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Abstract

Context: Machine learning models are readily accessible and extensively utilized due to their practical
utility in predictive modeling tasks. Despite the consistent performance of individual models, selecting
the appropriate model for a specific applied machine learning problem remains a significant challenge for
research modelers. Various features, such as model trainability and stakeholder comprehensibility, must
be considered when applying these models. These considerations can critically influence the long-term
viability of a machine learning model.
Method: To address this challenge, we present a meta-model for the decision-making process in the
context of machine learning model selection. The creation of this decision model adopts a systematic
research approach, combining systematic literature review, expert interviews, case studies, and design
science to investigate machine learning model selection approaches. The systematic literature review
enables us to gather and analyze relevant information from existing literature. The expert interviews
allow a critical approach to our collected data. The case studies help us assess the practical applicability
of our findings. Design science allows for the finalization of a decision model.
Results: Our study analyzed 43 common models across 72 common features. We provide a com-
prehensive taxonomy of machine learning paradigms, approaches, and domains. We provide insights
into potential model combinations, trends in model selection, evaluation measures, and frequently used
datasets for training and evaluating these models. The collected data was incorporated into a decision
model, further developed through expert interview feedback. Finally, the decision model was practically
evaluated through eight case studies.
Contribution: Our study presents a data-driven decision model that could aid research modelers in
machine learning model selection. We highlight the importance of further developing the decision model
to improve its accuracy and scope beyond its current state.

Keywords: Machine learning, model selection, decision model, systematic literature review, expert
interview, case study, design science
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1 Introduction

Introduction

Machine learning, a sub-field of artificial intelligence (AI) [1], has emerged as a pivotal domain within
computer science [2], and statistics [3], characterized by its capacity to enable systems to learn and make
decisions from data [4]. Unlike traditional programming paradigms, which rely on explicit instructions
to perform tasks, machine learning leverages algorithms to identify patterns within data and improve
performance on a given task with experience [5]. This paradigm shift has fueled advancements across
numerous fields, including natural language processing (NLP) [6], computer vision [7], and predictive
analytics [8], underscoring the transformative potential of machine learning technologies.

Central to machine learning are models, which are mathematical constructs designed to represent com-
plex relationships within data. These models serve as the foundation for learning from and making
predictions on data [9]. Typically, a machine learning model comprises a set of parameters that are
iteratively adjusted during the training phase to minimize error and enhance predictive accuracy [10].
The diversity of machine learning models is broad, encompassing supervised models [11], such as linear
regression [12] and support vector machines (SVM) [13], unsupervised models [14, 15] like clustering al-
gorithms [16], and reinforcement learning models [17] that optimize decision-making through interaction
with an environment. The nature of the data influences the choice of model [18], the specific task at
hand [19], and the desired balance between interpretability and predictive power [20].

Machine learning models are evaluated based on their performance metrics, such as accuracy, precision,
recall, and F1-score for classification tasks [21], or mean squared error for regression tasks [22]. The
iterative process of training and validating these models is critical to ensuring their robustness and
generalizability to new, unseen data [23]. The continued evolution of machine learning models, driven
by advancements in computational power and algorithmic innovation, holds promise for even greater
capabilities in analyzing and interpreting complex datasets [24].

Machine learning models are readily accessible and extensively utilized due to their practical utility in
predictive modeling tasks [25]. Research modelers are academic researchers who apply machine learning
models and techniques within their studies. Despite the consistent performance of individual models,
selecting the appropriate model for a specific applied machine learning problem remains a significant
challenge for research modelers [26]. In applying these models, various features must be considered, such
as model trainability [27] and comprehensibility for stakeholders [28]. These considerations can critically
influence the long-term viability of a machine learning model.

1.1 Background

The selection and adoption of machine learning models constitute a critical phase in the deployment
of machine learning solutions, characterized by a series of intricate and multifaceted challenges. This
process involves identifying the most suitable model for a given task and effectively integrating it into
a practical application, ensuring optimal performance and reliability. Many complexities and challenges
come into play:

Diverse model landscape: The wide variety of machine learning models, each with unique strengths
and weaknesses, requires a thorough understanding of their characteristics to choose the most appropriate
one for a given task. Supervised, unsupervised, and reinforcement learning models cater to different
application needs [29].

Data quality and quantity: Model performance is significantly influenced by data quality and quan-
tity. Data often contains noise, missing values, or imbalances, necessitating advanced preprocessing
and feature engineering [30]. Insufficient data can lead to underfitting, hindering the model’s ability to
generalize [31].

Hyperparameter tuning: Models have hyperparameters that require careful tuning for optimal perfor-
mance [32]. This involves extensive experimentation and significant computational resources, employing
methods like grid search and Bayesian optimization [33].
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1.2 Objectives and challenges

Overfitting and generalization: A major challenge is ensuring the model generalizes well to new
data. Overfitting occurs when a model captures noise in the training data, leading to poor performance
on test data [34]. Cross-validation [35], regularization [36], and dropout [37] are common techniques to
mitigate overfitting.

Evaluation metrics: Accurate model assessment depends on selecting appropriate evaluation metrics,
such as accuracy, precision, and recall for classification tasks or mean squared error for regression tasks.
Thorough cross-validation ensures the model meets performance criteria and is robust [23].

Deployment and integration: Deploying a model into production involves challenges like ensuring
computational efficiency [38], managing latency [39], and maintaining system compatibility [40]. Con-
tinuous monitoring and maintenance are vital to address issues like model drift [41], ensuring ongoing
reliability and performance.

Model selection is selecting or adopting one or multiple models among a vast set of candidate models
for a predictive modeling task [26]. There are many concerns and parameters regarding model selection,
like model performance [42] and complexity [43]. Some research modelers use an automated or dynamic
machine learning selection method, which can support complex decision-making [44, 45]. We propose
creating a decision model [46] that helps select the adequate machine learning model for a given problem.
This decision model would support research modelers in their specified machine learning fields.

Our decision model can be applied in a variety of different use cases. In practice, it provides a user with
a list of recommended models based on their suggested features. We designed the decision model so that
anyone can select one or multiple machine learning-related features from a list. Based on this selection,
the decision model will automatically generate a list of machine learning models it deems relevant to
the selected features. From this generated list, the user can select a single machine learning model to
use. Furthermore, the user could go down the provided list to compare several of the suggested machine
learning models. This versatility aids research modelers in using the decision model for various machine
learning model selection tasks.

Machine learning is a wide domain with various models, each with unique features and criteria for
evaluation [47]. These models are applied in various practical fields and many scientific papers cover-
ing research projects [48]. A model selection challenge arises when individuals responsible for making
machine learning model selection decisions, such as data scientists, are unfamiliar with all available
models and their variations [49]. This lack of familiarity can make determining which model to choose
difficult. Additionally, understanding how different models can work together and impact each other’s
performance is another challenge when selecting models for a machine learning-based system [50].

In summary, the selection and adoption of machine learning models are complex and multifaceted, requir-
ing expertise in model characteristics, data quality, hyperparameter tuning, generalization, evaluation
metrics, and deployment strategies. This iterative process is essential for successfully implementing
reliable machine learning solutions.

1.2 Objectives and challenges

With the development of a decision model come several possible hurdles. The data to be fitted into
the decision model could be insufficient, requiring further literature study collection [51]. The model
might underfit the decision parameters and not supply specific recommended machine learning models
[52]. Contrarily, the decision model might overfit and return only a handful of options at all times [53].
The decision model itself might not be robust for future advancements in machine learning. To remedy
this, the model requires a certain degree of flexibility [54]. Further questions can be raised about the
data-gathering process involved, such as whether the decision model data aligns with the views of experts
[55].

The field of machine learning-based research encompasses various machine learning models, with exam-
ples like support vector machines [13, 56], random forests (RF) [57], naïve Bayes [58], and deep learning
models like generative adversarial networks (GAN) [59], self-organising maps (SOM) [60], and multilayer
perceptrons (MLP) [61]. A thorough examination of these models and their characteristics provides a
comprehensive understanding of their advantages and limitations, offering valuable insights for future
research and development.
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1 Introduction

Machine learning models are complicated algorithms with various features we can define [62]. A single
machine learning model often supports many features [63], and the diversity between models can lead to
a sizeable list of alternative solutions for a single machine learning problem [64]. Features provide one
method of presenting solutions for machine learning model selection.

Combining different machine learning models in a research project is a common practice aimed at lever-
aging the strengths of various models to achieve more accurate predictions, enhance model robustness,
and improve overall performance [65]. There are several approaches to combining different machine
learning models with the intent of improving performance and robustness [66, 67]. Combining multiple
machine learning models in a research project involves thoughtful selection and evaluation. Analyzing
and documenting common combinations can aid in machine learning model selection [68].

Selecting the most suitable machine learning model within a decision model can be challenging due to
the vast array of models and approaches available [69]. The lack of a transparent classification scheme
further complicates the model selection process [70]. Research modelers often struggle to navigate the
multitude of available models, leading to uncertainty and a lack of confidence in selecting the optimal
model for their specific requirements [26]. Overcoming these challenges is crucial for developing effective
solutions in machine learning model recommendation tasks, underscoring the need for continued research
to enhance decision models and development processes.

For specific domains, there is no consensus on machine learning model selection. Research modelers
may perform a domain-specific performance comparison on several machine learning models, noting the
strengths and weaknesses of each model [71, 72]. Some of these comparisons ultimately conclude that no
single best model applies to their specific study domain [73, 74]. Such examples highlight the complexity
of using machine learning model selection in particular domains.

A single model can have multiple variations. Considering support vector machines, [13, 56], support
vector regression (SVR) is a variant of the same model that is suited for regression tasks rather than
classification [75]. Support Vector Machines can be further distinguished between linear SVM and
non-linear SVM variants [76]. These variants grant extended depth to a research modeler’s potential
decisions, which should support vector machines as the recommended machine learning model.

1.3 Research process

While machine learning models and their application decision models have gained significant attention
[77], existing research in this field is often scattered across diverse sources, hindering comprehensive
understanding [78]. Moreover, the multitude of machine learning models, concepts, datasets, and evalu-
ation measures utilized in this research domain can overwhelm a research modeler [79]. To address these
issues, we conducted a systematic literature review (SLR) following the guidelines of Kitchenham [80],
Xiao [81], and Okoli [82] to consolidate and analyze the information, providing a more comprehensive
understanding of the field. Additionally, we developed a decision model based on the data collected from
the literature review, serving as a valuable tool for selecting machine learning models. We expanded
the decision model to the needs of domain experts by conducting expert interviews. To evaluate the
effectiveness of the decision model, we conducted academic case studies following the guidelines outlined
by Yin [83].

Collecting and updating data systematically presents a variety of hurdles. Studies often rely on het-
erogeneous data sources, leading to an imbalance in direct data and results for a research project [84].
Obtaining high-quality and relevant data is crucial for the effectiveness of a study, which is not always
directly available due to various research constraints [85]. One way to mitigate this is through data
fusion, which combines information from multiple sources to create a unified dataset that provides an
accurate representation [86]. Data integration combines data residing in different sources, often merging
data from various databases into a single coherent repository [87]. Data standardization consists of
establishing rules and structures for data across different sources to ensure compatibility within a single
research project [88].

The decision model is designed based on a multi-criteria decision-making (MCDM) model [89]. This
provides a structured approach to evaluating and selecting the best alternative decisions based on mul-
tiple and often conflicting criteria. This structure effectively compares several machine learning models
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1.4 Related work

and their features. Research modelers provide a selection of requirements for the decision model, and
the final provided solution is a subset of machine learning models that meet all requirements.

The decision model was expanded through expert interviews. We contacted various research modelers
based on their relevant written papers and inquired how to improve our decision model. Emphasis is
put on the scalability, correctness, and flexibility of the decision model, as well as potential overhauls.

The decision model was finalized through design science, resulting in the creation of an artifact. This
artifact is our machine learning decision model, evaluated in applicability and utility. Based on this, a
usable machine learning model selection format was developed.

The decision model was evaluated through several case studies. For select papers on machine learning,
we compared the decision model the research modelers used with our decision model. We investigated
what machine learning models would be given as the final result based on our decision model, given the
research modeler’s requirements. This provided valuable insight into the scalability, correctness, and
flexibility of our decision model.

1.4 Related work

When discussing how to select the adequate machine learning model for a given problem, several existing
research papers shed perspectives with methods highlighting both the technical and social aspects of
machine learning model selection.

Pengzhi Li et al. [90] explained the principle of conventional autoencoders and investigated the primary
development process of an autoencoder. They proposed a taxonomy of autoencoder models according
to their structures and principles.

Ahmed Tealab et al. [91] studied the advances in time series forecasting models [92] using artificial
neural network methodologies [93] in a systematic literature review. They concluded that many studies
presented the application of neural network models. Still, few proposed new neural network models for
forecasting that considered theoretical support and a systematic procedure in constructing the model.

Mensah Kwabena Patrick et al. [94] provided a comprehensive review of the state-of-the-art architec-
tures, tools, and methodologies in existing implementations of capsule networks. They highlighted the
successes, failures and opportunities for further research to motivate researchers and industry players to
exploit the full potential of this new field.

Sana Aroussi et al. [95] presented an overview of user Quality of Experience (QoE) and network Quality
of Service (QoS) correlation models based on machine learning models. They proposed categorizing
correlation models, and their survey provided research modelers with the latest trends and findings
within this field.

Jie M. Zhang et al. [96] presented a comprehensive survey of techniques for testing machine learn-
ing models. The paper also analyzed trends concerning datasets, research trends, and research focus,
concluding with research challenges and promising research directions in machine learning testing.

Zhengjing Ma et al. [97] presented a comprehensive survey of relevant research on machine learning
applied in landslide prevention, mainly focusing on landslide detection based on images, susceptibility
assessment, and the development of landslide warning systems.

Neha Agarwal et al. [98] presented a systematic literature review on Web Service Clustering (WSC)
approaches to enhance service discovery, selection, and recommendation. The SLR also presented various
mandatory and optional steps of WSC, evaluation, measures, and datasets.

Amy X. Zhang et al. [99] conducted an online survey with 183 participants who work in various aspects
of data science to investigate how data science workers collaborate. They found that data science teams
are highly collaborative and work with various stakeholders and tools during the six common steps of a
data science workflow.

Suejb Memeti et al. [100] undertook a systematic literature review to aggregate, analyze, and classify
the existing software optimization methods for parallel computing systems. They reviewed approaches
that use machine learning or meta-heuristics for software optimization at compile-time and run-time.
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1 Introduction

Victoria Zakharova et al. [101] aimed to fill the research gap in understanding how data specialists
evaluate machine learning models and how they communicate results to third parties. A qualitative
research design was suggested to explore this, and semi-structured interviews with machine learning
practitioners were conducted.

Lei Cui et al. [102] provided a comprehensive survey of the advances in detecting false data attacks
using machine learning models. They further investigated the potential research directions considering
the deficiencies of current machine learning based mechanisms.

Zuhaira Muhammad Zain et al. [103] performed a comprehensive systematic literature review and meta-
analysis on the application of deep learning in software defect prediction. They provided a reference
point for future research which could be used to improve research quality in this domain.

Balaji T.K. et al. [104] provided a comprehensive survey of multiple applications of social media analysis
using robust machine learning models. They summarized the challenges and benefits of machine learning
usage in social media analysis.

Naira Kaieski et al. [105] performed a systematic literature review that aimed to provide an updated
computational perspective of how machine learning has been applied to analyze the vital signs of adult
hospitalized patients. Their findings demonstrate that many researchers are exploring the use of machine
learning models in tasks related to improving the health outcomes of hospitalized patients in distinct
units.

Manal Binkhonain et al. [106] reported a systematic review of machine learning models for identifying
and classifying non-functional requirements. Their review finds that while machine learning models
have potential in the classification and identification of non-functional requirements, they face some
open challenges that will affect their performance and practical application.

Table 1: Our study compared to related work studies.

Ref. Year Type RM #Pub DM Tr. DS Cat. MC #M #F #E
Our study 2024 Aca SLR/EI/CS/DS 275 Yes Yes Yes Yes Yes 43 72 18
[90] 2023 Aca Survey N / A No No No No No 18 0 0
[91] 2018 Aca SLR 17 No No No No No 12 0 0
[94] 2022 Aca Survey N / A No No Yes No No 1 0 0
[95] 2014 Aca Survey N / A No No No Yes No 5 10 5
[96] 2020 Aca Survey 138 No Yes Yes Yes No 0 0 0
[97] 2021 Aca Survey N / A No No No Yes No 19 0 0
[98] 2022 Aca SLR 84 No No Yes Yes No 25 18 20
[99] 2020 Aca Survey N / A No No No No No 0 0 0
[100] 2019 Aca SRL 57 No No No Yes No 26 10 0
[101] 2021 Aca Interview N / A No No No No No 0 0 0
[102] 2020 Aca Survey N / A No No Yes Yes No 26 6 0
[103] 2023 Aca SLR 63 No No Yes Yes No 31 0 15
[104] 2021 Aca Survey N / A No No Yes Yes No 19 0 24
[105] 2020 Aca SLR 78 No No No Yes No 4 0 0
[106] 2019 Aca Review N / A No No No Yes No 16 0 7

A comprehensive contextualization of our study’s position within the existing body of literature can
be observed in Table 1, identified through our systematic literature review. Our review encompassed
275 publications (#Pub), making our research extensive within this domain. The table comprises var-
ious columns, each showing distinct data. Through our SLR process, we curated only academic (Aca)
literature related to machine learning model selection spanning from 2014 to 2023.

The research methods (RM) employed in the selected studies include SLR, Survey, Review, and Interview.
Our study incorporates SLR, expert interviews, case studies, and design science, offering a holistic
perspective on machine learning model selection. This is noticeably more complex compared to the
other SLR studies, as they did not include expert interviews to improve their findings or case studies to
evaluate their findings, instead only reporting on the outcomes of the SLR process.

In comparison to the reviewed SLRs, our study stands out for its emphasis on creating a decision model
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1.5 The role of large language models in machine learning model selection

(DM), which the other studies did not mention. This decision model could be a valuable tool for research
modelers, guiding informed decisions and identifying suitable models or model combinations for specific
tasks. Regarding observed trends (Tr.) in machine learning model usage, one other study [96] reported
on this aspect. Furthermore, six other studies [94, 96, 98, 102, 103, 104] provided valuable insights into
open-access datasets (DS) that are commonly used for model evaluation, serving as valuable resources for
the research community. Additionally, our study categorized (Cat.) models, in line with ten other studies
[95, 96, 97, 98, 100, 102, 103, 104, 105, 106] in the field. However, none of the other papers reported on
model combinations (MC), making it challenging to effectively compare our model combination data.

The table highlights the magnitude of the analysis conducted in each study. Our study encompasses a
significant number of models (#M), features (#F), and evaluation measures (#E), compared to other
studies. Where most studies directly addressed models, only some accounted for features or evaluation
measures.

1.5 The role of large language models in machine learning model selection

In recent years, large language models (LLM) [107] have revolutionized the field of artificial intelligence
with their ability to understand and generate human-like text, with models like GPT [108] and Gemini
[109] being widely adopted for aid in machine learning model selection [110]. While our decision model
incorporates an MDCM approach based on defining its features a priori, large language models operate
on a conversational level with their user [111]. Large language models have proven to outperform
traditional feature engineering methods in several domains [112, 113]. Despite these capabilities, large
language models present several challenges that must be considered in machine learning model selection.

While large language models have demonstrated substantial proficiency in various tasks, their reliability
can be inconsistent. Large language models operate as black boxes, meaning their decision-making
processes are not transparent [114]. This opacity can be problematic, especially in applications requiring
high-accuracy data. Furthermore, the datasets used to train these large language models are often
proprietary and not publicly disclosed, leading to potential biases and lack of reproducibility [115]. The
creation of a custom decision model can mitigate both of these challenges. Our decision model is fully
transparent, as the inner workings of the model are only controlled by what features the user provides.
Furthermore, our decision model does not require external datasets, as its data was entirely collected
through our study’s procedures.

Large language models can come with significant computational costs, as running these models requires
substantial hardware resources and energy consumption, making them expensive to deploy and maintain
[116]. Furthermore, state-of-the-art large language models are generally paired with expensive subscrip-
tion services for practical use in research [117]. These financial burdens can be particularly challenging for
academic and scientific projects, which often operate under tight budget constraints [118]. Despite these
limitations, the necessity to employ effective machine learning models remains. Developing a custom
model selection approach can be an affordable alternative. By creating a personal artifact, organizations
can reduce dependency on expensive large language model infrastructures and subscription fees, leading
to significant cost savings. Considering this, our decision model can be an affordable alternative for
machine learning model selection.

Since large language models are trained on several datasets simultaneously, data privacy and security
arise as potential issues for model selection and training [119]. Using custom datasets can improve
data privacy and security. Organizations can ensure that sensitive information is handled appropriately,
adhering to privacy regulations and standards. Custom decision models can be designed with specific
security protocols, reducing the risk of data breaches associated with third-party data usage.

Large language models require extensive retraining to adapt to new tasks or domains [120]. Custom
models can be designed to scale efficiently and be flexible enough to adapt to evolving requirements,
providing long-term value. Unlike a pre-trained large language model, a custom decision model can be
incrementally updated with new data, maintaining its relevance over time. This scalability is crucial
for the machine learning model selection domain, as it is ever expanding with new models and feature
requirements [44].

While large language models will continue to be used in the machine learning model selection domain,
the aforementioned considerations can lead a research modeler to use a decision model instead.

10



1 Introduction

1.6 Overview
This study presents the development of a decision model. To provide a comprehensive overview, we
will discuss utilizing various research methods, including systematic literature review, expert interviews,
design science, and case studies. Additionally, it proposes using a decision model based on the collected
data to guide research modelers in making informed decisions for their machine learning applications.

Chapter 2 defines the problem statement and research questions and outlines the research methods
employed, including systematic literature review, expert interviews, case studies, and design science.

Chapter 3 outlines the methodology used in the systematic literature review, covering the review
protocol, paper collection procedures, inclusion/exclusion criteria, quality assessment techniques, data
extraction methods, synthesis processes, and systematic search approach.

Chapter 4 presents the findings and analysis of the SLR, exploring various aspects of machine learn-
ing model selection, such as models and their characteristics, feature engineering techniques, model
combinations, emerging trends, evaluation measures, and available datasets.

Chapter 5 covers the interviews conducted with domain experts, highlighting the various remarks they
gave on the data gathered, the structure of said data, and their thoughts on the concept of the decision
model itself.

Chapter 6 focuses on the practical utilization of the collected data, addressing project-specific concerns
through the introduced decision model. This meta-model is a framework for effective decision-making
suited for model selection.

Chapter 7 includes insightful academic case studies that provide practical coverage and validate the
conducted research to enrich the evaluation of findings.

Chapter 8 critically examines the outcomes of the systematic literature review, expert interviews, and
case studies, answering the research questions, discussing lessons learned, the implications of the findings,
and addressing potential threats to the study’s validity.

Chapter 9 summarizes the study’s contributions and highlights avenues for future research, providing
a cohesive closure to the research on a data-driven decision model for machine learning model selection.
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Research approach

This study adopted a systematic approach, combining SLR, expert interviews, case studies, and design
science to investigate machine learning model selection approaches. The SLR enabled us to gather and
analyze relevant information from existing literature. The expert interviews allowed a more critical
approach to our collected data. The case studies aided us in assessing the practical applicability of our
findings. Design science allowed for the finalization of a functional decision model.

2.1 Problem statement

Machine learning models are vastly applied within academic research through scientific disciplines and
practical applications [77, 121]. Their capacity to automatically learn and adapt from data has revo-
lutionized many fields [122]. Because of this, machine learning model selection stands as a cornerstone
of many projects, playing a vital role in their success [123]. Selecting the suitable machine learning
model significantly influences the quality of predictions [9], the computational efficiency [38], and the
interpretability of results [124]. Therefore, the model selection process requires careful consideration of
various features, including the nature of the problem [19], the available data [18], and the desired perfor-
mance metrics [21], making it an indispensable component of modern scientific research and technological
advancements.

Developing an effective machine learning model selection decision model relies on accurately identifying
the needs of the research project. However, machine learning model selection lacks consensus and
comprehensive analysis of optimal approaches [125]. This scattered knowledge makes it challenging for
research modelers to choose suitable models for specific scenarios [78]. Understanding prevailing trends
[26], emerging patterns [126], and appropriate evaluation measures [47] for machine learning model
selection approaches further complicates the development of effective systems. Furthermore, selecting
representative datasets for training and evaluation is not straightforward [127]. Consequently, in the
realm of machine learning model approaches, the following research challenges have been identified:

Scattered knowledge: The concepts, models, and characteristics of machine learning model ap-
proaches are dispersed across diverse academic literature, hindering informed decision-making for de-
veloping model selection systems [128]. Systematically consolidating and categorizing existing models
is demanding. Research modelers require a comprehensive taxonomy and categorization of machine
learning models to make better choices [129].

Model combinations and integration: Combining and integrating models in machine learning is
challenging [130]. Finding effective model combinations to improve the decision model accuracy requires
investigating compatibility and synergy between models [131].

Trends and emerging patterns: Understanding prevailing trends and emerging patterns in machine
learning model selection approaches is crucial [44]. Research modelers need to analyze a large volume of
research papers to identify such patterns and tailor their efforts accordingly [31].

Selecting assessment criteria: Choosing appropriate evaluation measures for assessing machine learn-
ing model approaches is challenging [132]. Research modelers must identify measures tailored to each
approach to evaluate their performance accurately [133].

Selecting datasets: Selecting suitable datasets for training and evaluating machine learning models is
complex [134]. Research modelers must analyze and choose representative datasets encompassing various
project needs to develop robust selection models [135].

Decision-making process: A comprehensive decision model encompassing various machine learning
model concepts and guidelines for selecting model combinations and conducting systematic evaluations
is missing from the existing literature [136]. Based on the MCDM structure [89], such a model could
aid research modelers in navigating the complexities of machine learning models and streamlining their
model selection decision-making processes.
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2 Research approach

2.2 Research questions

This study features a main research question with six additional research questions regarding machine
learning model selection. The MRQ is as follows:

MRQ: How can research modelers be supported in their machine learning model selection process?

The main research question provides the final result of our study. We intended to create a decision model
that aids research modelers in their machine learning model selection. Based on the identified research
challenges in machine learning model selection, the following research questions are formulated:

RQ1: Which machine learning models should be included in the machine learning model selection decision
model?

Through our SLR, we acquired a list of various machine learning models featured in papers. The models
found here were the candidates for our decision model.

RQ2: Which characteristics and features should be included in the machine learning model selection
decision model?

Through our SLR, we acquired various features related to machine learning models. These features
provided a basis for the feature criteria in our decision model.

RQ3: Which training and evaluation datasets should be included in the machine learning model selection
decision model?

Through our SLR, we acquired a list of datasets featured in papers. The datasets found here formed a
basis for the candidates in our decision model.

RQ4: Which evaluation measures and methods should be included in the machine learning model selection
decision model?

We acquired various evaluation measures related to machine learning models through our SLR. The
evaluation models found here provided a basis for the evaluation measures featured in our decision
model.

RQ5: How can a decision model be developed to support research modelers in selecting machine learning
models?

Through a combination of expert interviews and design science, we encountered many concepts that
could improve the development of our decision model. We iterated on these concepts, which shaped the
decision model’s result.

RQ6: How should the machine learning model selection decision model be evaluated?

Through a combination of case studies and design science, several concepts were identified that could
enhance the evaluation of our decision model. These concepts underwent iterative refinement, which
influenced the final outcome of the decision model.

2.3 Research methods

This section describes the research methods to answer the different research questions.

Table 2: Research questions and their proposed methods.

Research questions Literature research Expert interview Case Study Design science
MRQ: X X X X
RQ1: X
RQ2: X
RQ3: X
RQ4: X
RQ5: X X
RQ6: X X
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2.3 Research methods

We used a mixed research method [137, 138] to tackle the research questions, combining literature
research, expert interviews, case studies, and design science. Table 2 provides an overview.

Literature research: The Systematic Literature Review (SLR) allows us to understand machine learn-
ing model approaches comprehensively. The SLR followed guidelines by Kitchenham [80], Xiao [81], and
Okoli [82] to identify models, their definitions, model combinations, supported features, potential eval-
uation measures, and relevant concepts from existing literature.

An SLR is a comprehensive and structured approach to gathering and assessing existing knowledge within
a specific domain. We systematically identified, evaluated, and analyzed relevant academic literature
while following our predefined protocol described in 3.1.

The process starts with formulating several research questions and establishing the relevant criteria to
apply to study selection. Searches are conducted across various scientific databases using predefined
keywords as filters. The identified papers are then screened based on their titles and abstracts to assess
whether they are relevant enough for a full-text analysis. If so, the full text is analyzed, including the
research questions, quality assessment, and data extraction to study findings. Ultimately, the results are
synthesized to provide a comprehensive overview of the perceived current state of the knowledge in the
domain. Our SLR emphasizes the model categories, model features, model combinations, model trends,
evaluation measures, and datasets.

The synthesis of this collective data aids in further the development of the decision model and potential
future research by offering insights for research modelers within the domain. Based on the SLR findings,
we developed a machine learning model selection decision model.

Expert interview: The expert interview allowed us to shape and guide the development of our decision
model. The expert interview follows the guidelines of Meuser [139] regarding the definition of experts.
Expert interviews are an essential knowledge-acquisition technique in qualitative research.

The first step to conducting successful expert interviews is identifying the right domain experts. During
the conducting of the expert interview, it is necessary to follow a predefined policy as a systematic
approach to ask questions for specific information related to the aims of our study, which should align
with the research questions. Each interview series would follow a semi-structured interview policy lasting
30 to 60 minutes. Knowledge was captured incrementally, while the interviewer behaved as neutral as
possible.

Expert interviews have proven to be a reliable research method [140]; therefore, we further developed
our machine learning model selection decision model based on these expert interviews.

Case study: To evaluate the practical applicability of the decision model in real-world scenarios, we
conducted case studies following the guidelines of Yin [83]. A case study is an empirical research method
investigating a phenomenon within a specific context in the domain of interest. The researcher can freely
perform empirical research in any way if it can describe, evaluate, and explain their hypothesis.

Planning and scoping a case study research project that addresses research questions directly can be
challenging. The large amount of data needs to be processed correctly. The unit of analysis explains
what exemplifies a case, with a complete set of data for one study of the unit of analysis constituting a
single case [141]. It is typically defined based on the research questions and the expected level to address
said research questions [83]. The number of cases to be studied depends on the focus of the research
question, where single issues provide in-depth investigation and full description.

To evaluate our decision model, we selected multiple cases in the context of different research papers
to explore the research questions and theoretical evolution more broadly and prevent additional bi-
ases. These case studies assessed whether the proposed decision model would effectively assist research
modelers in selecting machine learning models for their projects.

Design science: Design science is an iterative process, broadly considered a problem-solving process
[142]. It attempts to produce generalizable knowledge about design processes and design decisions.

The design process can be considered similar to a theory, as a set of hypotheses that can eventually
be proven directly by the artifact they describe. The feasibility of a design can be supported through
a scientific theory so long as the design comprises all principles of said theory. Research investigations
often follow a repetitive cycle, and design science similarly tends to iterate on itself through various
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gradual changes. Design science can be applied directly to creating a model or taxonomy, where the
resulting artifact should exist so that it is robust to any potential changes or alterations in its contents.

Design science enabled us to build the machine learning selection decision model based on the data found
in the SLR and provided the foundation for its evaluation.

We addressed all research questions using this mixed research method, including literature research,
expert interviews, case studies, and design science. We contributed meaningful insights and practical
solutions to advance machine learning model selection decision models.
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Systematic literature review
methodology

This section contains the overview of the systematic literature review (SLR) and the results of each
phase.

In this study, we followed the procedures and guidelines outlined by Kitchenham [80], Xiao [81], and
Okoli [82] to address some of the research questions highlighted in Chapter 2. Accordingly, we adopted
the following review protocol to collect and extract data from relevant studies systematically. This
protocol is displayed in Figure 3.1, and is based on the protocol set by Farshidi [143, 144]. following
steps were taken to conduct the SLR:

Figure 3.1: Illustrates the review protocol employed in this study, following the prescribed procedures
and guidelines outlined by Kitchenham, Xiao, and Okoli. The review protocol consists of 12 elements
systematically executed to collect and extract data from relevant studies. These steps ensure a rigorous
investigation and adherence to scientific standards in the research process.

(1) Problem formulation: In this research phase, we followed the prescribed procedures and guidelines
of Xiao [81] to define the problem statement and research questions. By identifying the research methods,
including using an SLR, we ensured that our study addressed a subset of research questions suitable for
an SLR. This systematic approach allowed us to conduct a rigorous investigation.

(2) Initial hypotheses: During the initial stage, we considered a set of keywords to search for primary
studies that could address our research questions. These keywords formed the basis for identifying
potential seed papers, which served as the starting point for our literature review. This method enabled
us to explore relevant publications systematically.

(3) Initial data collection: We manually collected a comprehensive set of characteristics for primary
studies, including source, URL, title, keywords, abstract, venue, venue quality, type of publication,
number of citations, publication year, and relevancy level. This meticulous process ensured that our
review focused on essential information and facilitated the establishment of inclusion/exclusion criteria.

(4) Query string definition: By analyzing primary studies’ keywords, abstracts, and titles, we con-
structed a search query based on frequent terms found in highly relevant and high-quality papers. This
approach helped refine our search and ensure the inclusion of relevant publications.
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(5) Digital library exploration: We thoroughly explored digital libraries such as ACM, ScienceDirect,
and Elsevier, using the generated search query to query these databases. This systematic exploration of
reputable sources ensured the comprehensive coverage of relevant publications.

(6) Relevancy evaluation: We assessed the characteristics of the resulting publications and added
them to our collection while estimating their relevancy based on their alignment with our research
questions and challenges. This evaluation process ensured the inclusion of highly relevant publications
in our review.

(7) The pool of publications: The collected papers and their associated characteristics formed the
pool of publications that served as the foundation for our subsequent review.

(8) Publication pruning process: We rigorously applied inclusion/exclusion criteria to evaluate the
pool of publications, eliminating irrelevant material and refining the selection to include the most relevant
and high-quality studies. This process enhanced the quality and focus of our review.

(9) Quality assessment process: We assessed the quality of the remaining publications based on
established criteria, including the clarity of research questions and findings. This evaluation ensured
that only high-quality studies were included in our review, enhancing the reliability of our findings.

(10) Data extraction and synthesizing: Through systematic data extraction, we obtained relevant
information from the selected publications, synthesizing the findings to identify key insights. This
rigorous process facilitated the identification and summarization of critical information.

(11) Knowledge base: The final set of selected highly relevant and high-quality publications and their
characteristics formed a comprehensive knowledge base. Additionally, the extracted data provided a
mapping that connected specific findings to their respective sources. This knowledge base is a valuable
resource for future research, offering a consolidated summary of the essential conclusions and enabling
further analysis.

By meticulously following this systematic review protocol, we followed rigorous and scientific standards
in collecting and analyzing the relevant literature on machine learning models. This approach ensured
the validity and reliability of our study, allowing us to address the research questions identified in our
study effectively.

3.1 Paper collection

During the automatic search phase of our systematic literature review, we implemented a robust search
strategy to retrieve pertinent and high-quality publications from scientific search engines. We extracted
keywords from an initial set of publications obtained through the manual search process to formulate our
search query. These keywords were identified based on the frequent terms used by research modelers in
highly relevant and high-quality papers. We further refined the keyword selection using a topic modeling
tool, Sketch Engine [145], which helped identify pertinent additional terms. We were unsatisfied with
the number of relevant publications we found during this SLR search query, so we decided to reformulate
our search query based on the results of the first phase. We redid this phase with our new search query,
and in total, we identified 128 highly relevant and high-quality publications during this initial phase of
the SLR.

The search query was carefully constructed to target publications addressing machine learning model
selection in software engineering. It was formulated using the logical operators ”AND” and ”OR” to
combine the selected keywords. The final search query in this SLR was as follows.

("machine learning" OR "ml") AND ("model" OR "technique" OR "algorithm" OR "framework") AND
("software engineering")

The search query was employed during the automatic search phase, and the resulting publications 3009
results underwent a rigorous screening process based on our predefined inclusion/exclusion criteria.
This ensured that only relevant and high-quality publications were included in our data extraction and
analysis. The effectiveness of the search query was assessed by comparing the search results with those
obtained from the manual search to ensure consistency and comprehensiveness.
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3.2 Inclusion/exclusion criteria

Inclusion/exclusion criteria are essential guidelines used to determine the relevance and eligibility of
studies for inclusion in a systematic literature review or meta-analysis [146]. These criteria ensure that
the selected studies are high-quality and directly address the research question under investigation.
Inclusion criteria specify the characteristics or attributes a study must possess to be considered for
inclusion in the review. We employed rigorous inclusion and exclusion criteria during this study phase
to filter out irrelevant and low-quality publications. Our criteria encompassed several factors, including
the quality of the publication venue, the publication year, the number of citations, and the relevancy
of the publication to our research topic. These criteria were carefully defined and consistently applied
to ensure that only high-quality and relevant publications were included in our review. By adhering to
these criteria, we evaluated publications that provided valuable insights and contributed significantly to
our research topic. After applying our predefined inclusion/exclusion criteria, we identified and selected
524 publications from the initial pool of 3009.

3.3 Quality assessment

During the SLR, we comprehensively assessed the quality of the selected publications after applying the
inclusion/exclusion criteria. Several factors were taken into consideration to evaluate the quality and
suitability of the publications for our research:

Research method: We evaluated whether the chosen research method was appropriate for addressing
the research question. The clarity and transparency of the research methodology were also assessed.

Research type: We considered whether the publication presented original research, a review article, a
case study, or a meta-analysis. The relevance and scope of the research in the field of machine learning
were also taken into account.

Data collection method: We evaluated the appropriateness of the data collection method concerning
the research question. The adequacy and clarity of the reported data collection process were also assessed.

Evaluation method: We assessed whether the chosen evaluation method was suitable for addressing the
research question. The transparency and statistical significance of the reported results were considered.

Problem statement: We evaluated whether the publication identified the research problem and pro-
vided sufficient background information. The clarity and definition of the research question were also
taken into account.

Research questions: We assessed the relevance, clarity, and definition of the research questions con-
cerning the research problem.

Research challenges: We considered whether the publication identified and acknowledged the chal-
lenges and limitations associated with the research.

Statement of findings: We evaluated whether the publication reported the research results and
whether the findings were relevant to the research problem and questions.

Real-world use cases: We assessed whether the publication provided real-world use cases or applica-
tions for the proposed method or model.

Based on the assessments of the above factors, we evaluated the quality of the publications. Through
this evaluation process, 275 publications were selected from the initial pool of 524. These selected
publications demonstrated high quality and relevance to our research question, meeting the predefined
inclusion/exclusion criteria. The consensus ensured a rigorous and reliable selection of publications for
further analysis and data extraction in the SLR.

3.4 Data extraction and synthesizing

During the data extraction and synthesis phase of the SLR, our primary objective was to address
the identified research questions and gain insights into the foundational models commonly employed
by research modelers in their machine learning model selection approaches. We aimed to understand
the features of these models and the evaluation measures utilized by research modelers to assess their
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approaches. Furthermore, we explored the potential combinations of models that research modelers
incorporated into their research papers.

We extracted relevant data from the papers included in our review to achieve these objectives. From our
perspective, evaluation measures encompass a range of measurements and key performance indicators
(KPIs) used to evaluate the performance of the models [147]. Features can encompass any characteristics
of models that authors highlight to demonstrate specific functionalities. These features play a role in a
research modeler’s selection of models. Examples of features include a model’s data compatibility [18]
or their prediction capabilities [9].

In this context, ’models’ refer to mathematical, algorithmic models or processes that can be applied in
various domains. For instance, support vector machines [13] [56] and long short-term memory (LSTM)
[148] are examples of models commonly utilized in machine learning.

By extracting and analyzing this data, we aimed to comprehensively understand the existing literature,
including popular open-access datasets used for training and evaluating the models. This knowledge
empowered us to contribute insights and recommendations to the academic community, supporting
them in selecting appropriate models and approaches for their machine learning research endeavors.

3.5 Search process

In this study, we followed the review protocol presented in this section to gather relevant studies. The
search process involved an automated search phase, which utilized renowned digital libraries such as
ACM DL, IEEE Xplore, ScienceDirect, and Springer, and a manual search phase using Google Scholar.
Google Scholar was excluded from the automated search due to its tendency to generate numerous
irrelevant studies [149]. Furthermore, Google Scholar significantly overlaps the other digital libraries
considered in this SLR [150]. Figure 3.1 provides a comprehensive overview of the sequential phases of
the search process, outlining the number of studies encompassed within each stage.

Table 3: Presents an overview of the systematic search process employed to identify relevant publications
on machine learning model selection. The search process involved both manual and automatic searches,
incorporating specific inclusion/exclusion criteria to ensure the retrieval of high-quality results. The
search query used in the automatic search was carefully designed to retrieve relevant publications from
scientific search engines, while the manual search involved screening articles from selected venues. The
final set of articles obtained from both searches was then subjected to comprehensive analysis and
synthesis to provide valuable insights into the current state of machine learning model selection research.

Publication Phase 1 Phase 2 Phase 3 Phase 4
Google Scholar 25 24 24 16
ACM DL 741 157 157 61
IEEE Xplore 132 104 104 55
ScienceDirect 330 129 129 78
Springer 1781 110 110 65
Total 3009 524 524 275

Table 3 provides numeric insights into the search process conducted in four phases: Phase 1, Phase 2,
Phase 3, and Phase 4.

Phase 1 (Pool of publications): We initially performed a manual search, resulting in 25 relevant
publications through Google Scholar. Additionally, automated searches from ACM DL, IEEE Xplore,
ScienceDirect, and Springer contributed to the pool of publications. The complete result was 25 Google
Scholar, 741 ACM DL, 132 IEEE Xplore, 330 ScienceDirect, and 1781 Springer publications.

Phase 2 (Publication pruning process): In this phase, the inclusion/exclusion criteria were applied
to the collected publications, ensuring the selection of high-quality and relevant studies. The numbers
were reduced to 24 in Google Scholar, 157 in ACM DL, 104 in IEEE Xplore, 129 in ScienceDirect, and
110 in Springer publications, respectively.

Phase 3 (Quality assessment process): Quality assessment was conducted for the publications based
on several criteria, resulting in a final selection of 524 publications from all sources.
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Phase 4 (Data extraction and synthesizing): During this phase, data extraction and synthesis were
performed to gain insights into foundational machine learning models, features, evaluation measures, and
potential combinations of models used by research modelers. By carefully applying the review protocol,
we retrieved 275 high-quality studies for our comprehensive analysis and synthesis in this systematic
literature review, with 16 publications in Google Scholar, 61 publications in ACM DL, 55 publications
in IEEE Xplore, 78 publications in ScienceDirect, and 65 publications in Springer.
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Findings and analysis

In this section, we analyze the SLR results and provide an overview of the collected data, which was
analyzed to address the research questions identified in our study.

4.1 Models
The SLR conducted in our study has revealed a diverse array of models employed in machine learning.
These models encompass several approaches, each characterized by unique characteristics and method-
ologies. For a comprehensive understanding of these models, including their definitions and descriptions,
please refer to the Appendix A.

We have examined their underlying principles and methodologies to categorize these models effectively.
The Appendix A provides detailed definitions and explanations of the identified categories, offering
comprehensive insights into each category and its specific characteristics.

Among the identified categories, prominent ones include supervised, unsupervised, and reinforcement
learning. These categories encompass a broad range of models applied in machine learning. However,
it is essential to note that these three specific categories represent only a subset of the diverse range of
models identified in our SLR.

machine learning paradigms

supervised learning unsupervised learning reinforcement learning
regression models clustering models model-free methods

linear regression k-means Q-learning
ordinary least squares (OLS) hierarchical clustering deep Q-network (DQN)
ridge regression DBSCAN policy gradients
lasso regression gaussian mixture models (GMM) AlphaZero
Elastic Net self-organizing maps (SOM) model-based methods

polynomial regression dimensionality reduction monte carlo tree search (MCTS)
support vector regression (SVR) principal component analysis (PCA) dynamic programming
decision tree regression t-distributed stochastic neighbor embedding (t-SNE) imitation learning
random forest regression autoencoders behavioral cloning
gradient boosting regression denoising autoencoder inverse reinforcement learning (IRL)

extreme gradient boosting (XGBoost) sparse autoencoder
LightGBM independent component analysis (ICA)

Bayesian regression association rule learning
neural networks apriori

classification models frequent pattern growth (FP-growth)
logistic regression neural networks
naïve Bayes

multinomial naïve Bayes
gaussian naïve Bayes

k-nearest neighbors (KNN)
support vector machines (SVM)
decision trees
random forests
gradient boosting machines

AdaBoost
gradient boosting classifier

neural networks

specialized machine learning paradigms

semi-supervised learning self-supervised learning meta-learning
label propagation contrastive learning model-agnostic meta-learning (MAML)
self-training rotation prediction reptile
co-training exemplar learning one-shot learning

transformers few-shot learning
multi-label learning masking

problem transformation methods online learning
algorithm adaptation methods transfer learning passive online learning

fine-tuning pre-trained models active online learning
imbalanced learning ImageNet pre-trained CNNs dataset drift

resampling techniques ResNet pre-trained CNNs dataset shift
oversampling BERT-based models for NLP
undersampling domain adaptation federated learning

cost-sensitive learning continual learning federated averaging
federated transfer learning

Figure 4.1: Shows the first half of the taxonomy for machine learning models. For access to the complete
list of models and related mapping, please refer to the Appendix A.

Figure 4.1 and Figure 4.2 present our developed taxonomy based on the SLR on machine learning
model selection. The taxonomy was set up using machine learning and model descriptions from the
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machine learning approaches

deep learning ensemble learning automated machine learning (AutoML)
feedforward neural networks (FNN) bagging (bootstrap aggregating) hyperparameter optimization (HPO)

single-layer perceptron random forests grid search
multi-layer perceptron bagged decision trees random search

convolutional neural networks (CNN) boosting Bayesian optimization
LeNet AdaBoost autoML platforms
AlexNet gradient boosting auto-sklearn
visual geometry group (VGGNet) extreme gradient boosting (XGBoost) H2O.ai Driverless AI
Inception/GoogLeNet LightGBM Google Cloud AutoML
residual network (ResNet) stacking Microsoft Azure Automated ML
DenseNet voting

recurrent neural networks (RNN) mixture of experts (MoE) generative models
long short-term memory (LSTM) diffusion models
bidirectional long short-term memory (BLSTM) instance based learning text generation
gated recurrent unit (GRU) k-nearest neighbors (KNN) ChatGPT

transformer models radial basis function (RBF) image generation
BERT DALL-E
generative pre-trained transformer (GPT) anomaly detection video generation
text-to-text transfer transformer (T5) machine learning-based approaches Sora
RoBERTa isolation forest variational autoencoders (VAEs)

sequence modeling one-class support vector machine generative adversarial networks (GANs)
Mamba one-class random forest deep convolutional GAN (DCGAN)

AutoML and neural architecture search (NAS) k-means Wasserstein GAN (WGAN)
deep learning-based approaches flow-based models

probabilistic machine learning autoencoders normalizing flows
Bayesian models generative adversarial networks (GAN)

Bayesian linear regression recurrent neural networks (RNN) evolutionary algorithms
Bayesian neural networks rule-based approaches genetic algorithms

gaussian processes particle swarm optimization (PSO)
hidden markov models (HMM) optimization algorithms
Bayesian optimization adaptive moment estimation (Adam)

stochastic gradient descent (SGD)
root mean square propagation (RMSprop)

machine learning domains

computer vision natural language processing (NLP) time series analysis
neural radiance fields (NeRF) tokenization autoregressive integrated moving average (ARIMA)
graph neural network (GNN) text classification seasonal decomposition of time series (STL)
image classification sentiment analysis prophet
object detection topic modeling long short-term memory (LSTM) for time series forecasting

single shot multibox detector (SSD) named entity recognition (NER)
you only look once (YOLO) machine translation causal inference
faster R-CNN neural machine translation (NMT) causal graphical models
geometry masks large language models (LLMs) directed acyclic graphs

action recognition transformer-based models propensity score matching
two-stream CNN BERT instrumental variables

3D reconstruction generative pre-trained transformer (GPT)
image segmentation Gemini explainable AI (XAI)

U-Net sequence-to-sequence models feature importance
mask R-CNN attention mechanisms local interpretable model-agnostic explanations (LIME)

facial recognition encoder-decoder Shapley additive explanations (SHAP values)
OpenFace transformer decoder rule-based explanations
FaceNet black box

white box
neural network interpretability research

Figure 4.2: Shows the second half of the taxonomy for machine learning models. For access to the
complete list of models and related mapping, please refer to the Appendix A.

various papers in the SLR. The four colors represent layers of depth within the taxonomy, with models
categorized into designated groups. The taxonomy is divided into four main groups: "machine learning
paradigms, specialized machine learning paradigms, machine learning approaches, and machine learning
domains". Models in machine learning can often be categorized into multiple groups [151], and this
taxonomy highlights their versatility and diverse functionalities.

Following the completion of the data extraction and synthesis phase of the SLR, a selection of 43 com-
monly used models, from a total of 548, were identified, each mentioned in at least ten publications. We
abbreviate these models for the remainder of this study. Their full model names and used abbreviations
can be viewed in the Appendix B.

Figure 4.3 shows how our identified models can be categorized in the taxonomy. For example, gradient
boosting (GB) [152], a widely recognized model within the field with over 26 citations in our review,
exhibits characteristics that align with various categories. Gradient boosting falls under supervised
learning, where it iteratively combines multiple weak learners to create a strong predictive model [153].
Gradient boosting can focus on misclassification instances for classification and predict high errors for
regression [154]. Gradient boosting also belongs to ensemble learning, as it combines the predictions of
multiple weak learner models to produce more robust and accurate final predictions [155].
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supervised 
learning

X X

regression 
models

X X X
linear regression X
SVR X
decision tree regression X X
random forest regression X

GB regression
X

XGBoost X
neural networks X X

classification 
models

X X X
logistic regression X
naïve Bayes X
k-nearest neighbors (KNN) X
SVM X
decision trees X X X
random forests X

gradient 
boosting 
machines

X
AdaBoost X
GB classifier X

neural networks X X

unsupervised 
learning

clustering 
models

X X
k-means X
self-organizing maps (SOM) X

dimensionality 
reduction PCA X
neural networks X X

reinforcement 
learning

X

model-free 
methods Q-learning X

deep learning

X X X X X X

FNN
multi-layer perceptron X

convolutional 
neural 
networks 
(CNN)

X
AlexNet X
VGG X
Inception/GoogLeNet X
ResNet X

recurrent 
neural 
networks 
(RNN)

X
long short-term memory (LSTM) X
(BLSTM) X
gated recurrent unit (GRU) X

probabilistic 
machine 
learning

Bayesian models X
gaussian processes X
hidden markov models (HMM) X

ensemble 
learning

bagging
X

random forests X

boosting
AdaBoost X

gradient 
boosting 

X
XGBoost X

instance 
based learning k-nearest neighbors (KNN) X

radial basis function (RBF) X

anomaly 
detection

machine 
learning-based 
approaches

k-means X

deep learning-
based 
approaches

GAN X
RNN X

evolutionary 
algorithms genetic algorithms X

particle swarm optimization (PSO) X

time series 
analysis ARIMA X

1 3 2 2 1 1 1 1 1 2 4 5 1 2 2 2 2 4 1 1 1 4 3 1 1 1 1 1 1 1 2 1 1 2 2 1 1 1 1 1 1 1 2

Figure 4.3: Illustrates a mapping of the taxonomy’s categories to models in machine learning. The table
presents the comprehensive mapping of several category layers to our 43 corresponding models. For
access to the complete list of models and related mapping, please refer to the Appendix A.

4.2 Features

Our study investigated the features supported and incorporated by machine learning models, emphasizing
their significance in the field. We identified a total of 273 distinct features. We recognized 72 well-defined
and established features within the field, highlighting their relevance and impact in machine learning
research. For a comprehensive understanding of these features, please consult the Appendix A, where
detailed definitions and explanations are provided.

To effectively organize and comprehend these features, we categorized them into 19 categories based
on their context, domain, and applications. Machine learning models possess the versatility to support
a wide range of features, each tailored to specific use cases and applications. Some common features
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Model Task

classification X X X X X X X X X X X X
regression X X X X X X X X X X
sequential X X X X X
generative X X
discriminative X X X
ensemble X X X X X
optimization X X
tree-based model X X X X
clustering X X X
probabilistic model X X

Algorithm Family

neural network X X X X X X X X X X X X X X
support vector machine X X X
autoencoder
decision tree X X X X
bayesian model X X
LSTM X X
k-nearest neighbors X
regression algorithms X X

Learning Paradigm
supervised learning X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X
unsupervised learning X X X X X X X X X X X
reinforcement learning X X X

Model Complexity

low X X X
low to moderate X X X X X X X
moderate X X X X X X X X
moderate to high X X X X X X X X X X X X X X
high X X X X X X X X

Linear vs. Non-linear
linear X X X X X X X X
non-linear X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X

Parametric vs. Non-
parametric

parametric X X X X X X X X X X X X X X X X X X X X X X X X X X
non-parametric X X X X X X X X X X X X X X X X X X

Ensemble Method
boosting X X X X
deep forest X X

Regularization Type

dropout X X X X X X X X X X X X X X X
L2 (ridge) X X X X X X X X X X X
batch normalization X
L1 (lasso) X X X X X X X X X

Neural Network 
Architecture

convolutional X X X X X X
recurrent X X X X X X
feedforward X X X X X X
autoencoder
transformer X X

Activation Function 
Type

ReLU X X X X X X X X X X X X
sigmoid X X X X X X X X X
tanh X X X X X X X X
gaussian X X

Objective Function
mean squared error (MSE) X X X X X X X X X X X X X X X X
cross-entropy X X X X X X X X X X X X X X X X X
maximum likelihood estimation (MLE) X X

Learning Rate Type
fixed (specific) learning rate X X X X X X X X X X X X X X X X X X X
adaptive (adjustable) learning rate X X X X X X X X X X X

Number of Hidden 
Layers

shallow (single layer) X X X
multiple X X X X X X X X X X
various (shallow to deep) X X X X X X X

Model Size

small X X X
moderate X X X X
moderate to large X X X
large X X X X
various X X X X X X X X X X X X X X X X X X X X X X X X

Transfer Learning pre-trained model X X X X X X X X X X X X X X X X X X X X

Kernel Type

convolutional X X X
radial basis function (Gaussian) X X X X
linear X X
polynomial X X

Input Data Type

structured X X X X X X X X X X X X X X X
images (or other grid based) X X X X X X X X
time series X X X X X X X X X X
text X X X X X X
categorical (numerical) X X X
unstructured X X X X X X X

AutoML vs. Custom custom X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X

Optimizer
gradient descent X X X X X
Adam X X X

15 12 8 10 15 21 11 20 23 21 19 29 20 14 11 11 7 13 18 15 19 11 18 11 9 29 6 5 17 10 12 15 17 9 13 10 13 4 15 6 16 7 14

Figure 4.4: Illustrates a mapping of features to models in machine learning. The table presents the
comprehensive mapping of 72 distinct features to the corresponding models, grouped into 19 categories.
For detailed definitions and explanations of the features, please refer to the Appendix A.

include classification [70], neural network [93], supervised learning [11], non-linear [156], parametric [157],
dropout [158], convolutional [159], ReLU [160], MSE [161], fixed learning rate [162], pre-trained model
[163], and structured data [164].

Figure 4.4 illustrates the mapping of features to models in machine learning based on study descriptions.
Each cell represents whether the corresponding feature commonly refers to the associated model. This
list of features was based on our initial findings in the SLR through the 524 papers we reviewed and
was later refined to a more comprehensive and complete list. The mapping of the features is based on
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4 Findings and analysis

the documentation provided by the SLR. For instance, the neural network (NN) [93] is a broad model
encompassing many features like supervised, unsupervised, and reinforcement learning. A more nuanced
model like naïve Bayes [58] slots into fewer features overall.

This mapping process involved determining which models are most suited to addressing specific features
in a given problem. It necessitates a comprehensive analysis of the problem’s characteristics and an
understanding of the available models’ capabilities, strengths, and weaknesses. For instance, in the
domain of clustering [16], clustering models such as k-means [165] and self-organising maps [60] have
proven to be effective in handling features related to image clustering of data. Conversely, for time series
data problems [92], models like ARIMA [166] or long short-term memory [148] have proven to be more
suitable choices.

4.3 Model combinations
After conducting our SLR, it was evident that some model combinations were integrated to address
the considerations of research modelers, including feature requirements and evaluation measures. The
selected publications proposed viable combinations of models based on the authors’ research and assessed
the outcomes resulting from these combinations.

A combination matrix resembling a symmetric adjacency matrix was constructed to thoroughly examine
the various model combinations, treating the models as nodes and the combinations as edges in a graph
representation [167]. The upper or lower triangular matrix was utilized to depict unique combinations.
Figure 4.5 visually presents this combination matrix, encompassing the 43 selected models. The diagonal
cells of the matrix indicate the number of publications discussing each model independently. For instance,
our analysis identified 149 papers on support vector machines [13, 56] and 125 papers on random forests
[57].

Within the matrix, the cells represent the number of papers discussing the combinations of the corre-
sponding columns and rows. For example, there were 88 papers discussing the combination of support
vector machines and random forests. In comparison, 79 papers addressed the combination of support
vector machines and k-nearest neighbors (KNN) [168].

The matrix’s color coding indicates the number of research articles associated with each combination.
Bright yellow cells signify a higher volume of research conducted in the literature, while darker cells
denote lower volumes. Additionally, gray cells indicate areas without evidence regarding valid combina-
tions based on the authors’ perspectives. However, it is crucial to note that these gray cells represent
potential areas warranting further investigation, offering research modelers opportunities to explore the
feasibility of such combinations.

Overall, the combination matrix serves as an extensive overview of the model combinations in machine
learning model selection research, shedding light on their frequency in the literature. It can be considered
a valuable resource for research modelers seeking to identify existing combinations and areas requiring
further exploration.

4.4 Model trends
In recent studies, machine learning models have witnessed significant advancements across various do-
mains, leading to notable trends in their development and application [77]. It is worth investigating
these trends in recent years and beyond. We refer to a wide range of machine learning models research
modelers can employ in machine learning tasks.

To gain insights into the usage patterns of these models, we organized the 43 selected models based on
the publication years of the studies that referenced them. While these publications range from 2013 to
2023, we only found relevant data from 2017 and beyond. As such, the model trends displayed only
cover 2017 to 2023. Figure 4.6 provides an overview of these trends.

Among the selected models, support vector machines [13, 56], random forests [57], k-nearest neighbors
[168], decision trees [169]. logistic regression (LR) [170] emerged as the top five most frequently mentioned
models, appearing in over 500 papers. It is important to note that while some models recently gained
substantial attention, such as residual network (ResNet) [163] and VGG16/19 (VGG) [171], our study
encompasses models from various periods. For our displayed overview, there was an outlier for a paper
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SVM
SVM 149 RF
RF 88 125 KNN

KNN 79 65 98 DT
DT 69 71 57 92 LR
LR 63 59 42 49 78 CNN

CNN 44 29 28 23 22 75 NB
NB 55 47 44 44 38 21 63 LSTM

LSTM 35 31 23 22 21 35 19 60 MLP
MLP 42 36 30 25 14 18 23 18 59 RNN
RNN 34 28 21 18 16 32 16 36 13 57 ANN
ANN 47 27 34 30 24 16 19 15 22 16 55 NN
NN 33 24 22 19 17 15 20 14 14 11 14 42 DNN

DNN 19 18 17 14 12 20 11 17 16 15 11 9 41 XGBoost
XGBoost 31 35 20 25 23 10 14 11 11 8 12 12 6 39 Adaboost
AdaBoost 26 27 21 25 17 6 13 7 10 6 9 12 7 15 33 BN

BN 21 15 15 16 11 12 14 8 13 8 8 10 7 4 6 28 k-means
k-means 19 15 19 13 10 7 11 10 9 6 10 11 5 4 5 7 26 GB

GB 17 23 16 18 13 6 7 6 5 4 8 6 4 9 12 3 4 26 GRU
GRU 13 9 7 6 5 17 7 18 8 17 6 7 6 4 2 4 4 2 24 SVR
SVR 13 13 9 10 7 5 4 10 10 9 11 5 5 4 0 4 4 3 3 22 BLSTM

BLSTM 10 10 7 8 6 15 5 16 4 13 4 4 5 4 1 1 1 1 10 2 22 RBF
RBF 18 13 15 11 6 6 6 6 11 6 9 3 7 6 4 5 3 2 2 6 2 21 DBN
DBN 14 13 11 10 7 16 9 14 9 13 7 5 6 6 2 2 5 1 7 4 6 3 20 LR
LR 16 13 9 12 8 5 6 7 6 2 9 4 2 3 2 3 7 4 1 4 2 5 1 20 Bagging

Bagging 14 13 13 13 8 4 9 5 9 3 6 5 3 6 10 8 2 3 1 2 1 3 3 3 19 DL
DL 17 9 8 7 7 13 5 13 7 9 6 10 6 4 2 6 3 2 5 5 4 4 3 2 1 18 GA
GA 14 9 11 8 7 3 4 6 5 5 10 4 3 1 2 3 5 2 0 4 0 2 1 4 2 3 16 PSO

PSO 12 8 9 7 4 2 5 6 5 5 7 3 2 3 2 0 2 2 1 3 1 1 2 3 2 3 8 16 AlexNet
AlexNet 8 5 4 4 2 13 2 8 2 5 2 2 3 1 0 2 1 1 2 2 2 2 5 1 0 4 1 0 16 HMM

HMM 13 8 7 7 6 8 7 5 6 5 6 6 5 1 2 4 6 1 4 3 2 1 3 3 1 4 5 3 0 15 SOM
SOM 11 10 11 9 6 6 7 6 8 7 7 6 6 5 4 4 7 2 2 3 0 4 4 0 4 1 4 2 0 2 14 ELM
ELM 12 9 9 8 6 7 5 7 6 8 7 5 4 4 2 4 3 2 3 6 3 2 6 0 3 4 1 1 1 2 3 14 ResNet

ResNet 6 2 2 1 1 11 2 8 2 6 2 3 3 1 1 1 1 1 3 0 2 0 4 0 0 4 0 0 9 0 0 0 14 GP
GP 11 8 7 8 6 2 5 4 7 4 9 4 4 1 2 4 5 0 2 4 1 2 2 3 2 1 1 1 0 2 2 3 0 13 GAN

GAN 10 4 5 3 2 10 2 6 4 7 3 1 3 2 0 1 1 1 2 1 1 2 5 0 0 4 0 0 5 0 1 2 6 1 12 C4.5
C4.5 11 8 10 10 7 5 10 4 9 3 5 5 6 6 6 7 2 2 2 0 1 4 3 2 7 1 1 0 0 2 4 1 0 1 0 12 R

R 8 5 7 5 2 3 4 3 1 3 5 3 1 2 2 4 3 1 3 2 1 1 1 1 2 2 1 0 1 0 0 2 1 1 1 1 11 Q-learning
Q-learning 4 2 4 3 1 1 3 1 1 1 1 3 2 1 0 1 2 0 0 1 0 0 0 0 0 2 2 2 0 3 3 1 0 1 0 0 0 11 GoogleNet
GoogleNet 5 3 2 0 0 10 2 5 1 4 1 1 1 0 0 1 1 0 3 0 2 1 5 1 0 2 0 0 9 0 0 1 6 0 3 0 2 0 11 PCA

PCA 9 7 6 6 2 3 4 4 4 4 5 1 1 3 2 1 3 2 1 3 0 1 4 1 0 0 1 2 0 2 1 2 0 0 1 0 0 0 0 11 VGG
VGG 5 3 2 1 1 7 2 3 1 6 1 1 2 1 1 1 0 1 3 0 2 1 1 1 0 2 0 0 4 0 0 1 6 0 3 0 2 0 4 0 10 ARIMA

ARIMA 6 4 4 4 3 3 2 7 6 5 5 2 1 3 1 2 2 0 2 3 1 0 2 2 2 1 2 4 0 1 2 1 0 2 0 1 0 1 0 1 0 10 CART
CART 8 7 8 8 7 3 5 3 3 2 5 3 4 2 3 5 2 3 2 2 1 3 1 2 2 1 2 0 1 2 1 0 0 1 0 5 3 0 0 0 0 0 10

990745596510355376289317248226211156120106 76 88 79 39 64 60 35 42 56 29 28 39 29 15 30 16 17 14 19 7 8 7 7 1 4 1 0 0

Figure 4.5: Shows a matrix representation of model combinations in machine learning research. The
matrix illustrates the combinations of 43 selected models, where each cell indicates the number of pub-
lications discussing the corresponding model combination. The diagonal cells represent the number of
publications discussing each model individually. Bright yellow cells indicate a higher research volume,
while darker cells indicate lower volumes. Gray cells represent areas where no evidence was found for
valid combinations. The last row of the matrix represents the frequency of publications in which the
models on the diagonal cells were considered in combination with others. For instance, we identified
990 mentions for publications that included support vector machines as one of their design decisions in
combination with other models. The combination matrix provides insights into the frequency and pop-
ularity of model combinations, aiding research modelers in identifying existing combinations and areas
for further investigation. For access to the complete list of model combinations and related mapping,
please refer to the Appendix A.

in 2014 that mentioned the use of recurrent neural networks (RNN) [172]. These trends shed light
on the popularity and usage patterns of different models in machine learning. By identifying frequently
mentioned models and observing shifts in their prevalence over time, research modelers can stay informed
about the evolving landscape of machine learning and make informed decisions when selecting models
for their specific applications.

4.5 Evaluation measures
In machine learning-based projects, comprehensive evaluation measures are crucial. Evaluation measures
quantitatively gauge the quality of model outputs [173]. These measures play a critical role in ensuring
accurate and reliable results for a study.

26



4 Findings and analysis

SV
M

R
F

K
N
N

D
T

LR C
N
N

N
B

LS
TM

M
LP

R
N
N

A
N
N

N
N

D
N
N

XG
B
oo

st
A
da
B
oo

st
B
N

k-
m
ea
ns

G
B

G
R
U

SV
R

B
LS

TM
R
B
F

D
B
N

LR B
ag
gi
ng

D
L

G
A

PS
O

A
le
xN

et
H
M
M

SO
M

EL
M

R
es
N
et

G
P

G
A
N

C
4.
5

R Q
-le
ar
ni
ng

G
oo

gl
eN

et
PC

A
VG

G
A
R
IM
A

C
A
R
T

2023 12 9 7 7 4 8 6 9 6 7 4 5 3 7 6 3 1 4 4 2 3 0 3 0 4 4 0 1 3 0 2 3 6 1 4 2 2 0 2 1 5 2 0
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Figure 4.6: Illustrates the trend of models mentioned in machine learning research over publication years,
highlighting the popularity and emergence of various models. For access to the complete list of model
trends mapping, please refer to the Appendix A.

While accuracy is a commonly employed evaluation measure, it may not adequately represent the model’s
performance, especially in imbalanced classes [174]. Alternative measures such as precision, recall, and
F1-score are used to evaluate model performance, mainly when dealing with imbalanced data [175].
Additionally, evaluation measures like the area under the curve (AUC) are frequently used to assess
binary classifiers [176]. These measures provide insights into the model’s ability to differentiate between
positive and negative instances, mainly when the costs of false positives and false negatives differ [177].

For ranking problems, evaluation measures such as mean absolute percentage error (MAPE) can be
employed [178]. These measures evaluate the quality of the ranked lists generated by the model and
estimate its effectiveness in predicting relevant instances. When evaluating regression models, measures
such as root mean squared error (RMSE) are used to quantify the discrepancy between predicted values
and actual values of the target variable [179].

The selection of appropriate evaluation measures is crucial to ensure the accuracy and reliability of
machine learning models. Selecting an adequate evaluation measure depends on the specific problem
domain, data type, and project objectives. These factors are pivotal in selecting the most appropriate
evaluation measures. Figure 4.7 presents the evaluation measures identified in at least ten publications.

Precision, recall, F1-Score, accuracy, and area under the curve are among the top five evaluation measures
identified in the SLR. For detailed explanations of the specified evaluation measures, please refer to the
Appendix A.

4.6 Datasets

Datasets are fundamental to machine learning and data science research, as they provide the raw mate-
rial for training and testing models and enable the development of solutions to complex problems [180].
Datasets exist in various forms and sizes, ranging from small, well-curated collections to large, unstruc-
tured datasets with millions of records [181]. The quality of datasets is crucial [180], as high-quality
data ensures the accuracy and reliability of models, while low-quality data can introduce biases and
inaccuracies. Data quality encompasses completeness, accuracy, consistency, and relevance.

The size and complexity of a dataset pose challenges in terms of storage, processing, and analysis [182].
Large datasets require specialized tools and infrastructure to handle the volume and velocity of data [183].
Additionally, complex datasets, such as graphs, images, and text, may require specialized techniques and
models for extracting meaningful information and patterns [184].

Furthermore, the availability of datasets is a vital consideration in advancing machine learning research
and applications [185]. Open datasets that are freely accessible and well-documented foster collaboration
and innovation, while proprietary datasets may restrict access and impede progress [186]. Data sharing
and ethical considerations in data use are increasingly recognized, leading to efforts to promote open
access and responsible data practices [187].

In this study, we identified 37 datasets that research modelers have utilized in the context of machine
learning that were mentioned in at least two publications. Figure 4.8 provides an overview of these
datasets and their frequency of usage from 2013 to 2023. Notably, MNIST, CIFAR-10/100, ImageNet,
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Evaluation measures
122 Recall
120 Accuracy
101 F1-Score
95 Precision
67 Area Under the ROC Curve (AUC)
40 Specificity
39 Mean Absolute Error (MAE)
38 Root Mean Squared Error (RMSE)
27 False Positive Rate (FPR)
24 Mean Squared Error (MSE)
21 R-Squared
15 Confusion Matrix
14 Error Rate
13 K-Fold Cross-Validation

13 Matthew Correlation Coëfficient 
(MCC)

12 Mean Absolute Percentage Error 
(MAPE)

10 False Negative Rate (FNR)
10 10-Fold Cross-Validation

Figure 4.7: Shows an overview of evaluation measures used in machine learning, including performance
metrics such as accuracy, precision, recall, F1-score, area under the curve, and other evaluation tech-
niques. For access to the complete list of identified evaluation measures, please refer to the Appendix A.

KDDCup ’99, and NASA emerged as the top five datasets commonly used in evaluating machine learning
models. These datasets have been utilized individually in 5 or more publications, highlighting their
significance and wide adoption.
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2023 3 3 2 0 1 0 1 0 0 1 0 0 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2022 5 3 2 3 1 2 3 3 3 1 1 1 0 0 0 0 0 1 1 0 0 1 0 0 1 1 0 0 0 0 1 1 0 1 1 1 2
2021 0 1 1 2 1 3 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 1 2 1 1 0 1 0 2 0 0 0 0
2020 2 2 2 0 1 0 1 0 1 1 1 1 0 1 0 0 1 0 0 1 1 0 1 0 0 0 0 1 1 2 0 0 0 1 1 1 0
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2017 1 1 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

11 10 7 6 5 5 5 4 4 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
URL https://www.tensorflow.org/datasets/catalog/mnisthttps://www.kaggle.com/c/cifar-10https://www.image-net.org/https://www.kaggle.com/datasets/galaxyh/kdd-cup-1999-datahttps://data.nasa.gov/browsehttps://www.kaggle.com/datasets/hassan06/nslkddhttp://ufldl.stanford.edu/housenumbers/https://research.unsw.edu.au/projects/unsw-nb15-datasethttps://www.unb.ca/cic/datasets/ids-2017.htmlhttps://www.bugzilla.org/download/https://datahub.io/machine-learning/waveform-5000https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)http://promise.site.uottawa.ca/SERepository/datasets-page.htmlhttps://sourceforge.net/p/columba/cvs/https://www.eclipse.org/jdt/https://projects.eclipse.org/projects/eclipse.platformhttps://github.com/mozilla/https://github.com/topics/chesshttps://datahub.io/dataset/movielenshttps://mimic.mit.edu/http://archive.ics.uci.edu/ml/index.phphttps://aws.amazon.com/free/?trk=b3f93e34-c1e0-4aa9-95f8-6d2c36891d8a&sc_channel=ps&ef_id=CjwKCAjwxr2iBhBJEiwAdXECw8l2uGoIpBPg3rA0COKqd-Yj23-eLi_uoBHGYDCE8dO66w5nM6I2hxoCzrkQAvD_BwE:G:s&s_kwcid=AL!4422!3!649687387628!p!!g!!amazon%20ec2!19738730094!148084749042&all-free-tier.sort-by=item.additionalFields.SortRank&all-free-tier.sort-order=asc&awsf.Free%20Tier%20Types=*all&awsf.Free%20Tier%20Categories=*allhttps://archive.ics.uci.edu/ml/datasets/winehttps://ant.apache.org/https://www.unb.ca/cic/datasets/ids.htmlhttps://www.unb.ca/cic/datasets/ids-2018.htmlhttps://www.ll.mit.edu/r-d/datasets/1998-darpa-intrusion-detection-evaluation-datasethttps://www.kaggle.com/datasets/toniesteves/desharnais-datasethttps://www.isbsg.org/https://data.world/datasets/chinahttps://www.impactcybertrust.org/dataset_view?idDataset=918https://bcdr.eu/information/abouthttps://www.kaggle.com/datasets/shubamsumbria/statlog-heart-data-sethttps://www.sec.cs.tu-bs.de/~danarp/drebin/https://www.impactcybertrust.org/dataset_view?idDataset=1273https://developers.virustotal.com/reference/fileshttps://www.cvlibs.net/datasets/kitti/

Figure 4.8: Shows datasets commonly used for machine learning models. The table includes the names
of the datasets and their corresponding URLs. For access to the complete list of identified datasets,
please refer to the Appendix A.
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Expert interviews

The expert interview phase further strengthened the data collected from the SLR. We interviewed with
the intent to add to or alter our established data pool while also perceiving other types of feedback
regarding our data and the decision model itself.

5.1 Experts
A total of 11 experts were interviewed for this phase. The interviews took roughly 60 minutes each,
with most of the time spent on our ten core expert interview questions. We will cover each question and
discuss the data we extracted from the expert interviews related to them. Participants were asked to
consent before participation. Our consent form can be read in the Appendix C.

Q1: What is your practical or scientific research background?

All of our experts have worked for several years with machine learning models. Table 4 highlights some
background information on our participating experts, displaying for each participant their academic de-
gree, academic domain, and current position as a machine learning expert. For example, the table shows
that eight experts are Master’s graduates, and three experts are PhD graduates. Experts shared that
they noticed certain trends within machine learning usage, such as how decision-making has expanded
far beyond handcrafted features and heuristics and how many see promise for further growth of machine
learning use within their respective fields.

Table 4: Overview of each participant’s academic degree, academic domain, and current position as a
machine learning expert.

Participant Degree Academic domain Current position
1 PhD Radiophysics Machine learning scientist lead
2 Master Information studies: data science Machine learning engineer
3 Master Computer science: data science in engineering Machine learning engineer
4 Master Artificial intelligence Machine learning/MLOps engineer
5 Master Computing science Senior machine learning engineer
6 PhD Computer science Machine learning/data scientist
7 Master Electrical engineering and computer science Machine learning/MLOps engineer
8 Master Computer science Research engineer
9 Master Bioinformatics and systems biology Data scientist
10 PhD Computer vision and machine learning Senior artificial intelligence architect
11 Master Computer/information technology administration and management Senior machine learning engineer

Q2: How do you typically select a machine learning model or a combination of them?

The most commonly replied practice was to select machine learning models depending on a task or
use case. Experts noted how industrial and academic use of machine learning contrasted with certain
practical concerns. Industrial use is often occupied with a model’s computational resource intensity,
stating that model speed is generally preferred over model accuracy. Company restrictions were also
mentioned, as certain machine learning models are preferred based on whatever cloud provider a company
is subscribed to. One participant mentioned: "Five years ago, it was common to train your own model
and use an existing architecture. Nowadays, you have powerful existing models, and you don’t even
need to fine-tune them", further highlighting how the industrial pipeline has become more streamlined.
Academic use generally favors the highest possible accuracy metric, thus being more open to using slower
algorithms. Furthermore, academic users are interested in the established nature of machine learning
models in their academic fields.

Q3: What factors or features come into play during the decision-making process?

The most commonly mentioned feature that comes into play is the perceived performance of a machine
learning model. One participant mentioned how language models are often unreliable in accurately
understanding features: "A model will say that a 100kg of feathers weighs less than 100kg of steel.
Such mistakes are common in many language models". Another common feature is the perceived model
computation speed, with one participant stating: "In robotics, memory constraints are prevalent. Since
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5 Expert interviews

they have limited RAM and circuitry, quick light-weight models are preferred". Other notable features
are the amount of available data, the model scalability, the quality of the available data, the ability of the
model to iterate, how well-suited the model is for hyperparameter tuning and the practical complexity of
the model. Model explainability was deemed an important feature, with one participant stating: "The
simpler to understand the model is preferred, even if the performance is worse because they are easier to
maintain and transfer to a client". Furthermore, experts mentioned how the number of model features
affects selection. Some experts exhaustively attempt feature combinations, increasing their effort for
each additional feature.

Q4: What are some machine learning models that you are familiar with?

Deep learning models like convolutional neural networks, recurrent neural networks, and NLP-related
models like GPT [108], were common mentions. The overall knowledge of machine learning differed per
participant. Though some participants were familiar with machine learning models in various domains,
most were only comfortable discussing models within their subdomain, such as models in computer
vision, NLP, or time series analysis.

Q5: What machine learning models from our commonly used model list are you familiar with?

The individual results of the participants can be observed in the Appendix D, with ’Y’ indicating
familiarity and ’N’ indicating unfamiliarity.

At least two participants recognized every machine learning model in our list, which we deemed an
acceptable number for a model to be considered well-known. The only exception was the extreme
learning machine (ELM) [188], with only one participant familiarizing it. Based on this, the relevancy
of the extreme learning machine was questioned.

Q6: What features in our machine learning feature list are you familiar with?

The individual results of the participants can be observed in the Appendix D, with ’Y’ indicating
familiarity and ’N’ indicating unfamiliarity.

Some features were recognized by less than two participants, which led us to reconsider these features
for our decision model. Some features were removed from the decision model, while others were deemed
integral to machine learning. Figure 5.1 shows our reasoning per reconsidered machine learning model
or feature. The figure shows that we decided to keep the extreme learning machine as a model due to
its relevance to computational efficiency. It further shows we decided to include SARSA [189], inductive
logic programming [190], RAS-CO [191], contractive regularization [192], competitive layer [193], matern
[194], and auto-associative [195] as features for our decision model. We also changed the category name
for "model type" to "model task".

Category Model/Feature Included Reasoning
Model ELM Y Relevant in computational efficiency
Model Type inductive logic programming N An algorithm family
Algorithm family SARSA Y An On-Policy Learning paradigm
Algorithm family inductive logic programming Y Relevant in interpretability in learned models
Algorithm family analytic hierarchy process N A decision-making methodology
Algorithm family post-decision state learning N Not considered a well-established term
Algorithm family MALMOS N An operationalizing methodology
Algorithm family compound covariate predictor N An approach in predictive modeling
Algorithm family rough set N A mathematical framework
Ensemble methods RAS-CO Y A novel ensemble method
Regularization type contractive regularization Y Relevant in ensuring robust model predictions
Neural network architecture competitive layer Y Relevant in SOM models
Neural network architecture fishblock N Too unknown overall
Neural network architecture contradiction layer N Too unknown overall
Kernel type matern Y Commonly applied in Gaussian processes
Kernel type auto-associative Y Crucial to autoencoder learning

Figure 5.1: Showcases our summarized reasoning on why a model or feature should or should not be
included in our final feature list.
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Q7: What features in our machine learning list would you modify or alter in definition?

Participants suggested several additions and alterations to our feature list, all of which were considered
and weighed against each other. Some of the more general additions include large language models
(LLM) [107], multimodal models [196], and machine learning optimizers [197]. Furthermore, participants
mentioned how our feature list was already quite exhaustive in its current state, thus not needing much
addition.

Q8: What are your thoughts on our machine learning taxonomy?

Participants suggested several additions and alterations to our taxonomy, most of which were machine
learning models or paradigm-related. While much of the individual placement of specific models remains
unaltered, some changes were made to the naming and ordering of the top-layer categories. One common
notion was that deep learning was easily misread as a separate machine learning paradigm adjacent to
supervised or unsupervised learning. Thus, deep learning and neural network models were relocated
accordingly. Another notion was that some spacing and coloring decisions hurt the overall readability
of the taxonomy. Finally, some participants mentioned how the taxonomy might be "too complete" and
wondered whether some data should be omitted. All of these notions were taken into account for our
final taxonomy design. With these changes, we increased our total number of machine learning models
to 571. Our features were also altered, and a category for optimizers was added. The total number of
features the decision model now includes is 273, distributed over 19 categories.

Q9: How would you prefer a decision model to support you with machine learning model selection?

Most participants had a clear preference for one of two distinct options. The first option is a large
language model or GPT-related approach to a decision model, where a user converses with an AI language
model about their machine learning model task to make decisions. One participant in favor of this
approach stated: "Given the state of the art GPT, the ideal decision model would be an AI assistant
that talks you through the whole model selection process. Humans can get tired and are prone to forget
things, so an embedded domain expert could assist you in selecting and reminding you of what steps to
take". The second option concerns a method akin to our created decision model, which allows users
to select specific feature requirements for their machine learning model task, resulting in a transparent
and structured approach to decision-making. One participant states: "I am not a fan of a language
model approach because I cannot know what is going on inside the black box. From an academic point
of view, where you have to provide reasoning to publish papers, a decision model should be as white box
as possible". Our decision model implementation is discussed in further detail in Chapter 6. Various
specific needs were suggested; these include having hyperparameters outlined per model, providing a list
of data suited per model, selecting models based on evaluation metrics, featuring models in performance
rankings, providing open source data on the decision model, considering the hardware requirements
for a model, providing a list of common model combinations, presenting the specific influence of each
neural network layer in a model, automatically presenting fine-tuning comparisons between models,
automatically performing exhaustive feature selection (to remove bias set by the initial model), and the
inclusion of several plotting and visualization metrics.

The overall reception for the use of a machine learning model selection decision model was positive
across all participants, with many stating they look forward to the results of our study and further
developments within the field. One participant suggested our decision model could find good use in
practice: "In the industry, as models get more complicated, oftentimes the process of model selection
becomes a case of just throwing a bunch of models at a wall to see what sticks. Rather than setting up
an initial hypothesis, practitioners just try several models to see which one produces the best results. A
decision model could speed up this process considerably". Another participant sees academic potential,
stating: "One problem that I often face as a researcher is understanding and learning from previous
data. If I have a neural network that performs well on a particular dataset, I want to know what layer
combinations positively impact this result. Compared to AutoML solutions that provide a model without
further context, the decision model could offer insight into what particular features are at play".

Q10: Do you have any final remarks about the study or the interview?

Criticism was given regarding the repetition in the models covered during the interview. Furthermore,
some participants argued whether the decision model would be better off excluding some of the machine
learning models they consider outdated.
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5 Expert interviews

5.2 Interview evaluation
We conducted a substantial number of expert interviews, which significantly improved our decision
model. Based on the expert interview feedback, we subjectively altered some aspects of our data, and
we are confident in the design science we used to justify these alterations.
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Decision model

This section describes how research modelers make decisions during machine learning model selection
and how they can incorporate these decisions into a decision model. It illustrates a systematic approach
to machine learning model selection based on academic literature.

6.1 Research challenges

Research modelers face the challenge of selecting the most suitable combination of models to apply to
their predictive modeling task [198]. In this section, we present a meta-model for the decision-making
process in the context of machine learning model selection. Adopting this meta-model is based on
the principles outlined in the ISO/IEC/IEEE standard 42010 [199], which provides a framework for
conceptual modeling of architecture description. This process requires a systematic approach to ensure
that the chosen models effectively capture the research modeler’s goals. Figure 6.1 displays this process
in detail.
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Figure 6.1: Illustrates the role of the decision model in the scope of a meta-model.

Consider a scenario where research modelers encounter this challenge and describe the machine learning
model selection decision-making process as follows:

Goal and concerns: The research modelers aim to build a machine learning model selection approach
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through a decision model system. They desire to accurately determine project goals’ underlying pur-
poses or objectives, enabling personalized and precise responses. The research modelers have concerns
regarding functional requirements, and they aim to achieve an acceptable level of quality based on their
evaluation measures.

Identification of models and features: To address this problem, the research modelers consider
various models that can capture project goals in the scientific context. Based on their concerns, they
identify essential features, such as the project task or project data type. They explore the available
model paradigms and approaches, such as supervised, unsupervised, reinforcement, deep, and ensemble
learning. The research modelers also consider the recent trends in employing models for machine learning
model selection.

Evaluation of models: The research modelers review the descriptions and capabilities of several models
that align with machine learning. They analyze each model’s strengths, limitations, and applicability to
the decision-modeling problem. They consider the model’s ability to handle data and output efficiency.
This evaluation allows them to shortlist a set of candidate models that have the potential to address the
machine learning model selection challenges effectively.

In-depth analysis: The research modelers conduct a more detailed analysis of the shortlisted models.
They examine the associated techniques for each model to ensure their suitability in the model selection
system. They assess training data requirements, model complexity, interpretability, and scalability.
Additionally, they explore the possibility of combining models to identify compatible combinations or
evaluate the existing literature on such combinations. If necessary, further study may be conducted to
assess the feasibility of model combinations. This step helps them identify the optimal variety of models
that best capture research project goals and address their concerns.

6.2 Decision-making process structure
The decision-making process for machine learning model selection can be formally described using a
structured approach, as outlined in Algorithm 1:

Algorithm 1 Machine learning model selection process.
Input: Project goals, functional requirements
Output: Optimal selection of (combined) machine learning models

procedure ModelSelection
Identify project goals and objectives
Identify functional requirements
Identify potential models and their features
for each model m in Models do

Evaluate m based on predefined criteria (strengths, limitations, applicability)
end for
Shortlist candidate models based on evaluation
for each shortlisted model m′ do

Conduct in-depth analysis (training data requirements, complexity, interpretability, scalability)
Explore potential combinations of m′ with other models

end for
Assess feasibility of model combinations
Evaluate performance of feasible combinations
Return Optimal selection of (combined) machine learning models

end procedure

This structured algorithm provides a formal framework for the decision-making process, ensuring clarity
and consistency in selecting machine learning models.

6.3 A decision model for machine learning model selection
The decision model’s sources are directly responsible for the contributions to the decision model. The
literature study, document analysis, domain experts, and machine learning model repositories shape the
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6.3 A decision model for machine learning model selection

contents of the decision model on a one-to-many basis. The decision model contains a list of several
machine learning models. Each machine learning model has a list of features, and each feature has
an assigned category. Evaluation measures impact the machine learning models, and datasets both
train and evaluate machine learning models. Machine learning models can also be combined with other
machine learning models to create machine learning model combinations.

Decision theories have wide-ranging applications in various fields, including e-learning [200] and soft-
ware production [201, 202]. In the literature, decision-making is commonly defined as a process involving
problem identification, data collection, defining alternatives, and selecting feasible solutions with ranked
preferences [203]. However, decision-makers approach decision problems differently, as they have their
priorities, tacit knowledge, and decision-making policies [204]. These differences in judgment necessi-
tate addressing them in decision models, which is a primary focus in multiple-criteria decision-making
(MCDM).

MCDM problems involve evaluating a set of alternatives and considering decision criteria [? ]. The
challenge lies in selecting the most suitable alternatives based on decision-makers’ preferences and re-
quirements [205]. It is important to note that MCDM problems do not have a single optimal solution,
and decision-makers’ preferences play a vital role in differentiating between solutions [205]. In this study,
we approach the problem of model selection as an MCDM problem within the context of a decision model
for machine learning model selection.

Let Models = m1, m2, . . . , m∥Models∥ be a set of models found in the literature (decision space), such
as SVM, DT, and BERT. Let Features = f1, f2, . . . , f∥Features∥ be a set of features associated with
the models, such as classification, supervised learning, and image data. Each model m ϵ Models supports
a subset of the set Features. The objective is to identify the most suitable models, or a combination
of models, represented by the set Solutions ⊂ Models, that address the features of research modelers
denoted as Features, where Features ⊆ {Must have features ∪ Should have features ∪ Could have Features
∪ Will not have features}, based on the MoSCoW principle [206]. Accordingly, research modelers can
adopt a systematic strategy that allows for selecting combinations of models by employing an MCDM
approach. This approach involves taking Models and their associated Features as input and applying a
weighting method to prioritize the Features based on the preferences of decision-makers. An aggregation
method ranks the Models and proposes fitting Solutions. Consequently, the MCDM approach can be
formally expressed as follows:

MCDM : Models × Features → Solutions

The MCDM decision model framework is valuable for research modelers working on recommender sys-
tems [207]. This approach could help research modelers explore options systematically and choose the
best combination of models to select an effective machine learning model approach. The decision model
suggests five steps for selecting a variety of models:

(1) Models: In this phase, research modelers should gain insights into best practices and well-known
models employed by other research modelers in machine learning model selection. The Appendix A can
be used to understand the definitions of models. The Appendix A can also help in becoming familiar
with the categories used to classify these models. Figure 4.1 and Figure 4.2 illustrate the categorization
of models in this study, and Figure 4.6 presents the trends observed considering the machine learning
model used in research.

(2) Feature requirements elicitation: In this step, research modelers need to fully understand the
core aspects of the machine learning model selection problem they are studying. They should carefully
analyze their specific scenario to identify the key characteristics required in the models they seek, which
may involve using a combination of models. For instance, research modelers might consider regression
[12] and structured data [164] as essential feature requirements for model selection problems. Research
modelers can refer to A to better understand feature definitions and model characteristics. This will
help them select the most suitable features for their machine learning model selection problem.

(3) Finding feasible solutions: In this step, research modelers should identify models that can
feasibly fulfill all of their feature requirements. 4.4 can be used to determine which models support
specific features. For example, the table shows that publications explicitly mentioned support vector
machines as a suitable model for classification [70], non-parametric [208], and L2 regularization [209]
use. Based on these findings, if a machine learning project requires these three feature requirements,
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support vector machines could be selected as one of the potential solutions. If the number of feature
requirements increases, the selection problem can be converted into a set covering problem to identify
the smallest sub-collection of models that collectively satisfy all feature requirements.

(4) Selecting feasible combinations: In this phase, research modelers need to assess whether the
identified models can be integrated or combined. 4.5 provides information on the feasibility of combining
models based on the reviewed articles in this study. If the table does not indicate a potential combination,
it does not necessarily imply that the combination is impossible. This means no evidence supports its
feasibility, and research modelers should investigate the combination independently.

5) Performance analysis: After identifying a set of feasible combinations, research modelers should
address their remaining concerns regarding evaluation measures. 4.7 and the Appendix A can be used
to understand the typical concerns other research modelers in the field employ regarding this domain.
Additionally, 4.8 provides insights into frequently used datasets across the domain and applications.
Research modelers can then build their solutions and pipelines using off-the-shelf models from various
libraries, such as TensorFlow [40] and Scikit-learn [210]. These solutions can be evaluated using desired
datasets to assess whether they meet all the specified concerns. This phase of the decision model
differs from the previous four phases, as it requires significant ad-hoc efforts in developing, training, and
evaluating the models.

By employing this decision-making process, research modelers can develop a machine learning model
approach that accurately captures and understands their user requirements and project goals. This
enables personalized and precise responses, enhancing the overall user experience and utility.
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In this section, we present an evaluation of our proposed decision model through several scientific case
studies [143]. Our case study method is not to be confused with an industrial case study method,
which is a detailed examination of a specific instance within an industrial setting [211]. The papers we
selected represent the outcome of our study as we performed our decision-making process in the context
of those scientific projects. Eight domain-relevant papers are covered to understand the applicability of
the decision model to the participant’s projects. For each paper, we utilized our decision model based
on what we believed was parallel to decision-making within the paper. Firstly, based on the paper, we
decided what we deem as features, divided into Must have, Should have, Could have, and Won’t have
features, based on the MoSCoW principle [206]. Secondly, we determined what models are used in the
paper and for what purpose. Subsequently, we entered our features into the decision model, generating
a list of alternative solutions. These alternative solutions should theoretically serve as machine learning
models that could adequately replace the models used in the study with relative success.

After this preparation phase, we presented our findings to the original author of the paper during our
case study interview, asking them several questions: "Do you agree with our selected features?", "Do
you agree with our selected models?", "Do you feel our alternative solutions make sense and fit the study
domain?", "Are you interested in using our decision model?". After repeating this process for all eight
case studies, we compiled our gathered data and evaluated how accurate our prepared data was for
each question. We compared the results our decision model offered with what the original authors had
considered. Finally, we summarized the findings as the overall results of our case studies.

In Figure 7.1, we provide a summarized overview of the case studies conducted in this research. This
includes details about each case study’s specific domains, the study’s publication, the study domain, the
models and feature requirements identified by the case study, and the alternative solutions provided by
our decision model.

7.1 Case study 1

This study is called: "Protein Family Classification from Scratch: A CNN Based Deep Learning Ap-
proach". Next-generation sequencing techniques enable the generation and identification of sequenced
proteins and their biological families and functions. Despite this, many proteins remain uncharacterized
in bioinformatics. Traditional classification models focus on N-Gram features from sequences, neglecting
motif information and the affinity between motifs and adjacent amino acids. Previous clustering-based
algorithms used domain knowledge and extensive data samples to define protein features and annotate
families. The paper aims to introduce a convolutional neural network-based approach for amino acid
representation learning using limited characterized proteins, incorporating amino acid location informa-
tion [212]. They evaluate the method on reviewed protein sequences from the UniProt database and
also validate the model using typically ignored unreviewed protein records.

7.1.1 Feature requirements

For the feature selection, we decided on two features in total. ’Must have: classification model’, was
decided based on the study’s preference to classify amino acids through representation learning. The
participant agreed with this reasoning. ’Must have: convolutional neural network’, was decided
based on the study’s convolutional neural network-based solution. The participant noted that while an
amino CNN structure was suitable at the time, it was more of a personal preference than a necessity.
They further noted that domain-specific features like amino acid compatibility, detailed gene features,
and protein prediction are relevant.

7.1.2 Models

We identified the sole model used as a convolutional neural network model. The participant addressed
that they used a one-dimensional convolutional neural network structure (1D-CNN) [213], different from
a normal 2D convolution and particularly suited to amino acid data strings.
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7.1.3 Results

Our decision model produced a list of alternative solutions, the top 10 being: deep convolutional neural
network (DCNN) [7], dense CNN [214], gate CNN [215], temporal convolution networks (TCN) [216],
generic CNN (GCNN) [217], tuned dedicated CNN (TDCNN) [218], attention-based time-incremental
CNN (ATI-CNN) [219], residual network (ResNet) [163], visual geometry group [171], ResNet50/152V2
[220].

The participant noted that the list of alternative solutions is too broad for the amino acid domain. As
examples, they mentioned how Unet [221] is suited to semantic segmentation and AlexNet [7] is suited
to image classification. They also noted that they are unfamiliar with some of the models listed.

7.1.4 Analysis

The participant noted how the broadness of the alternative solutions hinders the potential use of our
decision model. They also noted how it could be a useful tool if tuned for more specific domains like
the amino acid protein sequences in their studies. They also mentioned the need to see how their data
modality fits into a specific model.

Case study 1 showcases how our decision model is very knowledgeable in a broad sense but possibly not
specialized enough to be useful to certain domain experts. Furthermore, the list of alternative solutions
showcases how the decision model underfits on a lack of specific features.

7.2 Case study 2
This study is called: "Runtime Adaptation in Wireless Sensor Nodes Using Structured Learning".
Markov decision processes (MDPs) [222] enable dynamic adaptation and self-optimization of cyber-
physical systems at runtime. Recently, reinforcement learning techniques, which simplify Markov deci-
sion process components to reduce computational requirements, have been popular. This paper argues
that advancements in compact MDP models (CMMs) challenge this trend, especially in designing wire-
less sensor network nodes. A novel compact MDP model-based approach for self-aware wireless sensor
nodes is introduced and compared to Q-learning [223], a common reinforcement learning technique
[224]. It is shown that reinforcement learning models do not effectively serve a specific class of sensor
nodes. Through simulations and a prototype implementation, it is demonstrated that compact MDP
models offer significantly better runtime adaptation performance than Q-learning with similar resource
requirements.

7.2.1 Feature requirements

For the feature selection, we decided on two features in total. ’Must have: reinforcement learning’,
was agreed on the study’s research domain being reinforcement learning. ’Could have: MDP’, was
chosen as a likely feature due to the paper’s artifact being a specific type of Markov decision process,
namely a compact MDP model. The participant noted that their research approach was not based on
feature selection. While Q-learning became popular during their research, they recognized themselves as
Markov decision process domain experts. Consequently, they sought out Markov decision process-related
problems to tackle. They would define a discrete state space, specifically using system knowledge for
the domain of a problem. Subsequently, they progressed to methods where the system would adjust
the state space based on runtime observations. The participants noted that they believed this research
methodology was prevalent in academic research. They also recognized that this research method was
not mentioned in their paper.

7.2.2 Models

We identified the sole model as a compact MDP model. The participants provided additional context
to their reasoning behind this model choice. They were dealing with an application where the Markov
decision process and reinforcement learning models were beneficial tools for solving problems. How-
ever, these solutions required too much computational resources. They investigated low memory and
CPU-related solutions, such as implementing compression mechanisms. They created an artifact that
could compact representation through compression while maintaining the Markov decision process and
reinforcement learning compatibility. This is where they coined the term "compact MDP model".
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7.3 Case study 3

7.2.3 Results

Our decision model produced a list of alternative solutions, the top 10 being: deep learning (DL) [6],
neural network (NN) [93], Q-learning [223], Deep Q-learning [225], Deep Q-network [225], dueling DQL
[226], double DQL [227], double-dueling deep Q-learning [228], post-decision state learning [229], utility-
based learning (UL) [230].

The participants noted how they are familiar with roughly half of the models listed. They mention that
all models appear relevant to their study’s domain. They say reading through alternative reinforcement
learning solutions like multi-armed bandit (MAB) [231], value iteration [232], and temporal difference
learning [233], while searching for possible candidate models for their study. They note, however, how
none of the alternative solutions listed would directly address the core issue of their study, which is the
resource constraint problem during computation.

7.2.4 Analysis

The participant noted that our decision model sounds useful conceptually. They are interested in seeing
how usable the decision model is practically and how accurate its results are in a variety of domains.
They also noted how the model could aid in proposing domain-specific models they may not be aware
of. Our decision model’s extensive survey of data could speed up this learning process.

Case study 2 showcases how our decision model can provide accurate alternative solutions for a given
machine learning domain.

7.3 Case study 3

This study is called "Identifying click baits using various machine learning and deep learning techniques".
It mentions how most readers today prefer online news for instant updates and personalized recommen-
dations. However, this format also brings issues like clickbait social media posts designed to attract
attention rather than inform. This paper aims to develop a system to predict the likelihood of social me-
dia posts (tweets) related to news articles being clickbaits [234]. GloVe embeddings are used to represent
text data numerically, and various features such as Word Mover’s Distances, subjectivity, and polarity of
tweets are engineered. Several machine learning models are trained for classification, including logistic
regression [170], random forest [57], XGBoost [235], and LightGBM [236]. Additionally, deep learning
models like deep neural networks [93] and long short-term memory [148] are implemented to enhance
the predictive system.

7.3.1 Feature requirements

For the feature selection, we decided on two features in total. ’Must have: classification model’,
was decided due to the domain being a classification machine learning problem. ’Should have: text
data compatibility’ was chosen as a relevant feature because of the clickbait identification problem.
The participant noted that he agreed that any model for this domain should be a classification model
that is compatible with text data.

7.3.2 Models

We identified logistic regression as the main model used as their final choice. Random forest, XGBoost,
LightGBM, deep neural network, and long short-term memory were other models used. The participants
agreed with all of these model choices, with logistic regression being the final solution for their research.

7.3.3 Results

Our decision model produced the following list of alternative solutions: bidirectional encoder represen-
tations from transformers (BERT) [112], multinomial naïve Bayes (MNB) [237], discriminative multino-
mial naïve Bayes (DMNB) [238], multilayer feedforward ANN [5], attention-based bi-directional LSTM
(ABLSTM) [239], multitask-clinical BERT (MT-Clinical BERT) [240], BEHRT [241], CheXbert [242],
HyperNet [243], forwarding neural network [244], deep learning for code clones (DLC) [245].
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The participants agreed that BERT, MNB, DMNV, multilayer feedforward ANN, and attention-based
bi-directional LSTM are suitable alternative solutions. However, they noted being apprehensive about
using domain-specific models like multitask-clinical BERT.

7.3.4 Analysis

The participant noted being interested in using the decision model and trying out its suggested alternative
solutions.

Case study 3 showcases a positive response to the use of our decision model and provides an example
where the decision model does not underfit to return a list of models that is considered too broad.

7.4 Case study 4

This study is called: "DeepVulSeeker: A novel vulnerability identification framework via code graph
structure and pre-training mechanism". Software vulnerabilities can lead to system crashes, privacy
leaks, or even physical damage. Identifying these vulnerabilities promptly in extensive codebases is
crucial for patching them. Current models, including classic and deep-learning-based approaches, have
significant drawbacks and fail to meet industry demands. To address these issues, the paper proposes
DeepVulSeeker, an automated vulnerability identification framework utilizing code graph structures
and semantic features through graph representation self-attention and pre-training mechanisms [246].
Experiments demonstrate that DeepVulSeeker achieves 0.99 accuracy on traditional CWE datasets and
outperforms existing models on two complex datasets. Additionally, case studies show its ability to
understand the implications of vulnerability. DeepVulSeeker is fully implemented and open-sourced for
future research.

7.4.1 Feature requirements

For the feature selection, we decided on three features in total. ’Must have: classification model’, was
decided on due to the nature of the study being a classification problem. ’Must have: convolutional
neural network’, was chosen because the body of data needed to be convoluted into multiple layers.
’Should have: multiple layers’ was chosen as a relevant feature due to the nature of the data as
well. The participant agreed that our features fit, noting that using a a convolutional neural network
was necessary because there was no data body. The participant noted they had different perspectives
on what features fit the entirety of their study. Taking this overarching approach, they named abstract
syntax tree [247], control flow graph [248], data flow graph [249], and embedded models [250] as their
four features.

7.4.2 Models

We identified the model used as their artifact, DeepVulSeeker, which involves a graph representation
self-attention (GRSA) model, convolutional neural network, and multilayer perceptron. The participant
agreed with our selected models and added that self-attention [251] and pre-training [163] are additional
model factors that could be considered part of the model artifact. They further mentioned that newer
models in this domain are more likely to use large language model-related models.

7.4.3 Results

Our decision model produced a list of alternative solutions, the top 10 being: deep convolutional neural
network (DCNN) [7], gate CNN [215], generic CNN (GCNN) [217], tuned dedicated CNN (TDCNN)
[218], attention-based time-incremental CNN (ATI-CNN) [219], LeNet [252], AlexNet [7], R-CNN [253],
Faster R-CNN [254], Mask R-CNN [255].

The participants questioned using the provided alternative models, as they had tested some of them in
their study domain before, with underwhelming results. They further noted how it can be unclear how
useful an alternative solution model is before testing it. This process potentially wastes time, and they
believed it beneficial if a model’s performance could be considered beforehand. They further mentioned
that AlexNet and graph neural networks (GNN) [256] could be added to the list of alternative solutions.
They especially considered graph neural networks superior to most of the alternative suggestions.
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7.5 Case study 5

7.4.4 Analysis

The participant was interested in using our decision model in different research domains. They empha-
sized how selecting a model from a predefined list of potential models could reduce the time needed to
find an appropriate one. This illustrates how the decision model can increase productivity by offering
a detailed list of machine learning models that fit a specific domain. However, it also showcases how
model unfamiliarity may undermine the decision model’s use. Furthermore, the participant mentioned
some models they deemed adequate additions to the alternative solutions provided for their domain,
highlighting how further decision model improvements could be beneficial.

Case study 4 showcases how the machine learning model selection process can be sped up with a prede-
termined list of models suited to a problem domain. It further illustrates the potential of updating such
a model in line with current research developments.

7.5 Case study 5
This study is called "Smart contract vulnerability detection based on semantic graph and residual graph
convolutional networks with edge attention". Smart contracts facilitate credible transactions without
third parties but are vulnerable to exploitation and cannot be modified once deployed. Ensuring their
security is crucial due to the rapid increase in smart contracts. Deep learning offers a promising solution
for detecting vulnerabilities, but current models fail to capture the syntax and semantic information
embedded in smart contracts. This paper addresses function-level vulnerability detection by constructing
a novel semantic graph (SG) for each function and using graph convolutional networks (GCNs) with
residual blocks and edge attention [257]. The proposed model involves three stages: creating SGs with
rich syntax and semantic information, learning code content and semantic features using an EA-RGCN
model, and classifying functions as vulnerable. Experiments on real-world smart contract datasets show
that the semantic graph and EA-RGCN model significantly improve accuracy, precision, recall, and
F1-score detection performance.

7.5.1 Feature requirements

For the feature selection, we decided on three features in total. ’Must have: convolutional neural
network’, was decided based on the study’s incorporation of the convolutional neural network as its
central model structure. ’Should have: residual network architecture’ was decided based on the
relevance of the residual network architecture within the proposed artifact. ’Should have: graph
architecture’, was similarly deemed relevant based on the structure of the proposed artifact. The
participant agreed with our reasoning that the convolutional neural network is the central structure and
that the residual network and graph architectures are also relevant.

7.5.2 Models

We identified the main model as EA-RGCN, which consists of a word2vec component [258], edge attention
(EA) [259], and a residual graph convolutional network (RGCN) [260]. The participant agreed that this
structure summarizes the primary model of the study.

7.5.3 Results

Our decision model produced the following list of alternative solutions: residual network (ResNet) [163],
ResNet50/152V2 [220], Hourglass [261], dilated residual network [262], ResNeXt [263], deep residual
networks [264], UNet [221], SegNet [265], directed graph convolutional neural network [266].

The participant noted their mixed feelings, deeming only some models a good alternative. They felt a
dilated residual network and a directed graph convolutional neural network might be adequate alternative
solutions to their research.

7.5.4 Analysis

The participant showed interest in using our decision model in future research related to and unrelated
to convolutional neural network structures. However, they noted learning how the decision model works
internally before deciding whether to use it in a research domain.
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7 Case Studies

Case study 5 showcases how the decision model can provide accurate alternative solutions for several
specific machine learning model architectures combined. Although not all alternative solutions were
deemed equally relevant, none seemed to contradict the domain directly.

7.6 Case study 6

This study is called "Digital forensic framework for smart contract vulnerabilities using ensemble models".
Forensic identification of vulnerabilities in Ethereum-based smart contracts is crucial as they manage sig-
nificant cryptocurrency assets. These smart contracts can have vulnerabilities, including denial of service
(DoS), access control issues, arithmetic overflow, bad randomness, re-entrance, and unchecked low-level
calls. This paper presents a novel vulnerability detection system using natural language processing and
machine learning [267]. The model targets Ethereum-based smart contracts and uses benchmark data
with different vulnerability types. Unlike classical methods that use the SolMatrix tool and face issues
with feature variations and data imbalance, this methodology assesses the probability of vulnerabilities
in Ethereum Solidity Smart Contracts. The proposed model’s performance, evaluated in terms of accu-
racy, F-measure, and area under the curve, shows that with SMOTE sampled data, the random forest
algorithm achieved nearly 90% accuracy, an area under the curve of about 0.7, and an average F-measure
of 0.86.

7.6.1 Feature requirements

For the feature selection, we decided on two features in total. ’Must have: classification model’, was
decided based on the detection task the domain demands. ’Should have: text data compatibility’,
was deemed a relevant feature due to the nature of smart contracts data being text. The participant
agreed with both of these features, sharing no further remarks.

7.6.2 Models

We identified several models within the study. Related models are a continuous bag of words and a
continuous skip-gram. The main machine learning model is an ensemble structure consisting of a decision
tree, random forest, bagging [268], AdaBoost [269], and gradient boost model [152]. The participant
agreed with the identified models and the structure we described for their function.

7.6.3 Results

Our decision model produced the following list of alternative solutions: bidirectional encoder represen-
tations from transformers (BERT) [112], multinomial naïve Bayes (MNB) [237], discriminative multino-
mial naïve Bayes (DMNB) [238], multilayer feedforward ANN [5], attention-based bi-directional LSTM
(ABLSTM) [239], multitask-clinical BERT (MT-Clinical BERT) [240], BEHRT [241], CheXbert [242],
HyperNet [243], forwarding neural network [244], deep learning for code clones (DLC) [245].

The participant noted that our alternative solutions were relevant to the problem domain. They consid-
ered all alternative solutions as possible avenues for better results in the study.

7.6.4 Analysis

The participant mentioned being interested in the workings of our decision model and expressed interest
in using it in future research.

Case Study 6 showcases high-quality alternative solutions provided by the decision model, as the par-
ticipants rated all machine learning models as relevant and interesting avenues for their research.

7.7 Case study 7

This study is called "TP-Detect: trigram-pixel based vulnerability detection for Ethereum smart con-
tracts". Smart contracts on the Ethereum blockchain are immutable programs that execute when prede-
termined conditions are met but are vulnerable to coding errors. This paper attempts to classify these
vulnerabilities using feature extraction and machine learning [270]. A dataset was constructed from pixel
values of images and trigram feature extraction. It was trained using various machine learning models,
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7.8 Case study 8

including multilabel k-nearest neighbors (MLkNN) [271], binary relevance k-nearest neighbors (BRkNN)
[272], random forest, and naïve Bayes. The naïve Bayes model performed the best, achieving F1-scores
of 99.38% and 99.44% using binary relevance and classifier chain, respectively. The random forest model
also showed strong performance with F1-scores of 96.71% and 96.61%. In contrast, multilabel k-nearest
neighbors and binary relevance k-nearest neighbors had lower F1 scores of 88.19% and 89.71%, respec-
tively. This indicates that the created dataset is more effective than models using opcode characteristics
or image-based detection.

7.7.1 Feature requirements

For the feature selection, we decided on four features in total. ’Must have: classification model’,
was decided on due to the inherent nature of the classifier task in vulnerability detection. ’Could have:
KNN model’ was selected as a likely feature due to the prevalent k-nearest neighbors structure in the
compared machine learning models. ’Could have: naïve Bayes model’, was deemed a likely model
feature due to a naïve Bayes model being used for machine learning comparison. ’Could have: Deep
Forest model’, was deemed a likely model due to specific variants like random forest being used as
a machine learning comparison model. The participants agreed with our selected features and deemed
them relevant to finding adequate alternative solutions. They furthermore did not suggest any additional
features that we could consider related.

7.7.2 Models

We identified the models used as k-nearest neighbors, multilabel k-nearest neighbors, binary relevance
k-nearest neighbors, random forest, and naïve Bayes, with naïve Bayes performing the best on their
artificial dataset. The participant agreed to our machine learning model descriptions, leaving no further
comments.

7.7.3 Results

Our decision model produced the following list of alternative solutions: multinomial naïve Bayes (MNB)
[237], discriminative multinomial naïve Bayes (DMNB) [238], adaptive k-nearest neighbor [273], k-star
classifier [274], classification and regression tree (CART) [275], k-star [276], local nearest neighbor (LNN)
[277], weighted random forest (WRF) [278], augmented naïve Bayes [279], weighted KNN [280], quantum
nearest neighbors [281], Ruan-Xue-Liu-Tan-Li (RXLTL) [282], Ibk [100].

The participant noted that our alternative solutions were relevant to the problem domain. They consid-
ered all alternative solutions as possible avenues for better results in the study.

7.7.4 Analysis

The participant mentioned being interested in the workings of our decision model and expressed interest
in using it in future research.

Case Study 7 showcases high-quality alternative solutions provided by the decision model. The par-
ticipants rated all machine learning models as relevant and interesting avenues for their research. It
highlights how the decision model can produce lists related to specific feature requirements, like several
variants of the k-nearest neighbor structure.

7.8 Case study 8

This study is called "Block-gram: Mining knowledgeable features for efficiently smart contract vulnera-
bility detection". Smart contracts on the blockchain, such as those used for decentralized applications
on Ethereum, require effective vulnerability detection to prevent significant economic losses. Since
repairing and updating smart contracts is challenging, detecting vulnerabilities before deployment is
crucial. Due to extensive feature requirements and inefficiency, traditional methods like code analysis
and learning-based techniques are deemed too time-consuming for large-scale contracts. This paper
proposes improving detection efficiency by reducing feature dimensions with expert knowledge [283].
The authors introduce block-gram, a feature extraction model that forms low-dimensional knowledge-
based features from bytecode by converting runtime code into opcode sequences and mining scalable
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block-gram features. Combined with SHAP values for interpretability, these features are evaluated on a
dataset of 33,885 contracts using seven learning algorithms. Results show that the new method speeds
up detection by 25× to 650× compared to N-gram features while enhancing model interpretability.

7.8.1 Feature requirements

For the feature selection, we decided on a single feature. ’Must have: dimensionality reduction’,
was decided based on the main topic of the study, which is to improve detection efficiency by reducing
the dimensions of features. The participant agreed with our selected feature, stating dimensionality
reduction [284] is a significant topic for machine learning in general.

7.8.2 Models

We identified their artifact as the block-gram model. This model was tested with machine learning
models, including XGBoost, random forest, k-nearest neighbors, logistic regression, decision tree, naïve
Bayes, and long short-term memory. The participant agreed with our selected models and our description
of using the Block-gram model.

7.8.3 Results

Our decision model produced the following list of alternative solutions: partial least squares (PLS)
[285], linear discriminant analysis (LDA) [286], principal component analysis (PCA) [287], RPCA [288],
multivariant discriminant analysis (MDA) [289], PLSA [290], CTM [291], Nnge [100], t-SNE [292], uMAP
[293], canonical correlation analysis (CCA) [294].

The participant noted how a small feature space was crucial to their research. However, they noted that
they were not experts on dimensionality reduction models, having relied on expert knowledge during
their study. Therefore, they found themselves unfit to comment critically on our list of alternative
solutions.

7.8.4 Analysis

The participant noted being interested in seeing the inner workings of the decision model. They were
interested in using the decision model in future research as well.

Case study 8 was adequately performed as the participants agreed to our selected features and models.
However, their lack of expertise regarding the dimensionality reduction domain made them unfit to
critically assess whether our alternative solutions would benefit their current or future research.

7.9 Evaluation
After completing all case studies, we compiled the summarized feedback into Figure 7.2. For each
question asked for every case study, we narrowed down whether the feedback was positive, mixed, or
negative. Positive feedback means the participant agreed with our statements and offered no direct
criticism. Mixed feedback means the participant agreed with only some of our statements and offered
criticism. Negative feedback means the participant rejected our statements.

When examining the results of our case studies, several statements can be made. The feature selection
phase received five positive responses and three mixed responses. Considering this data, we can conclude
the feature selection phase was performed with decent accuracy. The model selection phase received seven
positive responses and one negative response. Considering this data, we can conclude that the model
selection process was performed with high accuracy, though not without mistakes, as the single negative
response should not be ignored. The alternative solutions provided by our decision model received two
positive responses, five mixed responses, and one negative response. Considering this data, we can
conclude that while the decision model occasionally provides accurate alternative solutions, it often
delivers mixed-quality results. Standout issues here are a situation where the decision model underfits
and produces too many alternative solutions, resulting in bloated decision data, or a situation where
the decision model produces too many irrelevant alternative solutions, resulting in low-quality decision
data. Finally, when considering the interest in the decision model, we see five positive responses and
three mixed responses.
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Case study 1
Study name Protein Family Classification from Scratch: A CNN Based Deep Learning Approach
Publication IEEE/ACM Trans. Comput. Biol. Bioinformatics
Domain protein family classification
Selected features Must have: classification model, convolutional neural network
Selected models CNN
Alternative solutions Deep convolutional neural network (DCNN), dense CNN, gate CNN,...

Case study 2
Study name Runtime Adaptation in Wireless Sensor Nodes Using Structured Learning
Publication ACM Trans. Cyber-Phys. Syst.
Domain runtime adaptation
Selected features Must have: reinforcement learning; Could have: MDP
Selected models compact MDP model (CMM)
Alternative solutions deep learning (DL), neural network (NN), Q-learning,...

Case study 3
Study name Identifying click baits using various machine learning and deep learning techniques
Publication International Journal of Information Technology
Domain identifying click baits
Selected features Must have: classification model; Should have: text data compatibility
Selected models Logistic regression, Random forest, XGBoost,...
Alternative solutions BERT, multinomial naïve bayes (MNB), discriminative multinomial naïve bayes (DMNV),...

Case study 4
Study name DeepVulSeeker: A novel vulnerability identification framework via code graph structure and pre-training mechanism
Publication Future Generation Computer Systems
Domain smart contract vulnerability detection
Selected features Must have: classification model, convolutional neural network; Should have: multiple layers
Selected models CNN, MLP
Alternative solutions deep convolutional neural network (DCNN), gate CNN, generic CNN (GCNN),...

Case study 5
Study name Smart contract vulnerability detection based on semantic graph and residual graph convolutional networks with edge attention
Publication Journal of Systems and Software
Domain smart contract vulnerability detection
Selected features Must have: convolutional neural network; Should have: residual network architecture, graph architecture
Selected models word2vec, Residual graph convolutional network (RGCN), Edge attention (EA)
Alternative solutions Residual network (ResNet), ResNet50/152V2, Hourglass,...

Case study 6
Study name Digital forensic framework for smart contract vulnerabilities using ensemble models
Publication Multimedia Tools and Applications
Domain smart contract vulnerability detection
Selected features Must have: classification model; Should have: text data compatibility
Selected models Ensemble model of Decision tree, Random forest, Bagging,...
Alternative solutions BERT, multinomial naïve bayes (MNB), discriminative multinomial naïve bayes (DMNV),...

Case study 7
Study name TP-Detect: trigram-pixel based vulnerability detection for Ethereum smart contracts
Publication Multimedia Tools and Applications
Domain smart contract vulnerability detection
Selected features Must have: classification model; Could have: KNN model, Naïve bayes model, Deep forest model
Selected models KNN, Multilabel KNN, Binary relevance KNN,...
Alternative solutions multinomial naïve bayes (MNB), discriminative multinomial naïve bayes (DMNV), adaptive KNN,...

Case study 8
Study name Block-gram: Mining knowledgeable features for efficiently smart contract vulnerability detection
Publication Digital Communications and Networks
Domain smart contract vulnerability detection
Selected features Must have: dimensionality reduction
Selected models Block-gram, XGBoost, Random forest,...
Alternative solutions partial least squares (PLS), linear discriminant analysis (LDA), principal component analysis (PCA),...

Figure 7.1: A summarized overview of the data prepared for all case studies.

Considering this data, we can conclude that overall interest in our decision model is present but sometimes
accompanied by skepticism. Skeptic remarks mainly regarded the actual use of the decision model in
practice and whether or not it would be suited for use in a wide variety of machine learning domains.
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7 Case Studies

Case study 1 2 3 4 5 6 7 8
Feature selection Mixed Mixed Positive Mixed Positive Positive Positive Positive
Model selection Negative Positive Positive Positive Positive Positive Positive Positive
Alternative solutions Negative Mixed Mixed Mixed Mixed Positive Positive Mixed
Decision model Mixed Positive Positive Mixed Mixed Positive Positive Positive

Figure 7.2: A summary of the overall feedback of each participant to each of our questions.
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Discussion

This section comprehensively evaluates the study’s implications in machine learning model selection.
We cover the evaluations of our results related to our research questions. We mention crucial outcomes
during our systematic literature review. We cover worthwhile notions from both the expert interviews
and the case studies. We critically examine the validity and methodology of the results, emphasizing
various potential threats to validity. The outcomes and accompanying limitations of the study are
discussed as well. Finally, the practical implications of the findings are explored, and possible avenues
of future research are considered.

8.1 Research questions

Regarding our first research question: "Which machine learning models should be included in the machine
learning model selection decision model?", the SLR provided a comprehensive list of 548 total machine
learning models, which the expert interview feedback further increased to a total of 571 machine learning
models. For the analysis in this paper, we focused only on the machine learning models featured in at
least ten papers. The five most common models were support vector machines, random forests, k-nearest
neighbors, decision trees, and logistic regression. We also considered what models tend to be used in
a single research project to enhance their utility for the machine learning decision model. The five
models combined with another model most often are support vector machines, random forests, k-nearest
neighbors, decision trees, and convolutional neural networks. We also considered model trends and how
certain models have been used more frequently in recent years. The most frequently used models are
roughly the same over the years: support vector machines, random forests, k-nearest neighbors, decision
trees, and logistic regression. In recent years, we have noticed a rising trend in the use of residual
networks and VGG16/19. This data shows us the most relevant machine learning models to add to our
machine learning decision model.

Regarding our second research question: "Which characteristics and features should be included in the
machine learning model selection decision model?", The SLR provided substantial insight into how ma-
chine learning models can be categorized and what features can be assigned. We were able to set up a
comprehensive taxonomy for machine learning models, which categorizes each model into at least one
of 25 main categories. Some of the most associated main categories are supervised, unsupervised, and
reinforcement learning. These categories encompass a broad range of models and techniques applied
in machine learning, serving as essential machine learning paradigms. The categories are further di-
vided into subcategories, characterizing each machine learning model more specifically. We created a
comprehensive list of features that can be associated with each machine learning model. 273 features
were identified based on the SLR, which we divided into 19 categories based on their context, domain,
and applications. These features aid the decision model, providing a set of parameters based on which
specific models can be selected.

Regarding our third research question: "Which training and evaluation datasets should be included in
the machine learning model selection decision model?", The SLR provided a list of commonly utilized
datasets across the various papers. We identified a total of 37 datasets that were published in at least
two publications. Notably, MNIST, CIFAR-10/100, ImageNet, KDDCup ’99, and NASA emerged as the
top five datasets commonly used in evaluating machine learning models. Combined, these datasets have
been utilized in over 30 publications, highlighting their significance and wide adoption. This information
regarding the datasets provides our decision model with a sufficient list of machine learning datasets on
which to rely.

Regarding our fourth research question: "Which evaluation measures and methods should be included
in the machine learning model selection decision model?", The SLR provided a comprehensive list of
the most commonly used evaluation measures for machine learning. Among all the evaluated measures,
we focused on the evaluation measures that were mentioned in at least ten papers. Precision, recall,
F1-Score, accuracy, and area under the curve are among the top five evaluation measures identified in
the SLR. The most relevant evaluation measures aid as additional data in our machine learning decision
model.
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Regarding our fifth research question: "How can a decision model be developed to support research
modelers in selecting machine learning models?", this was answered through our expert interviews and
design science methods. We successfully built our decision model based on the MCDM framework. The
model and feature list that make up our decision model were reevaluated based on the feedback received
from the case studies. The number of models increased, and the feature list was adjusted to cover
more avenues of machine learning. Furthermore, the taxonomy was revised to communicate better how
machine learning paradigms, approaches, and domains relate to each other. Additional data was added
to the taxonomy, and readability was also improved.

Our sixth research question, "How should the machine learning model selection decision model be evalu-
ated?", was answered through our case study and design science. While the feature selection and model
selection phases were rated positively overall, more skepticism arose regarding the decision model and its
alternative solutions. In future iterations of the decision model, we must critically review whether the
decision model provides a list of alternative solutions that are accurately within the scope of a research
project. Furthermore, the alternative solutions should be highly relevant to the selected features. Newer
iterations of our decision model can be reviewed with similar case studies, possibly at a larger scale.

Our main research question, "How can research modelers be supported in their machine learning model
selection process?" can be answered by summarizing our overall findings. The SLR provided a large
amount of data, which can be processed into our comprehensive taxonomy, model, feature, evaluation
method, and dataset-related tables. The expert interviews improved this data to a level suitable for
scientific use. Our design science developed the decision model on a solid foundation and valuable data.
The decision model was verified in our case studies, and it was shown to provide reliable and useful
model suggestions related to specific domains.

8.2 Threats to validity

Validity evaluation is a well-established pillar in empirical studies, encompassing systematic literature
reviews, expert interviews, and case study research [295]. This paper’s validity assessment covers various
dimensions, including SLR outcomes, expert interview participants, case study participants, construct
validity, internal validity, external validity, conclusion validity, study limitations, and decision model
expansions and alterations. These validity assessments may impact this study’s findings and their
meaning.

8.2.1 SLR outcomes

Throughout the systematic literature review, We collected 548 models, out of which 379 were singletons,
representing 69% of the total models. This observation indicates that many research modelers develop
and use unique models tailored to their research questions. However, relying heavily on singletons can
restrict the generalizability of research outcomes and impede meaningful comparisons between separate
approaches. Encouraging the adoption of common models or establishing standards of model evaluation
could significantly enhance the reproducibility and comparability of machine learning research [296].

In some instances, the methodology for combining models was not clearly described in the publica-
tions. This lack of transparency challenges understanding the underlying techniques and logic used and
evaluating their effectiveness. Explicitly providing descriptions of model combination techniques and
the reasons behind their selection is crucial to increase transparency and facilitate the replication and
extension of research findings [297].

Regarding dataset usage, we observed that not all datasets are publicly accessible. This presents re-
search modelers with potential issues in replicating and validating reported results. Consequently, the
ability to objectively compare and benchmark different models becomes hampered, impeding the iden-
tification of state-of-the-art techniques and areas for improvement [298]. The consequences of this issue
extend further, as the duplication effort in collecting and preparing new datasets consumes resources and
consequently decelerates research progress. While the prominence of data science within organizations
has given rise to teams of research modelers collaborating, the collaborative practices employed still
vary according to the kinds of tools used [99]. To mitigate these challenges, a culture of openness and
collaboration across the larger scientific research community is crucial.
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8.2 Threats to validity

8.2.2 Expert interviews participants

The expert interview participants were willing and supportive in offering feedback on our questions.
Communication with all participants progressed positively, and no concerns regarding ambiguous consent
to their participation were raised. The expert interview participants were generally interested in using
a final version of our decision model. Some participants were also interested in using our taxonomy and
feature data. The participants mentioned how our model and feature databases might be bloated to
some degree, suggesting the potential removal of outdated and obscure models and features. While the
time needed for each interview varied, all participants declared they had no additional questions at the
end, suggesting that communication of all questions was clear to them.

8.2.3 Case study participants

The case study interview participants were willing and supportive of our using their paper for a case study.
Communication with all participants progressed positively, and no concerns regarding ambiguous consent
to their participation were raised. The case study participants were interested in using our decision model
and the reasoning behind our selected models and features for their paper. Some participants showed
interest in reading our final paper as well.

Participants noted how the decision model can recommend many alternative solutions, which they de-
scribe as a positive or negative trait. While some participants took part in the interview through a
video call, some opted to answer questions via email instead. This can arguably increase the ambigu-
ity of some answers these participants provided. Nevertheless, participants noted having no additional
questions once the interviews finished, suggesting communication of all questions was clear to them.
Another potential validity constraint is how many of our case studies occurred within the smart contract
vulnerability detection domain. Additional case studies in distinct domains would provide a broader
incorporation of our decision model, increasing the robustness of the case study results.

8.2.4 Construct validity

Construct validity pertains to selecting appropriate operational measures for the concepts under the
systematic literature review study. Several potential threats to construct validity need to be addressed.
The inclusion and exclusion criteria for each phase in the SLR are clearly defined in several subsections
in Chapter 3, minimizing the risk of inappropriate selections. In this research, we developed a meta-
model (shown in Figure 6.1) based on the ISO/IEC/IEEE standard 42010 [199] framework to represent
the decision-making process for machine learning model selection. We formulated comprehensive re-
search questions using the meta-model’s essential elements, ensuring an exhaustive coverage of pertinent
publications on machine learning model selection approaches.

8.2.5 Internal validity

Internal validity threats pertain to verifying cause-effect relationships within the study’s scope to ensure
robustness. We employed a rigorous quasi-gold standard (QGS) [299] to minimize selection bias in
paper inclusion. By combining manual and automated search strategies, the QGS gave us an accurate
evaluation of sensitivity and precision. Our search spanned four popular online digital libraries, widely
regarded to encompass many high-quality publications relevant to machine learning model selection.
The review process and data collection were handled by a single researcher, who validated their findings
through expert interviews and case studies. To avoid significant sample bias, the expert interview and
case study participants were individuals selected only from people outside of our research team. For the
expert interviews, we contacted various industry and research modeling professionals. These professionals
had various domains of expertise, and no participant was professionally connected to another. For the
case studies, various research modelers were contacted based on their relevant case study material.
Detailed questions were asked to minimize potential subjective quality assessment during user analysis.
Additionally, all meetings with participants were recorded as evidence for transparency.

8.2.6 External validity

External validity pertains to the generalizability of the study’s findings in real-world applications. The
study considered publications discussing machine learning model selection approaches across multiple
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years. Although potential exclusions and studies’ inaccessibility may impact the generalizability of SLR
and case study results, the prospected proportion of inaccessible studies is not expected to significantly
affect overall findings. Furthermore, the knowledge extracted from this research can be applied to
support the development of new theories, methods, and heuristics for machine learning model selection
challenges, thus benefiting academia in this field.

8.2.7 Conclusion validity

Conclusion validity pertains to the accuracy and consistency of the study’s conclusions. It ensures that
the study’s methods, including data collection and analysis, can be replicated to yield consistent re-
sults. To ensure reproducibility, each step encompassing the systematic literature review is documented
appropriately in Chapter 3. Furthermore, the design decisions and exclusions of data are covered and
motivated in Chapter 4 and Chapter 5. The data collected during the study is made publicly available
in the Appendix A, facilitating potential replications of our expert interviews and case studies. Fur-
thermore, all data steps of the SLR are recorded in the Appendix A for easy referencing and result
validation. Though there is always potential for bias in our selection process, potential retreads of our
data selection render this data transparent.

8.2.8 Study limitations

While we put effort into maintaining scientific validity wherever possible, certain avenues of research still
bring probable bias with them. For example, we limited our expert interview and case study participant
groups to English-speaking people, which excludes certain groups in the scientific field. During our
data evaluation, there were several discussions regarding machine learning models and machine learning
feature-related semantics. Sometimes, participants and the interviewer used identical terminology to
refer to different concepts. To progress our data collection on these concepts, we had to come to an
agreement on what a concept or term entailed specifically. Furthermore, while we did not consciously
discriminate against participants based on anything other than their machine learning expertise, our
sample size limits the diversity of domain-specific experts included in our expert interviews and case
studies.

8.2.9 Decision model expansions and alterations

While our current decision model is an attempt to cover the machine learning model selection domain
exhaustively, it is ultimately an artifact of its time. We have designed our data collection process and
decision model creation to be repeatable for future iterations. While we have received positive remarks
regarding our current decision model results from industry and research modeling experts, it cannot
be understated how volatile and ever-expanding the machine learning domain is. The expert interviews
provided several insights into current and upcoming machine learning techniques and domains, rendering
our confidence in the data coverage of our decision model to a sufficient level.
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Conclusion and future work

9.1 Conclusion
In this paper, we have comprehensively investigated creating a decision model for machine learning
selection. Our main objective was to address the challenge machine learning research modelers face in
selecting the most effective combinations of machine learning models for their research domain.

To ensure the credibility and reliability of our findings, we conducted a systematic literature review,
conducted 11 expert interviews, and performed eight case studies. We aimed to design and improve our
decision model and test its accuracy and practical use. We meticulously considered various dimensions
of validity, including construct validity, internal validity, external validity, and conclusion validity.

Drawing inspiration from the ISO/IEC/IEEE standard 42010 [199], we devised a meta-model to repre-
sent the decision-making process for machine learning model selection. By formulating comprehensive
research questions, we ensured the inclusion of relevant studies and achieved far-reaching coverage of
pertinent publications.

Our study offers a holistic understanding of machine learning models. The SLR analyzed over 500 papers
from recent years, identifying 571 distinct models and 273 features. This data collection provides valuable
insight into the various machine learning models and approaches, contributing to the advancement within
the field.

We performed 11 expert interviews to enhance further and improve our decision model. These interviews
aided our design science and proved to be beneficial to the further development of our decision model,
model data, feature data, and taxonomy.

Building on the findings of the SLR, we proposed a decision model to guide research modelers in selecting
the most suitable machine learning models for their research tasks. The decision model considers several
features and provides rankings based on relevancy and importance. The decision model enhances the
abilities of research modelers by providing an effective and efficient alternative to existing machine
learning model selection approaches.

We demonstrated the applicability of the decision model through eight case studies, highlighting its
practical use-case scenarios. The decision model aids research modelers in identifying potential solutions
for their research problem, providing many accurate and relevant results.

9.2 Future work
We consider our decision model a robust answer to machine learning model selection and envision our
decision model to be updated and improved upon further in the future. Our decision model data could
be updated by integrating newer machine learning models and features or by adding legacy models and
features that have acquired new relevance. Our decision model could be expanded by performing studies
similar to our data-driven decision model approach, improving the relevant data to a higher accuracy.
Large language models could play an important role in extracting data from future publications, collect-
ing new features and models for our decision model, and allowing the data relevancy to remain intact.
Furthermore, our decision model could be enhanced in ways outside the scope of this study, catering to
specific user needs or substantially altering its inner workings based on new developments.
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9 Conclusion and future work
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Appendices

Data

This appendix provides a link to all additional data acquired during this study.

For our full database related to this study, please refer to:

https://data.mendeley.com/datasets/drh9669vc3/1
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B Abbreviations

Abbreviations

Model Abbreviation Model Abbreviation Model Abbreviation
support vector machine (SVM) SVM bayesian network BN self-organising map (SOM) SOM
random forest (RF) RF k-means k-means extreme learning machine (ELM) ELM
k-nearest neighbours (KNN) KNN gradient boosting (GB) GB residual network (ResNet) ResNet
decision tree (DT) DT gated recurrent unit (GRU) GRU gaussian process (GP) GP
logistic regression (LR) LR support vector regression (SVR) SVR generative adversarial network (GAN) GAN
convolutional neural network (CNN) CNN bidirectional LSTM (BLSTM) BLSTM C4.5 C4.5
naïve bayes (NB) NB radial basis function (RBF) RBF regression R
long short-term memory (LSTM) LSTM deep belief network (DBN) DBN Q-learning Q-learning
multilayer perceptron (MLP) MLP linear regression LR GoogleNet GoogleNet
recurrent neural network (RNN) RNN Bagging Bagging principal component analysis (PCA) PCA
artificial neural network (ANN) ANN deep learning (DL) DL VGG16/19 VGG
neural network (NN) NN genetic algorithms GA ARIMA ARIMA
deep neural network (DNN) DNN particle swarm optimization (PSO) PSO classification and regression tree (CART) CART

XGBoost XGBoost AlexNet AlexNet
Adaboost AdaBoost hidden markov model (HMM) HMM

Figure B.1: Provides the full names of our 43 most commonly selected models, along with their used
abbreviations.
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Expert interview consent form

This appendix provides the participant consent form related to the expert interviews.

Consent form version 1.0 (01-02-2024)

Information about our research project

-The project is called: ‘A Data-Driven Decision Model for Machine Learning Model Selection’. The main
research question is “How can research modelers be supported in their machine learning model selection
process?”. The project involves the creation of a selection model to aid research modelers in selecting
machine learning models for their projects. This selection model was created through data collection
and design science. The expert interview phase collects additional data to improve the model further.
The final project result will be a published model detailed in a written thesis.

-The main researchers are:

Lex Steffens Game and Media Technology master student at Utrecht University
a.j.steffens@students.uu.nl

Dr. Siamak Farshidi Researcher and lecturer at the Department of Information and Computer Science
at Utrecht University
s.farshidi@uu.nl

Dr. Slinger Jansen Assistant professor at the Department of Information and Computer Science at
Utrecht University
slinger.jansen@uu.nl

Dr. Fabiano Dalpiaz Professor of Software Production in the Department of Information and Computing
Sciences at Utrecht University
f.dalpiaz@uu.nl

Information about participation

-Your role in the participation: You will be interviewed by researcher Lex Steffens on some topics related
to machine learning model selection. We expect some of your prior knowledge on machine learning to aid
our data collection. The interview will take roughly 45 to 60 minutes. The interviews will be conducted
through Microsoft Teams via an invitation (unless you specifically request another platform).

Information about privacy

Data that will be collected: We will record the interview and possibly transcribe its content. The
interview will act as evidence for the project; however, it will not be published alongside the project,
and your name will not be published either.

-Data we will share with you: Upon completion of the research project, we will share the publications
with you. Your interview recording will not be shared with you unless you specifically request it.

Data subject’s rights

Participation is voluntary. You will not be compensated in any way for participating in our project.
You have the right to withdraw from participation at any time during our proceedings. You are free to
refuse participation, and this will not negatively impact you or your relationship with us.

-How to contact us: Should you want to exercise any of the aforementioned rights, or want to inquire
about anything else, you can send your message to Lex Steffens at a.j.steffens@students.uu.nl
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D Expert interview responses

Expert interview responses

Model recognized by expert 1 2 3 4 5 6 7 8 9 10 11

SVM Y Y Y Y Y Y Y Y Y Y Y
RF Y Y Y Y Y Y Y Y Y Y Y
KNN Y Y Y Y Y Y Y Y Y Y Y
DT Y Y Y Y Y Y Y Y Y Y Y
LR Y Y Y Y Y Y Y Y Y Y Y
CNN Y Y Y Y Y Y Y Y Y Y Y
NB Y Y Y Y Y Y Y Y N Y Y
LSTM Y Y Y Y Y Y Y Y N Y Y
MLP Y Y Y Y Y Y Y Y Y Y N
RNN Y Y Y Y Y Y Y Y N Y Y
ANN Y Y Y Y N Y Y Y N Y Y
NN Y Y Y Y Y Y Y Y Y Y Y
DNN Y Y Y Y Y Y Y Y N Y Y
XGBoost Y Y Y Y Y Y Y Y Y N Y
AdaBoost Y Y Y Y Y Y N Y N Y Y
BN Y N Y Y Y Y N N N N Y
k-means Y Y Y Y Y Y Y Y Y Y Y
GB Y N Y Y Y Y Y Y Y Y Y
GRU Y N Y Y N N N N N N N
SVR Y N Y Y N Y Y Y Y Y Y
BLSTM Y N Y Y N Y Y Y N N N
RBF Y N N N N Y N Y N Y Y
DBN Y Y Y N Y Y N N N N N
LR Y Y Y Y Y Y Y Y Y Y Y
Bagging Y Y Y Y Y N Y Y N Y Y
DL Y Y Y Y Y Y Y Y N Y Y
GA Y N Y Y Y Y Y Y N Y N
PSO Y N N N N Y N Y N N N
AlexNet Y Y Y Y N Y Y Y N Y N
HMM Y N Y Y N Y Y Y Y Y Y
SOM N N N Y N Y Y N N Y N
ELM N N N N N Y N N N N N
ResNet Y N N Y Y Y Y Y N Y N
GP Y N N N N Y N Y N N Y
GAN Y Y Y Y Y N Y Y Y Y N
C4.5 N N Y Y N N N Y N N N
R Y Y Y Y Y Y Y Y Y Y Y
Q-learning Y N Y N Y Y Y Y N N N
GoogleNet Y N N N Y Y N Y N Y Y
PCA Y Y Y Y Y Y Y Y Y Y Y
VGG Y N N Y N N Y Y N Y Y
ARIMA N Y N Y N Y Y Y Y N N
CART Y N Y N N Y Y Y N N N

Figure D.1: Showcases the familiarity of each participant with all of our main machine learning models.
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Feature recognized by expert 1 2 3 4 5 6 7 8 9 10 11 Feature recognized by expert 1 2 3 4 5 6 7 8 9 10 11

Model Type Algorithm Family
classification Y Y Y Y Y Y Y Y Y Y Y neural network Y Y Y Y Y Y Y Y Y Y Y
regression Y Y Y Y Y Y Y Y Y Y Y support vector machine Y Y Y Y Y Y Y Y Y Y Y
sequential Y Y Y Y Y Y Y Y N Y Y autoencoder Y Y Y Y N Y Y Y N Y N
generative Y Y Y Y N Y Y Y Y Y N decision tree Y Y Y Y Y Y Y Y Y Y Y
discriminative Y N Y Y Y Y Y Y N Y N bayesian model Y N Y Y Y Y Y Y Y Y Y
ensemble Y Y Y Y Y Y Y Y Y Y Y boosting Y Y Y Y Y Y Y Y Y Y Y
optimization Y Y Y Y N Y Y Y Y Y Y LSTM Y Y Y Y Y Y Y Y N Y Y
tree-based model Y Y Y Y Y Y Y Y Y Y Y k-nearest neighbors Y Y Y Y Y Y Y Y Y Y Y
clustering Y Y Y Y Y Y Y Y Y Y Y regression algorithms Y Y Y Y Y Y Y Y Y Y Y
probabilistic model Y N Y Y Y Y Y Y Y Y Y Q-learning Y N Y N Y Y Y Y N N N
object detection Y Y Y Y N Y Y Y Y Y Y extreme learning machine Y N N Y N Y N N N N N
evolutionary algorithms N N Y Y N Y Y Y N Y N rule-based Y N N N Y Y Y N Y Y N
instance based learning Y N Y Y Y Y Y N N Y Y fuzzy logic Y N Y Y Y Y N N N N N
decision making N N Y Y N Y Y N Y Y Y generative adversarial network Y Y Y Y Y Y Y Y N Y N
processing for NLP Y Y Y Y N Y Y Y Y Y Y BERT Y Y Y Y N N Y Y N Y N
prediction mechanism Y Y N Y N Y Y N Y Y Y generalized linear model (GLM) Y N N N N Y Y Y N N N
dimensionality reduction Y Y Y Y Y Y Y Y Y Y Y genetic algorithms Y N Y Y N Y Y Y N Y N
pretrained transformer for NLP Y Y Y Y N Y Y Y N Y N naïve bayes Y N Y Y Y Y Y Y Y Y Y
fuzzy inference N N N Y Y Y N N N N N hidden markov model Y N Y Y N Y Y Y Y Y Y
time series forecasting Y Y Y Y Y Y Y Y Y Y Y deep belief network Y N N N N Y Y Y N N N
feature extraction Y Y Y Y Y Y Y Y Y Y Y perceptron Y Y Y Y Y Y Y Y Y Y Y
topic modeling Y Y N Y N Y N Y N Y N attention mechanisms Y Y Y Y Y Y Y Y N Y N
ranking Y Y Y Y Y Y Y Y Y Y Y ARIMA N Y N Y N Y Y Y Y N N
feature selection Y Y Y Y Y Y Y Y Y Y Y bagging Y Y Y Y Y N Y Y N Y Y
association rule mining N N Y N Y Y N N N N N k-means Y Y Y Y Y Y Y Y Y Y Y
representation learning Y N N N N Y Y Y N Y N probabilistic graphical model Y N N N N Y N N N N N
statistical Y Y Y Y Y Y Y Y Y Y N particle swarm optimization N N N N N Y N Y N N N
inductive logic programming N N N N N Y N N N N N frequent itemset mining Y N N N Y Y N Y N N N
metric learning Y Y N Y N Y Y Y N Y Y gaussian process Y N Y Y N Y Y Y N N Y
feature representation Y Y Y Y Y Y Y Y Y Y Y linear discriminant analysis Y Y N Y N Y Y Y N Y Y
collaborative machine learning Y Y N N Y Y N N N N Y radial basis function Y N Y N N Y Y Y N Y Y
instance segmentation Y Y Y Y N Y Y N N Y N principal component analysis Y Y Y Y Y Y Y Y Y Y Y

SARSA N N N N N N N N N N N
policy gradient Y N N N N Y N Y N N N
partial least squares Y Y Y N Y Y N N Y N N
markov decision process Y N Y Y Y Y Y Y Y Y N
federated learning Y Y N Y N N Y Y N N N
inductive logic programming N N N N N Y N N N N N
dictionary learning Y N N Y N Y Y N N Y N
hierarchical agglomerative clustering Y N N N Y N N N N Y N
expectation-maximization Y N Y Y Y Y Y Y N Y N
analytic hierarchy process N N N N N Y N N N N N
post-decision state learning N N N N N Y N N N N N
utility-based learning N N N N N Y N N N N Y
MALMOS Y N N N N N N N N N N
temporal difference learning Y N N N N Y N N N N N
compound covariate predictor N N N N N Y N N N N N
mean shift Y N N N N Y Y Y N Y N
density-based spatial clustering Y N Y N N Y Y Y Y Y Y
dynamic programming Y N Y Y Y Y Y Y Y Y Y
bag of words Y Y Y Y Y Y Y Y Y Y Y
gaussian mixture model Y N Y Y N Y Y Y Y Y Y
rough set N N N N N Y N N N N N
hashing Y Y Y Y Y Y Y Y Y Y Y
convolutional neural network Y Y Y Y Y Y Y Y Y Y Y
recurrent neural network Y Y Y Y Y Y Y Y Y Y Y

Figure D.2: Showcases the familiarity of each participant with all of our machine learning features.
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Feature recognized by expert 1 2 3 4 5 6 7 8 9 10 11 Feature recognized by expert 1 2 3 4 5 6 7 8 9 10 11

Learning Paradigm Neural Network Architecture
supervised learning Y Y Y Y Y Y Y Y Y Y Y convolutional Y Y Y Y Y Y Y Y Y Y Y
unsupervised learning Y Y Y Y Y Y Y Y Y Y Y recurrent Y Y Y Y Y Y Y Y N Y Y
reinforcement learning Y Y Y Y Y Y Y Y Y N Y feedforward Y Y Y Y Y Y Y Y N Y Y
semi-supervised learning Y Y Y Y N Y Y Y N Y Y autoencoder Y Y Y Y N Y Y Y N Y Y
self-supervised learning Y Y Y Y N Y Y Y N Y Y transformer Y Y Y Y Y Y Y Y N Y Y
online learning Y Y Y Y Y Y Y Y Y N Y residual network (skip connections) Y N Y Y Y Y Y Y N Y N

Model Complexity fully connected Y Y Y Y N Y Y Y N Y Y
low Y Y Y Y Y Y Y Y Y Y Y generative adversarial Y Y Y Y Y Y Y Y N Y N
low to moderate Y Y Y Y Y Y Y Y Y Y Y boltzman machines Y N Y Y N Y N Y N N Y
moderate Y Y Y Y Y Y Y Y Y Y Y deep Q-network Y N Y N Y Y Y Y N N N
moderate to high Y Y Y Y Y Y Y Y Y Y Y feature pyramid Y N N Y N Y N N N Y N
high Y Y Y Y Y Y Y Y N Y Y bidirectional Y Y Y Y N Y Y Y N Y N
very high Y Y Y Y Y Y Y Y N Y N graph Y N Y Y N Y N Y N Y Y
various Y Y Y Y Y Y Y Y Y Y Y region proposal Y N N Y N Y Y Y N Y N

Linearity mechanism Y Y Y Y Y Y Y Y N Y N
linear Y Y Y Y Y Y Y Y Y Y Y grid-like structure Y Y N Y N Y Y N N Y N
non-linear Y Y Y Y Y Y Y Y Y Y Y siamese Y N Y Y N N Y Y N Y N

Parametric vs. Non-parametric dilated convolutions Y N N Y N Y N Y N Y N
parametric Y Y Y Y Y Y Y Y Y Y Y autoregressive Y Y Y Y N Y Y Y N Y N
non-parametric Y Y Y Y Y Y Y Y Y Y Y inception Y N N Y N Y Y Y N Y N

Ensemble Methods sparse Y Y Y Y Y Y Y Y N Y Y
boosting Y Y Y Y Y Y Y Y N Y Y mask head Y Y N N N N Y Y N Y N
deep forest Y N Y Y N Y Y Y N Y Y subnetworks Y Y N Y N Y Y Y N Y Y
bagging Y Y Y Y Y Y Y Y N Y Y gated recurrent unit Y N Y Y N Y N N N N Y
RAS-CO N N N N N Y N N N N N actor-critic Y N Y N N N Y Y N N N
random subspace Y N N Y N Y N N N Y N dense blocks Y N Y Y N Y Y N N Y N
random committee Y N N N N Y Y N N Y N probabilistic Y N Y Y N Y Y Y N Y N
rotation forest N N N N Y Y N Y N N N radial basis function Y N N N N Y N Y N Y Y
stacking Y Y N Y N N Y Y Y Y Y spikes N N N N N Y Y Y N N N
co-training Y N N N N N Y N N Y N fuzzy logic N N Y Y N Y N N N N N
mixture of experts Y N Y Y N N Y Y N Y N capsule layers N N N N N Y N Y N N N

Regularization Type hierarchical attention N N N Y N Y Y Y N Y N
dropout Y Y Y Y Y Y Y Y N Y Y competitive layer N N N N N Y N N N N N
L2 (ridge) Y Y Y Y Y Y Y Y Y Y Y triplet Y N Y N N Y Y N N N N
batch normalization Y Y Y Y N Y Y Y N Y Y inference composition N N N N N Y N N N Y N
L1 (lasso) Y Y Y Y Y Y Y Y Y Y Y generative pre-trained transformer Y Y Y Y N Y Y Y N Y N
gradient penalty Y N N Y N Y N Y Y Y Y hypernetwork N N N N N Y N Y N N N
reduced error pruning Y N N N N Y Y N N N N micro neural network Y N N N N Y Y N N Y N
Wasserstein Y N N Y N N N Y N Y N keypoint association network Y N N N N Y N Y N N N
contractive regularization Y N N N N N N N N N N dual path Y N N N N Y N N N Y N
layer normalization Y Y N Y N Y Y Y N Y Y fishblock N N N N N N N N N N N
instance normalization Y N N Y N Y Y Y N Y Y recursive Y N N Y N Y Y Y N Y Y
freezing parameters Y N N Y Y Y Y Y N Y N shallow Y Y N Y Y Y Y Y N Y Y
weight decay Y N Y Y N Y Y Y N Y N functional linkages N N N N N Y N N N Y N

contradiction layer N N N N N Y N N N N N
multi-head Y Y Y N N Y Y Y N Y N
conditional random field Y N N N N Y N N N Y N
multifilter N Y N N N Y Y N N Y Y
modular Y N N Y N Y N Y N Y N
fuser Y N N Y N Y N Y N Y N
two-stream Y N N N N Y N N N Y N

Figure D.3: Showcases the familiarity of each participant with all of our machine learning features.
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Feature recognized by expert 1 2 3 4 5 6 7 8 9 10 11 Feature recognized by expert 1 2 3 4 5 6 7 8 9 10 11

Activation Function Type Model Size
ReLU Y Y Y Y Y Y Y Y Y Y Y small Y Y Y Y Y Y Y Y Y Y Y
sigmoid Y Y Y Y Y Y Y Y Y Y Y small to moderate Y Y Y Y Y Y Y Y Y Y Y
tanh Y Y Y Y Y Y Y Y N Y Y moderate Y Y Y Y Y Y Y Y Y Y Y
gaussian Y Y Y Y N Y Y Y N N Y moderate to large Y Y Y Y Y Y Y Y Y Y Y
radial basis function (RBF) Y N N N N Y Y Y N Y Y large Y Y Y Y Y Y Y Y N Y Y
gated linear unit (GLU) Y N Y Y N Y N Y N N N various Y Y Y Y Y Y Y Y Y Y Y
logistic Y Y Y Y N Y Y Y N Y Y dynamically grows Y N N N N Y N Y N N N

stochastic units Y Y N Y N Y Y N N N Y Transfer Learning
PReLU Y N N N N Y N N N Y Y common pre-trained model Y Y Y Y Y Y Y Y Y Y Y
ReLU 6 Y N N N N Y N Y N Y Y uncommon pre-trained model Y Y Y Y Y Y Y Y Y Y Y

Objective Function fine-tuning Y Y Y Y Y Y Y Y Y Y Y

MSE Y Y Y Y Y Y Y Y Y Y Y Kernel Type
cross-entropy Y Y Y Y N Y Y Y Y Y Y convolutional Y Y Y Y Y Y Y Y Y Y Y
maximum likelihood estimation (MLE) Y Y Y Y N Y Y Y N Y Y radial basis function Y N N N N Y Y Y N Y Y
hinge loss Y N Y Y N Y Y N N Y Y linear Y Y Y Y Y Y Y Y Y Y Y
minimize classification error Y Y Y Y Y Y Y Y Y Y Y polynomial Y Y Y Y Y Y Y Y Y Y Y
maximize reward Y Y Y Y N Y Y Y N N Y gaussian Y Y Y Y N Y Y Y Y Y Y
information gain Y Y Y Y Y Y Y Y Y Y Y matern N N N N N Y N N N N N
joint probability distribution Y N Y Y N Y Y Y N Y Y auto-associative N N N N N Y N N N N N

Gini impurity Y Y N Y Y Y N Y Y N Y Input Data Type
binary cross-entropy (log loss) Y Y Y Y Y Y Y Y Y Y Y various Y Y Y Y Y Y Y Y Y Y Y
masked language model (MLM) Y N Y Y N Y N Y N Y N structured Y Y Y Y Y Y Y Y Y Y Y
focal loss Y N N Y N Y N Y N Y N images (or other grid based) Y Y Y Y Y Y Y Y Y Y Y
reconstruction error Y Y Y Y N Y Y Y N Y N time series Y Y Y Y Y Y Y Y Y Y Y
minimize sum of distances Y N Y Y Y Y Y Y Y Y N text Y Y Y Y Y Y Y Y Y Y Y
temporal difference error Y N N N N Y Y N N N Y categorical (numerical) Y Y Y Y Y Y Y Y Y Y Y
adversarial loss Y Y Y Y N Y Y Y N Y N unstructured Y Y Y Y Y Y Y Y Y Y Y
task-specific objectives Y N N N N Y Y Y N Y N state action pairs and rewards Y N Y Y N Y Y N N N Y
maximum a posteriori (MAP) estimation Y N N Y N Y Y Y N Y N audio Y Y Y Y N Y Y N Y N N
minimize weighted sum Y N N Y N Y Y Y Y Y Y transactional data Y N N Y Y Y N N N Y N

preserve topological relationships N N N N N Y Y Y Y N N AutoML vs. Custom
similarity measure Y Y Y Y Y Y Y Y Y Y Y AutoML Y N N Y Y Y Y Y Y N N
gain ratio Y N Y Y N Y N N N N Y custom Y Y Y Y Y Y Y Y Y Y Y
deviance Y N N Y N Y N Y N N Y
variance maximization Y N N Y N Y Y Y Y Y Y
KL divergence Y N Y Y N Y Y Y Y Y N
minimize quantization error Y N N N N Y Y Y N Y Y
minimize regression error Y Y Y Y Y Y Y Y Y Y Y
induce logic rules N N N Y N Y N N N N N
dictionary elements Y N N Y N Y N N N Y N
evolve population of solutions N N N N N Y Y N N Y N
gradient penalty Y N N Y N Y Y Y Y Y N
minimax Y N Y N N Y Y Y N Y Y
replaced token detection N N N Y N Y N Y N N N
maximum entropy Y N Y Y N Y Y Y N Y Y

Learning Rate Type
fixed (specific) learning rate Y Y Y Y Y Y Y Y Y Y Y
adaptive (adjustable) learning rate Y Y Y Y Y Y Y Y Y Y Y

Number of Hidden Layers
shallow (single layer) Y Y Y Y Y Y Y Y Y Y Y
multiple Y Y Y Y Y Y Y Y N Y Y
deep Y Y Y Y Y Y Y Y N Y Y
various (shallow to deep) Y Y Y Y Y Y Y Y N Y Y
dynamically grows Y N N N N Y N Y N N N

Figure D.4: Showcases the familiarity of each participant with all of our machine learning features.
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