then, there are several

possibilities depending on which of the three clauses of RCL
α make true each of the two ground

relations:

◦ Both MCL
α ⊨ ⌜ϕ⌝ ◁ ⌜δ⌝ and MCL

α ⊨ ⌜δ⌝ ◁ ⌜ψ⌝ because of the first clause of RCL
α . Then,

PGAPG
I−1 ⊢ ⌜ϕ⌝ ◁ ⌜δ⌝ and PGAPG

I−1 ⊢ ⌜δ⌝ ◁ ⌜ψ⌝ and PGAPG
I−1 ⊢ ⌜ϕ⌝ ◁ ⌜ψ⌝ because G2 is an

axiom of PGAPG, MI ⊨K3
⌜ϕ⌝ ◁ ⌜ψ⌝ and MCL

α ⊨ ⌜ϕ⌝ ◁ ⌜ψ⌝.

◦ Both MCL
α ⊨ ⌜ϕ⌝ ◁ ⌜δ⌝ and MCL

α ⊨ ⌜δ⌝ ◁ ⌜ψ⌝ because of the third clause of RCL
α . Then,

ϕ ∈ Th(MQ
α ), ψ ∈ Th(MQ

α ), c(ϕ) < c(δ) < c(ψ), ϕ ̸∈ LP and ψ ̸∈ LP , which imply

MCL
α ⊨ ⌜ϕ⌝ ◁ ⌜ψ⌝.

◦ MCL
Q ⊨ ⌜ϕ⌝ ◁ ⌜δ⌝ because of the first clause of RCL

Q and MCL
Q ⊨ ⌜δ⌝ ◁ ⌜ψ⌝ because of

the second one. Then, ϕ ∈ LP , ψ ∈ Th(MQ
α ), ψ ̸∈ LP . Also, if MI ⊨K3

⌜ϕ⌝ ◁ ⌜δ⌝, then

PGAPG
I−1 ⊢ ⌜ϕ⌝ ◁ ⌜δ⌝, Tr(ϕ) ∈ Tr+(MI−1) by Lemma 10, MI−1 ⊨K3 ϕ, MI−1 ⊨K3 ϕ by

Lemma 9 and ϕ ∈ Th(MQ
α ) because Th(MI) ⊆ Th(MQ

α )39. Thus, MCL
Q ⊨ ⌜ϕ⌝◁ ⌜ψ⌝ because

of the second clause of RCL
Q .

◦ MCL
Q ⊨ ⌜ϕ⌝ ◁ ⌜δ⌝ because of the second clause of RCL

Q and MCL
Q ⊨ ⌜δ⌝ ◁ ⌜ψ⌝ because of the

third one. Then, ϕ ∈ Th(MQ
α ), ϕ ∈ LP , ψ ∈ Th(MQ

α ), ψ ̸∈ LP . Thus, MCL
Q ⊨ ⌜ϕ⌝ ◁ ⌜ψ⌝

because of the second clause of RCL
Q .

◦ For all the remaining five possible combinations of the three clauses of RCL
Q , the antecedent

of MCL
Q ⊨ ⌜ϕ⌝ ◁ ⌜δ⌝ ∧ ⌜δ⌝ ◁ ⌜ψ⌝ → ⌜ϕ⌝ ◁ ⌜ψ⌝ is false because it implies that δ ∈ LP and

38 Note that, if MI ⊨K3
⌜ϕ⌝ ◁ ⌜ψ⌝, then ϕ ∈ LP and ψ ∈ LP by Observation 2.

39 Note that the analogous of Lemma 9 that Th(MQ
α ) is increasing in α can be proven using an analogous argument.
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δ ̸∈ LP .

- G3 : ∀x∀y(x ◁ y → Tr(x) ∧ Tr(y)). This means that, for all n,m ∈ N such that n = #ϕ, and

m = #ψ,MCL
Q ⊨ ⌜ϕ⌝◁⌜ψ⌝→ Tr(⌜ϕ⌝)∧Tr(⌜ψ⌝). IfMCL

Q ⊨ ⌜ϕ⌝◁⌜ψ⌝ becauseMI ⊨K3 ⌜ϕ⌝◁⌜ψ⌝

and ϕ ∈ LP and ψ ∈ LP , then PGAPG
I−1 ⊢ ⌜ϕ⌝◁ ⌜ψ⌝, PGAPG

I−1 ⊢ Tr(⌜ϕ⌝) by axiom G3 of PGAPG

and MI ⊨K3
ϕ. Thus, ϕ ∈ Th(MQ

α ) (see footnote 39), #ϕ ∈ SCL
Q and MCL

Q ⊨ Tr(⌜ϕ⌝). An

analogous derivation holds for MCL
Q ⊨ Tr(⌜ψ⌝). If MCL

Q ⊨ ⌜ϕ⌝ ◁ ⌜ψ⌝ because of the second or

the third clause of RCL
Q , then ϕ ∈ Th(MQ

α ), ψ ∈ Th(MQ
α ) andMCL

Q ⊨ Tr(⌜ϕ⌝), MCL
Q ⊨ Tr(⌜ψ⌝).

- T1, T2 and T ∗
3 are trivial.

I now prove the claim for some exemplifying cases of the downward and upward axioms. The

remaining ones can be proved with analogous arguments.

- U6 : ∀x∀t∀v(Tr(x(t/v)) → x(t/v) ◁ ∃.vx). This means that, for all n,m ∈ N such that n = #ϕ,

MCL
Q ⊨ Tr(n(m/v)) → n(m/v) ◁ ∃.vn. If MCL

Q ⊨ Tr(n(m/v)), then ϕ(m/v) ∈ Th(MQ
α ) and

∃vϕ ∈ Th(MQ
α ) by K3-logic. ∃vϕ ̸∈ LP . If ϕ(m/v) ∈ LP , then MCL

Q ⊨ n(m/v) ◁ ∃.vn. If

ϕ(m/v) ̸∈ LP , then MCL
Q ⊨ n(m/v)◁ ∃.vn because c(ϕ(m/v)) < max{c(ϕ(d))}+ 1 = c(∃vϕ).

- D8 : ∀x∀v(Tr(∀.vx) → ∀t(x(t/v) ◁ ∀.vx)). This means that, for all n ∈ N such that n = #ϕ,

MCL
Q ⊨ Tr(∀.vn) → ∀t(n(t/v) ◁ ∀.vn). If MCL

Q ⊨ Tr(∀.vn), then ∀vϕ ∈ Th(MQ
α ) and, for all

t, ϕ(t/v) ∈ Th(MQ
α ) by K3 logic. ∀vϕ ̸∈ LP . Since t is a numeral, it does not matter for

ϕ(t/v) being or not in LP . Thus, either ϕ(t/v) ∈ LP for all t and MCL
Q ⊨ ∀t(n(t/v)◁ ∀.vn). Or

ϕ(t/v) ∈ LP for all t, c(ϕ(n(t/v)) < max{c(ϕ(d))}+ 1 = c(∀vϕ) and MCL
Q ⊨ ∀t(n(t/v)◁ ∀.vn).

The existence of fixed points for this construction can be proved analogously to the constructions

in section 3.2. Note that, as mentioned above, for example, MI ⊨K3
∃xTr(x). The novelty of the

closure under the quantifiers is that, for example, MQ
1 ⊨K3 ⌜Tr(⌜0 = 0⌝)⌝ ◁ ⌜∃xTr(x)⌝. Thus,

also MQ
1 ⊨K3

Tr(⌜∃xTr(x)⌝) by axiom G3 and, so, it follows that MQ
2 ⊨K3

⌜Tr(⌜∃xTr(x)⌝)⌝ ◁

⌜∃xTr(x)⌝. Therefore, one of the two ’problematic’ sentences that give rise to Fine’s puzzle (Th.

3) is true in the model. More precisely, it is true the one that follows from the grounding axioms

about the quantifiers in PG∗, while the one that follows from the Aristotelian principles is not true

because I restricted their application to the propositional part of PG∗. Note that the same does

not hold for the sentences that give rise to Fine’s puzzle with the GG principle (Th. 12). This

is because, when I closed the propositional theory with the quantifiers, I closed it with the theory
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PG∗
Q, which does not contain the axioms of PG∗ about the propositional connectives. For example,

it cannot derive ⌜∃x(x◁ ¬.¬. x)⌝ ◁ ⌜¬¬∃x(x◁ ¬.¬. x)⌝. However, this sentence is true in the classical

model for PGQ
α of Theorem 14. Thus, even if PGQ

α does not prove these kind of sentences, they are

not inconsistent with PGQ
α . Therefore, it is possible build a closure based on a stronger theory that

prove them and, so, also proves one of the two ’problematic’ sentences that give rise to the puzzle

of Theorem 12 (e.g. that proves ⌜⌜∃x(x◁ ¬.¬. x)⌝ ◁ ⌜¬¬∃x(x◁ ¬.¬. x)⌝⌝ ◁ ⌜∃x(x◁ ¬.¬. x)⌝).

5 Philosophical Discussion

5.1 Strong Kleene Logic and Theories of Ground

One of the main results of the theories developed in section 3 is to show that there are strong

symmetries between the type-free solutions to the Liar paradox (Th. 1) and the type-free solutions

to the paradox of self-referentiality for the ground predicate (Th. 2). In this section, I focus on

whether there are specific advantages in adopting a type-free non-classical approach for theories

of ground, other than the generic pros and cons of type-free theories I described in section 3.1.

In the context of theories of truth, the main disadvantage of adopting a type-free solution to the

Liar paradox is that it requires the use of a non-classical logic and the rejection of the Principle of

Bivalence of classical logic that asserts that there are only two exhaustive and mutually exclusive

truth values (true and false) for all propositions. In a formal setting based on K3 logic, this implies

that there exists a third truth value intermediate between truth and falsity that can be interpreted

as undetermined or neither true nor false. From this, the distinction between being not true and

being false introduced in section 3.3 follows.

The application of the same formal setting to theories of ground and to the ground predicate

results in the fact that, give two terms s and t, there exists a third intermediate possibility between

’s ground t’ and ’s does not ground t’ and that the negation of the former one (i.e. ’it is not the

case that s grounds t’) is not equivalent to the latter one. At first glance, this distinction seems

unjustified because it is natural to assume that either something grounds something else, or it does

not ground it, and there is not an intermediate state between these two possibilities. However, the

principles of grounding formalised in theories of ground, both predicational and operational ones,

do not aim to derive all the true ground relations and their true negations. They derive the ground

relations that hold because of the general principles of ground (axioms G1−G3 of PG) and because
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of the ground principles between logically complex truths and their simpler parts (upward and

downward axioms of PG). Also, they derive the negations of ground relations that hold because of

these principles. For simplicity, we can call these principles the logical principles of ground because

they are either principles of the pure logic of ground (G1 − G3) or of the impure one (upward and

downward axioms)40.

It is natural to assume that not all true ground relations holds ’by logic’. For example, ground

relations can follow from metaphysical principles. The Aristotelian and GG principles analysed in

the previous sections are examples of this fact. They derive ground relations which do not hold

’by logic’, but because we adhere to the truth of certain metaphysical principles. In general, many

philosophical and scientific theories implicitly or explicitly establish ground relations between facts

which are not supposed to hold because of the logical principles mentioned above41. Thus, given

two terms s and t, we can interpret the ground predicate in the K3 theories of section 3 as ’s

grounds t ”by logic”’ and its negation as ’s does not ground t ”by logic”’. Therefore, it is natural to

assume that there is third domain of pairs of sentences for which the logical principles do not prove

a ground relation between them exists, nor they prove it does not exist, but such that other theories

or principle can prove that a ground relation or its negation holds between them.

Therefore, the use of K3 models as formalisation of theories of ground has intuitive plausibility

because there are pairs of sentences for which the principles of the theory do not determine whether

one grounds the other or not. This case is different from the one in which the principle of the theory

determine that a ground relation does not hold. Thus, the distinction between ’it is not the case

that s grounds t’ and ’s does not ground t’ has intuitive plausibility. Also, the other non-classical

logics mentioned in section 3.1 that can solve the paradoxes of self-referentiality, such as the ones

with truth-value gluts (LP or FDE), do not have the intuitive plausibility of K3 because they would

imply that there are cases for which a ground relation holds and does not hold. Instead, the truth

value gaps of K3 fits well with the idea that there are ground relations not determined by the theory.

Two possible replies to this interpretation of theories of grounding are the following ones. First,

one might argue that, when further principles than the logical ones are added to the theory (e.g the

Aristotelian and GG in section 4), then the source of indeterminacy is removed and using classical

logic becomes the most natural choice. However, given that ground relations can be established by

40 See section 2.1 for an introduction to the pure and impure logic of ground.
41 See the examples at the beginning of in section 1.1 for some illustrative cases.
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many theories and principles of different disciplines42, it seems implausible to be able to find the

principles that derive all ground relations and express all of them in a single theory. Moreover, this

would be substantial philosophical claim and it is better if formal theories of ground do not depend

on it. Second, one might claim that the logical principles are the only true principles of ground.

Again, this would be a substantial philosophical claim and it is better to formulate theories that

do not take its truth as an assumption and are also compatible with other views. Note that a K3

theory is compatible with the possibility that its principles derive all true ground relations. This is

the case in which all the undetermined ground relations turn out not to hold.

In conclusion, I highlight two further facts in favour of this interpretation of theories of ground

which are specific to predicational ones. First, the base theory of ground PG can also be interpreted

in this way. In fact, since PG extends PA, it is incomplete because of Gödel incompleteness theorem.

In particular, PG does not prove many ground statement, nor their negation, even basic ones such

as PG ̸⊢ ⌜0 = 0⌝◁⌜1 = 1⌝ and PG ̸⊢ ¬(⌜0 = 0⌝◁⌜1 = 1⌝)43. In fact, there is not only one classical

model valid for PG, but a family of models that assign different truth values to the grounding

claims not proven by PG. Thus, they are models of all the different ways ground relations would

be determined if all principles of ground were known. Instead, the idea behind using a K3 model is

to explicitly leave as undetermined the truth value of the ground relations which are not decided by

the theory and, eventually, decide them when further principles are added to it. In this sense, K3

theories more explicitly formalise the the idea that theories of ground formalise some, but not all,

principles of ground, and they do not aim to determine all ground relations.

Second, the use of the arithmetical framework in which all existing predicational theories of

ground are developed is not motivated by the aim of deriving all the true ground relations in this

specific domain, but to formulate some basic principles of ground that are valid in general. In fact,

the use of arithmetic is not motivated by a special interest in the specific ground relations that

hold or do not hold between arithmetic facts, but to use a well-developed and relatively simple

framework to formalise general principles which aim to be valid for all the domains in which the

notion of grounding matters. Even if there were ground relations that only hold in the domain of

natural numbers, they would not be very interesting for the purposes of the theory and they should

42 The fact that the domain of the theories of this paper is the natural numbers limits the kinds of principles of
ground that can be added to them. Nevertheless, even in this specific domain, different principles can be added, such
as the Aristotelian and GG principles.

43 See also section 3.2.
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not be formalised in it. Therefore, the possibility of undetermined ground relations is implicit in the

motivation for developing these theories.

5.2 Solutions to Fine’s Puzzle and the Hierarchy of Truths

Fine’s ([4, pp. 103-107]) diagnosis of why the puzzles described in sections 4.1 and 4.2 originate is

the following. Once we assume some plausible assumptions (see Fine [4, pp. 99-101]), which, in the

formal setting of this paper, correspond to the assumptions of Theorems 3 and 12, there is a conflict

between two aspects which are constitutive of the classical approach to logic. On the one hand, there

is a plausible metaphysical view that classical truth-conditions are to be interpreted as conditions

of ground. This view is composed by two claims. First, it states that every logically complex truth

(with the exception of negations of atomic truths) is grounded in simpler ones (this principles is

called Complex Ground). Second, classical truth-conditions provide a guide to ground, in the sense

that one direction of the truth-conditions (the one from logically simpler to more complex truths)

expresses which are the grounds of a logical complex truth (this principles is called Classicality).

In the formal setting of this paper, this reading of the classical truth-conditions is formalised with

the upward and downward axioms of PG. For example, axiom U3 states that, if both conjuncts are

true, a conjunction is grounded by each of its conjuncts.

On the other hand, under the previously mentioned assumptions, this reading of the classical

truth-conditions as conditions of ground is inconsistent with some classical logical truths such as,

for example:

1) ∃x(Tr(x) ∨ ¬Tr(x)),

2) ∀x(Tr(x) ∨ ¬Tr(x)).

I have already sketched at the end of section 4.2 how we can derive a contradiction from 2), the

assumptions of Theorem 3 and the axioms of PG. A contradiction can be derived with an analogous

argument assuming 1) instead of 2). Thus, the previously introduced view about truth-conditions

is in conflict with the adherence to classical logic and the acceptance of its logical truths.

Fine [4, pp. 107-115] proposes four options to overcome the conflict between the view of classical

truth-conditions as conditions of ground and classical logical truths. The first option is to adopt a

form of predicativism. In the context of this thesis, this would be equivalent to adopt a typed-setting

that limit the expressivity of the language in a way that avoids the contradiction without restricting
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neither of the two principles in conflict. A solution to Fine’s puzzle of this kind is developed by

Korbmacher [2]. In this paper, I focus one the impredicativist options and stick within an type-free

setting. The three impredicavist options: (i) rejecting classical logic and adopting a logic in which all

the classical logical truths that give rise to the puzzle do not hold. For example, Fine suggests to use

a weak Kleene three-valued logic; (ii) rejecting the view of classical truth-conditions as conditions

of ground; (iii) adopting a compromise position in which we adopt a logic (K3) in which only the

logical truth 1) holds and the view of truth-conditions as grounding principles is restricted, but not

fully rejected. Solution (ii) is not very interesting in the context of this paper because rejecting the

view of truth-condition as conditions of ground implies rejecting most of the axioms of PG on which

the theories developed in the previous sections are based. Also, I do not delve into solutions in the

style of (i) because I want to adopt a formal framework as close as possible to classical logic and

not to reject very plausible truths such as 1). Instead, it is interesting to compare the compromise

solutions (iii) with the theories developed in this paper especially because they are both developed

in a K3 logical framework.

More precisely, on the one hand, Fine’s compromise solution consists in using K3 logic in order

to reject logical truth 2) and all the versions of the puzzle that involve the universal quantifier. On

the other hand, it avoids the versions of the puzzle that involve the existential quantifier by adopting

a weaker reading of the truth-conditions as principles of ground with respect to the usual one (which

is the one formalised by the upward and downward axioms of PG). The ground principles that he

proposes to weaken are the ones for disjunction and the existential quantifier. Intuitively, the new

ground principles state that:

3) ’Any disjunctive truth is grounded by a disjunct.’

4) ’Any existential truth is grounded by an instance.’ (Fine [4, p. 108])

Thus, these new version of the ground principle state that complex disjunctive and existential

truths are grounded, respectively, by at least one of their disjuncts and at least one of their true

instances, and not by all of them as it was for the original principles formalised in PG.

Fine ([4, pp. 110-115]) also argues that there is a relation between the impredicativist solutions

to his puzzle and Kripke’s fixed point semantics. In particular, for the compromise solution (iii),

the idea is to restrict ground relations only to couples of sentences such that the second one (the

grounded) is not at a lower level compared to the first one (the ground) in hierarchy of truths

that follows from Kripke’s construction. For example, in the semantics of section 3.2, 0 = 0 and
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0 = 0 ∨ Tr(⌜0 = 0⌝) are true at level 0, while Tr(⌜0 = 0⌝) is true at level 1. Thus, according to

this principle, ⌜0 = 0⌝ ◁ ⌜0 = 0 ∨ Tr(⌜0 = 0⌝)⌝ is an admissible ground relation, while Tr(⌜0 =

0⌝)⌝◁⌜0 = 0∨Tr(⌜0 = 0⌝)⌝ is not. Analogously to the latter one, ⌜Tr(⌜∃xTr(x)⌝)⌝◁⌜∃xTr(x)⌝ is

not admissible because Tr(⌜∃xTr(x)⌝) is true at level 2, while ∃xTr(x) is true at level 1. It is easy to

check that the original and stronger version of ground principles for disjunction and the existential

quantifier do not hold in this new approach. This is because there are ground relations between true

disjucts and true instances of a formula and, respectively, their disjunction and existential claim that

are not admissible according to the new approach. However, the weaker versions of the principles

holds because there is always at least one true disjuct or true instances of a formula that is true

at the same level of the disjunction or existential claim or lower and, so, that can ground them

according to this new approach.

Fine’s compromise approach can be easily developed starting from the semantics of section 3.2

by imposing the required restrictions of the disjunctive and existential ground relations. The main

advantage of this approach would be that it takes the dependence relation between the levels of

Kripke’s construction seriously, in the sense that it does not allow sentences true at a new level

of the hierarchy to ground sentences which were already true at the previous one. Intuitively, this

approach means that, once a truth is grounded or made true by others at the same or lower levels, it

cannot be made true again by sentences which will become true at later stages. All the true ground

relations must respect this dependence relation from lower to higher levels in Kripke’s construction.

Nevertheless, adopting this strategy implies strong restrictions on the admissible ground relations.

For example, as mentioned before, it implies that sentences like Tr(⌜0 = 0⌝)⌝◁⌜0 = 0∨Tr(⌜0 = 0⌝)⌝

are not true. As I showed in section 4.3, it not necessary to add restrictions on the disjunctive

ground relations to block Fine’s puzzle. The ground relations on the existential quantifier are also

severely restricted. For example, given that ∃xTr(x) is true at level 1, it cannot be grounded by

any sentence which become true at a level higher than 1, e.g. Tr(Tr(⌜0 = 0⌝)), even if the resulting

ground relation does not give rise to Fine’s puzzle.

In the semantics I develop in section 4.3 as a solution to Fine’s puzzle, I take a different approach.

First, I take a different and less strict interpretation of the dependence relation between the levels in

Kripke’s construction. In all true ground relations of the semantics of section 4.3 (and also of section

3.2), each grounded has a ground which is true at its same level or at a lower one. However, I do

not exclude the possibility that a sentence that becomes true at a certain level grounds another one
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which has already been made true at a previous one. Second, I aim not to restrict ground relations

unless needed to avoid Fine’s puzzle. Thus, for example, I combine the unrestricted propositional

axioms of PG and Aristotelian and GG principles and derive all ground relations that follow from

them. Third, instead of weakening the truth-conditional principles of ground as Fine suggests in his

solution (iii), I restrict the application of the Aristotelian and GG principles to the propositional

part of the theory. The philosophical motivation for this choice is the principle that quantified claims

always supervene all their instances, in the sense that they are determined only after and on the

base of all their instances being determined. The application of the Aristotelian and GG principles

to quantifies claims is in conflict with this principle because it implies that there are quantified

claims that ground some of their instances (e.g. ⌜∃xTr(x) and Tr(⌜∃xTr(x)⌝) and ∃x(x ◁ ¬.¬. x)

and ⌜∃x(x◁ ¬.¬. x)⌝ ◁ ⌜¬¬∃x(x◁ ¬.¬. x)⌝).

In this paper, I do not delve into the philosophical motivation in favor of the thesis quantified

claims supervene their instances. However, I showed in section 4.3 that adhering to this principles

allows us to develop an alternative solution to Fine’s puzzle. This solution has some intuitive

plausibility and the theoretical advantage of minimizing the needed restrictions on the grounding

principles and on the ground relations that can be derived within this approach.
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