
UTRECHT UNIVERSITY

Faculty of Humanities

Research Master Linguistics

Computational Modeling of Error Patterns in Children

Speech

First Supervisors:

Prof. Dr. Wijnen & Dr. Kroon

Second Reader:

Dr. Nazarov

Candidate:

Alex Stasica

In cooperation with:

Auris

July 15, 2024



Abstract

This study aims to analyze the phonological processes in the speech of

Dutch children, focusing on both typically developing (TD) children and

those with developmental language disorder (DLD). Utilizing a dataset from

a non-word repetition task, we investigate some phonological errors made

by children aged 3;0 to 6;2 (years; months). Our approach involves using

a combination of Levenshtein Distance and Breadth-First Search algorithms

to quantify and document four common phonological processes (ie. error

patterns): final consonant deletion, stopping, fronting, and gliding.

We perform statistical analyses to compare the frequency of these pro-

cesses between TD and DLD children and to assess differences in the per-

centage of pseudowords presented and repeated by each group. Building

on this analysis, we apply Optimality Theory constraints and train a maxi-

mum entropy (MaxEnt) model to evaluate each child’s pronunciation. This

model is trained on TD children’s data and tested on both TD and DLD

children to determine the probability of typical pronunciation patterns.

The effectiveness of the classifier is assessed using receiver operating

characteristic curves to distinguish between TD and DLD children. Our

findings indicate significant differences in the phonological processes use

and number of words repeated (either correctly or incorrectly) between the

two groups, supporting the utility of these metrics in diagnosing DLD. Ad-

ditionally, the MaxEnt model demonstrates high reliability especially in the

oldest group of children.

This research contributes to clinical practice by offering detailed analyses

of child pronunciation errors and improving diagnostic accuracy for DLD.

Theoretically, it advances our understanding of phonological development

and the applicability of OT in language acquisition studies.
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1. Introduction

This master’s thesis aims to be a first step to the resolution of a gap in com-

putational analysis of phonological development in children across differ-

ent age groups. Specifically, the focus is on discerning differences between

typically developing (TD) children and those with developmental language

disorder (DLD) through the analysis of four key error patterns.

One key aspect of studying language development in children, both TD

and those with DLD, is the analysis of phonological processes (i.e., phono-

logical error patterns resulting from simplifying the speech of children dur-

ing their acquisition). Analyzing these errors provides valuable insights

into the underlying mechanisms of language acquisition and potential de-

velopmental issues. However, manual assessments are particularly time-

consuming and current automatic techniques for detecting and categoriz-

ing them often lack precision and specificity. This makes it challenging for

speech and language pathologists (SLPs) to accurately diagnose and treat

children with language disorders.

Improving the automatic detection and categorization of phonological

processes (PP) based on age and impairment status is therefore crucial for

enhancing the efficacy of diagnostic processes and intervention strategies

for children with DLD. Early identification and targeted intervention can

significantly improve long-term outcomes for these children. By addressing

these challenges early on, they can better develop their personal skills, build

stronger social connections, and strengthen their self-esteem.

Currently, the Klank Analyse Tool (KAT), developed by Auris—an or-

ganization dedicated to assisting individuals with speech and language

difficulties—is used for automatically analyzing Dutch children’s speech

and PPs. However, KAT relies on ‘pseudo-phonetic’ transcription using

graphemes provided by a human annotator, which are likely to introduce
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biases into the analysis.

The tool operates as follows: the SLP prepares a set of reference words

for a specific task, such as non-word repetition (NWRT) or picture naming

task. The SLP records the child’s performance and then fills in the target

word and the word as pronounced by the child in pseudo-phonetic script.

In this process, the SLP phonetically transcribes what the child pro-

nounced using an orthographic keyboard, with guidelines to dictate how to

fill the ‘pronunciation’ column. KAT then generates different spreadsheets

with various types of phonological analyses based on this information.

However, as stated above, a significant limitation of this method lies in

the use of orthography for transcription, which can introduce a lack of pre-

cision. For instance, the influence of orthographic rules may lead to inaccu-

racies or representing the same phonemes inconsistently (i.e., with different

orthographies). Additionally, the time required for SLPs to manually fill in

information for numerous children and words poses a practical challenge.

Therefore, the objective of this research project is to develop a pilot

pipeline aimed at overcoming KAT’s limitations. By using computational

techniques and machine learning algorithms, the project seeks to develop

more accurate and efficient methods for identifying and analyzing these

pronunciation errors. In addition, the project aims to provide support for

diagnosis by classifying the child as typical or with DLD. This classification

can serve as a valuable tool for SLPs in their decision-making process, aid-

ing them in diagnosing and treating this disorder more effectively. These

advancements aim to facilitate the work of researchers who study child

phonology.

In this research, we study these challenges in children aged 3;0 to 6;2

(years; months) because of the nature of errors in early language production

(i.e., younger children’s errors cannot be reliably categorized [1]).

The structure of this thesis is as follows: Section 2 presents an overview

of the methods used during this research along with the framework in

which the models are developed and their relevance for clinical practice and
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Introduction

for the field of language acquisition. Section 3 presents an overview of the

current state of research in language acquisition. It focuses on phonological

acquisition for all children acquiring their first language, with special refer-

ence to the acquisition of Dutch. It also reviews current computational mod-

els designed to better understanding phonological acquisition and support-

ing SLPs. Section 4 outlines the aim of the present study and the research

questions. Section 5 details the methodology. Section 6 presents the results.

Finally, section 7 discusses the limitations of this research and suggests av-

enues for future work.
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2. Methods Overview

Code and Data Availability

In this research, we use a dataset from a Non-Word Repetition Task

(NWRT) performed by typically developing (TD) children and children

with developmental language disorder (DLD) between ages 3;0 and 6;2

(years;months) [2]. In the dataset used, each target pseudo-word is paired

with its transcribed pronunciation by the children.

The program developed for this study is accessible on

Google Colab at https://colab.research.google.com/drive/

15xndGrSwghQ31lMyF1oJNVkOk6Vp3_dW?usp=sharing. The dataset uti-

lized in this study is publicly available, as all children’s data have been

anonymized, and no audio recordings were used. The dataset does not

contain any sensitive information. The Excel file with the anonymized data

is hosted on Google Drive at https://drive.google.com/drive/folders/

121uOHP0TUggvkIudvwUrSkwtfkxRc8Zz?usp=sharing.

Theoretical Framework

All pronunciation errors are analyzed as part of the developing phono-

logical grammar of the child, and not as part of other components involved

in pronunciation and presenting a late development, following the perspec-

tive of the Optimality Theory (OT) [3].

Phonological Processes Analysis

Using the NWR data with target and pronounced words, we initially

apply a combination of the Levenshtein Distance and Breadth-First Search

algorithm to identify and quantify the phonological processes employed by

the children. The results of this initial analysis provide a detailed summary
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Methods Overview

of the phonological processes used by each child. For this pilot research,

we focus on four common phonological processes: final consonant deletion,

stopping, fronting and gliding. We document in which words each phono-

logical process occurs, which phonemes are affected, and summarize the

percentage of use of each phonological process by child.

Furthermore, we perform statistical analyses to identify if there is a sig-

nificant difference in the frequency of use of the four phonological pro-

cesses studied here between TD children and those with DLD present in

our dataset. By understanding how these phonological processes vary be-

tween TD children and those with DLD, we can better interpret the patterns

of pronunciation errors. This can help in refining the classification models

used for diagnosing DLD in future research, ensuring that the models accu-

rately reflect the differences in phonological development between the two

groups.

We also perform a statistical analysis to determine if there is a significant

difference in the number of words repeated (either correctly or incorrectly)

by TD and DLD children. This analysis is crucial because the number

of words pronounced can be an indicator of language proficiency and

development. A significant difference in this metric between TD and DLD

children would support the validity of using the percentage of pronounced

words as a diagnostic feature.

Child Support Diagnosis

Building upon this detailed phonological analysis, we translate these

phonological processes into OT constraints. Each target form - child’s pro-

nunciation pair is evaluated for its adherence or violation of these con-

straints using a maximum entropy (MaxEnt) model. We train separate

models for each age range (3-4, 4-5, and 5-6 years old) using a training set

consisting only of TD children. Subsequently, we test the models using a

test set containing both TD children and children with DLD. The MaxEnt

model outputs a probability for each pronounced word, representing the

likelihood of it matching typical pronunciation patterns observed during
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training.

To categorize each child as TD or with DLD, we calculate the mean

probability across all repeated words for that child. A higher probability

indicates greater similarity to typical pronunciation patterns seen during

training, aiding in determining if the child exhibits typical development

or signs of DLD. We use receiver operating characteristic (ROC) curves to

determine the optimal threshold probability for distinguishing between

typical and atypical children.

Theoretical Relevance

This research aims to be relevant to both clinical practice and theoretical

linguistics. The method enables the detailed analysis of pronunciation er-

rors in children, facilitating a precise assessment of language development

and potential disorder. This information is expected to support speech and

language pathologists in making informed clinical decisions regarding di-

agnosis and intervention strategies.

From a theoretical perspective, this research contributes to the field of

linguistics by empirically testing the application of OT in the context of

language acquisition. OT provides a framework for understanding how

phonological systems develop and organize across languages. By apply-

ing OT constraints to analyze children pronunciation patterns, this study

explores universal principles underlying phonological development.

The approach adopted here utilizes straightforward and resource-

efficient methods that prioritize interpretability, making it accessible for

both researchers and practitioners in linguistics and clinical settings. This

methodological clarity enhances the reliability of analyzing child error pat-

terns, thereby advancing theoretical insights into language acquisition pro-

cesses.
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3. State of the art

3.1 Phonological Acquisition in Monolingual

Children

Phonological acquisition is a staged process. It begins with the initial acqui-

sition of the segmental inventory, which includes learning the individual

sounds (phonemes) of a language. This is followed by the acquisition of

segmental rules or processes, which are the systematic patterns or transfor-

mations that govern how these sounds are produced and altered in different

contexts. Ultimately, phonological acquisition involves integrating both the

segmental inventory and these segmental rules or processes [4].

During the segmental processes acquisition stage, children begin to

adapt to adult speech forms, moving beyond their initial production con-

straints. This phase has been described as the start of systematic modifi-

cations in reproducing adult speech segments, sequences, and syllable or

word structures [5]. Figure 3.1 illustrates these systematic changes through

the stages of a Dutch child’s acquisition of plosive-liquid clusters.

Ingram was among the first to characterize typical child phonological

rules across languages, identifying the systematic nature of child phonolog-

ical behavior [6]. He emphasized the importance of examining four distinct

forms: adult pronounced word, child pronounced word, child perceived

word form, and child underlying form. Understanding these forms is cru-

cial for a comprehensive analysis of child phonological processes (PPs).

While the adult and child pronounced words can be directly observed

through transcription and recording, the child’s perceived word form and

underlying form require careful inference from patterns observed in the

child’s speech production and systematic errors.
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3.1 Phonological Acquisition in Monolingual Children

Figure 3.1: Plosive-Liquid cluster [4]

Several works in language acquisition presuppose that differences be-

tween child and adult forms are caused by the phonological system. Two

contrasting perspectives exist within this framework. Phonological pro-

cesses can be viewed as realization rules that are later unlearned [7], or as

constraints on output production, with development involving the removal

of constraints and/or elaboration of templates to align the child’s form more

closely with the adult target [1]. The present study adopts the latter ap-

proach, specifically using the framework of Optimality Theory (OT)[3]. OT

distances itself from rule-based phonological systems, focusing instead on

constraints on output that are progressively eliminated in typically devel-

oping (TD) children but may persist longer in children with developmental

language disorder (DLD) or delayed development.

To further understand these systematic differences between child and

adult forms, Ingram categorizes the systematic errors observed in children’s

speech. He identified three main types: syllabic processes, assimilatory pro-

cesses, and segmental substitution processes [8]. This framework has been

widely used to explore various PPs in child language (e.g.[9] [1] [10]). Key

PPs, and their definitions include:
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State of the art

• Syllabic processes: Involving complexity reduction

– Final consonant deletion: omission of the final consonant of a

word

– (Unstressed) syllable deletion: elimination of syllables, particu-

larly preceding a strong syllable (i.e., one with a longer vowel,

louder volume, and higher pitch) or if unstressed

– Cluster reduction: simplification of consonant clusters by remov-

ing one or more consonants, resulting in a single consonant in the

pronounced word

– Reduplication: repetition of one or more syllables within a word

• Assimilatory processes: Changes in phonemes due to the features of

neighboring segments

– Harmony: influence of one sound on another within a word, en-

compassing velar, nasal, labial and voicing assimilation

• Segmental substitution processes: Involving replacement of sound

segments by others

– Fronting: replacement of a consonant with one articulated further

forward in the oral cavity

– Stopping: substitution of fricatives with stop consonants at cor-

responding places of articulation

– Gliding and vocalization: substitution of liquids with glides or

vowels

The above list outlines the most frequently observed PPs, yet this list is

non-exhaustive and other processes are used by the children based on the

language they acquire and their age [7].

Adding to Ingram’s categorization [6], other researchers worked on pro-

viding a comprehensive overview of these PP and the age ranges in which

they are used [11]. Such an overview is summarized in Figure 3.2, which

outlines the principal PPs and the typical sequence in which they emerge
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3.1 Phonological Acquisition in Monolingual Children

during development. The table illustrates different age ranges, the typical

progress in segmental acquisition, and the PPs found at each age range. PPs

are in upper-case to indicate their presence at a given age, with optionally

present or infrequent PPs in parentheses or in lower-case. While PPs may

occur outside this sequence, persistent occurrence beyond the typical age

range(s) may indicate atypical development. Generally, processes affecting

the syllabic structure are prevalent until around age three in TD children, di-

minishing thereafter, while processes affecting individual segments persist

longer in the acquisition process.

Figure 3.2: Profile of phonological development for English [11]

While the development patterns discussed in this section are generally

applicable across different languages, variations exist due to the unique

phonological characteristics of each language. These variations influence

the frequency and application of PPs across languages. In the context of
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State of the art

Dutch language acquisition, specific PPs have been identified by researchers

(e.g., [12] [13]).

3.2 Dutch Phonology

While the preceding section provided a broad overview of phonological

acquisition and processes in children, this section narrows the focus to

Dutch phonology.

3.2.1 Dutch Adult Phonology

Dutch phonology has been studied extensively in research [14]. It has been

noted that Dutch comprises 23 consonants, with additional ones appearing

in loan words, and 17 vowels, including 3 diphthongs.

Dutch phonology also exhibits specific phonotactic constraints. Syllabic

structures can consist of zero to three consonants in the onset and up to four

consonants in the coda, with vowel-only syllables also permissible. The

acquisition of these different syllable structures has also been described [15].

Regarding consonants and consonant clusters, specific restrictions

apply, varying depending on whether they occur in syllable-initial (SI) or

syllable-final (SF) positions.

• The phoneme /N/ cannot occur at the SI position

• The phoneme /h/ is prohibited in syllable-final position and cannot

be part of a cluster

• SI clusters cannot consist of two sonorant consonants, except in words

of foreign origin

• SI clusters with three consonants must have /s/ as the initial conso-

nant

14



3.3 Language Disorders and Phonological Acquisition

• SF clusters with more than two consonants must contain both /s/ and

/t/

3.2.2 Dutch Phonological Development

During the phonological development of Dutch speaking children, vowels,

including diphthongs, are typically mastered by age 3;0. By age 4;0, most

single consonants are correctly produced in initial and final positions by

75% of children, with the exception of /s/ and /r/, and by age 4;3, most

sounds, including single consonants and consonant clusters, are articulated

correctly by the majority of children.

Furthermore, as already detailed above, children exhibit phonological

processes during their acquisition, and previous research has determined at

which age these processes can be expected to stop. Section 5.3 details the

specific PPs examined in this research, including the age at which they typ-

ically cease to occur. The age ranges of use for each PP serve as benchmarks

in assessing children’s developmental typicality during evaluations of their

speech production at different stages. It is recognized that occasional incor-

rect productions may occur within these age-appropriate ranges [1].

3.3 Language Disorders and Phonological Acqui-

sition

Children with developmental language disorder (DLD) may not always ex-

hibit phonological issues1, or they might experience these issues at varying

levels of severity. Understanding the frequency and consistency of these

phonological issues is crucial for assessing a child’s phonological develop-

ment.

In this context, Vihman categorizes the relative frequency of phonolog-

ical processes (PPs) as sporadic (<25%), inconsistent (25-75%), or regular

1In contrast to DLD, another clinical entity called ’speech sound disorder’ is con-
stently associated with phonological issues during a child’s development.

15



State of the art

(>75%) [5]. This categorization remains relevant today and is useful for the

assessment of a child’s phonological development, providing a structured

way to measure and compare the occurrence of phonological processes.

Building on Vihman’s framework for categorizing phonological pro-

cesses, numerous studies have investigated the different word production

errors and their frequency in children with DLD in diverse languages and

also compared them to typically developing (TD) children. Marshall, for in-

stance, summarizes various findings regarding the production differences

between children with DLD and TD children [16]. Notably, children with

DLD make systematic errors in existing words during production, and re-

peating nonsense forms. Models of word production must account for these

systematic errors in a cohesive manner.

Focusing on the use and frequency of PPs by Dutch children, Beer

presents a study involving the recordings of spontaneous speech samples

from 15 Dutch children with DLD from 4;0 to 6;0 (years; months), compar-

ing them to TD children and to Swedish and English children with DLD

[17]. She divides the PPs in three categories, a) the ones found in normal

phonological development, which have a negative effect on intelligibility

if they persist, b) unusual processes, appearing in normal development but

infrequently and c) the ones virtually absent in children with typical phono-

logical development, also referred as ’idiosyncratic’ by [11]. Within each

category, she differentiates the phonotactic processes (i.e., affecting the se-

quential structure) and the ones simplifying the system of contrasts (i.e.,

affecting the segments). The PPs studied in her research [17] are duplicated

in Table A.1 in Appendix A.

Beers’ findings [17] indicate that there are no specific PPs unique to chil-

dren with DLD. Instead, children with DLD tend to exhibit higher frequen-

cies of common PPs. Furthermore, cross-linguistic comparisons reveal that

children with DLD use PPs with similar frequencies across languages, ex-

cept for a few that are language-specific.

Though Beers uses spontaneous speech sample in her study, it is com-

mon to use non word repetition tasks (NWRT) to analyze the PPs of children
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3.3 Language Disorders and Phonological Acquisition

with DLD. Indeed, the repetition of pseudowords is particularly challenging

for them. Analyzing how these children repeat pseudowords, and the types

of errors they make, can reveal crucial information about the phonologi-

cal aspects of their word production system. This task captures perception,

storage, and reproduction of phonological forms. Using an NWRT for di-

agnosing DLD is advantageous because it requires only a few target words

with specific sound combinations to assess a child’s phonological abilities.

In contrast, analyzing spontaneous speech necessitates more extensive sam-

ples to represent the diverse types of errors made by the child. This means

that NWRT can efficiently pinpoint the phonological processes and errors,

providing a clear diagnostic insight into the child’s phonological memory

and production system. Thus, NWRT complements the findings from spon-

taneous speech by offering a targeted approach to identifying phonological

deficiencies in children with DLD.

Different phonological theories aim to explain the phonological de-

ficiency of children with speech disorders, including DLD. The theory

followed by the present study is the Optimality Theory (OT) [3]. In order to

understand the most widely used framework of phonological impairment

within OT, it is important first to present how OT works.

3.3.1 Optimality Theory Principles

OT emerged as a response to the limitations of rule-based systems, partic-

ularly evident in the framework of generative phonology outlined in the

Standard Theory of Generative Phonology [18]. While generative phonol-

ogy offers significant insights, it struggles to provide a comprehensive ex-

planation of how phonological systems of the different languages can be

explained by the same processes, as generative phonology describes differ-

ent rules for the phonology of each language [19].

This gap in explanation spurred the development of OT, which holds

promise not only in understanding phonological systems but also in expli-

cating phonological development and disorders [20].
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Figure 3.3: Schematic of Optimality Theory [20]

One of the core principles of OT is its treatment of the disparity between

mental representation (i.e., underlying phonemic structure) and surface rep-

resentation (i.e., spoken phonetic form). Previous theories attributed this

difference to distinct rules, with variations between languages attributed to

different rule sets. In contrast, OT posits that these differences arise from

the varying rankings of constraints.

Formally, the OT model consists of three main components, as described

below [21], accompanied by a schematic representation in Figure 3.3:

• GEN (Generator): This component generates an infinite set of poten-

tial output (i.e., production) forms based on a given input (i.e., mental

representation).

• EVAL (Evaluator): Given the candidate set produced by GEN, EVAL

selects the optimal output form considering the input representation.

• CON (Constraints): EVAL utilizes a language-specific ranking of uni-

versal constraints to determine the optimal output form.

18



3.3 Language Disorders and Phonological Acquisition

OT operates with two major families of constraints:

• Markedness Constraints: These constraints pertain to the well-

formedness of the output and aim to reduce structural complexity and

contrast between words by imposing restrictions on the output.

• Faithfulness Constraints: These constraints focus on preserving

structural elements and aim to prevent deviations between the input

and output.

The inherent conflict between these constraint families leads to con-

straint violability. Each output violates certain constraints, and the cho-

sen output—considered the optimal—minimizes violations of the highest-

ranked constraints compared to competing candidates.

Central to OT is the notion of optimality, where the selection process by

EVAL aims to choose the optimal candidate. In this context, no output is

inherently good or bad; rather, the optimal output is the one that minimizes

violations of the highest-ranked constraints.

Notably, not all constraints are active for a given input. A constraint is

considered active if it plays a decisive role in distinguishing between po-

tential output candidates. Specifically, a constraint becomes active when it

discriminates among several output possibilities that have not already been

ruled out by higher-ranked constraints. Inactive constraints either do not

apply to a given input and its potential outputs, or they apply but do not

influence the selection process because higher-ranked constraints have al-

ready eliminated all potential candidates they could affect.

While OT typically aims for a single winner-defined as the output

with minimal constraint violations—, cases of multiple winners can occur,

indicating equal ranking of conflicting constraints. This aspect of OT

accommodates output variability, such as in the phonological development

of children. For instance, when children learn to produce sounds, they may

sometimes produce multiple acceptable variants of a word due to their de-

veloping phonological systems. These variations can be understood within
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the OT framework as instances where different constraints are equally

balanced, resulting in more than one optimal output. This accounts for why

children’s speech may show variability as they navigate and resolve these

conflicting constraints during their language acquisition process.

3.3.1.1 Exploring the Application of Optimality Theory in Phonological

Development and Disorders

Understanding phonological acquisition requires consideration of various

factors [22]. These factors include the discrepancy between a child’s pro-

duction and adult input forms, the variability observed both within and

across developing systems, and the development of a child’s grammar over

time. In the framework of OT, such discrepancies signify different constraint

rankings not only between adults and children but also among individual

children, showcasing extensive variation.

OT posits that language acquisition begins with an initial structured

state, guided by the principles of Universal Grammar (UG). This initial state

refers to a universal set of constraints that are present from the beginning

in all children. These constraints are initially ranked in a particular order,

which may not yet resemble the adult target grammar. Children navigate

through linguistic input aided by UG, gradually constructing a grammar

resembling that of the adults around them. Acquisition occurs primarily

through positive evidence present in the learner’s input.

Children’s early linguistic output tends to exhibit simpler forms com-

pared to adults [23] [24]. This simplicity reflects the prevalence of unmarked

structures in the initial stages of language acquisition. OT provides an ex-

planatory framework for this phenomenon by positing that markedness

constraints, which favor simpler and more universal structures, initially

dominate over faithfulness constraints, which require maintaining the spe-

cific details of the input. As a result, children first acquire the less complex,

unmarked structures. Over time, as they receive more linguistic input, the

ranking of constraints adjusts, allowing for the acquisition of more marked
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3.3 Language Disorders and Phonological Acquisition

and complex structures. This dynamic interaction between constraints ex-

plains the observed progression from simpler to more complex forms in

children’s language development.

In adult language, a balance between marked and unmarked structures

is essential to support a diverse lexicon. Even though markedness con-

straints may be dominated in adult grammar, they remain active when they

do not conflict with dominating faithfulness constraints.

The ranking of constraints in a child’s developing grammar dictates the

error patterns exhibited. If an output displays multiple error patterns, it

signifies the influence of high-ranking markedness constraints that require

deviations from the input in various aspects. There are two types of varia-

tion; intra-word and inter-word variation [20].

Intra-word variation occurs when the surface form of a word varies

within a single grammar (i.e., in one child). This means that for a given

word, there may be multiple possible pronunciations or phonological real-

izations. In OT, intra-word variation is typically attributed to constraints

that are ranked equally within the same stratum. When constraints are

equally ranked, they can compete to determine the optimal output for a

specific word. Therefore, different instances of the same word may exhibit

slight variations in pronunciation due to these competing constraints. For

example, a child pronouncing several times the same word can sometimes

exhibit a phonological process and sometimes not.

Inter-word variation refers to differences in how phonological rules or

constraints are applied across different words or contexts in a child’s speech.

Unlike intra-word variation, which focuses on variability within a single

word, inter-word variation involves variations observed between different

words in a child’s production.

In OT, inter-word variation typically arises from constraints that are

ranked across different strata. This means that constraints from different

levels of hierarchy (strata) interact to influence how phonological rules are

applied across different lexical items or syntactic contexts. For instance,

a child may produce some words with a phonological process and other
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words without the same phonological process, depending on how con-

straints at different levels prioritize the preservation or the violation of the

input structure.

3.3.1.2 Using OT analysis to determine treatment goals

The most widely applied implementation of OT in phonological acquisi-

tion considers that reranking constraints play a crucial role in determining

treatment goals, marking a departure from previous theories that attributed

development solely to suppressed phonological processes or lost rules. This

OT view considers that children’s mispronunciations are due to them hav-

ing a different phonological system than adults, and not to performance

limitation.

In this context, ’performance’ refers specifically to the various systems

involved in producing or interpreting language (e.g., physical mechanisms

of oral production). The OT framework assumes that developmental errors

in phonological acquisition are only due to differences in the underlying

phonological representations and constraints within the child’s linguistic

system, with different ranking of constraints between adults and children

in their phonological grammar. These errors are not considered errors of

language use in the broader sense that encompasses everyday variability in

speech production observed in both children and adults.

Understanding what triggers constraint reranking remains a question

within OT, although positive evidence likely plays a significant role. An

effective framework must accommodate changes in grammar over time,

as observed in TD, where grammar evolves to allow for the demotion of

markedness constraints [25] [20] [23] [24].

For children with DLD, SLPs must provide explicit positive evidence,

much more densely than is normally done by the caretakers, to facilitate

grammar development. The clinician’s objective is to induce the demo-

tion of high-ranking markedness constraints. Identifying these constraints

enables the targeting of specific linguistic features for intervention. Stud-
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ies have demonstrated the effectiveness of introducing marked structures

into a child’s phonological system, resulting in comprehensive system-wide

changes [26] [27].

3.4 Computational Modeling Approaches of

Phonological Acquisition and Diagnosis

While the preceding sections explored phonological acquisition in chil-

dren, this section examines various computational models that simulate

phonological development and assist in diagnosing different speech dis-

orders in children. It is important to clarify that this subsection does not

exclusively focus on developmental language disorder (DLD). Instead, it

reviews approaches used to model typical phonological development and

its deviations. Although the presented models may not specifically address

DLD, they offer valuable insights into effective modeling techniques for

understanding children’s phonological development.

3.4.1 Phonological Processes and Phonotactic Learning

Modeling

3.4.1.1 EPAM-VOC: Model for Phonotactic Learning in English

Given that children with DLD typically perform poorly on non-word repe-

tition tasks (NWRT) [16], the EPAM-VOC (Elementary Perceiver and Mem-

orizer - Vocabulary) model has been proposed [28]. It has been adapted to

simulate error patterns in TD children’s word learning processes based on

NWRT performance, particularly to replicate the higher frequency of errors

in syllable onsets compared to syllable codas [29].

EPAM-VOC organizes a child’s knowledge of sounds into a structured

hierarchy, similar to a family tree, with individual sounds at the top and

combinations of sounds forming words at the lower levels. This structure is

illustrated in Figure 3.4.
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Figure 3.4: Illustration of the EPAM-VOC architecture. Nodes are represented
by ellipses and links by arrows [29]

The model builds a network to recognize and categorize sounds by an-

alyzing features of the sounds it hears, and then storing this information as

long-term knowledge.

This model has been adapted for English by including all the sounds

used in the English language right from the start, helping the model focus

on the relevant features [29]. This is why they focused on children older

than 5;0, as children of this age are expected to know all the sounds of their

native language.

EPAM-VOC also investigates how children learn new words and

store their sound patterns in their short-term memory, which can hold

information for about 2000ms. The model examines how this short-term

memory interacts with long-term knowledge to understand why some

children learn words faster than others. The limited capacity of short-term

memory acts as a bottleneck, controlling how much information can be

stored in long-term memory. This interaction helps explain differences in

how quickly children can learn new words. The performance of children on

NWRT is used to test this model, allowing exploration of how effectively

children can store and process unfamiliar sound patterns.
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3.4.1.2 Klank Analyse Tool: Phonological Processes Analysis for Dutch

Speaking Children

As mentioned in the introduction, KAT, a model for phonological processes

(PP) identification in Dutch children has been developed by Auris. The com-

putational details of the model are not publicly available, but the tool aims

to support the speech and language pathologists (SLPs) when analyzing the

performance of a child on a specific task. The tool operates as follows: the

SLP prepares a set of reference words or pseudowords for a specific task,

such as NWRT or picture naming. The SLP records the child’s performance

and then fills in the graphemic transcription of the target word, its pseudo-

phonetic transcription and the pseudo-phonetic transcription of the word

as pronounced by the child.

KAT also provides guidelines to dictate how to fill the ‘pronunciation’

column, with mandatory rules (e.g., how to divide each word in syllables,

and how to transcribe syllable deletions or insertions) and optional rules

(e.g., different possibilities on how to transcribe the schwa or on how to

show distortions and striking sounds in the child’s pronounciation).

Then, KAT generates multiple spreadsheets containing various types of

phonological analyses derived from this information. These include spread-

sheets detailing the percentage of correct pronunciations per sound, identi-

fying instances where sounds have been correctly produced and their fre-

quency. Additionally, for incorrectly pronounced sounds, the spreadsheets

provide explanations of the errors. Other spreadsheets cover the phonolog-

ical processes observed, list all words containing clusters, and calculate the

percentage of correct cluster pronunciations. These spreadsheets also offer

the capability to compare results across different tests.

As outlined in the introduction section, this tool has limitations and

the present study aims to overcome these limitations and create a model

capable of identifying PPs and their frequency given a real phonetic

transcription.
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3.4.2 Modeling Approaches for Speech Disorder Diagnosis

3.4.2.1 Computer-Aided Speech Therapy (CAST) Tools

Numerous CAST tools have been been developed as practical alternatives

to human assessment, assisting in diagnosis and treatment planning for in-

dividual children [30]. Early detection of the various speech disorders chil-

dren can have is crucial as it directly impacts fluency and intelligibility, em-

phasizing the importance of timely intervention.

The main types of pronunciation errors observed in children with speech

disorders have been categorized into three categories [30]:

• Phonological and articulation errors at the phoneme level

• Hypernasality

• Prosodic errors

Existing tools, such as STAR [31], utilize automatic speech recognition

(ASR) systems to detect phoneme substitution errors in children with artic-

ulation disorders, aiding them in their speech training efforts. Additionally,

Case-Based Reasoning (CBR) have been used to analyze specific instances

of speech disorders [32]. This approach allows the system to learn from

previous cases, enabling it to adapt and make informed decisions based

on similar past examples. By applying CBR, computing systems can better

understand and respond to the unique needs of each child, improving the

effectiveness of speech therapy interventions.

3.4.2.2 Automated Screening Models

Moreover, a model aiming at automatically screen speech development is-

sues in children by identifying PPs in English-speaking children has been

developed [33]. The model defines PPs as encompassing deleted, inserted,

or substituted phonemes, and their detection allows for categorization of a

child’s speech into three risk levels (i.e., low, moderate and high).

In their study, they introduced a proof-of-concept system focused on
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fronting and gliding PPs, using a small corpus to emphasize the signifi-

cance of data quality over quantity for optimal model performance. Their

pipeline consists of a stack of different models where each model’s output

serves as input for the subsequent one. Initially, the input speech is fed into

a hierarchical neural network (HNN) functioning as the acoustic model to

generate probabilities for pronounced phonemes.

Subsequently, these probabilities from the HNN serve as emission prob-

abilities for a constrained Hidden Markov Model (HMM) decoder. Emis-

sion probabilities are the likelihoods that the observed data (in this case, the

acoustic features of the pronounced phonemes) are generated from a partic-

ular hidden state in the HMM. In other words, they indicate the probability

of observing a specific phoneme given a certain phonological state. The

HMM uses these probabilities to decode the sequence of phonemes by con-

sidering both the acoustic input and the underlying phonological processes.

This HMM decoder incorporates a general understanding of common

PPs and integrates the most probable error pattern for each target word

using a dictionary, collaboratively compiled with the assistance of SLPs. For

instance, considering the example of the word ‘teeth’ (1), their dictionary

lists the target phonemes with the key of the dictionary being the index (i.e.,

the position in the sequence of phoneme) of each successive phoneme (0, 1,

2 etc.) and the value of each key being the target phoneme and acceptable

substitutions for each phoneme position based on the age-specific norms

(e.g., target phoneme ‘TH’ at index 2 for the word ‘teeth’, and acceptable

substitutions ‘F’ or ‘T’).

1. teeth.dictionary =

0: [‘T’],

1: [‘IY’],

2: [‘TH’, ‘F’, ‘T’]

Following this, transition probabilities between HMM states are trained
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using the dictionary’s transitions to adjust the connections. The Viterbi al-

gorithm is then employed to infer the most probable sequence of phonemes.

They define three distinct transition weights:

• Ws for transitions to the current phoneme state

• We for transitions to a phoneme state specified in the dictionary

• Wu for transitions to an unexpected phoneme state, where Wu ̸= 0 to

account for the possibility of unexpected transitions

Subsequently, PP detection is performed by aligning the recognized

phoneme string from the HMM with the target word using the Needleman-

Wunsch algorithm, enabling the detection of regions with phoneme

substitutions, deletions, and insertions. A decision tree is utilized to classify

the identified patterns as specific PPs. Despite achieving accurate results

with limited data, their model is not yet sufficiently robust for deployment

as a substitute for SLPs.

3.4.2.3 Maximum Entropy Model: Classification for Diagnosis

Maximum entropy (MaxEnt) models are classifiers that use a set of manu-

ally defined constraints to assign probabilities to different outcomes. Unlike

HMMs, which struggle with data not present during their training, MaxEnt

models are feature-rich classifiers. They combine various heterogeneous

features within a probabilistic framework to output the most probable tag

or category for a given input. In our case, we aim to classify each child,

based on a set of pronounced words, as typical or atypical.

Classification models presented earlier are language-specific, primarily

for English. However, MaxEnt models can be easily adapted for any lan-

guage and can be used to classify a child as typical or with DLD. Further-

more, they have already been extensively utilized in linguistics, demonstrat-

ing high accuracy in other classification tasks like part-of-speech tagging

[34] and sentiment analysis [35]. They have also found applications in med-

ical diagnosis, where they use patient histories to predict disease likelihood.
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Moreover, MaxEnt models have been used in prior studies on phono-

logical development [36], showcasing their compatibility with phonotactic

principles and alignment with different phonological theories, including the

one used in the present study: Optimality Theory (OT) [3].

In linguistics, their effectiveness is particularly pronounced due to the

model’s ability to take into consideration the interdependence of features

(i.e., each phoneme or word is influenced by its surrounding environment

and is not independent of it). The model does its classifying based on certain

predefined or induced features, which allows it to capture the complexity

of linguistic data more accurately than models assuming feature indepen-

dence.

Entropy, defined mathematically as shown in (2), is a measure of uncer-

tainty or randomness [37]. This equation calculates the entropy of the prob-

ability distribution by summing up the product of each possible value of x

(from 0 to infinity) and the natural logarithm of its probability mass func-

tion PME(x). The negative sign ensures that the result represents entropy, a

measure of uncertainty or randomness in the probability distribution.

2. S = −∑∞
x=0 PME(x) log PME(x)

where:

S represents the entropy of the probability distribution

PME(x) denotes the probability mass function (PMF) of the variable hav-

ing a particular value x (in our case, the particular value x is the probability

of a word form being pronounced by a child)

log represents the natural logarithm

The maximum entropy principle is a method used in probability and

statistics to determine the most unbiased probability distribution given a

set of known constraints. When faced with several possible probability

distributions that could describe a system, the maximum entropy principle

chooses the one with the largest entropy.
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A distribution with high entropy is more spread out and less certain,

meaning it makes fewer assumptions about the unknown aspects of the

system. By choosing the distribution with the highest entropy, we are ef-

fectively saying that we should not assume any additional information that

we do not have. This approach ensures that our model remains as unbiased

as possible and only relies on the information that is actually known. In

practical terms, this means that the maximum entropy model is the one that

is most consistent with the given data while remaining as non-committal as

possible about unknowns.

For this reason, MaxEnt models stand out for their proficiency in fore-

casting future events based on present conditions, particularly in scenarios

characterized by complex systems and limited data availability. These

models excel when the number of potential system configurations, or data

distribution (N) far surpasses the observed data points (K) as represented

in (3). In essence, they excel in scenarios where the range of possible system

states greatly exceeds the instances observed in real-world data.

3. N ≫ K

In our study, where data is constrained and does not encompass the

entirety of potential language patterns, MaxEnt models guard against

over-reliance on existing data (i.e., overfitting) while maintaining the ability

to make precise predictions for novel input.

This modeling approach is particularly useful in systems where indi-

vidual decisions appear disconnected, such as within language patterns

where surface-level variability across words, contexts, and individuals

may seem disparate. By constraining a few key aspects, MaxEnt models

can shed light on a significant portion of the system’s complexity, par-

ticularly in cases where a comprehensive bottom-up modeling approach

is impossible, as is the case with the intricate phonological grammar

acquisition process for all (Dutch-)speaking children. For these reasons, we
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use a MaxEnt model to classify the children in our study as TD or with DLD.

MaxEnt Model Principles

As stated above, MaxEnt models are classifiers. Classification involves

analyzing individual observations (here, pronounced words), extracting

relevant features that characterize each observation (here, which phono-

logical processes are used in each pronounced word), and then assigning

it to one of several distinct categories based on these features (here, TD

or DLD). As such, the output of the MaxEnt is a probability distribution

PME(x) which must meet three key requirements:

1. It must satisfy a limited number of constraints (in our case, the

constraints are defined by the Optimality Theory framework).

2. The probability distribution must be the distribution with the max-

imum entropy of all distributions that satisfies the defined constraints.

3. The probability distribution must adhere to a mandatory normaliza-

tion constraint, ensuring that the sum of probabilities for all possible

outcomes equals to 1, as expressed in (4).

4. ∑ PME(x) = 1

In summary, MaxEnt models operate within the constraints defined

by the data, utilizing a rich set of features to make unbiased predictions.

By maximizing entropy within these constraints, the model effectively

captures the uncertainty and complexity inherent in the data, thereby

facilitating accurate classification tasks.

Mechanisms of MaxEnt Models

MaxEnt models, also known as exponential or log-linear classifiers, op-
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erate by extracting a set of features (defined by the modeler) from the in-

put data, which are then combined linearly with weights determined dur-

ing the model training process. These models utilize a probabilistic frame-

work, with the sum of these weighted features serving as the exponent of

a normalization constraint, ensuring that the probabilities sum to 1. In our

specific application, which focuses on children’s pronunciation of words,

we aim to extract relevant features indicating whether specific phonologi-

cal processes, such as final consonant deletion, are present in the children’s

speech.

The probability of a particular class being correct given an input x is

calculated using the formula depicted in (5).

5. p(d | x) = 1
Z exp (∑i wi fi)

where:

p(d | x) represents the probability of a class (decision) being correct

given an input x

exp is the exponential

Z serves as a normalizing constant

wi refers to the weight associated with each feature fi in the model.

fi represents the features extracted from the input data x

To better understand this equation, several steps are needed. The

mathematical demonstration is presented below.

Features within MaxEnt Models

As modelers, we choose arbitrarily the features functions we want to

reflect the characteristics of the problem domain as faithfully as possible.

Each feature, also called constraint in our case, is binary, indicating whether

it is present in the input or not. Formally, the feature function fcp,y′(x, y) is
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defined in (6).

6 fcp,y′(x, y) =

1 if y = y′ and cp(x) = True

0 otherwise

where:

cp (contextual predicate) corresponds to a given constraint, cp maps a

pair of outcome y and a context x to true or false.

An example is given in table 3.1 for our particular case. The input word

represents the adult form (i.e., target word transcription), while the output

indicates the pronunciation transcription of the word by a child, which are

also described in terms of violations of constraints derived from OT.

Each word pair in the table identifies a violation of a defined constraint

by the pronounced word. For instance, the constraint ‘*Coda’ signifies the

prohibition of codas, where a violation (i.e., presence of a coda) is marked

as 1, while adherence to the constraint (i.e., no coda) is represented by 0.

Additionally, the constraint ‘MAX’ stipulates that the output should

closely resemble the input, specifically by prohibiting the deletion of seg-

ments present in the input. In our analysis, we focus on the PP ‘final conso-

nant deletion’. Since the other PPs we examine involve only substitutions

and not deletions, we use MAX in its general form. However, if our analysis

included the deletion of different segments in various positions, MAX could

be reformulated to address specific deletions, such as prohibiting the dele-

tion of word-initial or syllable-initial segments, or the deletion of vowels.

In the first row, a violation occurs as the child’s pronunciation (tO) dif-

fers from the input target form (tOt), thus resulting in a violation of this

constraint, indicated by 1.

Each feature, denoted as fi(x), is associated with a weight wi(d) for each

class (or decision), with a weight of 0 when the feature is not present. This

weight, determined during training (as it will be explained in the next sub
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Input Output *Coda MAX
tOt tO 0 1
tOt tOt 1 0

Table 3.1: MaxEnt table input

section), reflects the contribution of the feature to the classification decision.

Predicting a decision (d) for a given input x involves evaluating whether

each feature is present or not and multiplying it by its associated weight as

shown formally in (7).

7. fi(x) ∗ wi(d)

The subsequent steps involve calculating the numerator and denomina-

tor of the probability distribution.

The numerator represents the total weight of features for each class (i.e.,

one numerator per class), obtained by summing the exponentiated weights

of all present features. More formally, for N features, the total of each re-

sult of equation (7) is added and takes the exponent of summation to get a

numerator determining the weight for each class (8).

8. numeratord = exp(∑N
i=1 fi(x) ∗ wi(d))

Then, the denominator is obtained by summing the numerators (i.e., the

total weights of all classes) (9).

9. denominator = ∑d′ exp(∑N
i=1 fi(x) ∗ wi(d′))

Finally, the probability of a class given an input is calculated as the

ratio of the numerator of the given class to the denominator (10) which

corresponds to equation (5), retranscribed below„ which represents the

probabilistic formulation used in MaxEnt models, often referred to as the

softmax function.
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10 p(d | x) = numeratord
denominator

5. p(d | x) = 1
Z exp(∑ wi fi)

where:

p(d | x) is the probability of class d given an input x

Z (the normalization constant or partition function) ensures that the

probabilities sum to 1 over all possible classes d′

To clarify, equation (5) defines p(d | x) as the exponentiated weighted

sum of features divided by Z, where Z ensures that the probabilities across

all classes sum to 1. In practical terms, Z the denominator in equation (18))

is the sum of all exponentiated scores across all classes.

Equation (10) shows how p(d | x) is computed for a specific class d

using the numerator and denominator defined earlier. The numerator

numeratord represents the likelihood of the class d given the input x while

the denominator denominator ensures that the probabilities are properly

normalized across all possible classes.

Therefore, equation (10) directly implements the softmax function de-

scribed in equation (5), where Z is the denominator in equation (10). The

numerator numeratord is the specific term for the class d being considered,

and denominator ensures that p(d | x) is a valid probability distribution by

summing over all possible classes d′.

This formula enables the model to assign probabilities to each class

based on the input features, with the highest probability determining the

classification decision.

MaxEnt models training

Training a MaxEnt model involves three essential components:
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• Training Data: A set of training data is required, comprising different

words pronounced by TD children only.

• Manually Defined Features: Features must be manually defined to

capture the relevant phonological processes observed in the children’s

speech. These features help identify which phonological processes

and their frequencies are associated with different types of develop-

ing children.

• Parameter Estimation Function: A function is needed to estimate the

parameters of the model and assign appropriate weights to each fea-

ture to optimize the model’s output.

The training process aims to find real-value weights for each feature

that maximize the model’s log likelihood. Each weight must reflect its

importance in determining the classification outcome. This is depicted by

the following formula (11).

11.L(p) = ∑x,y p̃(x, y) · logp(y | x)

where:

L(p) represents the log likelihood function of the MaxEnt model

p(y | x)) denotes the probability of the output y given the input x

p̃(x, y) represents the empirical distribution of outputs y given inputs x

observed in the training data

x represents the input data, in our case, the features extracted from the

adult pronunciation of a word

y represents the output data, in our case, the different children’s pronun-

ciations of the same word
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Aim of the research: The aim of this project is to use phonetic transcrip-

tion along with computational techniques to analyze some phonological

processes exhibited by Dutch children, providing a detailed summary

of these processes for each child’s speech data. Additionally, the project

aims to develop a classification model to categorize children as typically

developing or having developmental language disorder based on these

analyzed phonological patterns.

Research Question 1: How accurately can phonological processes be

modeled from phonetic transcriptions of Dutch children’s speech?

Research Question 2: Can the phonological processes modeled in

this research distinguish typically developing children and those with

developmental language disorder in our data?

Research Question 3: How effective is a classifier trained on modeled

phonological processes in distinguishing between typical children and

those with developmental language disorder?

Research Question 4: How reliable are the phonological process models

and classifiers across different age groups of Dutch children?
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5.1 Data

Importantly, during the initial stages of development, children’s language

profiles can diverge quite significantly (in terms of advancement) [1], which

makes it difficult to distinguish typical from atypical development. This

underscores the importance of longitudinal studies to track developmental

trajectories and identify potential impairments through the development of

the child. Therefore, in collaboration with Auris this work makes use of one

dataset gathered by Dr. Everaert on a non-word repetition task (NWRT)

[2]. The dataset consists of recordings from children aged 3;0 to 6;3 (years;

months), including both typically developing (TD) children and children

with developmental language disorder (DLD).

It encompasses audio recordings, manual pseudo-phonetic transcrip-

tions of the repeated words, the intended target words, the child’s diagnosis

(TD or DLD), gender, and age at the time of recording. The dataset features

30 pseudowords, as well as a words ranging in length from one to five syl-

lables. Details of the target words are provided in Appendix B, Table B.11.

It is important to note that Dutch does not typically have five-syllable

words, except in compounds or derived words. Furthermore, some of the

phoneme combinations present in the target words are not usual sound

combinations in Dutch. However, the NWRT is designed to assess phono-

logical memory in children. This means that the task is intended to evaluate

how well children can repeat unfamiliar sound sequences, which is a mea-

sure of their phonological memory and processing skills, rather than their

1The pseudo-phonetic transcription of the NWRT used in this research, includ-
ing the target words and the pronounced words by the children are available at
https://drive.google.com/drive/folders/121uOHP0TUggvkIudvwUrSkwtfkxRc8Zz?usp=sharing
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ability to pronounce familiar words in their native language.

Given this focus, the dataset was not originally designed for phono-

logical analysis, which aims to analyze specific phonological processes

and patterns in children’s speech. Our research repurposes this dataset

to provide insights into phonological development and disorders by

examining the errors and variations in the children’s pronunciations of

these non-words.

Pronounced words were collected from 50 children with DLD and 62 TD

children. Despite its modest size, this dataset serves as a valuable resource

for the initial testing of the algorithms proposed in this study.

5.2 Phonetic Transcription

The initial phase of this research depends on obtaining a reliable broad pho-

netic transcription from the audio recordings provided by Auris. While

other researchers previously utilized a combination of HNN-HMM (Hierar-

chic Neural Networks- Hidden Markov Model) for this purpose [33], their

methodology has become outdated with advancements in state-of-the-art

models.

A variant of Wav2Vec [38] offers the capability of phonemic transcrip-

tion, known as Wav2Vec to Phonemes. This model has already undergone

fine-tuning for Dutch phoneme recognition2 for Dutch adult speakers.

However, the phonetic characteristics of child speech differ from those

of adult-directed speech [39]. Therefore, comparisons have been conducted

between manual phonetic transcription and automatic transcription pro-

vided by Wav2Vec on PhonBank files containing Dutch CHILDES data in

phonetic transcription. The Character Error Rate (CER) was utilized to as-

sess transcription accuracy. It is noteworthy that PhonBank only contains

manual phonetic transcription of children under 2;07, hence the tests were

2https://huggingface.co/Clementapa/wav2vec2-base-960h-phoneme-reco-dutch
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conducted only on this data. However, considering our focus on children

aged 3;0 to 6;2, it is important to acknowledge that older children may ex-

hibit phonetic features closer to adult speech, but no comparisons could be

made. The tests revealed a CER of approximately 0.60, indicating that only

40% of the transcription was correct, which is insufficient for us to use this

method.

Current technologies do not offer sufficiently accurate phonetic tran-

scription of child speech due to a lack of training data, making fine-tuning

impractical for this model. Therefore, alternative methodologies were con-

sidered to obtain accurate phonetic transcriptions for input into the models

intended to be developed in this study. However, once accurate phonetic

transcriptions from child speech audio will become feasible, the models cre-

ated here will be ready to take speech audio as input.

Other methods explored include grapheme to phoneme conversion,

which are used in speech synthesis systems such as eSpeak3, given the in-

ability to directly transcribe audio, and the already orthographically tran-

scribed data used in this research. Speech synthesizers like eSpeak take

the language name and the orthographic transcription as input and pro-

duce phonetic transcriptions following the phonological rules of the spec-

ified language. Though initially prioritizing direct audio analysis, speech

synthesis would be utilized if proven more feasible.

However, after testing eSpeak, this method’s reliance on phonological

rules resulted in inaccurate transcriptions, particularly with pseudo-words,

as it attempted to conform to adult speech patterns, yielding a CER similar

to that of Wav2Vec.

Therefore, seeing that the various approaches to automatic transcription

of the children’s speech failed, a custom algorithm has been developed to

use the pseudo-phonetic transcription made by SLPs using KAT to generate

reliable phonetic transcriptions for the models.

Taking as example (12), four non-words from our dataset.

3https://espeak.sourceforge.net/

40

https://espeak.sourceforge.net/


5.2 Phonetic Transcription

12. [‘Keepon’, ‘Sietaalon’, ‘Peelaanot’, ‘Liepoetaan’]

The custom algorithm works as follow;

1. Using Indicsyllabifier4 along with manual adjustments of this

Python module, we separate in syllables the pseudo-phonetic tran-

scription of the words from the data:

• ‘kee’, ‘pon’

• ‘sie’, ‘taa’, ‘lon’

• ‘pee’, ‘laa’, ‘not’

• ‘lie’, ‘poe’, ‘taan’

2. Looking for the vowel or the diphthong in each syllable, we split each

syllable into what is before the vowel or the diphthong (the onset), the

vowel or the diphthong (the nucleus) and what is after (the coda), and

we make sure to keep three elements in each syllable, even if some are

empty, for alignment in further processing:

• [‘k’, ‘ee’,‘ ’], [‘p’, ‘o’, ‘n’],

• [‘s’, ‘ie’,‘ ’], [‘t’, ‘aa’, ‘ ’], [‘l’, ‘o’, ‘n’],

• [‘p’, ‘ee’, ‘ ’], [‘l’, ‘aa’, ‘ ’], [‘n’, ‘o’, ‘t’],

• [‘l’, ‘ie’, ‘ ’], [‘p’, ‘oe’, ‘ ’], [‘t’, ‘aa’, ‘n’]

3. As the input is a pseudo-phonetic transcription, each character has

only one correspondence in IPA, making the transformation in IPA

feasible. We also keep the split into syllables and the split of syllables

into onset, nucleus and coda, and also adding a representation of the

entire word into phonetics:

• ‘kepOn’: [[‘k’, ‘e’, ‘’], [‘p’, ‘O’, ‘n’]],

4https://silpa.readthedocs.io/projects/indicsyllabifier/en/latest/
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• ‘sitalOn’: [[‘s’, ‘i’, ‘’], [‘t’, ‘a’, ‘’], [‘l’, ‘O’, ‘n’]],

• ‘pelanOt’: [[‘p’, ‘e’, , ‘’], [‘l’, ‘a’, ‘’], [‘n’, ‘O’, ‘t’]],

• ‘liputan’: [[‘l’, ‘i’, ‘’], [‘p’, ‘u’„ ‘’], [‘t’, ‘a’, ‘n’]]

5.3 Phonological Processes

This sub-section describes the phonological processes (PPs) that will be used

in our models.

Beer gives a list of the PPs found in Dutch children [13]. As stated in sec-

tion 3.3, she categorizes them as a) the ones found in normal phonological

development, which have the strongest negative effect on intelligibility5, b)

unusual processes, appearing in normal development but not so often and

c) the ones appearing seldomly in typical development.

As this research is a pilot study, we focus on four very common PPs, and

will use our models on them. Their description along with examples taken

from Beer’s research and the likely age of disappearance are presented in

Table 5.1.

It is important to note that other phonological processes may also take

place in the studied words (but also in the given examples in Table 5.1). For

instance, in the example ‘blas@’ vs. ‘pat’, multiple PPs might be involved.

In our analysis, we focus only on a selected few PPs. This means that other

processes present in the children’s speech are not accounted for in our mod-

els.

By ignoring these additional processes, our results may provide an

incomplete picture of the children’s phonological development. Conse-

quently, our interpretations will be limited to the specific PPs we have cho-

sen to study. Future research should aim to include a broader range of PPs

and study them in interaction to provide a more comprehensive analysis of

5As Beers notes, these processes significantly affect intelligibility in children with
DLD as they progress through later stages of acquisition. This impact is exacerbated by
the uneven development among phonology, morphosyntax, and vocabulary in these chil-
dren.
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phonological development and disorders.

Figure 5.1: Phonological Processes that the present study focuses on

5.4 Automatic Detection of Phonological Pro-

cesses

In this sub-section, we elaborate on the methodology employed in con-

structing the two models within this pipeline. The first model focuses

on automatically detecting phonological transformations, while the second
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model utilizes this output for classifying children as typically developing

(TD) or with developmental language disorder (DLD), encompassing their

respective implementations and considerations.

5.4.1 Levenshtein Distance and Breadth First Search Algo-

rithm

The Levenshtein Distance (LD) combined with the Breadth First Search

(BFS) algorithm (denoted as LD-BFS) presents the initial step for investi-

gation.

This approach aims to identify phonological processes used by children

by enumerating the segmental discrepancies between the target word (i.e.,

the word the children are supposed to pronounce) and the word the children

actually pronounced. These discrepancies inform a metric that captures the

phonological ‘distance’ between the two forms. The LD creates a matrix

with all possible insertions, substitutions and deletions to go from the pro-

nounced word to the target word, and the BFS searches for the shortest way

to go from the former to the latter and returns the edits (i.e., insertions, sub-

stitutions and deletions) used during this shortest path.

To explain the LD-BFS implementation, we can use one reference pseu-

doword from our dataset represented in pseudo-phonetic (13.a) and in IPA

(13.b), along with a deviation by a child, as shown in (14.a; pseudo-phonetic

transcription) and (14.b; IPA transcription) respectively.

13.a sietaalon

13.b sitalOn

14.a tietaaong

14.b titaON

Constructing a LD matrix for the example ‘sitalOn’ vs ‘titaON’ yields
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(15). The numbers in the matrix represent the minimum number of single-

character edits (insertions, deletions, or substitutions) required to transform

one part of a word into another. Each cell in the matrix indicates the edit

distance between the corresponding segments of the target word and the

child’s pronunciation up to that point. The upper left corner starts at 0, as

no edit is needed initially. The process of filling in the matrix is done from

the beginning (left) to the end (right) of the words.

For example, the cell [2,2] has a value of 1, indicating that one edit

is required to transform the first character of the child’s pronunciation

into the first character of the target word. Specifically, ’t’ is substituted

with ’s’. Moving on to cell [3,3], it also has a value of 1. This is because

the ’i’ in both positions matches, so no additional edit is needed, but the

previous edit (substituting ’t’ with ’s’) is carried forward. Thus, the process

involves mapping each segment of the child’s pronunciation onto the

corresponding segment of the adult target word incrementally from left to

right, accounting for the minimal edits required at each step.

(15) Distance Matrix

s i t a l O n

[0, 1, 2, 3, 4, 5, 6, 7]

t [1, 1, 2, 2, 3, 4, 5, 6]

i [2, 2, 1, 2, 3, 4, 5, 6]

t [3, 3, 2, 1, 2, 3, 4, 5]

a [4, 4, 3, 2, 1, 2, 3, 4]

O [5, 5, 4, 3, 2, 2, 2, 3]

N [6, 6, 5, 4, 3, 3, 3, 3]

Using BFS enables us to identify the shortest path (16) in the LD matrix

(15), indicated by the starred cells and the required edits to transition from

the reference to the pronounced word (17). A cell becomes starred if it lies
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on the path representing the minimum number of edits needed to transform

the child’s pronunciation into the target word. This path is determined by

tracing back through the matrix from the bottom-right cell (which shows

the total edit distance) to the top-left cell, always moving to the neighbor-

ing cell that contributed to the current cell’s edit distance (i.e., the minimum

edit distance from an insertion, deletion, or substitution). The starred cells

thus represent the specific sequence of edits required to make this transfor-

mation.

In this approach, each shift from one column to the next column on the

right side signifies an insertion, a shift from one row to another row below

signifies a deletion, and diagonal movement indicates either no edit (if the

number remains the same) or a substitution (if it increases).

(16) Path

s i t a l O n

[*, 1, 2, 3, 4, 5, 6, 7]

t [1, *, 2, 2, 3, 4, 5, 6]

i [2, 2, *, 2, 3, 4, 5, 6]

t [3, 3, 2, *, 2, 3, 4, 5]

a [4, 4, 3, 2, *, *, 3, 4]

O [5, 5, 4, 3, 2, 2, *, 3]

N [6, 6, 5, 4, 3, 3, 3, *]

(17) Edits

• (‘substitution’, ‘t’, ‘s’)

• (‘no edit’, ‘i’, ‘’)

• (‘no edit’, ‘t’, ‘’)

• (‘no edit’, ’a’, ‘’)

• (‘insertion’, ”, ‘l’)
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• (‘no edit’, ‘O’, ‘’)

• (‘substitution’, ‘N’, ‘n’)

Syllables are fundamental building blocks in spoken language and play

a critical role in various aspects of phonological processing. By focusing

on syllables, we can achieve a more granular and accurate comparison,

which is particularly useful in detecting and analyzing pronunciation er-

rors and phonological patterns in children’s speech. Therefore, as syllables

hold greater linguistic significance for analysis rather than the analysis of

entire words, matrices are not computed for the whole words but for each

syllable, comparing distinct units such as onset, nucleus, and coda.

Given that words are already segmented into meaningful sub-units dur-

ing phonetic transcription, as explained in section 5.2, the process described

above can be iterated for these sub-units.

In our example, it give three matrices, and thus three shortest paths (18).

18.

s i

* 1 2 3

t 1 * 2 3

i 2 2 * 2

3 3 2 *

Edits: (‘substitution’, ‘t’, ‘s’) (‘no edit’, ‘i’, ‘’) (‘no edit’, ‘ ’, ‘’)

t a

* 1 2 3

t 1 * 1 2

a 2 1 * 1

3 2 1 *
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Edits: ( ‘no edit’, ‘t’, ‘’) ( ‘no edit’, ‘a’, ‘’) ( ‘no edit’, ‘ ’, ‘’)

l O n

* * 2 3

O 1 1 * 2

N 2 2 2 *

Edits: ( ‘insertion’, ‘’, ‘l’) ( ‘no edit’, ‘O’, ‘’) ( ‘substitution’, ‘N’, ‘n’)

In this approach, each syllable, even if containing empty elements, is di-

vided into three components: onset, nucleus, and coda. This breakdown

ensures a precise comparison between corresponding elements in the refer-

ence and the child’s pronounced word.

Initially, the syllables in both the reference and the child’s pronounced

word are aligned. If the child’s pronunciation exhibits one or more syllables

with solely empty elements, it signifies syllable deletion, and the index of

the deleted syllable is documented to identify which syllable from the refer-

ence word is missing. This information is included in the detailed summary

of insertions, deletions, and substitutions returned by the LD-BFS algorithm

but is not further processed in the MaxEnt model, as syllable deletion is not

part of the phonological processes analyzed in this study.

The resulting output serves as the foundation for aligning these edits

with specific phonological processes, such as determining whether a deleted

consonant is part of cluster reduction or final consonant deletion, thereby

facilitating the final diagnostic analysis.

Each child’s data is structured into a CSV file, illustrating various aspects

such as phonetic transcriptions, syllable indices, and phoneme edits. This

CSV file, as exemplified in Figure 5.2, presents the edits of each word pro-

nounced, including columns for the phonetic transcription of the reference

word, the phonetic transcription of the pronounced word, the index of the

syllable of the current phoneme under investigation, the edit type (no edit,
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insertion, substitution, deletion), the phoneme in the reference word, and

the phoneme in the pronounced word.

Figure 5.2: Output of the LD-BFS for the reference word ‘liputan’

This CSV file is pivotal for formatting the input data for the subsequent

MaxEnt model, which classifies each child based on their phonological

characteristics. Moreover, additional CSV files are generated to com-

prehensively analyze the phonological processes utilized by each child,

categorized by age range and diagnosis, akin to the approach undertaken

by KAT.

Furthermore, specific CSV files are generated for each age range and

diagnosis, listing the phonological processes employed by each child, or

indicating an empty list if no processes were used.

5.4.2 MaxEnt Model

This subsection presents the use of a Maximum Entropy (MaxEnt) model as

the final phase of the analysis pipeline, integrating phonological analysis as

features for classification.

The chosen MaxEnt implementation, developed by the University of

Massachusetts Amherst6, operates efficiently with a simple input structure:

6https://websites.umass.edu/hgr/
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a list of target adult words (input), corresponding child pronounced words

(output), a probability of each pronounced word to be an output, and bi-

nary indicators (0 or 1) denoting the satisfaction or violation of manually

predefined constraints.

Before explaining this implementation in more details it is important to

explain how the constraints are defined and formulated.

Drawing from the Optimality Theory (OT) framework, this research

adheres to the prevalent view in phonological acquisition, positing that

children’s mispronunciations stem from differences in their phonological

systems, prioritizing markedness constraints over faithfulness constraints,

thereby yielding more unmarked productions. While this perspective

guides the definition of constraints in this study, it’s noteworthy that al-

ternative viewpoints exist. Some scholars in OT, for instance, argue for the

inclusion of performance limitations in their constraint formulation, intro-

ducing a separate COST family constraint operating at the articulatory level

rather than solely within the internal grammar [40].

Although this pilot study aligns with the predominant OT perspective

on phonological acquisition, the MaxEnt model itself remains theory-

agnostic, allowing for adaptation to alternative phonological theories or

perspectives.

Hence, it’s imperative to explain how the phonological processes

outlined in Section 5.3 are translated into OT constraints.

5.4.2.1 Transforming phonological processes into OT constraints

For our analysis, we translate the four phonological processes (PPs) de-

scribed in section 5.3 into OT constraints. The PPs investigated include final

consonant deletion, stopping, fronting, and gliding.

Children’s speech patterns, as explained by OT, are governed by
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markedness constraints that rank higher than faithfulness constraints. No-

tably, faithfulness constraints encompass three key families:

• Max: Against the deletion of an element present in the input

• Dep: Against the insertion of an element not present in the input

• Ident[feature]: Against the substitution of a feature present in the in-

put by another feature

On the other hand, markedness constraints, while more numerous and

less precisely defined, are selectively identified for our study.

Final Consonant Deletion

This process, typically used until approximately 3;0, involves the dele-

tion of the final consonant of a word. Within a child’s grammar, the *Coda

markedness constraint typically ranks higher than the Max constraint (19),

as illustrated in Table 5.3.

The *Coda constraint prohibits consonants in the syllable coda position,

reflecting a preference for open syllables (CV structures). This preference is

related to markedness, which may be influenced by factors such as articu-

latory difficulty, frequency of occurrence in the language or late emergence

in acquisition. Indeed, as stated before, children firstly use unmarked struc-

tures, and the most unmarked syllabic structure is the open syllable CV,

which leads to a prohibition of syllables with codas.

19. *Coda ≫ Max

Table 5.3 illustrates the hierarchical relationship between constraints in

the context of systematic Final Consonant Deletion. It presents two can-

didate forms, taken from Beers’ study [13]: a faithful representation (tOt),

perfectly matching the input, and another form (tO) where a final consonant

has been deleted.

In this scenario, *Coda is a markedness constraint stipulating the absence

of a coda, while MAX is a constraint ensuring the output resembles the in-

put. In the table, *Coda holds a higher rank than MAX. Consequently, the
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faithful candidate is eliminated (fatal violation indicated by ‘!’), as violating

the higher-ranked constraint. Despite the unfaithful candidate contraven-

ing the lower-ranked MAX constraint, it remains the chosen output

Figure 5.3: First stages of child grammar development: Systematic Final Con-
sonant Deletion

However, as a child progresses in acquisition, occasional final consonant

deletions may still occur, albeit inconsistently across words. In such cases,

OT suggests a reevaluation of constraint hierarchy. While the faithful can-

didate begins to ascend in the hierarchy, it does not yet surpass the marked-

ness constraint. At this stage (as indicated in Table 5.4 by the broken line be-

tween the two constraints), both constraints are positioned at the same level

(20), allowing for multiple optimal output candidates. This phenomenon

underscores the dynamic nature of constraint ranking and reranking dur-

ing the stages of acquisition, particularly in child development contexts.

20. *Coda, Max

Figure 5.4: Later stages of child grammar development: Optional Final Conso-
nant Deletion

Figure 5.5: Adult grammar: No Final Consonant Deletion
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Finally, in adult Dutch language, MAX is ranked above *Coda, as Dutch

allows for codas, and the unfaithful candidate /tO/ is eliminated, as shown

in table 5.5).

Fronting

A similar phenomenon is observed in the case of fronting, which typi-

cally persists until the child reaches the age of 4;0. Here, the markedness

constraint *Coronals, which prohibits coronal elements, takes precedence

over the faithfulness constraint IDENT[coronal], where the coronal element

in the input must be identical in the output. This reflects a preference for

anterior sounds as they are more unmarked, compared to posterior sounds

like coronals. This hierarchy is illustrated in (21) and exemplified in Table

5.6.

When fronting occurs sporadically or inconsistently, both *Coronals and

IDENT[coronal] constraints are placed at the same stratum, as illustrated in

(22) and depicted in Table 5.7. This indicates an equal level of significance

for both constraints, allowing for the possibility of multiple optimal output

candidates.

21. *Coronals ≫ IDENT[coronal]

22. *Coronals, IDENT[coronal]

Figure 5.6: Systematic Fronting

Figure 5.7: Optional Fronting
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Stopping

A similar pattern is observed in the case of stopping, which typically per-

sists until the child reaches the age of 3;0 to 4;0. Here, the markedness con-

straint *Fricatives, which prohibits fricative elements, is prioritized over the

faithfulness constraint IDENT[continuant], where the continuant element in

the input must be identical in the output. This reflects a preference for plo-

sives as they are more unmarked, compared to fricatives. This hierarchical

relationship is illustrated in (23) and exemplified in Table 5.8.

When stopping occurs inconsistently or sporadically, both *Fricatives

and IDENT[continuant] constraints are placed on the same stratum, as de-

picted in Table 5.9 (24). This indicates an equal level of importance for both

constraints, allowing for the possibility of multiple optimal output candi-

dates.

23 *Fricatives ≫ IDENT[continuant]

24. *Fricatives, IDENT[continuant]

Figure 5.8: Systematic Stopping

Figure 5.9: Optional Stopping

Gliding

A similar developmental progression is observed for gliding, typically

persisting until the child reaches the age of 6;0 to 7;0. In this scenario, the

markedness constraint *Liquids, which prohibits liquid elements, is ranked

higher than the faithfulness constraint IDENT[consonant], where the conso-
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nant element in the input must remain identical in the output. This reflects a

preference for glide sounds as they are more unmarked, compared to liquid

sounds which are part of the last phonemes a child acquires. This hierarchi-

cal relationship is illustrated in (25) and exemplified in Table 5.10.

When gliding occurs inconsistently or sporadically, both *Liquids and

IDENT[consonant] constraints are placed on the same stratum (26), as de-

picted in Table 5.11. This indicates an equal level of importance for both

constraints, allowing for the possibility of multiple optimal output candi-

dates.

25. *Liquids ≫ IDENT[consonant]

26. *Liquids, IDENT[consonant]

Figure 5.10: Systematic Gliding

Figure 5.11: Optional Gliding

For the PPs of fronting, stopping, and gliding, one might wonder

how OT ensures that the phoneme in the target word is substituted by a

phoneme within the appropriate class determined above. Using gliding as

an example, the substitution process at a more abstract phonological level

aims to retain as many features of the target sound as possible. Within the

OT framework, the replacement of liquids specifically by glides (i.e., w or

j) rather than other sounds is due to higher-ranked faithfulness constraints

like IDENT[manner], which preserve the manner of articulation of the

consonant. This means that liquids, which are approximants, will be
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replaced by other approximants (glides), rather than by consonants with

different manners of articulation, thereby maintaining as many features of

the target word as possible.

In summary, we have demonstrated how each phonological process

under study can be translated into constraints with varying rankings based

on the age of typically developing children. This process is crucial for

understanding the developmental trajectory of phonological acquisition

within this framework.

Implementation of constraints into the MaxEnt model

Moving forward, we create three distinct models for different age groups

(3-4 years, 4-5 years, and 5-6 years), in which we incorporate the specific

constraints into the MaxEnt model.

We use two R scripts developed by the University of Massachusetts

Amherst7 for this process: one for training the model and another for testing

it. The training script starts by setting the initial weights to zero and uses an

optimization algorithm called Limited-Memory Variable Metric (L-BFGS)

to adjust the weights until the model performs well (i.e., until convergence).

This algorithm begins with an initial guess for the optimal weights and iter-

atively improves upon this guess.

The training script employs two types of regularization methods to op-

timize the model: L1 (Lasso) regularization and L2 (ridge) regularization.

Regularization helps determine the weights of each constraint during train-

ing.

• L1 Regularization: L1 regularization adds a penalty to the model

based on the sum of the absolute values of the weights. This helps

create simpler models by encouraging some weights to be exactly

zero, effectively eliminating some features. This method is robust

against outliers and makes the model more interpretable by reducing

7https://websites.umass.edu/hgr/
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the number of non-zero weights.

• L2 Regularization: L2 regularization adds a penalty based on the sum

of the squared values of the weights. It helps prevent overfitting by

penalizing large weights, distributing the weight values more evenly

across features, and promoting smoother models. L2 regularization

also improves numerical stability, especially when dealing with fea-

tures that are highly correlated. L2 plays on the variance of the prior

distribution, as a high variance could lead to overfitting, L2 regular-

ization finds a new line which doesn’t fit the training data too well by

introducting a small amount of bias in the variance, getting a lower

variance and better long term prediction.

The main difference between these methods is that L2 regularization can

only reduce weights close to zero, while L1 can reduce them to exactly zero,

which is useful for eliminating irrelevant features.

In our case, since all constraints are relevant, L2 regularization is

more suitable than L1. By default in our implementation, L2 regulariza-

tion uses a variance of 1000, which allows for more flexibility in the weights.

5.4.2.2 Split in training/ test and k-fold cross validation

As our dataset is pretty small, we decided to use k-fold cross validation, a

method commonly used in machine learning to ensure more reliable results.

Here’s how it works:

1. Splitting the Dataset: We split the dataset into k groups (or folds).

2. Training and Testing: We train the model k times, each time using a

different fold as the test set and the remaining folds as the training set.

3. Averaging Results: The final performance is the average of the k

test results. This method reduces the risk of our results being due

to chance, providing a more accurate estimate of how the model per-

forms on unseen data.

Our approach implementing the k-fold cross validation works as follow:
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1. Initial Split: We first split the data into different age groups and types

of children, as shown in Table 5.12. We reserve about 10% of each

group as the test set and use the rest for training.

2. Choosing k: We use k=9 for all age groups. This means we split each

group into 9 folds, ensuring that each child’s data is in the test set only

once.

3. Training and Testing Process: For each fold, we train the model on

the training set and test it on the test set. This process is repeated for

each fold, and we use the test results to evaluate the model.

Figure 5.12: Split of the children per age and diagnosis, and split in training
(first number) and test (second number)

5.4.2.3 Formatting the input files

We create an algorithm to process the csv data files (exemplified in Table

5.2) outputted by the previous algorithm. It works as follow:

• Processing Each Word: For each word pronounced by a given child,

the algorithm takes as input the CSV file produced by the LD-BFS, as

shown in Figure 5.2. It examines each phoneme in the target word

(one per line) to determine if it has been edited (insertion, deletion,

substitution) and whether the edit corresponds to one of the phono-

logical processes (PPs) studied in this research by analyzing the edited

phoneme. In the example given in Table 5.2, the reference sound ‘p’

is substituted by the phoneme ‘b’, which does not correspond to any

of the PPs analyzed here, so no output is generated for this particular

substitution.

– If a change is due to a phonological process studied here, it

records a violation of the faithfulness constraint and no violation
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of the markedness constraint.

– If the process doesn’t apply to the given word, it records no vio-

lation.

– If there is no edit but one of the studied phonological process

could have applied, it records a violation for the markedness con-

straint and no violation for the faithfulness constraint.

• Output Files: The algorithm generates a text file for each child con-

taining:

– The target word (input)

– The pronounced word (output)

– The constraints (violations or non-violations)

5.4.2.4 Calculate the probability of each word in the input files

To determine the probability of a word being the output of a given input

word, several steps are undertaken:

• Merging Training Files: We combine all training files into one.

• Counting Occurrences: For each input target word, we count how

many times each output pronounced word appears.

• Probability Formula: The probability of a word being an output of a

given input word P(yi | xi) is calculated as (27).

27.P(yi | xi) =
yi

count(xi)

where:

yi is the pronounced word

xi is the target word

It is essential to compare each output to other plausible unseen candi-

dates (i.e., unseen possible combinations of the values for the constraints in

each word8). This is because the set of candidates represents all possible

8The list of the unseen possible candidates created for this research are available at
https://drive.google.com/drive/folders/121uOHP0TUggvkIudvwUrSkwtfkxRc8Zz?usp=sharing
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pronunciations. We can visualize this as an N-dimensional space, where N

is the number of processes considered. For example, if we have three pro-

cesses, each with two states (0 or 1), the space forms a 2x2x2 cube, where

each point represents a different pronunciation variant. Some points may

merge if a process is not applicable (e.g., final consonant deletion when there

is no final consonant).

Every input should have some probability defined for each combination

of processes that are considered. If we don’t account for all plausible candi-

dates, we risk creating a biased model by assuming certain probabilities are

impossible, rather than simply not observed in our data.

The set of candidates must not be dictated by what is attested for any

specific word, but by the processes attested within the entire dataset, and

their possible combination so that the probability distribution for different

words can be compared to one another.

Moreover, it is important to always compare candidates with the fully

faithful candidates (for which xi = yi) if they are not present in the observed

data.

Therefore:

• For the training set:

– We include all plausible and fully faithful (but unattested candi-

dates in our training set) with a probability of 0. This ensures

they are considered possible but not probable based on our data.

The MaxEnt model will avoid overfitting by selecting the proba-

bility distribution with the highest entropy. It is crucial to assign

these unattested candidates a probability of 0 during training be-

cause they are not actually observed in our data, and assigning

any non-zero probability without strong justification would arti-

ficially inflate their likelihood, leading to inaccurate modeling.

• For the test set:

– We follow a similar approach by integrating all plausible and
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fully faithful unattested candidates in our dataset.

– Instead of assigning a probability of 0 to unseen candidates, we

use Laplace smoothing. This method assigns a small, non-zero

probability to ensure no possible pronunciation is completely ig-

nored. It is essential to use smoothing in the test set because it

cannot have zero probabilities; otherwise, the model would un-

fairly penalize unseen but plausible pronunciations, potentially

leading to biased or inaccurate performance metrics.

5.4.2.5 Laplace smoothing

Laplace smoothing (28) handles the issue of 0 probabilities in probabilistic

models by adding a small constant (usually α = 1) to each count. This way,

non-observed but plausible words receive a non-zero probability, ensuring

a more realistic and flexible model.

28. PLaplace(w) = C(w)+α
N+α×|V|

where:

C(w) is the count of the word in the data

α is the smoothing parameter (usually 1)

N is the total number of words observed

|V| represents the size of the vocabulary, which is the number of dis-

tinct types of uttered words (as opposed to the total number of word tokens)

Finally, we split the merged test files back into individual files to test the

model on each child separately. This approach ensures that our model is

tested fairly and can generalize well to new data.

5.4.2.6 Evaluation of the performance on the test sets

Our chosen implementation does not directly classify children as TD or with

DLD. Instead it returns a probability for each word in the test set, indicating
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how likely it is given the training data. We use an outlier detection approach

by training the model exclusively on TD children and then testing it on both

TD and DLD children.

For each child in the test set, we start by removing any plausible un-

seen candidates to focus only on the probabilities of the words actually pro-

nounced by the child. We then calculate the mean and median probability

of all the words pronounced by each child, repeating this process for all test

files after completing k-fold cross-validation.

Using the real diagnosis of each child (TD or DLD), we set a random

threshold to classify children based on the probabilities. If a child’s mean

or median probability is above this threshold, they are classified as TD; if

below, they are classified as DLD. We evaluate the model’s performance by

assessing its classification outcomes in comparison to the gold standard (i.e.,

traditional clinical evaluation):

• True Positives (TP): Instances where the model correctly identifies

children with DLD.

• False Positives (FP): Instances where the model incorrectly identifies

TD children as having DLD.

• False Negatives (FN): Instances where the model incorrectly identifies

children with DLD as TD.

• True Negatives (TN): Instances where the model correctly identifies

TD children as TD.

We repeat the classification process with different thresholds. For each

threshold, we record the true positive rate (TPR) defined as in (29) and false

positive rate (FPR) defined as in (30).

29. TPR = TP
TP+FN

30. FPR = FP
FP+TN

These rates are then plotted on a Receiver Operating Characteristic

(ROC) curve, which illustrates how well a classification model performs

across different thresholds. By examining the ROC curve, we can identify
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the optimal threshold that provides the best classification results.

The AUC (Area Under the curve) algorithm calculates the total area

under the ROC curve, automatically identifying the best threshold. AUC

offers an overall measure of model performance across all thresholds. It

can be interpreted as the likelihood that the model will rank a randomly

chosen positive instance higher than a randomly chosen negative instance.

The AUC value ranges from 0 to 1, where 0 indicates a completely incorrect

model, and 1 indicates a perfectly accurate model.

This method ensures a thorough evaluation of the model’s ability to dif-

ferentiate between typical and atypical children, leading to the identification

of the most effective classification threshold.
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6.1 LD-BFS output results

The LD-BFS provides detailed phoneme-by-phoneme analysis for each

word, identifying instances of insertion, substitution, and deletion, as ex-

emplified in Table 5.2 in the Methods section. Additionally, a comprehen-

sive CSV file is generated, detailing the phonological processes (PP) studied

in this research that were used by each child, the phonemes substituted or

deleted, and the corresponding words, as shown in Table 6.1.

A final CSV file aggregates the mean frequency of each phonological

process by age and diagnosis, offering valuable insights for diagnostic eval-

uation. This file also includes one metric commonly used by speech and

language pathologists (SLPs):

• Percentage of Consonants Correct (PCC): This metric provides an or-

dinal severity scale indicating the level of disability, intelligibility, and

handicap for consonant sounds.

Other metrics exist, but as our research focuses only on individual conso-

nant phonemes, only this measure is relevant to what has been studied here.

However, in later work, if more class of sounds or combination of sounds

(e.g., clusters) are analyzed, other measures will be relevant to compute.

These metrics enable the identification of a child’s stage of acquisition,

the evaluation of proximity to target words, and the assessment of word

complexity beyond the segment level [41]. Using a single measure does not

effectively differentiate between typically developing (TD) children and

those with developmental language disorder (DLD). However, combining

multiple measures in a regression model provides evidence of disorder [42].
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Figure 6.1: Phonological processes used by four typically developing children
aged between 37 and 47 months old

Summaries for our data for TD children and DLD children are shown in

Table 6.2, and in Table 6.3.

Our data comes from a non-word repetition task (NWRT). Research

on DLD reveals that NWRTs serve as markers for impairment, as children

with DLD typically perform poorly on such tasks [16]. Consequently, poor

NWRT performance indicates abnormal constraints on word learning,

as these tasks typically involve perceiving, storing, and (re)producing

non-words. NWRTs are useful for highlighting differences in phonotactic

probabilities between children with DLD and TD children.

65



Results

Figure 6.2: Mean Percentage of phonological processes used by typical chil-
dren from our data, separated per age range in month

Figure 6.3: Mean Percentage of phonological processes used by atypical chil-
dren from our data, separated per age range in month

Statistical analyses were conducted to determine if there is an effect of di-

agnosis (i.e., typical or atypical) on the frequency of use of the phonological

processes studied and the percentage of pseudowords presented that the

children repeated (either correctly or incorrectly). The statistical analyses

provide empirical evidence to support the foundational assumptions of this

project. They help confirm that the phonological processes and pronuncia-

tion patterns under focused are indeed different between TD and DLD chil-

dren in our data. This confirmation is crucial for ensuring that the MaxEnt

models are trained on relevant and significant features that truly differenti-

ate TD from children with DLD.

We first look at the normality of the distribution of our data. For this

purpose, we split our results by diagnosis, and we perform a Shapiro-Wilk

test on each group to observe if the distribution of each group is normal. As

can be seen in Appendix C, Table C.1, the result of the Shapiro Wilk p (i.e.,

the p returned by the test) for each group is always significant, signifying

that the null hypothesis (i.e., our data is normally distributed) must be

rejected. Therefore our data is not normal, except for the percentage of pro-

nounced words for the children with DLD. But as it is the only group with a

normal distribution, we decide to perform non-parametric tests on our data.

A Mann-Whitney test is performed, and it reveals a strong effect of di-
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agnosis on the percentage of pseudowords presented that the children re-

peated across all age ranges (p = 0.008 for 3-4 years old, p < 0.001 for 4-5

and 5-6 years old) with TD children repeating a higher percentage of pseu-

dowords compared to children with DLD. No significant effect was found

for final consonant deletion and stopping, possibly because these phono-

logical processes are typically abandoned before age 3;0, and the children in

our study are older.

The test showed a significant effect of diagnosis for fronting in the 5-6

years old group (p = 0.02), suggesting that this process, which is usually

resolved by age 4;0, can highlight differences between the two groups.

Similarly, gliding showed an effect in the oldest group (p = 0.01), with this

process typically used until around 6:0 to 7;0 years old. Specifically, the

DLD group exhibited more instances of these processes compared to the

TD group. However, due to the small sample size, no definitive conclusions

can be drawn from these visualizations. In summary, the Mann-Whitney

test revealed few significant effects, indicating the need for more data to

better analyze the differences between TD children and those with DLD.

We also did data visualizations to compare the use of phonological pro-

cesses (PPs) across ages and groups. These visualizations, presented in Ap-

pendix C (Figures C.2, C.3, C.4, C.6 and C.5) indicate trends in the use of

PPs. For fronting, both TD children and those with DLD showed a decreas-

ing trend. For final consonant deletion, gliding, and stopping, TD children

exhibited these processes less frequently as they aged, whereas children

with DLD showed an increasing trend.

Since the increased use of these processes might be correlated with the

increased number of pronounced words, we performed a Spearman corre-

lation analysis to investigate these potential relationships.

When analyzing all age ranges together, the Spearman correlation ma-

trix in Table C.7 in Appendix C, revealed a moderate positive correlation

between age and the percentage of pronounced words (r = 0.36, p < 0.001),

indicating that older children tend to pronounce more words. There was
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also a weak negative correlation between age and fronting (r = -0.19, p =

0.042), suggesting that older children exhibit less fronting. Additionally, we

found a weak positive correlation between stopping and fronting (r = 0.18,

p = 0.045), indicating that children who use the stopping process more also

tend to use fronting more, and vice versa. No other significant correlations

were found.

Further analysis by age group revealed specific correlations:

• For the 3-4 year age group, a significant positive correlation was found

between the percentage of pronounced words and the use of final con-

sonant deletion (r = 0.40, p = 0.03), as shown in Table C.8 in Appendix

C. This indicates that children in this age range who pronounce more

words also tend to use the final consonant deletion process more fre-

quently.

• In the 4-5 year age group, Table C.9 in Appendix C shows a signifi-

cant positive correlation between age and the number of pronounced

words (r = 0.37, p = 0.017), indicating that older children in this group

tend to pronounce more words. Additionally, there was a positive cor-

relation between stopping and fronting (r = 0.39, p = 0.01), suggesting

that children who use stopping more also use fronting more, and vice

versa.

• No significant correlations were found in the 5-6 year age group, as

presented in Table C.10 in Appendix C.

These analyses are crucial for better understanding how the PPs mod-

eled in this research can distinguish TD children and those with DLD. By

examining the correlations between phonological processes and other vari-

ables, such as the percentage of repeated words and age, we can identify

patterns that may differentiate TD children from those with DLD.

For instance, the significant positive correlation between the percentage

of repeated words and the use of final consonant deletion in the 3-4 year age

group suggests that children with DLD might exhibit a higher frequency of

certain phonological processes. Similarly, the positive correlation between
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stopping and fronting in the 4-5 year age group provides insights into the

co-occurrence of phonological processes.

By identifying these patterns, we can better understand the phonological

characteristics that distinguish TD children from those with DLD. This un-

derstanding is essential for developing accurate classification models and

diagnostic tools for DLD based on phonological processes.

However, even if these analyses revealed few significant results, mostly

because of the small size of our data, our algorithm demonstrated its ability

to precisely categorize the PPs used by each child and provide commonly

used measures in a format similar to that outputted by KAT.

With the precise description of processes used by children provided by

this model, we can evaluate how well the next model, using this output,

can classify children as TD or with DLD based on the information provided

above.

6.2 MaxEnt results

This section presents the classification results of the MaxEnt model, which

identified children as TD or with DLD across different age ranges based on

the PPs used, transformed into constraints inputted into the model.

As described in section 5.4.2, an ROC (Receiver Operating Characteris-

tic) curve was plotted for each age range, and the AUC (Area Under the

Curve) was calculated to evaluate the model’s overall performance. Addi-

tionally, the best threshold for classification was determined for each ROC

plot.

The threshold in this context refers to the probability value that differen-

tiates between TD and DLD pronunciation patterns. By setting this thresh-

old, we establish the point at which the model decides whether a child’s

pronunciation pattern is more likely to be from a TD child or from a child

with DLD.

In the ROC curve, we plotted the mean and median probabilities of
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words pronounced by each child. Since the median is more robust to out-

liers, we initially compared whether there was a significant difference be-

tween the mean and median when plotting the ROC. Finding no significant

difference, we concluded that there were no outliers, and thus the mean

could be reliably used for our analysis.

Figures 6.4, 6.5, and 6.6 display the ROC curves for each age range. The

AUC is a metric used to evaluate the overall performance of the model. It

ranges from 0 to 1, where a higher value indicates better model performance

in distinguishing between TD children and those with DLD. In our case, the

AUC values increased with age, reflecting improved model performance as

the children grew older. This trend aligns with expectations, as diagnosing

DLD is more challenging at age 3;0, and becomes easier as children develop

further.

To determine the optimal classification thresholds, we used the ROC

curves. The optimal threshold is the point that achieves the best balance

between sensitivity (i.e., the ability to correctly identify true positives) and

specificity (i.e., the ability to correctly identify true negatives). We selected

the threshold for each age range by finding the point on the ROC curve

that maximizes Youden’s J statistic (Sensitivity + Specificity - 1) for each age

group. This method ensures that we achieve the highest possible accuracy

in classifying children. The optimal thresholds were found to be 0.32 for 3-4

year-olds, 0.38 for 4-5 year-olds, and 0.40 for 5-6 year-olds.

In an effort to enhance the accuracy of our classifier, we conducted addi-

tional tests. First, we explored the impact of random weight initialization on

our model’s performance. Previously, the model’s weights were initialized

to zero, but for these tests, we initialized the weights randomly. We trained

the model 10 times with different random initialization for the first group

of children (aged 3-4 years) without using k-fold cross-validation. This ap-

proach was intended to evaluate the potential benefits of random initializa-

tion. The trained models were then tested on a separate test set containing

both TD children and children with DLD. We compared the performance of

each classifier to assess the impact of random weight initialization.
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Figure 6.4: ROC plot for the mean probability of children in the test set of the 3
to 4 years old

Testing random weight initialization is interesting because it can help

avoid issues related to poor convergence that might occur with weights ini-

tialized to zero. Randomly initializing weights can lead to different starting

points for the training process, potentially improving the robustness and

overall performance of the model.

Next, we examined the effect of varying the L2 regularization parameter.

L2 regularization helps to prevent overfitting by penalizing large weights,

thereby encouraging the model to learn simpler, more general patterns.

The default variance for L2 regularization in our implementation was set

to 1000. To determine if a lower variance would improve performance, we

ran the model with variances ranging from 1000 down to 100, decrementing

by 100 each time, while keeping the weights initialized to zero. The trained

weights for each variance were then tested on our test set, and we compared

the performance across different variances.
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Figure 6.5: ROC plot for the mean probability of children in the test set of the 4
to 5 years old

Testing lower variance values for L2 regularization is interesting be-

cause a high variance might be too lenient, allowing the model to overfit

the training data. Conversely, a lower variance increases the penalty for

large weights, which can help the model generalize better by preventing

it from fitting noise in the training data. By systematically decreasing the

variance, we aimed to find an optimal balance that minimizes overfitting

while maintaining good predictive performance.

However, in both sets of experiments—random weight initialization and

varying L2 regularization variances—we found no significant differences in

performance compared to our baseline model (with weights initialized to

zero and a regularization variance of 1000). Consequently, we concluded

that re-training the model with k-fold cross-validation, incorporating these

modifications, would not yield any additional benefits, as all tests returned

similar performance.
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Figure 6.6: ROC plot for the mean probability of children in the test set of the 5
to 6 years old

The fact that initial values and regularization values did not have an

impact essentially means that our models do not rely extensively on these

values. Moreover, as the results stayed the same, it indicates that our results

are robust. The non-existent impact of modifying the initial weights or the

variance of the L2 regularization can be explained by the fact that we did

not specify any hidden structure, such as syllabic structure, in our MaxEnt

models so the optimization space is likely convex with a single optimum. In

this study, the input given to these models implemented relatively few con-

straints without any very complex constraint interactions, so the weighting

conditions for the constraints to arrive at the correct pattern should not be so

complex that regularization can prevent the algorithm from finding them.
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7.1 Limitations and further work

Data Limitation

One significant limitation of our study was the lack of access to audio

data, which prevented the integration of prosodic information into our

analyses. The small sample size also limited the power of our statistical

analyses, resulting in few significant effects being observed, even though

such effects have been demonstrated in previous studies comparing typ-

ically developing (TD) children and those with developmental language

disorder (DLD).

Classifier Performance

The limited size of our dataset also affected the training of our classifier,

which might explain its performance. Despite achieving a reasonable per-

formance with the small dataset and by analyzing only four phonological

processes (PPs), the classifier’s accuracy could be improved by including

more PPs, providing a richer set of information for classification.

Models Implementation

While our models do not require extensive computational resources

and can be run on a local laptop, they are not yet user-friendly for speech

and language pathologists (SLPs) in their current form due to the lack

of a designed interface. These models are not integrated with existing

diagnostic tools, which is an area for future work. However, they hold

potential to aid in clinical decision-making once these usability issues are

addressed.
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Generalizability and Applicability

Our models can be generalized to any phonetic transcription with refer-

ence and prediction words, allowing for direct phonetic analysis rather than

relying solely on pseudo-phonetic transcriptions. Even if, for the purpose of

this research, an algorithm has been developed to convert pseudo-phonetic

transcriptions into real phonetic ones as a pre-processing step if needed.

However, the current approach is limited to matching word pairs and does

not accommodate spontaneous speech, which should be explored in future

work.

Additionally, while our models were tailored for Dutch, they could po-

tentially be adapted to other languages, except for the phonetic conversion

component. The architecture of the models is supposed to make them ro-

bust to variations in input data quality, such as differences in pronunciation

accuracy or dialectal variations, but this needs further investigation and

training with more diverse data to confirm.

Interpretability

The LD-BFS and the algorithm outputting the PPs are designed to be

highly interpretable, making their outputs accessible to other researchers

and clinicians.

The MaxEnt model, however, requires plotting on a ROC curve to

determine an optimal threshold. Users must then calculate the mean

probability of all words pronounced by a child to obtain a result, which is

not straightforward. Nonetheless, with proper explanation, the outputs can

be interpreted easily.

Futures Directions

Future work should focus on several key areas to enhance the robustness

and applicability of our models.

Integrating prosodic information by gaining access to audio data would

allow for a more comprehensive analysis, capturing features beyond seg-
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mental phonology. Using, for example, tools such as PhonChild [43] or

AASP [44], allowing the analysis of phonetic transcriptions along with

speech audio to augment the transcription with more comprehensive

prosodic annotations.

Increasing the sample size is critical, as larger datasets would improve

the power of our statistical analyses and the performance of our classifier.

Additionally, enhancing the usability of the models is essential. Collab-

orating with professionals who specialize in developing user-friendly in-

terfaces and integrating these models with existing diagnostic tools could

make them more accessible and practical for SLPs. Such interdisciplinary

collaboration would ensure that the models developed in this research can

be effectively implemented in clinical settings.

Expanding the analysis to include more PPs could provide a richer set of

information, improving the classifier’s accuracy.

Adapting the models to handle spontaneous speech, rather than just

matching words, could offer more naturalistic insights into children’s lan-

guage abilities.

Moreover, cross-linguistic adaptation of the models would broaden their

applicability, allowing for use with different languages and dialects.

Moreover, another direction would be to develop a longitudinal model

by exploring how the frequency of examples encountered influences the

ranking of the Optimality Theory constraints. This exploration could model

a gradual transition from one stage of language acquisition to another.

Finally, further research is needed to evaluate the models’ robustness

to variations in input data quality, such as differences in pronunciation

accuracy or dialectal variations, ensuring they can perform reliably across

diverse scenarios.

Therefore, while our models show promise, particularly in terms of in-

terpretability and low computational demands, there is significant scope for

enhancing their practical application and performance through further de-

76



7.2 Conclusion

velopment and validation.

7.2 Conclusion

This research aimed to use a combined analysis of phonological processes

and classification outcomes to support speech and language pathologists in

their diagnostic and decision-making process for tailored therapy regarding

children’s language development and impairment.

We used a non-word repetition task dataset provided by Auris from

Dutch typically developing children and children with developmental lan-

guage disorder between age 3;0 and 6;3.

As no current automatic method is able to phonetically transcribe

(Dutch) child speech, we used the existing pseudo-phonetic transcription

given by Auris and automatically translated it into real phonetic transcrip-

tion. If this pseudo-phonetic transcription has limits when transcribing

spontaneous speech, as the non word repetition task uses pseudowords

designed by researchers, with each grapheme representing one exact

phoneme, we were able to automatically transcribe the pseudo-phonetic

into real phonetic as input to our models. This allowed us to prepare our

models for future integration with automatic speech recognition systems.

In this research, we first aimed to accurately model phonological

processes from phonetic transcriptions of Dutch children’s speech. By

employing Levenshtein distance and Breadth-First Search algorithms, we

successfully identified four common phonological processes: final conso-

nant deletion, stopping, fronting, and gliding. This modeling provided

detailed and interpretable analyses for individual children and age groups.

Secondly, we investigated whether the modeled phonological processes

could accurately distinguish between typically developing children and

those with developmental language disorder (DLD) in our data. The statis-

tical analysis of the phonological processes alone did not reveal significant
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differences between these groups, likely due to the limited dataset and the

narrow scope of analyzed processes.

Thirdly, we assessed the effectiveness of a classifier trained on the mod-

eled phonological processes in distinguishing between typical children and

those with DLD. Our Maximum Entropy classifier demonstrated promising

accuracy, with performance ranging from 73% to 91%. This suggests that

such a classifier can be an effective tool for distinguishing between typical

children and those with DLD, especially when refined and supported by

larger datasets.

Fourthly, we examined the reliability of the modeled phonological

processes and classifiers across different age groups of Dutch children. Our

findings indicated that the accuracy of classification improves with age,

highlighting the potential for more reliable diagnostics in older children.

Despite the challenges and limitations, this research provides a solid

foundation for future work in automated phonological process analysis and

classification in child speech, aiming to support tailored therapeutic inter-

ventions for children with language impairments.
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Appendices
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Figure A.1: Processes applied by the Dutch phonologically impaired children,
with examples from Beers [17] data
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B. Appendix B
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Figure B.1: Target Words
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C. Appendix C

Figure C.1: Shapiro Wilk Test
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Figure C.2: Visualisation of the use of the percentage of pronounced words
across age and groups
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Figure C.3: Visualisation of the percentage of use of the final consonant dele-
tion process across ages and groups
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Figure C.4: Visualisation of the percentage of use of the fronting process across
ages and groups
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Figure C.5: Visualisation of the percentage of use of the stopping process
across ages and groups
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Figure C.6: Visualisation of the percentage of use of the gliding process across
ages and groups

Figure C.7: Spearsman Correlation Matrix for children across all ages present-
ing the correlation between the different percentage of phonological processes
use and age
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Figure C.8: Spearsman Correlation Matrix for 3-4 years old children present-
ing the correlation between the different percentage of phonological processes
use and age

Figure C.9: Spearsman Correlation Matrix for 4-5 years old children present-
ing the correlation between the different percentage of phonological processes
use and age

Figure C.10: Spearsman Correlation Matrix for 5-6 years old children present-
ing the correlation between the different percentage of phonological processes
use and age
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