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1 Abstract

Simulation models explicitly represent the underlying processes of systems. A stan-
dardised modelling framework that incorporates natural behaviour can improve acces-
sibility for domain experts by being semantically intuitive. This thesis explores space
conceptualisation in such frameworks to represent spawning habitat availability for
swimming barbels. Space is often conceptualised using field-based approaches, where
attributes have values throughout the space-time domain, and agent-based approaches,
where entities are spatially bound and mobile. Integrating these paradigms allows
population-level properties to emerge from individual responses to the environment.
The software framework Campo integrates fields and agents (de Bakker et al., 2017).
In the Common Meuse, the common barbel experiences a hydropeaking flow regime,
leading to fluctuating habitat suitability and connectivity. This thesis examines bar-
bel movement and spawning success in response to environmental changes, aiming to
extend Campo’s functionality to better represent and understand the barbel’s habi-
tat amidst hydropeaking conditions. The objective is to determine how flow regime
and barbel behaviour affect spawning success and the optimal representation of these
phenomena in Campo. Various movement modes were modelled, and the framework’s
ability to represent agents’ sensing of the field was enhanced. These several opera-
tions have increased the accessibility and representation capabilities of ecosystems in
Campo. Overall, heavily fluctuating as well as low discharges were detrimental to the
barbel’s spawning success. Nonetheless, agent integration does require generalisation
of behaviour. Different movement behaviours resulted in significantly varied outcomes,
with 50% of population reaching spawning sites between 1 and 33 days. This indicates
a need for a more thorough understanding of barbel behaviour and highlighting the im-
portance of integrating the agent-based perspective when assessing habitat suitability.
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2 Introduction

In our knowledge driven society, simulation models fulfil the role of mediator between
theory and data (Morrison & Morgan, 1999). Simulation models differ from statistical
or other conventional models as these aim at explicit representation of the underlying
processes (Tang & Bennett, 2010). A good model represents reality closely in ways that
are theoretically based and can be observed in nature through data. Geomorphologi-
cal models such as Delft3D (Deltares, 2014) or hydrological models as PCR-GLOBWB
(Sutanudjaja et al., 2018) rely on theory on mass transport of sediment or fluid me-
chanics and are validated using data in order to predict larger scale phenomena. In
a different approach, empirical relations deduced in experiments are validated by test-
ing their performance in different settings in a model (Troitzsch, 2004; Le Quéré et
al., 2020). Nature is too complex to fully describe or grasp, and therefore we are
forced to simplify. However, close analogies to nature are often achieved ineffectively,
through addition of detail in models. This requires a lot of data, and problems such
as equifinality arise (Favis-Mortlock, 2013). Possibly, the observed outcome can not be
attributed to the modelled empirical relations because different pathways can lead to
similar outcomes (Favis-Mortlock, 2013; von Elverfeldt et al., 2016). The assumption
that a perfect analogy is composed of infinite detail, overlooks non-traditional cause and
effect relations, such as self-organisation, which can result in equally complex patterns
(von Elverfeldt et al., 2016; Favis-Mortlock, 2013). Furthermore, when the aim of mod-
elling is to understand key mechanisms of a system, significant reduction in complexity
of the model’s structure, is required to make the model at least somewhat easier to un-
derstand than reality (Grimm & Railsback, 2005). Mending gaps between the model’s
outcome and real-world observations purely by adding empirical relations increases the
complexity as well as reduces the generalisation capacity of the model (Favis-Mortlock,
2013).

Turning to these measures is understandable, as natures complex underlying pro-
cesses are not easily expressed with current programming languages and frameworks
(Athanasiadis & Villa, 2013). Many existing tools and languages introduce pleonasms,
redundancies and boundaries, not accommodating expression of complexity through
feedback loops or internal variation, mainly keeping domain experts busy with technical
difficulties such as file-handling and method-calls (Athanasiadis & Villa, 2013). In ad-
dition, current languages and frameworks do not easily allow for integration of separate
elements of the system in other models to promote reuse (Athanasiadis & Villa, 2013).
In the scope of this, Athanasiadis and Villa (2013) coined the term Domain-Specific
Language in a quest for simpler but structured software frameworks to prevent the need
of excessive detail in models while still representing the characterising properties of a
system.

A standard modelling framework that conceptualises the way nature behaves incor-
porated in the language itself is a solution to increase a model’s ability to represent
the complex semantics of natural systems as well as increase the accessibility of models
for domain experts. Such abstract modelling environments complement the domain
experts’ knowledge, who are not necessarily knowledgeable in lower-level programming
languages and software development. Software developers are knowledgeable in the lan-
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guages needed to express the models, but the full specification of the requirements of the
model depends on the model’s performance as well as the domain of the research and
therefore needs to be decided on during the development process (Karssenberg, 2002).
Continuous adjustment of the model’s requirements is best executed by the domain
expert, who is best at describing reality. Therefore, modelling environments in which
the domain expert is able to express their ideas through operations that meet with the
domain-experts’ conceptual way of thinking are a great way to mediate the gap between
the domain experts’ knowledge and the software developers’. This type of modelling is
referred to as semantic modelling (Athanasiadis & Villa, 2013). Complexity of model
assumptions is represented through operations as intrinsic features of the language and
therefore should not require user attention through method calls (Athanasiadis & Villa,
2013).

In this thesis, we consider the space conceptualisation of spatio-temporal simulation
models for the purpose of representing habitat dependency of and availability for or-
ganisms. In many semantic domain specific frameworks, space is conceptualised around
one of two paradigms. Field-based approaches assume attributes to have a value every-
where in the space-time domain. Agent-based approaches define objects that are bound
in space. These agents can be mobile, interact with other agents and change shape,
as well as be addressed at differing timesteps. Though many interacting phenomena
are best matched by differing space conceptualisations, the dichotomy between the two
approaches is reinforced through the development of analyses that work on either of
the space conceptualisations. For example, window-operations are field-based by na-
ture, and buffer operations are agent-based (Cova & Goodchild, 2002). The decision
to design a model along one of either of the paradigms influences the outcome of the
model, marking the importance of dual-conceptualisations.

The modelling of population dynamics in ecosystems often requires organisms to
be represented as mobile and interacting agents and their habitat as continuous fields.
Agent-based modelling, or individual-based modelling, has been recognised as a promis-
ing approach to model ecosystems and let population-level traits emerge (Grimm &
Railsback, 2005; McLane et al., 2011). However, current ecological agent-based models
lack the representation of the agents’ adaptability to a changing environment as well as
the environment’s response to the agent because they are constructed mostly as agent-
based and do not incorporate the environment as a spatially explicit and dynamic field
(McLane et al., 2011). Facilitating integration of both conceptualisations allows for
accurate representation of real-world processes.

Previous attempts to integrate both fields and agents illustrate the need and potential
for the method, but these modelling frameworks are often not widely applicable or
have limited functionality (Hamdani et al., 2021; de Bakker et al., 2017). A common
representation of objects in the field paradigm is through a density field, but this is
not a precise representation, and assumes no interaction between agents, as well as of
agents to be uniform. Attempts to integrate the two conceptualisations in software are
manifold (Hamdani et al., 2021; Liu et al., 2008; Cova & Goodchild, 2002; Goodchild et
al., 2007; Kjenstad, 2006; de Bakker et al., 2017). However, many of these frameworks
are not semantically intuitive for domain experts (Hamdani et al., 2021) or not fully
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developed to represent a wide range of system mechanisms through queries and data
manipulation capabilities (Goodchild et al., 2007). Furthermore, they are often not
able to represent internal structures (Cova & Goodchild, 2002), or the spatio-temporal
evolution of agents or fields (Liu et al., 2008).

The software framework Campo (de Bakker et al., 2017) integrates fields and agents
through the implementation of the LUE physical data model and allows for intuitive
manipulation of extensive raster and vector data through map algebra. However, the
framework has a limited set of operations and its application has not been widely
illustrated yet. The current incorporation of the temporal domain in the conceptual
data model was hypothesised to provoke challenges when modelling processes over time
(de Bakker et al., 2017). Furthermore, movement of agents has only recently been
implemented in the framework and this functionality not been exemplified yet.

I test the performance of Campo by representing barbel population dynamics in
the Common Meuse. The functionality of Campo as an integrated field-agent based
framework still needs to be evaluated in its performance in representing larger field data
that can drive agent behaviour such as movement in ecological settings. Results of other
fish population agent-based simulations that integrate fields shows close similarities
to observed population patterns, which illustrates the potential for an agent-based
approach when simulating fish populations(Railsback et al., 2002; Beland et al., 1982).
However, the fields herein are not large-scale or spatially detailed. Furthermore, since
the data format of fields and agents in agent-based modelling are not uniform (de
Jong & Karssenberg, 2019), the two space conceptualisations need to be addressed
distinctly. Operations between fields and agents is cumbersome, and the method of the
study is as a result not easily reproducible. I therefore model the evolution of fish and
the fields over time using the Campo framework, to showcase the applicability of the
framework as well as to incite progress to the software. The structure of this thesis is
therefore twofold: while illustrating the way Campo is capable of representing habitat
dependency of organisms, I also provide more insight in the dynamics of the common
barbel population in the Common Meuse under conditions of a hydropeaking regime
during spawning time.

Though the common barbel (Barbus barbus) is a species of least concern according to
the IUCN Red list (IUCN, 2023), anthropogenic disturbances have caused local threats
to the occurrence, such as in the Common Meuse (Britton & Pegg, 2011). The common
barbel is sensitive to flow regime and therefore indicative of good habitat conditions for
other rheophilic species in the Common Meuse (Liefveld & Jesse, 2006). The species’
habitat preference has been used to establish minimum discharges in the Common
Meuse using habitat suitability mapping (Liefveld & Jesse, 2006). However, the connec-
tivity of suitable habitat is essential for population sustenance as it determines whether
the habitat is reachable. I propose an integrated field-agent based model to study the
behaviour, and survival of the common barbel in the Common Meuse under the current
flow regime. Specifically, spawning possibilities are of interest for the barbel’s popula-
tion sustenance. The literature is inconclusive about the barbel’s sensing abilities and
assertiveness, particularly in group settings. Whether barbels show assertiveness by
moving toward spawning grounds or randomly is unknown (Gutmann Roberts et al.,
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2019; Britton & Pegg, 2011). This study may shed light on the impact different types
of behaviour have on spawning success.

Morphology and flow regime in the Common Meuse has been disturbed as a result
of anthropogenic activity. The barbel shows sensitivity to the large differences in water
levels and flow velocities in the Common Meuse as a result of upstream dams, a pro-
cess called hydropeaking (van Oorschot et al., 2022; Liefveld et al., 2018). Both very
high and very low flow velocities and water level occur on a diurnal scale. On smaller
spatial and temporal scales, the thresholds implemented in the Common Meuse fur-
thermore introduce spatial water depth and flow velocity fluctuations (Liefveld & Jesse,
2006). Studies have spatially addressed the mechanical effect the weirs in the Common
Meuse have on some fish’ species ability to migrate through the river (Deerenberg et
al., 2012). However, the effects of the dams on the flow regime on the population’s
migration patterns is being neglected, despite evidence flow regime largely influences
population dynamics (Bjørn̊as et al., 2021). To what extent the common barbel’s sensi-
tivity to flow regime influences population dynamics in terms of migration, death, and
birth is valuable knowledge to formulate the restoration plans (McLane et al., 2011).
A model to simulate and therefore validate the effects of hypothesised sensitivity to
individual or group behaviour can give meaningful insight in the main drivers of the
system and also predict future scenarios. Though availability of suitable habitat has
been modelled and examined before (Liefveld & Jesse, 2006), the connectivity of mi-
crohabitats plays an equally important role in accommodating population sustenance
(Stoffers, Buijse, Geerling, et al., 2022). Furthermore, spatial explicit representation of
the ecosystem taking into account animal movement is required to gain full insight in
the main shortcomings of the system in order to establish restoration plans and flow
regime requirements. Specifically looking at spawning availability and the reachability
of the spawning grounds, the barbel’s ability to reach their preferred habitat during
spawning time is assessed in this study.

The main objective of this thesis is to extend and exemplify Campo’s functionality
in representing and understanding the common barbel’s habitat availability amidst
a hydropeaking flow regime, as defined by field parameters as water depth and flow
velocity, in the Common Meuse. How does flow regime affect the barbel’s population
dynamics when modelling an agent’s response to the environment as a field, and how is
this representation best achieved in Campo? Subquestions that will be addressed are:

• What does the modelling framework of Campo require in order to represent the
sensitivity of the individual barbel to their environment and stimulate the frame-
work’s field-agent integration?

• How does the hydropeaking flow regime affect spawning habitat availability for
the barbel?

• What effect does barbel movement behaviour have on spawning success?

• How does the model perform compared to conventional habitat suitability models?
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Through literature research, I analyse characterising responses of individual barbel
to their environment, specifically in the Common Meuse. Secondly, the requirements
of the conceptual model to represent these characterising dynamics are formulated and
implemented in Campo. I then analyse how the model is able to reproduce patterns
of population responses as observed in similar models, as well as theoretic population
pattern responses that would be expected. This is to provide evidence of the model’s
validity for predicting population-level phenomena. As a result, a model able to repre-
sent population emergence including adaptive response to the environment will evolve
and showcase how Campo can be used to simulate spatially explicit habitat dependency
of ecosystems. Lastly, the limiting factors for preservation of the barbel population is
analysed.

I hypothesise that for Campo to accurately represent habitat dependency and avail-
ability, the framework’s accommodation of field-agent interactions must be extended to
include the representation of environmental sensing by agents. By incorporating spa-
tial awareness into the barbel’s movement decision-making, we may observe patterns
similar to those in nature. The habitat fragmentation of the Common Meuse ecosystem
could be worsened by troughs in the hydropeaking signal, suggesting that hydropeaking
negatively impacts habitat availability spatially. However, as water levels and flow ve-
locities increase over time during the peak of the signal, connectivity may be restored,
facilitating movement to spawning grounds. In conditions of intense fluctuations in
flow regime, barbel agents may face constantly changing environments, necessitating
extensive movement to remain in habitable areas. I expect that conventional habitat
suitability models can serve as a proxy for individual availability of preferred habitat,
especially in a non-hydropeaking flow regime. However, the assessment of sufficient
habitat for population survival depends on factors such as movement capabilities and
system connectivity. This thesis will shed light on the relation between habitat suit-
ability and individual habitat availability under these varying scenarios.
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3 Background

3.1 Conceptualisation of space in models

Modelling of the scene that is real and exists on the ground requires generalisation
and parameterisation of the essential qualities of the scene. The scene is characterised
by the essential elements themselves and their functional dynamics (Goodchild et al.,
2007). Agents are spatially bound entities which may be mobile. Fields are continuous,
meaning within the definition of a system they exist over the entire two-dimensional
plane. The conceptualisation of agents and fields proves valuable in modelling, aligning
with our cognitive understanding of environmental structures. Recognising the signif-
icance of semantics in modelling languages that closely mirror our perception of the
environment, it becomes evident that such representations are more adept at captur-
ing complex environmental dynamics (Athanasiadis & Villa, 2013; Carré & Hamdani,
2021).

Properties of systems that are key to our understanding, may emerge from interac-
tions between elements that are currently represented through either fields or agents.
Therefore, suitable forms of representation and manipulation that extend the two con-
ceptualisations of agents or fields are desired, because modelling such mechanisms along
either of the two paradigms may yield incomplete or biased results (Hamdani et al.,
2021; Goodchild et al., 2007). By enabling intuitive queries that ensure both topologi-
cal accuracy and accessibility, modelling environments can enhance their semantics and
applicability, ultimately fostering a deeper understanding of complex environmental
systems (Goodchild et al., 2007). Furthermore, either conceptualisation mainly per-
ceived as one can be expressed as the other (Goodchild et al., 2007). A field may be
considered an agent considering larger system boundaries or an alternative definition of
the characterising elements of the field, and vice versa. This furthermore stresses the
incompleteness of modelling languages that only accommodate one of the two concep-
tualisations.

3.1.1 Agent-based modelling

Agent-based modelling allows researchers to capture individual-level behaviours and in-
teractions as a driving factor for larger scale impacts on the environment. It simulates
interactions among individual components, referred to as individuals, agents, objects
or discrete particles depending on the field of research. Agents can each have their own
attributes, behaviours and rules to govern their actions and interactions with other
agents and the environment. The collective behaviour of agents can lead to the emer-
gence of patterns and trends that are not explicitly programmed but arise from agents’
interactions (Railsback, 2001a; Macal & North, 2005). Modelling distinct individual
properties is useful in systems where heterogeneity plays a large role, such as in ecosys-
tems (Grimm & Railsback, 2005). Furthermore, agent-based modelling is a useful tool
to model systems where human decision-making is decentralised, for instance in water
systems impacted by human-behaviour. Dam operators as well as water consumers are
subject to a diversity of drivers that can differ on both spatial and temporal scale to
release or consume water, collectively affecting water distributions greatly (Bolton &
Berglund, 2023).
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Besides agent representation, generic agent-based software frameworks such as NetL-
ogo (Wilensky, 1999), GAMA (Taillandier et al., 2014) and GeoMason (Sullivan et al.,
2010) also do accommodate representation of spatially unbound field entities (de Bakker
et al., 2017). Domain-specific functionality is often supplied with these frameworks,
such as machine learning algorithms and spatial statistics (Tang & Bennett, 2010).
However, large-scale or extensively detailed spatially explicit simulations are dealt with
inefficiently (de Jong & Karssenberg, 2019). The integration of external geospatial data
is troublesome (Crooks & Castle, 2011). Spatial analysis in these frameworks do not
accommodate interactive processes between the two paradigms, not incorporating in-
teractive elements of fields and agents. Furthermore, field-based queries such as window
operations are not easily implemented. Developing complex spatial models in NetLogo
requires significant effort to customise in accordance to specific spatial environments,
as the toolkit is written in its own programming language (Crooks & Castle, 2011).

3.1.2 Integrated field-agent modelling

Hamdani et al. (2021) recognised three approaches to achieve integrated field-agent
modelling. Firstly, a method in which a mediator in the form of object-field associates
the two space conceptualisations. Every point in the spatial domain is in addition
to being mapped to a value also mapped to a discrete object, being a field or an
agent (Cova & Goodchild, 2002). Because the agents and fields are in the first place
conceptualised independently, dual conceptualisation is not achieved. This conceptual
pathway between the two approaches is difficult to associate in the temporal domain
(Hamdani et al., 2021). Dynamic modelling with the object-field requires an additional
pathway, as in Hamdani et al. (2019).

Secondly, Goodchild et al. (2007) coined the terms geo-atom, from which the concepts
geo-field, geo-object and field-object evolve. A geo-atom has a certain spatio-temporal
domain and attributes. Geo-fields and geo-objects are aggregations of geo-atoms, and
field-objects are geo-objects with internal heterogeneity. Coupling of objects and fields
is achieved by geo-fields that can be associated to multiple classes. However, data
manipulation is hard due to the rigid structure of the geo-atoms, which makes it hard
to let fields and agents evolve. Geo-atoms can have polygonised and alternating shapes
to allow for differently scaled objects, but this approach does not enable distinctive
shapes for fields and agents, and furthermore objects are not modelled as evolving
field-objects with internal variation (de Bakker et al., 2017; Hamdani et al., 2021).

A third category extents this approach and allows for moving objects with internal
structures defined as a field (de Bakker et al., 2017; Kjenstad, 2006). Kjenstad (2006)
develops fields as a set of functions from a parameter space domain to a value space,
and therefore allows for agents to be fields and fields to be agents. However, it is unclear
how dynamic modelling is achieved (de Bakker et al., 2017).

Many physical data models do not support easy storage of large sets of data that are
able to represent both agents and fields, because they require storing agents and fields in
separate data frameworks (de Jong & Karssenberg, 2019). Agents are often represented
by classes, each of which represents one type of agent and its properties. Fields are
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represented in the format of multidimensional arrays that discretise the space. Shared
attributes for agents and fields, such as shared variables or time, need to be stored
several times in separate data frameworks, which is inefficient and error-prone or not
easily possible to conduct operations between the separate frameworks (de Jong &
Karssenberg, 2019).

3.2 Outline of Campo

In the software Campo de Bakker et al. (2017), fields are conceptualised as continuous
agents. The data of both fields and agents is stored similar and therefore accommodates
both internally varying agents and interactive queries between the two views without
additional pathways, as in Figure 3.1. The domain of the properties of the items
in a certain phenomenon is stored explicitly, accommodating tracking of the history
of a state (de Bakker et al., 2017). Further operations to promote field and agents
interactions are desired. Only recently, mobility of the agents is accommodated by
the framework. The resulting increased complexity of an agent’s behaviour requires
additional operations to connect the field and agent-approach when agents move.

In Campo (de Bakker et al., 2017), field-like and agent-like entities are both repre-
sented through one conceptual framework in which fields are defined as agents with
possible internal variation, see Figure 3.1.

Figure 3.1: Integrated agent-based and field-based model, consisting of agents and fields
(de Bakker et al., 2017)

This conceptualisation is implemented in LUE which handles and describes the
implementation of data in the model, enabling intuitive manipulation of the data within
these entities. As a result, operations that work along both space conceptualisations
are possible. Processes are represented in Campo through map algebra operations, as
in the PCRaster framework (Karssenberg et al., 2010).

3.2.1 Conceptual data model

In Campo, entities containing data are conceptualised based on six concepts that are
able to represent both fields and agents, structured as in in figure 3.2.
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• The phenomenon is the top level concept in the data model. The phenomenon is
a collection of the different items that can be categorised and analysed together.
A phenomenon could be a certain species of fish, or rivers.

• An item is an individual contained in a phenomenon. This can be a field or an
agent, for instance one fish or a family of fishes. Each fish is characterized by a
similar set of properties.

• A property is a particular attribute of a phenomenon (e.g. the age or weight of
the fish)

• A domain is the area and time period for which a property exists, for each item.

• The value represents the values for each item in a phenomenon for a particular
property. Each property has one value, which may differ among the items (e.g.,
each fish will have one age value).

Because each item can have its own domain, this allows for there to be distinctive
timesteps as well as interactions among the agents and fields. Though not yet illus-
trated, the software also enables movement of agents through space.

Figure 3.2: Conceptual model for spatio-temporal data (de Bakker et al., 2017)

3.2.2 Physical data model

A single physical data model that integrates data able to represent both agents and
fields is required to be able to represent properties in the same conceptual model without
having to be familiar with all different types of multiple data models. A physical data
model determines the way data is handled and ordered. Such structuring potentially
allows or limits good representation of certain real world phenomena. In case of fields
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and agents, these representations are often stored in separate data models due to their
different nature. Fields are stored in a raster format whereas agents are stored as vec-
tors, both formats supported by the Geospatial Data Abstraction Library (GDAL/OGR
contributors, 2020). Attributes of agents that are not spatially explicit, require storage
in yet another format. Adjustments to all formats need to be made to enable data
storage over time. To relate the datasets to one another is error-prone, inconvenient,
not intuitive and hard to reuse or maintain (de Jong & Karssenberg, 2019). In Campo,
the physical data model of LUE is based on the HDF5 physical data model (The HDF
Group, 1997) to store variable states for both fields and agents(de Jong & Karssenberg,
2019). This unified physical data model allows different abstractions for properties and
different dimensions for different property sets. These are all stored in the same data
model, therefore allowing operations among the different properties. Information about
objects is stored in arrays, with one array being one type of information relevant for an
agent or a field. These arrays are identified according to the shape of their data, with
dynamical data and spatially differing data being distinguished. Furthermore, the data
is grouped hierarchically as outlined in the conceptual model for Campo, as the HDF5
physical model enables (de Jong & Karssenberg, 2019) .

3.2.3 Modelling language

Processes in Campo are represented through map algebra (Tomlin, 1994), which is
a general set of capabilities, conventions, and techniques to manipulate spatial data.
Herein, single-factor map layers are treated as simple variables that can be transformed
into new variables. These new variables are spatially referenced and therefore form new
maps. The map algebra language is composed of primitive operations invoked through
expressions familiar in algebra. An argument for the use of map algebra is its simple
syntax while maintaining its ability to create a more complex model due to its ability to
apply multiple algebraic expressions (Jeremy Mennis & Tomlin, 2005). We distinguish
local, focal and zonal operations. Focal functions compute new values for a location
as a function of the values, distances and/or directions of neighbouring locations on an
existing layer. Zonal functions work similarly, as they compute each location’s new value
as a function of the values from one existing layer that are associated to that location’s
zone on another layer. The definition of zone can differ per location and therefore differs
from the definition of neighbourhood (Jeremy Mennis & Tomlin, 2005).

3.3 Ecological agent-based modelling

Agent-based modelling, or individual-based modelling, has been recognised as a
promising approach to model ecosystems and let population-level traits emerge (Grimm
& Railsback, 2005; McLane et al., 2011). Individual agents can be addressed as a
function of different timesteps. Characterising properties of an ecosystem emerge from
interactions among agents, as well as through agents’ interactions with the environment
(Grimm & Railsback, 2005; McLane et al., 2011). In an organisms’ lifespan, popula-
tion dynamics through birth, migration and death, emerge from the diverse adaptive
behaviour of autonomous individuals, similar to how on the timescale of evolution,
new genotypes emerge as a result of genetic diversity and natural selection (Grimm &
Railsback, 2005). The explicit consideration of individuals as separate agents allows
for distinct adaptability and multifaceted responses to events, with decisions based on
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previous events or characteristics of the agent, representing the organisms’ intelligence
(McLane et al., 2011). Physiological states of animals are associated to the cognitive
processes’ perception, memory, learning, and decision-making (Tang & Bennett, 2010).
The recognition of autonomous individual entities is what comprises dynamic popula-
tions. This very diversity and dynamic nature is what makes populations robust and
capable of handling perturbations in environmental conditions (McLane et al., 2011).
When assessing a population’s resilience in restoration scenario planning, allowing for
complex adaptive behaviour is therefore essential (McLane et al., 2011). Key adaptive
mechanisms depend on the model’s temporal and spatial scale (Railsback, 2001a). Indi-
vidual behaviour-based adaptation can be modelled as decision trees based on internal
states, for instance size or age of an individual.

3.3.1 Field integration

Field-based approaches assume continuous values discretised in spatial cells and uni-
form timesteps for each cell, which is representative of many relevant abiotic attributes
of habitats, such as temperature gradients or slopes, as well as some biotic attributes
such as biomass. However, current ecological agent-based models are constructed as
agent-based initially and do not incorporate the environment as a dynamic spatially
explicit field. Therefore, these models lack the representation of the agents’ adapt-
ability to a changing environment as well as the environment’s response to the agent
(McLane et al., 2011), despite knowing that abiotic and biotic attributes of the envi-
ronment create constraints, threats, and opportunities for animal behaviour. External
abiotic or biotic factors that compose an animal’s habitat are categorised in two general
classes: resources, a pulling factor, and risk, a pushing factor (Tang & Bennett, 2010).

3.3.2 Animal movement modelling

While traditional population studies focused on changes in population numbers over
time, recent research has made it clear that certain population dynamics rely not just on
population density, but also on individual movement patterns(Patterson et al., 2008).
Movement impacts phenomena such as disease spread, invasive species, and the design
of protected areas (Patterson et al., 2008). When assessing risks or resources, animal
movement representation is essential because the habitat availability depends upon its
reachability (Tang & Bennett, 2010). Movement is a spatial as well as temporal process,
interplaying between behavioural patterns and the environment (Tang & Bennett, 2010;
Nathan et al., 2022). Environments directly or indirectly drive movement, and as a
consequence the environment of the animal is altered when its location is updated.

Animal movement patterns are studied and characterised at individual, population,
and location level (Tang & Bennett, 2010). Hypothesized drivers for animal move-
ment include foraging, foraging, avoiding predators, or changing habitat conditions
(Swingland et al., 1983).

Different species use different movement modes, and within species, individual or
population movement modes may alter based on the spatio-temporal scale as well as an
individual’s internal state (Tang & Bennett, 2010). Animals’ ability to sense their envi-
ronment influences how they move. If their senses are limited to nearby surroundings,
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their decisions about where to go next are based on low resolution immediate factors
and their own capabilities. Conversely, if they can detect things from a distance, their
movements may be driven by longer-term goals. Consider an animal navigating its
environment. If it can only sense things nearby, it relies on what is immediately around
it to make decisions about its next move. However, if its senses extend to distant
surroundings, it might have a specific destination in mind, such as a nesting site or a
feeding area. Importantly, this destination may change over time as the animal’s envi-
ronment changes. Literature is missing and not conclusive about the sensing abilities
of the barbel and whether the fish demonstrates assertive personality traits, especially
in group settings (Conradt, 2012).

When representing animal movement through modelling, the spatio-temporal scale
is fundamental in considering an animal’s movement path. The Nyquist-Shannon sam-
pling theorem (Shannon, 1949) states a temporal scale time interval δt is sufficient to
capture a signal that typically last 2δt or longer. The theory is explored by Nathan et
al. (2022), who in this context defines behaviour and interactions between animals as a
signal. The Nyquist-Shannon theorem implies behaviour should always be described at
lower resolution than the timestep itself, and therefore does result in some information
loss. Furthermore, this tendency to describe behaviour slower than the temporal res-
olution does lead to underestimation of total travel distance and the route-description
is biased towards more tortuous and faster paths (Ryan et al., 2004). However, a too
fine temporal grid combined with low spatial resolution leads to accumulation of er-
rors, especially when behaviour is slow (Ryan et al., 2004). These biases indicate the
importance of characterising systems at the right spatio-temporal scale (Ryan et al.,
2004).

For different spatio-temporal scales, studies deduce different drivers for animal move-
ment. At high spatio-temporal resolution of 5 second intervals, Nathan et al. (2022)
found fish actively avoiding vessels. In addition, distinction between individuals be-
comes more relevant at a higher spatio-temporal resolution, with larger variation in
behaviour among individuals of the same species (Nathan et al., 2022; Tang & Bennett,
2010). Fish behaviour characterisation on a lower resolution of 30 minutes showed fish
do not avoid vessels and have little individual variation(Nathan et al., 2022).

Modelling migration requires a simulation of locations, speeds, or directions (Patterson
et al., 2008). Representation of a small spatio-temporal scale of e.g. 5 second intervals
as in the example by Nathan et al. (2022) implies modelling the movement trajectory
of an animal as a sequence of change in direction variables. A fish actively orients itself
and its behaviour is driven by its direct environment. The movement path on larger
timescales such as 30 minutes (Nathan et al., 2022) may be represented by aggregation
of jumps and can be modelled by means of displacement to a destination grid cell.

When sensing capabilities of the animal of interest extend to large distances, this
may be a motivation to model movement on larger timescales, and simply model it
as a simple displacement to a destination. This simplifies the modelling process and
saves computational time. However, it is crucial to ensure that the conditions along the
animal’s path are suitable for it to reach its destination effectively. If an animal’s sensing
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abilities extend to a different spatio-temporal scale than its movement abilities, decisions
about direction are influenced by both the animal’s internal movement capabilities and
locally changing environmental factors. Conversely, when environmental factors that
drive behaviour operate at a larger scale than the animal’s movement timestep, its
destination is determined by longer-term, goal-oriented preferences. Decision regarding
letting the agents demonstrate assertiveness by moving towards spawning grounds or
moving in a random pattern are highly subjective when uniformed by literature, and
should be tested.

Animal movement may be modelled as random walks on the landscape, correspond-
ing to stochastic processes that are constrained by internal states and external variables
(Tang & Bennett, 2010). Movement modes may be reactive and predictive when mod-
elling growth pressure and predation risk. For foraging, distinctive modes modelled
may be low- and high-cost, random search and flocking. In many models, memory of
animals is simulated as preventing the animal from moving back to a previously visited
cell (Tang & Bennett, 2010). This spatial memory is represented in the form of a cog-
nitive map that masks previously visited places from possible relocation destinations.
Optimal foraging theory is based on the assumption that animals maximise their energy
intake for as little energy loss. A map with the calculated net energy gain or loss for
each individual is created, based on the biomass in a cell and the the distance of that
cell from the individual (Tang & Bennett, 2010).

3.4 Common Meuse

As of 2013, the Common Meuse has been designated as protected area under the Eu-
ropean project Natura2000, meaning a plan should be established to maintain or in-
crease biodiversity with accordance to general biodiversity values established through
Natura2000 (Liefveld et al., 2018). There has been a significant biodiversity reduction
threat in the Common Meuse, with species not being able to sustain a population due
to alternation of the morphology of the Meuse as well as through anthropogenic activ-
ities (Liefveld et al., 2018; Lieshout et al., 2003). In the Common Meuse, the common
barbel is indicative of good quality and undisturbed flow regime.

3.4.1 Morphology in the Common Meuse

The Common Meuse is an armoured gravel-bed river. The river Meuse originates in
France and forms the border between Belgium and the Netherlands between Maastricht
and Maasbracht, and is here therefore known as the Common Meuse. The sediment in
the river is generally coarse, consisting of sand, gravel, and stones. The river has a gravel
bedding. The grain size of the bedding and sediment load as well as the slope of the
Meuse reduces substantially downstream. Along the Common Meuse, over a distance of
43 km, grain size reduces from coarse gravel to granules and sand (Duizendstra, 2001).

The morphology of the Common Meuse is anthropologically disturbed, though not
as much as other parts of the Meuse (Liefveld & Jesse, 2006). The outer floodplains
are mostly used for agriculture and therefore rarely flood. The channel is uniformly
shaped, and water levels are deep (Liefveld & Jesse, 2006). The width of the channel
has decreased over the centuries, resulting in little variation in water depth over the
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channel (van Winden et al., 2001). A hydrodynamically similar river to the Common
Meuse, the Allier, performs better in terms of biodiversity (Lieshout et al., 2003).
Compared to the Allier, relatively steep slopes and narrow river bedding, as well as few
gravel bars and little variation in bank structures are present in the Common Meuse
(Lieshout et al., 2003). This has lead to little variation in flow velocity, water depth
as well as in biotopes (Lieshout et al., 2003). Little variation in habitats has resulted
in an overbalance of macrofauna that occur in stagnant to occasionally running water
(Lieshout et al., 2003). The water quality is moderate to poor, with algae and silt
settling on the river bedding and making its pores inaccessible to macrofauna (Liefveld
& Jesse, 2006).

3.4.2 Flow regime in the Common Meuse

The Common Meuse is a rain-fed river and therefore shows significant natural fluc-
tuations in discharge (Liefveld & Jesse, 2006). The upstream Ardennes have little
capacity to store rainwater due to its steep slopes and rocky substrate, furthermore
contributing to large natural fluctuations in discharge in the Common Meuse (Liefveld
& Jesse, 2006). In the past, peat and forest areas in the surroundings had large storage
capacity. In the absence of these environments, the surrounding is unable to store water
when rainfall is high, leading to high discharges in winter. As a consequence, no water
is supplied to the river in times of low discharges in summer (Liefveld & Jesse, 2006;
Limburg, 2000).

Anthropogenic water consumption exacerbate significant discharge fluctuations, as
heightened consumption often coincides with drought. Factors such as the domestic
shipping through the Albertkanaal and Julianakanaal, agricultural practices, drinking
water extraction and industrial demands collectively contribute to notably reduced
discharge levels, sometimes dropping below 10 m3/s during summer months (Liefveld
& Jesse, 2006)

On top of natural and water consumption fluctuations, anthropogenic dams and
smaller structures affect flow regime in the Common Meuse significantly. Extensive
upstream control at the power generating dam at Lixhe results in hydropeaking. Dams
as a means of power generation, such as the dam at Lixhe, require storing water in
reservoirs during periods of low electricity demand and subsequent releasing during high
electricity demand. Inaccurate managing of storage dams contributes to hydropeaking.
The resulting stream flow alteration consisting of sub daily rapid and marked discharge
fluctuations is called hydropeaking. Hydropeaking affects hydromorphodynamics in
terms of amplitude, frequency, and rate of change of the water level. In a system
experiencing hydropeaking, flow is steady during base and peak flows, and flow is
unsteady during up-ramping and down-ramping (Salmaso et al., 2021). The power
generating dam at Lixhe comprises four turbines, each capable of being either fully
activated or deactivated. With each turbine having a capacity of 80 m3/s, activation
of one results in an increase in downstream discharge fluctuations of approximately
70 m3/s per turbine, observable a few hours after activation. Peaks in discharges in
the Common Meuse currently happen in an inconsistent manner approximately twice
a day. Measurements at the South border of the Common Meuse, at Eijsden, indicate
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differences in the order of 100 to 200 m3/s on an average discharge of 500 m3/s in
winter(?, ?). At low discharges, increases of 70 m3/s add to an initial discharge of only
10 m3/s, resulting in a large relative increase of flow velocity and water depth (Liefveld
& Jesse, 2006). On a smaller scale, gravel thresholds also retain flow and alter water
depth, with higher water depth but slower flow velocities upstream of a threshold, but
higher flow velocities and low water depths over the thresholds.

When alternations are considerably higher compared to naturally occurring flow fluc-
tuations, natural adaptation mechanisms of in stream organisms are often insufficient
for individual survival or population sustenance (Salmaso et al., 2021). Species requir-
ing a narrow range of hydromorphodynamics are in particular disadvantage (Salmaso et
al., 2021). Unsteady flow causes drifting of species. Juveniles and little-bodied species
are in particular prone to drifting because they are worse at preventing displacement as
a result of their poorer swimming capacity (Salmaso et al., 2021; Lieshout et al., 2003).
Base flows due to hydropeaking may result in disconnectivity of the system, resulting in
trapping of individuals. During low discharges, the amount of wet surface area reduces
and water temperature rises, resulting in dessication of immobile organisms, including
fish eggs. Due to smaller water volumes, higher concentrations of toxic substances and
lower oxygen concentrations occur, leading to algae growth and increased likelihood of
botulism occurring (Liefveld & Jesse, 2006).

Restoration of species’ habitat through management plans for controlling of dams is
not straightforward. Expecting results of restoration as a comparison to a static previ-
ous situation neglects complex system dynamics and possible adaptive system responses
through time lags or non-linear responses (van Oorschot et al., 2022). van Oorschot et
al. (2022) investigated the complex system response of a.o. fish’ habitat suitability to
re-establishment of natural flow regime and concluded that recovery potential depends
both on the magnitude of the pressure on the system by disturbance, and the timing
of the restoration, and not directly on the duration of the pressure on the system. Re-
covery times towards pre-disturbance habitat suitability was in the order of 5 to 10
years. Habitat suitability was herein set as an indicator for recovery of the species.
However, spatiality of habitat suitability in interaction with the species’ location as
well as interaction among individuals themselves is herein neglected. The reach of the
actual species’ response to the environmental attributes that make up habitat suitabil-
ity in the Common Meuse needs more understanding. Habitat selection modelling has
important limitations, and one important one is the movement of animals, which limits
mapping their occurrence (Garshelis, 2000).

3.5 Common barbel

3.5.1 Lifecycle of the common barbel

The common barbel is a rheophilic, lithophilous and aggregative fish species. The
fish prefers flowing water over stagnant water in all stages of its life, and therefore
is typically encountered in the middle reaches of rivers that are referred to as the
’barbel zone’(Huet, 1949). The barbel swims in groups, close to the river bed, relying
on clean gravel and sand (Liefveld & Jesse, 2006). The importance of the barbel is
in its consideration as a ’flag’ species. Their presence indicates fluvial habitats with
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little disturbance. Conservation efforts are therefore aimed at consideration of the flow
regime.

Figure 3.3: Barbel swimming close to the river bed in the Common Meuse (Ravon,
2024)

The juvenile stage lasts one year before the barbel is called an adult. Small larvae (0-
6 cm) have very little swimming capabilities and remain close to the spawning grounds.
Bigger juveniles move to deeper and faster flowing water, eventually becoming adults
and preferring midstream flow conditions. Adult barbels become up to 20 years old.
(Liefveld & Jesse, 2006). The number of barbels in the population in the Common
Meuse was estimated to be in the order of magnitude of 1000 (Liefveld & Jesse, 2006).
Larger fish have larger swimming velocities (Stoffers, Buijse, Verreth, & Nagelkerke,
2022), with young fish still developing their swimming capacity. The spatial scale of
daily activity generally varies between tens to hundreds of metres for these young fish.

It is generally unlikely for the common barbel to move long-distances unless the
species is specifically looking for spawning grounds or a flood event has occurred, re-
sulting in downstream drifting (Britton & Pegg, 2011). However, distinct behaviour
between individuals has been observed, with barbels categorised either as ’resident’ or
’mobile’. In a study by Hunt and Jones (1974) on the River Severn in England, the
majority (86%) of 531 fish remained between 5 km of their point of release, most of
them not moving at all. Other studies report range of motion of only up to 780 me-
tres (Penaz et al., 2002). The other ’mobile’ fish swam up to 34 km (Hunt & Jones,
1974) or 2 km (Penaz et al., 2002) away from their point of release in one spawning
season. Movement of Barbel is generally upstream during spring and early summer,
the spawning time, and downstream in autumn (Britton & Pegg, 2011).

The barbel will start looking for suitable spawning grounds when temperature of
water exceeds 13,5 ◦C, which in the Common Meuse happens around April to May
(Liefveld & Jesse, 2006). During the pre-spawning period, migratory behaviour of up to
34 km may be undertaken, with fidelity to particular spawning grounds (Britton & Pegg,
2011; Hunt & Jones, 1974). Males arrive first at the spawning grounds. Females tend to
spawn once every season. Multiple spawning is inhibited by the restricted availability
of spawning grounds during the low-flows, which often co-occur with the required high
temperatures (Britton & Pegg, 2011). The probability for a fish to move from one
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locality to another during pre-spawning or spawning phases between consecutive days
is over 50% (Britton & Pegg, 2011). Spawning tends to be diurnal in non-captive
situations, with an average fecundity of 1650 ± to 460 eggs per spawning (Britton &
Pegg, 2011).

The barbel’s suitability as a flag species is furthermore marked by the fact that many
other rheophilic rare fish species such as the common nase, (Chondrostroma nasa),
schneider (Alburnoides bipunctatus), brook lamprey (Lampetra planeri), and common
minnow (Phoxinus phoxinus), co-occur with the barbel (Liefveld & Jesse, 2006). More
species benefit from undisturbed flow regimes, as a macrofauna’s survival is strongly
linked to flow regime. These species rely heavily on stable conditions because of their
immobility (Liefveld & Jesse, 2006).

3.5.2 Sensitivity of common barbel to flow regime

The barbel is one of the most sensitive rheophilic species occurring in the Common
Meuse and is therefore indicative of good habitat conditions in terms of flow regime
(Liefveld & Jesse, 2006). Occurrence of the species is mostly determined by flow veloci-
ties and water depth(Liefveld & Jesse, 2006). Lower flows reduce the available spawning
and incubation habitat for the barbel, and an alternation between low and high water
levels traps individuals in pools, further restricting spawning (Salmaso et al., 2021; van
Oorschot et al., 2022). Complete dewatering results in egg or fish desiccation, while
high peak flows can destroy eggs through scouring (Casas-Mulet et al., 2015). The
Common Meuse is home to the barbel and indicated as a ’barbel zone’, (Huet, 1949),
however current flow regime conditions are insufficient to accommodate spawning by
barbels in the Common Meuse (Liefveld & Jesse, 2006). A study by Liefveld and Jesse
(2006) based on flow requirements for the different life stages of the barbel as in 3.1
found that discharges below 15 m3/s reduce areas of potentially suitable habitat for
adults significantly (Liefveld & Jesse, 2006). Under such conditions, the diminished
habitat suitability of the Common Meuse stems from both a decrease in wet surface
area and a reduction in the proportion of wet areas exhibiting suitable flow velocity
and water depth conditions (Liefveld & Jesse, 2006). To facilitate spawning, minimum
discharge in the Common Meuse should be a minimum of 40 m3/s according to Liefveld
and Jesse (2006), though base flows in the Common Meuse currently reaches lows down
to 10 m3/s. The loss of connectivity of suitable area may worsen the unavailability of
habitat for the common barbel. Besides the potential existence of areas unsuitable for
swimming, major spawning tributaries in the Meuse are blocked due to the presences
of relatively minor physical obstacles such as thresholds that the barbel could not tran-
scend (Britton & Pegg, 2011). However, in the Common Meuse juveniles have enough
habitat, especially in scenario’s of low discharges (Liefveld & Jesse, 2006). With the
current uniform channel of the Common Meuse, shallow, slow flowing water only occurs
when discharges are very low (Liefveld & Jesse, 2006). The current uniform channel
only provides shallow water surface area needed for nursing and juveniles at discharges
lower than 5 m3/s. Synthesising these results, a constant discharge at current mor-
phological conditions of approximately 30 m3/s was found most suitable for common
barbel population sustenance (Liefveld & Jesse, 2006).

I aim to incorporate the effect of connectivity due to flow regime and water depth in
the Common Meuse as a spatial element to assess the accessibility of suitable habitats
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for the different life stages of the barbel in the Common Meuse and how this is affected
by the discharges and morphology of the Common Meuse.

Table 3.1: Habitat requirements of the Common Barbel

Lifestage or event Variable Measure Values Source

Spawning Water velocity (m/s) Range 0.35 - 0.50 (Liefveld & Jesse, 2006)
Water depth (m) Range 0.30 - 0.40 (Liefveld & Jesse, 2006)

Period Month April - June (Liefveld & Jesse, 2006)
Nursery Mean column velocity (m/s) Range 0.35 - 0.50 (Liefveld & Jesse, 2006)

Water depth (m) Range 0.50 - 1.00 (Liefveld & Jesse, 2006)
Juvenile Water velocity (m/s) Range 0.1 - 0.6 (Liefveld & Jesse, 2006)

Water depth (m) Range 0.25 - 0.7 (Liefveld & Jesse, 2006)
Adult Water velocity (m/s) Maximum 0.05-0.5 (Wortelboer et al., 2020)

Water depth (m) Range 0.1 - 1 (Wortelboer et al., 2020)

3.6 Habitat fragmentation

Habitat fragmentation describes discontinuities in an organism’s habitat. This can
refer to phenomena such as the reduction of the total habitable area and the relative
decrease in the size of habitat patches, both of which result in a larger ratio of habitat
edges compared to the interior of the habitat (Fahrig, 2003). Habitat loss and its effects
on habitat fragmentation can be quantified using three measurable effects: number of
patches, mean patch size, and mean isolation (Fahrig, 2003), as shown in Figure 3.4.

Habitat fragmentation directly impacts species by decreasing the habitat available
to individual organisms. It also reduces genetic diversity within a population, since
smaller habitat patches support smaller populations (Fahrig, 2003). However, the frag-
mentation threshold hypothesis predicts that the effects of habitat configuration and
fragmentation may only manifest at low levels of remnant habitat area, with the exact
definition of “low level” varying among landscape types (Brauer & Beheregaray, 2020).

Studies looking at stream connectivity for fish migration specifically indicate that the
imperilment of fish migrating to spawning grounds is directly linked to stream fragmen-
tation, with shorter fragments correlating with more vulnerable populations (Perkin &
Gido, 2011). Previous modelling studies that relate genetic population structure to
historical habitat configuration show a long-term population decline trend since stream
connectivity disturbances began 160 years ago (Brauer & Beheregaray, 2020). Small
spatial anthropogenic interventions, such as single in-stream barriers, lead to signifi-
cant changes in population resilience over the long term (Brauer & Beheregaray, 2020).
These studies support the general call to provide river connectivity over large spatial
scales, encompassing hundreds of kilometres (Nilsson et al., 2005; Dudley & Platania,
2007).
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Figure 3.4: Habitat fragmentation as a result from habitat loss measured by number of
patches, mean patch size and mean isolation value (Fahrig, 2003)
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4 Method

I evaluated the Campo software’s ability to accurately depict complexities in habitat-
species relationships. Specific requirements to address any identified limitations, as
mentioned in the background section, are outlined. Additionally, I introduce a set of
operations designed to integrate field and agent perspectives, enhancing the spatio-
temporal querying capabilities within the Campo environment. To facilitate intuitive
model design, I applied these operations to the case study of the barbel to demonstrate
their utility. A deductive model will be built based on the ecological requirements of
the barbel in the Common Meuse, and extrapolated to the conditions in the Common
Meuse.

4.1 Conceptual model and general ecological principles repre-
sented

The common barbel model simulates the swimming behaviour of the common barbel
as they search for spawning grounds and try to stay in their preferred habitat amidst a
hydropeaking flow regime. Their success in spawning and their movement are tracked,
which is the outcome of interest. Their ability to reach spawning grounds depends
on their personal daily swimming reach, as well as the areas that are available for
them through the connectivity of their habitat. Each timestep, a barbel looks for
spawning grounds, senses its environment, evaluates it, and moves accordingly. Barbels
may respond differently to the absence of available area within their vicinity, and this
varying tendency to explore is also compared.

4.1.1 Habitable area

A barbel assesses its environment for suitable spawning or swimming habitats based
on the flow velocity and water depth of the Common Meuse. I assume a barbel eval-
uates its surroundings as either suitable or unsuitable. The entire Common Meuse is
evaluated, and its flow variables change over time, spanning two months. The next step
for the barbel in moving towards spawning grounds is to check whether the spawning
ground is actually reachable. The area within reach depends on two factors: the con-
nectivity of the water area the barbel is currently swimming in, and the distance the
barbel can swim. The swimmable area during one timestep is visualised in Figure 4.1,
with different colours representing each connected swimmable area.
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Figure 4.1: Connection of swimmable area with a different colour for each distinct
connected patch

4.1.2 Movement modes

The properties attributed to the barbel determine whether they will move, as shown
in Figure 4.2. If the barbel has already spawned, its movement is considered irrelevant
as its aim has been achieved. If the barbel is not in a swimmable area, it moves to the
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nearest swimmable area to prevent drowning or desiccation. When the current area is
habitable, but no spawning area is within reach, a focussed barbel population may start
actively looking for spawning grounds. Barbels of the wandering type swim randomly
within the area in reach. If a spawning area is available within reach in the current
patch, the barbel moves to the spawning ground and spawns. Some barbels, referred
to as travellers, have a greater exploration distance than others, known as homebodies.
This increased exploration distance allows them to travel further per timestep.

Figure 4.2: Decision tree for type of movement of the barbel. A population in one
model run exhibits attitudes of either type ’wandering’ or of type ’focussed’, meaning
different decisions are made by the barbel about where to go when there is no spawn
area in reach but the barbels are not in danger of drowning or desiccating.

In this model, the barbel ends up in a new location that can be reached by swimming,
which happens at each timestep until the model stops running. The environmental
variables describing the Common Meuse are also updated each timestep, meaning the
surroundings of the barbel change both due to its own displacement and the changing
environment around it. The output of the model is visualised in Figure 4.3. Barbels
are positioned within the Common Meuse in places that are deemed swimmable.
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Figure 4.3: Positioning of barbels in the Common Meuse

4.2 Calculations over time

4.2.1 Concepts

In this section, I explore how the elements in the barbel model change over time.
What is first computed by the model and what follows? In the initial section, the
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temporal and spatial domain are described, as well as the settings of parameters, as
shown in Table 4.1.

1. The spatial domain of the model is defined by the coordinates of the corners of
the study area. The area is divided into a grid with a given resolution for each
cell, ∆L.

2. The temporal domain describes how many timesteps the model will run, and with
what interval, ∆T , the model will calculate the spawning success and update the
location of the barbel.

In the dynamic section of the code, the calculations executed are done so for each
timestep. Each timestep, the new environment is updated and evaluated, and so is its
response of the barbel.

1. The conversion timestep for the data is calculated. We convert the timestep from
the model to the corresponding timestep of the data.

2. The flow velocity and water depth are updated, which are imported from the
input data. Each grid cell in the Common Meuse gets a flow velocity and water
depth value.

3. Following from a suitability analysis, the spawning grounds and habitable swimmable
areas are updated.

4. The swimmable areas that are connected are patched together, resulting in an
outcome as in Figure 4.1.

5. Each barbel group is being checked to see if they have spawned or not. If they
have spawned, they are moved to the down left corner of the study area. If they
have not, the following steps are taken:

6. For each agent, the classification identifier of the patch the agent is located in, is
identified and attributed to the agent.

7. For each barbel, a patch array is generated. This is a 2D array with the same
spatial domain as the study area, describing for each grid cell of the Common
Meuse whether that grid cell is part of the same patch as the agent is currently
in. All cells that are in the same patch as the agent, get value 1. All other cells
get value 0.

8. For each barbel, the 2D reachable patch array is generated. Cells within the patch
that cannot be reached by the barbel because they are too far away, are not taken
into consideration as a potential cell for the barbels to move to. This comprises
the 2D reachable patch array. What distance would be too far away for the barbel
to swim to is defined in the input data.

9. The sum of total spawning area available in the reachable patch, is calculated for
each individual barbel.
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10. The barbels are moved within their reachable patch. If there is spawning area
available in the reachable patch, they are moved to a random reachable spawn area
and the attribute that describes whether they have spawned or not, is changed
from 0 to 1. If there is no spawning area available, they might be moved either
randomly within their reachable patch if they are of type ’wandering’ barbel. If
they are of type ’focussed’ they move towards a nearby spawning ground, trying
to get as close as possible. This is in accordance to Figure 4.2.

11. The travel distance for each barbel is calculated and summed to previously swam
distances by the barbel.

12. The type of movement mode the barbel used during the timestep is also added
as an attribute to the barbel.

Table 4.1: Parameter settings for the barbel model

Parameter Symbol Initial values
Minimal x coordinate xmin 173 000
Maximum x coordinate xmax 193 400
Minimal y coordinate ymin 322 000
Maximum y coordinate ymax 353 000
Number of groups of barbel nrbarbel 100
Temporal resolution ∆T 2 hours
Timesteps t 732
Period - June and July
Spatial resolution or cellsize ∆L 10 metres
Maximal swimming distance of barbel per day (euclidean) radius 20 km
Minimal water depth for spawning spawn d min 0.3 m
Maximal water depth for spawning spawn d max 0.4 m
Minimal flow velocity for spawning spawn u min 0.35 m/s
Maximal flow velocity for spawning spawn u max 0.5 m/s
Minimal water depth for swimming swim d min 0.1 m
Maximal water depth for swimming swim d max 1 m
Minimal flow velocity for swimming swim u min 0.05 m/s
Maximal flow velocity for swimming swim u max 0.5 m/s

4.3 Running the model

4.3.1 Sensitivity analysis and barbel behaviour parameterisation

To comprehensively evaluate the performance and robustness of the barbel model, as
well as to gain insight in the effect different barbel behaviour has on its spawning success,
a sensitivity analysis was conducted. The model’s outcome was tested under various
scenarios to explore how different input parameters influence the model outputs. Three
key parameters are varied: the barbel’s exploration distance, the barbel’s movement
attitude and their range of preference for a spawning ground. For an overview of the
model parameter settings, see table 4.2. A nested loop iterates through all combinations
of these parameters, setting up folders for the output and running the model for each
combination. A batch model run was performed for 8 model runs.
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Table 4.2: Parameters describing different types of behaviour and settings for the sen-
sitivity analysis

Parameter Value setting 1 Value setting 2
Exploration distance
Distance the barbel may travel per
day to reach a spawning ground or
move in the direction to

Traveller
20 kilometres

Homebody
3 kilometres

Movement attitude
Type of movement a barbel may
use to when there is no spawning
area within their reach

Focussed
Moving within their
reach in the direction
of the spawning ground

Wandering
Moving randomly within
their reach

Range of spawning conditions
Range of conditions in which the
barbel prefers to spawn

Flow velocity
Narrow
min 0.35 - max 0.5 m/s

Broad
min 0.275 - max 0.575 m/s

Water depth min 0.3 — max 0.4 m min 0.2 - max 0.5 m

The barbel’s distance up to which it explores its environment for spawning differs
within and among populations, as is elaborated on in the background section. I tested
how sensitive the model is to these settings by exploring the difference between a home
bound barbel, a homebody, with a maximum daily reach of 3 kilometres, and a travelling
barbel, with a maximum daily reach of 20 kilometres. These reaches are represented in
the model as a maximum distance the barbel may reach per timestep by multiplying
the maximum daily reach with the fraction that the model’s timestep is of a day.

I tested the model’s sensitivity to a barbel’s movement mode when a barbel is in
swimmable area, but there is no spawning area within reach. Barbels may demonstrate
two attitudes when encountering these conditions: focussed movement or wandering
movement. Focussed barbel agents move toward a spawning area function, while barbels
move randomly. In both model scenarios, the barbel agents only move within an area
that is both within reach and within their connected habitable area.

The model was tested on its performance amidst conditions of varying spawning
ground availability, by changing the range of spawning preference conditions. An initial
setting with values from literature was tested, as well as a broader range of preferences.
A broader range would comply to a more tolerant barbel.

Using the focussed traveller barbel with a narrow range of spawning preference sce-
nario, model output was visually validated by comparing it to data from day-to-day
observations by recreationalists and hobbyists (International, 2015), as well as known
spawning habitat (Liefveld & Jesse, 2006).

4.3.2 Assessing the effects of hydropeaking

To assess the impact of a hydropeaking flow regime, the model was run with the
hydropeaking flow regime and without. The hydropeaking flow regime is based on
measurements taken during June and July 2019 (see Figure 4.4).

To simulate a non-hydropeaking signal, I filter the data by averaging it over a day.
Available data is sampled throughout the day and summed for each cell, after which
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it is divided by the number of samples. As the data is sampled every two hours, 12
arrays are averaged for each timestep. This daily moving average effectively removes
the hydropeaking signal, as dam management usually causes water levels to fluctuate
approximately twice daily.

Barbels in the filtered flow regime run are of type focussed barbel, with a narrow
range of preference. Broad ranges of preferences are excluded from the run, as these
are not found in literature. Furthermore, focussed barbels are especially of interest, as I
hypothesise their assertiveness to be specifically limited by a hydropeaking flow regime.
The distinction in barbels which are more or less bound to home is also observed and
therefore also compared amidst the two different regimes.

4.3.3 Data reduction and visualisation

Results from the filtered non-hydropeaking flow regime as well as the hydropeak-
ing initial flow regime are compared. To exemplify how the Campo operations can
illustrate habitat availability under conditions of habitat fragmentation, we compare
them to conventional habitat suitability results. The total amount of spawning area is
summed and plotted over time, as in conventional habitat suitability studies. The total
percentage of barbel that spawns, for the different sensitivity analysis scenarios as well
as the filtered, non-hydropeaking flow regime scenario. This elucidates whether con-
ventional habitat suitability studies are a good proxy for the availability of habitat for
the individual barbel in the Common Meuse and up to what extent the hydropeaking
flow regime affects barbel’s spawning success. The amount of habitat fragmentation
in the Common Meuse is quantified by the amount of patches that are present in the
Common Meuse and their mean size. The number of patches is plotted to the discharge
rates and over time to gain further insight in habitat fragmentation and its relation to
discharge. A moving average is also applied to the discharge (see Figure 4.4), which
is the discharge that the outcomes of the non-hydropeaking scenario are compared to.
The type of movement mode the barbel uses is plotted for the different scenarios.

The sensitivity of the model is assessed by plotting the amount of barbel that have
spawned at the end of the model run for each different setting, as well as the timestep
at which 50% of the population has spawned. Furthermore, average distances covered
before spawning is compared among configurations. The proportion of movement modes
are compared among different settings. Furthermore, as the amount of spawning area
available is affected by time as well as the range of preference of the barbel, we plot the
barbel that have access to the spawning grounds as a function of spawning area. This
way, the the effects of the barbel’s behaviour through movement attitude and reach are
isolated.

4.4 Software implementation of concepts in Campo

4.4.1 Campo requirements for ecological modelling

Our overarching goal is to delineate the ecological response to habitat conditions,
with a primary focus on migration patterns influenced by environmental factors. Based
on the synthesis of ecological modelling literature outlined in the background section,
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I establish the following requirements to enable the formulation of intuitive functions
that mirror ecosystem dynamics within the model’s structure:

1. Field-aware agents: Agents should demonstrate awareness of their surround-
ings, perceiving and responding to changes in their environment. Their proximity
to elements in the environment should influence their behaviour proportionately.
It is important that the evolution of the environment over time is represented,
capturing changes in habitat conditions as input to the ecosystem dynamics.

2. Movement of agents: Agents must possess the capability to navigate through
space over time, reflecting their dynamic interactions within the ecosystem. Given
the pivotal role of heterogeneity in ecological systems, it is important to model
agents’ movement modes as multifaceted, varying based on the agent’s state or
life history.

By adhering to these requirements, the Campo environment can effectively represent
the complex interplay between species’ migration patterns and habitat characteristics.

4.4.2 The common barbel model in Campo

The model structure follows a dynamic PCRaster framework, with each phenomenon
and property set being initialised in the initial section of the model. The series of
operations in the dynamic section describe the behaviour of the agents under conditions
of varying fields. In Campo, all spatial and temporal domains are the same within one
property set. A phenomenon may contain several property sets, each being described
by properties, as described in the background section and visualised in Figure 3.2. A
configuration file is composed in which alternations to the model run can be tested,
providing information about the model’s spatial and temporal domain, and rules to
which the agents must comply. The initial section describes the zeroth timestep, after
which the model is run for the specified amount of timesteps in the dynamic section as
in Table 4.1.

The available data set covers the Common Meuse between the weir at Borgharen to
the weir at Linne over June and July 2019 with a length of approximately 47 kilometres
and an average width of approximately 60 metres. The dataset was initially constructed
by modelling 2D hydrodynamic conditions (Blacow, 2023), using initial discharge data
at Borgharen, see figure 4.4 (Rijkswaterstaat, 2024). The resulting data describes
flow velocity and water depth, available at 30-minute intervals over a 2-month period,
totalling 2930 timesteps in a flexible mesh format.

Spatial representation is delineated in two dimensions, an x and a y-dimension. The
x-dimension relates to the longitude as in the projected Rijksdriehoek (Amersfoort / RD
New, EPSG: 28992) coordinate reference system, and the y-dimension to the latitude.

The flexible mesh format is transformed to a 10-metre grid resolution raster. Draw-
ing from the Courant-Friedrichs-Lewy criterion (Courant et al., 1967) and considering
a timestep of 2 hours, during which a barbel may cover up to 1.66 kilometres, we
determine a minimum grid size of 10 metres to accommodate the model’s spatial dy-
namics. The Courant-Friedrichs-Lewy criterion, expressed as C = u∆t

∆x
≤ Cmax, guides
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Figure 4.4: Discharge at Borgharen (Rijkswaterstaat, 2024)

our choice of grid size (∆x), where u represents the velocity magnitude of the process
of interest, ∆t, the timestep, and Cmax the Courant number, set at 1. Opting for a grid
size of 10 metres is significantly finer than required by the criterion but also ensures
representation of the spatial variability of habitat surrounding the barbel. This spatial
variance is crucial for population survival, influencing habitat suitability for spawning
and accommodating different needs of both juvenile and adult fish. A grid size finer
than 10 metres would demand extensive computational resources.

Considering the temporal resolution of the model I comply to the Nyquist-Shannon
sampling theorem, stating δt is sufficient to capture a signal that typically last 2δt
or longer, we model the barbel’s migration twelve times daily in order to be able to
capture the effects of the hydropeaking occurring twice a day, on spawning behaviour
(Shannon, 1949). Timestep durations exceeding a day introduce biases when modelling
animal-behaviour (Baras, 1998). Available spawning area is evaluated and movement
is simulated twelve times daily, ensuring dynamic population simulations.

To extend the Campo framework, I address the requirements and outline the specific
map algebraic implementation of the requirements as defined in section 4.4.1. First, the
concepts from the common barbel model are translated to software operations. On the
basis of environmental variables, the model iteratively calculates the number of barbel
that have spawned, what movement mode they use and what distances they swim. The
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calculations and operations as they are described below are technically detailed in the
following sections.

1. The current timestep as generated by the pcraster framework is multiplied with
the conversion timestep. The conversion timestep is the timestep of the model
divided by the timestep of the data (see A.6).

2. Flow velocity and water depth data are obtained for the new timestep using the
rasterize function (’partial reraster’) to convert the flexible mesh to raster with
the required resolution DeltaL, at the required timestep, t (see Appendix A.2).

3. The general habitat suitability assessment uses the function ’two conditions boolean prop’,
and based on both flow velocity and water depth, results in a spawning ground
and swimmable map (see Appendix A.3).

4. Using the ’campo clump’ function (see Appendix A.3), cells that are neighbouring
each other are grouped together and classified.

5. The property ’has spawned’ describes whether and agent has spawned. Agents
that have spawned are moved to the corner of the study area. If they have not,
the following steps are taken:

6. Using the function ’raster values to feature’, the unique identifier for the patch
the agent is located in, is attributed to the agents (see Appendix A.4, and for
syntax, table 4.4).

7. The patch array describes the patch the agent is located to as a boolean map.

8. The reachable patch array describes the reachable part of the patch the agent is
located in as a boolean map. To obtain this, a mask is first generated which covers
all cells that are too far for the agent to reach with a 0 value (see Appendix A.3.
The extent up to which a barbel swims may differ according to whether a barbel
is a homebody or a traveller. This determines the radius from the barbel within
which all cells are 0. The patch array is multiplied with the mask to obtain the
reachable patch array.

9. The amount of available area is calculated with the ’zonal values to feature’ func-
tion (see AppendixA.4 and for syntax, table 4.4).

10. The barbels are moved using the ’move’ functions (see A.5 and figure 4.2)

11. The distances swam by the barbel are an output of the ’move’ function (see
A.5), which are added to their previously swam distances in the property ’dis-
tance swam’.

12. The type of movement mode the barbel used is added to the property ’movemode’
in the barbel.
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4.4.3 Data structure

The model is build up out of two phenomena, barbel and water. The fish are modelled
over the Common Meuse between the weir at Borgharen and Linne over the course of
the months in which they spawn. See figure 4.5 for the general outline of the data.

Figure 4.5: Data structure for the barbel model, with water area properties having
three dimensions: x,y, and time. Barbel adult properties have two dimensions: for each
barbel, over time. Barbel properties with only one dimension are properties that are
the result of summation over time (travel distance) or replacement, meaning only values
about the last timestep are saved.

The water depth and flow velocity, collectively termed as the flow regime, are repre-
sented in Campo as 2D numpy arrays, each forming a property. The transformation of
the initial flexible mesh data format to a numpy array, is performed using the Xugrid
module(Deltares, 2024), for each required timestep. These variable arrays are struc-
tured within a predefined domain, allowing for translation from simple array indexes
to coordinates in a coordinate reference system. The spatial extent of the field covered
by the flow regime data is encapsulated as the domain within the property set, con-
ceptualised as a single agent with a defined spatial footprint. This spatial description
encompasses six key parameters: the minimum and maximum x and y values, along
with the number of columns and rows, thereby establishing a bounding box that also
dictates the resolution of the data, facilitating compatibility with raster data formats.
Herein, the x-axis corresponds with the columns in the array and the y-axis with the
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rows.

Specifically looking at spawning suitability, we create a new field-agent property
which spatially describes its suitability as a spawning location. The ranges of prefer-
ences for both water depth and flow velocity, as in table 4.3), and the field-agent prop-
erties describing the water depth and flow velocity are used as an input for the function
’two conditions boolean prop’ (see Appendix A.3). From this function, a boolean map
is generated describing the places that comply to all conditions within the range of
preference of the barbel.The function operates as illustrated in figure 4.6. The infor-
mation of each cell in the raster is translated into suitability maps using the parameter
specific rules, α and β. The resulting suitability maps as and bs are combined to create
an overall suitability raster. Similarly, a boolean map is added as a property to the
propertyset of waterarea describing the habitability of the Common Meuse for barbel
adults.

Figure 4.6: Map algebra approach of calculating habitat suitability (Van de Wolfshaar
et al., 2010)

Table 4.3: Habitat requirements of the Common Barbel

Lifestage or event Variable Measure Values Source

Spawning Flow velocity (m/s) Range 0.35 - 0.50 (Liefveld & Jesse, 2006)
Water depth (m) Range 0.30 - 0.40 (Liefveld & Jesse, 2006)

Adult swimming Flow velocity (m/s) Range 0.05-0.5 (Wortelboer et al., 2020)
Water depth (m) Range 0.1 - 1 (Wortelboer et al., 2020)

Grid cells deemed swimmable by the requirements of each barbel agent (see table
4.3) are grouped together if they are within the same immediate 8-cell neighbourhood,
employing the function ’clump’ by the PCRaster module (Karssenberg et al., 2010).
This patch field-agent layer, describing areas that are both connected and swimmable,
tags each connected and swimmable patch of cells with a unique ID.
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100 groups of barbels are initially modelled in the Common Meuse, representing 10
barbels each. Similarly to how each flow velocity and water depth value is tagged with
coordinates, each individual barbel within the model is endowed with a specific location,
with the centre coordinates serving as the primary descriptor for each agent. Utilising
the local ’raster values to feture’ function, the local patch ID values from the patch
field-agent layer is assigned to each agent as a property of that agent at every timestep.
This ensures that each agent interacts with the flow regime data based on its precise
spatial position within the model, enabling accurate representation of environmental
dynamics over time. Assigning local variables to the agents meets the requirement of
our model for agents to be field-aware.

To enhance the representation of spatial awareness by the barbel, areas deemed fit for
spawning that are within one agent’s patch and within the exploration distance of the
barbel, are summed and attributed to the agent as a property. I multiply the patches
for each agent with the habitat suitability maps available as a property of the Common
Meuse, resulting in a destinations map for each individual barbel. When spawning area
is available, the value of the property ’has spawned’ is updated from 1 to 0.

4.4.4 Field agent interactions

Although the Campo framework already enables the attribution of point agent variables
to cells in field agents, it lacks the capability for point agents to be aware of and interact
with variables from field agents in a reverse manner. In response, this thesis introduces
three categories of operations to Campo, aimed at extending the integration between
field agents. These operations align with the principles of map algebra (Takeyama &
Couclelis, 1997; Tomlin, 1994), namely a local, focal and a zonal operation. Since
both the field-agents and the point-agents are tagged with coordinates, their spatial
relationship can be established when specifically queried. See table 4.4 for an overview
of the syntax.

A local operation (’raster values to feature’) is developed, which attributes the value
of a field-agent variable at the location of the point-agent to the point-agent itself. First,
the coordinates of each point agent are retrieved and matched to the corresponding cell
within the field-agent, establishing their topological relationship. The value of the
variable is then queried and attributed to the point-agent as a property.

A focal operation ’window values to feature’ involving the aggregation of data within
a defined neighbourhood or window was developed. As we integrate fields and agents,
the centre of this window corresponds to the location of the point agent. Variable field
values from within this window are aggregated by summation, averaging, or determining
the minimum or maximum value. Subsequently, these aggregated values are assigned to
the agent as a property. A similar result could be obtained using a field-based operation,
by first averaging over a given window size and attributing those areas to all cells within
the window. However, the size of the window or filter, can in such case not depend on
the internal state of the agent.
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Table 4.4: Table describing syntax of the field-agent interacting functions

Function Input arguments Output arguments

raster values to feature
Queries the raster values of
one field property on the
location of point agents,
writes this as a new point
agent property

• point pset: property set of point-agents to
attribute the local field property to (type:
Propertyset)

• field pset: property set of single field-agent
(type: Propertyset)

• field prop: property of field-agents of which
the values are attributed to the point-agents
(type: Property)

• point prop:
property of
point-agents with
values of local field
variable (type:
Property)

window values to feature
Queries aggregative raster
values of a window of a
field property based from
the location of point agents,
given a certain aggregative
operation. Writes this as a
new point agent property

• point pset: property set of point-agents to
attribute the aggregative field property to
(type: Propertyset)

• field pset: property set of single field-agent
(type: Propertyset)

• field prop: property of field-agents of which
the values are attributed to the point-agents
(type: Property)

• windowsize: integer describing the length
of the window over which aggregation hap-
pens, in the unit of the field-agent property
set (type: Integer)

• operation: aggregative operation available
in numpy (’sum’, ’mean’, ’min’, ’max’, ’etc’)
(type: String)

• point prop:
property of
point-agents with
values of aggregated
field variable (type:
Property)

zonal values to feature
Queries aggregative raster
values of a zone of a field
property based on the
location of point agents
within a classification map,
given a certain aggregative
operation

• point pset: property set of point-agents to
attribute the field property to (type: Prop-
ertyset)

• field pset: property set of single field-agent
(type: Propertyset)

• field prop class: property of field-agent de-
scribing classes or groups of cells of which
the zonal extent shall be the window of the
aggregation (type: Property)

• field prop var: property of field-agents of
which the values are attributed to the point-
agents (type: Property)

• operation: aggregative operation available
in numpy (’sum’, ’mean’, ’min’, ’max’, ’etc’)
(type: String)

• point prop:
property of
point-agents with
values of aggregated
field variable (type:
Property)
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A zonal operation ’zonal values to feature’ was designed to attribute the aggregation
of values in a zone in which a point agent is located, to the point agent. These zones
are delineated based on the internal variation in a specific field agent variable, resulting
in distinct classifications such as land use types. The zone the agent is located in is
identified using the ’raster values to feature’ operation. Field variable values of cells
within the zone are aggregated and assigned as properties of the agent.

4.4.5 Movement of agents

Migration is a pivotal event influenced by and influencing the life phase of barbel,
reflecting the heterogeneity in their behaviour as well as resulting a different surround-
ing for the barbel. The properties attributed to the barbel determine whether they will
move or not, as can be deduced from figure 4.2. A local operation (’raster values to feature’)
is performed to check if the barbel is located in a cell that is considered habitable for
swimming or not. If that is not the case, the coordinates of the nearest swimmable area
are set as new coordinates, using the ’find closest dest’ function. Directed migration
(’move directed’) happens when the current area is habitable, but there is no spawning
area in the current zone or patch. If there is spawning area available in the current
zone, destination oriented (’randommove to destination’, see A.5) migration happens.

Three distinct movement modes were developed, each generating a set of coordinates
corresponding to the point agents in a specific order. These coordinates serve as the
basis for updating the agents’ locations. The design rationale behind these movement
modes, namely random, destination-oriented, nearest neighbour, and directed move-
ments, is discussed in the following paragraphs. See table 4.5 for an overview of the
syntax.

The modeller can initially request the space domain of agents. The current locations
of the agents are obtained through the ’get location’ function. Movement functions can
be executed and used to reassign these coordinates to the desired destination location
using the ’set location’ function.

The random movement function operates by determining a set of coordinates for each
agent within the bounding box of the field. Initially, the bounding box of the field is
acquired, outlining the maximum and minimum x and y values. Subsequently, random
samples are drawn from both the x and y dimensions, with the sample size corresponding
to the number of agents. The agents are moved to these sampled locations. Movement
to a random ’True’ cell in a boolean map is implemented via the function ’random-
move to destination’. This function retrieves coordinate sets from a boolean map that
delineates potential destinations as ’True’. Cell indices of the field-agent property are
conversed to coordinates using the resolution and minimum X and Y-coordinates of the
field-agent. This means that agents are always placed in the lower left corner of a cell
that corresponds to their destination. From the sets of ’True’-coordinates, a random
sample is extracted, with the sample size corresponding to the number of agents. For
this purpose, the random library is employed, which does not replace elements after
they have been sampled. This means that when sampling for the entire population at
once, agents are dispersed and do not end up at the same cell. However, when sampling
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one by one for a personalised destination boolean map, several agents may be placed
in one cell, potentially leading to crowding of the cell.

The ’find closest destination’ function determines the nearest destination for an in-
dividual agent. Initially, it retrieves the location of the agent and translates this value
to the corresponding cell location on the boolean field-agent, where a value of ’True’
signifies a potential destination. The Nearest Neighbors function from Pedregosa et al.
(2011) is applied, starting from the cell corresponding to the point agent’s location,
finding the closest destination cell.

The ’move directed’ function represents an agents’ ability to sense its surroundings,
and its inability to get there in that same timestep. The directed move operates by first
finding the closest destination, utilising the ’find closest destination’ function. From
these coordinates, the closest cell complying to the agent’s maximum reach is found,
once more with the ’find closest destination’. The argument for the destination map in
this function call describes all cells within an agent’s reach as ’True’.
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Table 4.5: Table describing syntax of the movement functions for point-agents

Function Input arguments Output arguments

randommove to boolean
Generates a list of sets of co-
ordinates randomly picked
from a boolean field.

• field pset: property set of single field-agent
(type: Propertyset)

• boolean fieldprop: field-agent property de-
scribing the destination with value ’True’
(type: Property)

• nr agents: amount of agents to be gener-
ated new coordinates for (type: Integer)

• xcoords: list
describing the
x-coordinates (type:
Array)

• ycoords: list
describing the
y-coordinates (type:
Array)

find closest dest
Finds the set of coordinates
with a true value that is
closest to the location of the
agent.

• field pset: property set of single field-agent
(type: Propertyset)

• boolean fieldprop: field-agent property de-
scribing the destination with value ’True’
(type: Property)

• point pset orX: property set of point-agents
to attribute the field property to (type:
Propertyset), or x-coordinate describing the
x-coordinate of the agent, only when the y-
coordinate is given next (type: Integer).

• pidx orY: the index of the point agent to
be attributed a new coordinate set to (type:
Integer) or the y-coordinate describing the
y-coordinate of the agent (type:Integer)

• xcoord:
x-coordinate (type:
Integer)

• ycoord:
y-coordinate (type:
Integer)

• travel distance: the
Euclidean distance
travelled by the
agent (type:
Integer)

move directed
Finds the set of coordinates
that is most in the direc-
tion of the closest destina-
tion to the location of the
agent, but within the reach
of the agent.

• field pset: property set of single field-agent
(type: Propertyset)

• dest boolean fieldprop: field-agent prop-
erty describing the destination with ’True’
(type: Property)

• boolean clump fieldprop: field-agent prop-
erty describing the cells that are within the
reach of the agent with ’True’ (type: Prop-
erty)

• point pset: property set of point-agents to
attribute the field property to (type: Prop-
ertyset).

• pidx: the index of the point agent to be
attributed a new coordinate set to (type:
Integer).

• xcoord:
x-coordinate (type:
Integer)

• ycoord:
y-coordinate (type:
Integer)

• travel distance: the
Euclidean distance
travelled by the
agent (type:
Integer)
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5 Results

5.1 Discharge and habitat dynamics

5.1.1 Habitat availability

The response of habitat availability to discharge is complex, as illustrated in Figure
5.1. Over time, there are two distinct discharge regimes in the data: in June, discharges
exhibit high peaks and significant fluctuations around an average of about 60 m3/s.
In contrast, the Common Meuse in July experiences generally dry conditions, with
discharges averaging around 10 m3/s and showing smaller variations.

First considering the unfiltered hydropeaking flow regime with the initial range of
preference for the spawning grounds by the barbel. Periods of frequent, large fluc-
tuating discharges, such as in June, correlate with highly fluctuating availability of
spawning habitat for barbels, as shown in the second plot of Figure 5.1. Both discharge
and spawning area can be described as signals in terms of amplitude, frequency, and
magnitude. As discharges and their absolute changes decrease in July, spawning area
generally increases, showing smaller amplitude and lower frequency fluctuations. Under
these dry conditions, troughs in the spawning area signal often coincide with peaks in
discharge. However, this relationship is not evident during the high and fluctuating
discharges in June. This is further indicated by the lack of a significant trend in Figure
5.2. From this figure, it can be derived that in general, higher discharge rates result in
a reduction of the available spawning habitat. However, the significance of this trend
is low (R2: -0.47) and the slope of the trend is not high compared to the order of
magnitude of habitat availability. This suggests that a wide range of spawning habitat
availability exists across various discharge scenarios.

In scenarios where the barbel has a broad range of preference, highly fluctuating
discharge before July leads to equally fluctuating availability of spawning habitat. Low
discharge scenarios show a slight general increase in spawning area with much smaller
amplitude changes. During the drought regime, large increases in discharge cause an
initial increase followed by a significant decrease in spawning area. This indicates that
not only the magnitude of discharge but also the rate and relative change matter.
Figure 5.2 shows a significant trend; however, the low slope suggests that a wide range
of spawning area may be present under various discharge scenarios.

A filtered flow regime, results in a similarly filtered spawning area availability com-
pared to the unfiltered flow regime, but with a lower frequency of fluctuating spawning
areas. However, the habitable area for swimming is higher for similar rates of discharge
compared to the unfiltered flow regime (see Figure 5.3). The linear regression analysis
shows a much steeper relationship between discharge and swim area for the filtered flow
regime compared to the unfiltered flow regime.
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Figure 5.1: The spawn area compared to the discharge at Borgharen. The upper plot
shows spawn area over time for barbels with a broad range of spawning preference. The
centre plot shows spawn area over time for barbels with narrow range of preference for
spawning ground, both for a hydropeaking and filtered flow regime. Note how upper
and centre plot have different scales. The lower plot shows discharge over time.

Figure 5.2: Relation between the discharge at Borgharen and the downstream available
spawnarea
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Figure 5.3: Relation between the discharge at Borgharen and the downstream spawn
area available. Outcome of analysis with filtered flow regime assumes a narrow prefer-
ence of spawning habitat by the barbel.

5.1.2 Habitat fragmentation

Similarly to how frequency and magnitude of discharge relate to the amount of habitat
available, the fragmentation is also affected by it (see Figure 5.4). Higher discharges
lead to a higher number of habitat patches, and low discharges to a low number of
patches. This is true for filtered as well as unfiltered flow regimes. From figure 5.5,
the general significant relation between the number of patches and discharge can be
established, with an increasing number of patches for an increasing discharge.
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Figure 5.4: The habitat fragmentation over time compared to the discharge at
Borgharen. The upper plot shows number of patches present in the entire study area
over time, centre plot the average size of each patch over time and lower plot the dis-
charge over time.

The average patch size amidst an unfiltered hydropeaking flow regime, as shown in
the second plot of Figure 5.4, is only slightly affected by discharge. It fluctuates around
3700 in June and slightly increases to around 4000 in July. In contrast, the filtered flow
regime responds differently to the overall decrease in discharge in July. The average
patch size signal shows a skewed pattern with occasional high patch sizes, averaging
approximately 4500, featuring high but short peaks and longer but less deep troughs.
Although the average magnitude of patch size does not increase in July, it slightly
decreases with a smaller frequency and relative magnitude of change. This difference
in patch size response to discharge between hydropeaking and non-hydropeaking flow
regimes can also be seen in Figure 5.6.

Relative small habitat fragmentation measures, meaning a small number of patches
and a high average patch size (Fig. 5.4), for the filtered flow regime, were present during
July.
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Figure 5.5: Number of patches or clumps compared to the discharge at Borgharen.

Figure 5.6: Relation between the discharge at Borgharen and the downstream patch
sizes.

Habitat suitability maps over time indicate that in the initial spawning preference
scenario, some spawning locations remain consistently suitable, while most spawning
areas disappear after one or a few timesteps. New spawning locations frequently emerge,
highlighting the dynamic nature of the environment. Table5.1 shows the dynamics of
spawning area habitat availability across three scenarios: the hydropeaking flow regime,
both broad and initial range of spawning preference, and the initial range for the filtered
flow regime. Comparing for the initial range of preferences, the hydropeaking scenario
with the filtered flow regime, the biggest difference is the duration of a spawn cell’s
existence, with filtered spawn cells generally persisting longer in a filtered flow regime.
For barbels with broad preferences, some spawning habitat cells are present of up to
58% of the time. However, on average, a spawn cell is only present 11% of the time,
with an average duration of 12 hours per cell. In the filtered flow regime, the maximum
presence of spawn cells is much lower, but the average duration of each spawn cell is
similar.
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Table 5.1: Spawning area duration considering different scenarios. Presence of a spawn-
cell in percentages describes, for a cell that is defined as a spawning cell at some point
over time, for what percentage of the run this spawncell is actually a spawning cell.
Duration of the spawncell before transition describes how long this cell exists continu-
ously in time, before transitioning to a non-spawning cell.

Hydropeaking Filtered
Broad range Initial range Initial range

Average presence spawncell over time 11% 4.5% 6.0%
Median presence spawncell over time 4.2% 1.5% 3.1%
Maximum presence spawncell over time 58% 42% 40%
Average duration before transition 12 hr 7.3 hr 11 hr
Median duration before transition 5.6 hr 3.7 hr 5.8 hr

5.2 Fish movement in response to habitat dynamics

In the Common Meuse, the barbel zone extends north to coordinates 186000, 345000,
before the bend around Herenlaak near Maaseik (see Figure 5.7). Both swimmable
areas and suitable spawning habitats are present up to this point. Some areas, such as
the bend around coordinates 179000, 330000, may be unnecessary to cross as there is
enough spawning habitat nearby. Many barbels spawn here without crossing the area.
The area covered by wandering versus focused travellers differs, with wandering barbels
generally covering more areas. However, certain areas, like the bend around coordinates
179000, 325000, are consistently crossed by focused barbels but not by wandering ones.
The locations that the model defines as destinations for the barbel to spawn, are also
known as such in the field as in Figure 5.9.
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Figure 5.7: Trajectories and destination for spawning by the barbel with the initial
range of spawning preference. Tracks of all barbels are plotted, with thicker lines
representing more often used paths. Consult Table 4.2 for specific parameterisation of
the fish behaviour definitions.
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Figure 5.8: A zoom in of trajectories and destination for spawning by the barbel with
the narrow range of spawning preference. Each distinct coloured line represents the
track of a single group of barbels. Consult Table 4.2 for specific parameterisation of
the fish behaviour definitions.
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Figure 5.9: Locations of spawning grounds known in the field in the Common Meuse
(Liefveld & Jesse, 2006).

Barbels with broad ranges of spawning preference displace themselves less due to the
high availability of spawning areas. Their spawn destinations in Figure 5.10 show a
distribution of spawning areas mostly before and after bends in the channel. Barbels
in Figure 5.11 find spawning area faster compared to barbels with a narrow range of
preference.
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Figure 5.10: Trajectories and destination for spawning by the barbel, with the broad
range of spawning preference. Tracks of all barbels are plotted, with thicker lines
representing more often used paths.Consult Table 4.2 for specific parameterisation of
the fish behaviour definitions.
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Figure 5.11: A zoom in of trajectories and destination for spawning by the barbel, with
the broad range of spawning preference. Each distinct coloured line represents the track
of a single group of barbels.Consult Table 4.2 for specific parameterisation of the fish
behaviour definitions.
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5.3 Spawning success as a function of fish parameterisation

The model shows sensitivity to barbel movement attitude, exploration distances and
their range of preference (Figure 5.12). The model is most sensitive to movement at-
titude and range of preferences, with differences of up to 40 % in spawning success.
This difference is most prevalent during the first month of the model run. Spawning
success rates increase rapidly in the initial days after the model starts. The move-
ment behaviour of the barbel significantly influences spawning success, with wandering
barbels achieving higher success rates than focussed barbels. In July, spawning suc-
cess stagnates for all populations. Very successful populations, such as the wandering
traveller with a broad range of preference, experience stagnation already before. Pop-
ulations reaching a spawning success of 80% only increase in spawning success slightly
afterwards, up until a maximum of approximately 90 to 100 %.

Figure 5.12: Spawning success over time, considering different types of barbel move-
ment attitude. Consult Table 4.2 for specific parameterisation of the fish behaviour
definitions.

The maximum daily exploration distance significantly impacts barbel spawning suc-
cess, particularly when other behavioural factors are not ideal (Figure 5.13. For focussed
barbels with a limited preference range, a larger exploration distance greatly enhances
spawning success. Conversely, for wandering barbels, whether they are homebodies or
travellers has minimal effect. Both focussed traveller and focussed homebody popula-
tions increase their spawning success substantially around the 4th of July.
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Figure 5.13: Spawning success over time, considering different barbel exploration dis-
tances. Consult Table 4.2 for specific parameterisation of the fish behaviour definitions.

Figure 5.14 shows that wandering barbels are relatively insensitive to varying ranges
of spawning preferences, unlike focussed barbels. Focussed homebody barbels expe-
rience a significant difference in spawning success, with up to a 40% variation. An
increase in spawning success around the 4th of July can be observed among barbels
with a narrow range of preference. This co-occurs with a decrease in the number of
patches and a slight increase in average patch size 5.4, as well as co-occurs with a peak
in spawn area 5.1. There is no distinct peak in the spawning area for barbels with a
broader range of preference during this time 5.1, who show no increase in spawning
success.
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Figure 5.14: Spawning success over time, considering broader or initial ranges of spawn-
ing preferences by the common barbel. Consult Table 4.2 for specific parameterisation
of fish behaviour definitions.

Barbels which have a preference for water depths as in Wortelboer et al. (2020), find
spawning grounds fast, as can be derived from Figure 5.15.

Figure 5.15: Spawning success over time, considering a new swimming preference by
the common barbel.
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5.4 The effect of hydropeaking on fish movement and spawn-
ing success

5.4.1 Spawning success

The filtered flow regime, representing a scenario without hydropeaking, results in
higher spawning success rates, particularly in June (see Figure 5.16). This regime
may contribute to up to a 30% increase in spawning success. However, the differences
between non-hydropeaking and hydropeaking flow regimes diminishes in July.

Figure 5.16: Spawning success for barbels under conditions of hydropeaking and a fil-
tered flow regime. Left graph shows a focussed homebody population spawning success,
right graph shows the spawning success for a population consisting of focussed trav-
ellers.

5.4.2 Movemodes

Barbels in a non-hydropeaking flow regime spend significantly less time in movement
modes transitioning from uninhabitable to habitable areas. They use fewer movements
overall before spawning (see Figure 5.17). Barbels in filtered flow regimes do not end
up on unswimmable areas as often as barbels amidst a hydropeaking flow regime, as
indicated by the relatively smaller fraction of ’nearest’ movement used during a filtered
flow regime. This movement mode was employed when barbels were in not swimmable
area. Their more effective movement use can also be derived from Figure B.2.
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Figure 5.17: Move modes used by barbels, either experiencing a hydropeaking or a
filtered flow regime. The sum of blue bars represents the movements used by the
population which has not spawned yet. The orange bar represents the relative use of
the ’nearest’ function.
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Figure 5.18: A zoom in of trajectories and destination for spawning by the barbel with
different flow regimes. Each distinct coloured line represents the track of a single group
of barbels.
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6 Discussion

The primary objective of this thesis was to extend and exemplify Campo’s function-
ality in representing and understanding the habitat availability for the common barbel
under conditions of habitat fragmentation, specifically in the Common Meuse. This
was achieved by examining how field parameters such as water depth and flow velocity
influence the barbel’s population dynamics when modelling an agent’s response to the
environment as a field. This section will discuss the implementation of the model, the
barbel’s population dynamics in various flow regimes, and a comparison to conventional
habitat suitability models.

6.1 Barbel population dynamics amidst various flow regimes

The analysis of the hydropeaking flow regime and its impact on movement of the
barbel during spawning time provides several key insights.

Habitat for swimming by adults and spawning are defined by a set range of preferences
for flow velocities and water depths (see Table 4.3). These parameters are related to
the discharge and the bed profile, as Q = u ∗ h, in which Q is water depth, u is flow
velocity and h is water depth. This makes these habitats directly related to the flow
regime. Higher discharges generally result in an increase in swimmable area (Fig. 5.3,
as barbels are rheophilic and thrive in faster flowing, deeper waters. Spawning happens
in more calm environments, which may be present under a variety of discharge scenarios
(Fig. 5.2). While low discharges can provide for a more calm environment in general,
otherwise dry areas may drown under higher discharge regimes, providing for low flow
velocities and water depths as well.

The area suitable for spawning remains more or less constant for different discharges
amidst different flow regimes (Fig. 5.2), indicating that the physical presence of spawn-
ing sites is not directly affected by the fluctuating flow conditions. However, spawning
success is significantly higher under non-hydropeaking conditions (Fig. 5.16). This
suggests that other factors, beyond mere spawning habitat availability, plays a crucial
role in enhancing reproductive outcomes under variable flow regimes. An increase in
habitat does not directly result in increased connectivity. While the number of habitat
patches increases with higher discharge (Fig. 5.5) and habitat availability (Fig. 5.3),
the relationship between patch size and discharge is insignificant (Fig. 5.6). Simply
increasing habitable area does not enhance connectivity between these patches. From
Table 5.1 we can derive that though spawning area may be equally present during
similar discharge scenarios, spawn area presence fluctuates a lot more over time in a
hydropeaking scenario.

The properties of habitable area, as outlined in the paragraphs above, are not linearly
related to spawning success. Though a broad range of preferences for spawning habi-
tat resulted in approximately 6 times more spawning area than under narrow ranges
of preferences (Fig. 5.2), this increase in spawning habitat only lead up to an in-
crease in spawning success of maximum 40%, considering the hydropeaking flow regime
(Fig.5.14). Comparing the filtered flow regime to the hydropeaking flow regime with a
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narrow range of preference, we see how amidst a filtered flow regime, the swimmable
area is generally more abundant, but not as significant as the increase in spawning habi-
tat by a broader range of preference. However, magnitudes of 40% increase in spawning
success can be found considering a filtered flow regime compared to the hydropeaking
flow regime with a narrow range of preference. The higher spawning success is specifi-
cally significant during June (Fig. 5.16), when habitat fragmentation measures are also
smaller compared to the hydropeaking flow regime (Fig. 5.4).

The increased spawning success under filtered flow regime conditions can further-
more be attributed to the barbel’s behavioural orientation in a stable versus changing
environment. Barbels in a filtered flow regime spend less time travelling between unin-
habitable and habitable areas (Fig. 5.17). Additionally, a stable spawning area reduces
the frequency of back-and-forth movement by focussed barbels toward disappearing and
reappearing spawning sites, enhancing efficiency.

The sensitivity analysis elucidates how assumptions about barbel behaviour affect
spawning success in a similar magnitude as a different discharge regime or a broader
range of spawning preference, either showing a maximum difference in spawning success
of about 40%.

The results in this study once more indicate the importance of providing different
microhabitats at a small scale (Stoffers, 2022; Liefveld & Jesse, 2006), especially amidst
a hydropeaking flow regime (Boavida et al., 2015). The abundance of diverse morpho-
logical structures accommodates the barbel’s needs during different life stages, and,
when existing connected and in proximity to each other, this allows for easy transi-
tioning between different habitats (Boavida et al., 2015). Boavida et al. (2015) showed
ramping of the hydropeaking signal is site specific, with a more diverse river-bed ac-
commodating alternative habitat for the Iberian barbel to move to when peak or base
flows occurred. Heterogeneity drives survival of species in general (Stoffers, 2022), but
also the connectivity of these habitats is relevant.

It is important to note that upstream discharge filtering is not equivalent to filtering
each downstream water depth and flow velocity cell. Filtering of the hydropeaking
signal occurs across all cells on a raster that describes flow velocity and water depth
responses to discharge. These local parameters can vary spatially and temporally, often
responding non-linearly to filtered discharge signals. Therefore, filtering a field differs
from filtering an upstream discharge measure. This explains why for the same discharge
levels, habitable swimmable area is larger (Fig. 5.3), indicating filtering the downstream
grid cells of the study area is more sensitive to filtering, resulting in a more moderate and
therefore more accommodating habitat, than would be present when filtering discharge.

Furthermore, assumptions were made about the range of preferences the barbel has
about its environment. The range of preference of water depth for the adult barbel
as in Table 4.3 did not comply with the literature, which is assumed to be between
0.3 and 100 metres by Wortelboer et al. (2020), instead of 0.1 and 1 metres, as in this
model. Assumptions about preferences of the barbel affect outcomes significantly, as is
illustrated by the barbels with a broad range of preference for spawning area. Though
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a barbel is likely to swim under these conditions, as other parameters are assumed in
the first place as well, it is likely that in a simulation with this wider range of swimming
preference of the barbel, it will be easier for the barbels to find their spawning grounds.

The observed stagnation in spawning success after a certain number of individuals
have spawned, which occurs across all model run scenarios, suggests that some barbels
are inevitably trapped in their habitat, unable to reach spawning areas. This indicates
that extending the model run would not yield additional insights, especially considering
the spawning season only lasts 2 to 3 months. Since barbels are placed randomly at the
beginning of each run, varying numbers of barbels may find themselves in these ’trapped’
habitats. However, it is possible that this trapping is specifically associated with the
dry flow regime present during the latter part of the model run, in July. Altering the
sequence of flow regimes might change the rate at which each barbel locates spawning
grounds, but it is likely to result in a similar overall spawning success.

In conclusion, the hydropeaking flow regime impacts barbel spawning success more
through behavioural adaptations and connectivity rather than just habitat availabil-
ity. Understanding these dynamics can lead to better management and conservation
strategies for barbel populations in fluctuating river systems.

6.2 Comparison to conventional habitat suitability models

Ecological niche theory is founded by the idea that individual species only thrive
within definite ranges of environmental conditions (Hirzel & Le Lay, 2008). When the
fitness of individuals can be described on the basis of these quantitative measures of
the environment, this can be modelled and mapped, providing insight in the ability
of an environment to sustain a population. Habitat suitability models are useful when
assessing similarities or differences between species, or to potentially explain the absence
of species. However, traditional habitat suitability models fail to address niche issues
such as interactions, community, and evolution or movement of species (Hirzel & Le Lay,
2008). Agent-integration aims to address these niche issues. This section outlines the
shortcomings of conventional habitat suitability and how the barbel model paves the
way for a more thorough understanding of species-environment interaction.

The study by Liefveld and Jesse (2006), emphasises the necessity of a minimum
discharge for the survival of barbels across all life stages. It was indeed found that
higher discharges lead to higher availability of swimmable area. Though in general,
spawning area slightly decreases with higher discharges, the relationship was neither
steep nor very significant, indicating that a wide variety of spawning area may be
present considering different discharge regimes. Furthermore, none of the populations
show a significant increase in spawning success during the dry flow regime in July. A
minimum discharge may thus indeed be beneficial for the survival and success of the
adult barbel searching for spawning habitat.

However, our findings mostly highlight the complex interplay between movement,
spawn area availability, swim area availability, and connectivity. In this study, not all
barbels are able to find spawning grounds, despite the availability of sufficient spawning
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area in all flow regimes. This finding challenges the conventional approach and suggests
a more nuanced understanding of habitat requirements. Further proof of this argu-
ment is provided by the significant different outcomes in spawning success for barbels
portraying different types of behaviour, which shows the importance of incorporating
animal movement behaviour under various discharge regimes. As barbel behaviour is
neglected in conventional suitability models, this shows that agent-based integration in
field-based modelling is an essential step in assessing suitability. This is especially true
when different life stages require different habitats, necessitating movement for survival
or reproduction. This also questions the barbel, or any species, in its consideration as
a flagship species to evaluate habitat requirements, as its species’ specific behaviour
affect its access to habitat. A general field-based analysis does not incorporate any of
these behavioural differences.

The spatial distribution of the barbel showed similar patterns across different be-
haviours. Though spatial habitat suitability modelling is a good and simple measure
to describe the presence or absence of barbels, it cannot predict movement or repro-
duction, especially in a temporally changing system. Agents may also demonstrate
exhaustion or inability to find spawning grounds.

6.3 Practical application of the barbel model

This thesis demonstrated the accessibility of agent-based modelling while maintaining
high geospatial data resolution and manipulation capabilities. Before we are able to
implement barbels as agents navigating their environment, more research about their
behaviour to represent them is needed. In an abductive approach, through fish tracking
and subsequent comparison of their tracks with movement paths as in this study, we
can generalise drivers for different types of movement behaviour and apply it to the
organism of interest (Railsback, 2001b). A similar approach can be found in Nathan
et al. (2022), showing the potential of the method. The approach in this thesis could
provide an additional validation of the generalisations found by comparing them with
the observed movement patterns.

Addressing an agents’ movement response to its environment, as in this thesis, is
specifically valuable when considering species with different habitat requirements over
their lifetime, a system with a significantly changing environment over time, or a frag-
mented habitat. Incorporating the self-organizing aspects of populations that may
be affected by an intervention, integrating the agent-based view is useful to inform
decision-making in complex systems (Hammond, 2015; Le Page et al., 2017).

6.4 Challenges and future improvements

The Campo framework was extended by several operations tailored to the needs of
representing the barbel population in the Common Meuse. These operations resulted
in patterns that could be observed in nature. To accurately represent the sensitivity
of the individual barbel to their environment and enhance the framework’s field-agent
integration, the sensing of the environment by the agent was added as a functionality.
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6.4.1 Field-agent interaction in Campo

Field-agent interaction was implemented by aggregating window variables around
each agent. The proximity effect was initially modelled using a focal operation with a
window size determined by an internal property of the agent. However, this approach
did not differentiate variables based on their exact proximity within the window. To
address this, multiple queries of field variables at varying window sizes can be used to
approximate proximity effects.

A more precise but computationally intensive method involves creating a distance
raster centred on each agent. This raster assigns values based on the agent’s distance
from each point, requiring a unique raster for every agent. While this provides detailed
proximity data, it can be computationally expensive, especially in large domains with
many agents. This requires the formulation of separate field-agents for each agent in
the simulation. The extent of the field-agent would be similar to the domain of the
study area, one for each agent present in the study area.

A hybrid approach, where a distance raster is calculated for each agent, but only
up to the extent of a selective window, could balance accuracy and computational
feasibility. This approach assumes that not all environmental elements are equally rel-
evant for decision-making by individual agents, but proximity to certain key elements
must be considered (Schmitz et al., 2013). This could be achieved by the creation of
a moving window field-agent. By focusing on key elements within a limited, moving
window around each agent, the system can dynamically adjust its focus area. This se-
lective approach reduces computational load while ensuring agents have the necessary
information to make informed decisions. Currently, the framework of Campo doesn’t
support a domain that changes over time. When something is defined as a window field
agent specifically, the framework can override the default domain settings to accommo-
date the changing domain of the window field-agent. The moving window field-agent
allows the agent to consider distance in its decision-making process without overwhelm-
ing computational resources. The framework remains efficient because it processes only
relevant information within the moving window.

A moving field-agent would also be a useful representation when a moving organism
is internally differently affected by the spatial variability of its environment. A field-
agent may be a more accurate representation of such a moving organism because its
response to the environment may differ spatially. The body temperature distribution
of a whale may be altered differently on a spatial scale when large spatial gradients are
present in water. Herein, it is relevant to consider both the relevant spatial resolution
of the moving organism and of its environment. When the relationship is reverse, a
field-agent representation of a moving organism may also be useful, with the fin of the
whale affecting e.g. flow velocity more than its head would.

In our barbel model, the surrounding environment’s window was defined around the
grid cell the agent was located in, with window sizes rounded down to avoid partial cell
inclusion. Future improvements could incorporate fractional cell coverage to refine this
representation (Pullar, 2001).
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In a scenario where moving agents are larger than a cell on a raster, the window size
of the sensing of the environment has to take into account the magnitude of the moving
agent. If needed, the extent of the agent on both dimensions could simply be added to
the window in correspondence to the dimensions of the extent of the agent.

6.4.2 Movement in Campo

Movement was a key element when simulating a barbel’s spawning success. Peaks
in spawn area availability do co-occur with increases in spawning success, but also
with high connectivity rates among habitats. Results for different fish parameterisa-
tion revealed that spawning success varies among barbel agents with different movement
modes, underscoring the importance of accommodating these different movement modes
within the modelling framework. Despite the variations in spawning success, the result-
ing spatial distribution patterns in all scenarios aligned well with natural observations.

Literature emphasises the significance of different movement modes in representa-
tion of fish behaviour, specifically when considering a hydropeaking flow regime. For
instance Gutmann Roberts (2018) showed exploited situations and poor habitat con-
ditions influence swimming activity in barbel. Alternative behaviour under conditions
of hydropeaking has specifically been addressed by Costa et al. (2019), who observed
higher swimming velocities during higher flow velocities, as well as drifting of juveniles.
A decreased swimmable area causes fish to move rapidly from one place to another
(Costa et al., 2019). Within fishes’ population, considerable individual variation in
movement was present (Costa et al., 2019). Incorporating these behaviours into the
model can enhance its accuracy. I propose developing movement modes based on envi-
ronmental values. For instance, agents could be displaced to neighbouring cells based
on the direction of flow vectors. The timing of this displacement depends on the flow
velocity, deciding at which timing the barbel will arrive and thus at what time the
environment should be updated.

Theories formulating required timesteps to distinguish signals such as movement and
environmental change (Shannon, 1949) may result in insufficient temporal resolution
to capture the change that happens to an agents’ environment when the agent moves.
Longer timesteps may overlook rapid habitat changes, leading to unrealistic movement
patterns (Ryan et al., 2004). Conversely, shorter timesteps may result in a too assertive
representation of the barbel than is likely, leading to the accumulation of errors by
constantly estimating its destination (Ryan et al., 2004).

6.4.3 The barbel model

Several other factors could potentially influence barbel population dynamics and
warrant further investigation. The accumulation of fine sediments in the Common
Meuse is hypothesized to degrade habitat for species relying on gravel (Boon et al.,
2024). Specifically for the barbel, sediment colmation could reduce the suitability of
habitat for reproduction (Nagel et al., 2020). Mapping grainsizes and the extent of
sediment colmation and incorporating it as a spatial field for habitat suitability mapping
could improve representation. Pollution, such as PCB contamination, poses significant
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risks to the health and survival of barbel populations, specifically having a negative
effect on reproduction (Hugula et al., 1995).

Future research could focus on the sensitivity of individual barbels within a pop-
ulation that includes replacement, investigating the direct effects of connectivity and
spawn area availability under various settings. This could provide deeper insights into
the population dynamics and reproductive success under different environmental con-
ditions. Buffering the field by defining a risk zone could further refine the model’s
accuracy in predicting barbel behaviour.
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7 Conclusion

To accurately represent habitat dependency and availability, Campo’s framework was
extended to include field-agent interactions and environmental sensing by agents. By
incorporating spatial awareness into the barbel’s movement decision-making, the results
underscore the critical importance of understanding barbel behaviour when assessing
their spawning capabilities.

Although habitat fragmentation or spawnarea availability in the Common Meuse
ecosystem was not observably exacerbated by hydropeaking signals, spawning success
was higher during non-hydropeaking scenarios. Under a hydropeaking flow regime,
barbel agents encounter continuously changing environments, necessitating extensive
movement to stay within habitable areas. Providing different microhabitats through
heterogenous morphology is imperative for the survival of species with different habitat
requirements throughout their lifetime, especially amidst a hydropeaking flow regime.
As discharge levels increase, the availability of spawning habitats generally remains
constant, while the overall habitable area expands, facilitating movement to spawning
grounds. This indicates the detrimental aspect of low discharges, but as this thesis
mostly points at the complex interplay between habitat availability and barbel be-
haviour, it challenges the need for a minimum discharge as was stressed by Liefveld and
Jesse (2006).

Conventional habitat suitability models are a useful tool to understand how habitat
availability can limit or promote species occurrence but fall short in accounting for adap-
tive responses, especially when considering temporally changing environmental factors
and their impact on species migrating to find suitable habitats, such as a barbel amidst a
hydropeaking flow regime. The significant difference in spawning success among barbels
with varying behaviours highlights the crucial role of movement behaviour in spawning
success. Ultimately, the success and survival of the barbel population hinge on their
movement modes and capabilities, as well as fluctuations in habitat availability over
time.

Several operations were developed which have increased the accessibility and repre-
sentation capabilities of ecosystems in Campo. With these operations only requiring
properties or propertysets as defined as concepts in Campo as an input, anyone fa-
miliar with the framework could use them. However, agent integration does require
generalisation of behaviour of the organism of interest. While maintaining high resolu-
tion geospatial data manipulation capabilities, the accessible and semantically intuitive
nature of the model paves the way for the assessment of anthropogenic interventions in
complex systems. Field-agent integration and movement functions could further be ex-
tended in the Campo framework to accommodate more complex responses of the agent
to the environment while maintaining computational efficiency. This will provide the
domain expert with more tools to test or illustrate the adaptive response of species to
their environment. Environmental issues, such as colmation or pollution, and its effect
on barbel population dynamics, could be further assessed. However, theory on barbel
movement is needed first, in which this model may also play a validating role.
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Huet, M. (1949). Aperçu des relations entre la pente et les populations piscicoles des
eaux courantes. Schweizerische Zeitschrift für Hydrologie, 11 , 332–351.

Hugula, J., Philippart, J.-C., Kremers, P., Goffinet, G., & Thomé, J. (1995). Pcb
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8 Appendix

A Code Listings

Code associated with this thesis can also be found in this repository on GitHub:
https://github.com/ERKuipers/CoupledFieldFish/

A.1 Model

1 import datetime

2 import os

3 import sys

4 from pathlib import Path

5 cur = Path.cwd()

6 up_dir = cur.parent

7 post_processing = up_dir / ’post_processing ’

8 working = up_dir / ’working ’

9 sys.path.append(f’{post_processing}’)

10 sys.path.append(f’{working}’)

11 from pathlib import Path

12 import pcraster as pcr

13 import pcraster.framework as pcrfw

14 import campo

15 import numpy as np

16 from matplotlib import pyplot as plt

17 from lifecycle_pref import two_conditions_boolean_prop , campo_clump

18 from moving_to_coordinates import move

19 from xugrid_func import partial_reraster

20

21 #########

22 # model #

23 #########

24

25 class FishEnvironment(pcrfw.DynamicModel , ):

26 def __init__(self , input_dir , output , map_nc , spatial_resolution ,

temporal_resolution , conversion_T , xmin , ymin , xmax , ymax ,

nrbarbels , spawning_conditions , adult_conditions , radius , attitude)

:

27 pcrfw.DynamicModel.__init__(self)

28 # Framework requires a clone

29 # set a dummy clone

30 pcr.setclone (10, 20, 10, 0, 0)

31 self.input_dir = input_dir

32 self.output = output

33 self.map_nc = map_nc

34 self.resolution = spatial_resolution

35 self.delta_t = temporal_resolution # delta timesteps

36 self.xmin = xmin

37 self.ymin = ymin

38 self.xmax = xmax

39 self.ymax = ymax

40 self.nrbarbels = nrbarbels

41 self.spawning_conditions = spawning_conditions

42 self.adult_conditions = adult_conditions
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43 self.radius = radius

44 self.attitude = attitude

45 self.conversion_T = conversion_T # t to multiply the timesteps

with to make it fit the timestep of the model

46 def initial(self):

47 init_start = datetime.datetime.now()

48 self.fishenv = campo.Campo(seed = 1)

49

50 # create real time settings for lue:

51 date = datetime.date (2019, 6, 1)

52 time = datetime.time (00 ,00)

53 start = datetime.datetime.combine(date , time)

54 unit = campo.TimeUnit.hour

55 stepsize = self.delta_t

56

57 # create the output lue data set

58 self.fishenv.create_dataset(f’{self.output }/ fish_environment.

lue’)

59 self.fishenv.set_time(start , unit , stepsize , self.nrTimeSteps

())

60 self.data_t = int(self.currentTimeStep ()*self.conversion_T)

61

62 ###################

63 # Phenomenon barbel #

64 ###################

65 self.barbel = self.fishenv.add_phenomenon (’barbel ’) # could

we possibly reduce the first step of this?

66 self.barbel.set_epsg (28992)

67 # Property Set barbel

68 self.barbel.add_property_set (’adults ’, self.input_dir / ’Fish

.csv’ ) # the water area always has the same spatial as well as

temporal extent (it always exists)

69 self.barbel.adults.is_mobile = True

70

71 # Properties for barbel

72 self.barbel.adults.movemode = 0

73 self.barbel.adults.movemode.is_dynamic = True

74 self.barbel.adults.spawning_area = 0

75 self.barbel.adults.spawning_area.is_dynamic = True

76 self.barbel.adults.has_spawned = 0

77 self.barbel.adults.has_spawned.is_dynamic = True

78 self.barbel.adults.swimdistance = 0

79 self.barbel.adults.swimdistance.is_dynamic = True

80 self.barbel.adults.surrounding = 0

81 self.barbel.adults.surrounding.is_dynamic = True

82

83 ####################

84 # Phenomenon Water #

85 ####################

86 self.water = self.fishenv.add_phenomenon (’water’) # could we

possibly reduce the first step of this?

87 self.water.set_epsg (28992)

88 # Property Set Area #

89 self.water.add_property_set (’area’, self.input_dir / ’

CommonMeuse.csv’) # the water area always has the same spatial as

well as temporal extent (it always exists)

90
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91 # May come in handy

92 self.water.area.zero = 0

93 self.water.area.one = 1

94 # Property Flow velocity #

95 u_array = partial_reraster (self.map_nc , self.resolution , self

.data_t , ’mesh2d_ucmag ’, self.xmin , self.xmax , self.ymin , self.ymax

)

96 self.water.area.flow_velocity = u_array [np.newaxis , :, :]

97 self.water.area.flow_velocity.is_dynamic = True

98 # Property Water Depth #

99 d_array = partial_reraster (self.map_nc , self.resolution , self

.data_t , ’mesh2d_waterdepth ’, self.xmin , self.xmax , self.ymin , self

.ymax)

100 self.water.area.water_depth = d_array [np.newaxis , :, :]

101 self.water.area.water_depth.is_dynamic = True

102

103 self.water.area.spawning_grounds = two_conditions_boolean_prop

(self , self.water.area.water_depth , self.water.area.flow_velocity ,

self.spawning_conditions)

104 self.water.area.spawning_grounds.is_dynamic = True

105 self.water.area.swimmable = two_conditions_boolean_prop (self ,

self.water.area.water_depth , self.water.area.flow_velocity , self.

adult_conditions)

106 self.water.area.swimmable.is_dynamic = True

107 self.water.area.connected_swimmable = campo_clump (self , self.

water.area.swimmable)

108 self.water.area.connected_swimmable.is_dynamic = True

109 self.fishenv.write() # write the lue dataset

110 end = datetime.datetime.now() - init_start # print the run

duration

111 print(f’init: {end}, timestep: {self.currentTimeStep ()}’)

112

113 def dynamic(self):

114 start = datetime.datetime.now()

115 self.data_t = int(self.currentTimeStep ()*self.conversion_T) #

update the given data timestep with updated current timestep as by

the pcraster framework

116 # first setting environmental variables , then positioning the

barbels as a response to the alternation in habitat

117 u_array = partial_reraster (self.map_nc , self.resolution , self

.data_t , ’mesh2d_ucmag ’, self.xmin , self.xmax , self.ymin , self.ymax

)

118 self.water.area.flow_velocity = u_array [np.newaxis , :, :]

119

120 # Property Water Depth #

121 d_array = partial_reraster (self.map_nc , self.resolution , self

.data_t , ’mesh2d_waterdepth ’, self.xmin , self.xmax , self.ymin , self

.ymax)

122 self.water.area.water_depth = d_array [np.newaxis , :, :]

123 # Creating boolean and clump fields describing swimmable and

spawning grounds

124 self.water.area.spawning_grounds = two_conditions_boolean_prop

(self , self.water.area.water_depth , self.water.area.flow_velocity ,

self.spawning_conditions)

125 self.water.area.swimmable = two_conditions_boolean_prop(self ,

self.water.area.water_depth , self.water.area.flow_velocity , self.

adult_conditions)
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126 self.water.area.connected_swimmable = campo_clump (self , self.

water.area.swimmable)

127

128 # Moving barbel and getting information about barbel movement:

129 movingX , movingY , spawning_area , travel_distance , has_spawned ,

movemode = move (self.water.area.connected_swimmable , self.water.

area.swimmable , self.water.area.spawning_grounds , self.barbel.

adults , self.water.area , self.currentTimeStep (), self.barbel.adults

.has_spawned , self.radius , self.attitude)

130 # Move agents over field:

131 barbel_coords = self.barbel.adults.get_space_domain(self.

currentTimeStep ())

132 barbel_coords.xcoord = movingX

133 barbel_coords.ycoord = movingY

134 self.barbel.adults.set_space_domain(barbel_coords , (self.

currentTimeStep ()))

135 self.barbel.adults.spawning_area = spawning_area

136 self.barbel.adults.has_spawned = has_spawned

137 self.barbel.adults.justswam = travel_distance

138 self.barbel.adults.movemode = movemode

139 self.barbel.adults.swimdistance = self.barbel.adults.

swimdistance + self.barbel.adults.justswam # keep on adding the

swimming distance

140

141 # write to lue

142 self.fishenv.write(self.currentTimeStep ())

143 end = datetime.datetime.now() - start

144 print(f’ts: {end} write , timestep: {self.currentTimeStep ()}’

)

Listing 1: The common barbel model

A.2 Obtaining data

1 import xarray as xr

2 import xugrid as xu

3 import pandas as pd

4 import numpy as np

5 def partial_reraster (ugrid_filelocation , resolution , timestep , var ,

xmin ,xmax ,ymin ,ymax):

6 ’’’

7 Parameters

8 ----------

9 ugrid_filelocation : location of .nc file (Type: String , Path)

10 resolution : resolution to rasterize variable in (Type: Integer)

11 Timestep : timestep of the dataset to rasterize (Type: Integer)

12 Var: Variable to get , ’mesh2d_ucmag ’ for u and ’mesh2d_waterdepth ’

for d (Type: String)

13 Xmin: minimal X-coordinate

14 Xmax: maximum X-coordinate

15 Ymin: minimal Y-coordinate

16 Ymax: maximum Y-coordinate

17

18 Returns

19 -------
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20 xr_raster : xarray data array within the spatial extent given (

Type: np.Array)

21

22 ’’’

23 ds = xr.open_dataset(ugrid_filelocation)

24 uds = (xu.UgridDataset(ds))

25 # when not sure what variable to get , run following line to print

variable name:

26 # print(uds.data_vars)

27

28 x_coords = np.arange(xmin ,xmax , resolution) # resolution becomes

the cell length of the raster.

29 y_coords = np.arange(ymin ,ymax ,resolution)

30

31 da_clone = xr.DataArray(data=np.ones((len(x_coords), len(y_coords)

)),

32 coords ={’x’:x_coords ,

33 ’y’:y_coords},

34 dims=[’x’, ’y’])

35

36 xr_raster = uds[str(var)].isel(time=timestep).ugrid.rasterize_like

(da_clone)

37 xr_ds = xr_raster.rio.write_crs ("epsg :28992") # xr Data array

38 xr_df = xr_ds.to_dataframe ()

39 pd_xy = xr_df.reset_index ()[[’x’,’y’, str(var)]]

40 # make from long raster format with columns x,y and variable the

indx x, columns y and the variable the value

41 reshaped = pd_xy.pivot(index = [’y’], columns = [’x’], values=str(

var))

42 raster_array_rev = reshaped.to_numpy ()

43 raster_array = np.flip (raster_array_rev , axis = 0) # needs to be

flipped in order to show up correctly

44 return raster_array

Listing 2: Rasterize the flexible mesh

A.3 Habitat suitability and fragmentation

1 import numpy as np

2 def two_conditions_boolean_prop (water_depth , flow_velocity ,

conditions):

3 ’’’ returns a boolean fieldproperty on the basis of input

conditions two (equally sized) field properties

4 and conditions determined by the modeller

5 Parameters:

6 water_depth: boolean fieldproperty (Type: Property)

7 flow_v: boolean fieldproperty (Type: Property)

8 conditions: a list with length 4, contains the conditions on

the basis of which the boolean map will be created , with idx

9 0: water_depth_min

10 1: water_depth_max

11 2: flow_velocity_min

12 3: flow_velocity_max

13 (Type: List , np.Array)

14 Returns: a boolean fieldprop for which both conditions in relation

to flow velocity and water depth are true (type: Property)
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15 ’’’

16 water_d = water_depth.values ()[0]

17 flow_v = flow_velocity.values ()[0]

18 water_depth_min = conditions [0]

19 water_depth_max = conditions [1]

20 flow_v_min = conditions [2]

21 flow_v_max = conditions [3]

22 condition = (water_d >= water_depth_min) & (water_d <=

water_depth_max) & (flow_v <= flow_v_max) & (flow_v >= flow_v_min)

23 boolean_ar = np.where(condition , 1,0)

24 boolean_prop = boolean_ar [np.newaxis ,:,:]

25 return boolean_prop

Listing 3: Generating habitat suitability map

1 import campo

2 import pcraster as pcr

3 def campo_clump (boolean_fieldprop , field_pset):

4 connected_boolean_prop = Property("

_new_property_from_property_name", boolean_fieldprop._pset_uuid ,

boolean_fieldprop._pset_domain , boolean_fieldprop._shape)

5 for fidx , area in enumerate (field_pset.space_domain):

6 nrCols = int(area [5])

7 nrRows = int(area [4])

8 west = area [0]

9 north = area [3]

10 cellSize = math.fabs (area [2] - west)/nrCols

11 boolean_ar = (boolean_fieldprop.values ()[0]).astype(int)

12 plt.imshow(boolean_ar)

13 plt.colorbar ()

14 plt.show()

15 pcr.setclone (nrRows , nrCols , cellSize , west , north)

16 arg_raster = pcr.numpy2pcr(pcr.Boolean , boolean_ar , -1000)

17 pcr.plot(arg_raster)

18 result_raster = pcr.clump(arg_raster)

19 result_ar = pcr.pcr2numpy(result_raster , -1000)

20 # overruling value 0 for areas that are not connected to the big ’

non -swimmable land’ but are still non -swimmable !

21 # value 0 for any clump which is non -swimmable

22 #boolean_fieldprop.values ()[0], shows correct but im not sure if

its boolean , seems like it

23

24 connected_boolean_ar = np.where (boolean_fieldprop.values ()[0] ==

0, 0, result_ar)

25 connected_boolean_prop.values ()[0] = connected_boolean_ar

26 return connected_boolean_prop

Listing 4: Generating patches based on boolean map

1 import numpy as np

2 import math

3 import matplotlib.pyplot as plt

4 def generate_mask (point_pset , pidx , field_pset , radius):

5 ’’’radius = in unit of model , so probably metres ’’’

6

7 # Loop over space attributes of the different points in the point

agents propertyset

8 point_x = point_pset.space_domain.xcoord[pidx]
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9 point_y = point_pset.space_domain.ycoord[pidx]

10

11 for fidx ,area in enumerate(field_pset.space_domain):

12 # Get bounding box of field

13 nr_rows = int(area [4])

14 nr_cols = int(area [5]) #

15 minX = area [0]

16 minY = area [1]

17

18 # Translate point coordinate to index on the field array

19 cellsize = math.fabs(area [2] - minX) / nr_cols # in unit of

length

20 ix = math.floor(( point_x - minX) / cellsize)

21 iy = math.floor(( point_y - minY) / cellsize)

22

23

24 mask_unflipped = np.zeros((nr_rows , nr_cols)) # Initialize mask

with NaN

25

26 # Generate grid of coordinates

27 x, y = np.meshgrid(np.arange(nr_cols), np.arange(nr_rows))

28

29 # Calculate distance from each point to the center

30 distance = np.sqrt((x - ix)**2 + (y - iy)**2)

31 # Convert model unit to number of cells

32 cell_radius = math.floor(radius / cellsize)

33 # Set values inside the radius to 1

34 mask_unflipped[distance <= cell_radius] = 1

35 mask = np.flip (mask_unflipped , axis =0)

36 return mask

Listing 5: Generate mask to represent maximum reach of barbel

A.4 Field-agent interactions

1 from osgeo import gdal

2 from osgeo import osr

3 from osgeo import ogr

4 gdal.UseExceptions ()

5 import math

6 import numpy as np

7 from campo.property import Property

8 def raster_values_to_feature(point_pset , field_pset , field_prop):

9 ’’’ Queries the raster values of one field property on the location

of point agents ,

10 writes this as a new point agent property set

11 Parameters:

12 point_pset: property set of the point agents to be attributed the

location

13 field_pset: property set of a single field

14 field_prop: property of which the values are attributed to the

newly generated point property

15 Returns:

16 point_prop: property of point agents with values of local field

values ’’’

17
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18 # generate empty point property given point property space

definitions

19 point_prop = Property(’emptycreatename ’, point_pset.uuid , point_pset

.space_domain , point_pset.shapes)

20

21 # loop over space attributes of the different points in the point

agents propertyset

22 for pidx ,coordinate in enumerate(point_pset.space_domain):

23 point_x = point_pset.space_domain.xcoord[pidx]

24 point_y = point_pset.space_domain.ycoord[pidx]

25

26 point_value = np.zeros (1)

27 for fidx ,area in enumerate(field_pset.space_domain):

28

29 # get bounding box of field

30 nr_cols = int(area [5]) #

31 minX = area [0]

32 minY = area [1]

33

34 # translate point coordinate to index on the field array

35 cellsize = math.fabs(area [2] - minX) / nr_cols

36 ix = math.floor(( point_x - minX) / cellsize)

37 iy = math.floor(( point_y - minY) / cellsize)

38

39 # reshape property to a mirrored numpy field array to

accommodate right use of point and agent indexes

40 reshaped = np.flip (field_prop.values ()[fidx], axis =0)

41 # query the field attribute given point location

42 point_value[fidx] = reshaped[iy,ix]

43

44 # write the value to the point property for each point agent

45 point_prop.values ()[pidx] = point_value.item()

46

47 return point_prop

Listing 6: Local function

1 from osgeo import gdal

2 from osgeo import osr

3 from osgeo import ogr

4 gdal.UseExceptions ()

5 import math

6 import numpy as np

7 from campo.property import Property

8 def window_values_to_feature(point_pset , field_pset , field_prop ,

windowsize , operation):

9 ’’’ Queries aggregative raster values of a window of a field

property based from the location of point agents ,

10 Given a certain aggregative operation. Writes this as a new point

agent property.

11 Parameters:

12 point_pset: property set of the point agents to be attributed the

location

13 field_pset: property set of a single field

14 field_prop: property of which the values are attributed to the

newly generated point property

15 windowsize: we make square windows: windowsize describes the

length of the window in the unit of the field_property
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16 operation: aggregative numpy operation as a string (’sum ’, ’mean ’,

’min ’, ’max ’, ’etc ’)

17 Returns:

18 point_prop: property of point agents with values of aggregated

field values ’’’

19

20 # Generate operator , first checking if operation is available in

numpy

21 if not hasattr (np , operation):

22 raise ValueError (f’Unsupported numpy operation , {operation}’)

23 operator = getattr(np, operation)

24

25 # Generate empty point property given point property space

definitions

26 point_prop = Property(’emptycreatename ’, point_pset.uuid , point_pset

.space_domain , point_pset.shapes)

27 # Loop over space attributes of the different points in the point

agents propertyset

28 for pidx ,coordinate in enumerate(point_pset.space_domain):

29 point_x = point_pset.space_domain.xcoord[pidx]

30 point_y = point_pset.space_domain.ycoord[pidx]

31

32 window_value = np.zeros (1)

33 for fidx ,area in enumerate(field_pset.space_domain):

34 # Get bounding box of field

35 nr_rows = int(area [4])

36 nr_cols = int(area [5]) #

37 minX = area [0]

38 minY = area [1]

39

40 # Translate point coordinate to index on the field array

41 cellsize = math.fabs(area [2] - minX) / nr_cols # in unit of

length

42 ix = math.floor(( point_x - minX) / cellsize)

43 iy = math.floor(( point_y - minY) / cellsize)

44

45 nr_windowcells = math.floor(windowsize/cellsize)

46

47 ws_iy = math.floor(iy - 0.5* nr_windowcells)

48 we_iy = math.floor(iy + 0.5* nr_windowcells)

49 ws_ix = math.floor (ix - 0.5* nr_windowcells)

50 we_ix = math.floor (ix + 0.5* nr_windowcells)

51 # Reshape field property to a mirrored numpy field array to

accommodate right use of point and agent indexes

52 reshaped = np.flip (field_prop.values ()[fidx], axis =0)

53

54 # Query the field attribute given point location

55 window_value[fidx] = operator (reshaped [ws_iy:we_iy , ws_ix:

we_ix ])

56

57 # Write the value to the point property for each point agent

58 point_prop.values ()[pidx] = window_value.item()

59

60 return point_prop

Listing 7: Window operation

1 from osgeo import gdal
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2 from osgeo import osr

3 from osgeo import ogr

4 gdal.UseExceptions ()

5 import math

6 import numpy as np

7 from campo.property import Property

8 def zonal_values_to_feature(point_pset , field_pset , field_prop_class ,

field_prop_var , operation):

9 ’’’ Queries aggregative raster values of a zone of a field property

based on the location

10 of point agents within a classification map , given a certain

aggregative operation.

11 Writes this as a new point agent property. Only works for one

fieldagent existing at the location.

12 Fieldagents with overlapping domains cannot generate an output

13 E.g.: According to both the agent ’s location and a soil map (

field_prop_class), the agent is positioned in

14 soil ’2’ , which is clay. With the operation ’mean ’, the mean

rainfall (from field_prop_var)

15 is calculated and attributed to the agent

16 Parameters:

17 point_pset: property set of the point agents to be attributed the

location

18 field_pset: property set of a single field

19 field_prop_class: property describing classes or groups of cells

of which the zonal extent shall be the windowsize of the

aggregration

20 field_prop_var: property describing the variable which needs to be

aggregated ,

21 in case of a boolean map , ’True’ values are 1

22 operation: operation: aggregative numpy operation as a string (’

sum ’, ’mean ’, ’min ’, ’max ’, ’etc ’)

23 Returns:

24 point_prop: property of point agents with values of aggregated

field values ’’’

25

26 # Generate operator , first checking if operation is available in

numpy

27 if not hasattr (np , operation):

28 raise ValueError (f’Unsupported numpy operation , {operation}’)

29 operator = getattr(np, operation)

30

31 # Identifying the zone the agent is in

32 agents_zoneIDs = raster_values_to_feature(point_pset ,field_pset ,

field_prop_class)

33 # Generate empty point property given point property space

definitions

34 point_prop = Property(’emptycreatename ’, point_pset.uuid , point_pset

.space_domain , point_pset.shapes)

35 # make as many field properties as there are agents:

36 # Loop over space attributes of the different points in the point

agents propertyset

37 for pidx , ID in enumerate(agents_zoneIDs.values ()):

38 # Making a boolean map concerning the extent of the zone for each

agent

39 aggr_zone_var = np.zeros (1)

40 for fidx ,area in enumerate(field_pset.space_domain):
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41 zone_extent = np.where (field_prop_class.values ()[fidx] == ID,

1, 0)

42 variable_zone_array = np.multiply (zone_extent , field_prop_var

.values ()[fidx])

43 # we don’t need to flip this time , since the

raster_values_to_feature already gave

44 # the right topological relationship between the field and the

agent:

45 # the zone_extent array describes the zone in which the agent

is positioned.

46 # This array might be flipped , but this won’t lead to any

different outcomes of aggregative operations

47 aggr_zone_var[fidx] = operator (variable_zone_array)

48 #field_prop_array [pidx] = field_prop# array as long as the number

of agents filled with a field prop for each agent

49 # Write the value to the point property for each point agent

50 point_prop.values ()[pidx] = aggr_zone_var.item()

51

52 return point_prop

Listing 8: Zonal operation

1 import numpy as np

2 import math

3 import matplotlib.pyplot as plt

4 def generate_mask (point_pset , pidx , field_pset , radius):

5 ’’’radius = in unit of model , so probably metres ’’’

6

7 # Loop over space attributes of the different points in the point

agents propertyset

8 point_x = point_pset.space_domain.xcoord[pidx]

9 point_y = point_pset.space_domain.ycoord[pidx]

10

11 for fidx ,area in enumerate(field_pset.space_domain):

12 # Get bounding box of field

13 nr_rows = int(area [4])

14 nr_cols = int(area [5]) #

15 minX = area [0]

16 minY = area [1]

17

18 # Translate point coordinate to index on the field array

19 cellsize = math.fabs(area [2] - minX) / nr_cols # in unit of

length

20 ix = math.floor(( point_x - minX) / cellsize)

21 iy = math.floor(( point_y - minY) / cellsize)

22

23

24 mask_unflipped = np.zeros((nr_rows , nr_cols)) # Initialize mask

with NaN

25

26 # Generate grid of coordinates

27 x, y = np.meshgrid(np.arange(nr_cols), np.arange(nr_rows))

28

29 # Calculate distance from each point to the center

30 distance = np.sqrt((x - ix)**2 + (y - iy)**2)

31 # Convert model unit to number of cells

32 cell_radius = math.floor(radius / cellsize)

33 # Set values inside the radius to 1
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34 mask_unflipped[distance <= cell_radius] = 1

35 mask = np.flip (mask_unflipped , axis =0)

36 return mask

Listing 9: Generating the maximum reach mask

A.5 Move functions

1 def randommove_to_boolean (boolean_fieldprop , field_pset , point_prop):

2 ’’’

3 - boolean_fieldprop = a property that is a field and contains true

values for places where an agent may move to

4 - field_pset = a property set describing the domain of the field

of the study area (Type: propertyset)

5 - point_propset = the property set that has the move (= point

agents), can be of any property of the point agents

6 return lists of coordinates with the same length as the number of

agents in a point propertyset (sueful wehn you want to make them

move there)

7 ’’’

8 # need to flip again because when calculating with this map points

have different orientation than field (see rerasterize)

9 if isinstance(boolean_fieldprop , np.ndarray):

10 map_flipped = np.flip (boolean_fieldprop , axis =0)

11 elif isinstance (boolean_fieldprop , campo.property.Property):

12 map_flipped = np.flip (boolean_fieldprop.values ()[0], axis =0)

13 else:

14 raise TypeError (’boolean_fieldprop needs to be of type campo.

property or of a numpy array with same dimensions as field property

values ’)

15

16 nragents = len (pointprop.values ().values.values ())

17 for fidx , area in enumerate (field_pset.space_domain):

18 nr_cols = int(area [5])

19 xmin = area [0]

20 ymin = area [1]

21 resolution = math.fabs (area [2] - xmin)/nr_cols

22 # finding the indices of the places where the fieldcondition is

true

23 coords_idx = np.argwhere (map_flipped) #coordinates of the

spawning grounds in [y,x]

24 # collecting the coordinate combination in a tuple so as to

prevent them from being ’disconnected ’ from eachother

25 coords_list = [tuple(row) for row in coords_idx]

26 random_newindex = random.sample (coords_list , nragents) # nr of

agents is the subsetsize

27 # seperating the tuples in the list in two seperate list

28 yindex , xindex = zip(* random_newindex) #assuming that tuple list

is reversed , first gives y then x as in column = x and row = y

29 xindex = np.array (xindex)

30 yindex = np.array (yindex)

31 xcoords = np.zeros(nragents)

32 ycoords = np.zeros(nragents)

33

34 # make from x index a x coordinate by using resolution and

bounding box information
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35 for i, xvalue in enumerate(xindex):

36 xcoords [i] = (xvalue*resolution + xmin)

37 for j, yvalue in enumerate(yindex):

38 ycoords[j] = (yvalue *resolution + ymin)

39 return xcoords , ycoords

Listing 10: Random move to a destination

1 def find_closest_dest (field_pset , boolean_fieldprop , point_pset_orX ,

pidx_orY):

2 ’’’ find closest point complying to the boolean fieldprop , from a

point

3 if point_pset and pidx is inavailable , point_pset may be a

xcoordinate and pidx may be the ycoordinate

4 of the point of which a new destination needs to be found

5 parameters:

6 boolean_fieldprop: a boolean map , either as a field -agent

property or as a numpy array , describing with 1s the destination

7 poi ’’’

8 if isinstance(point_pset_orX , campo.propertyset.PropertySet):

9 point_x = point_pset_orX.space_domain.xcoord [pidx_orY]

10 point_y = point_pset_orX.space_domain.ycoord [pidx_orY]

11 elif isinstance (point_pset_orX , (np.int64 , int , np.float64 , float

)):

12 point_x = point_pset_orX

13 point_y = pidx_orY

14 else:

15 raise TypeError(’make sure third and fourth argument give

enough information to substract coordinates , by being a propertyset

or integers describing coordinates ’)

16

17 for fidx ,area in enumerate(field_pset.space_domain):

18 # Get bounding box of field

19 nr_cols = int(area [5]) #

20 minX = area [0]

21 minY = area [1]

22 resolution = math.fabs(area [2] - minX) / nr_cols

23

24 ix = math.floor (( point_x - minX) / resolution) # needs to be

rouned down since we define it by the minimum and therefore lower

border

25 iy = math.floor (( point_y - minY) / resolution)

26 point = np.array ([iy, ix]) # in indexes as in the field , with

first row = y, column = x

27

28 # field proerty may be of type property or the values of such a

property

29 if isinstance (boolean_fieldprop , campo.property.Property):

30 field_array = np.flip(boolean_fieldprop.values ()[0])

31

32 elif isinstance (boolean_fieldprop , np.ndarray):

33 field_array = np.flip (boolean_fieldprop , axis =0)

34 else:

35 raise TypeError (’boolean_fieldprop needs to be of type campo.

property or of a numpy array with same dimensions as field property

values ’)

36 boolean_array = np.where (field_array == 0, 0, 1) # in case it was

not boolean yet
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37 # Generate a list with all potential destinations , also

accommodates for a clump field in which all possible destinations

are not 0

38 potential_dest_idxs = np.argwhere (boolean_array)

39

40 # Convert indices to a 2D array of points

41 # Use NearestNeighbors to find the closest ’1’

42 nbrs = NearestNeighbors (n_neighbors= 1, algorithm=’ball_tree ’).

fit(potential_dest_idxs)

43 distances , indices = nbrs.kneighbors ([ point])

44 # these indices are based on the flipped point , so the

terugvertaling naar punt gaat dan niet meer , omdat het nu dus een

geflipt punt is

45 # the flip operation however has to be performed , otherwise the

topological relation is not correctly established

46 new_yidx , new_xidx= tuple(potential_dest_idxs[indices [0][0]]) #

but now what do these indices mean on the non flipped array

47 xcoord = new_xidx*resolution + minX

48 ycoord = new_yidx*resolution + minY

49 travel_distance = float(distances [0][0])*resolution

50 return xcoord , ycoord , travel_distance

Listing 11: Function move to closest destination

1 def move_directed (field_pset , dest_boolean_fieldprop ,

boolean_clump_fieldprop , point_pset , pidx):

2 ’’’boolean_clump_fieldprop = the current clump as a boolean map (

is all available area for the current location of the )’’’

3 # Find closest spawning area pixel destination

4 closest_destX , closest_destY , dist1 = find_closest_dest(field_pset

, dest_boolean_fieldprop , point_pset , pidx)

5 # from this pixel , find closest clump pixel , which will be in the

right direction

6 xcoord , ycoord , dist2 = find_closest_dest(field_pset ,

boolean_clump_fieldprop , closest_destX , closest_destY)

7

8 initialX = point_pset.space_domain.xcoord[pidx]

9 initialY = point_pset.space_domain.ycoord[pidx]

10 travel_distance = np.sqrt(( xcoord - initialX)**2 +( ycoord -

initialY)**2)

11 return xcoord , ycoord , travel_distance

Listing 12: Move in the direction of

1 def move (clump_fieldprop , boolean_fieldprop , dest_fieldprop ,

point_pset , field_pset , timestep , has_spawned_pointprop , radius ,

fishbehaviour):

2 ’’’Moving to a place which is connected to the initial location of

the agent by allowing potential destinations

3

4 self: the object class of the model

5 clump_fieldprop: a field agent property describing certain clumps

as defined by the pcraster function ’clump ’; each clump having a

unique ID

6 boolean_fieldprop: relates to the location in which the connection

is defined. A boolean map which allows for proper connection: this

can be a place

7 that can be bridged , like the swimmable or walkable area
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8 dest_fieldprop: a boolean map relating to possible destinations ,

for instance: spawning grounds. May be filled in with ’True’ / ’1’

or can be

9 removed if all destinations are accepted

10 point_pset : the property set of the points to be moved

11 ’’’

12 for fidx , area in enumerate (field_pset.space_domain):

13 nr_cols = int(area [5])

14 xmin = area [0]

15 ymin = area [1]

16 resolution = math.fabs (area [2] - xmin)/nr_cols # adjust if

resolution is different for x and y, then this is the x-resolution

17

18 agent_clumpID = raster_values_to_feature (point_pset , field_pset ,

clump_fieldprop) # property describing the clump ID where the agent

is

19 nragents = len (has_spawned_pointprop.values ().values.values ())

20

21 xcoords = np.zeros (( nragents))

22 ycoords = np.zeros (( nragents))

23 available_area = np.zeros(( nragents))

24 travel_distances = np.zeros (( nragents))

25 movemode = np.zeros (( nragents))

26 spawns = np.hstack(list(has_spawned_pointprop.values ().values.

values ())) # creating an numpy array while using the property

values

27 # really need to do this for all given that

28

29 # this needs to be implemented from the fieldprop so that it does

not get overwritten by a 0 value in a next timestep

30 for pidx , ID in enumerate (agent_clumpID.values ()):

31 # print (ID)

32 mask = generate_mask (point_pset , pidx , field_pset , radius) #

check , is now flipped

33 fieldprop_boolean_value = np.where (clump_fieldprop.values ()

[0] == ID , 1, 0) # the boolean map describing the clump for each

individual fish

34 reachable_array = np.multiply (fieldprop_boolean_value , mask)

# reachable within clump , works

35 array_dest = dest_fieldprop.values ()[0] # the eventual

destination , boolean map of it

36 prob_destination = np.multiply (reachable_array , array_dest)

37 available_area [pidx] = np.sum(prob_destination)*( resolution

**2)

38 if timestep == 1: # first moving the

39 xcoord_array , ycoord_array = randommove_to_boolean (

clump_fieldprop , resolution , xmin , ymin , 1)

40 xcoords [pidx] = xcoord_array.item()

41 ycoords [pidx] = ycoord_array.item()

42

43 elif has_spawned_pointprop.values ()[pidx ]==1:

44 xcoords [pidx] = xmin # moving spawners to the corner !!

45 ycoords [pidx] = ymin

46 # writing the available area so that also when spawning ,

the available area can be printed

47 movemode [pidx]= 1

48 # print (f’been there , done that (the spawning), {pidx}
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out ’)

49

50 elif ID == 0:# dryswimming

51 # find the closest non -dry land to go to

52 movemode [pidx] = 2 # nearest destination

53 # print (f’I, {pidx}, am dryswimming! help me get back ’)

54 swim_array = boolean_fieldprop.values ()[0]

55 #reachable and swimmable within buffer , not taking into

account own clump:

56 masked_swimmable = np.multiply(swim_array , mask)

57

58 if np.sum(masked_swimmable) > 0: # make next operation

faster by feeding find_closest_dest a smaller subset of potential

indices to go to

59 xcoords [pidx], ycoords [pidx], travel_distances [pidx

] = find_closest_dest (field_pset , masked_swimmable , point_pset ,

pidx)

60 else: # if there is no swimmable area in the direct

vicinity

61 xcoords [pidx], ycoords [pidx], travel_distances [pidx

] = find_closest_dest (field_pset , swim_array , point_pset , pidx)

62 else:

63 # if theres no spawning in proximate area , move in the

direction of the closest

64 if available_area[pidx] == 0: # has not spawned yet but no

available area within clump and radius

65 movemode [pidx] = 3 # directed move

66 # print (f’I {pidx} rate the spawning availability

over here 0/5 stars ’)

67 if fishbehaviour == ’focussed ’: # distuingishing the

different

68 xcoords [pidx], ycoords [pidx], travel_distances [

pidx] = move_directed (field_pset , dest_fieldprop , reachable_array ,

point_pset , pidx)

69 elif fishbehaviour == ’wandering ’:

70 xcoord_array , ycoord_array = randommove_to_boolean

(reachable_array , resolution , xmin , ymin , 1)

71 xcoords [pidx] = xcoord_array.item()

72 ycoords [pidx] = ycoord_array.item()

73 travel_distances [pidx] = np.sqrt (( point_pset.

space_domain.xcoord[pidx]-xcoords[pidx])**2 + (point_pset.

space_domain.ycoord[pidx]-ycoords[pidx])**2)

74 else:

75 raise ValueError (’Fishbehaviour can be either

focussed or wandering ’)

76 else: # spawning:

77 # generating destination maps , moving there

78 xcoord_array , ycoord_array = randommove_to_boolean (

prob_destination , resolution , xmin , ymin , 1)

79 xcoords [pidx] = xcoord_array.item()

80 ycoords [pidx] = ycoord_array.item()

81 travel_distances [pidx] = np.sqrt (( point_pset.

space_domain.xcoord[pidx]-xcoords[pidx])**2 + (point_pset.

space_domain.ycoord[pidx]-ycoords[pidx])**2)

82 spawns [pidx] = 1

83 movemode [pidx]= 4 # destination oriented

84 # print (f’dope ! #sex {pidx}’)
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85 return xcoords , ycoords , available_area , travel_distances , spawns ,

movemode

Listing 13: Moving for for different scenarios

Listing 14: Rasterize the flexible mesh

A.6 Configurations and running the model

1 # commonBarbel = Fish(cfg.nr_barbel , cfg.xmin , cfg.ymin , cfg.xmax , cfg

.ymax , cfg.input_d)

2 # commonMeuse = CommonMeuse (cfg.xmin , cfg.ymin , cfg.xmax , cfg.ymax ,

cfg.spatial_resolution , cfg.map_nc , cfg.timesteps , cfg.

temporal_resolution , cfg.data_T_res , cfg.input_d)

3 # commonMeuse.extent () # generates a csv file describing the extent of

the Meuse

4 # commonBarbel.extent () # generetes a csv file describing

coordinatesets for each barbel

5 # commonMeuse.time_domain ()

6 for fishadventuring in cfg.fish_exploring.keys():

7 for fishattitude in cfg.attitude.keys():

8 for spawningrange in cfg.spawning_conditions.keys():

9 # Create a folder for this parameter combination

10 folder_name = f"{fishattitude}_{fishadventuring}_{

spawningrange}"

11 folder_path = os.path.join(cfg.sens_output_dir ,

folder_name)

12 os.makedirs(folder_path , exist_ok=True)

13 print (f’running the config: {fishattitude}_{

fishadventuring}_{spawningrange}’)

14 myModel = FishEnvironment(cfg.input_d , folder_path , cfg.

map_nc , cfg.spatial_resolution , cfg.temporal_resolution , cfg.

conversion_T , cfg.xmin , cfg.ymin , cfg.xmax , cfg.ymax , cfg.nr_barbel

, cfg.spawning_conditions[f’{spawningrange}’], cfg.adult_conditions

, cfg.fish_exploring[f’{fishadventuring}’], cfg.attitude[f’{

fishattitude}’])

15 dynFrw = pcrfw.DynamicFramework(myModel , cfg.timesteps)

16 dynFrw.run()

17 # exporting the results to csvs , gpgks and tifs

18 print (f’exporting the config :{ fishattitude}_{

fishadventuring}_{spawningrange}’)

19 export = Export(folder_path , cfg.timesteps , cfg.

spatial_resolution)

20 export.Barbel ()

21 print (’exporting barbel csvs ...:’)

22 export.Barbel_csv ()

23 print (’exporting clump csvs ...:’)

24 export.CommonMeuse_clumpcsv ()

25 print (’exporting spawn csvs ...:’)

26 export.CommonMeuse_csv(’spawn’)

27 export.Barbel_gpkg ()

28 export.CommonMeuse_tif(’spawn’)

29 export.CommonMeuse_tif(’connected_swim ’)

30 print (f’done with the config: {fishattitude}_{

fishadventuring}_{spawningrange}’)

Listing 15: Batch run of the model
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A.7 Exporting of data

1 #%%

2 from pathlib import Path

3

4 import os

5 import sys

6 cur_dir = Path.cwd()

7 up_dir = cur_dir.parent

8 working = up_dir / ’working ’

9 post_processing = up_dir / ’post_processing ’

10 sys.path.append(f’{working}’)

11 sys.path.append(str(post_processing))

12 import model_config as cfg

13 import lue.data_model as ldm

14 import campo

15 import numpy as np

16 import csv

17

18

19 class Export ():

20 def __init__ (self , output_d , timesteps , spatial_resolution):

21 self.output_dir = output_d

22 self.timesteps = timesteps

23 self.dyn_timevector = np.arange (0,(int(timesteps)) ,1)

24 self.coords_timevector = np.arange (1,(int(timesteps)+1) ,1)

25 self.spatial_resolution = spatial_resolution

26 self.fish_env = f’{self.output_dir }/ fish_environment.lue’

27 self.dataset = ldm.open_dataset(f"{self.fish_env}")

28

29 def Barbel (self):

30 self.movemode_df = campo.dataframe.select (self.dataset.barbel

, property_names = [f’movemode ’])

31 self.has_spawned_df = campo.dataframe.select(self.dataset.

barbel , property_names =[f’has_spawned ’])

32 self.barbelarea_available_df = campo.dataframe.select(self.

dataset.barbel , property_names =[f’spawning_area ’])

33 self.distance_df = campo.dataframe.select(self.dataset.barbel ,

property_names =[f’swimdistance ’])

34

35 def Barbel_gpkg (self):

36 for t_coords in self.coords_timevector:

37 coords = campo.dataframe.coordinates(self.dataset , "barbel

", "adults", t_coords)

38 tmp_df = campo.to_df(self.movemode_df , t_coords) # is

only for dataframe before starting at t =1

39 campo.mobile_points_to_gpkg(coords , tmp_df ,(f"{self.

output_dir }/ barbel_{t_coords }.gpkg"), ’EPSG :28992 ’)

40

41 def Barbel_csv (self):

42 os.chdir (f’{self.output_dir}’)

43 campo.to_csv(self.barbelarea_available_df , f’available_area ’)

44 campo.to_csv(self.distance_df , f’distance_swam ’)

45 campo.to_csv (self.movemode_df , f’movemode ’)

46 campo.to_csv (self.has_spawned_df , f’has_spawned ’)

47

48 def CommonMeuse_sumcsv (self , property):
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49 #change it to make sure outputs are stored

50 # self.flow_velocity_df = campo.dataframe.select(self.dataset.

water , property_names =[f’flow_velocity ’]) # space type =

static_diff_field but should be dynamic field

51 # no space type distinction , however proper shape

52 df = campo.dataframe.select(self.dataset.water , property_names

=[f’{property}’])

53 #self.depth_df = campo.dataframe.select(self.dataset.water ,

property_names =[f’water_depth ’])

54 # self.swim_df = campo.dataframe.select(self.dataset.water ,

property_names =[f’swimmable ’])

55 total_area = np.zeros ((self.timesteps +1))

56 #for t in agent_timevector:

57 for t in self.dyn_timevector:

58 # let op : neemt alleen laatste key mee !!!!! als df

59 raster = df["water"]["area"][f’{property}’][0][t]

60 total_area [t+1] = self.spatial_resolution **2*np.sum(

raster)

61

62 total_csv = f’{self.output_dir }/{ property }.csv’

63 with open(f’{total_csv}’, ’w’, newline=’’) as f:

64 # Create a CSV writer object

65 csv_writer = csv.writer(f, delimiter=’,’,quoting=csv.

QUOTE_MINIMAL)

66 csv_writer.writerow(total_area)

67

68 def CommonMeuse_clumpcsv (self):

69 connected_swim_df = campo.dataframe.select (self.dataset.water

, property_names =[f’connected_swimmable ’])

70 nr_clumps = np.zeros ((self.timesteps +1))

71 for t in self.dyn_timevector:

72 connected_swimraster = connected_swim_df[’water’]["area"][

’connected_swimmable ’][0][t]

73 nr_clumps [t+1] = np.max (connected_swimraster)

74

75 clump_csv = f’{self.output_dir }/clump.csv’

76 with open(f’{clump_csv}’, ’w’, newline=’’) as f:

77 # Create a CSV writer object

78 csv_writer = csv.writer(f, delimiter=’,’,quoting=csv.

QUOTE_MINIMAL)

79 csv_writer.writerow(nr_clumps)

80

81 def CommonMeuse_tif(self , property):

82 ’’’property: may be ’connected_swim ’,’flow_velocity ’,’

water_depth ’, ’swimmable ’, ’spawn ’. Type =String ’’’

83 df = campo.dataframe.select(self.dataset.water , property_names

=[f’{property}’])

84 for t in self.dyn_timevector:

85 # let op : neemt alleen laatste key mee !!!!! als df

86 raster = df["water"]["area"][f’{property}’][0][t]

87 campo.to_geotiff(raster , (f"{self.output_dir }/{ property}_{

t+1}. tif"), ’EPSG :28992 ’)

Listing 16: Exporting data from LUE data file
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B Figures

B.1 Fish movement

Figure B.1: Trajectories and destination for spawning by the Barbel considering differ-
ent flow regimes.
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Figure B.2: A zoom in of trajectories and destination for spawning by the barbel with
different behaviours, each having a broad preference for flow regime. Each distinct
coloured line represents the track of a single group of barbels.
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B.2 Movemodes

The most successful spawners are wandering travellers with a broad range of spawn-
ing preferences, moving about 5000 times in total, averaging 50 moves or 200 hours
before spawning. These barbels find spawning grounds the fastest. In contrast, fo-
cused homebodies with the initial range of preferences perform approximately 38,000
movements, while other spawners move between 7,000 and 21,000 times. All focussed
barbels spend a relatively bigger number of movement transitioning from uninhabitable
to habitable areas compared to wandering barbels.

Figure B.3: The movement modes accessed by the barbel agents in the model for the
various scenarios.
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