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Abstract 

Background: While Statistical Learning (SL), which is crucial for speech segmentation, is 

well-researched, the exact underpinnings of individual differences in SL remain unclear. 

Research has found that Musical Training (MT) positively affects various linguistic abilities, 

but the influence of MT on SL in speech segmentation has yet to be studied.  

Aim: The present study investigated the influence of MT on SL in speech segmentation, and 

examined whether MT is related to musical, specifically rhythmic, abilities. 

Method: We used the data of 29 neurotypical Dutch monolingual adults who participated in 

the study by van der Wulp and colleagues (2023). With EEG, participants’ neural entrainment 

to two artificial languages, namely a structured stream (consisting of trisyllabic non-words with 

a TP of 1.0 between syllables within words and 0.33 across words) and a random stream (with 

a TP of 0.09 between all syllables), was measured. Afterwards, they completed a rating task 

and several musicality tasks (the Gold-MSI, CA-BAT, and PROMS). 

Results: In the rating task data, years of MT seemed to positively influence SL. In the EEG 

data, SL was positively affected by the CA-BAT (i.e., one of the musicality tasks that assesses 

rhythmic ability) instead of MT. The MT measures (i.e., years of MT and the Gold-MSI’s MT 

subscale) positively correlated with each other and with the CA-BAT. The PROMS did not 

significantly correlate with any of the musicality measures.  

Discussion and Conclusion: Musical ability involves aspects beyond just MT and seems 

positively related to SL, but it remains unclear which aspects of musicality affect SL. Future 

research is needed to establish the exact relationship between musicality and SL, preferably by 

exploring multiple aspects of musicality. 

 

Keywords: statistical learning, word segmentation, musical training, musicality, 

electroencephalography (EEG)  
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1. Introduction 

Statistical Learning (SL) is the ability to detect regularities and statistical patterns in one’s 

environment through passive exposure and is believed to be a fundamental mechanism for 

speech segmentation, enabling individuals to detect word boundaries from continuous auditory 

input (Batterink & Paller, 2017; Moreau et al., 2022). Previous research has shown that 

individual differences in SL performance are associated with variability in language acquisition 

and ability (e.g., Siegelman & Frost, 2015; Singh et al., 2012). The exact underpinnings of 

these individual differences, however, are still unknown.  

Musical training (MT) could be one of the underlying factors. Previous research has 

already established a link between MT and linguistic abilities (e.g., Chobert et al., 2014; 

Flaugnacco et al., 2015). Notably, François and colleagues (2014) demonstrated that musicians 

are better and faster at segmenting a sung artificial language than nonmusicians. However, to 

date, no studies have explicitly connected MT with the SL of speech.  

This study aims to broaden our knowledge of the factors underlying individual 

differences in SL by examining the influence of MT on the SL ability of speech in adults. We 

used data from Van der Wulp and colleagues (2023), which includes offline (a rating task and 

several musicality tasks) and online measured data (electroencephalography (EEG) recordings 

of a structured and random listening task). Additionally, we investigated to what extent 

musical, more specifically rhythmic, ability is correlated with MT experience.  

This thesis starts with a theoretical framework discussing SL in speech segmentation 

and the influence of MT, followed by an introduction of the current study, including the 

research questions and hypotheses, in section 3. Section 4 details the methodology, and section 

5 reports the results. Section 6 offers a discussion of these results, addresses limitations, and 

provides suggestions for future research. Finally, section 7 presents a conclusion. Additional 

materials are included in the appendices.  
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2. Theoretical Background 

2.1 Statistical Learning in Speech Segmentation 

Learning a new language entails the challenge of speech segmentation: detecting word 

boundaries in a continuous stream of speech. Considering that fluent natural speech has no 

clear pauses between words as opposed to written language, this seems like a difficult task 

(Saffran et al., 1996-a). However, in 1995, Jusczyk and Aslin found that even 8-month-old 

infants are able to discover word boundaries when learning a new language. Following this, an 

important study by Saffran, Newport and Aslin (1996-a) showed how infants manage to detect 

word boundaries solely based on the Statistical Learning (SL) of Transitional Probabilities 

(TPs), without any prosodic cues. SL is the process of using statistical properties of linguistic 

input to discover structure. In this case, learners can discover word boundaries by tracking TPs 

between neighbouring syllables: the probability that a syllable X is directly followed by a 

syllable Y, given the overall frequency of X (Saffran, 2003; Saffran et al., 1996-a). This notion 

can also be expressed as: 

TP of 𝑌|𝑋	 = 	 !"#$%#&'(	*!	+,
!"#$%#&'(	*!	+

  

In natural language, neighbouring syllables within words have higher TPs than 

neighbouring syllables between words, enabling learners to hypothesise where word 

boundaries are likely to occur. For example, in the sound sequence pretty baby, the TP from 

pre to ty is bigger than the one from ty to ba (Saffran, 2003; Saffran et al., 1996-a). Batterink 

and Paller (2017) further propose that SL consists of two components, namely word 

identification (i.e., identifying different word forms by segmenting the speech input based on 

TPs) and memory storage (i.e., storing these extracted representations in long-term memory). 

In the experiment by Safran et al. (1996-a), infants were familiarised with two minutes 

of a continuous speech stream of four trisyllabic words from an artificial language, during 

which they had to identify word boundaries. The only cue for word boundaries were TPs 
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between syllable pairs; these were higher within words (1.0 in all cases) than between words 

(0.33 in all cases). The discovered word forms, then, must be stored in the infants’ long-term 

memory for them to be recalled during the subsequent test phase. In the test phase, the Head-

Turn Preference Procedure (HTPP) was used: the infants were presented with a trisyllabic word 

or non-word (i.e., a word that contained the same syllables as the artificial language but in an 

unfamiliar order) for as long as they looked at a blinking light. Following Jusczyk and Aslin 

(1995), results show a novelty effect: the infants had longer listening (and looking) times for 

non-words than words, indicating that they learned to segment words by detecting TPs, and 

recognised the difference between novel and familiar orderings. In other words, the authors 

infer that infants can perform SL.  

Over the years, several studies have confirmed this observation (e.g., Choi et al., 2020; 

Hay et al., 2011; Singh et al., 2012). To further explore infants’ SL abilities, Hay and colleagues 

(2011) examined whether infants can use the output of SL as the input for word-meaning 

association learning. Their experiments with 17-month-old infants combined a segmentation 

task, familiarising themselves with Italian speech, with a label-object association task. The 

results suggest a significant correlation between the statistics of the speech stream and infants’ 

success in mapping labels to referents. The TPs internal to the labels did not affect the learning 

outcomes: infants were able to successfully map both low (forward TP of 0.33, backward TP 

of 1.0) and high (forward and backward TP of 1.0) TP words as labels for objects (Experiment 

1). However, when no TP information was available (Experiment 2) or when the internal TP 

of labels was low in both forward and backward directions (Experiment 3), infants failed to 

connect labels to their referents. Across experiments, infants were able to learn new object 

labels if the TPs between syllables were high in at least one direction and if they had the 

opportunity to segment the sound sequences from continuous speech beforehand. Hence, word 
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learning in infants seems strongly influenced by prior experience with the distribution of 

sounds in natural languages. 

However, infants are not the only ones who (are able to) do this: various studies have 

established that children and young adults can do the same (e.g., Batterink, 2017; Batterink & 

Paller, 2017; Choi et al., 2020; Misyak et al., 2010; Moreau et al., 2022; Pinto et al., 2022; 

Saffran et al., 1996-b). Choi and colleagues (2020) demonstrated that infants and young adults 

show a similar increase in neural entrainment (i.e., synchronisation of brainwaves, see section 

2.1.2) to embedded words, and, thus, follow similar learning trajectories when tracking TPs. 

Moreover, children and adults have similar SL abilities: unlike other aspects of language 

learning, SL does not decline from childhood to early adulthood (Moreau et al., 2022). In older 

adults, however, cognitive ageing is likely to affect learning mechanisms, which may cause a 

decline in SL abilities (Schevenels et al., 2023). While the general ability appears to be 

preserved, they may resort to a different strategy or mechanism than young adults, presumably 

due to age-related declines in the relevant brain structures (Ong & Chan, 2019).  

An example of a study with adult participants is the experiment by Batterink and Paller 

(2017), who combined behavioural measures (e.g., an explicit rating task and a Reaction Time 

(RT) task called the Target-Detection Task (TDT)) with electroencephalography (EEG). 

Participants were presented with both a structured (with a TP of 1.0 between syllables within 

words and 0.33 between syllables across words) and a random syllable stream (with a TP of 

0.09 between all syllables; note that consecutive occurrences of the same syllable did not 

occur). The researchers found that neural entrainment to the words – or triplets in the random 

stream – was higher in the structured stream than in the random stream. This heightened 

entrainment increased progressively with the duration of exposure, suggesting an ongoing 

process of SL. Furthermore, it predicted performance on the TDT: participants who showed 
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higher entrainment also showed a larger RT effect, which indicates that SL learning facilitated 

processing and led to faster RTs.  

 

2.1.1 Individual Differences 

Although SL abilities are comparable across different age groups, many studies find that there 

are individual differences in learning trajectories or memory performance between participants 

(Batterink & Paller, 2017; Misyak et al., 2010; Siegelman & Frost, 2015). Frost and colleagues 

(2015) propose that these variations stem from two major sources: (1) variance in how 

individual elements in a sequence, such as syllables, are encoded (i.e., represented in memory), 

and (2) disparities in detecting TPs between syllables. Batterink and Paller (2017) posit that 

long-term memory interacts with and influences these word identification mechanisms, 

subsequently impacting SL performance: if people encounter challenges in effectively storing 

the extracted representations in their long-term memory, they are expected to show poorer 

performance on SL tasks during the test phase.  

 Individual differences in SL performance are associated with variability in language 

acquisition and ability (Siegelman, 2020; Singh et al., 2012). Variations in SL ability may play 

a role in differences observed in linguistic performance, like online processing and the 

development of vocabulary. The longitudinal study by Singh and colleagues (2012), for 

example, showed a strong degree of association between infant word segmentation abilities at 

7 months and their productive vocabulary size at 24 months. A study by Misyak and colleagues 

(2010) found a correlation between individual differences in SL of nonadjacent dependencies 

and participants’ online processing of long-distance dependencies. Finally, several studies 

indicate that individuals with Developmental Language Disorder (DLD) exhibit an SL deficit: 

those with DLD are less effective in auditory SL than their peers without DLD (see Lammertink 
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et al., 2017). The exact underpinnings of these individual differences in SL, however, remain 

unclear.  

 

2.1.2 Various Measures in Statistical Learning Research 

To study SL in speech segmentation, researchers typically expose participants to a continuous 

speech stream of repeating trisyllabic non-words. Their SL abilities, then, can be measured in 

several different ways, both offline with behavioural measures and online with EEG. Examples 

of the offline measures are the HTPP, the Two-Alternative Forced-Choice (2AFC) task, a rating 

task, and an RT task (e.g., Batterink & Paller, 2019). The HTPP is a frequently used measure 

in infant or child research which assesses listening behaviours towards auditory stimuli. After 

a blinking light attracts the child's attention, the auditory stimulus starts for as long as the child 

keeps looking at the light. In the case of SL, the exposure phase is followed by a test phase in 

which the HTPP is used to the duration of infants’ listening times to different words and foils 

(Safran et al., 1996-a). Adult research often uses a 2AFC task in the test phase, which has 

participants discriminate between words and foils: two stimuli, a word and a foil, are presented 

and participants must decide which one is more familiar based on the stimuli presented during 

the exposure phase (Saffran et al., 1996-b; Batterink & Paller, 2019). Rating tasks are quite 

similar: participants are presented with a word or a foil and must rate their familiarity compared 

to the exposure phase (Batterink & Paller, 2017). Finally, in the TDT, participants are asked to 

repeatedly identify a target stimulus in a continuous stream. If SL has occurred, then 

participants show faster RTs to predictable targets (i.e., the second or third syllable of a 

trisyllabic word) compared to unpredictable ones (i.e., the first syllable of a trisyllabic word) 

(Batterink & Paller, 2017; Batterink & Paller, 2019).  

 Online measurements can be done with EEG, a functional brain research technique that 

can measure brain activity (see Batterink & Paller, 2017; Choi et al., 2020; Moreau et al., 2022; 
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Pinto et al., 2022). Contrary to the offline measures, this measure can assess SL while it is 

happening: it can record neural oscillations during the identification phase, i.e., when people 

start to identify word forms by segmenting the speech input based on TPs (Batterink & Paller, 

2017). Neural oscillations, represented as successive “waves” in EEG output, reflect rhythmic 

brain activity driven by different neuron populations firing in specific frequency patterns. The 

frequency ranges of these oscillations, known as frequency bands, characterise their distinctive 

patterns. Neural oscillations can phase-lock to the rhythm of a stimulus (e.g., language), also 

known as neural entrainment or synchronisation (Peelle & Davis, 2012). In the identification 

phase of SL, phase-locking changes from only the syllable frequency (at a rate of 3.3 Hz) to 

the addition of a word frequency (at a rate of 1.1 Hz), as shown in Figure 1 (Batterink & Paller, 

2017).  

 

Figure 1 

Syllable (3.3 Hz) and Word (1.1 Hz) Frequency Rates in a Stream of Trisyllabic Words. 

 

Note. Reprinted from van der Wulp et al. (2023, Figure 2, p. 13). 
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To quantify neural entrainment at the syllabic and word frequency, the Inter-Trial 

Coherence (ITC), or: “phase-locking value”, is calculated. ITC values range from 0 (non-

phase-locked activity) to 1 (strictly phase-locked activity to a given frequency in the stimulus), 

based on the amount of phase-locking to the syllable and word frequencies. By dividing the 

ITC at the word frequency by the ITC at the syllable frequency, researchers can calculate a 

Word Learning Index (WLI), which offers insights into the progression of word learning during 

SL: 

𝑊𝐿𝐼	 = 	 -./	*!	0*"1	!"#$%#&'(
-./	*!	2(33453#	!"#$%#&'(

  

Higher WLI values indicate greater neural entrainment to the word frequency relative 

to the syllable frequency, which indicates the occurrence of SL (Batterink & Paller, 2017). The 

experiment by Batterink and Paller (2017) used both EEG and several offline measures (e.g., a 

rating task and TDT). While the offline (behavioural) tasks occur after participants have 

performed SL, EEG is able to measure these processes while they are happening. It captures 

only the identification phase of SL, while the rating task occurs after both the identification and 

the memory storage phase. Batterink and Paller (2017) show that EEG can offer valuable 

insights into the processes of speech segmentation and SL: variability in the WLI predicted 

performance on the RT task.  

 

2.2 The Influence of Musical Training 

EEG also plays an important role in rhythm and music research (e.g., Bouwer et al., 2016; 

Cantiani et al., 2022; François et al., 2014; Intartaglia et al., 2017; Schön & François, 2011). 

As mentioned before, neural oscillations have been shown to phase-lock to the rhythm of an 

auditory stimulus, for example to the rhythm of speech (Peelle & Davis 2012). Research has 

also shown that there is neural entrainment to the rhythm of music(al beats) (Nozaradan, 2014). 

To illustrate, in a recent study by Cantiani and colleagues (2022), 8-month-old infants were 
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exposed to two complex – non-speech (musical) and speech–rhythmic stimuli while their EEG 

signals were recorded. The researchers found that these infants were capable of entraining to 

the incoming auditory rhythms. A small control group of adults showed that their neural 

entrainment to the stimuli was very similar to the pattern observed in the infants.  

EEG research with musicians reveals an effect of musical expertise, which increases 

the accuracy of phase-locking to music (Di Liberto et al., 2020). Musical expertise often results 

from years of Musical Training (MT), the latter of which, in turn, is shown to be associated 

with enhanced sensitivity to statistical cues in auditory SL tasks with pure tones (Mandikal 

Vasuki et al., 2017). MT does not only influence how people listen to music but could also 

affect their linguistic abilities. Research by Flaugnacco and colleagues (2015), for instance, 

revealed that MT was successful in enhancing reading and phonological skills in children with 

dyslexia. In their experiment, children with dyslexia (aged 8-11) were divided into two groups, 

a music group and a control group. The music group followed music classes and the other group 

completed painting classes for two hours a week for seven months. Before and after this 

intervention, their linguistic, musical, reading, and general cognitive abilities were 

administered. After the training, the music group outperformed the painting group in tasks 

about rhythmic abilities, phonological awareness and reading skills. These findings indicate 

that MT can positively influence reading and phonological skills in dyslexic children. In the 

same vein, children with hearing loss who wear cochlear implants or hearing aids could also 

benefit from MT: Hidalgo et al. (2017) conducted a study comparing temporal adaptation (i.e., 

mutual accommodation of temporal structure, such as speech rating and turn-timing) in speech 

interaction in children with normal hearing and their peers with hearing loss. Results indicate 

that, while children with normal hearing derive advantages from the temporal regularity of 

stress occurrences, children with hearing loss only develop sensitivity to this manipulation after 

rhythmic training. This training could assist them in organising the temporal flow of their 
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verbal interactions. Finally, a longitudinal study by Chobert et al. (2014) also provides evidence 

supporting the impact of MT intervention on linguistic abilities. They investigated whether 

active MT had an impact on preattentive processing, i.e., automatic and unconscious 

processing, of syllabic duration and Voice Onset Time (VOT). Children (aged 8-10) were 

randomly assigned to music or painting training. The researchers recorded the mismatch 

negativity (MMN) to syllables that differed in vowel frequency, vowel duration, and VOT. 

While both groups performed similarly before training, after 12 months, only the musically 

trained children showed enhancements of MMN amplitude to duration and VOT deviants. In 

other words, enhanced preattentive processing of syllabic duration and VOT was only found 

in the musically trained group.  

Other studies on the effects of MT do not implement MT as an intervention but compare 

musicians, those who had MT, to nonmusicians, those who had not. An example is François et 

al. (2014), who had professional musicians and nonmusicians listen to an artificial language of 

sung pseudowords. After this exposure phase, a 2AFC task on pairs of pseudowords and 

melodies followed. Data from this task and ERPs reveal that musicians are better and faster at 

segmenting an artificial language than nonmusicians. As all musicians had over twelve years 

of MT and the nonmusicians not more than two, these results support the hypothesis that there 

is an MT effect that can be transferred from music to sound stream segmentation and perhaps 

even to SL. The findings of Intartaglia and colleagues (2017) are in line with these results. In 

their EEG experiment, English native nonmusicians and French non-native musicians and 

nonmusicians listened to an English syllable that does not exist in French. Whereas the natives 

had more robust subcortical representations of the syllable and an advantage in neural encoding 

of the features than non-native nonmusicians, the non-native musicians showed similar 

subcortical representations of the syllable compared to the natives. This suggests that MT may 

compensate for a lack of language experience.  
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2.2.1 Operationalisation 

 It is noteworthy that the operationalisation of the terms “musician” and “musically 

trained” varies among studies. While most studies use years of MT or music lessons as their 

main criterion, there are inconsistencies in the duration required for an individual to be 

classified as musically (un)trained or as (non)musicians. Generally, music psychology research 

follows the “six-year rule”: a musician has at least six years of musical expertise, which is 

defined by years of MT, and a non-musician less than six (Zhang et al., 2018). However, not 

all research fields adhere to this rule. In some studies, nonmusicians are participants with no 

prior MT at all (e.g., Correia et al., 2023), while others classify nonmusicians as participants 

with no more than two years of MT (e.g., François et al., 2014). Another example is Cirelli et 

al. (2016), who divide infants into two groups based on whether their parents had five or more 

years of combined MT or less than five. These distinctions seem rather arbitrary. This variation 

in level of expertise is important to keep in mind when comparing studies: five years of MT 

represents a substantial amount compared to zero years.  

Conversely, research by Correia and colleagues (2023) demonstrates that formal MT is 

not required to develop musical abilities and achieve musician-like performance on tests of 

musical and cognitive abilities. They state that the musicality of untrained participants and 

informal musical practice should also be considered in studies of musical expertise. To do so, 

there are various measures researchers could use, for example, the Goldsmiths Musical 

Sophistication Index (Gold-MSI). This self-report questionnaire measures musical expertise 

and experience, encompassing multiple subscales that assess different facets of musical 

sophistication (e.g., active engagement with music, perceptual abilities, and MT) (Müllensiefen 

et al., 2014). Another possible task is the Profile of Music Perception Skills (PROMS), which 

uses various subsets (e.g., melody, rhythm, and accent) to assess one’s musical abilities 
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(Zentner & Strauss, 2017). Finally, researchers can use the Computerised Adaptive Beat 

Alignment Test (CA-BAT), in which participants listen to the same piece of music twice; once 

with beeps synchronised to the rhythm and once with beeps out of sync. Afterwards, they must 

indicate which of the two tracks had beeps in sync with the rhythm (Harrison & Müllensiefen, 

2018).  

 

3. Current Study 

Previous studies have shown that Musical Training (MT) can positively influence Statistical 

Learning (SL) (e.g., François et al., 2014). To our knowledge, however, no study has made the 

explicit connection between MT and SL of speech segmentation before. Exploring how MT 

may influence SL processes involved in language learning could broaden our knowledge of the 

cognitive impact that MT has. Moreover, it could provide new insights into the underpinnings 

of individual differences in SL. Therefore, to investigate whether MT affects the SL of speech 

segmentation, we formulated the following research question:  

 

RQ1: To what extent does musical training influence the statistical learning ability aiding 

speech segmentation in adults? 

 

To study this, we used both online and offline measures. With electroencephalography 

(EEG), we recorded the neural oscillations of native Dutch participants who listened to two 

artificial languages with trisyllabic words based on the phonotactics of Dutch, namely a 

structured and a random stream. Afterwards, they completed a rating task.  

We predicted MT to have a positive influence on SL in speech segmentation; overall, 

participants who are musically trained were expected to show a higher Word-Learning Index 

(WLI) than those who are less musically trained. 
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 Additionally, research has shown that the definition of “musically trained” varies 

between studies, and that formal MT is not necessary to develop musical abilities and obtain 

musician-like performance on tests (Correia et al., 2023). Therefore, before answering RQ1, 

we examined the best way to define “musically trained” and looked at (possible) correlations 

between MT and musical ability. To this end, a second research question was formulated: 

 

RQ2: To what extent is musical ability, measured with the CA-BAT and PROMS, related to 

(years of) musical training? 

 

To measure MT, we first looked at the number of years of MT, which is most often 

used in other studies. Moreover, we also analysed the MT subscale of the Gold-MSI 

(Müllensiefen et al., 2014), as this self-report questionnaire is also frequently utilised in music 

research. Participants’ musical ability was measured with more direct tests of musical ability, 

namely the CA-BAT (Zentner & Strauss, 2017) and PROMS (Harrison & Müllensiefen, 2018).  

We expected that the CA-BAT and PROMS scores would positively correlate with 

(years of) MT and, therefore, that musical ability is related to MT.  

 

4. Methodology 

This study used the data from the in-principle accepted peer-reviewed study by van der Wulp 

and colleagues (2023), which has been approved by the Linguistics Chamber of the Faculty 

Ethics Assessment Committee of Humanities at Utrecht University (reference number: LK-22-

174-02). Furthermore, the experiment was preregistered prior to testing (Brandsen et al., 2024).  
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4.1 Participants 

In total, 29 participants took part in the experiment. They were recruited using the participant 

database of the Institute for Language Sciences (ILS Labs) at Utrecht University, the 

researchers’ own social circle and social networking sites, such as LinkedIn and Facebook. 

Participants were all Dutch monolinguals. Those with a history of hearing impairments or 

tinnitus, Autism Spectrum Disorder (ASD), DLD, Attention Deficit (Hyperactivity) Disorder 

(AD(H)D), dyslexia, and/or other neurological disorders were excluded from participation. 

Additionally, participants who are bald or have coily hair or dreadlocks were not invited to 

participate, as it is not possible to measure neural activity with electrode caps effectively. 

Participants were compensated for their time and efforts with a € 20,-- Yesty gift card sent to 

their e-mail address.  

Of the 29 participants, four were male and 25 female. Their age ranged between 19 and 

54 years old (M = 23.24, SD = 6.60). One participant had a notably high age of 54 years 

compared to the other participants whose age range was between 18 and 32 years old (M = 

22.14, SD = 3.16). Regarding their level of education, two participants were currently or 

previously attending a university of applied sciences, and the other 27 participants were 

currently or previously attending university. Six participants had never followed Musical 

Training (MT), while the other 23 participants had at least 0.5 years of MT (see Figure 2 for 

the distribution of participants by the number of years of MT). Table A1 in Appendix A shows 

a full participant overview.  
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Figure 2 

Distribution of Participants by Years of Musical Training (MT) 

 

 

4.2 Stimuli 

The stimuli include two artificial languages, namely a structured and a random stream, part of 

the experiment by van der Wulp et al. (2023):  

The stimuli consist of syllables which are combined into tri-syllabic non-words (from 

now on referred to as ‘words’) that adhere to Dutch phonotactics and have been piloted 

for their learnability [...]. The syllable inventory consists of 12 syllables, from which 

four words are formed for the structured condition: /suχita, tobamø, sytøbo, χøbyti/. In 

the structured stream, the transitional probabilities of neighboring syllables are 1.0 

within a word and 0.33 between words. The word order is pseudorandomized, such that 

the same word does not repeat consecutively. More details on the methodology used to 

create these stimuli are described in van der Wulp et al. (2022). We also created a 

corresponding random stream (Batterink & Paller, 2017), which forms the random 

condition. In the random condition, a different set of 12 syllables is concatenated in a 

pseudorandom order, under the constraint that the same syllable cannot consecutively 
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repeat (as in Batterink & Paller, 2017). This yields a transitional probability of 0.09 

throughout the random condition. The syllables used in this condition are: /da, pø, nu, 

dø, χo, py, ro, dy, sa, χy, ri, sø/, corresponding to set B in the pilot experiment ([...] see 

van der Wulp et al. (2022) for more details on the methodology used to create these 

stimuli). The stimulus lists were converted to concatenated speech without pausing 

using MBROLA diphone synthesis (male Dutch voice nl2, at a monotone F0 of 100 

Hz; Dutoit et al., 1996). All syllables are 300 ms long (100 ms consonant, 200 ms 

vowel), creating a word-length of 900 ms. Thus, this yields a syllable frequency of 3.3 

Hz and a word or triplet frequency of 1.1 Hz [...]. We generated coarticulated speech 

streams of 13.5 minutes per condition in total, divided over three blocks of 4.5 minutes. 

Each block is made up of 900 syllables (300 words). (p. 13-14) 

 

4.3 Study Design and Procedure 

The data for this study is part of the project by van der Wulp et al. (2023), which makes the 

experimental design identical to their study. A visual representation of the experimental 

procedure is shown in Figure 3. This section will give a more detailed description of the tasks 

participants completed.  
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4.3.1 Listening Task 

Participants started with listening to the 

structured stream, which took 13.5 minutes 

and was divided into three blocks of 4.5 

minutes each. In between the three blocks, 

participants could take a break and press Enter 

when they wanted to continue with the 

experiment. These untimed breaks allowed 

participants to adjust the duration of their 

break to suit their individual needs. After the 

Rating Task, participants listened to the 

random stream that also consisted of three 

blocks of 4.5 minutes. 

Participants were seated in a sound-

attenuated booth. During both listening tasks, 

participants’ neural oscillations were recorded 

with electroencephalography (EEG). 

Therefore, participants were instructed to 

listen as calmly as possible and minimise their 

blinking, to avoid too many unnecessary 

artefacts in the EEG data. They could use the 

break as an opportunity to move more freely.  

 

4.3.2 Rating Task 

The structured condition was immediately followed by the rating task. 

Figure 3 

Schematic Overview of the Experimental Procedure. 

Note. Adapted from van der Wulp et al. (2023,  

Figure 2, p. 15). 
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With respect to the rating task, participants will be auditorily presented with a word or 

foil in each trial. The foils can be of two kinds: one being a part-word spanning a word 

boundary from the stream, or a non-word made up of syllables from the stream but 

recombined in an order that never appeared. There will be 16 trials consisting of the 

four words from the listening task, all eight possible part-words and four non-words. 

On each trial, participants will rate on a four-point scale how familiar the word is to 

them (scale: unfamiliar – fairly unfamiliar – fairly familiar – familiar).  

(Van der Wulp et al., 2023, p. 15) 

Participants could take as long as they wanted to complete the task. Generally, this task 

took five minutes at most. Appendix B contains the full list of items used in this task.  

 

4.3.3 Musicality Tasks 

To measure musicality and rhythmic ability, three different tests were administered, namely 

the CA-BAT, the PROMS, and the Gold-MSI questionnaire. 

First, participants will perform the Computerized Adaptive Beat Alignment Test (CA-

BAT; Harrison & Müllensiefen, 2018a, 2018b), in which participants listen to the same 

piece of music twice, accompanied by beeps in two conditions. In one condition, the 

beeps are synchronized with the rhythm of the music, and in the other condition, the 

beeps are not synchronized with the rhythm of the music. Participants indicate which 

of the two tracks had the beeps in sync with the rhythm of the music. 

Second, participants will complete the Rhythm and Accent sub-tests of the short 

version of the Profile of Music Perception Skills (PROMS; Zentner & Strauss, 2017). 

In this task, participants listen twice to the same rhythm and then to a third rhythm. 

Participants then indicate whether the third rhythm was identical or different compared 

to the first two. 
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Third, participants will complete a self-report questionnaire of general musical 

abilities: the Goldsmiths Musical Sophistication Index (Gold-MSI; Müllensiefen et al., 

2014), translated to Dutch (Bouwer et al., 2016). The questionnaire consists of the 

following sub-scales: active engagement with music, perceptual abilities, musical 

training, singing abilities and emotional engagement.  

(van der Wulp et al., 2023, p. 16) 

All three measures exhibit good validity and reliability. The CA-BAT was contracted 

and validated in four empirical studies, which showed that the test achieves good reliability 

and validity in laboratory settings (Harrison & Müllensiefen, 2018). An independent evaluation 

determined that the PROMS displayed a good pattern of construct validity: it showed a 

remarkably good pattern of discriminant (i.e., whether it is not associated with a task measuring 

an unrelated concept, here: short-term or working memory), convergent (i.e., whether it 

correlates with another task measuring the same construct, here: other music ability tests) and 

criterion (i.e., whether it is related to ‘real world’ variables, here: years of MT, musicianship 

status, and musical talent) validity (Kunert et al., 2016). Finally, the Gold-MSI has good indices 

of internal consistency and test-retest reliability. Moreover, the Gold-MSI’s subscales 

significantly correlate with auditory tests evaluating melodic memory (i.e., a test created by 

Müllensiefen and colleagues (2014) in which participants must indicate if two tunes have an 

identical pitch interval structure) and beat perception (i.e., Beat Alignment Test (BAT) by 

Iversen and Patel (2008)). This suggests that the instrument effectively measures individual 

performance levels, despite its self-reported nature (Müllensiefen et al., 2014).  

The CA-BAT has a total of 25 questions, and the rhythm and accent subscales of the 

PROMS contain 18 questions (eight for rhythm; ten for accent) in total. Finally, the Gold-MSI 

includes a total of 39 questions, of which the following seven belong to the MT subscale:  

● I have never been complimented for my talents as a musical performer. 
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● I would not consider myself a musician. 

● I engaged in regular, daily practice of a musical instrument (including voice) for ___ 

years.  

● At the peak of my interest, I practised ___ hours per day on my primary instrument. 

● I have had formal training in music theory for __ years. 

● I have had __ years of formal training on a musical instrument (including voice) during 

my lifetime.  

● I can play ___ musical instruments.  

 

4.4 EEG Hardware and Acquisition Settings 

Electroencephalography (EEG) recordings were made with the BioSemi ActiveTwo system 

and the accompanying ActiView software. The EEG activity was recorded at a sampling rate 

of 512 Hz by using 64 BioSemi “pin-type” electrodes with a sintered Ag/AgCl-tip that were 

attached to a 64-channel electrode headcap from BioSemi using the 10-20 system. The 

Common Mode Sense (CMS) active electrode was used as the online reference channel, and 

the Driven Right Leg (DRL) passive electrode as the online ground channel. Additionally, six 

“flat-type” electrodes were attached to participants’ left (EXG1) and right (EXG2) mastoid, the 

outer canthi of the left (EXG3) and right (EXG4) eye, and above (EXG5) and below (EXG6) 

the left eye. The two mastoid electrodes were used for offline re-referencing. The other four 

electrodes measured vertical and horizontal eye movements, such as blinking. To reduce 

impedance and improve conduction, Signa electrode gel was applied to the electrode holders 

in the headcap and the flat electrodes. The impedance of the electrodes was maintained under 

20 mV. The local powerline frequency was 50 Hz.  
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4.5 Data  

4.5.1 EEG Pre-Processing 

Pre-processing steps occurred in the following order: importing, re-referencing, offline 

filtering, bad channel interpolation, artefact correction and rejection, and epoching. The EEG 

data will be processed through scripting in MATLAB (The Mathworks Inc., 2019), using 

EEGLAB (Delorme & Makeig, 2004) and the ERPLAB open-source toolbox (Lopez-Calderon 

& Luck, 2014).  

 First, the data was recorded with Actiview software and the .bdf files with all channels 

were imported into EEGLAB for MATLAB. The continuous data was filtered offline with a 

band-pass filter from 0.1 to 30 Hz and a notch filter of 50 Hz. Subsequently, bad channels 

identified during data collection or visual inspection of the data were interpolated in ERPLAB. 

A channel was deemed bad during the analysis if it was flagged as such during data collection 

due to high impedance (above 20 mV), or if it drifted or showed frequent noise upon visual 

inspection. Data sections containing large artefacts (e.g., large noise related to jaw muscle 

contractions), also identified through visual inspection, were manually rejected. Eye movement 

artefacts were not removed, because they are not time-locked to stimulus onsets and possess a 

broad power spectrum that does not interfere with narrow-band neural responses (Srinivasan 

& Petrovic, 2006). Finally, regarding epoching, the data was time-locked to the onsets of the 

trisyllabic words or every third syllable in the random condition, and segmented into non-

overlapping epochs of 10.8 seconds, which corresponds to 12 words or 36 syllables per epoch. 

We used a Fast Fourier Transform (FFT) for each epoch across frequency bins of interest, 

namely between 0.6 to 5 Hz and with a bin width of 0.09 Hz (following Batterink & Choi, 

2021; Benjamin et al., 2021; Moreau et al., 2022). Afterwards, we calculated the Inter-Trial 

Coherence (ITC) to quantify phase-locking to the word (1.1 Hz) and syllable (3.3 Hz) 
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frequencies. The ITC ranges from 0 to 1, with 0 indicating no phase-locking at all and 1 

indicating perfect phase-locked neural activity to a certain frequency.  

 

4.5.2 Analyses 

Data was agreed to be excluded from the analysis if participants did not finish the experiment 

due to technical issues, if they wanted to retract or stop their participation during the 

experiment, or if they did not follow instructions during the experiment. Furthermore, EEG 

data from participants who did not show a clear ITC peak at the syllable frequency of 3.3 Hz 

must also be excluded, as this indexes basic auditory processing of syllables, in line with van 

der Wulp et al. (2023). We excluded EEG data from four participants because they did not 

show this ITC peak. Their behavioural data was kept and included in those analyses, because 

the absence of the ITC peak does not affect the validity or reliability of their behavioural 

responses on, for example, the musicality tasks. Moreover, the lack of the ITC peak does not 

necessarily indicate that participants were not listening to the stimuli; it could also be absent 

due to excessive noise in the data (e.g., caused by frequent movements or excessive blinking).  

 All analyses were performed in R (R Core Team, 2017). The car (Fox & Weisburg), 

lme4 (Bates et al., 2005), lmerTest (Kuznetsova et al., 2017) ordinal (Christensen, 2023), and 

tidyverse package (Wickham et al., 2019) were used. The statistical significance for each 

analysis was determined at an alpha level of p < .05 (Winter, 2019). Before examining the 

influence of MT (RQ1), possible correlations between the several musicality measures were 

checked (RQ2).  

 

4.5.2.1 RQ2: Correlation Between Musicality Measurements 

In this study, several behavioural measures aimed to measure the same construct. The PROMS 

and CA-BAT both measured rhythmic ability, the Gold-MSI measured musicality, and the 
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number of years of MT could also correlate with these abilities. This leaves us at risk of 

(multi)collinearity, i.e., the occurrence of significant correlations among two or more 

independent variables. This (multi)collinearity can make significant variables statistically 

insignificant when they are both included as predictors in a multiple regression model 

(Shrestha, 2020). To measure the degree of (multi)collinearity, we performed a Pearson’s 

correlation between years of MT, the scores of the Gold-MSI’s MT subscale, PROMS scores 

and CA-BAT scores. Furthermore, for the Linear Mixed Models (LMMs) (see section 4.5.2.2), 

we calculated the Variance Inflation Factor (VIF) for models with possible (multi)collinear 

variables. Correlation coefficients above .80, VIFs larger than 10, and an average VIF 

substantially larger than 1 indicate (multi)collinearity (Field et al., 2012; Shrestha, 2020). If 

this was the case, we either computed a composite variable that comprised the mean of the 

collinear variables or kept only one of the collinear variables.  

 

4.5.2.2 RQ1: The Influence of Musical Training on Statistical Learning 

Rating Task 

First, we calculated binary accuracy scores from the familiarity ratings. For all stimuli, ratings 

of 1 or 2 were classified as ‘not familiar’ and ratings of 3 or 4 as ‘familiar’. If participants gave 

words a familiar rating, they got an accuracy score of 1, because their judgment was correct 

(i.e., they correctly judged stimuli that appeared during the listening task as familiar). If they 

gave words an unfamiliar rating, they got an accuracy score of 0, as their answer was wrong 

(i.e., they incorrectly judged stimuli that appeared during the listening task as unfamiliar). For 

foils, it was the other way around. Each participant received a score representing the percentage 

of correct responses. 

With the percentage of correct responses per participant (based on the binary accuracy 

scores), we performed a Shapiro-Wilk test to determine whether the data followed a normal 
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distribution, and a one-sided t-test to analyse whether performance was significantly above 

chance (> 50%). This indicated whether participants successfully segmented the words during 

the listening task and performed Statistical Learning (SL).  

Afterwards, to test whether words were judged as more familiar than part-words and 

foils, Cumulative Linked Mixed Models (CLMMs) were built. The dependent variable was the 

familiarity score. First, a null model with only random intercepts for participants and item was 

created (model 0). Subsequently, a new model was created with word type (word, part-word or 

foil) as a predictor and random intercepts for participants and item (Model 1). A likelihood-

ratio test showed if model 1 was a better fit than model 0, and, therefore, if SL took place on 

the behavioural level. Afterwards, we systematically added several predictors to our model to 

determine the influence of MT. Respectively, we added years of MT (Model 2)1, CA-BAT 

scores (Model 3), and PROMS scores (Model 4) as predictors. Likelihood-ratio tests showed 

which model is the best fit for our data.  

Our preregistered analysis plan also included the Gold-MSI’s MT subscales scores as 

a predictor (see Brandsen et al., 2024). The results of RQ2, however, showed collinearity 

between years of MT and the Gold-MSI’s MT subscale scores. Therefore, we decided to use 

only years of MT as a predictor and discard the Gold-MSI (see section 5.1 for the analysis).  

 

EEG 

To analyse the occurrence of SL in the EEG data, we computed Word-Learning Index (WLI) 

values for both conditions as a mean for each participant over the entire exposure period:  

𝑊𝐿𝐼	 = 	 -./	*!	0*"1	!"#$%#&'(
-./	*!	2(33453#	!"#$%#&'(

  

 
1 Participants’ number of years of MT was assessed by a Likert-scale question in the Gold-MSI questionnaire, 
which is why this variable was treated as a factor. The categories, however, were not equally distanced.  
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LMMs were built with WLI as the dependent variable. First, we created a null model 

with only random intercepts for participants (model 0). To discover whether participants 

performed SL, a new model with language condition (structured or random) as a predictor and 

random intercepts for participants was created (model 1). To establish whether language 

condition significantly improved the model, a likelihood-ratio test between models 0 and 1 was 

conducted (p < .05; Winter, 2019). The model that showed the best fit to the data was selected 

for further analyses. Then, to determine whether MT could account for individual differences 

in WLI, we systematically added several predictors to our model and compared models with 

likelihood-ratio tests to determine the best-fitting one. First, we added years of MT as a 

predictor (model 2). Second, CA-BAT scores were included in the model (model 3), and, 

finally, we included PROMS scores (model 4). Again, because the results of RQ2 showed 

collinearity between years of MT and the Gold-MSI’s MT subscale scores, only years of MT 

was included as a predictor.  

  

5. Results 

5.1 RQ2: Correlations Between Musicality Measures 

A Pearson correlation coefficient was computed to assess the degree of (multi)collinearity 

between years of Musical Training (MT), the Gold-MSI’s MT subscale, the CA-BAT scores, 

and the PROMS scores. There was a very strong positive correlation between years of MT and 

the Gold-MSI’s MT subscale (r = .86, p < .001). Additionally, there was a weak to moderate 

positive correlation between the CA-BAT and both years of MT (r = .39, p = .04) and the Gold-

MSI’s MT subscale (r = .47, p = .01). Table 1 shows an overview of all correlation coefficients 

and Appendix D contains the scatter plots for each correlation.  
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Table 1 

Correlations Between the Gold-MSI’s MT Subscale, Years of MT, CA-BAT Scores, and 

PROMS Scores. 

Variable 
 

Gold-MSI_MT Years of MT CA-BAT 

Years of MT Pearson’s r .86*** –  

 p-value <.001 –  

CA-BAT Pearson’s r .47* .39* – 

 p-value .01 .04 .04 

PROMS Pearson’s r .36 .34 .34 

 p-value .05 .07 .07 

Note. * p < .05, ** p < .01, *** p < .001.  

 

Because the coefficient of the correlation between years of MT and the Gold-MSI’s 

MT subscale is above .80, there is a risk of collinearity. To resolve this issue, we opted to use 

only one of the variables, namely years of MT. That variable more directly aligns with the 

focus of this thesis than a variable of the Gold-MSI’s MT subscale scores, because the MT 

subscale also contains questions that are more indirectly related to MT (e.g., “I have never been 

complimented for my talents as a musical performer”). Computing a composite variable would 

not be beneficial here, because years of MT is a subquestion of the Gold-MSI. The remaining 

significant correlations are relatively weak to moderate, indicating that the risk of collinearity 

is minimal. Finally, the VIF of our best-fitting LMM was below 10 and did not indicate 

problematic collinearity (see section 5.2.1.2). 

 

5.2 RQ1: The Influence of Musical Training on Statistical Learning 

To maintain focus on the most relevant findings, only the best-fitting models are reported in 

this section. Appendix E shows an overview of the results of the likelihood ratio tests for all 
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models and the emmeans contrasts. Based on the results of the planned analyses, several 

exploratory analyses were conducted.  

 

5.2.1 Rating Task 

The Shapiro-Wilk test indicated no significant deviation from normality for the binary accuracy 

score data (W = 0.96, p = .25), implying a normal distribution (see Appendix C for the Q-Q 

plots of the rating task data). A one-sided t-test revealed that participants did not significantly 

score above chance (M = 54%, SD = 16.8%) on their rating accuracy (t(28) = 1.31, p = .20). 

The mean scores per participant are shown in Figure 5. The mean familiarity ratings per 

participant, on which these accuracy scores are based, can be seen in Figure F1 in Appendix F.  
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Figure 5 

Mean Accuracy Scores per Participant and the Overall Mean Accuracy Across All Participants 

(in %) 

 

The best-fitting model was Model 12 with familiarity rating as a dependent variable and 

word type as a predictor (see Table 2 for the model coefficients). It was significantly better 

than the null model3 (χ2(2) = 12.37, p = .002). There was a main effect of word type: pairwise 

comparisons using emmeans indicated that words were rated significantly higher than part-

words (β = 0.76, p < .001) and foils (β = 0.95, p < .001) (see Table E3 in Appendix E). The 

difference in rating between part-words and foils was, however, not significant (β = -0.20, p = 

0.68).  

 

  

 
2 model1 = clmm(resp ~ wordtype + (1|ppID) + (1|item), data=data_rating, REML=FALSE) 
3 model0 = clmm(resp ~ (1|ppID) + (1|item), data=data_rating, REML=FALSE) 



Master’s Thesis       Mila Brandsen (6498299) 

34 

Table 2 

Model Coefficients of Model 1 of the Rating Task Data with Familiarity Rating as the 

Dependent Variable. 

Fixed Effects β SE z-value p-value 

word type: partword 0.37 0.45 0.83 .41 

word type: word 2.06 0.53 3.85 < .001*** 

Note. * p < .05, ** p < .01, *** p < .001. The foil word type is the reference category, which 

is implicitly set to 0 in this model. 

 

Figure 6 shows the difference in mean familiarity ratings between the different word 

types. It can be seen that words were rated significantly more familiar than part-words and 

foils.  

 

Figure 6 

Mean Familiarity Score (1-4) per Word Type 
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5.2.1.1 Exploratory Analyses and Results 

Exploratorily, we looked further into the accuracy scores by creating Generalised Linear Mixed 

Models (GLMMs). The dependent variable was accuracy score. The null model included only 

random intercepts for participants and item (Model 0). Similar to the CLMMs with familiarity 

score, we systematically added several predictors, namely word type (Model 1), years of MT 

(Model 2), CA-BAT scores (Model 3), and PROMS scores (Model 4). Likelihood-ratio tests 

determined the best-fitting model.  

Model 24 was chosen as the final, best-fitting model, because it provided a significantly 

better fit than Model 1 (χ2(6) = 13.25, p = .04). Table 2 shows the model coefficients. Pairwise 

comparisons with emmeans revealed that words were rated significantly more accurate than 

part-words (β = 2.61, p < .001) and foils (β = 2.41, p < .001) (Figure F2 in Appendix F shows 

the difference in accuracy scores across word type and Table E5 in Appendix E shows the 

emmeans contrasts). Additionally, there was a significant effect of 1 (β = 1.38, p = .01) and 

10+ year(s) of MT (β = 1.01, p = .01) compared to 0 years of MT. However, these effects 

disappeared after performing emmeans and contrasts with a Tukey HSD correction of word 

type and MT.  

 

  

 
4 model2ac = glmer(famrating_accur ~ wordtype + Years_MT + (1|ppID) + (1|item), data=data_rating, family = 
binomial) 
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Table 2 

Model Coefficients of Model 3 of the Rating Task Data with Accuracy Score as the Dependent 

Variable. 

Fixed Effects β SE df p-value 

(Intercept) -0.57 0.39 -1.45 .15 

word type: part-word -0.20 0.35 -0.57 0.57 

word type: word 2.40 0.47 5.11 < .001*** 

Years_MT2 -0.16 0.76 -0.22 .83 

Years_MT3 1.38 0.51 2.72 .01* 

Years_MT4 -0.16 0.57 -0.29 .77 

Years_MT5 0.00 0.38 0.00 1.00 

Years_MT6 0.57 0.45 1.27 0.21 

Years_MT7 1.01 0.43 2.37 .02* 

Note. * p < .05, ** p < .01, *** p < .001. Years_MT1 = 0 years; 2 = 0.5 years; 3 = 1 year; 4 = 

2 years; 5 = 3-5 years; 6 = 6-9 years; 7 = 10 + years. The intercept represents the non-word 

word type.  

 

Figure 7 shows the effect of MT on the mean accuracy scores per word type. It can be 

seen that in general, words were rated significantly more accurate than part-words and foils, 

regardless of years of MT. Furthermore, the figure reveals a notable peak in accuracy score at 

one year of MT for all word types. After two years of MT, there is an upward trend and the 

accuracy scores seem to progressively increase with more years of MT.  
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Figure 7 

The Effect of Years of Musical Training (MT) on the Mean Accuracy Scores 

  

Inspection of Figure 3 with the distribution of participants by years of MT (see section 

4.1) reveals an uneven distribution across the categories, with relatively few participants in 

most categories (e.g., only three participants with 1 year of MT compared to eight with 3-5 

years). This sparse distribution may lead to misleading results, such as the peak at 1 year of 

MT in Figure 7. This peak could result from the limited number of participants in the 1 year 

category: a small sample size may distort the apparent impact of MT on the accuracy ratings. 

The peak could reflect an artefact of the distribution rather than a true effect. To address this 

potential issue, we opted for a second exploratory analysis. New categories of years of MT (0 

years, 0.5 to 2 years, 3 to 5 years and 6+ years) were created to achieve a more equal distribution 

of participants and a larger number of participants per category. Figure 8 shows the distribution 

of participants across these new categories.  
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Figure 8  

Distribution of Participants Across New Categories of Years of Musical Training (MT) 

 

With these new categories, we redid the analyses on familiarity ratings and accuracy 

scores. Regarding the familiarity rating, this did not significantly change the results: Model 1 

with only word type remained a better fit compared to the new Model 25 with the new categories 

of years of MT (χ2(3) = 4.15, p = .24). With respect to the accuracy scores, the new categories 

did change the results. In the new Model 26, 6+ years of MT has a significant effect on accuracy 

scores compared to 0 years of MT (β = 0.83, p = .049), but this effect disappeared after 

conducting emmeans and contrasts. Figure 9 shows the effect of MT on the accuracy scores 

using the new MT categories. It shows that the peak observed at 1 year in Figure 7 has 

dissipated in Figure 9, leading to a consistently rising trend. However, this trend did not reach 

significance. While Model 2 with word type and the default categories of MT had proven to be 

the best fit, the new Model 2 was not: Model 1 with only word type fits the data better (χ2(3) = 

6.00, p = .11) and is, therefore, the final model.  

 
5 model2_cat = clmm(resp ~ wordtype + cat_MT + (1|ppID) + (1|item), data=data_rating, REML=FALSE) 
6 model2ac_cat = glmer(famrating_accr ~ wordtype + cat_MT (1|ppID) + (1|item), data=data_rating, 
family=binomial) 
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Figure 9 

The Effect of Years of Musical Training (MT) on the Mean Accuracy Scores (New Categories) 

 

Additionally, we looked at the accuracy percentages (i.e., the percentage of correct 

ratings). An LMM with accuracy percentages as the dependent variable was built. Again, like 

in the previous analyses, we added multiple predictors to the best-fitting model in the following 

order: years of MT (Model 1), CA-BAT scores (Model 2), and PROMS scores (Model 3). We 

did not add word type because the accuracy percentages are aggregated per participant, 

resulting in a single value per participant. Consequently, there is no within-participant 

variability in accuracy percentages related to word type. None of the predictors exhibited an 

improvement over the null model7: likelihood-ratio tests showed that neither Model 18 (χ2(1) = 

0, p = 1) and Model 29 (χ2(1) = 0, p = 1), nor Model 310 (χ2(1) = 0, p = 1) were a significantly 

better fit.  

 

 
7 model0ac_pct = lmer(accur_percentage ~ (1|ppID) + (1|item), data=data_rating, REML=FALSE) 
8 model2ac_pct = lmer(accur_percentage ~ Years_MT + (1|ppID) + (1|item), data=data_rating, REML=FALSE) 
9 model3ac_pct = lmer(accur_percentage ~ CA.BAT + (1|ppID) + (1|item), data=data_rating, REML=FALSE) 
10 model4ac_pct = lmer(accur_percentage ~ PROMS_average + (1|ppID) + (1|item), data=data_rating, 
REML=FALSE) 



Master’s Thesis       Mila Brandsen (6498299) 

40 

5.2.2 EEG Data 

Visual inspection of the electroencephalography (EEG) data showed a clear Inter-Trial 

Coherence (ITC) peak at the syllable frequency of 3.3 Hz in both the random and structured 

condition (see Figure 4). In the structured condition, there is also a peak at the word frequency 

of 1.1 Hz, suggesting neural entrainment to the trisyllabic words. Appendix G contains an 

additional figure of the frequency peaks and topographical plots showing the mean ITC 

distribution across the scalp for both conditions and frequencies (word and syllable).  

 

Figure 4 

Frequency Peaks for the Structured (Red) and Random Condition (Blue) (0-5 Hz).  

 

Note. In both conditions, there is a peak at 3.3 Hz (syllable frequency). The structured condition 

also includes a peak at 1.1 Hz (word frequency).  
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Model 311 with Word-Learning Index (WLI) as the dependent variable and condition 

and CA-BAT as predictors was the best-fitting model with a significant main effect of CA-

BAT (p = .04). In line with the observations from our visual inspection, there was also a main 

effect of condition (p = .01). The model coefficients can be seen in Table 3.  

 

Table 3 

Model Coefficients of Model 3 of the EEG Data with WLI as the Dependent Variable  

Fixed Effects β SE df t-value p-value 

(Intercept) 0.24 0.02 25.93 11.05 < .001*** 

condition: structured 0.09 0.01 775.00 15.44 < .001*** 

CA.BAT 0.04 0.02 25.00 2.14 .04* 

Note. * p < .05, ** p < .01, *** p < .001. The intercept represents the random condition.  

 

5.2.2.1 Exploratory Analyses and Results 

Similar to the rating task analysis in section 5.2.1.1, we exploratorily analysed the EEG data 

with new categories of MT (0 years; 0.5-2 years; 3-5 years; 6+ years), shown in Figure 8. This, 

however, did not alter the results: similar to the previous Model 2 with the default categories, 

the new Model 212 with the new categories of years of MT as a predictor did not prove to be a 

better fit than Model 1 with only condition as a predictor (χ2(1) = 0.16, p = .69). Thus, Model 

3 with condition and CA-BAT as predictors remains the best fitting model.  

Additionally, we explored the influence of MT on syllable ITC. Research shows that 

MT positively influences auditory processing (see Neves et al. (2022) for a systematic review 

and meta-analysis). This can be examined by analysing the syllable ITC, because larger neural 

entrainment to the syllable frequency indicates enhanced sensory processing of individual 

 
11 EEGmodel3 = lmer(WLI_ROIchans ~ condition + CA.BAT + (1|ppID), data=data_EEG, REML=FALSE) 
12 EEGmodel2_cat = lmer(WLI_ROIchans ~ condition + cat_MT + (1|ppID), data=data_EEG, REML=FALSE) 
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syllables (Batterink & Paller, 2017). To this end, a null model13 with syllable ITC as the 

dependent variable and random intercepts for participants was created. Systematically, we 

added years of MT, CA-BAT, and PROMS scores as predictors. Model 414 with PROMS scores 

proved to be the best-fitting model for the data. It was significantly better than the null mo2del 

(χ2(1) = 4.35, p = .04) with a main effect of PROMS scores (p = .04).  

Finally, given the discrepancy in outcomes between the EEG data and the rating task 

data, we sought to determine the extent to which the listening tasks with EEG and the rating 

task measure the same construct and should yield comparable results. To this end, we computed 

correlations between the WLI and accuracy scores. The results show a non-significant, albeit 

slightly negative correlation between the two scores (r = -.03, p = .06) (see Figure G3 in 

Appendix G for the correlation plot).  

 

6. Discussion 

This study aimed to establish the influence of musical training (MT) on the statistical learning 

(SL) of speech segmentation in adults by using both online and offline methods, namely 

electroencephalography (EEG) and a rating task. We hypothesised MT to have a positive 

influence on SL, with musically trained participants showing a higher Word-Learning Index 

(WLI) than untrained participants. Prior to that, we examined the relation between the different 

MT and musicality measurements used in the experiment, namely the number of years of MT, 

the Gold-MSI’s MT subscale, the CA-BAT and the PROMS. We expected a positive 

relationship between all measures.  

 

 
13 Syllmodel0 = lmer(SyllITC_ROIchans ~ (1|ppID), data=data_EEG, REML=FALSE) 
14 Syllmodel3 = lmer(SyllITC_ROIchans ~ PROMS_average + (1|ppID), data=data_EEG, REML=FALSE) 
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6.1 RQ2: Correlations Between Musicality Measures 

RQ2: To what extent is musical ability, measured with the CA-BAT and PROMS, related to 

(years of) musical training? 

 

The results showed a very strong positive correlation between years of MT and the 

Gold-MSI’s MT subscale, confirming that participants with more years of MT tend to score 

higher on the Gold-MSI’s MT subscale. While this result is not entirely unexpected, given that 

years of MT is a sub question of the subscale, it nonetheless reinforces the validity of the MT 

subscale by demonstrating that it accurately reflects an individual’s MT experience. In line 

with previous research by Müllensiefen and colleagues (2014), the MT subscale of the Gold-

MSI is confirmed as a valid self-report measure. Unfortunately, we do not have data to confirm 

the validity of the entire Gold-MSI questionnaire or discuss the relationship between the MT 

subscale and the other subscales, because we only analysed the MT subscale scores.  

The significant, positive correlation between the CA-BAT and both years of MT and 

the Gold-MSI’s MT subscale is weak to moderate. This means that, while there is a positive 

relationship between the number of years of MT and performance on the CA-BAT, the 

correlation is not very strong. MT contributes to, but does not fully explain, performance on 

the CA-BAT, and other factors, such as innate rhythmic abilities, may also affect CA-BAT 

scores. Conversely, high CA-BAT scores do not automatically indicate extensive MT, as other 

variables may also influence these scores. Overall, this suggests that musical ability is not 

necessarily achieved solely through MT, corroborating the findings of Correia and colleagues 

(2023) that musical ability is multifaceted, and that MT is not necessary for developing 

musician-like abilities. However, as discussed in section 2.2.1, previous studies that 

investigated the influence of musicality traditionally rely on years of MT as the primary 

criterion for defining musicians. Initially, the positive correlation between the CA-BAT and 
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MT may seem to affirm this decision, but it becomes less convincing when taking into account 

that the correlation is moderate at best. Instead, the correlation underscores the need for more 

nuanced and comprehensive measures of musicality. We believe that participants’ musicality 

should be assessed using more direct measures than just the number of years of MT, and, 

ideally, by employing a range of different assessments. 

The CA-BAT and PROMS did not significantly correlate: a high score on the CA-BAT 

does not necessarily equal a high score on the PROMS, or vice versa, implying that both tasks 

measure different constructs. This result seems remarkable, given that both tasks aim to assess 

musical, and more specifically rhythmic, abilities. However, upon closer examination, this is 

not as striking as it initially appeared to be. For the PROMS, in which participants must 

remember a musical piece to correctly compare the third one to the previous ones, musicality 

is not the only aspect being assessed; memorisation also plays a significant role. In contrast, 

the CA-BAT requires participants to decide which of two rhythms has beeps in synch, a task 

where memorisation is not essential. If participants do not (fully) remember the first rhythm, 

they can still take an educated guess based on whether the beeps in the second rhythm were in 

or out of sync. For the PROMS, this strategy is impossible because making a comparison 

requires having a reference (the first musical piece) in mind. This distinction highlights the 

importance of considering the specific cognitive processes involved in different musical tasks 

when interpreting correlations between them.  

Additionally, the PROMS did not correlate with neither years of MT, nor the Gold-

MSI’s MT subscale. This, again, is noteworthy, considering that an independent evaluation of 

the task showed that it was indeed related to years of MT (Kunert et al., 2016). A possible 

explanation is that the PROMS taps into aspects of musicality that are less dependent on MT 

and more influenced by innate perceptual abilities or cognitive skills, such as working memory, 

processing speed and attention, which are not directly enhanced through MT. Individual 
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differences in these cognitive abilities could play a significant role in PROMS performance, 

independently of one’s MT background. However, there is still a debate about whether MT 

enhances cognitive abilities or whether individuals who follow MT already possess higher 

cognitive abilities from the start (Escobar et al., 2020). 

Another potential explanation is that the correlations could not reach significance due 

to the small sample size of this study. The near-significant p-values (PROMS - Gold-MSI’s 

MT subscale: p = .05; PROMS - years of MT: p = .07; PROMS - CA-BAT: p = .07) suggest 

that these correlations might reach significance with more statistical power. Another possibility 

is that our selection of only two PROMS subsets, namely rhythm and accent, has influenced 

the results. The PROMS is designed to assess a wide range of musical abilities (Zentner & 

Strauss, 2017), and by limiting our focus to just two subsets, we may have missed capturing 

the broader spectrum of musicality. Perhaps including the other subsets would alter the results. 

Summarising, the results indicate a weak to moderate relationship between musical 

ability, as measured by the CA-BAT, and (years of) MT. However, musical ability measured 

with the PROMS is not related to MT. This implies that musical ability is influenced by a 

broader range of factors beyond MT alone.  

These findings contribute to the ongoing debate about the nature of musical ability and 

the influence of MT. It challenges the traditional reliance on years of MT as the primary 

indicator of musical ability (as employed by, for example, François and colleagues (2014) and 

Zhang and colleagues (2018)), which may oversimplify the complexity of musicality. The idea 

that musicality encompasses a range of factors beyond the number of years of MT suggests a 

need for a more nuanced approach that integrates several different measures.  
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6.2 RQ1: The Influence of Musical Training on Statistical Learning 

RQ1: To what extent does musical training influence the statistical learning ability aiding 

speech segmentation in adults? 

 

As expected and in line with previous research (e.g., Batterink & Paller, 2017), evidence 

for SL was observed in both the rating task and the EEG data. In the rating task, word type had 

a significant effect on the familiarity ratings and accuracy scores. Participants rated words 

significantly higher and more accurately than part-words and foils, which indicates that they 

learned the words from the structured stream and performed SL. The difference between part-

words and foils was insignificant, meaning that participants assigned comparable ratings to 

both word types. They did not perceive part-words to be significantly more challenging to judge 

correctly. This finding contrasts with the results reported by Batterink and Paller (2017), who 

demonstrated that participants rated words as the most familiar, followed by part-words, with 

foils rated as the least familiar. The absence of a (significant) difference between part-words 

and foils could be attributed to a response bias, particularly a “yes-bias” (Fritzley & Lee, 2003), 

where participants rely on a familiarity heuristic, rating sequences with familiar syllables as 

familiar even if they do not fully recognise the sequence. Furthermore, a conservatism bias 

may prompt participants to avoid extreme ratings (1 or 4) and give both part-words and foils a 

similar familiarity rating of fairly (un)familiar (2 or 3) (Deason et al., 2017). Moreover, the 

items included twelve part-words and foils, but only four words. This imbalance (i.e., rating 

only four items as familiar and twelve items as unfamiliar) could feel counterintuitive. In 

combination with a potential yes-bias, which could lead participants to rate unfamiliar 

sequences as familiar, this may result in higher ratings for part-words and foils.  

The EEG data also showed that SL occurred: the ITC peak at 1.1 Hz (word frequency) 

in the structured condition suggests neural entrainment to the trisyllabic words. Furthermore, 
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there was a significant effect of condition: the WLI was significantly higher in the structured 

condition compared to the random condition, supporting the occurrence of SL in the structured 

condition.  

To establish the influence of MT, we first looked at the rating task data. Concentrating 

on the familiarity ratings first, neither MT nor the CA-BAT or PROMS had an effect on the 

ratings. The new categories of years of MT did not change the results; only word type affected 

the familiarity ratings. On the accuracy scores, however, MT did have a significant effect: 

participants with MT experience gave more accurate ratings than those without MT experience, 

indicating that MT benefits SL. The effects of 1 and 10+ years compared to 0 years of MT 

imply that participants with only one year of MT showed a significant improvement in their 

accuracy compared to their untrained counterparts. Additionally, 10+ years also makes a 

significant difference compared to zero years. These results, however, are based on an uneven 

distribution and low number of participants per category of years of MT. With the new 

categories of years of MT, the main effect of MT disappeared. The significant effect of one 

year of MT was found to be a misleading artefact. Nonetheless, there is a clear trend showing 

that accuracy scores tend to increase with more years of MT (see Figure 9), with 6+ years of 

MT reaching significance. Therefore, we believe that the sample size of this experiment might 

have prevented these results from reaching significance and that more statistical power might 

have yielded a significant effect of MT on accuracy scores. That would be consistent with 

previous research by, for example, François and colleagues (2014) who showed an MT effect 

in an experiment with an artificial language of sung pseudowords. Finally, MT did not affect 

the accuracy percentages.  

For the EEG data, the results were rather different. Contrary to our expectations, based 

on the results from the rating task and previous studies such as François et al. (2014) and 

Mandikal Vasuki and colleagues (2017), we did not find an MT effect on participants’ WLI. 
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Surprisingly, instead of MT, CA-BAT scores had a significant effect on the WLI. Participants 

with higher CA-BAT scores exhibited a higher WLI, indicating greater SL for these 

participants during the exposure phase. The new categories of MT did not alter these results. 

A possible explanation can be found in previous research only briefly discussed in section 2.2. 

Such studies found a correlation between rhythmic (perception) ability (i.e., the ability to 

accurately extract and synchronise to an auditory pulse) and language outcomes, and revealed 

that people can process both musical and linguistic rhythm through neural entrainment (e.g., 

Cirelli, 2016; Di Liberto et al., 2020; Nozaradan, 2014). Additionally, Peelle and Davis (2012) 

suggest that more precise synchronisation of neural oscillations to auditory input leads to better 

processing. Following this, van der Wulp and colleagues (2023) hypothesise that efficient 

phase-locking could be supported by rhythmic abilities and that, in turn, rhythmic abilities 

support SL (see Van der Wulp et al. (2023) for details).  

While both the rating task and EEG data indicate the occurrence of SL, the discussed 

results present a clear contrast. Moreover, we found a non-significant but slightly negative 

correlation between both, meaning that – when significant – as participants’ WLI increased, 

their rating accuracy slightly decreased, and vice versa. This correlation did not reach 

significance, but there is still a difference in results between these measures. This discrepancy 

may arise from the distinct ways each method captures aspects of SL: the rating task is an 

explicit measure that relies on participants’ subjective judgements and conscious recall of 

learned words, while EEG is an implicit measure that can capture SL while it is happening and 

dissociate the word identification component from the explicit memorisation component 

(Batterink & Paller, 2017). Years of MT is an explicit measure of musicality, while the CA-

BAT assesses rhythmic abilities more implicitly. Previous studies have found that MT is 

associated with an advantage in working memory, which could explain the positive influence 

of MT on the rating task data. The influence of participants’ rhythmic abilities on the implicit 
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EEG could be explained with van der Wulp et al.’s (2023) hypothesis, mentioned in the 

previous paragraph. There is, however, no consensus yet about whether MT enhances cognitive 

abilities or if those with MT already have higher cognitive abilities to begin with (Escobar et 

al., 2020). Moreover, this would contradict our explanation for the lack of correlation between 

years of MT and PROMS (see section 6.1).  

Finally, we expected MT to influence syllable Inter-Trial Coherence (ITC), because 

previous studies like Neves and colleagues (2022) demonstrated that MT enhances auditory 

processing, indicated by larger syllable ITC values. Interestingly, the PROMS, rather than MT, 

had a significant impact on the syllable ITC. Participants with high PROMS scores showed 

higher phase-locking to the syllables and, thus, showed better auditory processing than their 

counterparts with lower PROMS scores. Based on this, we can conclude that participants with 

MT experience or high CA-BAT scores did not have significantly better auditory processing 

skills than other participants. Since the PROMS did not influence the WLI and auditory 

processing was not influenced by CA-BAT scores, we can infer that differences in WLI are not 

due to auditory processing but are genuinely driven by SL. If auditory processing was 

responsible, the PROMS would significantly affect the WLI and participants with higher 

PROMS scores would have shown higher WLIs, which was not the case. This suggests that a 

higher WLI reflects actual learning rather than superior auditory perception skills, supporting 

the validity of the WLI and the findings of Batterink and Paller (2017) who introduced the WLI 

as a measure for SL.  

Summarising, the rating task and EEG data yielded mixed results: according to the 

rating task data, participants with MT experience had better accuracy scores and, therefore, 

showed better SL than those without. The EEG data, however, demonstrated that only CA-

BAT scores positively influenced SL. Considering this, musicality appears to be positively 

related to SL, whether in the form of MT experience or rhythmic abilities. While future research 
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is needed to confirm these observations, participants with enhanced musicality – either in the 

form of MT experience or superior rhythmic abilities – seem to demonstrate enhanced SL of 

speech segmentation. Perhaps the specific aspect of musicality that affects SL depends on the 

type of measure (here: an explicit rating task or implicit EEG).  

These results deepen our knowledge of the factors underlying individual differences in 

SL for word segmentation and enhance our understanding of the influence that MT and musical 

and rhythmic abilities have on, in this case, SL. Similar to the results of RQ2, the findings 

corroborate the idea that musicality consists of several aspects that need to be considered when 

studying the influence of musicality on phenomena. Finally, the different results between the 

rating task and the EEG data underline the importance of using multiple measures to assess SL 

to provide a more comprehensive understanding of different aspects of SL.  

 

6.3 Limitations 

This study had three important limitations that should be considered, some of which have 

already been mentioned in sections 6.1 and 6.2. The first limitation is our small and 

homogeneous sample of participants consisting of only 29 participants for the rating task and 

25 for the EEG listening task (after exclusion), most of whom were female and (had) attended 

university. The small sample size reduces statistical power and could limit the ability to detect 

significant effects, as suggested for the rating task data with the new categories of MT and the 

PROMS correlations. Moreover, the results could present a distorted view due to the 

homogeneity of our sample. Therefore, future research should consider using a larger and more 

heterogeneous sample of participants, for example by ensuring a broader range of educational 

backgrounds.  

The second limitation concerns the years of MT variable, which we based on a question 

from the Gold-MSI. This Likert-scale question had fixed categories, namely 0, 0.5, 1, 2, 3-5, 
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6-9 and 10+ years of MT. These unequally distanced categories prohibited us from 

differentiating between, for instance, three and five years of MT. Moreover, we did not include 

a question allowing participants to elaborate on their answers, leaving us unaware of the 

frequency and intensity of their MT sessions. For instance, participants with two years of MT 

might have engaged in MT sessions twice a week or only once a month, and this variability 

could have influenced the results. Future research on this topic should keep this in mind.  

Finally, we only administered two subsets of the PROMS and focused exclusively on 

the MT subscale of the Gold-MSI in our analysis. Including the entire PROMS might have 

offered a more comprehensive assessment of musical and rhythmic abilities, potentially 

altering the results. This was not possible, however, because the data we used (from Van der 

Wulp et al., 2023) only contained the rhythm and accent subsets. The Gold-MSI was 

administered entirely, but we decided to focus on the MT subscale, discarding the other 

subscales and the mean score. In hindsight, it would have been interesting to include these as 

well to enrich the analysis and potentially offer a more nuanced understanding of the influence 

of musicality. Due to time constraints, however, we only analysed the Gold-MSI’s MT 

subscale.  

 

6.4 Future Research 

Based on our findings, we can give several recommendations for future research. First, given 

our mixed results about the influence of MT and rhythmic abilities, more research is needed to 

disentangle the specific aspects of musicality that influence SL and how they contribute to it. 

It could, furthermore, be interesting to investigate how aspects of musicality interact with 

different SL measures (e.g., offline vs. online). 

 Another idea for future research is to use MT as an intervention, rather than merely 

examining pre-existing differences in MT experience as we did. This allows for a more 
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controlled and systematic investigation of how (specific aspects of) MT influence SL, as 

researchers can standardise the type, duration, and intensity of the training. Additionally, 

implementing pre- and post-tests (with different artificial languages) can track individual 

progress, providing valuable insights into individual differences. Finally, the temporal 

dynamics of SL improvement (i.e., how quickly and effectively MT can enhance SL abilities) 

could be explored.  

Finally, future studies could also expand on this study by applying EEG to both the 

listening and musical tasks (here: the PROMS and the CA-BAT). This approach would allow 

researchers to measure participants’ brain activity and their neural entrainment to the rhythm 

of the music(al beats) during these tasks. For the PROMS, this could, for example, provide 

insights into how well the brain’s rhythmic processing mechanisms align with the presented 

rhythms and how this synchronisation might differ for familiar versus novel rhythms.  

 

7. Conclusion 

This study aimed to establish whether Musical Training (MT) influences the Statistical 

Learning (SL) of speech segmentation by analysing both offline measures (rating task, 

PROMS, CA-BAT and Gold-MSI data) and online neural tracking (listening tasks with 

electroencephalography (EEG)). In line with our expectations, we found evidence for the 

occurrence of SL in both the rating task and the EEG data. The factors that significantly 

influenced SL, however, differed between the two measurements. On the rating accuracy 

scores, years of MT initially had a positive effect, with accuracy improving as the number of 

years of MT increased. After reorganising the categories of MT, however, this significant effect 

disappeared, although a consistent upward trend persisted. We anticipate that this trend may 

become significant with a larger sample size. Conversely, the EEG data indicated that rhythmic 

abilities, measured with the CA-BAT, had a significant impact on SL, while MT itself did not 
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show a significant effect. This discrepancy underscores the importance of interpreting SL 

through various measures: different methods can yield different results. Summarising, 

musicality seems to be associated with SL, but it remains unclear which specific dimension of 

musicality (whether it be MT, rhythmic ability, or another aspect) most strongly influences SL.  

Additionally, we established a positive relationship between the Gold-MSI’s MT 

subscale and (years of) MT, and both are positively related to the CA-BAT. Performance on 

the PROMS, however, is not related to the CA-BAT, nor to the Gold-MSI’s MT and (years of) 

MT. This indicates that musical ability is shaped by a broader set of factors beyond just MT, 

which highlights the need for studies to take a more nuanced approach that incorporates various 

measures of musical ability.  

 We recommend future studies to further investigate the precise nature of the 

relationship between musicality and SL in speech segmentation with a larger sample size.  
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Appendix A: Participant Overview 

Table A1 

Overview of Participant Information per Participant 

Participant Gender Age (in years) Education Level Years of MT 

VUGY F 22 University 3-5 

TBGN F 24 University 10+ 

WYEL F 24 University 3-5 

LBVC F 22 University 6-9 

QENU F 21 University 10+ 

HSFE M 23 University 3-5 

WLMQ F 23 University 0 

LPRY F 20 University 2 

EHSB F 32 University 3-5 

STXW F 22 University 6-9 

EGYK F 24 University 6-9 

SSYV F 23 University 3-5 

QYDS F 19 University 1 

LCLF F 19 University 0 

XYJL F 21 University 0 

HAAA M 23 University 0 

FQJT F 19 University 1 

RBTP M 22 University 10+ 

YMGD F 20 University 3-5 

QNWP F 20 University 0 

ASBB F 20 University 10+ 

CNED F 22 University 0 

YTKJ F 32 University of 
Applied Sciences 

3-5 

LSUA M 20 University 10+ 
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QMLC F 21 University 6-9 

GUJN F 23 University 3-5 

NDLG F 20 University 1 

XDSD F 19 University 0.5 

EZGE F 54 University of 
Applied Sciences 

2 
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Appendix B: Rating Task Items 

Table B1 

Items for the Rating Task per Category 

Item Category 

suχita word 

tobamø word 

sytøbo word 

χøbyti word 

tatoba part-word foil 

tøboχø part-word foil 

møsyχi part-word foil 

bytisy part-word foil 

χitato part-word foil 

bamøsu part-word foil 

boχøby part-word foil 

tisytø part-word foil 

tatøχø non-word foil 

boχito non-word foil 

møbysu non-word foil 

tibasy non-word foil 

Note. Reprinted from van der Wulp et al. (2023, Table C2, p. 56).   
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Appendix C: Q-Q Plots 

Figure C1 

Q-Q Plot of the Familiarity Scores (1-4) from the Rating Task 

 

Figure C2 

Q-Q Plot of the Accuracy Scores (0-1) from the Rating Task 
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Appendix D: Correlations Musicality Measures 

Figure D1 

Scatter Plot of the Correlation Between Gold-MSI and Years of Musical Training (MT) 

 

Figure D2 

Scatter Plot of the Correlation Between Gold-MSI and CA-BAT 

 

Figure D3 
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Scatter Plot of the Correlation Between Gold-MSI and PROMS 

 

Figure D4 

Scatter Plot of the Correlation Between Years of Musical Training (MT) and CA-BAT 
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Figure D5 

Scatter Plot of the Correlation Between Years of Musical Training (MT) and PROMS 

 

Figure D6 

Scatter Plot of the Correlation Between CA-BAT and PROMS 
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Appendix E: Likelihood Ratio Test Results and Model Coefficients 

Table E1 

Overview of Likelihood Ratio Test Results of Various Models Across Different Data Sets. 

Data Dependent 
variable 

Model 
name Parameters logLik df χ2/LR.s

tat p Added predictor compared to model 0 Model of 
comparison Action 

Rating task 
data 

Familiarity 
rating 

Model 0 5 -566.46    
  

Kept 

  
Model 1 7 -560.27 2 12.37 .002* wordtype Model 0 Kept 

  
Model 2 13 -555.20 6 10.16 .12 wordtype + Years_MT Model 1 Discarded 

  
Model 2_cat 8 -559.98 1 0.58 .45 wordtype + MT_cat Model 1 Discarded 

  
Model 3 8 -559.39 1 1.77 .18 wordtype + CA.BAT Model 1 Discarded 

  
Model 4 8 -560.24 1 0.06 .80 wordtype + PROMS Model 1 Discarded 

 
Accuracy score Model 0 3 -284.21      

Kept 
  

Model 1 5 -272.62 2 23.18 < .001* wordtype Model 0 Kept 
  

Model 2 11 -266.00 6 13.25 .04* wordtype + Years_MT Model 1 Kept 
  

Model 2_cat 8 -269.62 3 6.00 .11 wordtype + MT_cat Model 1 Discarded 
  

Model 3 12 -265.38 1 1.25 .26 wordtype + Years_MT + CA.BAT Model 2 Discarded 
  

Model 4 12 -265.99 1 0.03 .87 wordtype + Years_MT + PROMS Model 2 Discarded 
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Accuracy 
percentage 

Model 0 4 5399.30    
   

  
Model 1 10 5301.90 6 0 1 Years_MT Model 0 Discarded 

  
Model 2 5 5030.30 1 0 1 CA.BAT Model 0 Discarded 

  
Model 3 5 4895.00 1 0 1 PROMS Model 0 Discarded 

EEG data WLI Model 0 3 26.90      
Kept 

  
Model 1 4 30.25 1 6.70 .01* condition Model 0 Kept 

  
Model 2 5 30.27 1 0.03 .87 condition + Years_MT Model 1 Discarded 

  
Model 2_cat 5 30.33 1 0.16 .69 condition + MT_cat Model 1 Discarded 

  
Model 3 5 32.36 1 4.21 .04* condition + CA.BAT Model 1 Kept 

  
Model 4 6 33.93 1 3.15 .08 condition + CA.BAT + PROMS Model 3 Discarded 

 
Syllable ITC Model 0 3 34.46      

Kept 
  

Model 1 4 35.06 1 1.19 .27 Years_MT Model 0 Discarded 
  

Model 1_cat 4 1145.2 1 1.14 .29 cat_MT Model 0 Discarded 
  

Model 2 4 1144.7 1 0.10 .76 CA.BAT Model 0 Discarded 
  

Model 3 4 1146.8 1 4.35 .04* PROMS Model 0 Kept 
Note. * p < .05.
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Table E2 

Tukey HSD Corrected Emmeans and Contrast for Word Type Comparisons Based on the 

Familiarity Rating in the Rating Task 

Contrast β SE df z-ratio p-value 

foil - part-word -0.20 0.24 Inf -0.83 .68 

foil - word -0.95 0.23 Inf -4.08 < .001*** 

part-word - word -0.76 0.19 Inf -4.03 < .001*** 

Note. * p < .05, ** p < .01, *** p < .001.  

 
 

Table E3 

Tukey HSD Corrected Emmeans and Contrast for Word Type Comparisons Based on the 

Accuracy Score in the Rating Task 

Contrast β SE df z-ratio p-value 

foil - part-word -0.20 0.35 Inf 0.57 .84 

foil - word -2.41 0.47 Inf -5.12 < .001*** 

part-word - word -2.61 0.43 Inf -6.12 < .001*** 

Note. * p < .05, ** p < .01, *** p < .001.  
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Appendix F: Additional Figures for the Rating Task Data 

Figure F1  

Mean Familiarity Ratings (1-4) per Participant 
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Figure F2 

Mean Accuracy Score (0-1) per Word Type 
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Appendix G: Additional Figures and Plots for the EEG Data 

Figure G1 

Frequency Peaks for the Structured (Red) and Random Condition (Blue) (0-10 Hz).  

 

Note. In both conditions, there is a peak at 3.3 Hz (word frequency), and also at 6.6 Hz 

(harmonic frequency of 3.3 Hz). In the structured condition, there is also a peak at 1.1 Hz (word 

frequency).  
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Figure G2A 

Topographical Plots Visualising ITC Value Distribution Across the Scalp, as a Function of 

Condition and Frequency (Word, Syllable). 

 

Note. Different scales are used for word versus syllable frequencies.  
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Figure G2B 

Topographical Plots Visualising ITC Value Distribution Across the Scalp for the Word 

Frequency, as a Function of Condition. 

 

Note. The ITC of word frequencies is generally lower than that of syllable frequencies. To 

highlight the (significant) difference in ITC value between the structured and random 

condition, this plot uses a lower scale than the plot in Figure G2A.  
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Figure G3 

Scatter Plot of the Correlation Between WLI and Accuracy Scores 

 

 


