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Abstract 

This study contributes to the emerging biodiversity finance literature by examining how biodiversity risks 

are reflected in the pricing of European stock markets and the impact of biodiversity-related policies on this 

risk premium. Using a panel data set of 4093 European companies from 2019 to 2023, biodiversity risk 

levels are measured at the company level and integrated into the asset pricing model with a new high-minus-

low biodiversity risk factor (HLBR). The Carhart 4-factor style panel regressions on individual companies 

and decile portfolios sorted by biodiversity risk show that higher biodiversity risks necessitate compensation, 

leading to higher excess returns. The Difference-in-Difference model results indicate that following the 

Kunming Declaration and the launch of the TNFD, biodiversity risk pricing increased more steeply for 

high-risk companies than for low-risk ones. However, heterogeneous effects are observed in quantile 

portfolios sorted by industry and biodiversity risk level, indicating variability in how biodiversity risks impact 

returns across different industries. 
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1. INTRODUCTION 

 

"Destroy nature, and you destroy the economy," stated Frank Elderson, member of the ECB’s Executive 

Board, during an interview with the Financial Times (Arnold, 2023). In an era where the interconnection 

between ecological health and economic stability is becoming increasingly clear, the direct risks of climate 

change are no longer the only threats we face. Biodiversity, the variety of living species within ecosystems, 

is declining at an alarming rate (Garel et al., 2023). Given that more than half of the world's GDP depends 

on nature's services, this degradation emerges as a global economic crisis with far-reaching implications for 

human well-being (United Nations, 2022; World Bank, 2020). The biodiversity loss is evident in the 

observed 69% decrease in wildlife populations between 1970 and 2018, ranging from large mammals and 

birds to insects and amphibians (WWF, 2022). Simultaneously degrading soil and land quality further 

exacerbates these negative environmental trends (UNCCD, 2022). These events are a direct result of our 

ongoing human activities, such as habitat destruction, resource overexploitation, pollution, and land usage 

(Calice et al., 2023). Consequently, the urgency of these environmental changes has now pushed us beyond 

the planetary boundary for biodiversity loss (Rockström et al., 2009; Steffen et al., 2015).  

As a response to these challenges posed by biodiversity loss, new regulations on biodiversity are 

being introduced. Notably, the Kunming-Montreal Global Biodiversity Framework, launched in December 

2022 following the United Nations Biodiversity Conference (COP15), seeks to reverse biodiversity 

degradation. The commitment to this policy requires businesses to evaluate their impact on biodiversity and 

set ambitious targets, including protecting 30% of land and marine ecosystems by 2030 (United Nations 

Environment Programme, 2022). Also, in September 2023, the first version of the Taskforce on Nature-

related Financial Disclosures (TNFD) was formed to provide a framework for businesses and financial 

institutions to disclose nature-related risks and opportunities. Therefore, it is no longer possible to ignore 

how companies’ core operations are affecting, and being affected by, biodiversity loss and the accompanying 

consequences of stricter climate policies. The behaviour of businesses is under increasing scrutiny, and 

investors must pay closer attention to the additional biodiversity risks that may impact asset valuation in 

their portfolios. However, climate change risks have received comparatively more attention in sustainable 

finance studies than the risks directly connected with biodiversity loss and ecosystem degradation, despite 

their interrelation. 

A wide range of research has already enhanced our understanding of climate risks within financial 

markets, particularly highlighting how risks associated with carbon emissions are priced differently between 

carbon-intensive and low-carbon companies (Alessi et al., 2021; Bolton & Kacperczyk, 2021b; Choi et al., 

2020; Görgen et al., 2020; Hsu et al., 2023; In et al., 2019). Moreover, it is suggested by empirical evidence 

that polluting stocks react more negatively than clean stocks to climate policies, implying a possible carbon 

risk premium (Hsu et al., 2023; Monasterolo & De Angelis, 2020; Nguyen, 2020). Finally, it has been 

suggested that the impact of climate change news on stock prices primarily reflects rising investor concerns 

about climate issues, which supports the evidence of the growing market sensitivity to environmental risks 

(Engle et al., 2020; Pástor et al., 2022; Pedersen et al., 2021). 
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Despite biodiversity loss being increasingly recognised as a potential source of financial risk 

(NGFS-INSPIRE, 2022), the connection between biodiversity risk and financial markets has long been 

overlooked by researchers in economics and finance. This might be due to the complex nature of 

biodiversity, which derives from a variety of sources and processes, making it hard to fully catch the 

relationships between species, ecosystems, and humans. Therefore, compared to the more straightforward 

measurable climate risks through carbon emissions, the value of biodiversity is too multifaceted to be 

captured by a single metric (Cherief et al., 2022).  

Nevertheless, there has been a modest emergence of biodiversity finance literature attributed to 

studies by the Dutch and French Central Banks, which have sparked interest in how the financial sector 

handles risks associated with biodiversity loss (Svartzman et al., 2021; Van Toor et al., 2020). More recently, 

several studies have responded to Karolyi and Tobin-de la Puente's (2022) call for research by exploring 

how biodiversity loss risks are framed and priced, highlighting their significance as a new dimension of risk 

(Becker et al., 2023; Cherief et al., 2022; Conqueret et al., 2024; Garel et al., 2023; Giglio et al., 2023; Hoepner 

et al., 2023; Soylemezgil & Uzmanoglu, 2024; Xin et al., 2023, Xiong et al., 2023). This has resulted in the 

first developments of new measures to quantify biodiversity risks and the identification of a biodiversity risk 

premium, particularly evident in the US market since 2021 (Conqueret et al., 2024; Giglio et al., 2023). 

Despite a lack of impact on global stock returns between 2019 and 2022, stocks with significant biodiversity 

risk saw a notable decrease in asset values directly following the Kunming Declaration in October 2021 

(Coqueret et al., 2024; Garel et al., 2023). Over the longer term, these riskier stocks yield higher returns, 

indicating a positive biodiversity risk premium driven by increasing investor awareness and regulatory risks. 

Given that existing studies have primarily focused on global or US stock markets, this study will 

specifically contribute to the expanding field of biodiversity asset pricing by focusing on the European stock 

market. There is an increase in biodiversity-related regulations in Europe, exemplified by the European 

Commission's 2022 Nature Restoration Law, a key component of the EU Biodiversity Strategy 2020 with 

binding restoration targets. This law reflects heightened concern for biodiversity loss in Europe and 

underscores a relevant research opportunity in this geographical area. Additionally, this study addresses the 

need for more precise methodologies to measure company-level biodiversity risks, moving beyond sector-

based analyses that often overlook location-specific factors (Cherief et al., 2022). In conclusion, the asset 

pricing approach has never been used to examine the pricing of biodiversity risks in the European market 

using a company-level methodology, leading to a highly interesting literature gap. This sets the fundamentals 

for formulating the following research question: "How is biodiversity risk reflected in the pricing of 

European stock markets, and to what extent do biodiversity-related policies influence this risk premium?". 

This study uses a data set of 4,093 European companies from 2019 to 2023 to comprehensively 

review the entire European market. A multi-step approach is employed to estimate the biodiversity risk 

premium, allowing the research question to be divided and addressed in various stages. First, a long-short 

portfolio is created by incorporating the high-minus-low biodiversity risk factor (HLBR) into the CAPM, 

Fama-French, and Carhart 4-factor models. Next, panel regressions are conducted using data from 

individual companies across the different asset pricing models, including the HLBR factor. This analysis is 

further refined using the Fama-Macbeth procedure to evaluate investor perception of biodiversity as an 
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investment risk and to identify evidence for the biodiversity risk premium. Subsequently, decile and quantile 

portfolios are constructed based on high and low biodiversity risks, considering company-specific 

dependency and impact on biodiversity, as well as industry classifications. These portfolios are analyzed 

using a Carhart 4-factor model regression. Finally, a Difference-In-Difference (DID) approach is employed 

to assess shifts in the biodiversity risk premium following the October 2021 Kunming Declaration and the 

Taskforce on Nature-related Financial Disclosures (TNFD) in June 2021. 

The findings show that higher biodiversity risks lead to higher excess returns, as demonstrated in 

Carhart 4-factor style regressions on individual companies and decile portfolios. Following the Kunming 

Declaration and the TNFD launch, biodiversity risk pricing increased for high-risk companies. However, 

quantile portfolios sorted by industry and biodiversity risk level show heterogeneous effects across 

industries. Finally, no significant abnormal returns were found, indicating no evidence of a standalone 

biodiversity risk premium. 

The remainder of this study is structured as follows. In Section 2, the most critical literature is 

reviewed. Next, Section 3 discusses the theoretical framework. Section 4 consists of two parts: a description 

of the data and the different methodological approaches. Section 5 presents the results and interpretation. 

Finally, Section 6 contains the discussion and conclusion. 

 

 

2. LITERATURE REVIEW 

 

This section first explores the concept of biodiversity risks and their components, followed by an overview 

of biodiversity-related regulations. It concludes with a review of the existing literature on how biodiversity 

risk is priced in the financial markets. 

 

2.1 Biodiversity risks 

Ecosystem services serve as a starting point to define and understand the relationship between biodiversity 

risks and financial markets. It emphasises the essential role that biodiversity plays in maintaining the health 

and productivity of ecosystems (Flammer et al., 2023). These ecosystems provide crucial services such as 

nutrient cycling, animal pollination, water filtration, climate regulation, and the production of food and 

nature-based materials, which are vital for sustaining economic activities and human prosperity (Giglio et 

al., 2023; Van Toor et al., 2020). In addition to the negative impact of biodiversity degradation on these 

ecosystems' functionality, the economic and financial sectors must also recognise biodiversity loss as a 

serious cost (Becker et al., 2023).  

 Biodiversity loss creates a twofold financial risk for companies. There is a risk associated with their 

dependency on ecosystem services, also referred to as physical risk, and a risk associated with their impact 

on biodiversity, known as transition risk (Conqueret et al., 2024; Giglio et al., 2023; NGFS- INSPIRE, 2022; 

Van Toor et al., 2020). In literature, this two-way relationship is known as the double materiality principle 

of biodiversity (Becker et al., 2023; Schrapffer et al., 2022). In other words, companies whose activities 
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depend on ecosystem services might, through their operations, inadvertently contribute to the degradation 

of those services (Calice et al., 2023).  

First, as indicated by various studies, there is financial risk associated with physical dependencies 

on nature (Becker et al., 2023; Calice et al., 2023; Giglio et al., 2023; Soylemezgil & Uzmanoglu, 2024; Van 

Toor et al., 2020; Xin et al., 2023). When firms cannot rely on ecosystem services, their operational costs 

may rise, their production process efficiency may suffer, and their overall ability to generate revenue may 

be compromised (Van Toor et al., 2020). For instance, a disruption in natural pest control could increase 

crop damage and reduce agricultural output, necessitating costly chemical alternatives. This increase in 

operational costs and reduction in productivity can lower the company's value and impact its ability to meet 

financial obligations (Cherief et al., 2022). As a result, the overall financial condition of the firm can degrade, 

highlighting the interdependence between businesses, biodiversity and the services they rely on (Van Toor 

et al., 2020). 

 In addition to these physical risks for businesses, corporate activities also conversely pose a threat 

to biodiversity. Interestingly, the companies that depend most heavily on biodiversity for their production 

do not necessarily have the greatest impact on it. However, the agricultural and forestry products industry 

is an exception, noted for being both one of the most dependent industries and one with the highest impact 

on biodiversity (Cherief et al., 2022). Intensive agriculture and forestry in Europe have led to a significant 

decline in ecosystem services like water purification, pest control, and pollination over the past 50 years 

(Becker et al., 2023). Practices such as heavy tillage and burning crop residues have further degraded 

biodiversity by destroying habitats and soil life, impacting the ecosystem's functionality (Cherief et al., 2022). 

Therefore, it is essential to mitigate this ecosystem damage to maintain the services they provide for 

businesses. These impacts on biodiversity can lead to transition risks as businesses face new regulatory 

changes and shifting societal expectations that force them to adjust. The literature indicates that such risks 

intensify as regulators implement stricter laws to prevent further disruption of biodiversity (Calice et al., 

2023; Giglio et al., 2023; Van Toor et al., 2020). New policies, including sustainable forestry and land-use 

regulations, have been introduced to safeguard biodiversity in newly designated protected areas. 

Consequently, businesses that harm biodiversity within these areas may encounter higher costs or face 

outright prohibitions, requiring them to adapt or relocate their operations (Giglio et al., 2023; Van Toor et 

al., 2020). Additionally, regulations will mandate legally binding biodiversity targets and disclosure of 

companies' environmental impacts, which potentially increase costs (Becker et al., 2023; Soylemezgil & 

Uzmanoglu, 2024). Technological advancements and shifting consumer preferences toward lower 

biodiversity impact also create transition risks, challenging companies to transform (Calice et al., 2023; 

Giglio et al., 2023; Van Toor et al., 2020). In conclusion, businesses that significantly impact biodiversity 

will need to confront a new reality.  

The two risks—physical and transition—merge into a company's overall biodiversity risk. These 

risks are intertwined; higher physical risks necessitate a more urgent transition to mitigate ecosystem decline. 

Delaying this transition increases physical risks, leading to the need for a shorter, more abrupt transition 

period, heightening the transition risks (Van Toor et al., 2020). 
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2.2 Regulatory landscape for biodiversity 

Domestic and international policies are integral to transitioning towards an economy that sustains 

biodiversity. As aforementioned, biodiversity loss is becoming an increasingly critical issue on global policy 

agendas, leading to consequences for businesses that negatively impact biodiversity (Van Toor et al., 2020).  

The focus on biodiversity protection began with Agenda 21 at the 1992 Earth Summit in Rio de 

Janeiro, but it quickly became clear that greater urgency was required. That same year, the European Union 

introduced the Habitats Directive, designed to safeguard natural habitats and wild flora and fauna (Cherief 

et al., 2022). Additionally, in the past years, the UN Convention on Biological Diversity (CBD) has 

established international agreements to expand protected nature areas worldwide, mitigate the causes of 

biodiversity loss and encourage sustainable ecosystem use (Van Toor et al., 2020). Most recently, the 

Kunming-Montreal Global Biodiversity Framework was established following the 15th Conference of 

Parties to the UN Convention on Biological Diversity in October 2021. This framework marks a significant 

development within the landscape of biodiversity-related policies and sets a transformative plan to halt and 

reverse biodiversity loss through financial flows by 2030. Moreover, the framework enhances measurable 

accountability by setting both qualitative and quantifiable targets, such as protecting 30% of Earth's lands 

and oceans, reducing harmful biodiversity subsidies by $500 billion annually, and increasing funding for 

conservation (Cherief et al., 2022; Soylemezgil & Uzmanoglu, 2024). This allows for more effective 

monitoring, disclosure and enforcement.  

Zooming in on Europe, in 2020, the European Commission launched the European Green Deal, 

outlining a roadmap for Europe to achieve climate neutrality by 2050. An essential component of this deal 

is the Biodiversity Strategy, which includes creating an extensive network of protected zones and 

rehabilitating degraded ecosystems via initiatives such as afforestation and pesticide reduction (Xin et al., 

2023). Two years later, in 2022, an important milestone was achieved with the approval of the Corporate 

Sustainability Reporting Directive (CSRD) by the European Parliament and the Council of the European 

Union. As a component of the European Green Deal, this directive enhances the transparency of 

sustainability information provided by companies. It introduces 'double materiality,' mandating firms to 

disclose how sustainability issues affect their finances and their operations' impacts on society and the 

environment, including biodiversity (Becker et al., 2023). Focusing specifically on the Netherlands, the 

"Strengthening Biodiversity" initiative is a government program designed to improve the country's 

biodiversity health by reducing the ecological footprint by 50% by 2050 (Van Toor et al., 2020). The 

program prioritises restoring natural habitats, adopting sustainable agricultural practices, and incorporating 

biodiversity considerations into urban planning. 

Lastly, it is important to note that reporting nature-related risks is also receiving increasing attention 

at a global level. Following the Task Force on Climate-related Financial Disclosures (TCFD), the Task Force 

on Nature-related Financial Disclosures (TNFD) was launched in June 2021. This initiative provides 

financial institutions, corporations, and their investors with a framework to report and act on evolving 

nature-related risks (Xin et al., 2023).  

The literature identifies two significant policy events closely related to biodiversity, on which this 

study will further focus. Following research such as Garel et al. (2023) and Soylemezgil & Uzmanoglu (2024), 
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the Kunming-Montreal agreement and the TNFD are used to strengthen the evidence of the pricing of 

biodiversity risk. 

 

2.3 The pricing of biodiversity risk  

The significance of the two-sided biodiversity risk is underscored by the recent survey of Giglio et al. (2023) 

involving finance professionals and policymakers worldwide. Findings revealed that 70% of the respondents 

recognised the financial materiality of both physical and transition biodiversity risks for U.S. firms. The 

question arises whether investors are pricing these financial risks associated with biodiversity loss and 

incorporating them into their capital allocation decisions. Researchers have worked along different lines to 

assess whether biodiversity risks are priced.  

 First, several studies compared firms' stock returns with high versus low biodiversity risk exposure, 

providing evidence of a biodiversity risk premium (Coqueret et al., 2024; Garel et al., 2023; Giglio et al., 

2023; Xin et al., 2023). The study by Giglio et al. (2023) marked the beginning of quantitative analyses of 

news-based biodiversity risk. It used the method of forming portfolios of U.S. firms sorted by their industry-

level biodiversity risk exposure. These portfolios demonstrated that returns fluctuated in response to 

biodiversity news; when unfavourable news about biodiversity emerged, industries with high exposure to 

physical and regulatory risks experienced a more substantial drop in valuations than those with less exposure. 

This behaviour suggested that biodiversity risks were already factored into market prices.  

These findings were complemented by the work of Garel et al. (2023), who quantified biodiversity 

risks using the Corporate Biodiversity Footprint (CBF), a measure developed by Iceberg Data Lab (2023). 

This metric solely evaluated the negative impacts of corporate activities on biodiversity but excluded data 

on the physical risks from biodiversity loss. Using an international sample, they employed a characteristics-

based approach to examine the relationship between the CBF and the associated monthly returns between 

2019 and 2022. They showed that initially, stock prices of firms with a large CBF decrease following 

significant biodiversity-related policy announcements (Kunming, TNFD), reflecting immediate market 

adjustments to anticipated regulatory costs. However, over time, these stocks exhibited higher returns, 

indicating a positive biodiversity risk premium due to increased investor awareness and regulatory risks. 

 Similar to the research by Garel et al. (2023), Coqueret et al. (2024) explored the impact of 

biodiversity risks on asset pricing using the Corporate Biodiversity Footprint (CBF). To assess the financial 

implications in the US market, they created a "green-minus-brown" factor, comparing companies at the 

sector level with low (green) versus high (brown) biodiversity intensity. Consistently, they found a marked 

shift after relevant regulatory announcements, with a focus on near-term expectations. Post-2021, stocks 

heavily impacting biodiversity have shown a negative return premium, reflecting immediate market concerns 

about their future valuation due to upcoming regulatory changes (Coqueret et al., 2024). 

 Additionally, Xiong et al. (2023) measured biodiversity risks by linking biodiversity loss incidents to 

corporate actions in the global equity market. The study constructed long-short portfolios based on firms' 

biodiversity risk exposures. These portfolios showed a significant 'biodiversity alpha' in the US market 

before the Kunming Declaration in October 2021. This became negative afterwards, indicating an initial 

underpricing of biodiversity risks that was later corrected.  
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 In the study by Xin et al. (2023), biodiversity risks were assessed using a composite measure derived 

from MSCI's ESG ratings, with their focus specifically on the critical biodiversity and land use issues. 

Conversely, this research found that neither the overall biodiversity scores nor the sub-components 

(exposure to and management of biodiversity risks) significantly predicted stock returns between 2013 and 

2020. 

Several significant insights stand out from the studies reviewed, which are particularly relevant to 

this research. Notably, there is an absence of consideration for physical risks associated with biodiversity 

loss in some measures. Also, there is a need to be more uniform in how biodiversity risks are measured, and 

there is little consensus on whether biodiversity risks positively, negatively, or negligibly impact stock values 

across these studies. Lastly, the studies primarily focus on U.S. firms or engage in broad global comparisons. 

This approach overlooks potential regional variations in how biodiversity risks are priced by markets, 

especially in less examined regions like Europe, where differing biodiversity concerns and regulatory 

frameworks could significantly influence risk profiles.  

Subsequently, some studies, including Becker et al. (2023), went beyond stock prices to examine 

the significance of biodiversity risks in financial instruments. They explored how lenders incorporated 

biodiversity risks into loan pricing, using the MSCI 'Geographic Segment Exposure to Fragile Ecosystems' 

indicator to assess corporate operations in sensitive areas. They refined these exposure scores by adjusting 

for revenue from each location, which offered a clearer picture of a company's involvement in ecosystem 

degradation. This approach revealed a significant positive correlation between firms' biodiversity exposure 

and syndicated loan pricing, especially in the EU, likely due to Europe's stricter environmental regulations 

(Becker, 2023). Furthermore, Cherief et al. (2022) used the Mean Species Abundance (MSA) index to assess 

biodiversity risks and their influence on corporate bond spreads. This analysis focused on the impact of 

acute biodiversity incidents in biodiversity-rich countries, such as toxic spills or natural disasters. They 

observed that bond spreads increased significantly after these events, reflecting the market's 

acknowledgement of a biodiversity risk premium. Similarly, Soylemezgil et al. (2024) investigated the 

corporate bond market in the U.S., using the biodiversity news index by Giglio et al. (2023) to measure how 

biodiversity risks influenced bond yield spreads. Their findings indicated that bonds with longer maturities 

from companies facing greater biodiversity risks exhibited wider yield spreads, with this effect intensifying 

following the adoption of the Kunming-Montreal Framework. 

Lastly, in the study by Hoepner et al. (2023), the researchers explored how non-climate 

environmental factors, including biodiversity, affected the credit risk profiles of infrastructure firms. The 

study employed qualitative ESG indicators, converted into numerical scores, to demonstrate that effectively 

managing biodiversity risks correlated with lower long-term credit risk, leading to more favourable 

conditions for long-term financing. 

In conclusion, multiple recent studies demonstrate that biodiversity risk is consistently integrated 

into market valuations, often as a positive biodiversity risk premium. This premium varies with regulatory 

shifts and public awareness, particularly following significant events like the Kunming Declaration and the 

launch of the TNFD. Beyond stock prices, biodiversity risks impact pricing across various other financial 

instruments, including corporate bonds and syndicated loans.  
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3. THEORETICAL FRAMEWORK 

  

This section outlines the underlying theories of asset pricing models and the pricing of biodiversity risks. 

The theories serve as a foundation for the hypotheses formulated for this study.  

 

3.1 Asset pricing theory 

The foundational theory underlying the literature review on asset pricing is the risk-return trade-off, which 

posits that riskier securities are priced lower and, therefore, offer higher expected returns. The Modern 

Portfolio Theory (MPT) by Markowitz (1952) introduces the concept of diversification and optimising the 

risk-return ratio within a portfolio. MPT emphasises that a portfolio's balance of risk and return should be 

optimised. This involves selecting a mix of assets that achieves the highest expected return for a given level 

of risk or the lowest risk for a given level of expected return (Markowitz, 1952). Sharpe's Capital Asset 

Pricing Model (CAPM), introduced in 1964, extended the MPT (1952) by formalising the relationship 

between expected return and risk through a single-factor model. In this model, the market risk premium is 

the sole factor affecting expected returns, with 'beta' representing a security's sensitivity to this premium.  

However, CAPM's simplicity as a single-factor model has prompted the development of more 

comprehensive models that account for various other risk factors affecting asset returns. The Arbitrage 

Pricing Theory (APT) introduced by Ross in 1976 offers a flexible alternative to CAPM by predicting asset 

returns through multiple macroeconomic factors rather than a single market portfolio. Consequently, multi-

factor models such as the Fama-French three-factor model (1992) include additional factors to capture the 

complexity of financial markets better. Specifically, it adds the size premium (small minus big companies, 

SMB) and the value premium (high book-to-market minus low book-to-market, HML) to the CAPM 

equation, significantly improving the model's explanatory power. Carhart (1997) expanded the three-factor 

model by adding a momentum factor, while Fama and French (2015) further extended it to include factors 

for profitability and investment. This multi-factor approach is especially relevant when considering the 

Efficient Market Hypothesis (EMH), which asserts that asset prices fully reflect all available information 

(Fama, 1970). It aligns with EMH by suggesting that several factors, rather than just market risk, can 

influence returns, which reflects the market's efficient response to diverse information sources.  

Currently, factor models are extensively utilised in asset pricing literature to examine the systematic 

factors that influence the cross-section of stock returns. Overall, a multitude of factors contribute to 

explaining stock returns, suggesting that environmental risks, including biodiversity, could also serve as a 

significant explanatory variable. 

 

3.2 Biodiversity risk and asset pricing 

Sustainable finance studies increasingly incorporate environmental risks into asset pricing models to 

enhance forecasting. Driven by a growing awareness of the importance of environmental, social, and 

governance (ESG) information in assessing risk and potential return, Pedersen et al. (2021) have introduced 

the concept of the ESG-efficient frontier. This concept redefines the traditional efficient frontier by 

integrating ESG metrics, enabling investors to optimise portfolios by balancing financial returns with 
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environmental risk management. Such adaptations ensure that asset prices reflect traditional financial 

metrics and that companies manage environmental risks effectively. By employing these refined models, 

investors can make more informed decisions and create 'greener' portfolios that closely align with their 

values and risk tolerances. Subsequently, this shift parallels the concept of an ‘equity greenium’ (Pástor et 

al., 2022). The equity greenium is supported by general equilibrium asset pricing models, which demonstrate 

that 'green' investors are prepared to accept lower expected returns for holding green stocks, particularly as 

the economy's shift towards a low-carbon future gains credibility (Alessi et al., 2021; Fama & French, 2007; 

Pástor et al., 2022; Pedersen et al., 2021). 

In contrast, so-called ‘sin stocks’, associated with industries like tobacco or fossil fuels, often 

command higher risk-adjusted returns due to their exclusion from sustainability-focused investment 

portfolios (Bolton & Kacperczyk, 2021a; 2021b). This phenomenon, identified by Hong and Kacperczyk 

(2009), suggests that ethical concerns, future regulatory risks, climate attention and potential public backlash 

create a need for higher returns to attract risk-tolerant investors. Additionally, the market segmentation 

theory suggests that widespread divestment from these companies increases the demand for higher 

premiums among remaining investors to compensate for the heightened risks of exclusion (Hong & 

Kacperczyk, 2009).  

Further, Pástor et al. (2022) explore the likelihood that green firms could outperform in the long 

term, especially if market trends persist in favouring sustainability and regulatory frameworks intensify their 

focus on environmental impacts.  

In conclusion, from an investor's perspective, it is increasingly crucial to incorporate environmental 

risk into portfolio selection decisions, aligning with sustainable finance theories. Therefore, this study aims 

to document a similar phenomenon concerning the expected returns of stocks with high biodiversity risk 

exposure. It will explore whether growing concerns about biodiversity loss and changing investor 

preferences, driven by biodiversity-related regulations, impact the expected stock prices of companies with 

varying levels of biodiversity exposure. 

   

3.3 Hypotheses      

Based on the literature, theories, and concepts discussed in the preceding sections, this study aims to answer 

the main question “How is biodiversity risk reflected in the pricing of European stock markets, and to what 

extent do biodiversity-related policies influence this risk premium?" through the following hypothesis.  

H1: Biodiversity risk is systematically priced into European stock markets. 

The first hypothesis establishes a foundation for examining how biodiversity risk is generally priced across 

the European market. Research by Coqueret et al. (2024), Garel et al. (2023), and Giglio et al. (2023) reveals 

that these risks are factored into stock valuations due to changing investor behaviour and regulatory focus. 

This is supported by theoretical models like the Fama-French multi-factor models (Fama & French, 1992; 

2015) and the ESG-efficient frontier by Pedersen et al. (2021), demonstrating market adaptation to 

comprehensive factors, including environmental risks. After establishing whether biodiversity risk is 

systematically priced into European stock markets through Hypothesis 1, Hypothesis 2 delves deeper into 

the nuances of how biodiversity risk impacts companies differently based on their exposure levels. 
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H2: Companies with higher exposure to biodiversity risks exhibit a higher biodiversity risk 

premium in their stock prices compared to those with lower exposure.  

The second hypothesis is supported by both mature and recent literature. Earlier research on climate risks 

by Bolton & Kacperczyk (2021a) indicates that investors require a premium for holding shares of high-

emission firms. Recently, Garel et al. (2023) found a positive premium for high biodiversity risk stocks, 

driven by growing investor awareness and regulatory pressures, further supporting this hypothesis. 

Following hypothesis 2, hypothesis 3 focuses on the differential impact of biodiversity risk across specific 

industries. 

 H3: The biodiversity risk premium is more pronounced in industries with high biodiversity risks. 

The third hypothesis is supported by several studies on climate risks. Bolton & Kacperczyk (2021b) 

observed that high-emission industries underperformed others, indicating a smaller carbon premium in less 

stigmatised sectors. Görgen et al. (2020) found that transitioning to a green economy negatively impacts 

"brown industries", reflecting their sensitivity to environmental risks. Building on the previous hypotheses, 

hypothesis 4 examines how new or stricter biodiversity policies are expected to impact biodiversity risk 

premiums. This hypothesis explores the influence of regulatory changes on the premiums associated with 

biodiversity risks. 

H4: The introduction or tightening of biodiversity-related policies has significantly increased the 

biodiversity risk premium for companies at greater risk of biodiversity loss.  

The fourth hypothesis aligns with Garel et al. (2023), which observed that stocks affecting biodiversity 

yielded higher returns following the Kunming-Montreal agreement and the TNFD. This supports earlier 

findings by Nguyen (2020) and Hsu et al. (2022), showing that polluting stocks generally react negatively to 

climate policy changes, suggesting an emerging carbon risk premium. Monasterolo & De Angelis (2020) 

also noted that low-carbon assets gained appeal after the Paris Agreement, reinforcing this trend. 

 

4. EMPIRICAL STRATEGY 

 

4.1 Data collection and description 

The European sample consists of 4,093 listed firms for which biodiversity and financial data are available 

over the years 2019 to 2023. Following the methodologies suggested by Cherief et al. (2022) and Garel et 

al. (2023), this approach adopts a shorter time frame. The lack of time series data on biodiversity necessitates 

limiting the study period. Additionally, the most significant recent global policy developments concerning 

biodiversity are included within this timeframe. The sections that follow discuss the collection and 

processing of biodiversity and financial data to form portfolios of the companies sorted by their biodiversity 

risk exposures. 

 

4.1.1 Biodiversity risk data 

Various metrics have recently been developed to assess companies’ dependency and impact on biodiversity 

(Coqueret et al., 2024). First, the ENCORE dataset examines how economic subsectors and production 

processes are exposed to natural capital. Second, in 2023, the Science Based Targets Network (SBTN) 
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launched a tool for companies to assess their impacts on nature and set nature-related targets. Third, the 

UN Environment Programme and S&P Global introduced the Nature & Biodiversity Risk dataset, and 

WWF launched the Biodiversity Risk Filter at the 2023 World Economic Forum (Flammer et al., 2023). 

Additionally, the IBAT alliance manages global biodiversity datasets such as the World Database on 

Protected Areas and the IUCN Red List of Threatened Species (Cherief et al., 2022). 

This study examines the WWF Biodiversity Risk methodology, which incorporates more than 50 

distinct data layers on biodiversity. It moves beyond the limited scope of sector-level biodiversity risk data 

used exclusively in previous studies, such as those by Toor et al. (2020) and Calice et al. (2021). It builds 

upon the widely used IBAT and ENCORE datasets and expands on location-specific analyses similar to 

those employed by S&P Global and SBTN. This approach generates a comprehensive biodiversity risk score 

for each European company, reflecting their physical and transition risks. The score is based on company 

site location, industry classification, materiality rating, and local biodiversity (WWF, 2023).  

The industry-specific dependency and impact on biodiversity of WWF are assessed using the 

ENCORE dataset, which rates sub-industries from ‘very high’ to ‘very low’ based on their performance. 

ENCORE links these scores to 86 business processes and 21 ecosystem services. For example, the ‘Small-

scale livestock (beef and dairy)’ process within the ‘Agricultural Products’ sub-industry is highly dependent 

on ecosystem services such as groundwater, soil condition, and flood and storm protection. This 

dependency results in a score calculated by evaluating potential disruptions and financial impacts from the 

loss of these ecosystem services on the sub industry. The impact score is further refined using supply chain 

data from SBTN and EXIOBASE, a detailed multi-regional input-output table that tracks environmental 

impacts from raw material extraction to production (‘cradle to gate’) (SBTN, 2020). This study uses the 

GICS industry classification to link the companies in the sample with the WWF’s industry classifications 

and associated scores. More details on the industry classifications, risk categories, indicators, and metrics 

for assessing the biodiversity risks are provided in Table A1 and A2 in the Appendix.  

The dependency and impact scores are adjusted based on the geographic location of the company's 

operations. This approach identifies whether each location faces a heightened risk of disrupting ecosystem 

services crucial to a specific company’s business activities (Van Toor et al., 2020). WWF (2023) uses 56 

global datasets to assess the biodiversity integrity of specific landscapes and seascapes. Building on Becker’s 

research (2023), this study uses geographical revenue-based weighting to provide a location-specific view of 

a company's involvement in biodiversity risks, a method also recommended by WWF (2023). The Revere 

Geographic Revenue (“GeoRev”) data, which captures the company’s revenue per geography in 

percentages, was obtained from FactSet. A limitation of using revenue as a proxy is that it may not accurately 

represent the physical assets within a country (WWF, 2023).  

Ultimately, the total physical and transition risk score, which assesses specific aspects of biodiversity 

at a particular site for a certain industry, ranges from 0 to 5. This study derives a company’s overall 

biodiversity risk score by aggregating these scores, weighted according to their business relevance and 

geographic location weights. The 75th percentile method is used both in the aggregation of indicators to risk 

categories and from risk categories to the two risk types. This approach alerts businesses that certain sites 

may be particularly vulnerable to biodiversity-related risks critical to their operations. This is crucial because 
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a single high-risk issue can significantly harm a company or its supply chain. Consequently, the total 

biodiversity risk score is an average of the physical and transition risk scores, according to the WWF 

Biodiversity Risk methodology (WWF, 2023). This score does not account for downstream dependencies 

and impacts, significantly underestimating the biodiversity risks due to companies lacking accurate, location-

specific supply chain data (Calice et al., 2023; Van Toor et al., 2020; WWF, 2023). Additionally, a limitation 

of the score is that it represents a point-in-time evaluation and is only as current as the underlying datasets 

of the biodiversity indicators (WWF, 2023). 

Table 1 shows the summary statistics of the biodiversity risks based on the year 2023. The number 

of companies (N) is based on the final dataset, where the companies with missing data for financial 

measurements have already been removed, described in the following section 3.2. Additionally, in Table A3 

and A4 in the Appendix, the distribution of the number of observations of all companies across industries 

and geographic locations is provided. 

 

Table 1: Summary statistics biodiversity risk scores 

Note: This table presents the summary statistics for the Total Biodiversity Risk, which is composed of the Total Transition Risk and 

the Total Physical Risk. These components are further subdivided into Physical Risk and Transition Risk based on the industry and 

geographic location of the companies in the final dataset. 

 

Variables 

(1) 

N 

(2) 

Median 

(3) 

Mean 

(4) 

St. Dev 

(5) 

Min 

(6) 

Max 

(7) 

Kurtosis 

(8) 

Skewness 

Total Biodiversity Risk 4093 2.827 2.923 0.365 1.525 3.893 -0.593 0.673 

Total Transition Risk 4093 2.804 2.907 0.411 1.625 4.267 -0.046 0.812 

Total Physical Risk 4093 2.837 2.939 0.373 1.425 4.085 -0.476 0.650 

Physical Risk – Industry 4093 1.900 2.141 0.648 1.550 4.000 -0.753 0.778 

Transition Risk – Industry 4093 2.083 2.374 0.744 1.750 3.917 -0.211 1.121 

Physical Risk – Geography 4093 3.676 3.738 0.327 0.000 4.780 4.965 0.605 

Transition Risk – Geography 4093 3.454 3.440 0.345 0.000 4.890 1.558 -0.150 

 

 

4.1.2 Financial data 

Month-end stock prices for all European companies from 2019 to 2023 are sourced from the FactSet 

database to calculate monthly stock returns, with adjustments for stock splits, spin-offs, and dividends. Data 

on common shares outstanding are also obtained from FactSet, which are used to calculate the absolute 

market capitalization by multiplying the total shares outstanding by the current market price per share. The 

relative market capitalization is necessary for calculating the new risk factor. After that, the historical month-

end yields of Germany’s 10-year Government Bonds, considered an appropriate risk-free rate for European 

data samples due to Germany’s stable credit rating and economic stability, are used for calculating the 

monthly excess returns. To further refine the analysis, the excess returns are winsorised at the 1st and 99th 

percentiles. This process adjusts extreme values in the dataset to mitigate the impact of potential outliers. 

Winsorising at these percentiles ensures the results are not skewed by extreme observations, thereby 

providing a more robust and reliable assessment of the excess returns. Furthermore, the STOXX 600 
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historical month-end data has been employed as a benchmark to compare the performance of stock returns. 

The STOXX 600 is a comprehensive European equity index that represents the performance of 600 

companies from 17 European countries, closely aligning with the sample used in this study. To merge all of 

this financial data from FactSet with the biodiversity risk scores, the company’s ISIN and CUSIP identifier 

codes, also obtained from FactSet, are used.  

Additionally, the Fama-French risk factors ‘SMB’ (Small Minus Big) and ‘HML’ (High Minus Low), 

along with the Carhart momentum factor ‘WML’ (Winners Minus Losers) are retrieved from the data library 

of French, K. R. (2024). Since the risk factors are calculated using excess returns in USD, it is necessary to 

convert the stock returns, the European market return, and the risk-free rate to USD to maintain 

consistency. This conversion prevents any currency mismatch that could distort the results and ensures that 

the creation of the new risk factor aligns with the data and methodology of French, K. R. (2024).  

This study controls for firm-specific characteristics by incorporating well-established control 

variables, consistent with methodologies in the literature that apply asset pricing models to assess the impact 

of environmental risks on stock returns. In line with the studies of Görgen et al. (2020) and Bolton & 

Kacperczyk (2021a), the control variables include the Natural logarithm of Total Assets, Book-to-Market 

Ratio, Leverage Ratio, Investment-to-Asset Ratio, and Natural logarithm of Property, Plant, and 

Equipment. By integrating these controls, the analysis accounts for various factors known to influence stock 

returns, ensuring a more robust examination of biodiversity risks. Furthermore, the Book-to-Market Ratio 

and Leverage Ratio are winsorised at the 5th and 95th percentiles to mitigate the impact of outliers. 

Table 2 presents the summary statistics of the input variables for the Fama-French three-factor 

model and the control variables. Due to missing values from the financial variables, the amount of 5715 

European companies had been narrowed to the final sample of 4093 companies over the period of January 

2019 to December 2023.  
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Table 2: Summary statistics of financial data 

 

Both absolute and relative market capitalizations show high kurtosis and skewness, indicating significant 

outliers and a long-tailed distribution. This study chose not to normalise the market capitalization data to 

maintain these outliers, as relative market capitalization is used solely for ranking companies in portfolio 

creation, and absolute market capitalization is provided as supplementary information. 

 

4.2 Methodology 

The methodology involves applying various models to estimate the biodiversity risk premium. First, a long-

short portfolio is constructed to generate the high-minus-low biodiversity risk factor (HLBR). Next, panel 

regressions on individual companies are conducted, followed by applying the Fama-Macbeth procedure for 

further refinement. Then, decile portfolios based on biodiversity risk levels are established. Subsequently, 

portfolios are categorised by industry, followed by the formation of quantile portfolios based on both 

industry and biodiversity risk levels. Finally, a Difference-In-Difference (DID) model approach measures 

shifts in the biodiversity risk premium following crucial policy developments. 

 

 

 

Note:  This table presents the summary statistics of the financial input data.  The Excess Return, the Market Cap and all Control Variables consist 

of data from 60 months of 4093 companies, resulting in 245580 observations (=N). The market return, risk-free rate, SMB, HML and WML risk 

factors cover the months between 2019 and 2023, consisting of 60 observations (=N). The (market) return is in excess of the risk-free rate, and 

the market capitalization is both in absolute and relative numbers.  

 

Variables 

(1) 

N 

(2) 

Median 

(3) 

Mean 

(4) 

St. Dev 

(5) 

Min 

(6) 

Max 

(7) 

Kurtosis 

(8) 

Skewness 

Financial Data         

Excess Return 245580 -0.0031 0.0044 0.1324 -0.3368 0.5032 2.3105 0.7136 

Absolute Market Cap 245580 230.86 3195.93 14366.77 0.0011 473537.8 221.85 12.471 

Relative Market Cap 245580 0.0018 0.0244 0.1084 7.68E-09 3.1162 198.97 11.963 

Log Total Assets 245580 6.5028 6.7031 2.5994 -7.667 17.4946 0.0331 0.2832 

Book-to-Market Ratio 245580 0.6537 0.8667 0.7328 0.0600 2.7671 0.5592 1.15072 

Leverage Ratio 245580 0.4864 0.8432 1.0138 0 3.8435 2.2271 1.7103 

Investments/Total Assets 245580 0.0061 0.1045 0.2550 -0.1182 1.4207 8.2551 3.0305 

Log PPE 245580 3.7080 3.4865 3.1417 -13.8343 12.4243 0.4048 -0.3886 

Risk-free Rate 60 -0.0021 0.0055 0.0130 -0.0077 0.0300 -1.1328 0.7626 

Market Return 60 0.0111 0.0028 0.0537 -0.1580 0.1706 1.1994 -0.1873 

         

Fama-French Risk Factors         

SMB 60 -0.2450 -0.1258 1.9179 -4.2200 5.0300 0.2819 0.3909 

HML 60 -0.5550 0.0547 3.6867 -11.300 12.090 2.6327 0.4631 

WML 60 0.7550 0.4703 3.9106 -18.390 8.5000 8.2652 -1.7548 
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4.2.1 The biodiversity risk factor 

Drawing on the methodologies of Coqueret et al. (2024), Giglio et al. (2023), Görgen et al. (2020), and Xin 

(2023), this study proposes to examine how biodiversity risks are reflected in stock prices through a 

biodiversity risk factor mimicking portfolio. Portfolios are constructed by sorting stocks based on their 

exposure to biodiversity risks, taking long positions in companies with high risk and short positions in those 

with low risk. The CAPM, Fama-French three-factor and Carhart four-factor model are extended by a risk 

factor to prove the biodiversity risk premium. The procedure used to construct the “High-minus-Low 

Biodiversity Risk” (HLBR) factor follows the UMD (momentum) factor methodology on the data library 

of French, K. R. (2024). First, six portfolios are created by sorting portfolios into two market capitalization 

and three biodiversity risks exposure groups. The breakpoints of the biodiversity risk exposure were the 

30th and 70th percentiles and are divided by the market capitalization median. Second, the HLBR factor is 

calculated through high biodiversity risks (HBR) and low biodiversity risks (LBR) stocks, sorted into small 

(S) and big (B) stocks. This leads to a small-high risk (SHR), big-high risk (BHR), small-low risk (SLR), and 

a big-low risk portfolio (BLR). The biodiversity risk exposure is based on the latest available data from the 

WWF Biodiversity Risk dataset (2023), following the study by Gimeno & Gonzalez (2022). They indicate 

that this can be considered a proper approximation of the HLBR factor assuming that environmental risks 

remain relatively stable over a long period. Also, reducing the risks from biodiversity loss is a long-term 

effort, which eliminates the need to balance portfolios annually. The following formula for the High-minus-

Low Biodiversity Risk (double sorted) portfolio is used:  

 

𝐻𝐿𝐵𝑅 =  
1

2
 (𝑆𝐻𝑅 + 𝐵𝐻𝑅) − 

1

2
 (𝑆𝐿𝑅 + 𝐵𝐿𝑅)               (1)                                                                                       

 

4.2.2 Panel Regressions  

This study employs multiple asset pricing models to assess the impact of biodiversity risk on stock returns 

for individual European companies from 2019 to 2023. Monthly excess returns are regressed using various 

models; each augmented with the newly constructed biodiversity risk factor (HLBR). The analysis includes 

three primary asset pricing models: the Capital Asset Pricing Model (CAPM), the Fama-French 3-Factor 

Model, and the Carhart 4-Factor Model. Each model is extended with the HLBR factor to examine its effect 

on stock returns. The following formula is used for the CAPM-based multi-factor regression, expanded 

with the HLBR factor: 

 

𝑟𝑖,𝑡 −  𝑟𝑓,𝑡 = 𝛼𝑖 +  𝛽1,𝑡(𝑟𝑚,𝑡 − 𝑟𝑓,𝑡) + 𝛽5,𝑡(𝐻𝐿𝐵𝑅)𝑡  +  𝜀𝑖,𝑡        (2) 

Where the dependent variable, (𝑟𝑖,𝑡 −  𝑟𝑓,𝑡), represents the excess return of stock I at time t, with Germany’s 

10-Year Government Bonds used as the risk-free rate. The constant, 𝛼𝑖, indicates the out- or 

underperformance of the individual stock. The independent variable, (𝑟𝑚,𝑡 − 𝑟𝑓,𝑡), represents the Market 

factor, defined as the return of the EuroStoxx600 Index in excess of the risk-free rate. The biodiversity risk 

factor is denoted by 𝐻𝐿𝐵𝑅 and the residual of the regression is given by 𝜀𝑖,𝑡. The beta estimates, 𝛽1 and 𝛽5, 

measure the sensitivity to the market and biodiversity risk factors, respectively. 
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Next, the CAPM model is expanded by including additional risk factors. The SMB factor indicates 

the size factor, measuring the excess return of small-capitalization stocks over large-capitalization stocks. 

The HML factor measures the excess return of value stocks over growth stocks. The WML factor, also 

known as the momentum factor, captures the phenomenon that stocks that have performed well in the past 

are likely to continue performing well, whereas stocks with poor past performance are likely to continue 

underperforming.  

The Fama-French 3-Factor Model includes 𝑆𝑀𝐵 and 𝐻𝑀𝐿: 

𝑟𝑖,𝑡 −  𝑟𝑓,𝑡 = 𝛼𝑖 +  𝛽1,𝑡(𝑟𝑚,𝑡 − 𝑟𝑓,𝑡) + 𝛽2,𝑡(𝑆𝐵𝑀)𝑡 + 𝛽3,𝑡(𝐻𝑀𝐿)𝑡 + 𝛽5,𝑡(𝐻𝐿𝐵𝑅)𝑡  +  𝜀𝑖,𝑡         (3) 

The Carhart 4-Factor Model further includes 𝑊𝑀𝐿: 

𝑟𝑖,𝑡 −  𝑟𝑓,𝑡 = 𝛼𝑖 +  𝛽1,𝑡(𝑟𝑚,𝑡 − 𝑟𝑓,𝑡) + 𝛽2,𝑡(𝑆𝐵𝑀)𝑡 + 𝛽3,𝑡(𝐻𝑀𝐿)𝑡 + 𝛽4,𝑡(𝑊𝑀𝐿)𝑡 +  𝛽5,𝑡(𝐻𝐿𝐵𝑅)𝑡  +  𝜀𝑖,𝑡       (4) 

Where the added coefficients, 𝛽3, 𝛽4, and 𝛽5, represent the portfolio’s sensitivity to the size, value, and 

momentum risk factors, respectively.  

The correlation matrix in Table 3 presents the relationships between the different risk factors of 

the asset pricing models used in the panel regressions. Notably, the biodiversity risk factor (HLBR) has a 

moderate negative correlation with the market factor (MRKTRf) (-0.245) and varying correlations with 

other factors such as SMB (-0.269) and HML (0.375). This indicates that the HLBR factor captures unique 

risks that are not explained by traditional market, size, and value factors. Initially, the Fama-French 6-factor 

model, which includes additional profitability (RMW) and investment (CMA) factors, was considered. 

However, high multicollinearity between HML and RMW (0.788) shown in Table A5 of the Appendix led 

to its exclusion. To mitigate multicollinearity and enhance robustness, the study used CAPM, Fama-French 

3-Factor, and Carhart 4-Factor models. VIF values in Table 4 confirmed acceptable multicollinearity levels 

for the Carhart 4-Factor model with HLBR, with a mean VIF of 1.729 and a standard deviation of 0.451, 

ensuring reliable regression coefficients. 

Table 3: Correlation matrix Carhart 4 Risk Factors + HLBR 

Note: This table presents correlation coefficients between the risk factors used in the 

Carhart 4-Factor model and the newly introduced biodiversity risk factor (HLBR). The 

correlations provide insights into the relationships and potential multicollinearity issues 

among the factors. 

Variables MRKTRf SMB HML WML HLBR 

MRKTRf 1 0.281 0.150 -0.595 -0.245 

SMB 0.281 1 -0.170 0.041 -0.269 

HML 0.150 -0.170 1 -0.522 0.375 

WML -0.595 0.041 -0.522 1 0.055 

HLBR -0.245 -0.269 0.375 0.055 1 
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Table 4: VIF values comparison asset pricing models 

Note: This table presents the Variance Inflation Factor (VIF) values for the different asset pricing 

models. The VIF values are used to assess the degree of multicollinearity among the predictors in 

the regression models. Lower VIF values indicate less multicollinearity, suggesting that the 

factors in the model are not highly correlated. 

VIF Asset Pricing Model N Mean St. Dev. Min Max 

FF 3-Factor  3 1.119  
0.036 1.077 1.144  

Carhart 4-Factor  4 1.700 0.477 1.183 2.276 

Carhart 4-Factor + HLBR 5 1.729 0.451 1.217 2.354 

 

Subsequently, several diagnostic tests were conducted to validate the robustness of the results. The Breusch-

Pagan Test indicated significant heteroscedasticity (Appendix, Table A6), necessitating robust standard 

errors. The Wooldridge Test revealed significant autocorrelation (Appendix, Table A7), justifying clustered 

robust standard errors. Lastly, following methodologies by Görgen et al. (2020) and Xin et al. (2023), country 

and industry fixed effects were included to control for unobserved heterogeneity, providing a more accurate 

estimate of the biodiversity risk factor. 

 

4.2.3 Fama-Macbeth Procedure 

Following the panel regression analysis, the Fama and Macbeth (1973) two-step procedure is employed to 

investigate the robustness of the findings further and determine if excess returns are affected by risk factors, 

including the biodiversity risk factor, over time. This method is advantageous as it accounts for time 

variability in coefficients, addresses cross-sectional dependency, and provides robust average risk premium 

estimates. In the first step, the procedure involves estimating the factor exposures by regressing monthly 

excess returns against the identified risk factors, with the inclusion of the control variables: 

 

𝑟𝑖,𝑡 −  𝑟𝑓,𝑡 = 𝛼𝑖 +  𝛽1,𝑡(𝑟𝑚,𝑡 − 𝑟𝑓,𝑡) + 𝛽2,𝑡(𝑆𝐵𝑀)𝑡 + 𝛽3,𝑡(𝐻𝑀𝐿)𝑡 + 𝛽4,𝑡(𝑊𝑀𝐿)𝑡 +  𝛽5,𝑡(𝐻𝐿𝐵𝑅)𝑡  +

 𝛽6𝑡(𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠)𝑡  +  𝜀𝑖,𝑡                 (5) 
 

In the second step, the study regresses monthly excess returns against the betas estimated in the first step 

to directly estimate the risk premiums for each factor. This stage tests the significance of the risk factors 

and reveals the premiums investors require for exposure to these risks: 

 

𝑟̂𝑖,𝑡 =  𝛾0,𝑡 + 𝛾1,𝑡𝛽̂1,𝑖 +  𝛾2,𝑡𝛽̂2,𝑖 + 𝛾3,𝑡𝛽̂3,𝑖 +  𝛾4,𝑡𝛽̂4,𝑖  + 𝛾5,𝑡𝛽̂5,𝑖  + 𝛾6,𝑡𝛽̂6,𝑖 + 𝜀𝑖,𝑡            (6) 

 

To ensure robustness in the first step of the Fama-Macbeth procedure, diagnostic tests were conducted. 

The Durbin-Watson Test checked for autocorrelation showed mean DW statistics of 1.98793 and 1.992464 

for models without and with fixed effects (Table 5), both within the acceptable range of 1.5 to 2.5. Despite 

these reassuring results, Newey-West standard errors were applied to correct for any potential 

autocorrelation and heteroscedasticity. Additionally, mean residuals were calculated every two years to check 

for omitted variables, with Table 6 showing residuals consistently close to zero, indicating no structural 
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effects. This stability confirms the model’s reliability and validates proceeding with the second step of the 

Fama-Macbeth regression. 

Table 5: Summary of Durbin-Watson statistics 

Note: This table presents the summary of Durbin-Watson statistics for the Fama-Macbeth models with and without 

fixed effects. The Durbin-Watson (DW) statistic is a measure of the presence of autocorrelation in the residuals from 

the regression analysis. The mean DW values for both models are within the range [1.5, 2.5], indicating no significant 

autocorrelation. 

 Mean DW Percentage within range [1.5, 2.5] 

Without Fixed Effects 1.98793 100% 

Fixed Effects 1.992464 100% 

 

Table 6: Average residuals every two years 

Note: This table presents the average residuals from the Fama-Macbeth models with and without fixed effects, measured 

over two-year intervals from 2019 to 2023. This helps in understanding the accuracy of the model predictions over time. 

 2019-2020 2021-2022 2023 

Mean Residuals Without Fixed Effects 1.410456e-19 4.806826e-19 2.603175e-19 

Mean Residuals Fixed Effects 3.053907e-17 -3.675201e-18 -3.656216e-17 

 

4.2.4 Decile Portfolio regressions  

Following the panel regressions on individual companies, the effect of the biodiversity risk factor is further 

examined using decile portfolios constructed based on biodiversity risk exposure, in accordance with the 

methodology outlined by Görgen et al. (2020). 

First, equally weighted stock returns are sorted into equal groups of 10%, based on their biodiversity 

risks exposures of the last available data of the WWF Biodiversity Risk dataset (2023). This categorization 

allows for an analysis of each portfolio’s risk exposure, with Decile 1 containing the top 10% of companies 

with the highest biodiversity risk and Decile 10 containing the bottom 10% with the lowest risks. The decile 

portfolios and the corresponding monthly excess returns are presented in Table 7. Initially, a multi-factor 

regression is performed without the HLBR factor to establish a baseline for the effects of traditional risk 

factors (market, size, value, momentum) on the decile portfolios: 

 

𝑟𝑖,𝑡 −  𝑟𝑓,𝑡 = 𝛼𝑖 +  𝛽1,𝑡(𝑟𝑚,𝑡 − 𝑟𝑓,𝑡) + 𝛽2,𝑡(𝑆𝐵𝑀)𝑡 + 𝛽3,𝑡(𝐻𝑀𝐿)𝑡  + 𝛽4,𝑡(𝑊𝑀𝐿)𝑡 + 𝜀𝑖,𝑡                   (7)                          

 

Where the dependent variable, 𝑟𝑖,𝑡 −  𝑟𝑓,𝑡, represents the excess return of the decile portfolio I at time t, 

where t is represented in months. The constant, 𝛼𝑖, indicates the out- or underperformance of the decile 

portfolio. The remaining independent variables and beta estimates, including the risk factors (MRKTRf, 

SMB, HML, WML), follow the same structure as in the previous panel regressions. 

 



   

 21 

Subsequently, the HLBR factor is introduced to the Carhart four-factor model to examine its unique 

impact on the decile portfolios and determine whether biodiversity risk is priced alongside the traditional 

factors:  

 

𝑟𝑖,𝑡 −  𝑟𝑓,𝑡 = 𝛼𝑖 +  𝛽1,𝑡(𝑟𝑚,𝑡 − 𝑟𝑓,𝑡) + 𝛽2,𝑡(𝑆𝐵𝑀)𝑡 + 𝛽3,𝑡(𝐻𝑀𝐿)𝑡 + 𝛽4,𝑡(𝑊𝑀𝐿)𝑡 + 𝛽5,𝑡(𝐻𝐿𝐵𝑅)𝑡 +  𝜀𝑖,𝑡          (8)                

 

Table 7: Summary statistics monthly excess returns decile portfolios 

Note: This table presents the summary statistics of the excess returns of the decile portfolios The total return covers all decile 

portfolios combined. The data include the months between 2019 and 2023, consisting of 60 observations (=N). 

Variables 

(1) 

N 

(2) 

Median 

(3) 

Mean 

(4) 

St. Dev 

(5) 

Min 

(6) 

Max 

(7) 

Kurtosis 

(8) 

Skewness 

Decile 1 60 0.548 0.454 6.130 -19.488 17.613 1.595 -0.246 

Decile 2 60 1.084 0.314 6.104 -18.080 19.214 1.566 -0.296 

Decile 3 60 0.984 0.616 6.178 -19.324 20.475 2.079 -0.124 

Decile 4 60 1.645 0.584 6.144 -14.754 17.049 0.216 -0.081 

Decile 5 60 1.639 0.620 6.418 -15.947 17.815 0.301 -0.025 

Decile 6 60 1.310 0.511 6.679 -16.996 19.048 0.425 -0.128 

Decile 7 60 0.991 0.279 6.432 -16.238 18.601 0.544 -0.143 

Decile 8 60 1.400 0.293 6.388 -18.526 17.362 0.809 -0.286 

Decile 9 60 0.980 0.389 6.658 -17.719 18.883 0.576 -0.194 

Decile 10 60 1.1897 0.326 6.372 -16.477 16.690 0.258 -0.206 

Total return 60 1.259 0.438 6.251 -17.354 18.274 0.840 -0.178 

 

Since linear regressions are deployed, several assumptions were tested for independence, linearity, normality, 

and homoscedasticity. Figures A10 and A11 in the Appendix present the diagnostic plots. The residuals are 

scattered without clear patterns, indicating a sufficient linear relationship. The Normal Q-Q plots show 

minor deviations at the tails, but most points lie close to the line, suggesting reasonable normality. Scale-

Location plots indicate a fairly constant spread, implying heteroscedasticity is not significant. Residuals vs. 

Leverage plots identify a few influential points, but they are not overly dominant. Overall, the diagnostic 

plots suggest that the linear regression model assumptions are largely met.  

Additionally, the Breusch-Pagan (BP) test and the Durbin-Watson (DW) test were conducted for the models 

with and without the HLBR factor (Tables A12 to A15 in the Appendix). The BP test p-values are above 

0.05, indicating no significant heteroscedasticity. The DW statistics are close to 2, suggesting no significant 

autocorrelation. These tests reinforce the validity of the linear regression models used in the analysis. 

 

4.2.5 Industry and quantile portfolio regressions 

In addition to decile portfolios, the effect of biodiversity risk on excess returns is analyzed within portfolios 

based on industry classification, in line with Görgen et al. (2020), using the GICS industry classification 

linked to WWF’s industry classifications. After that, quantile portfolios are formed by sorting stocks within 

industries and grouping them into quantiles based on biodiversity risk levels, following Giglio et al. (2023) 
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and Xin et al. (2023). In Table 8, the summary statistics for each industry, including the monthly excess 

returns, are presented. The following formula represents the multi-factor regression model applied to 

industry-level excess returns: 

 

𝑟𝑖,𝑡 −  𝑟𝑓,𝑡 = 𝛼𝑖 +  𝛽1,𝑡(𝑟𝑚,𝑡 − 𝑟𝑓,𝑡) + 𝛽2,𝑡(𝑆𝐵𝑀)𝑡 + 𝛽3,𝑡(𝐻𝑀𝐿)𝑡 + 𝛽4,𝑡(𝑊𝑀𝐿)𝑡 + 𝛽5,𝑡(𝐻𝐿𝐵𝑅)𝑡 +  𝜀𝑖,𝑡            (9) 

 

Where the dependent variable, 𝑟𝑖,𝑡 −  𝑟𝑓,𝑡, represents the excess return of industry I at time t, where t is 

represented in months. The constant, 𝛼𝑖, indicates the out- or underperformance of the specific industry 

portfolio. The remaining independent variables and beta estimates, including the risk factors (MRKTRf, 

SMB, HML, WML, HLBR), follow the same structure as in the decile portfolio regressions. 

Table 8: Summary statistics monthly excess returns industry portfolios 

Note: This table presents summary statistics for the monthly excess returns of industry portfolios from 2019 to 2023. The statistics include 

the number of observations (N = 60 months), median, mean, standard deviation (St. Dev.), minimum (Min), and maximum (Max) values for 

each industry. 

Industry 

(1) 

N 

(2) 

Median 

(3) 

Mean 

(4) 

St. Dev 

(5) 

Min 

(6) 

Max 

Water utilities /Service Providers 60 0.0063 0.0000 0.0615 -0.1707 0.1251 

Transportation Services 60 0.0055 0.0036 0.0680 -0.2067 0.2368 

Textiles, Apparel & Luxury Good Production 60 0.0147 0.0057 0.0711 -0.2156 0.2434 

Telecommunication services  60 0.0066 0.0001 0.0564 -0.1535 0.1421 

Paper & Forest Product Production 60 0.0117 0.0075 0.0626 -0.1377 0.1900 

Oil, Gas & Consumable Fuels 60 0.0035 0.0006 0.0714 -0.2257 0.2210 

Offices & Professional Services 60 0.0132 0.0044 0.0629 -0.1790 0.1860 

Metals & Mining 60 0.0040 0.0055 0.0717 -0.2077 0.1959 

Land Development & Construction 60 0.0094 0.0018 0.0598 -0.1834 0.1635 

Hospitality Services 60 0.0039 0.0026 0.0679 -0.2347 0.2366 

Health Care, Pharmaceuticals and Biotechnology 60 0.0030 0.0018 0.0609 -0.1501 0.1417 

General or Speciality Retailing 60 0.0083 0.0059 0.0761 -0.2191 0.1880 

Food Retailing 60 0.0088 0.0042 0.0496 -0.1028 0.1428 

Food & Beverage Production 60 0.0082 0.0029 0.0497 -0.1119 0.1404 

Fishing and aquaculture 60 -0.0002 -0.0113 0.0911 -0.2027 0.1996 

Electronics & Semiconductor Manufacturing 60 0.0108 0.0054 0.0736 -0.1775 0.1663 

Electric Energy Production – Solar, Wind 60 -0.0057 0.0095 0.0945 -0.2071 0.2276 

Electric Energy Production – Combustion  60 0.0071 0.0089 0.0600 -0.1334 0.1702 

Construction Materials 60 0.0140 0.0097 0.0716 -0.2228 0.2092 

Chemicals & Other Materials Production 60 0.0111 0.0029 0.0621 -0.1371 0.1932 

Automotive, Electrical Equip. & Machinery Prod. 60 0.0137 0.0059 0.0709 -0.2059 0.2069 

Appliances & General Goods Manufacturing 60 0.0156 0.0080 0.0718 -0.1961 0.2057 

Agriculture (animal products) 60 0.0065 0.0065 0.0668 -0.1655 0.1731 

Agriculture (plant products) 60 0.0020 0.0013 0.0498 -0.1231 0.1220 



   

 23 

Additionally, this study further delves into the effects of biodiversity risks across all industries by following 

the methodology of Giglio et al. (2023) and Xin et al. (2023). Through this approach, stocks are grouped 

into their respective industries and subsequently sorted into quantiles within each industry based on their 

biodiversity risk levels. The “high” portfolio includes an equally weighted selection of stocks from each 

industry, representing the top quintile with the highest biodiversity risk levels. On the other hand, the “low” 

portfolio comprises an equally weighted selection of stocks from the bottom quintile, characterised by the 

lowest biodiversity risk levels within each industry. Portfolios 2 to 4 consist of equally weighted terciles, 

each representing different levels of intermediate biodiversity risk within their respective industries. Table 9 

presents a summary of the statistics for a representative sample of three industries, illustrating the key trends 

observed across all quantile portfolios. Detailed summary statistics for all 20 industries are provided in 

Appendix Table A17. The same multi-factor regression formula applied to the industry portfolios is utilised 

here, with the dependent variable adjusted to represent the quantile portfolios: 

 

𝑟𝑖,𝑡 −  𝑟𝑓,𝑡 = 𝛼𝑖 +  𝛽1,𝑡(𝑟𝑚,𝑡 − 𝑟𝑓,𝑡) + 𝛽2,𝑡(𝑆𝐵𝑀)𝑡 + 𝛽3,𝑡(𝐻𝑀𝐿)𝑡 + 𝛽4,𝑡(𝑊𝑀𝐿)𝑡 + 𝛽5,𝑡(𝐻𝐿𝐵𝑅)𝑡 +  𝜀𝑖,𝑡           (10) 

 

Where the dependent variable, 𝑟𝑖,𝑡 −  𝑟𝑓,𝑡, represents the excess return of the portfolio i sorted by biodiversity 

risk within each industry at time t, where t is represented in months. The constant, 𝛼𝑖, indicates the out- or 

underperformance of the specific quantile portfolio. The remaining independent variables and beta 

estimates follow the same structure as in the decile and industry portfolio regressions. 

 

Table 9:  Summary statistics monthly excess returns representative quantile portfolios  

Note:  This table presents summary statistics for a sample of three industries, showing the effect of biodiversity risk on monthly excess returns from 2019 to 

2023. Stocks are grouped into quintiles based on biodiversity risk levels. The number of observations (N = 60 months) is included. 

Industry Quantile 
(1) 
N 

(2) 
Median 

(3) 
Mean 

(4) 
St. Dev 

(5) 
Min 

(6) 
Max 

Transportation Services 1 (High) 60 0.0113 0.0112 0.0681 -0.1882 0.2388 

 2 60 0.0052 0.0028 0.0723 -0.2119 0.2628 

 3 60 -0.0035 0.0013 0.0836 -0.2401 0.2821 

 4 60 0.0047 0.0015 0.0756 -0.2068 0.2632 

 5 (Low) 60 0.0070 0.0013 0.0623 -0.1880 0.1393 

Paper & Forest Product Production 1 (High) 60 0.0095 0.0178 0.1006 -0.1655 0.2545 

 
2 60 0.0072 0.0020 0.0665 -0.1659 0.1976 

 3 60 0.0093 0.0050 0.0600 -0.1396 0.1806 

 4 60 0.0112 0.0042 0.0662 -0.1969 0.1647 

 5 (Low) 60 0.0108 0.0077 0.0747 -0.1778 0.2128 

General or Speciality Retailing 1 (High) 60 0.0119 0.0153 0.0854 -0.2227 0.2967 

 
2 60 0.0068 0.0066 0.0862 -0.2732 0.2083 

 3 60 -0.0047 -0.0007 0.0742 -0.2314 0.1565 

 4 60 0.0053 0.0054 0.0844 -0.1998 0.2056 

 5 (Low) 60 0.0096 0.0035 0.0761 -0.1849 0.1605 
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4.2.6 Difference-In-Difference model 

Drawing from Bolton & Kacperczyk (2021b), Garel et al. (2023), and Xiong et al. (2023), this study examines 

the impact of the October 2021 Kunming Declaration and the June 2021 TNFD on stock prices and risk 

premiums, comparing firms with high biodiversity risk to those with low risk. The Difference-In-Difference 

(DID) method is employed, selecting the control group subjectively, following Wooldridge’s (2010) 

econometric approach. Companies with high biodiversity risk are deemed ‘affected by the Kunming 

Declaration,’ while those with low risk are considered ‘unaffected’. A ‘treatment’ variable indicates this 

classification, assigned a value of 0 for unaffected companies and 1 for affected ones. The same classification 

applies to the launch of the Taskforce on Nature-related Financial Disclosures (TNFD). 

For the time variable, a binary ‘time effect’ is established, assigning a value of 0 to data points 

preceding or within October 2021 and a value of 1 to those after October 2021. The interaction term is 

then crafted, combining the ‘treatment’ status of the companies with the time variable. In the context of the 

Kunming Declaration, this approach delineates the two groups based on high and low risk across the two 

time periods before and after October 2021. This will serve to validate and evaluate the magnitude of the 

DID effect. The DID model is specified as follows: 

 

  𝑟𝑖,𝑡 −  𝑟𝑓,𝑡 = 𝛼𝑖 +  𝛽1𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑖 + 𝛽2𝑇𝑖𝑚𝑒𝑡 +  𝛽3(𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑖 ∗ 𝑇𝑖𝑚𝑒𝑡) + 𝛽4,𝑡(𝑟𝑚,𝑡 − 𝑟𝑓,𝑡) +

 𝛽5,𝑡(𝑆𝐵𝑀)𝑡 + 𝛽6,𝑡(𝐻𝑀𝐿)𝑡 + 𝛽7,𝑡(𝑊𝑀𝐿)𝑡 + 𝛽8,𝑡(𝐻𝐿𝐵𝑅)𝑡 + 𝛽9(𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠)𝑖,𝑡 +  𝜀𝑖,𝑡                         (11)       

Where the dependent variable, (𝑟𝑖,𝑡 −  𝑟𝑓,𝑡), represents the excess return of stock I at time t. The constant, 

𝛼𝑖 , indicates the intercept. 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑖 is a binary variable indicating high biodiversity risk (1 if affected, 0 

if unaffected), 𝑇𝑖𝑚𝑒𝑡 is a binary time variable (1 for post-event, 0 for pre-event), and 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑖 ∗ 𝑇𝑖𝑚𝑒𝑡 

is the interaction term. The model also includes the market risk premium (𝑟𝑚,𝑡 − 𝑟𝑓,𝑡), and the risk factors 

(𝑆𝑀𝐵)𝑡 , (𝐻𝑀𝐿)𝑡 , (𝑊𝑀𝐿)𝑡  , and (𝐻𝐿𝐵𝑅)𝑡 . The coefficient of interest, 𝛽3, captures the additional effect on 

excess returns for high biodiversity risk firms relative to low biodiversity risk firms due to the event. The 

control variables are represented by (𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠)𝑖,𝑡, and the residual of the regression is given by 𝜀𝑖,𝑡.  

Control variables added to this model include Natural logarithm of Total Assets, Book-to-Market 

Ratio, Leverage Ratio, Investment-to-Asset Ratio, and Natural logarithm of Property, Plant, and 

Equipment. These controls are included to account for other factors that may influence stock returns, 

following the methodologies of Görgen et al. (2020) and Hsu et al. (2022). Also, both country and industry 

fixed effects are included to control for unobserved heterogeneity across countries and industries. 

Moreover, the study uses clustered standard errors to correct for potential issues with autocorrelation and 

heteroscedasticity. 

To ensure the validity of the DID analysis, the parallel trends assumption is tested, which asserts 

that the treatment and control groups would follow the same trend over time in the absence of treatment, 

allowing post-treatment divergence to be attributed to the treatment effect. Additionally, a placebo 

treatment effect test, which involves randomly assigning placebo treatment groups, is conducted to ensure 

that observed post-treatment effects are not due to random chance or pre-existing trends, confirming that 

the observed treatment effects in the main analysis are not spurious. 



   

 25 

5. RESULTS AND INTERPRETATION 

 

The results of the analysis encompass several methodologies, including panel regressions, Fama-MacBeth 

cross-sectional regressions, decile, quantile, and industry portfolio regressions, along with the Difference-

In-Difference (DID) approach. These methodologies collectively examine the impact of biodiversity risk 

on stock returns and assess the influence of significant biodiversity-related policy announcements. 

 

5.1 Results Panel Regressions and Fama-Macbeth Procedure 

The panel regression analysis, presented in Table 10, addresses Hypothesis 1 (H1) by examining how 

biodiversity risk is systematically priced into European stock markets. The analysis compares the traditional 

CAPM, Fama-French three-factor, and Carhart four-factor models, with and without the biodiversity risk 

factor (HLBR). 

In the baseline CAPM model (column 1), the market factor (MRKTRf) is highly significant and 

positive, indicating market risk as a critical determinant of excess returns. Adding the HLBR factor to the 

CAPM model (column 2) initially shows a negative coefficient for biodiversity risk, suggesting lower returns; 

however, this result should be interpreted with caution as it changes with the addition of more 

comprehensive risk factors. As more risk factors are included, the explanatory power improves, reflected in 

higher Adjusted R² values. The Fama-French three-factor model (column 3) shows significant size (SMB) 

and value (HML) factors, with an Adjusted R² of 0.18516. Adding the HLBR factor (column 4) results in a 

significant positive coefficient, indicating that biodiversity risk positively influences excess returns after 

accounting for size and value. The Carhart four-factor model (column 5) includes the momentum factor 

(WML), further improving the Adjusted R² to 0.18541. The momentum factor is significant and positive. 

When the HLBR factor is included (column 6), it remains significant and positive, suggesting that higher 

biodiversity risk stocks command higher expected returns. The robustness of these results is confirmed by 

conducting the same analysis without fixed effects, as shown in Appendix Table A8, which presents similar 

patterns. 

Overall, these results support the acceptance of H1: Biodiversity risk is systematically priced into 

European stock markets. The positive coefficient of the HLBR factor in the extended models indicates that 

investors recognise biodiversity risk and require a higher return for bearing it, reflecting the pricing of such 

risks. This aligns with previous research by Coqueret et al. (2024), Garel et al. (2023), and Giglio et al. (2023), 

highlighting the growing integration of biodiversity risks into stock valuations due to increased awareness 

and emphasis on biodiversity conservation. These findings also support theoretical models like the ESG-

efficient frontier by Pedersen et al. (2021), illustrating the market’s adaptation to comprehensive factors, 

including environmental risks, in this case, biodiversity risks. 

 

 

 

 



   

 26 

Table 10: Panel Regressions CAPM, Fama-French 3-Factors, and Carhart 4-Factors  

Note: This table shows panel regression results with fixed effects and company-level clustered standard errors. The dependent 

variable is excess return. The models include the traditional CAPM, Fama-French three-factor, and Carhart four-factor models, 

with and without the biodiversity risk factor (HLBR). ‘Y’ indicates the inclusion of country and industry fixed effects. 

 

Following the panel regressions, the Fama-MacBeth procedure was employed to investigate the pricing of 

biodiversity risk further. Cross-sectional regressions with fixed effects were performed on monthly 

individual stock returns using the assigned beta values. The table reports the time-series mean coefficients 

over all months, along with their corresponding t-values and standard errors. The results, displayed in Table 

11, show that the HLBR factor remains significant and positive (0.1632), reinforcing the panel regression 

findings. The market factor (MRKTRf), size (SMB), and momentum (WML) factors are also significant, 

while the value factor (HML) shows a negative coefficient (-0.3147), consistent with the panel regression 

results. This confirms that biodiversity risk is systematically priced in the European stock market, as 

indicated by the significant and positive HLBR coefficient. Additionally, Table A9 in the Appendix presents 

the Fama-MacBeth cross-sectional regression without fixed effects, which shows similar outcomes, further 

validating the robustness of the findings. Moreover, the significance of the control variables, such as Log 

Total Assets and Investment-to-Asset Ratio, further emphasises the robustness of the model, indicating that 

these factors are essential in understanding the dynamics of stock returns in the context of biodiversity risk. 
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Overall, the Fama-Macbeth results validate the panel regression findings and strengthen the 

evidence that biodiversity risk is a significant and systematic factor in European stock markets, thereby 

supporting H1. 

Table 11: Fama-Macbeth results with fixed effects and Newey-West SE 

Note: This table shows the Fama-Macbeth regression analysis results with industry fixed effects and Newey-West standard errors. 

The analysis uses monthly individual stock returns and includes risk factors: MRKTRf, SMB, HML, WML, and HLBR, along with 

control variables. Reported are the mean coefficients, standard errors, t-statistics, and p-values. 

Term Mean Coefficient Std Error t-statistic P-value R² 

MRKTRf 0.3289742 0.0689593 4.7705580 0.0000125 0.1827856 

SMB 0.1140721 0.0297651 3.8324123 0.0003104 0.1827856 

HML -0.3147225 0.0476429 -6.6058599 0.0000000 0.1827856 

WML 0.2070654 0.0535251 3.8685680 0.0002759 0.1827856 

HLBR 0.1632135 0.0209665 7.7844843 0.0000000 0.1827856 

Log Total Assets 0.0007934 0.0001483 5.3497979 0.0000015 0.1827856 

Book-to-Market Ratio 0.0000056 0.0000033 1.7024041 0.0939434 0.1827856 

Leverage Ratio -0.0000202 0.0000168 -1.2012982 0.2344358 0.1827856 

Investment-to-Asset Ratio -0.0034161 0.0007518 -4.5437264 0.0000279 0.1827856 

Log PPE 0.0000829 0.0001383 0.5993715 0.5512200 0.1827856 

5.2 Results Decile Portfolio Regressions   

Table 12 presents the Carhart four-factor model regression outputs applied to the biodiversity risk decile 

portfolios. This analysis focuses on the model without the HLBR factor. The dependent variables are the 

return-based decile portfolios, with the final column representing all stock returns combined. 

First of all, the R-squared values range from 0.817 (RET5) to 0.892 (RET8), indicating a strong 

explanatory model. Significant F-statistic values (61.296 to 113.097) further confirm the model’s accuracy. 

The market risk premium (MRKTRf) coefficients are consistently significant across all deciles, with values 

close to 1, indicating a robust correlation between market returns and portfolio returns. The SMB factor is 

also significant across all deciles, suggesting that smaller companies generally have higher returns regardless 

of biodiversity risk levels. Conversely, the HML factor is only significant in the first three deciles (RET1, 

RET2, and RET3) with high biodiversity risk, indicating the value premium is more relevant in portfolios 

with higher biodiversity risks. The WML factor shows no consistent significance across the deciles. 

The constant terms (alphas) in the model are generally not significant across the decile portfolios. 

This aligns with the study by Xiong et al. (2023), which also found insignificant alphas in biodiversity risk-

sorted portfolios. The lack of significant alphas suggests that, when controlling for the traditional risk 

factors, there is no evidence of a standalone biodiversity risk premium. 

Ultimately, the results support H1, showing that biodiversity risk is systematically priced into 

European stock markets. The significant coefficients of the market risk premium and SMB factors across 

all deciles imply that biodiversity risk influences return on European stocks. The findings align with research 
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by Coqueret et al. (2024), Garel et al. (2023), and Giglio et al. (2023), demonstrating that biodiversity risks 

are increasingly incorporated into stock valuations. 

Table 12: Carhart 4-Factor regression on decile portfolios 

Note: This table shows the regression outputs of the four-factor model. The dependent variables are the return-based decile 

portfolios, with the final variable all stock returns combined. The results are based on monthly excess returns from 2019-2023.  

 

In Table 13, the augmented Carhart four-factor model with the HLBR factor provides new insights. First, 

the R-squared values in the extended model range from 0.846 to 0.899, and the adjusted R-squared values 

range from 0.820 to 0.888, indicating a strong explanatory model with a slight improvement when 

biodiversity risk is included. Also, significant F-statistic values confirm the model’s accuracy. 

The MRKTRf and SMB factors remain consistently significant across all deciles, indicating a robust 

correlation with market returns and higher returns for smaller companies, regardless of biodiversity risk 

levels. The HML factor becomes insignificant with the HLBR factor included, and the WML factor shows 

some significance only in the lowest biodiversity risk portfolio (RET10). 

The inclusion of the HLBR factor provides notable findings regarding the pricing of biodiversity 

risk in stock returns. In high biodiversity risk portfolios (RET1 t/m RET5), the HLBR coefficients are 

positive and statistically significant, indicating that higher biodiversity risk is associated with higher returns. 

This aligns with the notion that investors demand higher risk-adjusted returns for assuming greater 

biodiversity-related risks to attract risk-tolerant investors, similar to the premium observed for ‘’sin stocks” 

(Bolton & Kacperczyk, 2021a; 2021b). In contrast, the HLBR coefficients are negative and significant in 

certain low biodiversity risk portfolios (RET8 and RET10), indicating that lower biodiversity risk is 

associated with lower returns. This finding supports the ‘’equity greenium’’ theory, where investors are 

willing to accept lower expected returns for holding ‘’green’’ stocks (Pástor et al., 2022).  
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Furthermore, the regression models’ constants are generally insignificant, indicating no abnormal 

returns and, therefore, no standalone biodiversity risk premium after accounting for the risk factors. This 

result aligns with Xiong et al. (2023) and suggests that interpreting the results should follow the study of 

Giglio et al. (2023), which propose focusing on the beta coefficient with respect to the biodiversity risk. 

They argue that estimating risk premia (alphas) requires a much longer time series, which is not available in 

this study. 

In conclusion, regarding Hypothesis 2 (H2): “Companies with higher exposure to biodiversity risks 

exhibit a higher biodiversity risk premium in their stock prices compared to those with lower exposure”, 

the results from this study do not fully support this hypothesis. The results suggest that investors require 

higher returns to compensate for the increased biodiversity risk rather than a distinct premium associated 

solely with biodiversity risk. This aligns with the climate study by Görgen et al. (2020), which found no 

evidence of a risk premium associated with carbon risk but observed that “brown” firms are associated with 

higher returns. However, these findings do not fully align with Bolton & Kacperczyk (2021a) and Garel et 

al. (2023), who found a positive risk premium indicated by positive abnormal returns. 

Table 13: Carhart 4-Factor Regression Model including HLBR on decile portfolios 

Note: This table shows the regression outputs of the Fama-French three-factor model with the additional HLBR factor. The 

dependent variables are the return-based decile portfolios, with the final variable all stock returns combined. The results are based 

on monthly excess returns from 2019-2023.  

5.3 Results Industry and Quantile Portfolio Regressions   

In Table 14, the Carhart four-factor regression model with the HLBR factor is applied to industry portfolios, 

revealing how biodiversity risk impacts returns across industries. Table A16 in the Appendix provides 

detailed industry-specific biodiversity scores, including physical and transition risks, with scores ranging 

from 0 to 5, representing very low to very high risk. These scores enable comparison with the outcomes of 
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the regression model. The R-squared values range from 0.564 to 0.876, indicating varying explanatory power 

across industries. The MRKTRf and SMB factors remain again consistently significant, while the HML 

factor is generally insignificant, and the WML factor shows inconsistent significance. 

Significant positive HLBR coefficients are observed in several high-risk industries. For instance, the 

Textiles, Apparel & Luxury Goods sector (HLBR coefficient 0.008, p<0.01) and the Oil, Gas & Consumable 

Fuels sector (HLBR coefficient 0.009, p<0.05) have both high physical and transition risks. These findings 

indicate that the biodiversity risks, where these industries specifically have a high dependency and a high 

impact on biodiversity loss, result in a substantial negative impact on these industries and are therefore 

compensated with higher stock returns. This is consistent with expectations, as most of them can be 

characterised as industries with high biodiversity risks and aligns with the results of Görgen et al. (2020). 

However, there are also industries with a relatively low to moderate dependency and impact on biodiversity 

loss that show significant positive HLBR coefficients. For example, despite having lower biodiversity risks, 

the General or Specialty Retailing and Food Retailing sectors still exhibit significant positive HLBR factors. 

This suggests that even industries with relatively lower biodiversity risks can show significant positive 

returns due to the HLBR factor, indicating a more complex relationship between biodiversity risks and stock 

returns within this model.  

In addition to the significant HLBR coefficients, the Paper & Forest Product Production and 

Construction Materials industries, both with relatively high physical and transition risks, show abnormal 

returns beyond what is explained by traditional risk factors and the HLBR factor. On one hand, this aligns 

with the findings of Coqueret et al. (2024), who also found significant alphas in sectors most exposed to the 

double materiality of biodiversity risks. On the other hand, there are many industries with high biodiversity 

risk levels that do not experience abnormal returns, and therefore, do not have a biodiversity risk premium.  

The findings indicate that biodiversity risk significantly Influences returns in high-risk industries, 

supporting the notion that investors demand higher returns to compensate for these risks. While the results 

partly support Hypothesis 3 (H3) by showing a pronounced biodiversity risk premium in some high-risk 

industries, the lack of abnormal returns in many other high-risk industries suggests a nuanced relationship 

between biodiversity risk and financial performance. Although the results support the systematic pricing of 

biodiversity risk (H1), the variability in HLBR coefficients and the significance of alphas indicate that the 

biodiversity risk premium is not uniformly distributed across all industries. These heterogeneous effects 

across industries are consistent with the findings of Xin et al. (2023). 

Next, Table 16 extends the Carhart four-factor regression model by applying it to quantile portfolios 

within industries, categorizing them by biodiversity risk. This further analysis delves into how biodiversity 

risk influences stock returns across different risk levels within industries. Notably, the output table focuses 

on the HLBR factor and any abnormal returns (alphas), omitting the traditional risk factors (MRKTRf, 

SMB, HML, WML) for clarity. The quantile portfolios show highly mixed results, but a small pattern 

emerges. Most first quantiles (highest biodiversity risk) often have significant positive HLBR loadings; 

Figure 15 effectively illustrates this trend, showing the distribution of HLBR coefficients across different 

portfolios and industries. The figure highlights that the highest biodiversity risk portfolios generally exhibit 

positive coefficients, with a large and clear difference compared to the other quantiles. 



 

Table 14:  Carhart 4-Factor Regression Model including the HLBR factor on industry portfolios

P1 - Water utilities /Service Providers 

P2 - Transportation Services 

P3 - Textiles, Apparel & Luxury Good Production 

P4 - Telecommunication services  

P5 - Paper & Forest Product Production 

P6 - Oil, Gas & Consumable Fuels 

P7 - Offices & Professional Services 

P8 - Metals & Mining 

P9 - Land Development & Construction 

P10 - Hospitality Services 

P11 - Health Care, Pharmaceuticals and Biotechnology 

P12 - General or Speciality Retailing 

P13 - Food Retailing 

P14 - Food & Beverage Production 

P15 - Fishing and aquaculture 

P16 - Electronics & Semiconductor Manufacturing 

P17 - Electric Energy Production - Solar, Wind 

P18 - Electric Energy Production - Combustion  

P19 - Construction Materials 

P20 - Chemicals & Other Materials Production 

P21 - Automotive, Electrical Equip. & Machinery Prod. 

P22 - Appliances & General Goods Manufacturing 

P23 - Agriculture (animal products) 

P24 - Agriculture (plant products) 
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This table shows the Carhart 4-Factor regression results, including the HLBR factor, for 24 industry portfolios. The dependent variable is the average monthly excess return per industry. The 

industry portfolios are listed at the bottom of the table, ranging from Water Utilities/Service Providers (P1) to Agriculture (plant products) (P24). Country and industry fixed effects are included. 



 

Additionally, when the HLBR factor is significant in the fifth quantile (lowest biodiversity risk), it nearly 

always tends to be negative. The results of quantiles 2, 3, and 4 are mixed and vary widely, indicating that 

moderate levels of biodiversity risk have less consistent impacts on returns. The diversity of significant 

HLBR coefficients in these middle quantiles suggests that the biodiversity risk-return relationship is less 

clear compared to the more pronounced trends observed at the extremes (highest and lowest risk levels).  

This pattern is well illustrated in the Offices & Professional Services sector. The first quantile exhibits a 

significant positive HLBR coefficient, indicating higher returns for higher biodiversity risks. Interestingly, 

the fifth quantile shows a significant negative HLBR coefficient, indicating that lower biodiversity risks are 

associated with lower returns, which aligns with the findings from Görgen et al. (2020). Additionally, the 

first quantile in this industry shows a significant positive alpha, suggesting abnormal returns beyond what is 

explained by the risk factors, further emphasising the higher compensation required for higher biodiversity 

risks.  

Figure 15: Coefficients of HLBR Factor by Portfolio and Industry 

 

  

 

 

 

 

 

 

However, this trend is not as evident in other industries. In the Oil, Gas & Consumable Fuels 

sector, the first and fourth quantiles have significant positive HLBR coefficients but no significant alphas, 

suggesting higher returns for higher biodiversity risks without abnormal returns. Agriculture (plant 

products) shows no significant HLBR coefficients or alphas, indicating no clear impact of biodiversity risks 

on returns. In contrast, the Textiles, Apparel, and luxury Goods industry shows the opposite pattern, with 

a significant negative HLBR coefficient in the first quantile, indicating that higher biodiversity risk is 

associated with lower returns, and a positive HLBR coefficient in the third, fourth, and fifth quantiles.   

In summary, these mixed results highlight the complex and varied impacts of biodiversity risks 

across different sectors. H1 is supported by the presence of significant HLBR coefficients, and H2 receives 

partial support, as higher biodiversity risk often correlates with higher returns in some sectors but not 

uniformly across all. H3 suggests a pronounced biodiversity risk premium in high-risk industries; however, 

32 

Note: This figure shows the coefficients of the HLBR factor for quantile portfolios ranked by 

biodiversity risk, from Portfolio 1 (high biodiversity risk) to Portfolio 5 (low biodiversity risk) 

for each industry. 

 



   

 33 

the inconsistency in significant results across different sectors and quantiles raises questions about the 

reliability and generalizability of this premium. Consequently, this hypothesis cannot be accepted. 

Table 16: Carhart 4-Factor Regression Model including HLBR on quantile portfolios 

Note: This table presents the Carhart four-factor regression model with HLBR on quantile portfolios, showing HLBR coefficients and 

alphas by industry. Portfolio 1 has the highest biodiversity risk, Portfolio 5 the lowest. Traditional risk factors are included but omitted 

here for clarity. The results are based on average excess returns from 2019-2023 and use clustered standard errors. 

 

   
High 

Biodiversity 
Risk 

  
Low 

Biodiversity 
Risk 

Industry Variable Portfolio 1  Portfolio 2 Portfolio 3 Portfolio 4 Portfolio 5 

Transportation Services HLBR 0.014*** 0.001 -0.002 -0.0003 -0.0005 
  (0.003) (0.002) (0.005) (0.005) (0.001) 
 Alpha 0.009*** 0.002 0.001 0.001 0.0001 

  (0.003) (0.002) (0.005) (0.007) (0.004) 

Textiles, Apparel & Luxury Good Production HLBR -0.042*** -0.007*** 0.006*** 0.001*** 0.004*** 
  (0.000) (0.000) (0.000) (0.000) (0.000) 
 Alpha 0.021** 0.009 -0.0002 -0.008* -0.005 

  (0.010) (0.006) (0.005) (0.005) (0.006) 

Telecommunication Services  HLBR 0.006** -0.009** -0.005 -0.001 -0.002 
  (0.003) (0.004) (0.004) (0.002) (0.003) 
 Alpha 0.004*** -0.005 -0.003 0.006* -0.008 

  (0.002) (0.007) (0.004) (0.003) (0.005) 

Paper & Forest Product Production HLBR 0.041*** 0.006** 0.004 0.003 -0.003 
  (0.006) (0.003) (0.002) (0.002) (0.002) 
 Alpha 0.012 0.003 0.005 0.004* 0.007 

  (0.015) (0.003) (0.004) (0.002) (0.005) 

Oil, Gas & Consumable Fuels HLBR 0.022*** 0.008*** 0.008 0.006*** 0.002 
  (0.003) (0.002) (0.005) (0.002) (0.004) 
 Alpha -0.007 -0.003 -0.005 0.002 0.002 

  
(0.006) (0.004) (0.005) (0.005) (0.004) 

Offices & Professional Services HLBR 0.012*** -0.004** -0.003* -0.002 -0.005** 
  (0.004) (0.002) (0.002) (0.003) (0.002) 
 Alpha 0.009* 0.0002 0.005 0.002 0.001 

  
(0.005) (0.001) (0.003) (0.003) (0.005) 

Metals & Mining HLBR 0.025*** 0.010*** 0.003 -0.002 -0.002 
  (0.006) (0.002) (0.004) (0.003) (0.003) 
 Alpha 0.008 0.008* -0.004 0.004 0.001 

  (0.009) (0.005) (0.006) (0.008) (0.005) 

Land Development & Construction HLBR 0.011** -0.001 -0.0003 -0.0001 -0.004* 
  (0.005) (0.002) (0.002) (0.003) (0.002) 
 Alpha 0.008** -0.003 0.001 -0.003 -0.005** 

  (0.003) (0.003) (0.002) (0.003) (0.002) 

Hospitality Services HLBR 0.027*** -0.003* -0.002 -0.001 0.002 
  (0.007) (0.002) (0.004) (0.004) (0.002 
 Alpha 0.013 -0.002 0.0004 0.002 -0.002 

  (0.008) (0.002) (0.004) (0.003) (0.003) 

Health Care, Pharmaceuticals and Biotechnology HLBR 0.005 -0.007** -0.002 -0.005 -0.002 
  (0.003) (0.003) (0.003) (0.005) (0.004) 
 Alpha 0.001 0.002 0.007** -0.001 -0.003 

  (0.001) (0.002) (0.003) (0.005) (0.006) 

General or Speciality Retailing HLBR 0.011** -0.008** -0.007*** -0.005 -0.005* 
  (0.005) (0.004) (0.002) (0.005) (0.003) 
 Alpha 0.012 0.007 -0.001 0.006 0.002 

  (0.008) (0.005) (0.004) (0.010) (0.004) 

Food Retailing HLBR 0.043*** -0.002 -0.005 0.002 -0.003 
  (0.005) (0.006) (0.006) (0.007) (0.003) 
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 Alpha 0.002 0.003 0.004 0.007 -0.001 

  
(0.007) (0.007) (0.005) (0.008) (0.007) 

Food & Beverage Production HLBR 0.029*** -0.002 -0.0002 -0.001 -0.003 
  (0.006) (0.002) (0.002) (0.002) (0.003) 
 Alpha 0.010 -0.002 0.001 -0.002 0.0001 

  (0.007) (0.002) (0.002) (0.003) (0.004) 

Electronics & Semiconductor Manufacturing HLBR 0.003 -0.001 -0.005*** 0.002 -0.005 
  (0.002) (0.003) (0.002) (0.003) (0.003) 
 Alpha 0.002 0.003 0.0005 0.003 0.005 

  (0.003) (0.004) (0.001) (0.003) (0.007) 

Electric Energy Production – Combustion HLBR 0.023*** 0.001 0.005 0.004* 0.003 
  (0.003) (0.002) (0.004) (0.002) (0.002) 
 Alpha 0.010 0.003 0.004 0.008 0.006 

  (0.007) (0.004) (0.009) (0.006) (0.007) 

Construction Materials HLBR 0.045*** 0.010** -0.0005 -0.005 -0.006* 
  (0.006) (0.004) (0.002) (0.003) (0.003) 
 Alpha 0.018 0.005 0.009* 0.006 -0.0005 

  (0.012) (0.007) (0.005) (0.004) (0.004) 

Chemicals & Other Materials Production HLBR 0.012*** -0.004 -0.001 0.001 -0.003 
  (0.003) (0.003) (0.003) (0.002) (0.004) 
 Alpha 0.009 0.001 0.001 -0.001 -0.001 

  (0.008) (0.004) (0.005) (0.004) (0.008) 

Automotive, Electrical Equipment & Machinery  HLBR 0.019*** 0.00003 -0.001 -0.005 -0.003 
  (0.004) (0.003) (0.003) (0.004) (0.002) 
 Alpha 0.013*** 0.004 0.004 0.001 0.001 

  (0.004) (0.004) (0.003) (0.005) (0.003) 

Appliances & General Goods Manufacturing HLBR 0.017*** -0.003 -0.004 -0.001 -0.003 
  (0.005) (0.003) (0.003) (0.003) (0.002) 
 Alpha 0.009 0.005 0.007** 0.004 0.003 

  
(0.007) (0.003) (0.003) (0.003) (0.004) 

Agriculture (plant products) HLBR 0.008 -0.004 -0.002 0.005 -0.003 
  (0.006) (0.003) (0.002) (0.003) (0.005) 
 Alpha -0.0004 0.001 -0.006 -0.001 -0.003 
  (0.005) (0.007) (0.006) (0.005) (0.011) 

 

5.4 Results Difference-in-Difference Model Regressions 

Table and Figures 17 and 18 present the Difference-in-Differences (DID) estimation results for the 

Kunming-Montreal Declaration and the Taskforce on Nature-related Financial Disclosures (TNFD), 

respectively, using clustered standard errors and fixed effects. The interaction term (Treatment * Time) in 

both models shows a positive and highly significant coefficient (0.010 and 0.008, p<0.01), indicating that 

these biodiversity-related policies have significantly increased the excess returns for companies at greater 

risk of biodiversity loss. This suggests that investors demand higher returns for holding stocks exposed to 

higher biodiversity risks following these policy changes, aligning with Garel et al. (2023) and Xiong et al. 

(2023). The including and excluding fixed effects does not significantly alter the outcomes, further 

supporting the findings. 

 Additionally, the positive coefficient for the HLBR factor (0.001 for Kunming-Montreal and 0.002 

for TNFD, p<0.01) reinforces the idea that higher biodiversity risk is associated with higher returns, 

consistent with Garel et al. (2023). The graphs in Figures 17 and 18 visually support these findings, showing 

that companies with high biodiversity risks experienced a marked increase in excess returns compared to 
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those with low biodiversity risks after the policy changes. Moreover, the significant negative coefficient for 

the time variable in the TNFD model (-0.010, p<0.01) indicates a general decline in excess returns over 

time, which could reflect broader market trends or the impact of other concurrent factors affecting the 

market during this period. 

 

Table and Figure 17: DID results – Kunming Montreal Declaration 

Note: This table and figure present the DID estimation results for the Kunming Montreal Declaration. The dependent variable is 

the monthly excess return of individual companies regressed on the risk factors and control variables. Country and industry fixed 

effects are included in model (2). The figure illustrates the divergence in excess returns between high and low biodiversity risk 

portfolios following the biodiversity event, with the dashed line representing the Kunming Declaration in October 2021. 

 

 

 

 

 

In the Appendix, various models are included to ensure robustness. Tables A18 and A21 replicate the main 

DID regressions without clustered standard errors, with the interaction term remaining positive and 

significant, confirming the robustness of the results. Furthermore, Tables A19 and A22 present the results 

of placebo treatment effect tests, where random groups were utilised in place of the actual treatment group. 

The insignificance of the placebo treatment effects suggests that the significant results observed in the 

primary models are not attributable to random chance but are likely due to the genuine biodiversity-related 

events. Lastly, Figures A20 and A23 validate the parallel trends assumption. The pre-treatment trends for 
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both treatment and control groups are parallel, supporting the validity of the DID approach. The divergence 

in trends post-treatment can be attributed to the biodiversity events, as no other concurrent changes affect 

only the treatment group. This validation increases confidence that the observed post-treatment changes in 

excess returns are indeed due to the biodiversity policies and not pre-existing differences between the 

groups. 

Table and Figure 18: DID results – TNFD 

Note: This table and figure present the DID estimation results for the TNFD launch. The dependent variable is the monthly excess 

return of individual companies regressed on the risk factors and control variables. Country and industry fixed effects are included 

in model (2). The figure illustrates the divergence in excess returns between high and low biodiversity risk portfolios following the 

biodiversity event, with the dashed line representing the TNFD launch in June 2021 

 

 

  

 

 

 

 

 

Overall, these findings support Hypothesis 4 (H4), demonstrating that biodiversity-related policies 

significantly affect the returns of companies at higher risk of biodiversity loss. This is evident in both figures, 

where portfolios with the highest biodiversity risk exhibit greater excess returns than those with lower 

biodiversity risk following the policy events. These results underscore the substantial influence of regulatory 

changes on market behaviour, aligning with the anticipated impact of increased biodiversity risk on returns. 
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6.  DISCUSSION AND CONCLUSION 
 
Biodiversity loss represents a substantial and alarming threat to the ecological health and stability of our 

planet. This decline in biodiversity profoundly impacts ecosystems by disrupting processes such as 

pollination, water purification, and soil fertility, reducing resilience to environmental changes, and 

diminishing essential ecosystem services. As companies' dependence on ecosystem services and their impact 

on biodiversity loss grows, these biodiversity risks increasingly influence their financial assets. Despite this, 

there is still insufficient attention given to biodiversity risks and their implications for financial markets. To 

address this gap and contribute to the biodiversity finance literature, this study explores whether investors 

account for biodiversity risks in the European stock market and how their awareness changes following 

biodiversity-related policy changes. 

 Building on the mature research by Pedersen et al. (2021), which incorporated environmental risks 

into traditional asset pricing models, this study adds biodiversity risk metrics to the Carhart four-factor 

model by creating a new high-minus-low biodiversity risk (HLBR) factor. Integrating this HLBR factor into 

different asset pricing models reveals that biodiversity risks are acknowledged in the European market. Panel 

regressions for individual companies display a positive HLBR coefficient, demonstrating that investors 

demand higher returns for biodiversity-related risks. These findings align with the research of Coqueret et 

al. (2024) and Giglio et al. (2023), emphasising the increasing incorporation of biodiversity risks into stock 

valuations. The Fama-Macbeth analysis further supports the HLBR factor as a systematic risk factor within 

the European market. 

 When examining decile portfolios sorted by biodiversity risk, adding the HLBR factor significantly 

improves the model's explanatory power. The highest biodiversity risk portfolios exhibit significantly 

positive HLBR coefficients, indicating that investors demand higher returns for these risks, similar to the 

returns required for "sin stocks", as noted by Bolton & Kacperczyk (2021a; 2021b). Conversely, the lowest 

biodiversity risk portfolios display negative HLBR coefficients, aligning with the "equity greenium" theory, 

where investors are content with lower returns for holding "green" stocks (Pástor et al., 2022). 

 Industry-specific portfolios predominantly feature significant positive HLBR coefficients in high-

risk sectors, while also showing positive estimates in some lower-risk industries, indicating a diverse impact 

of biodiversity risks across sectors. Quantile portfolio analysis further reveals that portfolios with the highest 

biodiversity risk typically exhibit positive coefficients, distinguishing them from other quantiles. However, 

the effects vary significantly across industries in terms of abnormal returns, suggesting that high biodiversity 

dependency and impact do not consistently lead to a more pronounced biodiversity risk premium. 

Finally, the Difference-in-Difference model regressions reveal that following the Kunming 

Declaration and TNFD launch, investors demand higher returns for high biodiversity risk stocks. This aligns 

with Garel et al. (2023), who observed increased returns for stocks impacting biodiversity post-policy events. 

This pattern underscores market sensitivity to biodiversity policies, reflecting investor awareness and 

valuation adjustments in response to the Kunming Declaration's strategy to mitigate biodiversity loss 

through financial flows by 2030 and the TNFD's initiative to report and act on evolving nature-related risks. 

 These findings underscore significant implications for companies, investors and policymakers, 

emphasising the need for increased attention. Companies should thoroughly evaluate their dependency and 
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impact on biodiversity, understanding how these factors affect their financial performance. Furthermore, 

they should integrate biodiversity risks into their standard risk management frameworks to build internal 

accountability and facilitate transparent disclosure of their actions. Investors should integrate biodiversity 

risks into their investment strategies, recognising the potential for higher returns associated with high 

biodiversity risk companies, especially after relevant policy changes. Evaluating the biodiversity footprint of 

firms can help investors avoid stranded assets and seize financial opportunities from companies with strong 

biodiversity practices. Policymakers should incorporate biodiversity considerations into regulatory 

frameworks to mitigate financial risks and promote biodiversity conservation. By doing so, they can stabilise 

financial markets and encourage nature-positive business practices. 

 The limitations of this study, consistent with other research in biodiversity finance, include several 

issues in data collection and biodiversity risk metrics. Firstly, a short time horizon was selected due to the 

lack of reliable, long-term biodiversity data, limiting the availability of time-series data. Therefore, the HLBR 

factor was constructed using time-invariant biodiversity risk levels, with equal-weighted long-short 

portfolios and without annual rebalancing, introducing additional limitations. Consequently, the current 

biodiversity data lacks high quality, with ongoing research still in its early stages, affecting the reliability of 

biodiversity risk measurements. Moreover, estimating future trends in biodiversity loss and its consequent 

effects on ecosystems involves considerable uncertainty. In measuring company-level biodiversity risks, this 

study adjusts industry-level scores based on the geographic location of operations using a geographical 

revenue-based weighting method. Despite its use in the WWF biodiversity risk filter method, this approach 

is imprecise as revenue location does not always reflect operational location and neglects supply chain 

activities. Lastly, the internal validity of this research could be optimised, as the adjusted R-squared values 

of the panel regressions indicate that most of the variance in excess returns is unexplained, suggesting that 

other variables influencing stock returns were not included. 

These limitations provide an opportunity for further academic research. Future studies should aim 

to develop more accurate measures of company-specific biodiversity risks, incorporating supply chain 

considerations and extending the data's time horizon. With the availability of long-term biodiversity data, it 

will be possible to annually rebalance the biodiversity risk factor to reflect updated risk levels, improving 

the ability to estimate risk premia, which requires much longer time series. Consequently, improved 

precision in these measures will clarify the relationship between biodiversity loss and industry-specific 

pricing dynamics, a connection that was not clearly established in this study. 

In conclusion, this study addresses the research question, "How is biodiversity risk reflected in the 

pricing of European stock markets, and to what extent do biodiversity-related policies influence this risk 

premium?". It finds that biodiversity risk is increasingly systematically reflected in stock pricing, as investors 

demand higher returns for high-risk stocks, particularly following relevant biodiversity-related policies. This 

integration of biodiversity risk into financial models indicates a broader shift in the European economy 

towards acknowledging and mitigating nature-related risks. As investors become more aware of biodiversity 

loss, they direct capital towards practices supporting biodiversity conservation. By valuing biodiversity in 

financial terms, the European economy can align with the urgent need to protect and restore ecosystems, 

striving towards a nature-positive future. 
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8. APPENDIX 

 

Table A1: WWF Biodiversity Risk industry sectors (WWF, 2023) 

 

WWF Risk Filter Industry Sector Associated Business Processes 

Agriculture (animal products) 
Large-scale livestock (beef and dairy) 

Small-scale livestock (beef and dairy) 

Agriculture (plant products) 

Large-scale irrigated arable crops 

Large-scale rainfed arable crops 

Small-scale irrigated arable crops 

Small-scale rainfed arable crops 

Appliances and general goods manufacturing 
Manufacture of machinery, parts and equipment 

Houseware and specialties production 

Automotive, electrical equipment and machinery 

production 

Manufacture of machinery, parts and equipment 

Tire and rubber production 

Chemicals and other materials production 

Catalytic cracking, fractional distillation, and 

crystallization 

Incomplete combustion 

Polymerization 

Vulcanization 

Synthetic fertiliser production 

Cryogenic air separation 

Gas adsorption 

Membrane technology 

Natural gas combustion 

Recovery and separation of carbon dioxide 

Solids processing 

Construction materials 
Glass making 

Construction materials production 

Electric energy production – combustion (biomass, 

coal, gas, nuclear, oil), geothermal energy 

Infrastructure holdings 

Electric/nuclear power transmission and distribution 

Nuclear and thermal power stations 

Biomass energy production 

Geothermal energy production 

Electric energy production – hydropower 

Infrastructure holdings 

Hydropower production 

Electric/nuclear power transmission and distribution 

Electric energy production – solar, wind 

Infrastructure holdings 

Solar energy provision 

Wind energy provision 

Electric/nuclear power transmission and distribution 

Electronics and hardware production 
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Electronics and semiconductor manufacturing Manufacture of semiconductor equipment 

Fishing and aquaculture 

Aquaculture 

Freshwater wild-caught fish 

Saltwater wild-caught fish 

Food and beverage production 
Alcoholic fermentation and distilling 

Processed food and drink production 

Food retailing Infrastructure holdings 

General or specialty retailing Infrastructure holdings 

Health care, pharmaceuticals, and biotechnology 

Infrastructure holdings 

Life science, pharma and biotech manufacture 

Life science, pharma and biotech tools and services 

Provision of health care 

Managed health care 

Hospitality services 

Cruise line provision 

Hotels and resorts provision 

Restaurant provision 

Land development and construction 
Construction 

Infrastructure builds 

Metals and mining 

Alumina refining 

Mining 

Iron extraction 

Iron metal production 

Metal processing 

Steel production 

Offices and professional services 

Infrastructure maintenance contracts 

Infrastructure holdings 

Financial services 

Leisure facility provision 

Real estate activities 

Environmental and facilities services 

Oil, gas and consumable fuels 

Mining 

Oil and gas drilling 

Manufacture of machinery, parts and equipment 

Oil and gas services 

Oil and gas exploration surveys 

Oil and gas refining 

Oil and gas storage 

Oil and gas transportation 

Gas distribution 

Gas retail 

Large-scale forestry 
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Paper and forest product production Production of forest and wood-based products 

Small-scale forestry 

Paper packaging production 

Production of paper products 

Telecommunication services (including wireless) 

Cable and satellite installations on land 

Fiber-optic cable installation (marine) 

Telecommunication and wireless services 

Textiles, apparel, and luxury good production 

Jewelry production 

Natural fiber production 

Synthetic fiber production 

Footwear production 

Production of leisure or personal products 

Tobacco production 

Transportation services 

Infrastructure maintenance contracts 

Distribution 

Airport services 

Marine transportation 

Marine ports and services 

Railway transportation 

Construction 

Water utilities and water service providers Water services (wastewater, treatment, and distribution) 
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Table A2: WWF biodiversity risk assessment framework (WWF, 2023) 

 
Type of 

risk 

Risk category Risk indicator Metrics Dependency / 

Impact 

P
h
ys

ic
al

 R
is

k 

 

 

Provisioning 

Services 

Water Scarcity Water Scarcity 

Dependency 

Forest Productivity and 

Distance to Markets 

Realizable Hard and Soft 

Commercial Timber 

Limited Wild Flora & 

Fauna Availability 

Global Centers of 

Unsustainable Commercial 

Harvesting of Species 

Limited Marine Fish 

Availability 

Stock Status 

Regulating & 

Supporting 

Services – 

Enabling 

Soil Condition Soil Organic Carbon 

 

Dependency 

Water Condition 

 

Freshwater Quality 

Marine Water Quality 

Air Condition 

 

PM2.5 Concentrations 

Ecosystem Condition 

 

Ecosystem Intactness & 

Connectivity (Terrestrial) 

Ecosystem Connectivity 

(Freshwater) 

Ecosystem Intactness 

(Marine) 

Pollination 

 

Crop Pollination 

Regulating 

Services – 

Mitigating 

Landslides 

 

Landslide Hazard 

Dependency 

Wildfire Hazard Wildfire Hazard 

Plant/Forest/Aquatic 

Pests and Diseases 

Frequency of 

Plant/Forest/Aquatic Pests 

and Diseases 

Herbicide Resistance Antimicrobial and 

Agrochemical Resistances 

Extreme Heat Extreme Heat Hazard 

Tropical Cyclones Tropical Cyclonic Wind and 

Storm Surge Hazard 

Cultural Services 
Tourism Attractiveness Tourism Demand Drivers 

(Natural and Cultural) 
Dependency 

Pressures on 

Biodiversity 

Land, Freshwater and Sea 

Use Change 

 

Cropland Expansion 

(Terrestrial) 

Impact 

Fragmentation of Rivers 

(Freshwater) 

Direct Human Impact & 

Fishing (Marine) 

Tree Cover Loss 

 

Tree Cover Loss 

Invasives 

 

Presence of Invasives 

Pollution 

 

Terrestrial Nutrient Pollution 

Terrestrial Pesticide Pollution 

Freshwater Nutrient Pollution 
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Marine Nutrient Pollution 

Marine Pesticide Pollution 

Air Pollution 

 

T
ra

n
si

ti
o
n
 R

is
k
 

Environmental 

Factors 

Protected/Conserved 

Areas 

 

Protected Areas 

Impact 

Key Biodiversity Areas 

 

Key Biodiversity Areas 

Other Important 

Delineated Areas 

 

Intact Forest Landscapes 

WWF’s Global 200 

Ecologically or Biologically 

Significant Marine Areas 

Vulnerable Marine 

Ecosystems 

Ecosystem Condition 

 

Ecosystem Intactness & 

Connectivity (Terrestrial) 

Ecosystem Connectivity 

(Freshwater) 

Ecosystem Intactness 

(Marine) 

Range Rarity 

 

Range Rarity 

Socioeconomic 

Factors 

Indigenous Peoples, Local 

Communities, Lands and 

Territories 

 

No Data 

Impact 

Resource Scarcity: Food, 

Water, Air 

 

Food Security 

Water Scarcity 

Air Condition 

Labor/Human Rights 

 

Ratified International Human 

Rights Instruments 

Labor Rights Violations 

Financial Inequality 

 

Financial Inequality 

Additional 

Reputational 

Factors 

Media Scrutiny 

 

Media Scrutiny (Ecological 

Topics) 

Dependency 

Media Scrutiny (Social Topics) 

Political Situation Violence Against Land and 

Environmental Defenders 

Freedom 

Governance 

Corruption 

Sites of International 

Interest 

 

Natural World Heritage Sites 

RAMSAR Sites 

Risk Preparation 

 

Index of Risk Preparation 
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Table A3: Data composition by industry 

Industries Observations 

Agriculture (animal products) 13 

Agriculture (plant products) 19 

Appliances & General Goods Manufacturing 252 

Automotive, Electrical Equipment & Machinery Production 334 

Chemicals & Other Materials Production 274 

Construction Materials 79 

Electric Energy Production – Combustion (Biomass, Coal, Gas, Nuclear, Oil), Geothermal Energy 92 

Electric Energy Production – Solar, Wind 8 

Electronics & Semiconductor Manufacturing 235 

Fishing and aquaculture 3 

Food & Beverage Production 168 

Food Retailing 35 

General or Speciality Retailing 123 

Health Care, Pharmaceuticals and Biotechnology 116 

Hospitality Services 109 

Land Development & Construction 402 

Metals & Mining 133 

Offices & Professional Services 1330 

Oil, Gas & Consumable Fuels 94 

Paper & Forest Product Production 63 

Telecommunication services (including wireless) 77 

Textiles, Apparel & Luxury Good Production 79 

Transportation Services 116 

Water utilities / Water Service Providers 8 

 

 

Table A4: Data composition by geography  

Countries Observations Countries Observations 

Albania 2 Kazakhstan 10 

Algeria 4 Kenya 2 

Angola 6 Kuwait 2 

Argentina 19 Latvia 17 

Australia 99 Libya 3 

Austria 89 Liechtenstein 2 

Bahamas 2 Lithuania 33 

Bangladesh 4 Luxembourg 14 

Belarus 3 Malawi 1 

Belgium 123 Malaysia 13 

Bermuda 1 Malta 28 

Bosnia and Herzegovina 10 Mauritius 1 
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Botswana 1 Mexico 63 

Brazil 123 Moldova 1 

Bulgaria 58 Monaco 1 

Cameroon 2 Montenegro 1 

Canada 196 Morocco 1 

Cayman Islands 1 Mozambique 3 

Chile 12 Namibia 3 

China 675 Netherlands 186 

Colombia 12 New Caledonia 1 

Congo 1 New Zealand 6 

Congo DRC 1 Nigeria 9 

Croatia 47 North Macedonia 4 

Curacao 1 Norway 263 

Cyprus 26 Oman 3 

Czech Republic 57 Pakistan 5 

Denmark 180 Peru 8 

Dominican Republic 4 Philippines 3 

Egypt 15 Poland 316 

Equatorial Guinea 1 Portugal 50 

Estonia 16 Puerto Rico 1 

Falkland Islands 1 Qatar 2 

Faroe Islands 11 Romania 112 

Finland 205 Russian Federation 134 

France 816 Saudi Arabia 15 

French Polynesia 1 Serbia 20 

Gabon 4 Sierra Leone 1 

Georgia 5 Singapore 23 

Germany 1239 Slovakia 19 

Ghana 3 Slovenia 33 

Gibraltar 3 South Africa 13 

Greece 90 South Korea 58 

Greenland 1 Spain 309 

Guernsey 4 Suriname 1 

Guinea 1 Sweden 435 

Guyana 2 Switzerland 206 

Haiti 1 Tanzania 5 

Honduras 1 Thailand 5 

Hungary 49 Trinidad and Tobago 2 

Iceland 14 Tunisia 4 

India 102 Turkey 310 

Indonesia 16 Ukraine 27 

Iran 4 United Arab Emirates 18 
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Iraq 7 United Kingdom 1163 

Ireland 83 United States 1408 

Israel 9 Uruguay 3 

Italy 95 Uzbekistan 1 

Jamaica 2 Vietnam 6 

Japan 149 Zambia 2 

Jersey 4 Zimbabwe 1 

Jordan 3   

 

 

Figure A5: Correlation matrix Fama-French 6 Risk Factors + Carhart Momentum + HLBR 

 
Note:  This table presents correlation coefficients between the risk factors used in the Fama-French 6-Factor model and 

the newly introduced biodiversity risk factor (HLBR).  

Variables MRKTRf SMB HML WML RMW CMA HLBR 

MRKTRf 1 0.281 0.150 -0.595 0.063 -0.218 -0.245 

SMB 0.281 1 -0.170 0.041 0.093 -0.483 -0.269 

HML 0.150 -0.170 1 -0.522 -0.788 0.784 0.375 

WML -0.595 0.041 -0.522 1 0.321 -0.226 0.055 

RMW 0.063 0.093 -0.788 0.321 1 -0.641 -0.268 

CMA -0.218 -0.483 0.784 -0.226 -0.641 1 0.480 

HLBR -0.245 -0.269 0.375 0.055 -0.268 0.480 1 

 

 

Table A6: Breusch-Pagan Test for heteroscedasticity in panel data 

 

H0: No first order autocorrelation 

Asset Pricing Model BP df P-value 

CAPM 354.5 1 < 2.2e-16 

CAPM + HLBR 398.15 2 < 2.2e-16 

FF 3-Factor  514.79 3  
< 2.2e-16 

FF 3-Factor + HLBR 514.58 4 < 2.2e-16 

Carhart 4-Factor   661.8 4 < 2.2e-16 

Carhart 4-Factor + HLBR 672.32 5 < 2.2e-16 
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Table A7: Wooldridge Test for autocorrelation in panel data 

 

H0: No first order serial correlation Model 

Asset Pricing Model chisq df P-value 

CAPM 6353.9 60 < 2.2e-16 

CAPM + HLBR 6319 60 < 2.2e-16 

FF 3-Factor  4896.6 60  
< 2.2e-16 

FF 3-Factor + HLBR 4888 60 < 2.2e-16 

Carhart 4-Factor  4902.6 60 < 2.2e-16 

Carhart 4-Factor + HLBR 4891.7 60 < 2.2e-16 

 

 

Table A8: Panel Regressions without fixed effects 

Note: This table shows panel regression results with company-level clustered standard errors. The dependent variable is excess 

return. The models include the traditional CAPM, Fama-French three-factor, and Carhart four-factor models, with and without 

the biodiversity risk factor (HLBR). ‘N’ indicates the exclusion of country and industry fixed effects 
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Table A9: Fama-Macbeth Cross-sectional regression results – No fixed effects 

Note: This table presents the Fama-Macbeth regression analysis results with Newey-West standard errors, without fixed effects. 

The analysis uses monthly individual stock returns and includes risk factors: MRKTRf, SMB, HML, WML, and HLBR, along 

with control variables. Reported are the mean coefficients, standard errors, t-statistics, and p-values. 

Term Mean Coefficient Std Error t-statistic P-value R² 

MRKTRf 0.3899810 0.0591338 6.5948910 0.0000000 0.1717633 

SMB 0.1225346 0.0295425 4.1477343 0.0001091  

HML -0.3050131 0.0429496 -7.1016462 0.0000000  

WML 0.1806907 0.0472470 3.8243860 0.0003186  

HLBR 0.1551565 0.0175667 8.8324216 0.0000000  

Log_TotalAssets 0.0008249 0.0001200 6.8714689 0.0000000  

BM_Ratio 0.0000058 0.0000032 1.8058282 0.0760471  

Leverage_Ratio -0.0000190 0.0000177 -1.0752048 0.2866605  

Invest_TotalAssets -0.0037185 0.0007362 -5.0505858 0.0000045  

Log_PPE -0.0000083 0.0001095 -0.0758242 0.9398155  

 

 

 

Figure A10: Linearity Assumptions Carhart 4-Factors Decile Portfolios 
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Figure A11: Linearity Assumptions Carhart 4-Factors +HLBR Decile Portfolios 

 
 

Table A12: Breusch-Pagan Test results for Carhart 4-Factor Model Regressions 

 

Portfolio BP df P-value 

RET1 5.4371 4 0.2453 

RET2 0.7905 4 0.9397 

RET3 5.6794 4  
0.2244 

RET4 3.1827 4 0.5277 

RET5 3.2137 4 0.5227 

RET6 4.1956 4 0.3802 

RET7 3.8966 4 0.4202 

RET8 3.5794 4 0.4659 

RET9 2.2721 4 0.6859 

RET10 3.6923 4 0.4492 

Total Portfolio (RET) 3.6529 4 0.4550 
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Table A13: Breusch-Pagan Test results for Carhart 4-Factor + HLBR Model Regressions 

 

Portfolio BP df P-value 

RET1 6.2026 5 0.2870 

RET2 2.0540 5 0.8416 

RET3 4.3989 5  
0.4935 

RET4 2.8441 5 0.7240 

RET5 3.9549 5 0.5559 

RET6 4.8494 5 0.4345 

RET7 4.8862 5 0.4299 

RET8 3.7496 5 0.5860 

RET9 3.3684 5 0.6434 

RET10 2.9412 5 0.7090 

Total Portfolio (RET) 3.5162 5 0.6209 

 

 

 

Table A14: Wooldridge Test for autocorrelation in Carhart 4-Factor Model Regressions 

 

Portfolio DW Statistic P-value 

RET1 1.8107 0.2348 

RET2 2.1827 0.7678 

RET3 1.7193 0.1391 

RET4 1.6399 0.08057 

RET5 1.5904 0.05477 

RET6 1.8655 0.3056 

RET7 2.1457 0.7212 

RET8 1.9723 0.4639 

RET9 1.994 0.4977 

RET10 1.9091 0.3678 

Total Portfolio (RET) 1.8988 0.3527 
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Table A15: Wooldridge Test for autocorrelation in Carhart 4-Factor + HLBR Model Regressions 

Portfolio DW Statistic P-value 

RET1 2.0413 0.5559 

RET2 2.1932 0.7701 

RET3 1.7039 0.1192 

RET4 1.6601 0.08798 

RET5 1.5983 0.05468 

RET6 1.8704 0.3004 

RET7 2.1827 0.7573 

RET8 1.9864 0.4688 

RET9 2.0073 0.5021 

RET10 1.9146 0.3547 

Total Portfolio (RET) 1.9036 0.3375 

 

Table A16: Industry-specific biodiversity scores 

Note: This table presents detailed industry-specific biodiversity scores, including physical and transition risks, with scores ranging 

from 0 to 5, representing very low to very high risk. 

Industry Physical Risk Score Transition Risk Score 

Fishing and aquaculture 4 3.25 

Agriculture (plant products) 3.2 3.92 

Agriculture (animal products) 3.2 3.92 

Paper & Forest Product Production 3.8 3.25 

Metals & Mining 3.05 3.92 

Land Development & Construction 3.05 3.83 

Oil, Gas & Consumable Fuels 3 3.83 

Transportation Services 2.85 3.25 

Electric Energy Production Geothermal Energy 2.9 3.08 

Hospitality Services 3.5 2.42 

Construction Materials 3 2.25 

Textiles, Apparel & Luxury Good Production 2.55 2.50 

Food & Beverage Production 2.4 2.58 

Water utilities / Water Service Providers 2.05 2.33 

Electric Energy Production - Solar, Wind 1.95 2.42 

Automotive, Electrical Equip. & Machinery Production 2.2 2.08 

Chemicals & Other Materials Production 1.9 2.25 

Health Care, Pharmaceuticals and Biotechnology 2.05 2.08 

Telecommunication services 1.85 2.08 

Appliances & General Goods Manufacturing 1.75 2.17 

Electronics & Semiconductor Manufacturing 1.75 2.08 

Offices & Professional Services 1.55 1.75 

General or Speciality Retailing 1.55 1.75 

Food Retailing 1.55 1.75 
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Table A17: Detailed summary statistics for all quantile portfolios 

Note: This table presents detailed summary statistics for all industries, each divided into five portfolios based on biodiversity risk levels from 2019 to 2023. 

The number of observations (N = 60 months) is included. 

Industry Quantile 

(1) 

N 

(2) 

Median 

(3) 

Mean 

(4) 

St. Dev 

(5) 

Min 

(6) 

Max 

Transportation Services 1 (High) 60 0.0113 0.0112 0.0681 -0.1882 0.2388 

 2 60 0.0052 0.0028 0.0723 -0.2119 0.2628 

 3 60 -0.0035 0.0013 0.0836 -0.2401 0.2821 

 4 60 0.0047 0.0015 0.0756 -0.2068 0.2632 

 5 (Low) 60 0.0070 0.0013 0.0623 -0.1880 0.1393 

Textiles, Apparel & Luxury Good Production 1 (High) 60 0.0318 0.0267 0.1041 -0.2347 0.2354 

 
2 60 0.0179 0.0118 0.0807 -0.1985 0.2748 

 3 60 -0.0003 -0.0002 0.0823 -0.2286 0.2829 

 4 60 0.0018 -0.0062 0.0707 -0.1939 0.1988 

 5 (Low) 60 -0.0061 -0.0042 0.0701 -0.2198 0.2252 

Telecommunication services  1 (High) 60 0.0030 0.0058 0.0615 -0.1214 0.1852 

 
2 60 0.0020 -0.0027 0.0660 -0.1629 0.1264 

 3 60 0.0108 -0.0017 0.0592 -0.1607 0.1680 

 4 60 0.0037 0.0068 0.0587 -0.1382 0.1720 

 5 (Low) 60 0.0026 -0.0047 0.0634 -0.1697 0.1414 

Paper & Forest Product Production 1 (High) 60 0.0095 0.0178 0.1006 -0.1655 0.2545 

 2 60 0.0072 0.0020 0.0665 -0.1659 0.1976 

 
3 60 0.0093 0.0050 0.0600 -0.1396 0.1806 

 4 60 0.0112 0.0042 0.0662 -0.1969 0.1647 

 5 (Low) 60 0.0108 0.0077 0.0747 -0.1778 0.2128 

Oil, Gas & Consumable Fuels 1 (High) 60 -0.0006 -0.0026 0.0868 -0.2711 0.2266 

 2 60 -0.0024 -0.0002 0.0790 -0.1957 0.2589 

 
3 60 0.0064 -0.0021 0.0849 -0.2654 0.2041 

 4 60 0.0174 0.0042 0.0732 -0.2385 0.2170 

 5 (Low) 60 0.0082 0.0028 0.0594 -0.1658 0.1860 

Offices & Professional Services 1 (High) 60 0.0176 0.0111 0.0672 -0.1817 0.2046 

 2 60 0.0070 0.0005 0.0636 -0.2055 0.1801 

 
3 60 0.0130 0.0056 0.0633 -0.1600 0.1802 

 4 60 0.0130 0.0032 0.0623 -0.1768 0.1980 

 5 (Low) 60 0.0116 0.0030 0.0674 -0.1673 0.1709 

Metals & Mining 1 (High) 60 0.0211 0.0138 0.0844 -0.1741 0.2384 

 2 60 0.0081 0.0105 0.0783 -0.2082 0.2261 

 
3 60 -0.0100 -0.0028 0.0733 -0.2291 0.2003 

 4 60 0.0084 0.0045 0.0794 -0.1892 0.2417 

 5 (Low) 60 0.0103 0.0014 0.0779 -0.2380 0.2018 

Land Development & Construction 1 (High) 60 0.0133 0.0115 0.0646 -0.1940 0.1681 

 2 60 0.0015 -0.0009 0.0539 -0.1777 0.1481 
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3 60 0.0139 0.0016 0.0640 -0.1867 0.1898 

 4 60 0.0069 -0.0006 0.0540 -0.1563 0.1334 

 5 (Low) 60 0.0051 -0.0030 0.0723 -0.1918 0.1605 

Hospitality Services 1 (High) 60 0.0127 0.0180 0.0875 -0.2280 0.1962 

 2 60 -0.0020 -0.0036 0.0858 -0.3036 0.3111 

 
3 60 -0.0004 0.0008 0.0720 -0.2365 0.2577 

 4 60 0.0059 0.0017 0.0729 -0.2406 0.2186 

 5 (Low) 60 -0.0066 -0.0027 0.0589 -0.1830 0.2046 

Health Care, Pharmaceuticals and Biotechnology 1 (High) 60 0.0037 0.0022 0.0617 -0.1597 0.1423 

 2 60 0.0159 0.0023 0.0705 -0.1381 0.1994 

 3 60 0.0131 0.0069 0.0689 -0.1412 0.1663 

 4 60 0.0053 0.0001 0.0603 -0.1456 0.1432 

 5 (Low) 60 -0.0049 -0.0026 0.0621 -0.1811 0.1331 

General or Speciality Retailing 1 (High) 60 0.0119 0.0153 0.0854 -0.2227 0.2967 

 2 60 0.0068 0.0066 0.0862 -0.2732 0.2083 

 3 60 -0.0047 -0.0007 0.0742 -0.2314 0.1565 

 4 60 0.0053 0.0054 0.0844 -0.1998 0.2056 

 5 (Low) 60 0.0096 0.0035 0.0761 -0.1849 0.1605 

Food Retailing 1 (High) 60 0.0080 0.0060 0.0917 -0.1520 0.1990 

 2 60 0.0080 0.0046 0.0619 -0.1307 0.1538 

 3 60 0.0161 0.0029 0.0830 -0.1905 0.2126 

 4 60 0.0106 0.0054 0.0670 -0.1662 0.1680 

 5 (Low) 60 0.0057 0.0020 0.0450 -0.0929 0.1014 

Food & Beverage Production 1 (High) 60 0.0045 0.0135 0.0742 -0.1332 0.1912 

 2 60 0.0000 -0.0009 0.0431 -0.0989 0.1092 

 3 60 0.0112 0.0018 0.0562 -0.1322 0.1488 

 4 60 0.0034 -0.0012 0.0503 -0.1362 0.1367 

 5 (Low) 60 0.0018 0.0009 0.0530 -0.1561 0.1245 

Electronics & Semiconductor Manufacturing 1 (High) 60 0.0117 0.0034 0.0601 -0.1632 0.1788 

 2 60 0.0094 0.0045 0.0791 -0.1908 0.1684 

 3 60 0.0092 0.0014 0.0688 -0.1694 0.1579 

 4 60 0.0143 0.0053 0.0792 -0.1942 0.1734 

 5 (Low) 60 0.0107 0.0065 0.0760 -0.1731 0.1849 

Electric Energy Production - Combustion  1 (High) 60 0.0003 0.0139 0.0830 -0.1706 0.2229 

 2 60 0.0118 0.0063 0.0555 -0.1506 0.1646 

 3 60 0.0032 0.0054 0.0661 -0.1681 0.1387 

 4 60 0.0190 0.0102 0.0588 -0.1422 0.1585 

 5 (Low) 60 0.0063 0.0089 0.0646 -0.1353 0.1696 

Construction Materials 1 (High) 60 0.0187 0.0256 0.1165 -0.1973 0.2689 

 2 60 0.0093 0.0083 0.0776 -0.2232 0.2728 

 3 60 0.0155 0.0074 0.0839 -0.2607 0.2366 

 4 60 0.0165 0.0060 0.0831 -0.2522 0.2196 
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 5 (Low) 60 -0.0027 0.0011 0.0746 -0.1873 0.1355 

Chemicals & Other Materials Production 1 (High) 60 0.0048 0.0120 0.0669 -0.1161 0.1935 

 2 60 0.0083 0.0031 0.0602 -0.1549 0.1559 

 3 60 0.0000 0.0002 0.0621 -0.1347 0.2045 

 4 60 0.0033 0.0002 0.0666 -0.1456 0.1733 

 5 (Low) 60 0.0075 -0.0005 0.0723 -0.1546 0.2304 

Automotive, Electrical Equip. & Machinery Prod. 1 (High) 60 0.0145 0.0159 0.0765 -0.2076 0.2188 

 2 60 0.0110 0.0047 0.0710 -0.2118 0.2063 

 3 60 0.0159 0.0049 0.0740 -0.2183 0.2239 

 4 60 0.0092 0.0017 0.0753 -0.2052 0.2102 

 5 (Low) 60 0.0136 0.0022 0.0704 -0.1864 0.1747 

Appliances & General Goods Manufacturing 1 (High) 60 0.0073 0.0142 0.0764 -0.1999 0.1957 

 2 60 0.0146 0.0065 0.0729 -0.1959 0.2142 

 3 60 0.0174 0.0080 0.0736 -0.1841 0.1839 

 4 60 0.0084 0.0059 0.0780 -0.2027 0.2471 

 5 (Low) 60 0.0132 0.0052 0.0736 -0.1979 0.1889 

Agriculture (plant products) 1 (High) 60 -0.0050 0.0073 0.0849 -0.2077 0.2098 

 2 60 -0.0129 0.0021 0.0739 -0.1480 0.1611 

 3 60 -0.0034 -0.0049 0.0535 -0.1457 0.1864 

 4 60 -0.0119 0.0011 0.0613 -0.1500 0.1599 

 5 (Low) 60 -0.0032 -0.0004 0.0671 -0.1423 0.1449 
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Table A18: DID estimation results – Kunming Montreal Declaration – No clustered SE 

Note: This table presents the DID estimation results for the Kunming Montreal Declaration without clustered standard errors. The 

dependent variable is the monthly excess return of individual companies regressed on the risk factors and control variables. Country 

and industry fixed effects are included in model (2). 
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Table A19: Placebo Treatment Effect – DID Kunming Montreal Declaration 

Note: This table presents the placebo treatment effect results for the DID analysis of the 

Kunming-Montreal Declaration, using random groups instead of the actual treatment group. 

The results include models with and without fixed effects, showing the placebo treatment 

effect, time, and control variables. 

 Dependent Variable: 

 Model without Fixed Effects Model with Fixed Effects 

 (1) (2) 

Placebo Treatment Effect -0.0002528 -0.0003086 

 (0.0004822) (0.0004821) 

Time 0.0003626 0.0003625 

 (0.0006027) (0.0006026) 

MRKTRf 0.009219*** 0.009219*** 

 (0.0000648) (0.0000648) 

SMB 0.010449*** 0.010449*** 

 (0.0001388) (0.0001388) 

HML 0.0007441*** 0.0007440*** 

 (0.0000874) (0.0000874) 

WML -0.0000002 -0.0000002 

 (0.0000963) (0.0000963) 

HLBR 0.0014378*** 0.001438*** 

 (0.0001672) (0.0001671) 

Log Total Assets -0.014651*** -0.014649*** 

 (0.0007267) (0.0007266) 

BM Ratio -0.0000012*** -0.0000012*** 

 (0.0000002) (0.0000002) 

Leverage Ratio -0.0000022 -0.0000022 

 (0.0000017) (0.0000017) 

Invest Total Assets -0.0087405 -0.0087440 

 (0.0047447) (0.0047447) 

Log PPE -0.0010252** -0.001025** 

 (0.0003609) (0.0003609) 

Country fixed effect N Y 

Industry fixed effect N Y 

Observations 245,460 245,460 

R² 0.20098 0.20098 

Adjusted R² 0.1874 0.1874 

F-statistic 5059.02*** 5059.04*** 

Note: 

  

 *p<0.1; **p<0.05; ***p<0.0 
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Figure A20: Parallel Trends Assumption – DID Kunming Montreal Declaration 

 

Note: This figure presents the parallel trends assumption for the DID analysis of the Kunming-Montreal Declaration. It shows the 

average excess return trends for high and low biodiversity risk portfolios. The dashed line represents the date of the Kunming 

Declaration in October 2021. 
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Table A21: DID estimation results – TNFD – No clustered SE 

Note: This table presents the DID estimation results for the TNFD launch without clustered standard errors. The dependent variable 

is the monthly excess return of individual companies regressed on the risk factors and control variables. Country and industry fixed 

effects are included in model (2). 
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Table A22: Placebo Treatment Effect – DiD TNFD 

Note: This table presents the placebo treatment effect results for the DID analysis of the 

TNFD launch, using random groups instead of the actual treatment group. The results include 

models with and without fixed effects, showing the placebo treatment effect, time, and control 

variables. 

 Dependent Variable: 

 Model without Fixed Effects Model with Fixed Effects 

 (1) (2) 

Placebo Treatment Effect -0.0002449 -0.0003185 

(0.0004821) (0.0004820)  

Time -0.0062950*** -0.0062962*** 

 (0.0005712) (0.0005712) 

MRKTRf 0.0090611*** 0.0090611*** 

 (0.0000632) (0.0000632) 

SMB 0.010158*** 0.010158*** 

 (0.0001400) (0.0001400) 

HML 0.0008321*** 0.0008320*** 

 (0.0000874) (0.0000874) 

WML -0.0001212 -0.0001212 

 (0.0000952) (0.0000952) 

HLBR 0.0016397*** 0.0016401*** 

 (0.0001651) (0.0001651) 

Log Total Assets -0.011845*** -0.011843*** 

 (0.0007254) (0.0007254) 

BM Ratio -0.0000012*** -0.0000012*** 

 (0.0000002) (0.0000002) 

Leverage Ratio -0.0000023 -0.0000023 

 (0.0000017) (0.0000017) 

Invest Total Assets -0.0094507* -0.0094546* 

 (0.0047409) (0.0047409) 

Log PPE -0.0011304** -0.0011302** 

 (0.0003604) (0.0003604) 

Country Fixed Effect N Y 

Industry Fixed Effect N Y 

Observations 245,460 245,460 

R² 0.20138 0.20138 

Adjusted R² 0.1878 0.18781 

F-statistic 5071.65*** 5071.65*** 

Note:   *p<0.1; **p<0.05; ***p<0.0 
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Figure A23: Parallel Trends Assumption – Difference-in-difference analysis – TNFD 

 

Note: This figure presents the parallel trends assumption for the DID analysis of the TNFD launch. It shows the average excess 

return trends for high and low biodiversity risk portfolios. The dashed line represents the date of the TNFD launch in June 2021. 

 

 
 

 

 


