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Virtual screening for non-carbohydrate 
inhibitors for  cholera toxin B 

Searching for non-carbohydrate Cholera toxin B inhibitors using virtual screening techniques 

and data analysis 
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Abstract 

Carbohydrate ligands are present in various biological processes which makes them interesting 

targets in the pharmacological world. Inhibitors can be made to correct biological processes or 

target carbohydrate-binding pathogens. However, carbohydrates do have multiple drawbacks 

which makes them hard targets for inhibitor-synthesis. The cholera toxin, especially subunit B, 

is a carbohydrate binding pathogen. It binds the GM1 pentasaccharide present in epithelial cell 

membranes. Inhibitors have been made to target this binding and stop the internalisation of 

the cholera toxin. However, to date these inhibitors mostly consist of complex carbohydrate 

molecules. This study describes a virtual screening of multiple drug-like molecule databases to 

find non-carbohydrate inhibitors, which are less complex and have better pharmacological 

properties. The virtual screening consists of structural screening using HYBRID and similarity 

screening using ROCS. The results have been combined using reciprocal data-fusion, resulting 

in a hitlist which contains information of both screening methods and is ranked based on both 

methods. Multiple interesting molecules have been found, showing similar interactions when 

compared to the carbohydrate GM1 ligand. From the final hit list molecules can be selected for 

further in-vitro research. 

 

Layman’s summary (Dutch) 

Suikers zijn onderdeel van veel biologische processen. Meerdere ziektemakers, waaronder de 

ziektemaker van de cholera bacterie, binden aan suikers van cellen om zo cellen binnen te 

kunnen dringen. Meerdere inhibitie-medicijnen proberen deze interacties tegen te gaan, door 

te binden aan de cholera-toxine voordat deze aan de cel kan binden. De meeste van deze 

inhibitors zijn echter complexe suikers en lastig te maken. Hierdoor is er in een grote database 

met niet-suiker moleculen gezocht naar alternatieven met gebruik van meerdere computer 

programma’s die deze moleculen (relatief) snel kunnen screen op basis van structuur en 

overeenkomsten met bestaande inhibitie-medicijnen. Meerdere moleculen zijn gevonden die 

gunstige interacties laten zien met de cholera toxine, die vergelijkbaar zijn met de cel-

suikermoleculen. Moleculen die goed uit deze computer-screening komen kunnen in de 

toekomst in het lab worden bekeken op daadwerkelijke binding aan de cholera toxine, met het 

doel om minder complexe niet-suiker inhibitors te kunnen vinden die makkelijker gemaakt 

kunnen worden.  
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1. INTRODUCTION 

1.1 Carbohydrate ligands 
Carbohydrate ligand molecules form a large group of biological ligands in the human 

body. One important group of proteins that is connected to carbohydrate ligand binding 

is the lectin protein family (Sethi et al., 2021). The lectin protein family is important for 

many physiological and cellular processes. Selectins for example are important 

adhesion lectins, which are crucial in the immune system. Galectins are associated 

with many cell regulation processes and also cancer and collectins are linked to pattern 

recognition of respiratory viruses and pathogenic bacteria (Ghazarian et al., 2011). 

Many diseases and pathogens are linked to carbohydrates. Escherichia coli binds to 

host mannosides and Influenza A Virus binds to sialic acids. Other pathogens that 

interact with carbohydrates for example are Neisseria gonorrhoeae, Streptococcus 

pneumonia and Pseudomonas aeruginosa (Ghazarian et al., 2011). 

Due to the many interactions of carbohydrates with many processes, proposed 

carbohydrate-based therapeutics and drugs are very common. Using glycosylation-

modification these drugs can target different carbohydrate-binding processes. For 

example, anti-adhesion therapy is used for blocking pathogen interactions with the cell 

by binding the pathogen lectins and therefore blocking interactions with human 

glycoproteins (Fig 1) (Ghazarian et al., 2011).  

 

Figure 1 - Schematic illustration of bacteriam binding a surface glycan (left). Binding can be stopped by 

carbohydrate drugs, called anti-adhesive therapy (right) (Ghazarian et al., 2011). 
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Carbohydrates are also used for carbohydrate-based vaccines, lectin-based drug 

targeting for anti-cancer therapy and overall drug targeting (Ghazarian et al., 2011).  
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1.2 Cholera toxin 
Another pathogen which is connected to carbohydrate binding is the cholera toxin. The 

cholera toxin is made by the Vibrio cholerae bacterium. Vibrio cholerae is a Gram-

negative bacterium, which produces the cholera toxin, the pathogen of the cholera 

disease. Cholera is an acute secretory diarrheal disease, which without correct therapy 

has a mortality of 50%. The cholera toxin causes these symptoms by increasing water 

excretion in the small intestine. (Haan & Hirst, 2004; Harris et al., 2012)  

The cholera toxin is a so-called AB5-toxin, which means it has an enzymatically active 

A subunit and a receptor-binding B subunit. Cholera toxin consists of an A subunit and 

five B subunits, which makes it a hexamer protein (Haan & Hirst, 2004) (Fig 2). 

 

Figure 2 - Schematic representation of the cholera toxin. A shows the A subunit in red and the B subunit in 

blue. The dark red part is the A1 domain, which is the enzymatic domain. The light red A2 domain connects 

the A subunit to the B subunit. B shows the B subunit from the top, where 5 distinct monomers are visible 

that together form the B subunit pentamer (Baldauf et al., 2015). 

The B subunits are lectins that bind to apical membrane receptors. The target it binds 

to is the GM1 ganglioside (Fig 3), which is a carbohydrate pentasaccharide connected 

to a ceramide unit. It is present in almost all plasma membranes, however the cholera 

toxin mostly binds to epithelial cells in the small intestines. All monomers of the 

pentamer have a GM1 binding pocket and interact mostly with the galactose of the 

GM1 ganglioside, although interaction is also found with the sialic acid and N-acetyl 

galactosamine. It binds to GM1 with a KD of 7.3 x 10-10 M. This is the KD when taking a 

single-site and a single receptor into account. When looking at a multi-step binding 

model, that takes receptor cross-linking into account and therefore multiple sites and 

receptors, the KD was determined to be 56 nM (Haan & Hirst, 2004; Lauer et al., 2002). 
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Although lower KD’s (40 nM) have been found since then (Kumar & Turnbull, 2018; 

Turnbull et al., 2004). (Haan & Hirst, 2004) 

 

  

Figure 3 - GM1 ganglioside (Yu et al., 2011). 

After binding to GM1 the complex gets stabilized due to hydrogen-bond interactions 

and interactions with water molecules. After this the A subunit will get translocated 

intracellularly (Fig 4). The A subunit consists of two domains, the A1 domain and the 

A2 domain. The A1 domain is responsible for enzymatic activities, while the A2 domain 

links the A subunit to the B subunit. When the A subunit is in the cytosol, the A1 domain 

acts as a ADP-ribosyltransferase and NAD-glycohydrolase (Gill & Coburn, 1987; Haan 

& Hirst, 2004; Moss et al., 1977, 1981; Moss & Richardson, 1978). This leads to ADP-

rybosylation of G proteins, which impacts multiple metabolic pathways. The reason for 

the diarrheal symptoms is due to the involvement of G proteins in activating the 

adenylate cyclase complex which leads to higher cAMP levels (Chen et al., 2002). The 

higher cAMP levels lead to a activation of protein kinase A, which over-activates CFTR 

chloride channels by phosphorylation (Burch et al., 1988; Cheng et al., 1991; Denning 

et al., 1992; Field et al., 1989a, 1989b; Picciotto et al., 1992). This means that more 

chloride will be secreted than usual, which will be followed by excretion of water leading 

to diarrhoea. (Haan & Hirst, 2004)  



- 9 - 
 

 

Figure 4 - Schematic representation of the Cholera Toxin Pathway (Ramamurthy et al., 2020). 

 

To target the cholera toxin, inhibitors have been made. These inhibitors are anti-

adhesion inhibitors and target the binding of the cholera toxin B subunit to the GM1 

gangliosides, thereby neutralizing the toxin in its whole (Kumar & Turnbull, 2018).  
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1.3 Carbohydrate cholera ligands 
As the natural ligand of the B subunit was well-studied and known, the first iteration of 

subunit B inhibitors were based on GM1 ganglioside, so-called GM1-mimics. Most of 

these target the galactose and sialic acid of the inhibitors and bring them into a similar 

orientation as they are in  GM1. Benardi et al. created a GM1-mimic with binding affinity 

equal to the GM1-olisacharide (Fig 5) (Bernardi et al., 1999). However, this molecule 

still had the same issues as the GM1 pentasaccharide itself, it is fairly complex and 

therefore exhaustive and expensive to synthesize for actual inhibitor use.  

 

 

Figure 5 - GM1-mimic designed by Benardi et al. This mimic showed equal affinity to CTB as GM1 (Bernardi 

et al., 1999). 

 

Bernardi et al. tried to tackle this problem by replacing the α-Neu5Ac with alpha-

hydroxy acids (Bernardi et al., 2000, 2002). These second generation GM1-mimics 

(Fig 6) by Bernardi et al. showed a KD of 190 μM, which is a clear drop compared to 

the 40 nM of GM1-os and the first generation GM-1 mimic (Bernardi et al., 2000, 2002).  

 

Figure 6 - Second generation GM1 mimic from Bernardi et al.. (Bernardi et al., 2000, 2002) 
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Figure 7 - More GM1-mimics by Bernardi et al. (Heggelund et al., 2017) 

Another generation GM1 mimics has been made by Bernardi et al. (Cheshev et al., 

2010; Heggelund et al., 2017; Podlipnik et al., 2007) (Fig 7). These were aimed to be 

less complex and focus on the galactose binding site, together with the sialic acid. All 

three mimics had a binding strength in the upper μM range.  
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Figure 8 - MNPG ligand (Minke et al., 1999) 

 

Another class of cholera toxin B inhibitors was found by screening for galactose 

derivatives by Hol & Verlinde et al.. They found m-nitrophenyl α-D-galactoside (MNPG) 

as the best binder in this screening, which bound 100 times better than galactose 

(Kumar & Turnbull, 2018; Merritt et al., 1997; Minke et al., 1999)  (Fig 8). MNPG 

showed an IC50 0.6 mM and 0.72 mM in LT ELISA and CT assays respectively, while 

galactose showed an IC50 of 58mM and 45mM. However, this is still relatively low when 

comparing to the GM1-oligosachharide which showed IC50’s of 1 x 10-5 mM and 14 x 

10-6. Still MNPG was used as stepping stones to other ligands, due to its simplicity and 

better binding affinity than galactose. 

MNPG derivatives were made by Mitchell et al.. Here the MNPG molecule found by 

Hol & Verlinde et al. was elongated, resulting in better affinity than the original MNPG 

(Fig 10) (Mitchell et al., 2004). 

 

Figure 9 - Elongated version of MNPG (Mitchell et al., 2004). 
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Figure 10 - Multiple MNPG variants made by Mitchell et al (Mitchell et al., 2004). 
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In this study GD1b Direct Enzyme Linked Assay (DELA) was used. This assay resulted 

in an IC50 of 1-1.4mM for MNPG. The base elongated MNPG was altered by adding 

other subgroups (Fig 10). All molecules tested (Fig 10) showed an increase in affinity. 

Molecule 8 (Fig 10), which still has the original nitro group, had an IC50 of 0.32 mM. 

Only one molecule was made where replacing the nitro group resulted in a better 

affinity. Compound 9, where the nitro group is substituted/elongated with a 2-thiophene 

acetyl group. This increased the affinity from 0.32mM (IC50) to 0.20 mM (IC50). 

Compounds 10 and 11 showed an small decrease of affinity compared to 5, with IC50’s 

of 0.43 mM and 0.35 mM respectively. 12 showed even a bigger decrease in affinity 

with an IC50 of 0.79 mM. It is clear that replacing the nitro group in most instances will 

lead to a decrease, although some improvements are possible. (Kumar & Turnbull, 

2018; Mitchell et al., 2004) 

Lactose also has affinity for GM1 with a comparable IC50 to galactose. Vrasidas et al. 

created a lactose-2-aminothiazoline that bound cholera fairly well with a KD value of 23 

µM and thereby is one of the better monovalent and relatively simple carbohydrate 

inhibitors of the cholera toxin B subunit. (Kumar & Turnbull, 2018; Vrasidas et al., 2002) 
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1.4 Cholera ligands interactions 
But how do these inhibitors and in particular GM1 bind to cholera toxin B? GM1-os has 

been crystalized and studied in different studies and many interactions actually lead to 

the good binding of GM1-os to the cholera toxin B binding pocket (Fig 11) (Turnbull et 

al., 2004). It is a bivalent binding, meaning it goes into the protein with a so-called “two-

fingered grip”. This bivalent binding is led by the galactose-GalNac and sialic acid 

groups present in the GM1-oligosacharide. In terms of binding area, Galactose, 

GalNac and the sialic acid contribute 39%, 17% and 43% respectively of the total 

intermolecular contacts. (Turnbull et al., 2004) 

 

Figure 11 - Schematic representation of GM1 interactions in the Cholera Toxin Subunit B pocket (Turnbull 

et al., 2004). 

Due to the nature of carbohydrates and the many OH groups, a lot of hydrogen bonds 

are present between cholera toxin amino acids and the GM1-os ligand. Also the 

binding is stabilized due to multiple interactions with bound water molecules. As most 

ligands focus on the galactose pocket, the direct hydrogen bonds with glutamic acid-

51, asparagine 90 and lysine 91 can be seen as the galactose pocket defining bonds. 

It was found that indeed galactose is the most important fragment of the GM1-os 

binding when looking at Free Energies, where galactose had the biggest part of the 

total Free Energy created by GM1-os. And although sialic acid also has a big part in 

this, it is mostly a stabilizing binding fragment as it has not shown high affinity on its 

own when tested. This confirms that galactose forms the more important pocket and 
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therefore binding fragment of most interest and the target to find replacements for. 

(Turnbull et al., 2004) 

1.5 Drawbacks of non-carbohydrate ligands 
However, the use of carbohydrates has several drawbacks which makes them hard to 

use in several circumstances.  First of all they are very complex to make, which makes 

it expensive and laborious to construct them. Besides that they have multiple unwanted 

pharmacokinetic properties, like short half-lives and bad bioavailability due to 

metabolic degradation and bad permeability. This has led to multiple studies to replace 

carbohydrate-based mimic ligands with non-carbohydrate ligands, which are more 

pharmacokinetic appropriate and easier to synthesize. An example are glycomimetics 

(Fig 12). These so called glycomimetic ligands mimic the structure and function of 

carbohydrates, while improving properties compared to their carbohydrate 

counterparts and enhancing selectivity and affinity. (Hevey, 2019) 

 

Figure 12 - Glycomimetic inhibitors that are actually used (Hevey, 2019). 

 

For lectins, research has been done resulting in many possible candidates mainly 

containing heterocyclic inhibitors and peptide-based inhibitors (Sethi et al., 2021). 

It is clear that the search for non-carbohydrate ligands is an important, albeit difficult 

subject. In this research we targeted the cholera toxin, where no real non-carbohydrate 

ligands have been found yet.  

1.6 Non-carbohydrate cholera ligands 
There have been some studies to find non-carbohydrate inhibitors for cholera toxin. 

Robina et al made non-hydrolyzable S-galactosides and non-carbohydrate ligands 

based on polyhydroxyalkylfuorate. Using weak affinity chromatography the structures 

were analysed. The molecule with the highest affinity in this study showed a KD of 0.2 

mM, which was 5.5 times higher than MNPG. Although, all other molecules in this study 

did not represent very good binders. All in all, research to non-carbohydrate 



- 17 - 
 

monovalent cholera inhibitors is still scarce and mostly still GM1-mimics or 

carbohydrate containing MNPG derivatives. (Kumar & Turnbull, 2018; Ramos-Soriano 

et al., 2013) 

1.7 Virtual screening for non-carbohydrates and research setup 
For finding non-carbohydrates however, our target was to find a small drug-like (and 

therefore good pharmacokinetic properties) molecule, which binds in this important 

galactose pocket. This was done using a big drug-containing screening database, two 

different virtual screening tools and data fusion to get to a combined data-driven 

conclusion. Virtual screening is using computational methods to analyse large 

databases containing molecules of interest and identify hits. In this context we were 

trying to find non-carbohydrate inhibitors in a large self-combined database of drug-

like and bioactive compounds. (Lavecchia & Di Giovanni, 2013; Oliveira et al., 2023) 

Virtual screening can be categorized in two approaches: Structure-based virtual 

screening methods and ligand-based methods. With structure-based methods we are 

talking about methods that use the structure of interest, the protein, and interactions 

with this structure to find suitable hits. Ligand-based methods however use only the 

ligand and no structure, hits are purely found by ligand information. (Lavecchia & Di 

Giovanni, 2013; Oliveira et al., 2023) 

One common method for structure-based virtual screening is docking, where 

molecules get docked into a target protein receptor. The goal is to score database 

molecules based on how well they bind to the target receptor, searching for possible 

ligand or inhibitor candidates. The docking tool used in this study is the OpenEye 

HYBRID docking tool, which uses ligand information to boost performance. It does this 

by using the Chemical Gaussian Overlay (CGO). Instead of just docking the molecule, 

it first matches the 3D arrangement of shape and chemical features of the bound ligand 

and database ligand before docking. This means it will dock the database molecules 

in a similar pose to the already bound ligand. It was found that this enhances 

performance when compared to their “old-school” docking tool FRED, which does not 

take bound-ligand information into account. (McGann, 2012) 

For finding a suitable structure for this docking multiple Protein Data Bank (PDB) files 

containing protein structures and ligands have been considered. After comparing 

seven PDB files using multiple superpose methods of the OpenEye Superposition tool, 

the differences between the protein and binding site structures in the PDB’s were 

considered insignificant. This means that the protein can be considered rigid.  

Also a self-docking study was done, where the original ligand was docked into its 

corresponding receptor. The idea was to look if the receptor would dock the ligand in 

the same pose it was crystalized in. However, this was later omitted from the study as 

HYBRID is not a pose prediction tool and this is not a correct way of grading receptor 

performance.  

 After this a pre-docking study was done using known active compounds, where two 

PDB’s clearly scored better. Both PDB’s, 1EEI and 1PZJ, have been used for this 

research as the ligands were clearly different size and therefore most likely will lead to 

different hits and hit-poses when using ligand-guided docking.  
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Besides a structure-based method, also a ligand-based method was used. Rapid 

Overlay of Chemical Structures (ROCS) is another tool from OpenEye. ROCS is a 

similarity search method, where database molecules are compared to the input 

molecule based on 3D shape and 3D arrangement of chemical features. ROCS is a 

very fast screening tool and was also found to be more consistent and often better than 

structure-based docking. However ligand-based methods only take the ligand into 

account and can therefore not predict things like affinity, binding modes, interactions 

and poses. (Hawkins et al., 2007) 

All in all both structure-based and ligand-based methods do have positives and 

negatives. Therefore after applying both methods, the results of both methods can be 

combined using data fusion. Data fusion is the act of combining multiple data-sources, 

here HYBRID and ROCS results, to one explicit and usable data-output. This data-

output contains a score which includes information of all input methods. 

The data fusion method used is the Reciprocal Rank Sum method. This method uses 

the rank of hits in both score-sorted HYBRID and ROCS outputs and combines this 

information resulting in a Reciprocal Rank Sum. This Reciprocal Rank Sum contains 

information about the rank in both ROCS and HYBRID scoring outputs of the given 

molecule and therefore combines the information of both methods. Using this output 

we were able to select molecules that scored very well in one of either methods or 

scored well in both. The Reciprocal Rank Sum has been used in Virtual Screenings 

before and is deemed as a quick and good fusion scoring method. (Bajusz et al., 2019; 

Cormack et al., 2009; Willett, 2013) 

After fusing the data, the top 1000 of the fused list was clustered. Molecule clustering 

is done to dissect the data in different groups of similar molecules. This is usable as in 

the databases many similar looking molecules were present. Clustering the data lead 

gave the option to look at scores of different classes of potential hits and also made it 

easy to omit carbohydrates and unwanted molecules that are for example too complex 

or had other drawbacks. The clustering method of choice was Butina Clustering. This 

algorithm is based on Tanimoto similarity using chemical fingerprints. The method is a 

very quick and unsupervised method to cluster large sets of molecules using similarity 

exclusion spheres, where each molecule in a cluster has a minimal set similarity to the 

centroid of the cluster. The main reasons for using Butina are the speed and ease -of 

use as well as the discrete scoring system. (Butina, 1999; T005 · Compound 

Clustering, z.d.) 

At last, using the scores and Butina clustering, molecules could be selected for further 

visual inspection using VIDA visualization tools. A select number of molecules will be 

further researched in vitro and hopefully lead to usable inhibitors in the future. 
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2. MATERIALS & METHODS 

2.1 Utrecht HPC 
All work has been done on the Utrecht High Performance Cluster, running either 

CentOS7 or Rocky8. All calculations have been done using 40-80 cores per run. Runs 

have been done in chunks to fasten the process and run multiple runs in parallel. 

Memory was always set at 3GB per CPU. GPU was not used for any of the runs. 

2.2 Target crystal structures 
Seven PDB crystal structures containing a monovalent ligand were found in the RCSB 

PDB (Table 1). The seven PDB’s contained the Cholera Toxin B-pentamer from either 

classic Vibrio cholerae or Vibrio cholerae O1 biovar El Tor. The classic and El Tor 

toxins do not have any structural, biological or binding differences at the binding site 

and therefore could be used interchangeably in this virtual screening as they show 

comparable binding affinity to GM1 (Heggelund et al., 2017).  

Table 1 - PDB's chosen for the virtual screening 

PDB title Authors Year Organism Bound ligand 

3CHB Merritt, E.A.  
Hol, W.G.J. 

1998 Vibrio 
cholerae 

 
5LZJ Heggelund, J.E. 

Krengel, U. 
2017 Vibrio 

cholerae 
O1 biovar 
El Tor str. 
N16961 
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5LZG Heggelund, J.E. 
Martinsen, T. 
Krengel, U. 
 

2017 Vibrio 
cholerae 
O1 biovar 
El Tor str. 
N16961 

 
5LZH Heggelund, J.E. 

Martinsen, T. 
Krengel, U. 
 

2017 Vibrio 
cholerae 
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1EEI Merrit, E.A. 
Hol, W.G.J. 

2000 Vibrio 
cholerae 

 
1PZJ Mitchell, D.D. 

Pickens J.C. 
Korotkov, K. 
Fan, E. 
Hol, W.G.J. 

2004 Vibrio 
cholerae 
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1PZK Mitchell, D.D. 
Pickens J.C. 
Korotkov, K. 
Fan, E. 
Hol, W.G.J. 

2004 Vibrio 
cholerae 
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2.3 OpenEye SPRUCE 
All PDB’s were converted to usable receptors for OpenEye docking tools using the 

OpenEye SPRUCE program. SPRUCE determines if the quality fulfils the need for 

docking. It also expands the asymmetric unit to the biological unit if necessary, 

enumerates alternate locations, builds missing pieces of the structure, optimizes 

hydrogen atoms and enumerates tautomers of cofactors and ligands.  

For the building step, a loop database can be added for loopbuilding. The database 

added was rcsb_spruce_1_0_20200422.loop_db.  

Spruce creates multiple design units per PDB and scores them. Per PDB, one design 

unit has been chosen based on the Iridium score. The Iridium score estimates the 

model quality of a structure, based on different global and local quality metrics. It 

scores the design units in four categories: 

- HT Highly Trustworthy 

- MT Mildly Trustworthy 

- NT Not Trustworthy 

- NA Not Applicable 

The highest scoring design unit was chosen. If design units were placed in the same 

category, further distinction was made by underlying sub-scores. SPRUCE ranks 

design units from best to worst, so the best was chosen. (Spruce 1.5.2.0. OpenEye, 

cadence Molecular Sciences, Santa Fe NM. http://eyesopen.com) 
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2.4 Superposition - Protein RMSD study 
Due to runtime we wanted to choose the best PDB to dock into and therefore did a 

similarity study between the PDB’s if there possibly was a most representative PDB 

among the chosen PDB’s. This was done with both PDB’s and design unit files using 

a code written in Python (ver. 3.10) and the use the OpenEye Superposition 

application. 

With different methods the RMSD was calculated between all possible pairs of the 

PDB’s discussed in table 1. The Root Mean Square Deviation is average distance 

between atoms in the two given structures. These RMSD calculations have been done 

using multiple OpenEye Superposition methods. 

- Global: Calculates the RMSD between all matched alpha carbon atoms. Alpha 

carbons are the first carbon atoms that attach to a functional group.  

- Site: Calculates the RMSD between alpha carbons, focusing on the subset in 

the active site. For this calculation Spruce was done beforehand, marking the 

active site of the crystal structure. 

- DifferenceDistanceMatrix (DDM) – Calculates the pairwise distance matrix of 

alpha carbon atoms for both structures given. After this, it calculates the 

difference from these two matrices. The resulting values either show a 

contraction or expansion of one structure when compared to the other.  

- Weighted DDM – This method calculates Gaussian weights for all matching 

alpha carbons using the DDM, after this it uses the weights in the RMSD 

calculation. 

- SecondaryStructureElements (SSE): Calculates shape overlap of the 

secondary structure elements of the two given structures, it does not report a 

RMSD score but a shape Tanimoto (between 0 and 1; 0 no overlap, 1 total 

overlap) instead. 

(Spruce 1.5.2.0. OpenEye, cadence Molecular Sciences, Santa Fe NM. 

http://eyesopen.com) 
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2.5 Databases 
The compound screening set is composed from multiple databases of Enamine and 

MCULE.  

Table 2 - Databases and contents 

Database Number of 
molecules 

Content type Format Database version 

Enamine CLOUD 293 Diverse structures 
resembling FDA-
approved chemical 
entities 

2D SDF 20181010 

Enamine Bioactive 2.320 Broad set of active 
compounds in 
diverse therapeutic 
areas 

2D SDF 20220627 

Enamine FDA approved 1.040 Relevant selection 
of drugs 

2D SDF 20220708 

Enamine HTS collection 1.371.031 High troughput 
screening set, 
diverse screening 
set 

2D SDF 202303 

Enamine Hit Locator 460.160 Diverse library with 
high MedChem 
tractability 

2D SDF 20220221 

MCULE full database 40.291.174 All of MCULE 
screening 
database 

2D 
SMILES 

230323 

Total 42.126.028 

The databases were selected based on content, focussing on drug-like molecules and 

bioactive molecules. Besides that, MCULE and Enamine have been chosen due to 

availability and good customer support. 
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2.6 Database preparation - OpenEye FILTER 

The OpenEye FILTER program (ver. 4.2.1.1 built 20221128) was used to eliminate 

unwanted compounds from the MCULE database. This was done only for the MCULE 

database as this database is the most diverse and is not pre-filtered on 

pharmacological properties while all Enamine databases were already drug/active 

focused. FILTER also deletes molecules too complex for the screenings, like 

molecules that are too big, flexible or contain filter-specified elements. 

The default filter Blockbuster was used. Blockbuster is based on a set of drug 

molecules and therefore filters on drug-like pharmacokinetic properties. The three 

filtering categories are physical properties, atomic and functional group content and 

molecular graph topology. Some of the most important rules can be seen in Table 3. 

These rules were used to keep or omit molecules from the MCULE database. 

Table 3 - Blockbuster filter rules 

Rule Minimum - Maximum 

Molecular Weight 130 – 781 

Heavy Atom Count 9 – 55 

Carbon Count 3 – 41 

Non-C and non-H atoms 1 – 14  

Chiral Atoms 0 – 21  

H-bond acceptors 0 – 13  

H-bond donors 0 – 9  

Total functional group count 0 – 7  

 

Besides these rules a specified elemental filter is applied, which is based on metal 

removal and salt removal.  

Metals eliminated by Blockbuster are: Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, 
Mo, Tc, Ru, Rh, Pd, Ag, Cd. 
Allowed elements are: H, C, N, O, F, P, S, Cl, Br, I. 
 

Salts get removed by deleting atoms that are not part of the largest connected 

component of a compound.  

(OMEGA 4.2.1.1. OpenEye, Cadence Molecular Sciences, Santa Fe, NM.) 
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2.7 Database preparation - OpenEye Flipper 
The OpenEye Flipper program (ver. 4.2.1.1 built 20221128) is part of the OMEGA 

OpenEye distribution. Flipper was used for enumarating only unspecified 

stereocenters (Fig 13).  

 

Figure 12 - Only unspecified stereocenters get enumerated by Flipper. 

The filtered MCULE database and Enamine databases were put in Flipper which 

resulted in a total increase of database molecules. Flipper ran at default settings, which 

meant a maximal of 12 stereocenters were enumerated per molecule, if unspecified. 

(OMEGA 4.2.1.1. OpenEye, Cadence Molecular Sciences, Santa Fe, NM.) 

 

2.8 Database preparation - OpenEye Tautomers 
The OpenEye Tautomers program (ver. 2.2.1.1 built 20221128) is part of the 

QUACPAC OpenEye distribution. Tautomers was used for enumerating tautomeric 

forms of our database molecules (Fig 14).  

 

Figure 14 - Tautomer generation examples (Tautomer - wikidoc, z.d.). 

All databases were put through tautomers, after Flipper. Tautomers ran at default 

settings, which means a maximum of 4096 tautomers per input compound were 

generated and a maximum of the 256 lowest energy tautomers were saved.  

(QUACPAC 2.2.1,1. OpenEye, Cadence Molecular Sciences, Santa Fe, NM.) 
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2.9 Database preparation - OpenEye OMEGA 
The OpenEye OMEGA (ver. 2.2.1.1 built 20221128) is a program for generating 3D 

conformations of molecules. The original databases were in 2D SDF and 2D SMILES 

formats and therefore needed to be put through OMEGA for virtual screening use. Two 

different OMEGA methods were used. 

OMEGA ROCS was used for preparing 3D conformers for ROCS similarity search. 

This method only creates a maximum of 50 conformers per input molecule as more 

conformers resulted in diminishing returns when comparing accuracy to running speed. 

OMEGA POSE was used for creating 3D conformers for docking use. OpenEye 

docking requires more conformers than similarity search. It also takes flexibility into 

account, where more flexible molecules get more conformers. The standard is a 

maximum of 200 conformers for an input molecule. However, if a molecule contains 8 

or more rotatable bonds and therefore is quite flexible, the maximum conformers 

created will be set to 800. 

An enhanced fragment database was used to enhance the 3D conformer generation. 

It was obtained from OpenEye: omega_fragment_lib_2020.oeb.gz. 

(Hawkins et al., 2010) 

(OMEGA 4.2.1.1. OpenEye, Cadence Molecular Sciences, Santa Fe, NM.) 

  



- 29 - 
 

2.10 Active compounds 
The active compounds which will be used as positive control have been collected by 

literature study. They all showed binding to cholera with decent affinity and most 

important represent different classes of carbohydrate cholera toxin B ligands. They all 

have been discussed in the introduction section. The actives will be prepared with the 

same methods used for the database molecules and will be added to the database for 

the virtual screening runs. All molecules (1-12) that are described in the introduction 

are used. 
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2.11 OpenEye ROCS – similarity search 
OpenEye Rapid Overlay Of Chemical Structures (ROCS ver. 3.5.1.1 built 20221128) 

is used to find molecules based on similarity to already known ligands. It performs 

shape based overlays of database molecule conformers on top of chosen query 

molecules (Fig 15). Besides shape it also takes the overlap in chemical features into 

account. These chemical features include: 

- Donors – H-bond donors 

- Acceptors – H-bond acceptors 

- Hydrophobe groups – Groups with localized or delocalized negative charge 

- Cations – Groups with localized or delocalized positive charge 

- Anions – Aliphatic groups 

- Rings – Rings of size between 4 and 7 atoms 

For each molecule it will maximize heavy atom volume overlap and color overlap and 

save the best scoring conformer. The amount of similarity is expressed in the Tanimoto 

score, which is based on these overlaps. 
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The formula divides the total rigid overlap between molecule A and B and divides this 

by the area of A and B minus the overlapped area. This results in a score between 0 

and 1, where 1 is total overlap and 0 is no overlap at all. This formula is used for both 

the shape and color. 

 

Figure 15 - Schematic overview of ROCS overlap calculations (Kearnes & Pande, 2016). 

This scores can be easily combined, which leads to the TanimotoCombo score. This 

TanimotoCombo score therefore is scored between 0 and 2 and contains both shape 

and color information. 

The query molecules used for ROCS are the ligands present in the receptors used for 

HYBRID docking (Figure 16). The ligands were extracted from their respective design 

units using the OpenEye VIDA visualization suite. 

 

 

 

 

 

 

 

  

 

 

  

Figure 16 - 1PZJ ROCS query (8) and 1EEI ROCS query (6) 
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All database molecules were scored against these two queries and per molecule the 

best conformer score was saved. 

(ROCS 3.5.1.1. OpenEye, Cadence Molecular Sciences, Santa Fe, NM.) 
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2.12 OpenEye HYBRID – ligand guided docking 
OpenEye HYBRID (ver. 4.2.0.1 built 20221128 ) is a docking program that uses ligand 

guided docking. This means that it also takes information of the ligand into account 

when docking your database molecules in the receptor. Therefore, to use HYBRID, a 

structure with a bound ligand is required. 

As we used two separate runs with each one receptor, the HYBRID run consists of two 

steps. 

Exhaustive search 

1. Enumerates all rotations and translations of each conformer within the active 

site box. 

2. Discards clashing poses. 

3. Discard poses that do not contain chosen constraints. Constraints are user 

specified interactions that are required to dock database molecules. If these 

interactions are not present, the molecule will not be docked. 

4. Score the remaining poses with Chemical Gaussian Overlay, which scores 

similarities based on the overall shape and the position of hydrogen bonding 

and metal chelating groups between original bound ligand and database 

molecule. This makes it unique when compared to non-ligand guided docking 

alternative FRED. 

5. Sort poses by score and only save the best poses 

Optimization 

1. Enumerate nearby positions of each pose 

2. Each pose is scored with the Chemgauss4 score. The Chemgauss4 score 

measures the complementarity to the active site of the pose by looking at shape, 

hydrogen bonding between ligand and protein, hydrogen bonding with he 

solvent and metal-chelator interactions. 

3. The poses are sorted on Chemgauss4 score and the best pose is saved to 

represent the molecule 

The docking was done with two receptor design units. 1EEI contained the small MNPG 

ligand and 1PZJ contained a MNPG derivative (See ROCS). Both these were chosen 

for docking due to the results in the PDB similarity study and pre-docking study and 

their vast differences in ligand-size. 

1PZJ was run with constraints on Asn90, Lys91 and Glu51. This means that for a 

molecule to dock, it does to have these interactions or it will not be docked at all. This 

was done for time-saving reasons and also to add more information to the docking run, 

which leads to more accurate docking of the database molecules in the 1PZJ receptor. 

(OEDOCKING 4.2.0.1. OpenEye, Cadence Molecular Sciences, Inc., Santa Fe, NM.) 
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2.13 Pre-docking actives study 
All actives have been docked into the 1PZJ, 1EEI, 5LZG, 5LZJ and 1PZK design units. 

This was done to make a decision which design unit(s) to use further into the study. 

Docking was done using the HYBRID docking tool, without constraints and everything 

on default settings. The receptor(s) showing the best median and/or mean docking 

score would be deemed most fit for use for the virtual screening.  
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2.14 Datafusion - Reciprocal Rank Fusion 
HYBRID scoring lists and ROCS scoring lists were sorted on score from best to worst. 

After this the molecules were ranked according to their spot in these sorted lists. The 

reciprocal was calculated per molecule per method using the following formula. The 

reciprocal is the inverse of the rank. When using multiple methods, for us HYBRID and 

ROCS, the reciprocals per molecule can be combined resulting in a reciprocal sum. 

This reciprocal sum therefore contains information about the rank in the HYBRID 

scoring output and ROCS scoring output. 

  

Reciprocal Rank Sum = (
1

𝑟𝑎𝑛𝑘
)HYBRID + (

1

𝑟𝑎𝑛𝑘
)ROCS 

 

The resulting reciprocal lists contains information about the molecules that were 

present in both HYBRID and ROCS results. Molecules that were omitted in one of the 

two methods due to errors were not kept for reciprocal ranking as both HYBRID and 

ROCS ranks are necessary for reciprocal calculations. 

(Cormack et al., 2009) 
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2.15 Clustering results - Butina clustering 
Butina clustering is an unsupervised molecule database clustering method created by 

Darko Butina in 1998. It was made to tackle the problems of the industry standard 

Jarvis-Patrick’s clustering method. This method required lots of manual tinkering and 

finetuning to get correct results. To tackle this problem Buttina created a method based 

on Tanimoto similarity by the use of Daylight’s fingerpints. Daylight’s fingerprints are 

bit-patterns that contain atom and molecule feature data, where each bit marks the 

presence or absence of a certain feature. This method only requires user chosen 

Tanimoto level, which can be quickly chosen. This makes the method easy to use and 

very fast. For this research the Volkamer Lab Python Butina Clustering method was 

used, which uses the original principle while using modern Python coding (T005 · 

Compound Clustering, z.d.). 

Fingerprints need to be created from the SMILES input molecules. This needs to be 

done, as SMILES are not easily comparable by algorithms while fingerprints are. The 

fingerprint type used is the RDK5 rdkit fingerprint, which is similar to the original 

Daylight fingerprints used by Butina. 

Fingerprints are bit-patterns that describe chemical substructures of the input 

molecule. Each bit represents a feature being present with “1” or not present with “   

“ (Fig 17).  

 

Figure 17 - Schematic representation of fingerprint generation. Each bit contains a certain chemical feature 

(Lasserre, 2018). 

The RDK5 fingerprints have a length of 2048 bits and a max path size of 5. The max 

path size of 5 means a bit-feature can maximal be 5 bonds long (C-C-C-C-C for 

example). As these fingerprints are made for the whole input database, the molecules 

you want to cluster, they can be compared by comparing the fingerprint bit-pattern. 
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For Butina clustering this comparison between fingerprints is done using Tanimoto 

similarity. The Tanimoto similarity can be expressed as follows: 

 

BC are the number of on-bits  1’s  in both fingerprint 1 and  . B1 are the on-bits in 

fingerprint 1 and B2 are the on-bits in fingerprint 2. For the figure above this means the 

following (Fig 16). 

3 on-bits present in both. 

Molecule 1 has a total of 5 on-bits. 

Molecule 2 has a total of 3 on-bits. 

Tanimoto = 3/(5 + 3 - 3) = 0.6 

The Tanimoto similarity is 0.6. The Tanimoto similarity again can be scored from 0 to 

1, where 0 are two totally different molecules and 1 means it is the exact same 

molecule.  

After translating the SMILES to these easily comparable fingerprints, all possible 

comparisons are made and stored in a matrix. This matrix therefore contains Tanimoto 

similarity scores between all possible molecule pairs.  

To create clusters, a similarity threshold needs to be set also known as the Tanimoto 

level. This Tanimoto level is the maximal difference between molecule A and B allowed 

to be considered neighbours. Using the set Tanimoto level, all possible neighbours per 

molecule are calculated. After that the list is sorted on amount of neighbours. After that 

the dataset is clustered using this list. From the top (molecule with most neighbours) 

the data will be clustered, omitting molecules already clustered for further clustering. 

This will result in X amount of clusters, with some molecules left out that are not 

clustered at all. These molecules are called singletons and are not similar enough to 

any of the centroid molecules and therefore form their own cluster. 

The Tanimoto level is chosen manually, by looking at the clustering data and 3 metrics. 

Those metrics are: 

- Amount of clusters & cluster-size: It is required not to create too many clusters, 

as you actually want to divide your data into similar groups, but not divide them 

in only singletons. At the other end, too less clusters will lead to big clusters and 

not enough distribution. 

- Inter-cluster similarity: The similarity between two random molecules from two 

different clusters. A lower value is better, as a clear distinction between clusters 

is wanted. 

- Intra-cluster similarity: The similarity between to random molecules from the 

same cluster. A higher value is better, as you want similar molecules in a cluster. 

Looking at the clustered data and these metrics will help choosing a suitable Tanimoto 

level for the dataset. The most important is to find a clear distinction between the intra- 

and inter-cluster similarity and have them as far away from each other as possible. For 

both 1PZJ and 1EEI runs the Tanimoto level was set at 0.6 after inspection. 
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The Butina clustering was done with he top 1000 set molecules of the reciprocal sum 

lists of both 1PZJ and 1EEI. After that lists containing the most representative 

molecules per cluster were extracted, as are the best HYBRID hits. This was all done 

with the Volkamer Lab Python Code. (Butina, 1999; T005 · Compound Clustering, z.d.) 

2.16 Visualization of hit molecules 

Visualization of hit molecules has been done using the VIDA OpenEye visualization 

tool. Using the FRED view function molecules could be visualized in bound state in the 

binding site. In FRED view, possible interactions have been highlighted by distance 

measuring. The two original ligands have also been visualized in FRED view for 

comparison (Fig 18 & 19).  

The 1PZJ molecule shows interactions similar to GM1. For 1PZJ constraints have been 

chosen for the obvious interactions Asn90, Lys91 and Glu51. These interactions were 

found in more of the   PDB’s and therefore chosen as constraints. Trp   does also 

show possible stacking with the galactose ring. 

 

Figure 18 - 1PZJ receptor and ligand in FRED view. 
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The 1EEI molecule also shows interactions with Asn90, Lys91, Glu51. Just as 1PZJ 

stacking is observable between the galactose ring and Trp88. 1EEI, in contrast to 1PZJ 

has been run without constraints. 

 

Figure 19 - 1EEI receptor and ligand in FRED view. 

 

(VIDA 5.03. OpenEye, Cadence Molecular Sciences, Santa Fe, NM.) 
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3. RESULTS 

3.1 Receptor Studies 
Prior to running HYBRID and ROCS the prepared design units were compared using 

an  RMSD study and pre-docking actives study described in the method section. The 

3CHB and 5LZH design units were omitted after SPRUCE, as 3CHB could not be 

ranked (NA) and 5LZH resulted in unknown and unsolvable problems. The design units 

used were all scored HT or MT by SPRUCE. 

The RMSD study showed very low RMSD values for all methods, which means there 

is no significant difference between PDB’s. Based on these results we could not chose 

a most representative PDB. 

It was decided to dock all actives into the 5LZJ, 5LZG, 1PZJ, 1PZK and 1EEI receptors. 

1EEI and 1PZJ showed the best mean and median Chemgauss4 scores and therefore 

were the chosen targets for HYBRID and ROCS runs in this study. 

Exact results of these studies can be found in the supplementary. 

3.1 HYBRID 
HYBRID runs were performed for both 1PZJ and 1EEI with a total of 17.202.162.458 

conformers from 54.798.546. This resulted in a scoring list per receptor. 1PZJ was run 

with the constraints mentioned in the method section, while 1EEI was run without 

constraints. 

The HYBRID 1PZJ run resulted in 32.211.095 molecules docked into the 1PZJ 

receptor. This is however still with Flipper and Tautomeric forms, which means 

molecules are present multiple times. After deleting the duplicates 18.764.548 unique 

docked duplicates were found. The first ranking molecule MCULE-2839448221 

showed a score of Chemgauss4 -13.951094 (Fig 20). 

 

Figure 20 - 2D structure of MCULE-2839448221 
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All scores were between 30.396610 and -13.951094. Most actives were present in the 

negative score range.(Fig 21) 

 

Figure 21 - Score distribution HYBRID 1PZJ 

The HYBRID 1EEI run resulted in 53.015.957 molecules docked into the 1EEI receptor. 

However, without Flipper and Tautomeric forms it ended up being 34.336.463 unique 

molecules docked. The molecules were docked between scores 22.572247 and -

13.132102. The first ranking molecule is MCULE-7853952702 with the score of -

13.132102 (Fig 22). 
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Figure 22 - 2D structure of MCULE-7853952702 

Most scores are in the negative range. 1EEI docked less actives, although most actives 

are still present in the negative range and the best docking active is the original MNPG 

ligand. (Fig 23) 

 

Figure 23 - Score distribution of HYBRID 1EEI 
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3.2 ROCS 
ROCS was a combined run, where the database molecules were compared to both 

1EEI and 1PZJ ligand. The database contained 54.798.546 molecules and 

2.454.999.185 conformers. 

The 1PZJ ROCS run resulted in a scoring list of 54.798.543 molecules, with scores 

between 1.111 and 0.122. This list was still with all duplicates due to Tautomers and 

Flipper. When selecting the best scores per molecules and deleting duplicates, the 

final result was a list of 35.357.425 unique molecules which have been compared to 

the 1PZJ ligand. 

 

Figure 24 - Score distribution ROCS 1PZJ 

No high TanimotoCombo scores were found, the best scoring active has a score of 

0.940. Which was the original 1PZJ ligand (Fig 24). The best scoring molecule was 

MCULE-8937237797 with 1.111 (Fig 25). 
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Figure 25 - 2D structure of MCULE-8937237797. 

The 1EEI ROCS run had the same original size of 54.798.543 molecules. It had scores 

between 0.266 and 1.682. After removing duplicates it again resulted in a total list of 

35.357.425 unique molecules. The highest scoring active was the original 1EEI ligand 

with a score of 1.656 (Fig 26). 

 

Figuur 26 - Score distribution ROCS 1EEI 
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The best scoring molecule was MCULE-1513474432 with a TanimotoCombo score of 

1.682 (Fig 27). 

 

 

Figure 27 - 2D structure of MCULE-1513474432 
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3.3 Reciprocal Sum Rank calculations 
The total length of the reciprocal sum lists represented the length of the HYBRID 

scoring lists, as molecules needed to be present in both lists. 

This resulted in a 1PZJ reciprocal list size of 18.764.548 unique molecules 

For 1EEI 34.336.463 unique molecules made up the reciprocal scoring list of this run. 

From these lists the top 1000 was used for further examination using the Butina 

Clustering. The reciprocal sum rank calculations resulted in the following top 10 

molecules for both runs, which includes the top 5 of ROCS and HYBRID for both 

receptors. 

Table 4 - 1PZJ reciprocal top 10 

Molecule HYBRID 
rank 

ROCS 
rank 

Reciprocal sum 2D structure 

MCULE-
8937237797 
 

179115 1 1.00000558301 

 
MCULE-
2839448221 
 

1 4228376 1.000000236497 

 
MCULE-
4211909652 

23562 2 0.5000424412 

 
MCULE-
5030435107 

2 4702056 0.500000212673 
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MCULE-
1885456555 

390281 3 0.33333556226 

 
MCULE-
8133751560 

3 24803220 0.3333330403173 

 
MCULE-
1057184189 

33665 4 0.2500297044 

 
MCULE-
9436696942 

4 3209110 0.250000311613 

 
MCULE-
9482069112 

97288 5 0.20001027880000002 

 
Z2874994383 5 10696566 0.20000009348790002 
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Table 5- 1EEI reciprocal top 10 

Molecule HYBRID 
rank 

ROCS 
rank 

Reciprocal sum 2D structure 

MCULE-
1513474432 
 

24296 1 1.000041159 

 
MCULE-
7853952702 
 

1 1916955 1.000000521661 

 
MCULE-
5557798235 

189178 2 0.50000528603 

 
Z3711495684 2 7829797 0.500000127717 

 
MCULE-
4783577005 

30310 3 0.3333659924 
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MCULE-
2430515474 

3 2050198 0.3333330403173 

 
MCULE-
4686674347 

188178 4 0.25000528605 
 

 
MCULE-
9486643068 

4 2760633 0.250000362236 

 
MNPG 
Active 

189176 5 0.20000528608 

 
MCULE-
1407049348 

5 10369943 0.20000009643250002 
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3.4 Butina clustering results 
Clustering of the top 1000 reciprocal molecules of 1PZJ resulted in 102 clusters with 

the Tanimoto level set at 0.6 and showed clusters of different sizes (Table 6). The inter-

cluster similarity, where two random molecules of two different clusters are taken, 

showed a Tanimoto similarity of 0.13. The intra-cluster similarity, where two random 

molecules in the same cluster are taken, was 0.42.  

Table 6 - Butina cluster sizes 1PZJ 

Cluster size Number of clusters 

Singletons 44 

>5 molcules 24 

>25 molecules 8 

>100 molecules 2 

 

The 8 bigger clusters, which have 25 or more molecules, had the following most 

representative molecules. Many ringlike-structures are present. Cluster 2 and 7 do 

contain carbohydrate structures. Other clusters contain nitrogen-heavy ring structures 

and side-groups. 
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The clustering of 1EEI resulted in a total of 66 clusters with a Tanimoto level set at 0.6 

(Table 7).  The inter-cluster similarity was Tanimoto 0.10 and the intra-cluster similarity 

is 0.73. 

Table 7 - Butina clusters sizes 1EEI 

Cluster size Number of clusters 

Singletons 24 

>5 molcules 21 

>25 molecules 6 

>100 molecules 2 

  

The 6 bigger clusters, which had 25 or more molecules, had the following molecules.  

A clear separation can be made between carbohydrate-like molecules, which are in 

cluster 1 and cluster 5. The other clusters show again nitrogen rich cyclic groups.  
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3.5 Hit molecule visualization 
Using VIDA the best docking molecules from different clusters have been visualized 

and interactions have been marked. This was done for both runs. 

MCULE-2839448221 was the best docking molecule in 1PZJ with a Chemgauss4 

score of -13.95 (Fig28). All interactions with the constraints are clearly present as there 

are interactions with Asn90, Lys91 and Glu51 (~ Distance between 2.6 and 3.3Å). The 

distance to Asn90 is somewhat longer, but still worth to mention. Another possible 

interaction is interactions with Gln56, which is also observed with GM1. Hydrophobic 

aromatic stacking interaction is possible between the Trp88 and the molecule, with a 

distance of 3.87Å. Interactions are also possible at the other end of the molecule with 

Gly33 and due to flexibility maybe with other groups as well. 

 

 

Figure 28 - 2D structure MCULE-2839448221 of with below the 3D pose visualized in VIDA FRED view. The 

yellow lines highlight the interactions with corresponding distances. 
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The second best docking molecule from 1PZJ was MCULE-8133751560 (Fig 29). 

Again all constraints are present. The distance is still short enough for stacking. 

However, other interactions are absent, only an extra possible interaction can be seen 

with Trp88. 

 

 

Figure 29 - 2D structure MCULE-8133751560 of with below the 3D pose visualized in VIDA FRED view. The 

yellow lines highlight the interactions with corresponding distances. 

The third best molecule in the 1PZJ visualization was Z2874994383 (Fig 30). Again all 

constraints are present, although the distance to the Asn90 can be considered too 

long. Hydrophobic stacking with Trp88 is also present. Elsewhere in the molecule, the 

carboxyl (=O) engages in some possible interactions with Gln61 and Glu33. 
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Figure 30 - 2D structure Z2874994383 of with below the 3D pose visualized in VIDA FRED view. The yellow 

lines highlight the interactions with corresponding distances. 

For 1EEI the best scoring molecule was MCULE-7853952702 with a score of -13.31 

(Fig 31). Although this run was not with constraints, possible interactions with Asn90, 
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Glu51 and Lys91 were all present. Stacking again was possible with the Trp88 and 

even another interaction with Trp88 is possible by the nitrogen in the most right ring 

structure. The NH3+ shows possible interactions with Gln56 and Gln61. 

 

  

 

Figure 31 - 2D structure MCULE-7853952702 of with below the 3D pose visualized in VIDA FRED view. The 

yellow lines highlight the interactions with corresponding distances. 
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The second molecule after clustering for 1EEI was MCULE-2430515474 with a score 

of -12.59 (Fig 32). Possible interactions are observable with the Lys91 and Glu51. The 

possibility for stacking has decreased with, although still possible. Further to the right 

we see possible interactions with Gly33 by a carboxyl and NH. 

 

 

Figure 32 - 2D structure of MCULE-2430515474 with below the 3D pose visualized in VIDA FRED view. The 

yellow lines highlight the interactions with corresponding distances. 
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The third best molecule is MCULE-9486643068 and has a score of -12.44 (Fig 33). It 

shows possible interactions with Glu51, Lys91, Gln56 and Gln61. Again there is 

stacking possible with Trp88 and there is also another interaction present with the 

Trp88. 

 

 

Figure 33 - 2D structure of MCULE-9486643068 with below the 3D pose visualized in VIDA FRED view. The 

yellow lines highlight the interactions with corresponding distances. 
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4. CONCLUSION 

Non-carbohydrate molecules are clearly visible in the clusters and using the clustering 

they can be clearly separated from the carbohydrate molecules found. In the clusters 

it is clear that most molecules in the top 1000 reciprocal for both molecules consist of 

molecules containing cyclic groups which are rich of nitrogen atoms. These nitrogen 

groups can replace the interactions made by hydroxyl groups, which is shown in the 

VIDA  visualization. 

HYBRID 3D poses did show interactions we expected, as they represent interactions 

present in the original GM1-CTB binding. The non-carbohydrate ligands mostly did 

show logical poses, where the same interactions are visible that were present for the 

original ligands or GM1 galactose group. Instead of the OH rich carbohydrate 

structures, the interactions are made by the nitrogen rich cyclic groups in the non-

carbohydrate molecules 

Cyclic stacking interactions with the Trp88 seems to be possible with the rings we see 

present in the new-found ligands as well. From these clusters, molecules can be 

selected on either HYBRID, ROCS or the reciprocal score. It is obvious though that 

high-scoring ROCS molecules mostly contain carbohydrate-groups. Therefore, the 

HYBRID score could be seen as more leading for finding non-carbohydrate molecules 

from this set of results.  

Actives did not all score well, but this can be due to the complexity of these molecules. 

Especially ROCS does not handle big molecules well, which will result in poor results 

for most of the actives. For ROCS actives scored between rank 141 and 32554168 for 

the 1PZJ run and between 5 and 35352752 for the 1EEI run. In HYBRID, not all actives 

scored well . For 1PZJ actives did score between rank 388211 and 18049007. 1EEI 

had the actives scoring between rank 189175 and 34314015. Both which can be 

explained by the non-validation of sugar-structures in OpenEye. Although, the original 

ligands 1PZJ and 1EEI ligands did score best in their respective runs of all actives, 

which is expected. 

All in all after two virtual screening methods on two receptors, candidate molecules 

were found. These molecules do show explainable features which could mimic the 

carbohydrates present in the original GM1-mimics and MNPG(-derivative) ligands. 

Now the next step is to test ligands in in vitro for affinity.  
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5. DISCUSSION 

First of all the targets we chose for HYBRID docking and ROCS are both MNPG-like 

ligands. This was done based on how well 1PZJ and 1EEI docked the actives, however 

the 1EEI and 1PZJ do not chemically and structurally represent all actives. Therefore 

you could want to dock with a bigger range of PDB’s with more variety in bound ligands. 

Most actives however are carbohydrate-heavy molecules or are quite big and complex. 

OpenEye tools are not validated for these type of molecules and this can also explain 

that most GM1-mimics did not show good docking performance. However, if possible, 

it would be nice to do docking with a bigger variety of molecules as of now a big chunk 

of cholera ligands could not be used due to software limitations. 

The option of multi-receptor docking in HYBRID could tackle this problem. With this 

HYBRID-mode, first similarity scores will be calculated between all receptor-bound 

ligands and database molecules before docking. This will lead to database molecules 

being docked in receptors containing ligands most similar to it, which means this 

receptor will most likely fit them better. This mode of HYBRID indeed showed better 

performance than single-receptor docking HYBRID. However, we found that the 

increase in running time was too much for the time available and we opted for two 

single-receptor runs using 1PZJ and 1EEI instead. 

For clustering, Butina clustering was used for its speed, ease of use and the fact that 

it suited our use case. Butina does however return many singletons, which can be 

problematic when looking at bigger sets of molecules or other use cases. For this 

study, the separation of carbohydrates and non-carbohydrates and a quick view of 

molecule types was the goal, which it did correctly. For better clustering performance 

and looking at bigger molecule sets, other clustering methods can be considered. 

Examples are hierarchical clustering and UMAP clustering. In a study comparing 

Butina, hierarchical and UMAP clustering, UMAP came out as the best clustering 

method for that specific database. (Hernández-Hernández & Ballester, 2023) 

The Reciprocal Rank Sum (RRS) method used in this study is also only usable when 

looking at smaller molecule sets. With the relatively small set cut-off used in this study 

RRS is usable, however when looking at very large number of molecules RRS 

becomes almost unusable due to the scaling of the reciprocal scores. When looking at 

huge datasets the reciprocal becomes too small to actually mark significant 

differences. The ease of use of the RRS however and also the option to expand easily 

by just adding another reciprocal score makes it very adaptable and usable when using 

set and relatively small cut-off values. Another remark is that the current cut-off is self-

chosen. The top 1000 is an arbitrary value which can be or not be enough molecules 

to look at. Cut-offs can be chosen using algorithms and data-driven decisions, however 

earlier used algorithms did not work with our data and therefore we chose a cut-off by 

hand. However, more research could and should be done to other data-driven cut-off 

algorithms for future virtual screenings. 

ROCS did show worse performance for the 1PZJ ligand, which could be explained by 

the complexity, length and flexibility of the molecule. The set of 40 conformers for 

OMEGA-ROCS runs could be seen as not enough to describe the flexibility of this 

molecule. Increasing the amount of conformers for ROCS however did show 

insignificant performance gains when compared to an increase of runtime. Still an 
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increase of conformer numbers could be considered for these complex molecules in 

the future. 

Finally of lastly, the cholera toxin B receptor is a hard target to actually dock into, due 

to the shallowness of the binding site. The poor performance of actives in both ROCS 

and HYBRID runs do confirm this. However, the original ligands of both 1PZJ and 1EEI 

scored well in HYBRID. 
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6. FUTURE RESEARCH RECOMMENDATIONS 

From the results obtained molecules can be selected for further lab and in vitro studies. 

Using different kind of cholera toxin essays the affinity and effectiveness of the 

candidate inhibitors can be tested. These can be an ELISA-type assay or an intestinal 

organoid swelling inhibition assay. (Haksar et al., 2019; Zomer-van Ommen et al., 

2016) 

Another recommendation is to possibly expand the virtual screening by multi-receptor 

docking like described in the discussion. Also, other screening methods can be applied 

like 2D screening methods, like 2D fingerprint screening (Duan et al., 2010). The nice 

part about the reciprocal sum is that, when using the same molecules, different virtual 

screening methods can be easily added to the already existing reciprocal sum. This 

makes this study easily expandable by adding different and new methods where 

ranking is possible. 
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8. SUPPLEMENTARY 

All used codes and extra results can be found at  

https://github.com/damianv98/choleratoxinb_screening/  

This contains codes, property graphs of databases and receptor study results. 

https://github.com/damianv98/choleratoxinb_screening/

