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ABSTRACT  

Perceptual decision-making involves rapidly classifying sensory information to select appropriate responses. These decisions 
can be influenced by choice biases, which are systematic preferences for certain options and may rise from prior expectations 
of the likelihood of the occurrence of an event. While these biases increase decision efficiency, they can lead to suboptimal 
outcomes if expectations misalign with reality. In this study, we first investigated whether expected likelihoods of events induce 
proportional choice biases. Then, we examined the extent to which discrepancies between expected and actual likelihoods 
influence the development of these choice biases. We were particularly interested in any potential differences between 
adaptation to prior information inaccurately predicting a high likelihood of an event versus inaccurately predicting a low 
likelihood of an event. Participants (N=61) performed a visual discrimination task where prior information predicted the 
likelihood of occurrence for two options. We manipulated both the strength of the probability and prediction accuracy of the 
prior information. We then fitted a drift diffusion model (DDM) to the behavioral data of each participant. The starting point 
parameters of the DDM indicate that likelihood expectations do not result in proportional biases. Furthermore, participants 
showed no significant adaptation in response to inaccurate prior information, suggesting that bias development is mainly driven 
by prior information, regardless of the accuracy of this information. 
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INTRODUCTION 

Perceptual decision-making is the process of classifying 
sensory information from the environment, allowing for the 
selection of an appropriate response (Summerfield & 
Blangero, 2017). These types of decisions are made rapidly 
and with little deliberation (Dutilh & Rieskamp, 2015), for 
example, when assessing a facial expression or the safety of 
crossing a street. 
 
When making a perceptual decision, a choice bias may 
influence the decision process. A choice bias refers to a 
systematic preference for one option over other options, 
leading individuals to choose the preferred option more 
frequently and more quickly (Tobena et al., 1999; Kelly et al., 
2019; Dunovan et al., 2014; White & Poldrack, 2014; Mulder 
et al., 2012; Summerfield & Blangero, 2017). Although a bias 
might lead to false observations or deductions, there are 
significant advantages to having a bias (Tobena et al., 1999). 
For example, by reducing the need to consider all options 
equally, choice biases allow for more efficient information 
processing, saving cognitive resources and resulting in 
quicker responses.  
 
Such choice biases can be caused by prior knowledge, the 
information that an individual possesses before encountering 
sensory information, such as past experiences or information 
about the situation. This prior knowledge might shape 
expectations about the likelihood of different events and 
cause a bias for the option that is expected to be more likely. 
For example, when deciding whether it is safe to cross the 
road, prior knowledge of frequent accidents on this crossing 
might induce a bias for the option “dangerous to cross”.  
 
However, expectations of the likelihood of an event can have 
a mismatch with the actual likelihood of an event. A bias 
caused by inaccurate expectations can result in suboptimal, 
potentially dangerous choices. For instance, when someone is 
not aware of the frequent accidents that happen on the 
crossing, they might underestimate the likelihood of an 
accident. A bias caused by this underestimation might cause 
them to be more inclined to cross the street, exposing them to 
more risk than they are aware of. 
 
A mismatch between the expectations and the actual 
likelihood of an event becomes apparent to an individual 
when the outcome of the decision is evaluated (Rangel et al., 
2008). When such a mismatch exists, and the outcome of the 
decision does not coincide with the expectations, a prediction 
error occurs. The prediction error indicates that the initial 
representation of the decision was incorrect and calls for an 
update of the representation that is proportional to the 
prediction error (Rangel et al., 2008). As a result, future, 
similar decisions may yield a more appropriate response to 
the situation and result in the expected outcome. 
 
 

However, after an update, the expectations of the likelihood 
of an event may approach, but still not be an exact 
representation of the true likelihoods and in turn still result in 
an undesirable choice bias. The prediction error after a 
mismatch might be underestimated or overestimated, for 
instance, when the mismatch between expected and actual 
occurrences is too small and therefore hardly observed. 
Consequently, it might require multiple experiences and 
updates to reach an accurate representation that results in a 
more beneficial choice bias.  
 
To investigate this process of adaptation, this study aims to 
explore the extent to which mismatches between the 
expectations of the likelihood of events and the actual 
likelihood of events result in prediction errors, and therefore 
changes in a choice bias. To examine whether individuals 
strongly adhere to their prior knowledge or adjust well to the 
actual situation, we first seek to determine the extent to which 
accurate prior information of the likelihood of an event 
induces choice biases and examine whether these likelihood 
priors induce proportional biases. Then, we aim to determine 
the choice biases when the likelihood expectations turn out to 
be inaccurate. Specifically, we are interested in any potential 
differences between the adjustment in response to prior 
information inaccurately predicting a low versus high 
likelihood of an event. 
 
One method for understanding perceptual decision-making 
and the influence of biases involves the use of computational 
models. These models aim to disentangle the underlying 
cognitive processes of a decision by simulating how their 
interaction results in observable behavior. In these models, a 
decision is the result of a stochastic process of evidence 
accumulation. This decision process is explained in terms of 
several parameters. From these parameters, specific 
conclusions about the underlying cognitive processes that 
influence decision-making can be drawn. 
 
A powerful accumulation model is the drift diffusion model 
(Ratcliff, 1978) (Figure 1). When facing a binary choice, the 
DDM assumes the decision process begins at a starting point 
(z). From this starting point, evidence accumulation begins 
until a decision threshold (a, 0) for either one of the options is 
reached. The drift rate (v) is the rate of evidence 
accumulation, the average amount of evidence accumulated 
per time unit. The noise (𝜂) is the standard deviation from the 
drift rate and refers to random disturbances, either in the 
sensory information or in the brain, which can cause the same 
information to result in different decision times or even 
different choices. The time it takes to get from the starting 
point to the threshold and reach a decision is the decision time. 
The reaction time is the decision time plus the stimulus-
independent non-decision time (Ter), which includes the time 
it takes to encode the stimuli and execute the decision (for 
reviews, see Ratcliff & McKoon, 2008; Voss et al., 2004; 
Ratcliff et al., 2016). 
 



For instance, when deciding whether it is safe to cross the 
road, the decision process starts at the starting point. From 
that point evidence accumulation begins for both options 
"safe to cross" and "dangerous to cross", for example by 
assessing the distance to the other side of the street, the speed 
of the cars, and the time remaining on the traffic light. 
Depending on how these situations appear, you may choose 
to cross the street, which means you have reached the decision 
threshold. For noise, this could be unpredictable factors such 
as sudden noises or unexpected changes in traffic patterns. 
 
A starting point in the middle of the bounds indicates that for 
both options the same amount of evidence is required to reach 
the decision thresholds. When a starting point shifts closer to 
one boundary, it creates an asymmetric distance from the 
starting points to the boundaries. Less evidence for that option 
is needed to reach the decision, thus creating a choice bias for 
that option. Previous studies of choice bias have shown that 
in the drift diffusion model, prior knowledge of the likelihood 
of the options generally is reflected in the position of the 
starting points (Leite & Ratcliff, 2011, Mulder et al., 2012, 
White and Poldrack, 2014). Therefore, we expect adaptation 
to an inaccurate representation of the likelihoods to be 
reflected in a shift in the starting points. 
 
We hypothesize that prior knowledge that predicts a high 
likelihood of the occurrence of an event causes a larger choice 
bias than a low-likelihood prior because high-likelihood prior 
knowledge reduces the uncertainty of a choice to a greater 
extent compared to low-likelihood prior knowledge. We 
assume the choice bias caused by prior knowledge of the 
likelihood to be at its minimum when uncertainty is at its 
maximum, which corresponds to a 50% expected likelihood 
of the occurrence of an event. Conversely, we assume the 
choice bias to be at its maximum when a 100% likelihood is 
expected. Between these extremes, we anticipate that all 
choice biases caused by likelihood expectations of 
intermediate percentages follow a linear relationship, 
meaning each change in percentage points would result in an 
equivalent absolute change in starting points (Figure 2A). 
 

However, we predict that if prior expectations of the 
likelihood of an event turn out to be inaccurate, mismatches 
in higher likelihood expectations result in more pronounced 
choice bias adaptations than mismatches in lower likelihood 
expectations (figure 2B). The reason for this is that 
expectations of a higher likelihood of the occurrence of an 
event restrict the area for uncertainty more than lower 
likelihood expectations, which could make the mismatch 
more noticeable. Consequently, the mismatch would sooner 
result in a prediction error and thus in changes in the choice 
bias, reflected by a shift in the starting point. 
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Figure 1. Schematic representation of the drift-diffusion model, featuring 
the starting point (z), drift rate (v), bounds (a, 0), and noise (𝜂). The green 
and red path serve as an example of a decision where evidence is sometimes 
accumulated for the option corresponding to the lower bound (path moves 
towards the lower bound) and sometimes for the option corresponding to the 
upper bound (path moves towards the upper bound). The green pad results 
in a decision for the option at the upper bound and the red path in a decision 
at the lower bound. The decision time is the time it takes from the beginning 
of evidence accumulation until reaching the bound and making the decision. 
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Figure 2. A) Expectations of starting points as a result of prior expectations of the likelihood of the occurrence of an event. We expect the starting point to be 
closest to the middle when the uncertainty is at its maximum, which is when a 50% likelihood of occurrence is expected (z50). We expect that as the likelihood of 
an event increases, the starting points increases proportionately. Therefore, the difference between the starting points when a 50% (z50) versus 60% (z60) likelihood 
is expected to be half as small as the difference between the starting points at an expected likelihood of 60% (z60) versus 80% (z80). B) Expectations of changes in 
the starting points when the prior expectations of the likelihood of an event turn out to be inaccurate. We expect mismatches in both high and low likelihood 
expectations to result in shifts in the starting point in the direction of the actual perceived likelihood of the event (zadapted). However, we expect this shift to be more 
pronounced when a higher likelihood of an event was expected. Therefore, we expect a mismatch when an 80% likelihood of an event is expected while the actual 
likelihood is 60% to result in bigger starting point shifts than when prior expectations of a 60% likelihood mismatches with an actual 80% likelihood. 

 



METHOD 

Participants. From 61 participants (49 female, 10 male, 2 
other, mean age = 21.3, SD = 2.5), 51 participants reported to 
be right-handed, 10 to be left-handed. Participants were 
recruited via Utrecht University’s Sona Systems 
(https://www.sona-systems.com/) (55) and rewarded 0.75 
PPU or were recruited via online media (6). All participants 
provided informed consent before participating in the study. 
The study was built in Gorilla Experiment Builder 
(https://app.gorilla.sc, Anwyl-Irvine et al., 2019) and 
approved by the Faculty Ethics Review Committee.  
 
Stimuli. All stimuli were generated in Python. Stimuli consist 
of a square with 150×150 pixels. The square consists entirely 
of 2500 black and white squares (Figure 3). Since our 
environment is usually ambiguous, there are two levels of 
difficulty, providing a balance between situations where a 
discrepancy between expectations and reality might be more 
noticeable, in the easy stimuli, and less noticeable, in the hard 
stimuli. In the easy level, the black-white ratio will be 53/47 
(1325 squares of one color and 1175 squares of the other 
color). In the hard level, the color ratio will be 52/48 (1300 
squares of one color and 1200 squares of the other color). 
 
To determine these difficulties, we conducted a pilot study 
without any prior information. Too difficult stimuli might 
cause participants to entirely base their decisions on the prior 
information and fail to notice inaccurate prior information 
they will encounter. Conversely, when the difficulty is too 
low, participants might disregard the prior information, since 
it does not help in reaching a decision. The chosen ratios lead 
to an accuracy of 85% for easy stimuli and 75% for hard 
stimuli, which should provide a balance wherein participants 
use, but do not entirely depend on their prior knowledge. 
 
Experimental design. The experiment consists of five blocks, 
one for each condition. For each participant, the order of the 
conditions is randomized. Each block consists of 100 trials, 
all with a break after 50 trials. Within each block, half of the 
stimuli is of level easy and half of level hard, randomly 
distributed. The task is to indicate whether there is more black 
or more white present in a stimulus by pressing the p-key or 
the q-key (for a schematic overview of a block, see Figure 4).  
 

 
 

For each participant, the keys remained consistent throughout 
the experiment. The key-color correspondence is 
counterbalanced to account for the effect of handedness. 
 
At the beginning of each block, prior information indicates 
the dominance of a color in the upcoming trials, and it is 
stressed that this information will be helpful in their 
judgment. The five conditions are as follows (for an overview, 
see Table 1): In the 50-Match condition, participants are 
accurately informed that in the upcoming trials, both black 
and white colors will be dominant in 50% of the stimuli. In 
the 60-Match and 80-Match conditions, participants are 
accurately informed about the respective 60% and 80% 
dominance of a color in the upcoming trials. In the 60-
Mismatch condition, a 60% color dominance is predicted, 
while the actual dominance of that color is 80%. In the 80-
Mismatch condition, an 80% dominance of a color is 
predicted, while the actual dominance of that color is only 
60%.  
 
In the 60-Match and 80-Mismatch conditions, the same color 
is predicted to be more dominant, while in the 80-Match and 
60-Mismatch conditions, the other color is predicted to be 
more dominant. The assignment of which color is dominant 
in which pair of conditions is counterbalanced between all 
participants.  
 

 
Procedure. At the beginning of the experiment, participants 
were asked for consent and instructed to minimize 
distractions, maximize screen brightness, and set their screens 
to fullscreen mode. Subsequently, participants were given the 
task instructions, directing them to indicate whether they 
perceived more black or white in an image by pressing the p- 
and q-keys. Additionally, participants were informed about 
the duration of the experiment and were briefed that before 
each block, they would be given information about the 
probability of a color being the right answer. Participants 
underwent 15 practice trials to familiarize themselves with the 
task's design and pace. No prior information was given during 
these practice trials. After each trial, they received feedback 
on whether they chose the correct answer. 

 50% 
predicted 

dominance 

60% 
predicted 

dominance 

80% 
predicted 

dominance 
50% actual dominance 50-Match - - 
60% actual dominance - 60-Match 80-Mismatch 
80% actual dominance - 60-Mismatch 80-Match 

 
Table 1. Five conditions formed by different combinations of actual and 
predicted dominance of a color in the upcoming trials. Within each 
condition, half of the stimuli is of level easy and half is of level hard. 
 

Figure 3. Stimuli of level easy with more black 
squares (left) and stimuli of level hard with more white 
squares (right). 

https://www.sona-systems.com/
https://app.gorilla.sc/


Before each block, participants were presented with the prior 
information about the dominance of black and white colors in 
the upcoming trials, both with text and with a visualization 
(figure 4). This prior information was repeated during the 
break between trials. To keep a focus on this prior 
information, a simplified graph is shown during the trials, 
showing the ratio of both colors as indicated by the prior 
information. In each trial, a fixation cross was presented for a 
duration determined by a random number drawn from a 
normal distribution between 600 ms and 1200 ms. Responses 
faster than 250 ms were categorized as premature, and a 
notification ‘too fast’ was displayed for 1500 ms. Failure to 
respond within 2000 ms was considered a 'too late' response 
(see Figure 4). 
 
After completion of the experiment, participants were 
debriefed. To indicate whether participants noticed the 
inaccuracies in the prior information, they were asked 
whether they suspected the information provided before each 
trial might not always have been accurate. If they answered 
yes, they were asked to indicate how many times they thought 
the prior information was not accurate. Hereafter, everyone 
was informed that in 2 out of 5 times, the prior information 
was not accurate.  
 
Behavioral analysis. During the experiment, response times 
and choices were measured. Descriptive results were obtained 
using Jasp (JASP Team (2024) JASP (Version 0.18.3)). 
Response times lower than 250 ms are considered too fast and 
removed. Response times higher than three times the standard 
deviation from the average response times are considered 
outliers and also removed (1.90%). To indicate the effect of 
accurate prior information on bias development, we first 
compared the accuracy within the biased trials between 
conditions 50-Match, 60-Match, and 80-Match using a 3 ×	2 
(Prior × 	Difficulty) repeated measures ANOVA. Then, we 
compared the reaction time for biased choices with the 
reaction times for unbiased choices, also by performing a         
3 ×	2 (Prior × 	Difficulty) repeated measures ANOVA. To 
indicate the effect of inaccurate prior information, we 
compared the proportion of choices in favor of the option 
predicted to be more dominant by the prior information 
between the different conditions using a 2	×	2 ×	2 ×	2 (Prior 
× Difficulty × Match × BiasedTrial) repeated measures 
ANOVA. 
 
DDM analysis. To investigate the underlying processes 
behind the observable behavior, we used the drift diffusion 
model. We designed four different models using the PyDDM 
Python package (Shinn et al., 2020). Each model reflects a 
different hypothesis on bias development in response to 
(inaccurate) prior information. We compared these models to 
determine what model best describes the behavioral data and 
thereby offers the most accurate view of such bias 
development. Since previous studies showed that choice 
biases caused by probabilistic cueing are mostly reflected in 
the position of starting points (Leite & Ratcliff, 2011, Mulder 

et al., 2012, White and Poldrack, 2014), the focus in these four 
models lies on the starting point parameters. 
 
In all four models, the decision thresholds, the bounds, 
correspond to black choices (upper bound) and white choices 
(lower bound). All models estimate a baseline starting point 
parameter across all trials for each participant, which reveals 
a potential bias for black or white, regardless of any prior 
information. The effect of the prior information is captured by 
an additional z-value (∆𝑧). Together, the baseline and the 
additional z-value determine the starting point in each 
condition. Since in conditions 60-Match, 60-Mismatch, 80-
Match, and 80-Mismatch the color predicted to be dominant 
was in fact dominant, even in the mismatch conditions, we 
assume the effect of the additional z-value information was 
always in favor of the color predicted to be dominant. 
 
Therefore, when black is predicted to be dominant, the 
starting point will be determined by a baseline plus an 
additional z-value. When white is predicted to be dominant, 
the starting point will be determined by the baseline, minus 
the additional z-value. A higher z-value indicates a larger 
effect of the prior information on the starting point compared 
to the baseline, and thus a larger bias. 
 
Previous research has shown differences in difficulties are 
usually reflected in the drift rate, since the efficiency of the 
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Figure 4. Schematic overview of one block. Each block starts with a cue, 
predicting the proportion of correct black and white choices both in text and 
with a bar graph. Then, the first 50 trials follow. Each trial consists of a 
fixation screen, shown between 600-1200 ms, and the stimulus, shown for 
2000 ms. During the fixation and the stimuli, a simplified graph of the color 
prediction is shown. During the break, the cue predicting the proportion of 
correct black and white choices is repeated. When participants indicate they 
are ready, they continue with the last 50 trials. 
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uptake of information differs (Ratcliff & McKoon, 2008; 
Leite & Ratcliff, 2011). Therefore, in all models, there will be 
two drift rate parameters, one for easy and one for hard 
stimuli. Furthermore, all models have collapsing bounds, 
since all trials have a degree of urgency. Therefore, over time, 
the bounds shift closer to the middle, and less evidence is 
needed to reach a decision. For all models, we assume 
exponentially collapsing bounds, expressed by parameter B, 
the bound at t = 0, and parameter tau, the rate of collapse. 
Conventionally, the noise is set a 1 for all four models. 
 
1) Null model. The Null model is designed after a theory 
wherein participants disregard both the prior information they 
receive beforehand and their experiences in previous trials. If 
this view is correct, all conditions result in the same starting 
point, solely determined by any natural biases for black or 
white. Therefore, the null model only has a baseline starting 
point parameter, zbase.  
 
2) Prior model. This model reflects a view where participants 
behave primarily per the prior information, regardless of the 
accuracy of this information. If this theory is correct, there 
would be no difference in the starting points between an 
accurate and inaccurate prediction of color domination. 
Therefore, in this model, there are three starting point 
parameters: As in the Null model, a baseline zbase over all trials 
is calculated. Furthermore, there are parameters z-60prior and 
z-80prior, which are the additional values (∆𝑧) to the baseline 
when the prior information predicts a 60% (conditions 60-
Match and 60-Mismatch) and an 80% (conditions 80-Match 
and 80-Mismatch) dominance of color, respectively. We 
assumed that when the prior predicts a white dominance, the 
starting points shift towards the lower bound (𝑧 − ∆𝑧) and 
when the prior indicates a black dominance, the starting point 
shifts towards the upper bound (𝑧 +	∆𝑧). Following the 
hypothesis, the conditions predicting an 80% dominance 
would result in an additional value (∆𝑧) twice as large as the 
conditions predicting a 60% dominance.  
 
3) Trials model. The Trials model is based on a hypothesis 
where biases are caused by the image of the ratio of black-
and-white answers that participants develop throughout the 
block and not by the prior information. If this hypothesis is 
correct, all conditions with the same ratio of black and white 
being the correct answer result in the same starting point. 
Therefore, in this model, there are three starting point 
parameters. As in the Prior model and the Null model, there 
is a baseline parameter zbase. Furthermore, there are 
parameters z-60trials and z-80trials, which represent the 
additional value to zbase when the actual color ratio is 60/40 

(conditions 60-Match and 80-Mismatch) and 80/20 
(conditions 80-Match and 60-Mismatch), respectively.  
 
4) Full model. This model considers both a possible influence 
of the prior information and the perception of the color ratio 
during the trials. Therefore, in this model, there are five 
different starting point parameters. A baseline parameter zbase 
and additional value parameters for all conditions 60-
Mismatch, 60-Match, 80-Mismatch, and 80-Match that, when 
added to the baseline, each result in a separate starting point.  
 
To determine which of these four models best describes the 
empirical data, we compared both the Bayesian Information 
Criterion (BIC) (Schwartz, 1978) and the Akaike Information 
Criterion (AIC) (Akaike, 1974). The BIC is a criterion for 
model selection based on a likelihood function. The 
likelihood function indicates how well the model explains the 
data. The model fit can be increased by adding parameters. 
However, this might result in overfitting, which leads to poor 
generalization of new situations and reduced predictive 
performance. To avoid this, a penalty is added for the number 
of parameters. Therefore, The BIC reflects a balance between 
model fit and model complexity. We also calculated the AIC, 
which is more tolerant for complex models. Lower BIC and 
AIC values indicate a better fit.  
 
For the BIC and the AIC values of all four models, see Table 
2. The BIC and AIC values do not conclusively determine the 
winning model. The BIC identifies the Prior model as the 
winning model, while the AIC selects the Full model as the 
winning model. We decided to continue our analysis with the 
Full model, since this model allows us to test for the effect of 
inaccurate prior information. 
 
To assess the performance of the full model, we conducted a 
goodness-of-fit analysis (Figures 5 and 6). By plotting the 
empirical data and the data predicted by the Full model, we 
can assess how well the Full model predicts the data. 
Datapoints closer to the diagonal suggest a good fit, since the 
the estimated data would be more similar to the empirical 
data.  
 
A 2 ×	2 (Prior × Match) repeated measures ANOVA on the 
starting points of the Full model in Jasp allows for a 
comparison between the biases developed in each condition 
and thus for a comparison between the adaptation to 
inaccurate expectations of high likelihood and the adaptation 
to inaccurate expectations of low likelihood, answering our 
main questions. 
 
 
.

   Null model Prior model Trials model Full model 
Mean BIC (%) 163.37 (11.48%) 132.89 (55.74%) 140.11 (22.95%) 138.63 (9.84%) 
Mean AIC (%) 138.12 (0%) 99.22 (27.86%) 106.44 (16.39%) 96.54 (55.74%) 
 
Table 2. Mean BIC and AIC values for all four models, and the percentage of participants for which the model had the lowest value.  
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Figure 5. Goodness-of-fit for the proportion of correct answers for the Full model. For conditions (from left to right) 50-Match, 60-Mismatch, 60-Match, 80-Mismatch, 
and 80-Match, the graph shows for each participant the actual overall proportion of correct choices (x-axis) and the overall proportion of correct choices predicted by the 
full model for that same participant (y-axis).  
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Figure 6. For each participant the empirical (x-axis) and the simulated data (y-axis) for conditions (from top to bottom) 50-Match, 60-Mismatch, 60-Match, 80-
Mismatch, and 80-Match. From left to right the 10th, 30th, 50th 70th, and 90th quantile of the reaction time distribution, separated by choice for black or for white. The 
model seems to fit the data moderately well, except for a tendency to overestimate the reaction times for the 70th and 90th quantile. 

 

White 
Black 



RESULTS 

Descriptive results 

Accuracy. For the descriptive statistics of accuracy within 
the biased trials, see Table 3. We conducted a 3 ×	2 (Prior × 
Difficulty) repeated measures ANOVA. Prior has levels 50, 
60, and 80, corresponding to the accurately predicted 
dominance of one color. Difficulty has levels easy and hard, 
the difficulties of the stimuli. There are significant main  
effects for Prior (F(2,120) = 49.8, p < 0.001) and for 
Difficulty (F(1,60) = 169.9, p < 0.001). Furthermore, no 
interaction effect between Prior and Difficulty was found 
(F(2,120) = 5.7, p = 0.004).  
 
Reaction time. For reaction times, we compared the mean 
reaction times in the 50-Match condition with the mean 
reaction times for biased choices in 60-Match and 80-Match, 
which are the choices in favor of the option that was 
predicted to be more dominant by the prior information. The 
reaction times can be found in Table 4. A 3 ×	2 (Prior × 
Difficulty) repeated measures ANOVA shows a main effect 
for Prior (F(2,120) = 41.1, p < 0.001) and a main effect for 
Difficulty (F(1,60) = 9.2, p = 0.003). There is no significant 
interaction effect between Prior and Difficulty (F(2,120) = 
0.6, p = 0.551). 
 

Biased choices. To indicate the effect of the prior information 
on the bias development in the match versus mismatch 
conditions, we compared the proportion of choices made in 
favor of the color predicted to be more dominant by the prior 
information. This comparison was made within the trials 
where the biased color, the dominant color, was the correct 
choice (for descriptives, see Table 5). Additionally, we made 
the comparison within the trials where the unbiased color, the 
non-dominant color, was the correct choice (for descriptives, 
see Table 6). 
 
We performed a 2 ×	2 ×	2 ×	2 (Prior ×	Match ×	Difficulty × 
Biased-trials) repeated measures ANOVA. Prior has levels 60 
and 80, corresponding to the level of dominance predicted by 
the prior information. Match has levels yes and no, referring 
to the accuracy of the prior information. Difficulty has levels 
easy and hard, for the difficulty of the stimuli.  

Biased-trials has level ‘biased’, for the trials where the color 
predicted to be dominant was the correct choice, and level 
‘unbiased’, for the trials where the non-dominant color was 
the correct choice 
 
The ANOVA shows main effects for Prior (F(1,60) = 40.492, p < 
0.01) and for Biased-trials (F(1,60) = 1748.2, p < 0.001). 
Furthermore, there is an interaction effect between Prior and Match 
(F(1,60) = 22.7, p < 0.001). Post hoc t-tests show a significant 
difference between condition 80-M and conditions 80-MM, 60-
MM, and 60-M (80-MM: t(60) = 4.8, 60-MM: t(60) = 5.7, 60-M: 
t(60) = -7.6, all ps < 0.001). No significant differences were found 
between conditions 60-M and 60-MM (t(60) = -2.9, p = 0.031). The 
p-values were adjusted for multiple comparisons using the 
Bonferroni correction.  

 50-M 60-M 80-M   50-M 60-M 80-M 
Accuracy (%) easy (SD) 88.9 (6.8) 90 (7.2) 95 (5.3)  Mean RT easy (SD) 645 (74.2) 634 (108.9) 561 (78.1) 
Accuracy (%) hard (SD) 80.4 (8.2) 82.1 (9.3) 90 (7.4)  Mean RT hard (SD) 652 (75) 648 (107.3) 578 (95.5) 

 
Table 3. Accuracy (%) for both easy and hard stimuli in conditions 50-Match, 
60-Match, and 80-Match. For conditions 50-Match, it is the accuracy for all 
trials. For 60-Match and 80-Match, it is the accuracy for all biased trials, 
which are the trials of the color that was predicted to be more dominant. For 
a visualization, see Figure 7A. 

 

  
Table 4. Mean of all individual’s median reaction times (ms) for easy and hard 
stimuli for conditions 50-Match, 60-Match, and 80-Match. For a visualization, see 
Figure 7B. 
 

Biased Trials 60-M 60-MM 80-MM 80-M  Unbiased Trials 60-M 60-MM 80-M 80-M 
Easy-mean (SD) 90.5 (7.2) 91.3 (6.9) 94.0 (5.8) 95.0 (5.3)  Easy-mean (SD) 12.7 (10.4) 19.7 (18.7) 24.3 (15.8) 24.3 (15.8) 
Hard-mean (SD) 80.4 (9.3) 81.8 (10.2) 83.4 (8.9) 89.7 (7.4)  Hard-mean (SD) 24.8 (12.4) 30.0 (16.8) 37.7 (19.4) 37.7 (19.4) 

 
Table 5. Per condition, the proportion of choices (%) made for the color 
predicted to be more dominant by the prior information, within the trials 
where the dominant color was the correct choice. Separated by the difficulty 
of the stimulus. For a visualization, see Figure 8. 

  
Table 6. Per condition, the proportion of choices (%) made for the color predicted to 
be more dominant by the prior information, within the trials where the non-dominant 
color was the correct choice. Separated by the difficulty of the stimulus. For a 
visualization, see Figure 9. 
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Figure 7. A) Accuracy (%) within the choices in favor of the option that was 
predicted to be more dominant, separated by prior predictions of 50, 60 or 80 
dominance and by difficulties easy and hard. For prior strength 50, where an equal 
dominance is predicted, all trials are considered. B) Mean of the individual median 
reaction time (ms) for all choices for the option predicted to be more dominant 
separated by prior strengths 50, 60, and 80 and by difficulties easy and hard. For 
prior strength 50 all choices are considered. 
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DDM analysis 
 
The full model seemed to best fit the data (see method section  
for the BIC and AIC values and the goodness-of-fit). In this 
section, we will analyze the parameters of the full model to 
determine the choice biases caused by prior information and 
perception of the dominance of one color in conditions 60-M, 
60-MM- 80-M, and 80-MM.  
 
All parameters of the full model can be found in Table 6. For 
zbase, a value above 0 implies a natural choice bias for black 
and below 0 for white. A one-sample Wilcoxon signed-rank 
test shows that zbase is significantly higher than 0 (V = 1454.0, 
p < 0.001). z-60-MM, z-60-M, z-80-MM, and z-80-M are the 
additional value to zbase. These values represent the effect of 
the prior information on the bias development. A larger z-
value indicates a larger bias.  
 
Since we are specifically interested in the bias development 
caused by the prior information, we performed a 2 × 2 
repeated measures ANOVA (Prior × Match) on the additional 
values in conditions 60-MM, 60-M, 80-MM, and 80-M. 
Conventionally, the values are scaled between 0 and 1. The 
values can be found in Table 7 and a visual representation in 
Figure 10. 
 
We found a significant main effect for factor Prior (F(1,60) = 
46.5, p < 0.001). However, no significant main effect for 
Match (F(1,60) = 2.3, p = 0.137) and interaction effect 
between Prior and Match (F(1,60) = 3.4, p = 0.070) were 
found. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 60-M 60-MM 80-MM 80-M 
z-value 0.038 0.053 0.077 0.110 

Std. Dev 0.06 0.07 0.06 0.08 
 

Table 7. Additional z-values of conditions 60-MM, 60-M, 80-MM, and 
80-M, relative to zbase. Larger z-values indicate a larger bias for the color 
that was predicted to be dominant. Negative z-values would indicate a 
choice bias for the color predicted to be non-dominant.  

 

  veasy vhard zbase z-60-MM z-60-M z-80-MM z-80-M B tau Ter 

Mean 1.529 1.061 0.050 0.106 0.076 0.154 0.220 1.013 0.864 0.301 
Std. Deviation 0.405 0.290 0.096 0.147 0.127 0.121 0.164 0.269 0.427 0.053 
 
Table 6. Mean and standard deviation for all parameters for the full model. veasy and vhard are the drift parameters, corresponding to easy and hard stimuli. 
zbase is a baseline estimate for the starting point, separate from any prior information. z-60-MM, z-60-M, z-80-MM, and z-80-M are estimates of the additional 
value to the baseline, representing the effect of the prior information in conditions 60-MM, 60-M, 80-MM, and 80-M, respectively. B is the decision 
threshold, tau represents the collapsing rate and Ter is the non-decision time.  
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Figure 8. Per condition the proportion of biased choices (%) 
within the biased trials, separated by difficulty. 
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Figure 9. Per condition the proportion of biased choices (%) 
within the unbiased trials, separated by difficulty. 
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Figure 10. Additional z-values for conditions 60-Match, 
60-Mismatch, 80-Match, 80-Mismatch. 



DISCUSSION 

In this study, we aimed to explore the adaptation to 
misinformation. We first investigated whether expectations 
of different degrees of likelihood of an event induce 
proportional biases, i.e. whether the difference in the extent 
of a choice bias between a 60% versus 80% expected 
likelihood of an event happening is twice the size of the 
difference between a 50% versus 60% expected likelihood. 
In addition, we were interested in the extent to which 
participants adapt their expectations in response to 
inaccurate information. Therefore, we compared the biases 
caused by prior information accurately predicting the 
probabilities of an event with the biases caused by prior 
information inaccurately predicting the probabilities. We 
were particularly interested in any potential differences 
between adaptation to prior information inaccurately 
predicting a high likelihood of an event versus inaccurately 
predicting a low likelihood of an event.  
 
We conducted a two-alternative forced choice task where 
participants indicated whether an image contained more 
black or white. They received prior information about the 
likelihood of one color being correct. We manipulated both 
the probability strength and prediction accuracy, and 
recorded choices and reaction times. We then fitted a drift 
diffusion model on each participant's behavioral data to 
identify their choice biases. 
 
We hypothesized that accurate expectations of the 
probability of an event will induce proportional biases. 
Furthermore, we expected participants to be well able to 
detect inaccuracies in their expectations and update their 
beliefs, reflected in their biases, accordingly. Finally, we 
expected a better adjustment to prior information 
inaccurately predicting a high likelihood of an event than a 
low likelihood, since an inaccurate expectation of a high 
likelihood of an event might be more noticeable.  
 
For each participant, their bias was determined by the 
starting point parameters, calculated by the DDM. The 
biases in condition 80-Match were significantly higher than 
in the 60-Match condition. This aligns with previous 
research, suggesting that biases arising from prior 
information predicting the probability of an event are 
primarily reflected in the starting point parameters (Leite & 
Ratcliff, 2011, Mulder et al., 2012, White and Poldrack, 
2014). Although we expected the difference between the 
60-Match and 80-Match conditions to be twice the size of 
the difference between the base starting point and the 60-
Match condition, the difference in the starting points is 
approximately the same size between the base starting point 
and the starting point in the 60-Match condition (0.038 
increase) as the difference between the 60-Match and the 
80-Match condition (0.034 increase). Also considering the 
fact no interaction effect was found between factors Prior 
and Match in the starting point parameters, indicating that 

the inclusion of the mismatch conditions did not influence 
the extent of the biases developed in the match conditions, 
this refutes the hypothesis of biases developing 
proportionally to prior information predicting a likelihood 
of an event.  
 
Apparently, a decrease in uncertainty is not necessarily 
paired with a constant increase in the bias and differs for 
varying degrees of uncertainty, while this degree of 
uncertainty should not matter rationally. For instance, there 
is no rational reason why the difference in bias between a 
74% and 75% expected likelihood differs from the bias 
difference between a 75% and 76% expected likelihood. 
 
The starting points in the base, 60-Match, and 80-Match 
conditions suggest that biases might develop according to a 
pattern of saturation. Initially, when the uncertainty is at its 
maximum and no color dominance is predicted, the bias is 
at its minimum (base). Then, when the uncertainty 
decreases, bias increases rapidly (60-M), but this change 
diminishes over time (80-M), suggesting that bias does not 
increase proportionality with the prior likelihood. 
Alternatively, biases might develop according to a sigmoid 
logistic relationship, where as the expected likelihood of an 
event increases, they initially exhibit exponential growth, 
then gradually slow down before reaching an asymptote. 
 
An explanation could be that people may categorize 
probabilities into specific ranges. For instance, we may 
consider probabilities of 50%-55% as ‘around even 
chance,’ 56%-75% as ‘likely,’ 76%-90% as ‘very likely’, 
and above 90% as ‘almost certain’. When the extent of a 
bias is determined by these mental categories and 
heuristics, the result may be a bias smaller or bigger than 
‘rational’. For example, an expected likelihood of 60% 
might fall just at the lower end of such a range, causing a 
slightly higher than rational bias, while an expected 
likelihood of 80% might fall at the upper end, resulting in a 
slightly lower than rational bias. However, to address this 
adequately, further research testing a wider range of 
probabilities is necessary. 
 
Regarding the adaptation to inaccurate prior expectations, 
the lack of significant differences in starting points between 
both the 60-Match and 60-Mismatch and between the 80-
Match and 80-Mismatch conditions proves the ability to 
timely detect inaccurate information or update expectations 
of the likelihood accordingly was below anticipated levels.  
 
Although the starting points in the Mismatch conditions did 
not differ significantly from the starting points in the Match 
conditions, participants chose the option predicted to be 
dominant significantly less often in the 80-Mismatch 
condition than in the 80-Match condition, while there was 
no significant difference in the proportion of biased choices 
between the 60-Match and 60-Mismatch conditions.  
 



Combined with the fact that in the questionnaire after the 
experiment a substantial majority (88.5%) reported 
suspecting the prior information may not always have been 
accurate, this raises the question of whether there would 
have been significant differences in bias development in 
match versus mismatch conditions if participants were 
given a wider opportunity to update their beliefs. This could 
be achieved, for instance, by increasing the contrast 
between the predicted and the actual likelihoods or by 
providing participants with more time to detect the 
inaccurate predictions and update their beliefs.  
 
However, it is worth noting that even if significant 
differences were observed between the match and 
mismatch conditions, any potential disparities in adapting 
to prior information inaccurately predicting either a low or 
high likelihood of an event may not solely be attributed to 
these varying strengths of predicted likelihood. That is, in 
the 60-Mismatch condition, the prior information 
underestimates the likelihood of an event, whereas the 80-
Mismatch condition overestimates the likelihood. When 
either an over- or an underestimation of a predicted 
likelihood would be more noticeable, this might result in a 
more accurate adaptation to the inaccurate information in 
these conditions. Therefore, in future research, it can be 
considered to remove this potential influence by ensuring 
that both conditions involve either an overestimation or an 
underestimation. 
 
Furthermore, the lack of significant differences in starting 
points estimated by the Full model between the 60-Match 
and 60-Mismatch conditions, as well as between the 80-
Match and 80-Mismatch conditions, explains why the Prior 
model also resulted in low BIC and AIC values. Indeed, it 
appears that biases are primarily driven by prior 
information, regardless of its accuracy. 
 
The question remains whether we have designed the drift 
diffusion models to best capture the participants’ behavior. 
In all four models, we did not take into account the 
possibility of the biases being reflected in the drift rate. 
While the changes in bias caused by prior probability cues 
are primarily reflected in changes in the starting points 
(Leite & Ratcliff, 2011, Mulder et al., 2012, White and 
Poldrack, 2014), there are instances of predictive 
probability cues resulting in changes in the drift rate as well 
as in the starting points. For instance, in Dunovan et al. 
(2014), where cues predicted a 50%, 70%, or 90% chance 
of a stimulus being a face or a house and these predictive 
cues influenced both the starting point and the drift 
parameters. Thus, future studies could consider exploring 
potential changes in the drift rate as well. 
 
Additionally, it is important to note that the classic DDM 
we used does not dynamically account for learning effects. 
A combined DDM with a learning model, such as RLDDM 
(Reinforcement Learning Drift Diffusion Model), could 

provide a more comprehensive understanding of the 
process of belief updating in response to inaccurate prior 
information. 
 
In conclusion, this study sheds light on the complexity of 
adaptation to inaccurate expectations of the likelihood of an 
event happening. We found evidence against the idea that 
accurate likelihood expectations induce proportional 
biases. Furthermore, while participants generally showed 
awareness of potential inaccuracies in the prior information, 
they still strongly adhered to their prior expectations, as 
evidenced by the lack of significant differences in starting 
points between match and mismatch conditions. The data 
does indicate a trend towards better adjustment when the 
prior information inaccurately predicts a high likelihood 
compared to a low likelihood, as seen in the proportion of 
biased choices. However, additional research is necessary 
to conclusively address this. 
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